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Abstract

The most common technology in the world for the construction of power
transmission over head lines is via suspended conductors attached to towers. As one
can easily imagine, these conductors are subjected to vibrations induced by wind.
The magnitude of the induced vibrations depends on the cable-wind interaction,
but it’s pretty right saying that it becomes more dangerous especially when the
line is in open spaces without natural obstacles (e.g. deserts, lakes, frees plains) due
to possible presence of laminar wind. With the scope of reducing the magnitude
of this kind of vibrations and protect the line (and the users) from out of service,
many type of dampers have been designed during the years.

The thesis presented in this document analyses one of the most common devices
used for this scope: a tuned mass damper invented in the ‘20s by G. H. Stockbridge,
from who inherited its common name “Stockbridge” still used nowadays. This
damper can cover a range from few Hz up to maximum 200Hz with amplitude
normally less than 100mm, the so called range of Aeolian vibrations, excited by
shedding of vortices in the vertical plane: it is this alternative motion in the vertical
plan to cause a fatigue stress to the conductor.

The investigation focuses on both modelling and experimental study of this
mechanical device: the aim is obtaining the mathematical expression for the Fre-
quency Response Function (FRF) of the damper in order to have a powerful tool for
optimizing its design with a sensitive analysis, and correlate the FRF parameters
thanks to the experimental data obtained in the lab tests of a prototypal damper
on the shaker. All the analyses are developed in collaboration with "Officina F.lli
Bertolotti" S.p.A., an Italian company with long experience in manufacturing of
fittings for power transmission over head lines, and with the Politecnico di Torino,
Dynamics & Identification Research Group.
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1. State of the art

In the practice, the energy net provider establishes both the mechanical and
electrical characteristics of the power transmission line based on available data on
the boundary conditions like wind, ground morphology, voltage, power consumption
etc., and so for all the fittings and dampers too. For the dampers, this commonly
reduces to a target FRF with thresholds on both gain and phase set in order to
guarantee the robustness against wind-correlate fatigue phenomena. Here below is
shown an example of such FRF for a Stockbridge type damper.

Figure 1.1: Example of the FRF limits required

Therefore, it is necessary to observe the flow characteristics between the air and
the power line conductors, as well as the mechanical and technological properties
of the system parts, in order to understand the physics that governs the studied
situation.
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1.1 Wind - Induced Vibration

In the dynamic of air transmission lines, the wind - induced vibrations play
a significant role; these motions are produced by the wind interaction with the
conductors, so there is an energy shift that produces motions of the conductors.

Aeolian Vibrations, Galloping Motions, and Subspan Oscillations are three of
the main kinds of motion described in literature.

Figure 1.2: Rappresentation of Wind - Induced Vibrations [1]

The Aeolian vibration are the most common type of dynamic vibration; they
are generated by the interaction between the smooth wind, by 1 m/s up to 7 m/s

of velocity, with the conductor. The amplitude exceeding the conductor diameter
can be experienced with this vibration that has a frequency of 3-150 Hz.

A vortex shedding phenomenon can create dangerous alternating forces between
conductors. This can result in bending moments of the conductors for many cycles,

[1]C. Gazzola, Modelling and assessment of aeolian vibrations of overhead transmission line
conductors: theory and implementation, PhD Thesis, Polytechnic of Milan, Italy, 2017.
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causing fatigue stress[2][3][4]. Specifically, when the wind meets the cable, von
Karman wakes are created; these vortices are responsible for causing vibrations to
occur (see the Figure 1.3). The consequent pressure gradients around the cylindrical
cable reflect the presence of periodic lift forces.

According to the Strouhal formula (Equation 1.1)[5][6][7], these are proportional
to the wind velocity (V ) and the Strouhal number (directly linked to the Reynolds
number) and inversely proportional to the conductor diameter (D):

fV S = S · V
D

(1.1)

According to the appropriate wind velocity, the Reynolds number can be by
750 to 6000, while the Strouhal number range is 0.18 to 0.22[8]; analysing the
Strouhal formula, it is possible to notice that for low frequencies correspond large
conductor diameter and low wind velocity, while for high frequencies correspond
small conductor diameter and a high wind velocity.

Figure 1.3: von Karman wakes, 150 < Re < 3 · 105 case[9]

[2]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.

[3]O. Barry et al., Analytical and Experimental Investigation of Overhead Transmission Line
Vibration, In: Journal of Vibration and Control 21, 2014, pp. 2825–2837.

[4]N. Barbieri and R. Barbieri, Linear and Non-Linear Analysis of Stockbridge Damper, In: Proc.
of the 21st Brazilian Congress of Mechanical Engineering, Natal, RN, Brazil. Ed. by Proceedings
of COBEM, 2011.

[5]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.

[6]M. Ervik et al., Report on Aeolian Vibration, In: Electra 124, 1986, pp. 40–77.
[7]P. Hagedorn, Wind-Excited Vibrations of Transmission Lines: A Comparison of Different

Mathematical Models, In: Mathematical Modelling 8, 1987, pp. 352–358.
[8]C. Gazzola, Modelling and assessment of aeolian vibrations of overhead transmission line

conductors: theory and implementation, PhD Thesis, Polytechnic of Milan, Italy, 2017.
[9]C. Gazzola, Modelling and assessment of aeolian vibrations of overhead transmission line

conductors: theory and implementation, PhD Thesis, Polytechnic of Milan, Italy, 2017.
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1.2 Conductors

The Stockbridge damper is designed so that can absorb and dissipate the energy
transmitted from the external environment to the overhead lines; in order to have
a better overview of the physic that governs the Stockbridge dampers, a brief
description of the conductors characteristics and their properties are reported. It is
important to know that the conductor is the most important component of a power
transmission line: in fact it covers about 40 % of the total power line cost[10][11]

and that any effort in preventing its damaging must be done in order to avoid
possible out of service condition for million euros cost.

Figure 1.4: Typical typologies of power lines[12]

1.2.1 Construction Characteristics

The typical structure of the conductor is shown in Figure 1.5. A conductor is
made up of a series of layers of braided wires forming two parts[13]:

[10]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.
[11]C. Gazzola, Modelling and assessment of aeolian vibrations of overhead transmission line
conductors: theory and implementation, PhD Thesis, Polytechnic of Milan, Italy, 2017.
[12]Spedona/J.H. Mora, Lignes à haute tension (Sagy, Val d’Oise), 16 June 2005, in https:
//bit.ly/34UxhaU.
[13]Donald G. Fink and H. Wayne Beaty, Overhead Power Transmission". Standard Handbook
for Electrical Engineers (11 ed.) New York: McGraw-Hill, 1978.

13

https://bit.ly/34UxhaU
https://bit.ly/34UxhaU


• An external layer, typically in aluminum and its alloys, with high conductivity
capacity, called the conductive layer;

• An internal layer in steel or other materials with higher strength capacity
than aluminum, called core, which resists the most part of the mechanical
pulling;

The two layers could have sub layers, each helically wrapped with a specific
βL angle (Figure 1.6). Every layer is orientated in opposite direction to ensure its
global integrity.

Figure 1.5: Typical conductor structure[14]

Figure 1.6: Stranded winding in a helical direction on the core[15]

[14]C. Gazzola, Modelling and assessment of aeolian vibrations of overhead transmission line
conductors: theory and implementation, PhD Thesis, Polytechnic of Milan, Italy, 2017.
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The conductor must provide both high conductive and mechanical strength
properties, in order to cover decades of non-interrupted service, but also other
particular aspects mainly linked to the minimum height of the conductor from the
ground.

In particular, regarding the tension to linear mass ratio (catenary constant)
is of fundamental importance for the catenary shape of the conductor: its value
affects directly the height of the lowest point of a span. The proper combination
of mechanical pulling and linear mass must be found to obtain lower power losses
(high pulling) and correct catenary shape.

The thermal expansion coefficient is also relevant because it affects the vertical
displacement among the lower and the higher points of the line; the higher is
the thermal expansion coefficient, the higher will be the cable deformation when
temperature variations occurs.

These last properties are used to select the correct type of conductor and
according to all of them different combination of materials are exploited. The
most common conductors used are[16]: Aluminum Stranded Conductor (ASC),
entirely made of pure aluminum and used for short span, Aluminum Alloy Stranded
Conductor (AASC), made of aluminum alloy with a higher streinght-to-wieght ratio
than the previous type, Aluminum Alloy Conductor Steel Reinforced (AACSR), it
is the most common one and it has a steel based core to improve significantly the
higher strength-to-weight ratio.

Nowadays a new typology of conductor is employed, the Aluminum Conductor
Composite Core (ACCC); here the core is made of a composite material like glass
fiber or carbon fiber. These materials are lighter and stronger than steel and have
a much lower thermal expansion coefficient too: so there is a reduction of the force
used to tension the conductor due to a lower weight and smaller dilatation due
to thermal gradients. An other advantage is the increase of the fulfilled section
of the outer layer with properly designed elementary wires. The final result is a

[15]M. Onore, Smorzatore Stockbridge e soppressione delle vibrazioni dei cavi tesi: analisi numerica
e sperimentale, Polytechnic of Turin, 2018.
[16]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.
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considerable reduction of the electric power losses, by 25 % to 40 %[17][18][19][20].

Figure 1.7: Comparison between the ACSR (on the left) and ACCC (on the
right)[21]

1.3 Stockbridge Damper

As evidenced by the previous section, the wind gives rise to conductor displace-
ments. This behaviour must be controlled because it leads to a localized stress,

[17]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.
[18]CTC Global Corporation, Engineering Transmission Lines With High-Capacity, Low-Sag
ACCC Conductor, CTC Global, 2011.
[19]B. Wareing, Types and Uses of High Temperature Conductor, CIGRÉ (International Council
on Large Electric Systems) Seminar. Bangkok: CIGRÉ Study Committee B2 Working group 11,
2011.
[20]J. Slegers, Transmission Line Loading: Sag Calculations and High-Temperature Conductor
Technologies, Iowa State University, 2011.
[21]D. Bryant, ACSR and ACCC, 3 September 2013, in https://bit.ly/3HRLzrs.
[22]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.

16

https://bit.ly/3HRLzrs


Figure 1.8: Cross-sections of different conductors[22]
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called fretting fatigue; this trend causes surface cracks and their progressive growth
because of the alternating motion of the strands that slip each other relatively. In
order to control and prevent this stress, some dampers are mounted on the main
conductor; in this way some of the energy transferred from the wind to the con-
ductor is dissipated, effectively reducing the conductor oscillation amplitude. The
most common used is the Stockbridge type and in the next section characteristics
and mechanical properties are reported.

Figure 1.9: Stockbridge dampers mounted on the overhead lines[23]

1.3.1 Construction Characteristics

The Stockbridge damper was developed by George Stockbridge in 1925. It is
an inertial damper and it is the most common type of damper used on overhead
power lines[24][25].

The device consists of a messenger cable, made of a steel rope, at whose ends
Zamak masses are cast, while in the central part the aluminum alloy clamp body
is cast. This latter, together with the track cover, allows the mounting of the
damper on the overhead line main conductor. The cast parts are realized with

[23]M. Buscemi, Studio di un Sistema di Controllo Attivo per la Riduzione delle Vibrazioni nelle
Linee Aeree di Trasmissione dell’Energia Elettrica, MA thesis, Polytechnic of Milan, Italy, 1985.
[24]C.N. Canales et al., Optimal Design of Stockbridge Dampers, In: Ingenieria Mecanica Tec-
nologia y Desarollo 2, 2008, pp. 193–199.
[25]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.
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appropriate inertial characteristics as well as their relative distances and messenger
cable dimensions (diameter, length, number of wires, etc.).

Figure 1.10: Stockbridge damper components[26]

The messenger cable arrangements on the clamp body, and that of the masses
connected to it, is done in such a way as to make the geometry asymmetrical:
the masses are different from each other and the distance between the junction
mass-clamp body is different between the left side and the right side, making
consequently different each moment of inertia[27].

1.3.2 Mechanical Properties

In this way it is possible to identify four resonance frequencies, to which corre-
spond four mode shapes (see the Figure 1.12); moreover, the resonance frequencies
of the device are distributed and it is possible to allow the vibrations attenuation
induced by external forces in the whole range of frequencies at which they excite
the conductor[28].
[26]Liang Wang Xiaoyu Luo and Yisheng Zhang, Nonlinear numerical model with contact for
Stockbridge vibration damper and experimental validation, Journal of Vibration and Control, 2014.
[27]R. Claren and G. Diana, Mathematical Analysis of Transmission Line Vibration, In: IEEE
Transactions on Power Apparatus and Systems 88, 1969, pp. 1741–1771.
[28]R. Claren and G. Diana, Mathematical Analysis of Transmission Line Vibration, In: IEEE
Transactions on Power Apparatus and Systems 88, 1969, pp. 1741–1771.
[29]M. Onore, Smorzatore Stockbridge e soppressione delle vibrazioni dei cavi tesi: analisi numerica
e sperimentale, Polytechnic of Turin, 2018.
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Figure 1.11: Stockbridge type damper used during experimental tests

Figure 1.12: FEM mode shapes; at the top left is the 1° one, at the bottom left is
the 2° one, at the top right is the 3° one, at the bottom right is the 4°. The colors
gradient indicates the amplitude magnitude along the span, by blue the lowest up
to red the highest.[29]

The messenger cable constitutes the damping element, whose mechanism de-
pends on friction between the wires that make up the messenger cable. The friction
in question is hysteretic; this behavior is characterized by a non-linear dynamic re-
sponse: the damping and the dynamic stiffness of the messenger cable are functions
of the body clamp vibration amplitude; consequently, also the resonance frequencies
of the damper depend on it. In addition, the non-linearity of the system makes
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possible a self-regulation behavior of the damper[30][31][32].
During bending, conductor wires tend to flex according to the modal shape

performed; this tendency is hindered by friction occurring between the contact
surfaces of braided cables.

If the curvature value is small, the wires do not slide against each other, so this is
the full-stick state, where all the wires move as one solid body[33]. EImax represents
the maximum theoretical cable bending stiffness as determined by averaging the
bending stiffness of each braided wire[34].

EImax =
∑

(Ei · Ii) (1.2)

with Ei the i-th Young’s modulus and Ii the i-th surface moment of inertia. In
particular the surface moment of inertia is computed considering the neutral axis
of the cable, so for each wire it is[35]:

Ii = I0i + Ai · d2i (1.3)

with I0i the surface inertia moment related to the axis of the i-th wire, Ai the
cross section of the i-th wire and d2i the distance between the neutral axis of the
cable and the neutral axis os the i-th wire.

When the curvature of the cable reaches the sufficient amplitude, the wires
start to slip each other and this condition becomes more and more progressive with
the curvature. This new situation that takes place is called full-slip state[36] and

[30]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.
[31]F. Foti and L. Martinelli, Hysteretic Behaviour of Stockbridge Dampers: Modelling and
Parameter Identification, In: Mathematical Problems in Engineering, 2018.
[32]C. Gazzola, Modelling and assessment of aeolian vibrations of overhead transmission line
conductors: theory and implementation, PhD Thesis, Polytechnic of Milan, Italy, 2017.
[33]F. Foti and L. Martinelli, Hysteretic Behaviour of Stockbridge Dampers: Modelling and
Parameter Identification, In: Mathematical Problems in Engineering, 2018.
[34]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.
[35]Electric Research Power Institute EPRI, Transmission Line Reference Book: Wind- Induced
Conductor Motion, Palo Alto, 2006.
[36]F. Foti and L. Martinelli, Hysteretic Behaviour of Stockbridge Dampers: Modelling and
Parameter Identification, In: Mathematical Problems in Engineering, 2018.
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the associated bending stiffness is EImin; it is assumed to be the lowest theoretical
possible value and it is computed considering the wires moving independently:

EImin =
∑

(Ei · I0i) (1.4)

Nevertheless the (Equation 1.2) and (Equation 2.1) can give good estimation
of these theoretical values, in literature it is possible to find other more com-
plex expressions of EImax and EImin studied with a more precise mechanical
model[37][38].

In particular, the model used in this study is the one developed by De Jong[39];
called κ the curvature, it results:

EIκ = M = Mκ +
N∑

L=1

Md,L (1.5)

It is assumed that the external moment M is distributed over the cross section
of the centered cable (MK) and over the cross section of each single wire, shown
with L, which becomes part of each layer around the core (Md,L).

As a result, stiffness is composed of two parts, the primary one, which is constant
and is determined by all the cables’ cross sections, and the secondary one, which
is determined by the amount of sliding and friction among the outer cables just
discussed.

At the end, it can be proved as follows:

EImin =
Ekπδ

4
k

64
+
∑

(nLEd,Lδ
4
d,L cos βL) (1.6)

EImax = EImin +
∑(nL

2
Ed,LAd,Lr

2
L cos

3 βL

)
(1.7)

[37]F. Foti and L. Martinelli, Mechanical Modeling of Metallic Strands Subjected to Tension,
Torsion and Bending, n: International Journal of Solids and Structures 91, 2016, pp. 1–17.
[38]A. Cardou, Taut Helical Strength Bending Stiffness, 2006, in http://www.utfscience.deI/
2006.
[39]B.C. De Jong, Analytical and experimental analysis of the capacity of steel wire ropes subjected
to forced bending, M.Sc Thesis submitted to the faculty of Civil Engineering and Geoscience, TU
Delft, 2015.
[40]M. Onore, Smorzatore Stockbridge e soppressione delle vibrazioni dei cavi tesi: analisi numerica
e sperimentale, Polytechnic of Turin, 2018.
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Figure 1.13: Bending stress applied to the core and the wires[40]

With δd,L the wires diameter, δk the diameter of the central core, Ek and Ed,L

the material Young’s modulus and nL the wires number per layer.
Generally, there is a smooth transition between the two bending stiffness and

the most common value adopted oscillates by the 30 % up to the 50 % of EImax;
this value can be assumed independent of frequency and constant along the wire
span[41].

Figure 1.14: Diagram of curving-bending stiffness[42]

[41]CIGRE, Modeling of Aeolian Vibrations of a Single Conductor Plus Damper - Assessment of
Technology, CIGRE WG B2.11 TF1. Electra Vol. 223, 2005.
[42]M. Onore, Smorzatore Stockbridge e soppressione delle vibrazioni dei cavi tesi: analisi numerica
e sperimentale, Polytechnic of Turin, 2018.
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As explained previously, when the cable is flexed, the braided wires tends to
move slipping one another and this generates the friction between the contact
surfaces. The self-damping induced by the cable strands is the reason why the
system is damped and, therefore, energy is dissipated. This characteristic refers
not only to the main conductors of the power lines, but to the messenger cable of
the Stockbridge damper too, in fact it represents its damping element.

Differently from the messenger cable, the main conductor self-damping is
connected to the tension to which it is subjected; in particular, if the tension
increases, the wires does not slip, therefore the conductor self-damping decreases[43].

The Stockbridge damper has a particular characteristic: it behaves as a tuned
mass vibration adsorber [44][45][46][47]: since it is possible to vary a priori the
parameters of the device, such as the masses suspended at the ends of the cable,
the mass of the body clamp and of the brace cover, the length and the section of
the of the messenger cable, the moments of inertia of the masses, the distances
between the barycenter and the suspended mass-clamp body junction, the stiffness
and hysteresis factor of the messenger cable, it becomes possible to design the
impedance of the damper to coincide with that of the main conductor[48]; the two
parts of the messenger cable behave like cantilevered beams with concentrated
masses positioned at the ends. In this way, the energy that the wind imprints on it
is mostly dissipated by the Stockbridge damper.

If the wind excites the conductor near one of its resonant frequencies and the
damping is low, small displacements of the clamp body of the Stockbridge damper
may correspond to a large amplitude of oscillations of the main conductor. Then
the damper clamp body amplitude increases too, shifting the resonant frequency

[43]CIGRE, Modeling of Aeolian Vibrations of a Single Conductor Plus Damper - Assessment of
Technology, CIGRE WG B2.11 TF1. Electra Vol. 223, 2005.
[44]P. Hagedorn, Wind-Excited Vibrations of Transmission Lines: A Comparison of Different
Mathematical Models, In: Mathematical Modelling 8, 1987, pp. 352–358.
[45]M. Buscemi, Studio di un Sistema di Controllo Attivo per la Riduzione delle Vibrazioni nelle
Linee Aeree di Trasmissione dell’Energia Elettrica, MA thesis, Polytechnic of Milan, Italy, 1985.
[46]langlois.
[47]H. Kasap, Investigation of Stockbridge Dampers for Vibration Control of Overhead Transmis-
sion Lines, MSc Thesis, Middle East Technical University, Turkey, 2012.
[48]R. Claren and G. Diana, Mathematical Analysis of Transmission Line Vibration, In: IEEE
Transactions on Power Apparatus and Systems 88, 1969, pp. 1741–1771.
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away, acting like a dynamic absorber; this trend continues until the maximum
amplitude of the modal shape is reached.

The impedance of the damper is calibrated in such a way that when inserted
(at a node) into the FEM model of the conductor (hinge-hinge or bogie-bogie ends),
it generates the energy dissipation that keeps the conductor deformation within
the limits set at each node of the model.

The selection of the node in which to model the impedance has a fundamental
role too: to define the installation distance from the conductor ends, models known
in literature are used (on dedicated software) that are consolidated by many years
of experience and by numerous test campaigns.
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2. Analytical model

2.1 Six-degrees of Freedom Model

To make the mathematical model more reliable, several assumptions are adopted.
First, it is assumed that the messenger cable has two distinct values of flexural

stiffness: given a certain frequency, the movement of the right side is different
from the left, which results in different friction between the contact surfaces of the
strands. This causes two distinct values of stiffness.

It is assumed that the clamp body is rigidly attached to the conductor, and
that its movement is vertical; under this assumption, there is no rotation of the
clamp body.

At last, as a result of the friction generated by the strands of the messenger
cable, the physical model is of hysteretic type as it is more accurate than a viscous
one. Again, as with flexural stiffness, two different hysteresis coefficients will be
assumed, one on each side of the messenger cable, due to the different physics
governing the two sides of the cable.

Among the models collected in the literature, the one used to describe the
Stockbridge dynamics is with six degrees of freedom with concentrated parameters[1].
In particular, these correspond to the angular and vertical displacements of the
cantilevered masses and the body clamp one.

At this point, the degree of freedom vector, x, is defined as:

x = {x1 φ1 xc φc x2 φ2}T (2.1)

By studying the free body diagram of the damper, the following system of
differential equations can be constructed:

[1]R. Claren and G. Diana, Mathematical Analysis of Transmission Line Vibration, In: IEEE
Transactions on Power Apparatus and Systems 88, 1969, pp. 1741–1771.

[2]M. Onore, Smorzatore Stockbridge e soppressione delle vibrazioni dei cavi tesi: analisi numerica
e sperimentale, Polytechnic of Turin, 2018.
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Figure 2.1: Six degrees of freedom adopted[2]

[M ]ẍ+ [R]ẋ+ [K]x = F (2.2)

Where [M ] is the mass matrix, [R] is the damping matrix, [K] is the stiffness
matrix and F is the vector of the external applying stresses.

F = {0 0 F M 0 0}T (2.3)

These equations are the base of the FEM analysis. All the parameters used on
its development are listed below:

1. The stiffness and hysteresis factor of both sides of messenger cable, respectively
indicated with EIi and hi;

2. The right and left side lengths of the messenger cable, indicated with Li;

3. the distances between the barycenter and the suspended mass-clamp body
junction, indicated with ai;

4. The masses and the mass moment of inertia, indicated respectively with mi

and Ji;

5. As for the frequency, this will be converted into the corresponding ωi pulse;

2.1.1 Mass Matrix [M ]

This mass matrix is made up of two components: the first, a sub-matrix related
to the cantilever-mounted masses and the clamp mass, defined as [Mmass] and the
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second relating to the messenger cable mass, combining both the left and right
sides’ contributions, defined as [Mmm].

[M ] = [Mmm] + [Mmass] (2.4)

[Mmm] Mass Matrix

The term Mmm is computed exploiting the Eulero-Bernoulli free-beam literature.
In general, the mass matrix is determined by considering the axial and flexural
loads on a beam element of length L, as shown in Figure 2.2 and Figure 2.3.

Figure 2.2: Beam element under axial load[3]

Using the shape functions L(x)[5], the mass matrix is calculated. So there is:

[M ] =

∫ L

0

µ(x){L(x)}{L(x)}Tdx (2.5)

The following shape functions are valid for axial strain:

Lass(x) =

L1(x)

L2(x)
=

1− x
L

x
L

(2.6)

In Equation 2.5, considering linear density µ of the beam constant, we obtain:

[3]M. Onore, Smorzatore Stockbridge e soppressione delle vibrazioni dei cavi tesi: analisi numerica
e sperimentale, Polytechnic of Turin, 2018.

[4]M. Onore, Smorzatore Stockbridge e soppressione delle vibrazioni dei cavi tesi: analisi numerica
e sperimentale, Polytechnic of Turin, 2018.

[5]L. Meirovitch, Elements on vibration analysis, College of Engineering, Virginia Polytechnic
Institute and State University, 1986.
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Figure 2.3: Beam element under bending load[4]

[maxial] = µ

∫ L

0

[
(1− x

L
)2 (1− x

L
) x
L

(1− x
L
) x
L

( x
L
)2

]
dx =

µL

6

[
2 1

1 2

]
(2.7)

Applying the same principles to the element which is under bending load, taking
into account that:

Lbend(x) =



L1(x)

L2(x)

L3(x)

L4(x)

=



1− 3( x
L
)2 + ( x

L
)2

( x
L
)− 2( x

L
)2 + 3( x

L
)3

3( x
L
)2 − ( x

L
)3

−( x
L
)2 + ( x

L
)3

(2.8)

By integrating, we determine:

[mbend] =
µL

420


156 22L 54 −13L

22L 4L2 13L −3L2

54 13L 156 22L

−13L −3L2 −22L 4L2

 (2.9)

According to these results, the complete mass matrix for the 6 degrees of freedom
looks like this:
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[M ] =
µLi

420



140 0 0 70 0 0

0 156 22Li 0 54 −13Li

0 22Li 4Li
2 0 13Li −3Li

2

70 0 0 140 0 0

0 54 13Li 0 156 −22Li

0 −13Li −3Li
2 0 −22Li 4Li

2


(2.10)

Taking into account the case that is under consideration, as there is no degree
of freedom along the direction of the beam (u1 and u4 of Figure 2.3), the mass
matrix of the left and right halves of the damper messenger cable will be exclusively
composed of the smaller 4× 4 of degrees of freedom of rotation and translation of
the body. So there will be:

[Mmmi] =
µL

420


156 22Li 54 −13Li

22L 4Li
2 13L −3Li

2

54 13Li 156 22Li

−13L −3Li
2 −22 4Li

2

 (2.11)

The total matrix of the messenger cable can be obtained by superimposing left
and right sides, both having different lengths, but having in common degrees of
freedom corresponding to the clamp.

[Mmass] Mass Matrix

Taking into account the two masses at the end of the messenger cable and the
clamp, the Mmass represents the mass contribution. Furthermore, as already stated,
the barycentre of a mass is considered distant ai from the conjunction of the mass
with the messenger cable. So, there will be:
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[Mmass] =



m1 m1a1 0 0 0 0

m1a1 J1 +m1a1
2 0 0 0 0

0 0 mc 0 0 0

0 0 0 Jc 0 0

0 0 0 0 m2 m2a2

0 0 0 0 m2a2 J2 +m2a2
2


(2.12)

2.1.2 Stiffness Matrix [K]

The definition of the stiffness matrix considers the displacements of the cable
ends. So in the free body diagram of the beam element L are shown in Figure 2.4
and fig:30.

Figure 2.4: Degrees of freedom of the ends of a beam element[6]

The stiffness matrix is constructed again using shape functions, however, for
axial loads we will use its first derivative (Equation 2.13), and for bending loads
we will use its second derivative (eq:17).

[6]M. Onore, Smorzatore Stockbridge e soppressione delle vibrazioni dei cavi tesi: analisi numerica
e sperimentale, Polytechnic of Turin, 2018.

[7]M. Onore, Smorzatore Stockbridge e soppressione delle vibrazioni dei cavi tesi: analisi numerica
e sperimentale, Polytechnic of Turin, 2018.
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Figure 2.5: Stresses applied to the ends of the beam element[7]

{L′(x)} =
d

dx
{L(x)} (2.13)

{L′′(x)} =
d2

dx2
{L(x)} (2.14)

The stiffness matrix related to axial load is Equation 2.15, while that related to
bending load is Equation 2.16.

[K] =

∫ L

0

EA(x){L′(x)}{L′(x)}Tdx (2.15)

[K] =

∫ L

0

EI(x){L′′(x)}{L′′(x)}Tdx (2.16)

So the shape functions for the axial load will be:

L′
ass(x) =

L′
1(x)

L′
2(x)

=

 d
dx
(1− x

L
)

d
dx
( x
L
)

=

−1

1
(2.17)

Hence, including Equation 2.17 in Equation 2.15, the following expression is
obtained:

[kaxial] =
EA

L2

∫ L

0

{
−1

1

}{
−1

1

}T

dx =
EA

L

[
1 −1

−1 1

]
(2.18)
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The same procedure is adopted for the bending load case. Considering that:

L′′
bend(x) =



L′′
1(x)

L′′
2(x)

L′′
3(x)

L′′
4(x)

=
2

L2



−3 + 6( x
L
)

−2 + 3( x
L
)

3− 6( x
L
)

−1 + 3( x
L
)

(2.19)

Including Equation 2.19 into Equation 2.16, the stiffness matrix obtained is:

[kbend] =
EI

L3


12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

 (2.20)

As a result of these results, the complete stiffness matrix corresponds to the
following:

[K] =



EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 −12EI
L3 −6EI

L2 0 12EI
L3 −6EI

L2

0 6EI
L2

2EI
L

0 −6EI
L2

4EI
L


(2.21)

As in the case of the mass matrix, contributions associated with degrees of
freedom along the direction of the beam axis are ignored (η1 and η4 of Figure 2.4)
and the stiffness matrix, related to each side of the messenger cable, will consider a
4× 4 matrix system. At the end the result is:

[Ki] =
EIi
L3


12 6Li −12 6Li

6Li 4Li
2 −6Li 2Li

2

−12 −6Li 12 −6Li

6Li 2Li
2 −6Li 4Li

2

 (2.22)

The total stiffness matrix considers the two messenger cable sides contributions
together.
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2.1.3 Damping Matrix [R]

It should be noted that in some cases, the hysteretic damping model is closer to
reality than the viscous model[8]. The Equation 2.23 represents the adopted model:

[M ]{ẍ}+ [K̃]{x} = {F0}eiΩt (2.23)

Furthermore, it can be demonstrated that the damping matrix R comes from
the stiffness matrix K: the stiffness of a structure, which has hysteretic damping,
can be expressed in the form of a complex stiffness; therefore it is:

[K̃] = [K] + i[R] (2.24)

Where the real part correspond to the stiffness matrix [K], studied in the
previous section, and the imaginary part correspond to the damping matrix [R],
which indicates the energy dissipation capability of the system.

This matrix is proportional to the frequency and to the damping coefficient; in
particular, in this case, considering the asymmetrical geometry of the Stockbridge
damper messenger cable, there are two damping coefficients considered, h1 and
h2

[9]. There are two sub-matrices which describe the damping behavior of each
part of the messenger cable:

[R1,2] =
h1,2

Ω
[K1,2] (2.25)

Like what has already been said for the mass and stiffness matrix, the damping
matrix is obtained by superimposing the single damping matrices of the left and
right sides of the Stockbridge damper.

2.1.4 Impedance Matrix [H] and Mathematical Models

At this point, knowing the 6×6 mass, stiffness and damping matrices, it possible
to proceed with the resolution of the linear system.

[8]S. Marchesiello A. Fasana, Meccanica delle Vibrazioni, CLUT, Politecnico di Torino, 2006.
[9]N. Amati G. Genta, On the equivalent viscous damping for systems with hysteresis, Trabalho

de Conclusão de Curso, Universidade Tecnológica Federal do Paraná, Curitiba, 2018.
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The assembling method [10] is used to this purpose; it consists in the exchange
of the rows of the matrices according to the contributions of the every freedom
degree as read in the free body diagram. There will be a 4 × 4 sub-system that
refers to the cantilever masses movements contributions, xL vector, and a 2 × 2

sub-system that refers to the body clamp movements contributions ones, xV vector.
By the way, the input quantities are the vertical displacement and rotation of

the body clamp, which are assumed to be harmonics:[
xc

φc

]
=

[
xc0

φc0

]
eiΩt (2.26)

So there is a sub-vector for the body clamp movements:

xV = {xc φc}T (2.27)

While the cantilever masses coordinates are contained in the following sub-
vector:

xL = {x1 φ1 x2 φ2}T (2.28)

So, it results:

x =

{
xL

xV

}
(2.29)

With the same idea, the mass matrix, the stiffness matrix and the damping
matrix are arranged in the following ways:

[M ] =


[

MLL

] [
MLV

]
[

MV L

] [
MV V

]
 (2.30)

[10]L. Meirovitch, Elements on vibration analysis, College of Engineering, Virginia Polytechnic
Institute and State University, 1986.
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[K] =


[

KLL

] [
KLV

]
[

KV L

] [
KV V

]
 (2.31)

[R] =


[

RLL

] [
RLV

]
[

RV L

] [
RV V

]
 (2.32)

As will be evident from the following equation, considering the Equation 2.2,
the matrices can be reordered as follows:

[MLL]ẍL + [RLL]ẋL + [KLL]xL = −[MLV ]ẍV − [RLV ]ẋV − [KLV ]xV

[MV L]ẍL + [RV L]ẋL + [KV L]xL = FV − [MV V ]ẍV − [RV V ]ẋV − [KV V ]xV

(2.33)
The displacements and rotations of the two masses are obtained from the first

formula; as a result, the resolution of the system gives the force and the moment
at the clamp body.

Now, the following matrices are derived, which are constants in time but vary
in frequency: 

[A] = −Ω2[MLL] + iΩ[RLL] + [KLL]

[B] = −(−Ω2[MLV ] + iΩ[RLV ] + [KLV ])

[C] = −Ω2[MV L] + iΩ[RV L] + [KV L]

[D] = −(−Ω2[MV V ] + iΩ[RV V ] + [KV V ])

(2.34)

The equations of the system are rewritten in a compact manner, obtaining:[A]xL0 = [B]xv0

[C]xL0 = FV 0 + [D]xV 0

(2.35)

xL0 = [A]−1[B]xV 0 (2.36)
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FV 0 = ([C][A]−1[B]− [D])xV 0 = [H(iΩ)]xV 0 (2.37)

In this way a 2× 2 complex matrix is obtained: [H] represents the Impedance
Matrix and it is so defined:

[H(iΩ)] =

[
fuu fuφ

fφu fφφ

]
(2.38)

Basically, it represents the connection between input, which is displacement
and rotation of the cable terminal or conductor, being these rigidly connected, and
output, which is force and moment transmitted from the cable terminal to the
cable.

Particularly, the proportionality factor between displacement and force, fuu,
is of interest since during laboratory testing the clamp’s rotation is assumed to
be zero. Therefore, the analytical model proposed can simulate the Stockbridge
damper operating curve as determined in the laboratory.

In principle, the modulus and phase of the FRF can be derived from the complex
expression fuu:

G(Ω) = |H1,1| =
√

(ℜ(fuu))2 + (ℑ(fuu))2 (2.39)

φ(Ω) = ∠H1,1 = arctan

[
ℑ(fuu)
ℜ(fuu)

]
(2.40)

This will give real values, making it possible to compare experimental and
theoretical values.

In the presence of Equation 2.39 and Equation 2.40, a numerical model can be
developed to estimate the energy and the power dissipated at each cycle.

From the literature, the power can be computed by the inner product between
the force and the velocity:

[P ]=̇{F}T · {ẋ} (2.41)

With the the force F and the velocity ẋ defined as:
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{F} = {F0}eiΩt (2.42)

{ẋ} = iΩ{x0}eiΩt (2.43)

Defining the conjugate of {F}:

{F} = {F ∗
0 }e−iΩt (2.44)

The power can be written as:

[P ] = iΩ{F0
∗}T{x0} (2.45)

Noting that:

{F} =

{
{FL}
{FV }

}
=

{
{0}

{FV 0}

}
eiΩt (2.46)

{x} =

{
{xL}
{xV }

}
=

{
{xL0}
{xV 0}

}
eiΩt (2.47)

It follows:

[P ] = iΩ
{
{0}T {FV 0}T

}{
{xL0}
{xV 0}

}
= iΩ{FV 0

∗}T{xV 0} (2.48)

From the Equation 2.37, knowing that:

{FV 0
∗}T = {xV 0

∗}T [H∗]T (2.49)

Then there is:
[P ] = iΩ{xV 0

∗}T [H∗]T{xV 0} (2.50)

Hence at the end the power is:

P = iΩ
{
xC0

∗ 0
}[

fuu
∗ fuφ

∗

fφu
∗ fφφ

∗

]{
xC0

0

}
(2.51)
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The result of the computations is:

P = iΩ{xC0}2fuu∗ (2.52)

Remembering the expression of the impedance:

fuu(Ω) = G(Ω)eiφ(Ω) (2.53)

fuu
∗(Ω) = G(Ω)e−iφ(Ω) (2.54)

Substituting the Equation 2.54 in the Equation 2.52, the power becomes:

P = iΩ{xC0}2G(Ω)e−iφ(Ω) = Ω{xC0}2G(Ω)ei[
π
2
−φ(Ω)] (2.55)

Using the goniometric functions it is possible to rewrite the power in the
following way:

P = Ω{xC0}2G(Ω)[cos (−φ) + i sin (−φ)] = Ω{xC0}2G(Ω)[sin (φ) + i cos (φ)]

(2.56)
So it is possible to consider a real power and an imaginary power; at the end

the equations that can be used to perform the power FEM analysis are:

ℜ(P ) = Ω{xC0}2G(Ω) sinφ (2.57)

ℑ(P ) = Ω{xC0}2G(Ω) cosφ (2.58)

P =
√
ℜ(P )2 + ℑ(P )2 (2.59)

Regarding the energy, it is:

EC =

∫ T

0

Pdt = PT = P
(2π
Ω

)
= 2π{xC0}2G(Ω)[sin (φ) + i cos (φ)] (2.60)

Considering the real and imaginary parts, the equations used to perform the
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FEM analysis are:
ℜ(EC) = 2π{xC0}2G(Ω) sinφ (2.61)

ℑ(EC) = 2π{xC0}2G(Ω) cosφ (2.62)

EC =
√

ℜ(EC)2 + ℑ(EC)2 (2.63)

2.2 Sensitive Analyses

The mathematical models derived above are used for numerical simulations.
The behavior of the energy, modulus, and phase characteristics in relation to the
influence of the parameters involved in the damper dynamics was observed to make
a good fitting with the experimental data.

In addition to the geometrical parameters, which have been measured and
checked by CAD software, a study is conducted to investigate which has a greater
impact on the dynamics of the Stockbridge damper.

The results will be commented in the following chapters.

2.2.1 EI1 stiffness variation

In this section the plots for the variation of the stiffness EI1 are shown. This
corresponds to the shorter part of the messenger cable. It can be seen that the most
sensitive variation in the curves is in the 15−25Hz and 60−120Hz frequency ranges,
where there are the second and the fourth mode shapes respectively. Moreover, from
Figure 2.9 there is a divergence of values between FEM curves and experimental data,
due to an attenuation of the latter. This problem results due to the experimental
errors recorded during the measurements: the machine always provides the same
amount of power, and consequently of energy, as the inertia of the machine itself
acts as a filter preventing the transfer of energy to the damper. Also for the other
sensitive analysis, in the same frequency range the same behavior can be noticed,
however the trend of the FEM curves remains correct.
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Figure 2.6: Energy curves as a function of EI1, 5-59 Hz

2.2.2 EI2 stiffness variation

In this section the plots for the variation of the stiffness EI2 are shown. On the
contrary, this correspond to the one related to the longer part of the messenger
cable. Here the most sensitive variation of the numerical results is in the 5− 15Hz

and in the 25 − 45Hz frequency ranges, where there are the first and the third
mode shapes respectively.
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Figure 2.7: Modulus curves as a function of EI1, 5-59 Hz

Figure 2.8: Phase curves as a function of EI1, 5-59 Hz
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Figure 2.9: Energy curves as a function of EI1, 60-120 Hz

Figure 2.10: Modulus curves as a function of EI1, 60-120 Hz
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Figure 2.11: Phase curves as a function of EI1, 60-120 Hz

Figure 2.12: Energy curves as a function of EI2, 5-59 Hz

44



Figure 2.13: Modulus curves as a function of EI2, 5-59 Hz

Figure 2.14: Phase curves as a function of EI2, 5-59 Hz
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Figure 2.15: Energy curves as a function of EI2, 60-120 Hz

Figure 2.16: Modulus curves as a function of EI2, 60-120 Hz
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Figure 2.17: Phase curves as a function of EI2, 60-120 Hz

2.2.3 h1 hysteresis coefficient variation

In this section the plots for the variation of the hysteresis coefficient h1 are shown.
This corresponds to the hysteresis related to the shorter side of the messenger cable.
As expected, the variation of this parameter increases or decreases the bell-shape
amplitude curve related to the related to the second and the fourth modal shape.
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Figure 2.18: Energy curves as a function of h1, 5-59 Hz

Figure 2.19: Modulus curves as a function of h1, 5-59 Hz
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Figure 2.20: Phase curves as a function of h1, 5-59 Hz

Figure 2.21: Energy curves as a function of h1, 60-120 Hz
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Figure 2.22: Modulus curves as a function of h1, 60-120 Hz

Figure 2.23: Phase curves as a function of h1, 60-120 Hz
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2.2.4 h2 hysteresis coefficient variation

Here are plots showing the variation of the hysteresis coefficient h2. Specifically,
this corresponds to the hysteresis associated with the shorter side of the messenger
cable. The variation of this parameter has the expected effect of increasing or
decreasing the bell-shape amplitude curve associated with the first and third modal
shapes, respectively.

Figure 2.24: Energy curves as a function of h2, 5-59 Hz
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Figure 2.25: Modulus curves as a function of h2, 5-59 Hz

Figure 2.26: Phase curves as a function of h2, 5-59 Hz
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Figure 2.27: Energy curves as a function of h2, 60-120 Hz

Figure 2.28: Modulus curves as a function of h2, 60-120 Hz
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Figure 2.29: Phase curves as a function of h2, 60-120 Hz

2.2.5 L1 length variation

In this section the L1 variation plots are reported. This length corresponds to
the length of the shorter part of the messenger cable. This parameter is important
since it appears in all matrices. It is related to the contributions of x1 and φ1,
associated with m1, as well as to xc and φc, associated with mc. It turns out that
by increasing the length, the relative values of the mass matrix increase while the
relative values of the stiffness and damping matrix decrease.
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Figure 2.30: Energy curves as a function of L1, 5-59 Hz

Figure 2.31: Modulus curves as a function of L1, 5-59 Hz
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Figure 2.32: Phase curves as a function of L1, 5-59 Hz

Figure 2.33: Energy curves as a function of L1, 60-120 Hz
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Figure 2.34: Modulus curves as a function of L1, 60-120 Hz

Figure 2.35: Phase curves as a function of L1, 60-120 Hz
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2.2.6 L2 length variation

This section discusses L2 variation plots. Respect to the previous, this represents
the length of the messenger cable’s longer part. The parameter appears in every
matrix, like L1. In this case, it is related to the contributions of x2 and φ2, associated
with m2, as well as to xc and φc, associated with mc. By increasing the length, the
mass matrix’s relative values increase while the stiffness and damping matrix’s
relative values decrease.

Figure 2.36: Energy curves as a function of L2, 5-59 Hz
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Figure 2.37: Modulus curves as a function of L2, 5-59 Hz

Figure 2.38: Phase curves as a function of L2, 5-59 Hz
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Figure 2.39: Energy curves as a function of L2, 60-120 Hz

Figure 2.40: Modulus curves as a function of L2, 60-120 Hz
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Figure 2.41: Phase curves as a function of L2, 60-120 Hz

2.2.7 a1 length variation

Graphs obtained by varying the parameter a1 are illustrated in this part. As
said in the last chapters, it is the distance between the barycenter and the junction
of the mass m1. Mass matrix is affected directly by this parameter.
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Figure 2.42: Energy curves as a function of a1, 5-59 Hz

Figure 2.43: Modulus curves as a function of a1, 5-59 Hz
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Figure 2.44: Phase curves as a function of a1, 5-59 Hz

Figure 2.45: Energy curves as a function of a1, 60-120 Hz
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Figure 2.46: Modulus curves as a function of a1, 60-120 Hz

Figure 2.47: Phase curves as a function of a1, 60-120 Hz
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2.2.8 a2 length variation

In this part, graphs in which the parameter a2 is varied are illustrated. This is
the distance between the barycenter and the mass junction m2, as mentioned in
previous chapters. Like a1, also this parameter directly affects the mass matrix.

Figure 2.48: Energy curves as a function of a2, 5-59 Hz
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Figure 2.49: Modulus curves as a function of a2, 5-59 Hz

Figure 2.50: Phase curves as a function of a2, 5-59 Hz
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Figure 2.51: Energy curves as a function of a2, 60-120 Hz

Figure 2.52: Modulus curves as a function of a2, 60-120 Hz
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Figure 2.53: Phase curves as a function of a2, 60-120 Hz

2.2.9 m1 mass variation

In this part the graphs about the m1 mass variation are presented. Among the
cantilevered masses, this is the lightest one and it is located on the shorter side of
the messenger cable. This parameter affects only the mass matrix.
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Figure 2.54: Energy curves as a function of m1, 5-59 Hz

Figure 2.55: Modulus curves as a function of m1, 5-59 Hz
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Figure 2.56: Phase curves as a function of m1, 5-59 Hz

Figure 2.57: Energy curves as a function of m1, 60-120 Hz
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Figure 2.58: Modulus curves as a function of m1, 60-120 Hz

Figure 2.59: Phase curves as a function of m1, 60-120 Hz
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2.2.10 m2 mass variation

Here are exposed the plots about the variation of the mass m2. This is the
heaviest cantilevered mass and it is located on the longer side of the messenger
cable. As the latter, this parameter affects only the mass matrix.

Figure 2.60: Energy curves as a function of m2, 5-59 Hz
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Figure 2.61: Modulus curves as a function of m2, 5-59 Hz

Figure 2.62: Phase curves as a function of m2, 5-59 Hz
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Figure 2.63: Energy curves as a function of m2, 60-120 Hz

Figure 2.64: Modulus curves as a function of m2, 60-120 Hz
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Figure 2.65: Phase curves as a function of m2, 60-120 Hz

2.2.11 mc mass variation

The analysis of the change in clamp body mass mc is presented in this part.
This parameter affects all the modal shapes of the damper, intervening only in the
mass matrix.
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Figure 2.66: Energy curves as a function of mc, 5-59 Hz

Figure 2.67: Modulus curves as a function of mc, 5-59 Hz
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Figure 2.68: Phase curves as a function of mc, 5-59 Hz

Figure 2.69: Energy curves as a function of mc, 60-120 Hz
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Figure 2.70: Modulus curves as a function of mc, 60-120 Hz

Figure 2.71: Phase curves as a function of mc, 60-120 Hz
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2.2.12 J1 mass moment of inertia variation

In this section the plots for the variation of the mass moment of inertia J1 are
shown. This parameter affects the mass matrix, so the FEM models, in a similar
way to the mass parameter m1.

Figure 2.72: Energy curves as a function of J1, 5-59 Hz
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Figure 2.73: Modulus curves as a function of J1, 5-59 Hz

Figure 2.74: Phase curves as a function of J1, 5-59 Hz

80



Figure 2.75: Energy curves as a function of J1, 60-120 Hz

Figure 2.76: Modulus curves as a function of J1, 60-120 Hz
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Figure 2.77: Phase curves as a function of J1, 60-120 Hz

2.2.13 J2 mass moment of inertia variation

The plots in this section illustrate the variations of the mass moment of inertia
J2. In the mass matrix, this parameter works similarly to mass parameter m2.
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Figure 2.78: Energy curves as a function of J2, 5-59 Hz

Figure 2.79: Modulus curves as a function of J2, 5-59 Hz
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Figure 2.80: Phase curves as a function of J2, 5-59 Hz

Figure 2.81: Energy curves as a function of J2, 60-120 Hz
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Figure 2.82: Modulus curves as a function of J2, 60-120 Hz

Figure 2.83: Phase curves as a function of J2, 60-120 Hz
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2.2.14 Jc mass moment of inertia

In this last part, the plots about the variation mass moment of inertia Jc are
presented. In reality, however, this last parameter does not have much importance
in terms of its influence on the model: after assuming that the clamp body rotation
is zero, it becomes apparent that the clamp body’s largeness is not a factor; the
superposition of all calculated FEM curves demonstrates this.

Figure 2.84: Energy curves as a function of Jc, 5-59 Hz
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Figure 2.85: Modulus curves as a function of Jc, 5-59 Hz

Figure 2.86: Phase curves as a function of Jc, 5-59 Hz
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Figure 2.87: Energy curves as a function of Jc, 60-120 Hz

Figure 2.88: Modulus curves as a function of Jc, 60-120 Hz
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Figure 2.89: Phase curves as a function of Jc, 60-120 Hz
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3. Experimental analysis

The first step of the this study is the experimental campaign. To do this, a
direct method is used; it consists in the direct recording of the Frequency Response
Function (FRF) of a Stockbridge damper sample that vibrates according the
dynamics that the test bench imposes. To be specific, the campaign consists in
the execution of n°50 measurements of the prototype damper on the shaker in the
identification lab of Officina F.lli Bertolotti S.p.A..

3.1 Test Bench Description

The setup of the test bench shown in Figure 3.1 and Figure 3.2 is as follows:
the damper is installed on a beam, supported by 2 load cells and fixed to the base
(oscillating plate) of the vibrating table, pneumatically operated. On the base an
accelerometer is also installed. The table is controlled to maintain the displacement
of the base constant when the frequency varies in the measurement interval. By
means of a specific software, a computer analyzes and records the signals.

Fundamental is the execution of the no-load test, with only the sensors and
the joist, for calibration; in this way the only energy necessary to the actuation of
the system is recorded, in order to be subtracted from the one measured on the
damper system (the software requires this operation).

3.2 Measured Data Analysis

A data acquisition system records the measured forces and acceleration of the
sensors and a dedicated software computes the system’s FRF (module and phase)
and the cycle power required by the system.

It is important to point out that the Stockbridge damper is designed according
to its working range frequencies (5 - 120 Hz); this is established according to the
stresses that the wind produces on the overhead lines (and therefore directly on the
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Figure 3.1: Shaker table with load cells and accelerometer

Figure 3.2: Bench test

main conductor), to the conductor size and conductor span zone. So the customer
establishes the reference standard for the FRF of the damper, since he has the data
of the conductor and of the line on which it is mounted (including wind maps).
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3.2.1 Collected data: module and phase

The standards impose the test parameters of the damper, in terms of displace-
ment and frequency. In the examined cases, because of the presence of a threshold
frequency, the amplitude peak-peak of the sine waves is 1 mm for the 5-59 Hz

frequency range and 0.5 mm for the 60-120 Hz. Hence, medium, maximum and
minimum relative values curves for module and phase are obtained (Figure 3.3 and
Figure 3.4).

Figure 3.3: Maximum, medium, minimum relative values curves for module and
phase, 5-59 Hz range

92



Figure 3.4: Maximum, medium, minimum relative values curves for module and
phase, 60-120 Hz range

A study for the distribution of the 50 measured data at the same frequency
is done; as it can be possible to see in Figure 3.5 and Figure 3.6, the type of
distribution does not follow a Gaussian distribution: this can be explained because
of unavoidable errors related to external conditions (weather, temperature, vibration
disorders) and coupling conditions of the device on the joist, varying from one test
to another.

For instance, the distributions of only a few frequencies are shown, but the
trend can be tracked throughout the entire sample interval.
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Figure 3.5: Module and phase medium values distributions; on the the left 10 Hz,
in the middle 25 Hz, on the right 40 Hz

Figure 3.6: Module and phase medium values distributions; on the the left 75 Hz,
on the right 90 Hz

3.2.2 Collected data: power and energy

In this section power and energy per cycle data in both 5-59 Hz and 60-120 Hz

are reported. As said before, the imposed peak-peak displacement of the shaker is
of 1 mm for the first interval and 0.5 mm for the second one.

The experimental power is directly captured by the sensors and recorded by
the software, instead the energy associated is computed as follow:

Eexp =
Pexp

f
(3.1)

Where Pexp is the experimental power and f is the frequency of the cycle.
At these different displacements (there is a 1:2 ratio between each other)

correspond a 1:4 ratio between the first frequency range and second one, both the
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power and the energy.
As it is possible to see in the Figure 3.9 and Figure 3.10, by 90 Hz up to 120

Hz the measures presents a lot of noise; this because of a technological limit: for
higher frequencies the test bench gives out worse measures, still these measures
are reliable; also the Stockbridge damper presents some errors about its properly
GDT, cause of manufacturing defects.

Figure 3.7: Medium relative values curves for cycle power, 5-59 Hz range

Figure 3.8: Medium relative values curves for cycle energy, 5-59 Hz range

95



Figure 3.9: Medium relative values curves for cycle power, 60-120 Hz range

Figure 3.10: Medium relative values curves for cycle energy, 60-120 Hz range
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4. Model validation

The final aim is the evaluation of flexural stiffness EI1 and EI2 values, as well
as hysteresis coefficients h1 and h2, so that the curve obtained from the FEM
model is inline with the experimental data. Then, on the basis of these values, the
eigenfrequencies of the system and their mode shapes are computed.

4.1 Fitting

4.1.1 First Comparison between FEM Analysis and Experi-

mental Data

Starting values of both flexural stiffness and hysteresis coefficients were assumed
to define the model.

On the basis of the literature previously described, the values of EI1 and EI2

are assumed considering the existence domain defined by EImax and EImin; for
simplicity they are initially assumed equal. According to the theory above, Table 4.1
presents the results of the calculations made for the messenger cable used in the
system under consideration. The variables are obtained from the related inspection
certificate.

EImin(Nm2) EImax(Nm2) EI1(Nm2) EI2(Nm2)

2.62 52.6 10 10

Table 4.1: Flexural stiffness

As far as the hysteresis coefficients are concerned, on the basis of the results
obtained with the sensitive analyses only, starting values between 0 and 1 have
been assumed, which made the model more similar to the experimental data. In
Table 4.2 the actual values are shown.
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h1 h2

0.30 0.40

Table 4.2: Hysterical coefficients

4.1.2 Model Optimization

The least squares optimization is made to fit four parameters (EI1, EI2, h1,
h2).

Moreover, specific graphs are constructed to evaluate the relative error between
the experimental data and the model result as a function of the variation of the
parameters mentioned above.

Starting from the values assigned by the literature, the following iteration is
made: starting from the flexural stiffnesses, keeping the hysteresis coefficients fixed,
several curves have been constructed, which refer respectively to certain values
of the stiffness EI1; having in abscissae the other stiffness, EI2, it is possible to
evaluate which are the parameters that guarantee a lower relative error. Once
the corresponding values have been memorized, the same analysis is made for
the hysteresis coefficients: keeping the stiffnesses fixed, different curves are put
on the same graph, each of which refers to a different hysteresis coefficient h1;
having on the abscissae a span of the hysteresis coefficient h2, it is possible to
read on the ordinates the lower relative error, obtaining the hysteresis parameters
associated to it. Once these coefficients are found, we start again with the search
for the stiffnesses that guarantee the smallest error, as already described. The
iteration continues until convergence is reached. The starting modal values of the
numerical model differ in the two frequency ranges studied, since changing the
peak-to-peak displacement imposed by the test bench consequently changes the
dynamics involving the damper. In addition, although the flexural stiffnesses are
theorized to be independent of frequency, experimental analyses show that they
depend on frequency to a small degree.

Although for the frequency range 5−59 Hz there is convergence for an absolute
minimum error, the optimization of the parameters for the range 60 − 120 Hz

presented additional difficulties due to the high noise present in the experimental
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data. To circumvent this obstacle, data captured up to 90 Hz are used; the final
values derived are such that a relative error of about 14% is maintained.

Figure 4.1: Effect of EI1 and EI2 on the module relative error, 5− 59Hz
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Figure 4.2: Effect of EI1 and EI2 on the module relative error, 60− 120Hz

Figure 4.3: Effect of h1 and h2 on the module relative error, 5− 59Hz
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Figure 4.4: Effect of h1 and h2 on the module relative error, 60− 120Hz

In addition to this, the Figure 4.5 and Figure 4.6 show the real and imaginary
numerical energy.
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Figure 4.5: Numerical values of energy, 5− 59Hz

Figure 4.6: Numerical values of energy, 60− 120Hz
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The optimal values therefore for the range 5− 59Hz of the above parameters
are reported in Table 4.3, while those concerning the characteristic developed in
the range 60− 120Hz are reported in Table 4.4.

EI1(Nm2) EI2(Nm2) h1 h2

7.3 7.0 0.755 0.550

Table 4.3: Modal parameters, range 5− 59Hz

EI1(Nm2) EI2(Nm2) h1 h2

6.5 14.0 0.375 0.150

Table 4.4: Modal parameters, range 60− 120Hz

Below are shown the graphs for the power, the energy, the module and the
phase with the optimized fitting.

Figure 4.7: Comparison of experimental energy data and FEM energy curve,
5− 59Hz
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Figure 4.8: Comparison of experimental module data and FEM module curve,
5− 59Hz

Figure 4.9: Comparison of experimental phase data and FEM phase curve, 5−59Hz
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Figure 4.10: Comparison of experimental energy data and FEM energy curve,
60− 120Hz

Figure 4.11: Comparison of experimental module data and FEM module curve,
60− 120Hz
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Figure 4.12: Comparison of experimental phase data and FEM phase curve, 60−
120Hz

4.2 System Own Frequencies

From the study of the dynamics, four frequencies of the system are detected,
which therefore correspond to four mode shapes[1][2].

In the first step, the eigenvalues of the matrix governing the model are computed
using Matlab. Given that there are two groups of modal parameters describing
the numerical model for two different intervals, two calculations are performed;
from each of them, specific frequencies that fall within the corresponding analyzed
ranges are taken into consideration: the first three modal forms are placed in the
range 5− 59Hz, while the fourth modal form is placed in the range 60− 120Hz.

The results are presented in Table 4.5.

[1]S. Marchesiello A. Fasana, Meccanica delle Vibrazioni, CLUT, Politecnico di Torino, 2006.
[2]C. Gazzola, Modelling and assessment of aeolian vibrations of overhead transmission line

conductors: theory and implementation, PhD Thesis, Polytechnic of Milan, Italy, 2017.
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f1(Hz) f2(Hz) f3(Hz) f4(Hz)

8.77 16.81 28.00 73.16

Table 4.5: Resonance frequencies numerically computed

These frequencies are compared with those obtained graphically from the
experimental values; from these experiences it is evident that the system needs
more energy (and therefore more power) in the points where the force/displacement
ratio is greater; just where the energy reaches local maximum points it is possible
to identify the corresponding values of the system’s own frequencies.

Following the experimental energy data plots and a summary table with these
frequencies are shown.

f1(Hz) f2(Hz) f3(Hz) f4(Hz)

11 20 31 73

Table 4.6: Resonance frequencies numerically computed

Figure 4.13: Resonance frequencies experimentally derived from the energy curve,
5− 59Hz
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Figure 4.14: Resonance frequencies experimentally derived from the energy curve,
60− 120Hz

At the end the computed values are quite similar to the experimental one, so
the obtained results are valid.

108



5. Conclusion

5.1 Final observations

As mentioned above, the objective of this study is to obtain a numerical model
that interpolates effectively a set of experimental data from a Stockbridge-type fully
inertial damper and to see which parameters are most influential in its dynamics.

First an improvement in the model is to be found in the use of two values of
flexural stiffness of the messenger cable: although this parameter depends mainly
on the section of the strands and the core of the messenger cable and the Young’s
modulus of the material, which are given quantities, the flexural stiffness changes
in the presence of dynamic stresses because of the different friction that forms
between the strands since the movement between the right and left sides is often
different, resulting in two different flexural stiffness.

Through the two sets of experimental data measured with a different imposed
displacement, it is possible to see that this data also takes action in the definition
of the modal forms, since a vertical displacement imposed on the clamp body
corresponds to a different bending of the messenger cable, which is followed by
certain variations in the displacement and rotation of the cantilever masses: the
greater the displacement, the more the system will tend to be in the full-slip
condition, thus having lower stiffness due to lower friction.

As far as the geometrical parameters of the damper are concerned, from the
sensitive analysis it is possible to understand which are those design parameters on
which it is necessary to set more restrictive tolerances during the production phase.

It turns out that the distances between the center of gravity of each of the
cantilever masses and the corresponding junction with the messenger cable part, a1
and a2, play an important role in the damper dynamics; increasing these parameters
means reducing the amount of messenger cable inside the cantilever mass, thus
resulting in a basically lower flexural stiffness and a basically higher phase angle
between force and displacement; if, on the other hand, this length is decreased by
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increasing the amount of cable inside the cantilever mass, the result is a tendency
to increase stiffness with a tendency to decrease the phase angle between force
and displacement. These trends happen for low variations, generating important
variation in the resulting FRF; for this reason, a1 and a2 must be controlled by
means of accurate GDT.

Confirming what we have seen, the same results are also visible for the moments
of inertia J1 and J2, as they are functions of the quantities mentioned above.

Another geometrical parameter that influences the dynamics of the damper is
the mass of the clamp body mc: it turns out that an increase in mass corresponds
to a basically greater modulus of response, followed by a basically smaller phase
angle; however, this parameter is of little interest at the technological level since
the limits ranges in the definition of this parameter can be traced back to the
standards imposed by the customer, thus reducing the space margin in which it is
possible to vary the mass during production.
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Appendix

Figure 5.1: Technical drawing of the assembly
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Figure 5.2: Technical drawing of the messenger cable
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Figure 5.3: Technical drawing of the braid (body clamp part)
113



Figure 5.4: Technical drawing of the cover braid (body clamp part)
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Figure 5.5: Technical drawing of the mass m1
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Figure 5.6: Technical drawing of the mass m2
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