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Chapter 1

Introduction

1.1 OpenFOAM®

OpenFOAM® is the acronym for Open-source Field Operation And Manipula-
tion. It is a collection of libraries [1] written in C++ and it is conceived for
the solution of continuum mechanic problems. It is remarkable that is an open-
source program, released under the general public licence (GPL).The final user
has the possibility to run the software and to modify it [2] and this determines
the great success of the tool that was created for computational fluid-dynamics
(CFD). First works on this were made during nineties by Charlie Hill at Im-
perial College but only as post-processing software. Henry Wellers started the
creation of software as computational program and with Hrvoje Jasak built it,
sailing it. In 2004, there was the decision to give it as free and it got its actual
name OpenFOAM®. Today the official version of OpenFOAM® is released every
six months by ESI-OpenCFD Ltd but some forks (a software developed by an
already present one by other programmers) are present. It is one of the biggest
programm in C++ and one of the most known CFD tool [4].

OpenFOAM® contains many libraries that can be divided in two: solvers and
utilities. The first ones are codes that solve the problems while the other ones
are dedicated to the manipulation of data. So the pre-processing and post-
processing can be considered as utilities while the part of code dedicated to
solution is the solver. By its nature of free programme the user can create its
own utilities and solvers, added to the ones already present in the package
given by developers. These cover a wide range of utilization. For pre-processing
OpenFOAM® allows the creation of mesh using the already present tool like
blockMesh or snappyHexMesh but it is given the possibility to create it by oth-
ers programmes. Obviously also data must be declared, specifying in case they
are the computed variables the boundary and initial condition even if the prob-
lem is in steady-state [1]. Solvers cover a wide range of applicability. They are
mainly conceived for CFD: there are methods that retrieve the basic equations,
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turbulence models like RANS or DNS and also solvers for multiphase prob-
lems are present. To these it has to be added the possibility to perform also
other problems, for example combustion, molecular dynamic, finance, electro-
magnetism, stress analysis and even the Monte Carlo method.

The powerful of OpenFOAM® is the already implemented capability to per-
form discretization of time, space and equation. The first one is quite easy
because it consists in the break of the period in many time steps ∆t. Regarding
the space, it is written above the capability to create a mesh so to divide the
space in small control volumes where data are stored. They are points, faces,
cells and boundaries and they will be used by OpenFOAM® in order to create
the discretization. Data are stored in centres of cells or at faces (internal or
external) and finally also on vertices. The equations discretization occurs as
classic formula Ax = b where x is the vector that contains the variable, b the
source vector and A the square matrix of coefficients. The first two contain the
just cited values so the values of data at centre of cells in case of finite volume
discretization. The matrix has in itself the coefficients to be multiplied by the
variables inheriting inside the information by the mesh. The FV discretization
occurs by the integration of volume or, in case of derivative, exploiting Gauss
theorem [1]. This terms are then linearized and this is another advantage of
OpenFOAM®. Indeed it allows the possibility to user to decide the scheme of
linearization of the differential term. To make an example, for the time it is
possible to use implicit or explicit Euler method or Crank Nicolson.

OpenFOAM®, as an opensource programme and for giving broad versatility,
has some lacks. First of all it does not have a graphic interface user (GUI) from
which the problem can be set. Mesh has to be defined by text or created by
other software; variables need a text file where initial and boundary conditions
are decided and the reading of the results, written in files, is in separated fold-
ers, needs another programme. It does not exist a complete manual that can
illustrate meaning of function or applications: tutorials, fully access to all the
codes and online forums can help to find the solution to problems but this re-
quires more time. It is created to run in Linux so for Windows or Mac that are
very popular it needs the installation of a virtual machine that in case of GUI
slows the operations. Moreover all the commands must be given by the prompt.

So OpenFOAM® is a very powerful tool that from begin of two thousands
become more and more important since its big versatility that allows user to set
a wide range of problems and the free philosophy that is behind the concept.
However the absence of a GUI and of a complete manual makes slower the
utilization for the person.
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1.2 Usage of OpenFOAM® in nuclear field as numerical
tool

As it is written above OpenFOAM® was designed for fluid-dynamic computation
and also now most of the solvers are dedicated to this. However the open access
to all settings, so possibility to change the equations make it usable not only
in CFD. Some applications have found space also in nuclear field such that on
April 2019 a technical committee was established [5]. So in order to understand
the capability and the possibility of OpenFOAM® some works about usage of
it in nuclear reactor physics are reported.

The first one that has to be reported is the one by Fiorina et al. [6]. They
present a multi-physics solver for 2D/3D reactors with a special application on
fast reactor in particular on the sodium-cooled fast reactor (SFR). The solver is
called Generalized Nuclear Foam (GeN-Foam) due to the capability to resolve
different reactor configurations (for example also LWR), due to different physics
involvement and possibility to work with fine or coarse mesh. The physics in-
volved are: (I) solver for compressible and incompressible fluid motion based on
k-ε equation for turbulence model with the insertion of a porous media to simu-
late the structures in the circuit; (II) solver for thermal-mechanic motion due to
the increase of temperature; (III) multi-group diffusion sub-solver for neutrons
able to exchange data with Monte Carlo Serpent-2 code; (IV) a finite difference
solver for the representation of temperature in 1D geometry. Focusing on the
neutron sub-solver the GeN-Foam is based on multi-group diffusion equations
including also delayed neutrons. It is solved after the thermal mechanics so-
lution taking into account that displacement of structure affects the neutron
motion. It is considered a non-homogeneous medium so cross section depend
on space and also effects of temperature and displacement of the structure are
considered. Gen-Foam was also compared to Serpent-2 and to analytic results
(for simplified configurations) to understand if it works properly and it is so.
Good agreement was observed for the retrievement of k effective and for eval-
uation of feedback coefficients: the only exception is the coolant density effect
that has a deep impact on the diffusion coefficients. Further comparisons are
done with tool TRACE, simulating steady state and transient effects showing
discrepancies in the power developed (so a quantity that can be directly con-
nected to the neutron equation). These can be reduced to the different solutions
method, point kinetic for TRACE and multi-group energy diffusion equation
for Gen-Foam. So this application shows that OpenFOAM® is able to work
also considering multiphysics, overcoming the problem to interface programs
focused on different physical aspects.
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From Aufiero et al. [7] there is a publication that concerns the calculation of
the effective fraction of neutrons by different methods including deterministic
one by the usage of OpenFOAM®. The beta effective computed is less than
the physical one due to the role of importance that may decrease the value
and, considering the case of study, this value differs also due to motion of fuel.
Indeed the application is quite specific since it is treated a molten salt reactor
(MSR): this gives a very impressive idea on the capability of OpenFOAM® and
simulation of neutron behaviour. The equations implemented are multi-group
diffusion equations in steady state with the adjoint of the displacing fuel since
it is a molten salt reactor. So they slightly differ from the conventional ones due
to displacement of precursors. This is the reason for OpenFOAM® choice since
the current tools are not able to solve this equation that has the addition of
a convective transport object. Moreover it could give another way to compute
βeff that is a quantity that actually is calculated with hypothesis that does not
consider correctly the physical phenomena

Ma et al. created ntkFoam [8] that is a specific solver for neutron equation.
Their work dates to 2020 and it can be considered the most modern. Differently
from GeN-Foam this solves only the equation for neutrons and no other physic
is involved. Moreover the equation implemented is the transport one that gives
more accurate results. Conversely it leads to a more difficult implementation
due to need of discretization of space, angle, energy and time. Implementation
is in 2D as well as 3D and different geometries of reactors can be studied. The
solver considers both steady state and transient looking for k effective solution
and also the flux for different groups. Discretization implemented for space is the
finite volume method while for angles it is S-n method or control angle discrete
ordinate method (CADOM) and backward Euler method for time. For some
studied cases, results are compared to reference solution showing a very good
agreement for some kind of data. It is remarkable that the transport equation
for neutrons is very difficult to implement in code and most of the time some
assumptions are required to be done. The versatility and complete access of
OpenFOAM® allowed Ma and his mates to produce this code, implementing
the full transport equation.

Using OpenFOAM® Cosgrove and Shwageraus created MoCha-Foam [9] that
is solver that implements the method of characteristic (MOC). The solver cre-
ated works only on neutron equation so no multiphysic is available but equally
to other solvers showed above is able to solve multi-group energy cases. Since
the equation is independent from geometry it can be applied to different types
of reactors as it is demonstrated in the paper. The tool relies on method of
characteristics and division in energy groups; scattering and fission are consid-
ered isotropic allowing the implementation of the analytical solution (however
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there is the possibility to drop this). Then since the solution is for angular flux
there is integration on direction as well as on the characteristic length. It is
showed that the results obtained are very similar to the ones obtained by other
numerical tools, in particular for k effective.

It is remarkable the presence of other work that validates GeN-FOAM tool
[10]. In 2016, Fiorina et al. published a paper on the development and ver-
ification of diffusion part of GeN-Foam. Firstly he indicates the powerful of
the already present solver (it dates back to 2014): the possibility to implement
the albedo boundary conditions and so also extrapolated ones; the versatility
of cross sections that can be the standard ones but that can be modified by
any perturbation (power, temperature, mechanical movement, etc.); possibil-
ity of parallel computing to speed up calculations (this is already present in
OpenFOAM®). To this Fiorina adds new features like computations speeding
up with the insertion of three different techniques. Indeed the equations for
different energy flux can not be solved all together but in a segregated way.
Then he even implements discontinuity factors also for the cross sections, since
in code they were already implemented for the flux (discontinuity factors are
parameters able to solve the problems related to homogenization that occurs).
There is an entire work of PhD thesis by Jeffrey Stewart [11] that enlarges
the actual solver to work with the graphite moderator: he added to normal
displacement due to thermal field the expansion due to the neutron flux. It
is remarkable the work by Cervi et al. in 2019 [12] that to the normal solver
already present in GeN-Foam includes the possibility to use the SP3 approxi-
mation model. This implies not only the change of normal neutronic equations
but also the boundary conditions implemented.

Some work thesis are developed for usage of OpenFOAM® in nuclear reactor
physics. It is remarkable that Clifford [13] made a MsC thesis in 2007 on the
creation of solver, called diffusionSolver, for solution of multi-group diffusion
equation. He is a co-author of GeN-Foam and his name appears also in Aufiero
work as well as a member of nuclear technical committee, like Aufiero and
Fiorina. The solver considers non steady-state case as well as concentration of
precursors and the results obtained agree well with other compared solutions
however time-dependent problem can be solved only in case of one group. His
work, that is a master thesis, is pioneering in the usage of OpenFOAM® since
it is dated back to 2007.

It is reported also the thesis of Di Lecce [14] that focuses, with usage of
OpenFOAM®, on emergency case in which in a MSR reactor the salt slowly
drains. Since the MSR reactor is based on salt solution there must be a cou-
pling between fluid and neutronic equations: moreover due to the condition
studied, also increasing presence of air has to be considered. This is the reason
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for which the solver for the fluid motion is a two-phase solver and strongly cou-
pled to this it is the equation for neutrons since the quite realistic assumption
that only in the salt there is the presence of these. Concerning the neutronic
equations these are monoenergetic diffusive ones, for prompt neutrons and pre-
cursors concentration, with cross sections and diffusive coefficients depending
on temperature. Since it is studied an accident transient the main focus is on
reactivity that depends on neutrons that rely on motion of fluid and its char-
acteristics. So to take into account this, the solver is able for each time instant
to compute the reactivity by the power method.

Finally it is reported that even also application for other type of studies are
developed for nuclear field, as OFFBEAT. This solver is dedicated to the study
of thermal and mechanic behaviour of a nuclear pin inside a reactor. Moreover
as it is written, OpenFOAM® is born for CFD evaluation: there are several
applications that use it for the study of coolant inside a reactor.

The works cited up to now show the big versatility and efficiency of OpenFOAM®,
ensuring that also the application that in this work thesis is desired to describe
can be done.

1.3 Objective of thesis

The aim of the thesis is to study the Enhanced quasi-Static method retracing
the work already made by Dulla and Nervo [15]. So the thesis proceeds with the
description of the method, its implementation and finally the discussion of the
results. It will be showed that the peculiarity of equations and their complexity
can be only tackled by the versatility of OpenFOAM®.
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Chapter 2

Enhanced quasi-static method

2.1 Introduction to the time problems in the reactor

The transport equation for neutrons fully describe their behaviour but it is not
resolvable as it is. Most of the time to reach an analytical solution some assump-
tions are done like the steady state flux. The steady state is very important to
study in order to characterize the reactor during its normal operation. Due to
its characteristics, it is not available to make rapid change like other energy
systems and long periods of activity are associated. Despite this, it is vital to
understand the reactor behaviour in time especially when some perturbations
occur. This is crucial for example in case of an accident and the time involved
can be very small, as it is showed in the past events (Chernobyl). Moreover it is
important to state, even if it is obvious, that the core is the first and main part
of the plant that must be observed. Indeed the source of all the heat produced
in this site and problems observed in other parts of the plant can reverse on
the integrity of core (Three mile Island). So even time problems require a fur-
thered research since they can predict power trend and so the necessary counter
measures in order to avoid accidents.

An easy method to predict the power trend inside the reactor is the point
kinetic method (PK). In experiments it was noted that the time changes of
neutrons are different: the shape of the flux changes slower respect to the power
associated. This allows to factorize the flux in two different quantities the shape
of the flux and the power; the first depends on space while the second on time.
Doing this it is assumed that the shape of flux can be kept constant while the
power not. So this method assumes that the reactor can be studied as zero
dimensional system and only power and concentration of delayed neutrons are
the studied quantities. This approximation is very easy to implement since the
final formula is a system of ordinary differential equation but it may fail a lot
in the prediction of results. The basic assumption indeed can be quite wrong.

So in sixties Henry designed the quasi-static model in order to better study
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the trend of power. As it is written above it can be assumed that the flux is
factorized by two variables. The main difference with point kinetic is the depen-
dence of the shape of the flux on space and also on time (however in a period
larger than the power) and the studied equation is the transport one. Such for-
mulation is more accurate since the flux can change on space and time and it
is no more considered fixed. On the other side it is quite complex to implement
and it leads to a very slow computation. Basically the method computes the
amplitude in many time steps, quite small. After a certain time, after many
little time steps, the flux is updated considering the new amplitude value.

These two methods are the most famous for the time computation of reactor.
The first one is fast and easy to implement but it can lead to coarse results; the
second one is accurate but it requests more computations.

2.2 Enhanced quasi static method

The existence of two different and possibly opposite methods encourages the
research on new ones that are easy to implement, fast in computation and
accurate in prediction.

In this way the Enhanced quasi static method (EQS) tries to satisfies the aims
just written. This method was firstly designed by Ravetto et al. [16] in 1996. As
the two previous method is based on a physical fact that is noted inside reactors
during the transients. Most of the time the power changes inside reactor faster
than the shape of neutrons but it makes mainly on one direction. A typical
example of this is during loss of coolant accident (LOCA). In the core there is
presence of water, for the cooling of the pins, and above there is steam due to
vaporization of fluid. It is known that water is a good moderator for neutrons,
slowing them and making them suitable for the fission; conversely steam is not
good, it can be compared to air. The result is that profile of power on the
axial side has the typical shape of cosine until the level of water: here it drops
dramatically since neutrons are too fast to make fission and to produce power
(this must not lead to think that in case of LOCA the core is automatically safe
because there is still the residual heating by the fission product and no water
to cool). The main characteristic of the method is based on this: split the total
flux as function of the shape and then on amplitude that relies on time and a
particular value, important for the study of the event.

The PK and the QS methods consider power as only function of time so they
do not consider the shape of the power. So here it is the first important advan-
tage: it is possible to understand how it is distributed the power generation.
These informations can be quite important during the LOCA accident also to
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understand how to distribute the emergency fluid. In the work by Ravetto et al.
[16], some tests case are done showing important results that gives more moti-
vation for the usage of the method. The EQS method offers very good results
using bigger time step for the recalculation of the shape of flux and the number
of floating points operations involved are less respect to QS. So it is remarkable
the importance of the method that not only allows a better physical vision of
what is occurring inside the reactor but it is also more convenient computa-
tionally speaking. In this sense it is a very good trade-off of the two previous
showed methods.

In 2013 this method was retrieved by Dulla and Nervo [15]. They amply the
previous knowledge offering a general mathematical formulation and studying
some test cases observing the difference between the methods. In particular fol-
lowing the paper, the mathematical passages that take to the final formulation
of the method are reported and they will be also discussed.

2.3 Mathematical formulation

Setting the equations as general as possible they become:

1
v

∂ϕ(x, t)
∂t

= Lϕ(x, t) + Spϕ(x, t) +
Ø
i

λiCi(x, t) (2.1)

∂Ci(x, t)
∂t

= −λiCi(x, t) + Sd,iϕi(x, t) (i = 1, ..., G) (2.2)

Where ϕ and Ci are the flux and concentration of precursors of group i, x is the
phase space, L, Sp, Sd are operators that depend on the model chosen (diffusion
or transport) to study neutrons.

As it is already written, the amplitude changes only trough a preferential
direction lowering the computational burden related to kinetic theory. The fac-
torization becomes:

ϕ(x, t) = φ(x; t)A(xs, t) (2.3)
where xs is the privileged quantity. Before it was referred to space but it can
be one of the phase space so position, energy or direction but this last one is
not so important. In space it is:

ϕ(r⃗, E, Ω⃗, t) = φ(r⃗, E, Ω⃗, t)A(y, t) (2.4)
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While for energy is:
ϕ(r⃗, E, Ω⃗, t) = φg(r⃗, Ω⃗, t)Ag(t) (2.5)

For a better discretization, the amplitude can be discretized on space and si-
multaneously on energy:

ϕ(r⃗, E, Ω⃗, t) = φg(r⃗, Ω⃗, t)Ag(y, t) (2.6)

Finally it is possible also to consider more groups but one amplitude:

ϕ(r⃗, E, Ω⃗, t) = φg(r⃗, Ω⃗, t)A(y, t) (2.7)

Consequently also the equations change in their form.
After factorization there is the projection on weight function w integrating in

all phase space except the variable of interest. Since the different expressions
that can be achieved, here implementations are illustrated separately. Moreover
for the sake of simplicity the equations studied are the one of diffusion without
the presence of delayed that will be added later.

2.3.1 Factorization in space for one group

Considering the diffusion equation for one group:

1
v

∂ϕ(r⃗, t)
∂t

= ∇ ·
3
D(r⃗, t)∇ϕ(r⃗, t)

4
− Σa(r⃗, t)ϕ(r⃗, t) + νΣf(r⃗, t)ϕ(r⃗, t) + S(r⃗, t)

(2.8)
it is applied a simplified formula of the factorization in space as in 2.4, remem-
bering that one update of shape flux returns already good results [16]:

ϕ(r⃗, t) ≈ φ0(r⃗)A(y, t) (2.9)

where φ0(r⃗) is the flux shape of the reference solution, r⃗ is the position in space
and y the space variable over which it is assumed amplitude changes. Formula
2.9 is inserted in 2.8 to obtain:

1
v

∂(φ0(r⃗)A(y, t))
∂t

= ∇ ·
5
D(r⃗, t)∇

3
φ0(r⃗)A(y, t)

46
− Σa(r⃗, t)φ0(r⃗)A(y, t)

+ νΣf(r⃗, t)φ0(r⃗)A(y, t) + S(r⃗, t) (2.10)
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This has to be developed in order to get the formulation for the amplitude:

1
v

φ0(r⃗)∂A(y, t)
∂t

= ∇ ·
C
D(r⃗, t)

A(y, t)∇φ0(r⃗) + φ0(r⃗)∂A(y, t)
∂y

 D

− Σa(r⃗, t)φ0(r⃗)A(y, t) + νΣf(r⃗, t)φ0(r⃗)A(y, t) + S(r⃗, t)

1
v

φ0(r⃗)∂A(y, t)
∂t

= D(r⃗, t)φ0(r⃗)∂2A(y, t)
∂y2 +

D(r⃗, t)∂φ0(r⃗)
∂y

+ ∂(D(r⃗, t)φ0(r⃗))
∂y

 ∂A(y, t)
∂y

+ A(y, t)∇ ·
3
D(r⃗, t)∇φ0(r⃗)

4
− Σa(r⃗, t)φ0(r⃗)A(y, t) + νΣf(r⃗, t)φ0(r⃗)A(y, t) + S(r⃗, t)

There are still not the source of transients: perturbations of source and prop-
erties are introduced: D(r⃗, t) → D(r⃗) + δD(r⃗, t), S(r⃗, t) → S(r⃗) + δS(r⃗, t),
Σa(r⃗, t) → Σa(r⃗) + δΣa(r⃗, t) and Σf(r⃗, t) → Σf(r⃗) + δΣf(r⃗, t). By this the
equation is:

1
v

φ0(r⃗)∂A(y, t)
∂t

=
3
D(r⃗) + δD(r⃗, t)

4
φ0(r⃗)∂2A(y, t)

∂y2

+

3D(r⃗) + δD(r⃗, t)
4∂φ0(r⃗)

∂y
+

∂
3
(D(r⃗) + δD(r⃗, t))φ0(r⃗)

4
∂y

 ∂A(y, t)
∂y

+ A(y, t)∇ ·
3
(D(r⃗) + δD(r⃗, t))∇φ0(r⃗)

4
−
3
Σa(r⃗) + δΣa(r⃗, t)

4
φ0(r⃗)A(y, t)

+
3
νΣf(r⃗) + δνΣf(r⃗, t)

4
φ0(r⃗)A(y, t) + S(r⃗) + δS(r⃗, t)

Exploiting the reference equation, so the one valid at the initial instant, in case
of steady state, there can be simplification.

0 = ∇ ·
3
D(r⃗)∇φ0(r⃗)

4
− Σa(r⃗)φ0(r⃗) + νΣf(r⃗)φ0(r⃗) + S(r⃗) (2.11)
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By this it can be noted that some terms that multiplies A(y, t) disappear, since
their sum is equal to zero. In this way the final equation becomes:

1
v

φ0(r⃗)∂A(y, t)
∂t

=
3
D(r⃗) + δD(r⃗, t)

4
φ0(r⃗)∂2A(y, t)

∂2y

+

3D(r⃗) + δD(r⃗, t)
4∂φ0(r⃗)

∂y
+

∂
3
(D(r⃗) + δD(r⃗, t))φ0(r⃗)

4
∂y

 ∂A(y, t)
∂y

+
5
∇ · δD(r⃗, t)∇φ0(r⃗) − S(r⃗) +

3
δνΣf(r⃗, t) − δΣa(r⃗, t)

4
φ0(r⃗)

6
A(y, t)

+ S(r⃗) + δS(r⃗, t) (2.12)

Then it is performed a projection on weights, integrating in all except on the
variable of interest. The choose of weight is free but it is recommended the use
of importance [15] [16].

K
w(r⃗)

-----1vφ0(r⃗)
L

r⃗−y

∂A(y, t)
∂t

=
K
w(r⃗)

-----
3
D(r⃗) + δD(r⃗, t)

4
φ0(r⃗)

L
r⃗−y

∂2A(y, t)
∂y2

K
w(r⃗)

--------
3
D(r⃗) + δD(r⃗, t)

4∂φ0(r⃗)
∂y

+
∂
3
(D(r⃗) + δD(r⃗, t))φ0(r⃗)

4
∂y

L
r⃗−y

∂A(y, t)
∂y

+
=
w(r⃗)

----∇ · δD(r⃗, t)∇φ0(r⃗) − S(r⃗) +
3
δνΣf(r⃗, t) − δΣa(r⃗, t)

4
φ0(r⃗)

>
r⃗−y

+ ⟨w(r⃗)|S(r⃗) + δS(r⃗, t)⟩r⃗−y (2.13)

In order to simplify the expression the above equation can be rewritten with
greek letters, result of projections:

α(y, t)∂A(y, t)
∂t

= δ(y, t)∂2A(y, t)
∂y2 + γ(y, t)∂A(y, t)

∂y
+ η(y, t)A(y, t) + Q(y, t)

(2.14)
It must be remarked that the amplitude equation is very particular for the
nuclear field. Even if Laplacian can be considered familiar for diffusion equation,
this is not for the first derivative term. This has effects on the possibility to
use one or another tool and with this formulation no one dedicated to nuclear
diffusion can be exploited since they do not consider this term. However it
seems to retrace the classic scalar-transport equation, quite familiar to other

16



numerical tools like the CFD ones so also OpenFOAM® [17]. Despite this it is
remarkable that the transport equation is the product of physical passages: the
Laplacian term is due to the motion of the dependent variable by the gradients
while the convection term is due to its motion on time (velocity). Finally it is
remarkable that in η(y, t) it appears the source term and an increase of it leads
to a decreasing of the amplitude. Certainly this will not due to the presence of
Q(y, t).

2.3.2 Factorization for energy

For energy similar passages are performed. For a simpler version the factoriza-
tion occurs only for energy groups and it is:

ϕ(r⃗, E, t) ≈ φg,0(r⃗)Ag(t) (2.15)

that is inserted in multigroup diffusion equation that is:

1
vg

∂ϕg(r⃗, t)
∂t

= ∇ ·
3
Dg(r⃗, t)∇ϕg(r⃗, t)

4
− Σr,g(r⃗, t)ϕg(r⃗, t) +

Ø
g′ ̸=g

Σg′→g(r⃗, t)ϕg′(r⃗, t)

+
GØ

k=1
χkνΣf,k(r⃗, t)ϕk(r⃗, t) + Sg(r⃗, t) g = 1, ..., G (2.16)

where G is the number of groups. The insertion of factorization produces (Even
if it is not reported below it is considered that g = 1, ..., G):

1
vg

φg,0(r⃗)dAg(t)
dt

= Ag(t)∇ ·
3
Dg(r⃗, t)∇φg,0(r⃗)

4
− Σr,g(r⃗, t)φg,0(r⃗)(r⃗)Ag(t)

+
Ø

g′ ̸=g

Σg′→g(r⃗, t)φg′,0(r⃗)Ag′(t) +
GØ

k=1
χkνΣf,k(r⃗, t)φk,0(r⃗)Ak(t) + Sg(r⃗, t) (2.17)

As before it is introduced the perturbation on cross sections and source. These
terms can be then simplified but considering the reference equation, the one in
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steady state:

0 = ∇ ·
3
Dg(r⃗)∇φg,0(r⃗)

4
− Σr,g(r⃗)φg,0(r⃗) +

Ø
g′ ̸=g

Σg′→g(r⃗)φg′(r⃗)

+
GØ

k=1
χkνΣf,k(r⃗)φk(r⃗) + Sg(r⃗) g = 1, ..., G (2.18)

By this equation it can be rewritten the diffusive and the absorption part as
function of the two sums and the source.

1
vg

φg,0(r⃗)dAg(t)
dt

=
C
∇ · δDg(r⃗, t)∇φg,0 −

G−1Ø
k ̸=1

χkνΣf,k(r⃗)φk,0(r⃗)

−
Ø

g′ ̸=g

Σg′→g(r⃗)φg′,0(r⃗) − Sg(r⃗, t)

+
3
χgδνΣf,g(r⃗, t) − δΣr,g(r⃗, t)

4
φg,0(r⃗)

D
Ag(t)

+
Ø

g′ ̸=g

A
Σg′→g(r⃗) + δΣg′→g(r⃗, t)

B
φg′,0(r⃗)Ag′(t)

+
GØ

k=1
χk

A
νΣf,k(r⃗) + δνΣf,k(r⃗, t)

B
φk,0(r⃗)Ak(t) + Sg,0(r⃗) + δSg(r⃗, t) (2.19)
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Then the equation has to be projected on a specific function wg(r⃗) and since
the factorization is on energy the integration is performed in all space:

K
wg(r⃗)

------ 1
vg

φg,0(r⃗)
L

dAg(t)
dt

=
K
wg(r⃗)

-----∇ · δDg(r⃗, t)∇φg,0 −
G−1Ø
k ̸=1

χkνΣf,k(r⃗)φk,0(r⃗)

−
Ø

g′ ̸=g

Σg′→g(r⃗)φg′,0(r⃗) − Sg(r⃗)

+
3
χgδνΣf,g(r⃗, t) − δΣr,g(r⃗, t)

4
φg,0(r⃗)

L
Ag(t)

+
Ø

g′ ̸=g

K
wg(r⃗)

-----
3
Σg′→g(r⃗) + δΣg′→g(r⃗, t)

4
φg′,0(r⃗)

L
Ag′(t)

+
G−1Ø
k=1

K
wg(r⃗)

-----χk

3
νΣf,k(r⃗) + δνΣf,k(r⃗, t)

4
φk,0(r⃗)

L
Ak(t)

+ ⟨w(r⃗)g|Sg(r⃗) + δSg(r⃗, t)⟩ (2.20)

This can be simplified as:

αg(t)
dAg(t)

dt
= γg(t)Ag(t) +

Ø
g′ ̸=g

βg′(t)Ag′(t) +
G−1Ø
k=1

δk(t)Ak(t) + Qg(t) (2.21)

where Greek letters represent the value of the projection.
Differently from the case with factorization in space now the equation has only

a differentiable term that is the one on time for the amplitude. However this is
one of G equations depending on number of groups in which energy is divided.
So the final expression is a system of ordinary differentiable equations. This is
the only complication to a system of equation that can be easily implemented
in many solvers. It is also remarkable that the weights are only dependent on
time, differently from the other ones, and this further simplify the implemen-
tation. In their definition no differentiable terms appear that request a deeper
computational effort. It is finally remarkable how the fission or scattering by
other groups have a direct effect on the amplitude of the studied group.

2.3.3 Factorization for space-energy

It is possible a third factorization that is the one in space as well as in en-
ergy. The passages to achieve the final equations are very similar to the ones
above and the final form is in some ways equivalent to the one of space. The
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factorization is:
ϕg,0(r⃗, t) ≈ φg,0(r⃗)Ag(y, t) (2.22)

It is introduced in equation 2.16 giving as final result:

1
vg

∂(φg,0(r⃗)Ag(y, t))
∂t

= ∇ ·
5
Dg(r⃗, t)∇

3
φg,0(r⃗)Ag(y, t)

46
− Σr,g(r⃗, t)φg,0(r⃗)Ag(y, t)

+
Ø

g′ ̸=g

Σg′→g(r⃗, t)φg′,0(r⃗)Ag′(y, t) +
GØ

k=1
χkνΣf,k(r⃗, t)φk,0(r⃗)Ak(y, t) + S(r⃗, t)

(2.23)

For sake of simplicity the passages that lead to the differentiable terms in space
are not reported since they are very similar to the ones already done in space.
Again the reference equation 2.16 is used in order to substitute the Laplacian
as it is done in section 2.3.2, finding similar weights as in energy discretization.
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The final equation is:

K
wg(r⃗)

------ 1
vg

φg,0(r⃗)
L

r⃗−y

∂Ag(y, t))
∂t

=
=
wg(r⃗)

----3Dg(r⃗) + δDg(r⃗, t)
4
φg,0(r⃗)

>
r⃗−y

∂2Ag(y, t)
∂y2

+
K
wg(r⃗)

------
C3

Dg(r⃗) + δDg(r⃗, t)
4∂φg,0(r⃗)

∂y

+
∂
3
(Dg(r⃗) + δDg(r⃗, t)

4
φg,0(r⃗))

∂y

DL
r⃗−y

∂Ag(y, t)
∂y

K
wg(r⃗)

------
C
∇ · δDg(r⃗, t)∇φg,0 −

G−1Ø
k ̸=g

χkνΣf,k(r⃗)φk,0(r⃗)

−
Ø

g′ ̸=g

Σg′→g(r⃗)φg′,0(r⃗) − Sg(r⃗, t)

+
3
χgδνΣf,g(r⃗, t) − δΣr,g(r⃗, t)

4
φg,0(r⃗)

DL
r⃗−y

Ag(y, t)

+
K
wg(r⃗)

------
Ø

g′ ̸=g

3
Σg′→g(r⃗) + δΣg′→g(r⃗, t)

4
φg′,0(r⃗)

L
r⃗−y

Ag′(y, t)

+
K
wg(r⃗)

------
G−1Ø
k ̸=g

χg

3
νΣf,k(r⃗) + δνΣf,k(r⃗, t)

4
φk,0(r⃗)

L
r⃗−y

Ak(y, t)

+
=
wg(r⃗)

----Sg(r⃗) + δSg(r⃗, t)
>

r⃗−y
(2.24)

After the projection on the specific weight, this can be rewritten by greek letters
as:

αg(y, t)∂Ag(y, t)
∂t

= δg(y, t)∂2Ag(y, t)
∂y2 + γg(y, t)∂Ag(y, t)

∂y

+ ηg(y, t)Ag(y, t) +
Ø

g′ ̸=g

βg′(y, t)Ag′(y, t) +
G−1Ø
k ̸=g

κk(y, t)Ak(y, t) + Qg(y, t)

(2.25)

As it can be observed the result is a reasonable union between the space and
energy discretization. The same applications problem regarding the space can
be extended also to this version with the adjoint of number of equation at least
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as the number of groups, coupled between them. This widens the difference
with the scalar-transport equation. It is remarkable that in ηg(y, t) new terms
related to other groups appear.

2.3.4 Factorization for space from more than one group

In the last two sections it is showed the discretization in energy groups and
space. Here it is showed that it is possible to discretize only on space start-
ing from a number G of equations. The discretization indeed wants only one
amplitude:

ϕg(r⃗, t) ≈ φg,0(r⃗)A(y, t) (2.26)
This one has to be inserted in the equation 2.16, leading to this:

1
vg

∂(φg,0(r⃗)A(y, t))
∂t

= ∇ ·
5
Dg(r⃗, t)∇

3
φg,0(r⃗)A(y, t)

46
− Σr,g(r⃗, t)φg,0(r⃗)A(y, t)

+
Ø

g′ ̸=g

Σg′→g(r⃗, t)φg′,0(r⃗)A(y, t) +
G−1Ø
k=1

χkνΣf,k(r⃗, t)φk,0(r⃗)A(y, t) + S(r⃗, t)

(2.27)

However this is just one equation of system of G linear equations. The intro-
duction of perturbations and the projection on importance does not undermine
this property. So for a simpler treatment the equations are summed. In this
way there is only one equation to solve where the contribute of each groups is
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considered.

∂A(y, t)
∂t

GØ
g=1

K
wg(r⃗)

------ 1
vg

φg,0(r⃗)
L

r⃗−y

= ∂2A(y, t)
∂y2

GØ
g=1

=
wg(r⃗)

----3Dg(r⃗) + δDg(r⃗, t)
4
φg,0(r⃗)

>
r⃗−y

+ ∂A(y, t)
∂y

GØ
g=1

K
wg(r⃗)

------
3
Dg(r⃗) + δDg(r⃗, t)

4∂φg,0(r⃗)
∂y

+
∂
3
(Dg(r⃗) + δDg(r⃗, t))φg,0(r⃗)

4
∂y

L
r⃗−y

A(y, t)
GØ

g=1

=
wg(r⃗)

----∇δDg(r⃗, t)∇φg,0(r⃗) − δΣr,g(r⃗, t)φg,0(r⃗)

+
GØ

k=1
χgδνΣf,k(r⃗, t)φk,0(r⃗) +

Ø
g′ ̸=g

δΣg′→g(r⃗, t)φg′,0(r⃗) − Sg(r⃗)
>

r⃗−y

GØ
g=1

=
wg(r⃗)

----Sg(r⃗) + δSg(r⃗, t)
>

r⃗−y
(2.28)

As it can be seen by the coefficients many of the terms that refer to the reference
equation disappear. The final version is equivalent to 2.14.

2.4 Boundary and initial conditions

In this section the boundary and the initial conditions will be showed. It is
considered as reference case the one of space since it can be seen that the space
discretization is the g equation of the system.

2.4.1 Boundary conditions

To get these, as it is done by Dulla and Nervo, it is important to recall that
the method is created by a factorization of the flux. So in the typical boundary
conditions for the flux it is inserted the desired factorization. General boundary
conditions are the extrapolated ones:

ϕ(∂r⃗, t) + d
∂ϕ(r⃗, t)

∂n⃗

-----
∂r⃗

= 0 (2.29)
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where ∂r⃗ is a point of boundary. In the above equation the factorization 2.4 is
inserted giving consequently the boundary condition for the amplitude:

φ0(y = 0)A(y = 0, t) − d
∂φ0(r⃗)

∂y

-----
y=0

A(y = 0, t) − φ0(y = 0)d∂A

∂y

-----
y=0

= 0

φ0(y = H)A(y = H, t) + d
∂φ0

∂y

-----
y=H

A(y = H, t) + φ0(y = H)d∂A

∂y

-----
y=H

= 0

y and H are the edges of the system in y direction. It can be observed that the
first two terms of both equations satisfy the condition imposed by the boundary
condition 2.29 so they cancel themselves and since φ0(∂r⃗, t) should be diverse
from 0 for non trivial results:

∂A

∂y

-----
y=0,H

= 0 (2.30)

where subscripts represent the edges of the studied system.

2.4.2 Initial condition

The initial condition is quite straightforward. If it is considered that before
the transient the reactor is in steady state, releasing the reference power, the
amplitude is:

A(y, t = 0) = 1 (2.31)
This can be also deduced by the reference equation.

2.5 Insertion of delayed

Actually the implementation presented does not contain the delayed neutrons,
neither in the work made by Dulla and Nervo. Maybe it is present in the work by
Ravetto but a complete and concrete mathematical formulation not. Consider
them should lead to more physical results, even if it creates more problems from
computational point of view since everywhere another equation appears.
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2.5.1 Factorization for space for one group

Exploiting again the diffusion version, there is a system (R families of delayed):



1
v

∂ϕ(r⃗, t)
∂t

= ∇ ·
3
D(r⃗, t)∇ϕ(r⃗, t)

4
− Σa(r⃗, t)ϕ(r⃗, t)

+ (1 − β)νΣf(r⃗, t)ϕ(r⃗, t) +
RØ

i=0
λiCi(r⃗, t) + S(r⃗, t)

(2.32)

∂Ci(r⃗, t)
∂t

= −λiCi(r⃗, t) + βνΣf(r⃗, t)ϕ(r⃗, t) i = 1, ..., R (2.33)

As before the part ϕ(r⃗, t) is substituted by the product between the reference
solution flux and the amplitude, so using equation 2.9. Again the equations are
developed (passages are not shown because they are quite similar to what is
written above) and they are projected on adjoint:



K
w(r⃗)

-----1vφ0(r⃗)
L

r⃗−y
∂A(y, t)

∂t
=
K
w(r⃗)

-----
3
D(r⃗) + δD(r⃗, t)

4
φ0(r⃗)

L
r⃗−y

∂2A(y, t)
∂y2

+
K
w(r⃗)

------
3D(r⃗) + δD(r⃗, t)

4∂φ0(r⃗)
∂y

+
∂
3
(D(r⃗) + δD(r⃗, t))φ0(r⃗)

4
∂y


L

r⃗−y

∂A(y, t)
∂y

+
=
w(r⃗)

----∇ · δD(r⃗, t)∇φ0(r⃗) − S(r⃗, t)

+
3
δνΣf(r⃗, t) − δΣa(r⃗, t)

4
φ0(r⃗)

>
r⃗−y

A(y, t)

+
RØ

i=1
λi ⟨w(r⃗)|Ci(r⃗, t)⟩r⃗−y + ⟨w(r⃗)|S(r⃗) + δS(r⃗, t)⟩r⃗−y

(2.34)

K
w(r⃗)

------∂Ci(r⃗, t)
∂t

L
r⃗−y

= −λi

=
w(r⃗)

----Ci(r⃗, t)
>

r⃗−y

+
GØ

g=1

K
w(r⃗)

-----βχg(νΣf(r⃗, t) + δνΣf(r⃗, t))φ0(r⃗)
L

r⃗−y
A(y, t)

(2.35)
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That can be easily rewritten as:



α(y, t)∂A(y, t)
∂t

= δ(y, t)∂2A(y, t)
∂y2 + γ(y, t)∂A(y, t)

∂y
+ η(y, t)A(y, t)

+
RØ

i=1
λigi(y, t) + Q(y, t)

(2.36)

∂gi(y, t)
∂t

= −λigi(y, t) + ζi(y, t)A(y, t) (2.37)

The equation for amplitude is basically equal to 2.14 with the adjoint of the
concentration of delayed neutrons and different coefficients. It can be noted
that the perturbation in the fission is reflected directly also in delay concen-
tration. On the other side the effect of delay neutrons is immediately reflected
on amplitude. The terms in the brackets in front of the amplitude are diverse
from equation 2.14. Firstly the perturbation of fission cross section is decreased
by the term (1 − β) the one that considers that not all neutrons are prompt.
Secondly still in these brackets by the last term is considered that at the begin
of the transient not all neutrons can be considered. It is remarkable that the
decay constant is not in the projections of the weights: if this was considered
inside the coefficient it would give problems in the time derivative of delayed
equations.

2.5.2 Factorization in energy

The energy factorization is similar to previous cases. The presence of delayed
adds R equations to the system. For simplicity it is assumed that the delay
appears only in the equation of group g. Considering the normal diffusion equa-
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tions for G groups:



1
v

∂ϕ(r⃗, t)
∂t

= ∇ ·
3
Dg(r⃗, t)∇ϕg(r⃗, t)

4
− Σr,g(r⃗, t)ϕg(r⃗, t)

+ (1 − β)
GØ

k=1
χgνΣf,k(r⃗, t)ϕk(r⃗, t) +

G−1Ø
g′ ̸=g

Σg′→g(r⃗, t)ϕg′(r⃗, t)

+
RØ

i=1
λiCi(r⃗, t) + Sg(r⃗, t)

(2.38)

∂Ci(r⃗, t)
∂t

= −λiCi(r⃗, t) + β
GØ

g=1
νΣf,g(r⃗, t)ϕg(r⃗, t) (2.39)

Inserting the factorization number 2.15 in the equation 2.38 and 2.39, then
projecting on the adjoint and considering that the reference equations are 2.18
so there is not difference between including or not delayed, it becomes:



K
wg(r⃗)

------ 1
vg

φg,0(r⃗)
L

dAg(t)
dt

=
K
wg(r⃗)

-----∇ · δDg(r⃗, t)∇φg,0(r⃗) −
G−1Ø
k ̸=g

χkνΣf,k(r⃗)φk,0(r⃗)

−
Ø

g ̸=g′
Σg′→g(r⃗)φg′,0(r⃗) − Sg(r⃗) (2.41)

−
3
(1 − β)δνΣf,g(r⃗) − δΣr,g

4
φg,0(r⃗) − βνΣf,g(r⃗)φg,0(r⃗)

L
Ag(t)

+
G−1Ø
k ̸=g

K
wg(r⃗)

-----χk(1 − β)(νΣf,k(r⃗) + δχgνΣf,k(r⃗, t))φk,0(r⃗)
L
Ak(t)

+
Ø

g ̸=g′

K
wg(r⃗)

-----
3
Σg′→g(r⃗) + δΣg′→g(r⃗, t)

4
φg′,0(r⃗)

L
Ag′(t)

+ ⟨wg(r⃗)|Sg(r⃗) + δSg(r⃗, t)⟩

K
w1(r⃗)

------∂Ci(r⃗, t)
∂t

L
= − λi ⟨wg(r⃗)|Ci(r⃗, t)⟩ (2.42)

+
GØ

g=1

K
βiχg(νΣf,g(r⃗) + δνΣf,g(r⃗, t))φg,0

L
Ag(t)
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This can be easily seen as:



α(t)dAg(t)
dt

= γ(t)Ag(t) +
Ø

g′ ̸=g

β1(t)Ag′(t) +
G−1Ø
k ̸=g

β2(t)Ak(t)

+
RØ

i=1
λig(t) + Qg(t)

(2.42)

dgi(t)
dt

= −λigi(t) +
GØ

g=1
ζg,i(t)Ag(t) (2.43)

The equation does not differ so much from the previous one and same consid-
eration done in previous section can be extended to this. The coefficient ζ(y, t)
depends on the energy group as well as on the delay family.

2.5.3 Space energy discretization

As before the space-energy discretization is between the energy and space dis-
cretization. The assumption that delay appears only in the g equation is re-
peated. Starting from 2.38 and 2.39 but inserting the discretization 2.22 and
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immediately projecting gives:



K
wg(r⃗)

----- 1
vg

φg,0(r⃗)
L

r⃗−y

∂Ag(y, t)
∂t

=
K
wg(r⃗)

-----
3
Dg(r⃗) + δDg(r⃗, t)

4
φg,0(r⃗)

L
r⃗−y

∂2Ag(y, t)
∂y2

+
K
wg(r⃗)

------
3
Dg(r⃗) + δD(r⃗, t)

4∂φg,0(r⃗)
∂y

+∂((D(r⃗) + δD(r⃗, t))φg,0(r⃗))
∂y

L
r⃗−y

∂A(y, t)
∂y

+
K
wg(r⃗)

-----
C
∇ · δDg(r⃗, t)∇φg,0(r⃗) −

G−1Ø
k ̸=g

χkνΣf,k(r⃗)φk,0(r⃗)

−
G−1Ø
g′ ̸=g

Σg′→g(r⃗)φg′,0(r⃗) − S(r⃗) +
3
1 − β

43
δνΣf,g(r⃗, t)

− δΣr,g(r⃗, t)
4
φg(r⃗) − βνΣf,g(r⃗)φg,0(r⃗)

DL
r⃗−y

Ag(y, t)

+
G−1Ø
k ̸=g

K
wg(r⃗)

-----χk

3
νΣf,k(r⃗) + δνΣf,k(r⃗, t)

4
φk,0(r⃗)

L
r⃗−y

Ak(y, t)

+
Ø

g ̸=g′

K
wg(r⃗)

-----
3
Σg′→g(r⃗) + δΣg′→g(r⃗, t)

4
φg′,0(r⃗)

L
r⃗−y

Ag′(y, t)

+ ⟨wg(r⃗)|Sg(r⃗) + δSg(r⃗, t)⟩r⃗−y

(2.45)

K
wg(r⃗)

------∂Ci(r⃗, t)
∂t

L
r⃗−y

= −λ
=
wg(r⃗)

----Ci(r⃗, t)
>

r⃗−y

+
GØ

g=1

=
wg(r⃗)

----βiχg

3
νΣf,g(r⃗) + δνΣf,g(r⃗, t)

4
φg,0(r⃗)

>
r⃗−y

(2.46)
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The equation represents a mix of the space and the energy equations with the
adjoint of delayed neutrons. It can be rewritten with simply:


αg(y, t)∂Ag(y, t)
∂t

= δg(y, t)∂2Ag(y, t)
∂y2 + γg(y, t)∂Ag(y, t)

∂y
] + ηg(y, t)Ag(y, t)

+
Ø

g ̸=g′
βg′(y, t)Ag′(y, t) +

GØ
k=1

βk(y, t)Ak(y, t) +
RØ

i=1
λigi(y, t) + Qg(y, t)

(2.46)

∂gi(y, t)
∂t

= −λig(y, t) +
GØ

g=1
ζg(y, t)Ag(y, t) (2.47)
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2.5.4 Space discretization for more than one group

Finally it is showed the discretization procedure in case of more than one group
but considering only one amplitude.



∂A(y, t)
∂t

GØ
g=1

K
wg(r⃗)

------ 1
vg

φg,0(r⃗)
L

r⃗−y

=∂2A(y, t)
∂y2

GØ
g=1

=
wg(r⃗)

----3Dg(r⃗) + δDg(r⃗, t)
4
φg,0(r⃗)

>
r⃗−y

+ ∂A(y, t)
∂y

GØ
g=1

K
wg(r⃗)

------
3
Dg(r⃗) + δDg(r⃗, t)

4∂φg,0(r⃗)
∂y

+∂((Dg(r⃗) + δDg(r⃗), t)φg,0(r⃗))
∂y

L
r⃗−y

(2.49)

A(y, t)
GØ

g=1

=
wg(r⃗)

----∇δDg(r⃗, t)∇φg,0(r⃗) − δΣr,g(r⃗, t)φg,0(r⃗)

+
GØ

k=1
δνΣf,k(r⃗, t)φk,0(r⃗) +

Ø
g′ ̸=g

δΣg′→g(r⃗, t)φg′,0(r⃗) − Sg(r⃗)
>

r⃗−y

+
RØ

i=1
λi

=
wg(r⃗)

----Ci(r⃗, t)
>

r⃗−y
+

GØ
g=1

=
wg(r⃗)

----Sg(r⃗) + δSg(r⃗, t)
>

r⃗−y

K
wg(r⃗)

------∂Ci(r⃗, t)
∂t

L
r⃗−y

= −λ
=
wg(r⃗)

----Ci(r⃗, t)
>

r⃗−y
(2.50)

+
K
wg(r⃗)

------βi

GØ
g=1

χi

3
νΣf,g(r⃗) + δνΣf,g(r⃗, t)

4
φg,0(r⃗)

L
r⃗−y

A(y, t)

The equation is equivalent to the one for only one group but there is the con-
tribute of all the other groups. This system is easier to solve respect to the one
for the space-energy factorization.

2.5.5 Initial condition for delayed

Due to the insertion of delayed neutrons, so of a new variable, initial conditions
have to be defined, since it is an equation on time. This has to be derived from
the reference equation. The starting point is the one that realizes the steady
state, so that the left part of equations 2.5.1 is zero. By equation two of the
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just cited system it comes from a simple equation that gives:

Ci(r⃗, 0) = χβiνΣf(r⃗, 0)ϕ(r⃗, 0)
λi

(2.50)

Considering this the normal condition for the initial state of precursor and that
the amplitude is one at t = 0, for variable gi it results that:

gi(r⃗, 0) =
K
w(r⃗)

----χβiνΣ(r⃗, 0)φ(r⃗, 0)
λi

L
r⃗−y

(2.51)

This condition is true in every point of space, depending on it.
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Chapter 3

Implementation in OpenFOAM®

As it can be observed in the previous chapters the final equations retrieved
are quite strange: the space one is similar to the scalar transport equation and
if there is the presence of the delayed, a system has to be treated. Consider-
ing also the particularity of the method there is not any numerical tool that
has inside it, already implemented, the EQS. Moreover the structure of equa-
tions make difficult the analytical solution that maybe could be found. To get
rid of all these things, the solution is to pass trough discretization procedure.
Solver like Matlab can be easily used for numerical solution like this but further
problems related to correctness of the solution and on the scheme adopted for
discretization will go beyond the scope of the thesis. So usage of OpenFOAM®

seems to be the best solution to get rid of the equations written in previous
chapters. The versatility of OpenFOAM® and the complete accessibility seem
to be the best accessories to solve the problems related to the EQS implemen-
tation. However there are also disadvantages: the biggest one encountered is
that the open source programme does not give a complete manual user, slowing
down the implementation procedure. So in order to simplify this process some
assumptions are done:

- system should be a simple geometry like a cube or a parallelepiped;

- the mesh should be a structured mesh;

- there is not source;

- the energy groups are two;

- in case of delayed, it is considered one family;

Moreover it has to be considered that for a complete working code the starting
data is the flux.
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3.1 How OpenFOAM® works

In chapter one it is described how OpenFOAM® works generally but not spe-
cifically. Indeed since it is a union of classes and it does not have a GUI, the
data have to be given in specific way. First of all, the solver has to be run inside
the main folder that contains data for the simulation. These are organized in
three different directories: 0,constant and system. In the first one there are
the data field that will be used for the run: in the specific case there are the
fluxes, the amplitudes, the properties, the weights and some dummy data for
the correct function of the tool (like the Q(r⃗) function). These files contain
for each quantities the boundary and the initial conditions. In constant there
should be the properties of the system like cross sections or diffusion properties
but in successive section will be reported how and which decisions are done in
order to account them. In this directory there is another one called polymesh:
it contains all files necessary for the production of mesh. To make an example
it contains points that is a file with all the points of the mesh organized like
a matrix and ordered in increasing way from the horizontal coordinate. It will
be used later for the transformation of mesh. Finally there is the system that
maybe is the most important since there are the files that drive the simulation.
Here there is the document for the creation of the mesh, blockMeshDict, the
two where set the schemes and the algorithms for the work of the simulation,
fvSchemes and fvSolution, the setFieldsDict that allows the set of initial
value for the quantities and finally controlDict where are reported all the
informations for the run of the simulation like the starting time, the timestep,
precision of results, etc.. These are organized in folders named like the time
instants (this is the reason for the 0 folder) where the updated values are stored.
For the simulation, the first thing to do is the creation of mesh that is run with
command blockMesh. To do not get error there must be a coordination between
the file of mesh and the ones in 0: they must refer to the same type of patch.
Finally in order to visualize results it is necessary a post-processing tool and a
file that connects the data to this: this is done by Paraview 5.9.0 and by the
.foam extension file.

Above it was illustrated how specifically works a simulation and the ones
done for the EQS method follow the similar steps. The problems are solved by
four different solvers, one for the type of discretization, to have more orderly
organization of the data. First of all there is the geometry evaluation needed
for the further computation of coefficients. Then there is the flux evaluation
by the properties reading. It follows the transformation of the mesh and since
reference equations are always the same, despite the insertion of delayed, there
is the possibility to account for them. The final passages are the evaluation of
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the coefficients and then of amplitude. Finally there is the post-processing of the
results that occurs with Matlab® since ParaView is more suited for visualization
of single time instant. All these passages are summarized in the figure 3.1. It
is reported that to give a more freedom to user the properties are given with
setFieldsDict. In this way it is easier to set them as function of the space
even if OpenFOAM® classify them as variables to compute. In the next sections
it will be described the lines of code.

Figure 3.1: Scheme of algorithm for the simulation

3.2 Geometry computation

As it can be seen the method prescribes that the amplitude is dependent on time
and another variables, leading to a 0-D (energy discretization) or 1-D (space and
space-energy discretization) evaluation. On the other side, it is comprehensible
that the reference flux evaluation is a dimensional evaluation and for interesting
studies, quantities should be at least 2-D. It follows that the same mesh used
for the reference flux can not be used, requiring a modification. Before doing
this it is necessary to know the important quantities of the structure since they
will be used for the computations of weights. The solver is able to evaluate:
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- extremes of structure;

- sizes;

- number of cells on each direction;

- the average size of cell in each direction;

These quantities can be extracted by the informations stored by OpenFOAM®.
Theoretically speaking these are inputs by user that already known all these
quantities. However it is remembered that they are written on a file that
OpenFOAM® reads and by them it creates a mesh, taking memory of this. So to
retrieve the listed data it is necessary to pass by what is stored by OpenFOAM®,
in particular the coordinates of single points. To do this it is created a code,
called geometry_study.H, that is included by the main one and it allows the
evaluation of the stated data and store them. However this piece of code is quite
basic since it is built ad-hoc for the applications investigated. Only simple ge-
ometries like parallelepipeds with starting structured mesh can be studied.

The decision that this is the first procedure that is done is driven by a lim-
itation of OpenFOAM®. Since it works with FVM, the best structure to be
studied is three dimensional. So the tool can read only these geometries. A
two or one dimensional study is allowed but they have to start from a three
dimensional element. So this means that for a 2D application, this has to be a
three dimensional system and the user have to specify that some faces are not
considered. There could be the risk that, even if a dimension is not relevant,
this will have equally effect on the evaluation of the quantities (for example
in the evaluation of volume: even if it is a flat application it is considered the
volume). This problem becomes quite evident for the evaluation of coefficients
and a further treatment will be described later.

3.3 Flux computation

After the geometry study, it starts the flux evaluation for the reference solution.
This is relevant for the evaluation of coefficients and also to get the criticality
value. Since OpenFOAM® is a class of libraries written in C++, everything has
to be defined and declared. For this reason the first thing to do is the creation
of mesh and then the definition of the flux, the properties and dummy values,
used for the correct work of the solver. It is remarkable that these quantities are
given in neutrons

cm2·s , cm and cm−1 but OpenFOAM® works only with the reference
SI unit so, immediately after the declaration there is the conversion to meters.
Then the solver requests the insertion of power to user by input: this will be used
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for the normalization of flux at the end of the evaluation. In case of more than
one group, it is asked also the value for normalization of the adjoint. At this
point it starts the real evaluation of flux with a while loop, following the power
method. In particular, what is done by Di Lecce [14] was used as support. The
procedure consists in the separation of diffusion and fission part and to study
one as the result of the other. So for the diffusion part (for simplicity it is
showed the one for one group):

∇ ·
3
D(r⃗)∇φn(r⃗)

4
− Σa(r⃗)φn(r⃗) = Qn(r⃗) (3.1)

Where in Qn(r⃗) are hidden the values obtained by the fission part (in case
of first iteration is an assumed value). Then it is evaluated the k effective as
function of previous information and the actual one, as:

kn = kn−1

Ú
νΣf(r⃗)φn(r⃗)dVÚ

νΣf(r⃗)φn−1(r⃗)dV
(3.2)

At this point, having the criticality and the flux for the n iteration the errors
are evaluated on both quantities, one as absolute error and the other as norm
two, so:

errk =
----kn − kn−1

---- (3.3)

errφ(r⃗) =

öõõõôNcellsØ
i=0

3
φn

i − φn−1
i

42

ó3
φn−1

i

42 (3.4)

Where the superscript n−1 refer to the flux evaluated in the previous iteration.
The tolerances are fixed at 10−15 for the first and 10−13 for the second. So until
the errors are bigger than these two values the while loop continues to work.

Now that the flux of current iteration is computed it is calculated how neutrons
are distributed trough fission mechanism constituting the new Q(r⃗) term for the
next generation. So it is evaluated the equation:

1
kn

Ú
νΣf(r⃗)φn(r⃗)dV = Qn+1(r⃗) (3.5)

Where this time Q(r⃗) represents the unknown term.
With this there is the end of cycle and the errors decide if continue or get
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out of this. In this case there is the normalization of the flux depending on the
decided value of power. Having the flux and the necessary power, it is computed
the constant conversion as:

C = PÚ
EνΣf(r⃗)φ(r⃗)dV

(3.6)

where E assumes the value of energy produced by fission, so 200MeV that in
Joule is 3.2 · 10−11J . Having this the flux is ready to be used for the evaluation
of weights.

In case of two groups the adjoint is different from the flux and another while
loop is requested. The same procedure just described is followed, with the
needed differences due to the different equations involved. What is written up
to now can be summarized in the figure 3.2

Figure 3.2: Steps followed for reference solution

It is important to remark something about creation of this algorithm. It is based
a lot on C++ language and many for and while loop are present in order to
compute the flux. This is quite obvious but it is reported to focus that even
also other tools based on C or C++ language can be used. However it appears
clear the usage of OpenFOAM® that allows the discretization of the equation
without further lines of code. Indeed the main line of the code are:
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fvScalarMatrix diff_term
(
-fvm::laplacian(DD,fi)
+fvm::Sp(sa,fi)
);
solve(diff_term == fvc::SuSp(one,qq));

...

fvScalarMatrix qq_term
(
fvm::Sp(one,qq)
);

solve(qq_term == (1/kk_eff_new)*fvc::SuSp(nisf,fi));

Lines of code for the evaluation of flux in one group

As it can be seen the discretization procedure by OpenFOAM® is quite intuitive.
It is also important to say that fvm:: discretizes an implicit term while fvc::
an explicit one. So in the first part the known term, is the assumed flux or the
one computed in the previous iteration, while in the second part it is given by
the flux and the fission cross section.

Finally it is remarked that all this occurs before the start of time and there is
the possibility for the user to stop the simulation saving the data: so the solver
could be used also to compute steady-state flux in one or two groups.

3.4 Change of mesh

The informations retrieved by the file geometry_study.H are used for coeffi-
cients but also to build a new mesh. It is already said that a new mesh is needed
since OpenFOAM® has stored one for a two or three dimensions. To speed up
the all process it is possible to ask to solver to create new mesh alone. This
is done by the code "Make_mesh.H" that is able to transform the 2-D mesh
(written in a proper way) in a 1-D mesh. However the user is free to decide
to make on his own this process but advising at the end of the modification
the solver. Rewritten the file, the code updates the new mesh launching alone
the command by the C++ function system that writes on the terminal what
is necessary to do. In this way, after the change in the two different ways, and
sent the order, OpenFOAM® reads the file and creates the new mesh. This will
be very similar to the previous one with the exception that now the discretiza-
tion of cells is only on one direction. In case of pure energy study the mesh is
prepared for a zero dimensional computation.
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All this work was necessary for the mesh but not for quantities like flux
since the multidimensional ones are already created for two or three dimensions
computations and they will not be used with the new mesh. Equally, files that
refer to amplitude are already written for a 0-D or a 1-D computation.

3.5 Weights computation

After the change of the mesh that is remarked to be an uncommon passage for
standard simulation, the weights are evaluated. Before this a series of requests
are posed to the user to decide the physics to study and the related aspects.
Indeed velocities are required since they will be used for the coefficient in front
of the partial derivative of time. Moreover as it can be red in the section 2.5
the reference equations, even considering the delay insertion, are the same. So
another possibility is the decision to consider presence of delayed neutrons. This
is an important thing because consequently weights and structure of equations
will change. Finally in case of the insertion there is the possibility to decide the
fraction of delayed and the decay constant. All these options are thought to
give a more versatility to the solver giving the possibility to use it for different
materials and/or different considerations.

Regarding the coefficients the integration is done in a numerical way imple-
mented by the author. The mathematical formula are not reported since they
are the ones that can be red in 2.3 and 2.5 so they are not reported here. The
standard code, for example for α1(y) coefficient that is equal for all computa-
tions is:
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// ALFA1
jj=0; sum=0; kk=0; ii=0; scalar ww=0;

forAll(alfa1,cellI)
{

alfa1[cellI]=0;
}

while(jj<(nx*ny*nz))
{

sum=sum+psi1[jj]*fi1[jj]*(1/vv1)*dx*dz;

if (kk==(nx-1))
{

alfa1[ii]=alfa1[ii]+sum;
kk=0;
ii=ii+1;
sum=0;

} else
{

kk=kk+1;
}

if(ww==(nx*ny-1))
{

ww=0;
ii=0;

}else
{

ww=ww+1;
}

jj=jj+1;
}

alfa1.write();
Info<<"alfa1 "<<endl;

Evaluation of coefficient α1(y) for space energy discretization.

In the first line there is the initialization of quantities used for the successive
evaluation: jj is the total counter of cells, sum can be considered the partial
result of the integral, kk is the counter of cells in x direction and ww the one
of plane, finally ii is the counter for the number of cells on y direction. It is
important to remember that OpenFOAM® is a C++ library so the first value
is 0. This is the reason why the while loop works until the counter is equal
to the number of cells since the first cell is the zero one. Then there is the
integral that, as it can be seen, is the numerical formulation of what is written
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in 2.3. The following if detects if the kk counter reached the number of cells in
horizontal direction. If it is, the ii cell of the coefficients acquires the value of
integral computed up to now and there is the reset of kk, since the horizontal
limit is reached. Also sum is zeroed, since the integration along x is finished,
and ii is increased by one in such a way to consider the next y cell. In else
case there is just the update of kk. There is then the second if which counts
the cell on plane x−y. The quantities like fi are stored as vector in a particular
order: firstly there are the values of all cells located in the lowest y and z point;
then there are the values of all the cells located in the successive y but same z
point and so on (theoretically refer to points is wrong but it is for explicative
purposes). So the data are layered firstly on y direction then along z direction.
This is the reason why there is ww that counts the cells on a layer whose normal
is the z direction. When it is equal to the number of cells on a layer, it is reset.
This also explains why the coefficient is summed in the first if: in this way it
is accounted the contribute of the previous cells located at a lower level in z

direction. At the end there is the store of the coefficient and the message on
terminal of ended computation.

It is remarkable to see the presence of the three differential. One of them
should not be present in case of two dimensional study but in order to have
a solver usable also for a 3D case it is inserted. In geometric_study.H the
number of cells along the directions are evaluated and if it is found that on z
is one dz is set equal to one.

For energy discretization the implementation is much more easier since the
integration is in whole volume. So the standard formula for the numerical eval-
uation of integrals can be implemented like:

// ALFA1

jj=0; sum=0; kk=0; ii=0;

while(jj<(nx*ny*nz))
{

sum=sum+psi1[jj]*fi1[jj]*(1/vv1)*dx*dy*dz;
jj=jj+1;

}
forAll(A1,ii)
{

alfa1[ii]=sum;
}

Info<<"alfa1 "<<endl;
alfa1.write();

Evaluation of coefficient α1(y) for energy discretization.
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As it can be seen it does not require any intermediate command in the while
loop and it updates the value of the coefficients at the end of the computation
by the for loop. OpenFOAM® to solve the equations request that the data are
discretized in cells.

3.6 Amplitude computation

The amplitude computation is the final passage of the code and it is quite
obvious since it requires just the translation of what is written in mathematical
formula in section 2.3 with the due assumptions, in OpenFOAM®. For prompt
space discretization (equivalent if it is in one or two groups) this is:

alfa*fvm::ddt(A)==
+ gamma*fvm::div(phi,A)
+ delta*fvm::laplacian(A)
+ fvm::Sp(eta,A)

Again it is noted that the syntax by OpenFOAM® is very intuitive, so no term
is explained except the divergence. The phi inside the brackets is a numerical
expedient to account the possibility to do the derivative. Since no way to do
the derivative only on one dimension it is performed the divergence but this
requires a vector that is not the case of amplitude. So to it, it is coupled a
vector, phi, in such a way that it can be done the derivative on the vector
and on the amplitude. The vector is modelled to be neutral for the final result.
Mathematically, phi is U and it is U = [0 1 0] so the result is:

div(phi,A) = ∇
3
U⃗ · A(y, t)

4

= ∇
3
U⃗ · A(y, t)

4
= ∂UxA(y, t)

∂x
êx + ∂UyA(y, t)

∂y
êy + ∂UzA(y, t)

∂z
êz

= ∂UyA(y, t)
∂y

= Uy
∂A(y, t)

∂y
= ∂A(y, t)

∂y

Where ∇
3
U⃗ · A(y, t)

4
is exactly div(phi,A). The lines of code are inside a

while loop that endures until it is reached the end prescribed in controlDict
file. The only quantities that are saved are the amplitudes.
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3.7 Evaluation of amplitude for more than one group

The discretization in energy groups give two different values of amplitude. How-
ever the important thing is the overall one, function of the power of both groups.
This is evaluated as normalization of the power on time and as function of both
amplitudes:

A(t) =

Ú
p1(y)A1(y, t)dy +

Ú
p2(y)A2(y, t)dyÚÚ

νΣf(r⃗, E)φ(r⃗)dV dE
(3.7)

where p1(y) and p2(y) are evaluated as integrals on x and z direction as (so the
numerical passages are the same reported above):

p1(y) =
ÚÚ

νΣf,1(r⃗)φ1(r⃗)dxdz (3.8)

p2(y) =
ÚÚ

νΣf,2(r⃗)φ2(r⃗)dxdz (3.9)

In this way it can be obtained one value for the amplitude starting by the two.

3.8 Boundary conditions

A particular focus has to be done for the boundary conditions. OpenFOAM®

allows the insertion of a lot of boundary conditions: the easiest and the most
suitable for this purposes are the Neumann or the Dirichlet conditions. How-
ever the real boundary conditions want that a combination of the flux and the
gradient at boundaries gives zero. This is not present in OpenFOAM®, maybe
because it is too specific. So for the sake of simplicity the boundary conditions
are set to be equal to zero. This assumption can be considered correct or give
similar values if the diffusion length is much smaller than the system dimen-
sions. For the evaluations that will be done, in chapter four it can be seen that
this is so. It is remarkable that OpenFOAM® considers equal to zero not the
first cells but the points at the edges. This means that first cell will be affected
by a point magnitude that is equal to zero and other points that have much
higher values due to the values of flux. The final value of flux is different from
zero but it is still lower than the highest value observed.

Equivalent conditions are imposed also for the adjoint. However set of bound-
ary conditions can be done directly by files contained in 0 folder and no code
writing is requested.

Regarding the amplitude the zero-gradient condition can be easily adopted.
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3.9 Schemes and algorithms

A great advantage of OpenFOAM® is the possibility to choose the algorithm
for the evaluation of quantity used. This enlarges the options available for the
user and the faculty to choose the most suitable numerical discretization for the
simulation procedure. Moreover remembering that OpenFOAM® is completely
free there is also the possibility, starting from the already available lines of code,
to create new scheme solver. Finally it is remarkable that the decision of these
quantities can be choosen inside the folder constant, in the fvSchemes file. The
schemes selected for the evaluation of the quantities involved are:

- ddtSchemes: bacward or steadyState.

- gradSchemes: Gauss linear.

- divSchemes: Gauss linearUpwind.

- laplacianSchemes: Gauss linear corrected.

- interpolationSchemes: linear.
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Chapter 4

Application on two groups case

In order to verify the validity of the method it is decided to study some ap-
plications: it is recalled the study case done by Dulla and Nervo [15] in their
paper. To this, it is added the study of new transients and also new configu-
rations; moreover also the properties of the system considered are different. In
line with their work there is the simplicity of the case. Since it is a theoretical
study, there is only the need to asses the validity of the method, and so even a
simple case can give an idea of what occurs with the different discretizations. In
this chapter will be showed many applications in order to present the work and
observe the differences involved as well as the enhancements that are necessary
for the method.

4.1 Assumptions and properties

It is immediately showed the study using two groups flux. It is believed to be
the most interesting and quickest evaluation to do to asses the method. To
study this configuration a list of assumptions has to be done, similarly to the
ones in section 3:

- study is just in two groups;

- the system is a two dimensional system;

- there is not a source;

- all the neutrons born are fast;

- there is only one family of precursors;

- all the delayed neutrons are fast;

The perturbations studied are two, the same ones done in the paper by Dulla
and Nervo [15]. The first one is wide and horizontally distributed along all the
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core while the second is just a little part much shorter on horizontal direction
but again 8 cm long in vertical direction. It is showed in figure 4.1.

Figure 4.1: The system studied. The grey zone is the reflective material, the green is the
core and the yellow parts are the regions where perturbation occurs in separately.

The properties are the one listed in table 4.1. They are not the ones of a
particular material but they are selected in such a way that the reference flux
at the initial instant produces a criticality value equal to one. Actually the k

value is equal to 1.00004 that can be considered approximately equal to the
reference value. With this consideration there is the implicit choice to consider
that at initial condition the system is in steady state and it is providing always
the same power.

Region Group Dg [cm] Σa,g [cm-1] Σg→g+1 [cm-1] νΣf [cm-1] χ [-]

Core
1 1.01 0.01 0.008 0.003583 1.0

2 1.2 0.1 - 0.1498 0

Reflector
1 0.9 0.01 0.0095 0.0 1.0

2 0.8 0.1 - 0.0 0

Table 4.1: two groups data.

The perturbations firstly inserted are the ones showed in the table 4.2. As it
can be seen they are different in magnitude. The first one, that is only the
increase of 10% of the absorption cross section, is in line with the extension of
the zone modified. Since it is a wide zone, the perturbation value is quite small.
Conversely for the other transient, that is done in a little part of the system
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the magnitude of the change is quite high. Despite this it will be shown that
the first modification is the more impactive.

δΣa/Σa [%]

HE-1 10

HE-2 40

Table 4.2: Transients HE

This is not the only transient studied, in particular they are:

- HE transients where there is the augmentation of absorption cross section;

- RI transients where the fission cross section is increased in such a way to
reintroduce the reactivity lost;

- SS transients where there is the increase of scattering cross section follow-
ing the data in the table 4.2;

- FA transients where there is the increase of fission cross section;

- DD transients where there is the increase of diffusion length following the
data in the table 4.2;

- _C transients where there is the insertion of delayed.

These are the main transients done but they can change depending on the
case. With two fluxes at least three different discretizations are possible (well
four but then it is just the quasi-static method). The mathematical formulation
beyond these discretizations is already described in section 2.3 in its general
way. Now they are rewritten considering all the possible perturbations (except
the one of source) and the assumptions done above. The equations become: for

48



space-energy:
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for energy:
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The first thing that is done is a grid independence.
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4.2 Grid independence

A grid independence is done in order to understand the necessary number of
cells to have a good study. This is done simultaneously decreasing the number
of cells on horizontal and vertical direction, lowering overall the average cell
size. The simple geometry involved allows an immediate study of mesh and it
is easy to find the mean dimension of the element. Anyway a simple formula
can be:

δx =
öõõô Area

Number of cells
(4.6)

In the table 4.3 the different configuration of mesh are shown, from the finest
to the coarsest.

Mesh # N. cells ∆y Avg. size [cm]

1 60 × 80 1 1

2 30 × 40 2 2

3 15 × 20 4 4

4 12 × 15 5 5

Table 4.3: Mesh data

Starting from the maximum number of cells and halving it on the two directions
lead always to the usage of a square (well it is not a square but a parallelepiped
for what is said in section 3.2). It is considered only the space energy discretiza-
tion.

Figure 4.2: Grid independence
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It seems that even a poor mesh allows a good study. Anyway the mesh selected
is the first one. This decision was driven by the motivation of the simple pro-
portionality between the number of cells on a direction and the dimension of
this. No doubling is requested that can be a source of error. This choice was
permitted by the still low computational time requested. For sake of simplicity
it is assumed that the mesh is good to study all the problems involved and
suitable for all the discretizations.

4.3 Map of flux

First of all it is reported the map of the flux (values are in neutrons
(cm2·s) ). As it is

written in section 3.3 the flux si not ready to be used at the end of the power
method but it has to be normalized respect to the power that user inserts. For
all the evaluations (otherwise results are not comparable) the data chosen are:

P = 1000 W

=
w(r⃗)

----φ(r⃗)
>

= 1020

The value of the power wants to be coherent with the system that is 60×80 cm

and the value for importance is so high in such a way to avoid low values and
then numerical cancellation. The fluxes and adjoints are showed in figures 4.3
and 4.4.
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(a) Map of flux for group one (b) Map of flux for group two

Figure 4.3: Maps of fluxes

(a) Map of adjoint for group one (b) Map of adjoint for group two

Figure 4.4: Maps of adjoints

As it can be expected all quantities have its maximum in the centre of the
system while the minimum at sides. Indeed the system is symmetric respect to
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the horizontal and vertical axis. This means that the reference solution could
be solved just on a quarter of the system. Despite this, this is not true for the
amplitude computations. The map illustrated in figures 4.3 and 4.4 are not the
ones obtained by the FVM but they are the ones by the points of the cells. This
is only an aesthetic reason since the maps by the cells are pixelated. These also
show the flux equal to zero at boundaries. This is not for the cells. Indeed they
have to consider both the points at the edges, that are zero, but also the next
ones which values are much higher, as it already said in section 3.8.

Physically it has to be underlined that the flux of first group is higher than
the one of group two. This was expected since the region of the core has an high
fission cross section for group two and all the neutrons pass to group one. The
reflector region is too small to represent that the flux of group two is higher. For
adjoint it is remarked a similar concept. The adjoint related to second group is
higher than the other one as it was expected.

Finally it is necessary to report the values of velocities used. They are not
important for the flux computation since this is a steady state evaluation. The
values chosen are:

v1 = 16757700 cm

s

v2 = 404717 cm

s

They will be important for the evaluation of the coefficients.

4.4 HE transients

This kind of transients involve the increase of absorption cross sections so the
drop of the power is expected.
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(a) Amplitude for HE1 (b) Amplitude for HE2

Figure 4.5: Amplitudes for perturbations HE

As it is expected overall the amplitude drops. It can be said that wider per-
turbation comports a more serious decrease. Indeed the powers for transient
HE1 have lower values at time t = 0.002 s. In both graphs it can be observed
that the space discretization has smaller values. This can be explained by the
structure of equation and so by the physics of the problem. The fact that from
two amplitudes there is the collapse to only one group makes disappear the
sources for the single group of neutrons. In equation 4.1 there are not sources
and the only thing that neutrons can do is to disappear. In case of two ampli-
tudes, it is still accounted the presence of neutrons of the other groups. In this
configuration when a neutron disappear it can be for two reasons: it is absorbed
or it passes to the other group. In the second case it is not completely lost but
it simply appears in the other computation. So if it was a fast neutron and it
makes scatter this will appear again as slow; if it was a thermal neutron and it
makes fission it will appear as fast. The overall effect is that the amplitude will
decrease slowly. For this consideration, it is believed that in case of more groups
the amplitude will drop even slower. On the other side considering just one am-
plitude, a neutron if it is absorbed, disappears from the computation and there
is no way to consider it again. To better understand the difference between the
discretizations, two tables are reported that show the relative error between
the space and space-energy and the energy and space energy discretization at
different time instants (values are in %).
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HE1 t = 50µs t = 100µs t = 150µs t = 200µs

E/SE 1.63 3.86 6.03 8.16

S/SE 7.57 14.1 20.2 25.9

Table 4.4: Errors for HE1

HE2 t = 50µs t = 100µs t = 150µs t = 200µs

E/SE 0.703 1.78 2.84 3.89

S/SE 5.29 9.99 14.2 18.7

Table 4.5: Errors for HE2

As it could be expected the errors tend to be higher for the most hit case so
for transients HE1 and in time it is even worse the discrepancy. Increasing the
perturbation of the removal cross section enhances the behaviour of disappear-
ing, that is more remarkable in case of one group study. The consequence of
this is that the discrepancies rise passing the time. Conversely they are small
at the beginning since all amplitudes start with one.

4.5 RI transients

The RI transients provide that for the reactivity removed, this is re-inserted by
the augmentation of the number of neutrons born for fission (for the properties,
the fission cross section). For this reason it is expected that amplitude should
keep constant on value of one. The procedure to perform these transients is:

- evaluation of the k effective for the reference case;

- change the absorption cross section depending on the study case;

- evaluation of the k effective for perturbed case;

- evaluation of the reactivity between the two configurations;

- change of the properties related to the results of previous step;

- evaluation of amplitude.

Due to the system configuration it is quite easy to evaluate the modification
needed for ν. The starting k is known and the perturbation on absorption cross
section to, so it can be computed the new criticality value and then the reactivity
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removed. Making explicit the general formula of reactivity and exploiting the
system configuration:

ρ =
1
k

⟨w(r⃗)|δF̂ϕ⟩ − ⟨w(r⃗)|δL̂ϕ⟩
1
k

(w⟨r⃗)|δF̂ϕ⟩

ρ = ⟨w|δF̂ϕ⟩
⟨w|F̂ ϕ⟩

= δν

ν
(4.7)

It is important to observe that ν is constant and equal for the two groups. This
is the reason why it can be extracted from the integrals that are then simplified.

The analysis of this transient is done in a series of systems. The first two, RI1
and RI2, are the compensations of the transients HE1 and HE2. The other ones
RI3, RI4, RI5 and RI6 are further studies to see in detail what is occurring.
Data are listed in table 4.8.

4.5.1 RI1 and RI2 transients

The results for these configurations are showed in figures below.

(a) RI1 transient (b) RI2 transient

Figure 4.6: Transients for RI cases

They show that is not so easy reach the compensation. For transient RI1 only
the space-energy discretization is able to represent the reality of the event ar-
ranging the amplitude close to value of one. Even the space discretization is not
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so bad realizing an error that is more or less of 2.5% even if it is destined to de-
crease. The energy discretization does not represent well what is going on in the
system. After controlling if there was an error in the solver and observing that
even Matlab gives similar results, there has to be something in the equation.
The structure of the equations is surely correct since it is a system that couples
the two amplitudes, so the answer has to be inside the coefficients. These are
just scalar, so they make easier the treatment. If γ1 and β1 as well as γ2 and β2
are equal between themself, it is easy to see that the solution is constant and
equal to the initial value (the derivative is equal to zero). More generally the
system 4.4 can be seen as product of matrix and vectors and the eigenvalues
and eigenvectors of the first decide the trend of the amplitudes. The data of
coefficients, so of matrix, are:

RI1 RI2

α1 [−] 5.40687 · 1014 5.40687 · 1014

α2 [−] 2.32095 · 1015 2.32095 · 1015

γ1 [1/s] −9.8657 · 1019 −9.85175 · 1019

γ2 [1/s] −9.9075 · 1019 −9.87899 · 1019

β1 [1/s] 9.9376 · 1019 9.895334 · 1019

β2 [1/s] 9.81833 · 1019 9.81833 · 1019

Table 4.6: Values of coefficients for energy discretization

Since they are just scalar it can considered the ratio between γ and β and α
that is:

RI1 RI2

γ1/α1 [1/s] −1.82466 · 105 −1.82208 · 105

γ2/α2 [1/s] −4.26872 · 104 −4.25643 · 104

β1/α1 [1/s] 1.83796 · 105 1.83014 · 105

β2/α2 [1/s] 4.2302 · 104 4.2303 · 104

Table 4.7: Ratios of the coefficients

It is avoided the analytical solution behind the system of equations but it is
known that in case of determinant equal to zero the amplitudes keep their initial
value. For RI1, determinant is equal to 1.4024 · 107 while for RI2 it is equal
to 1.35147 · 107. The important thing is the relative value respect to addends:
these are in the order of 8 · 109 that are much bigger respect to the value of
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determinant. It is remarkable that with modification of fission cross section
only γ1 and β1 are affected, since no change occur in the other terms. The
other coefficients are equal to the case HE1 and HE2. From their value it can
be understood that they were similar already for a case in which a dramatic
drop of amplitude was expected so this means that the method is particularly
sensitive to the values of coefficients. Indeed values of γ1/α1 and β1/α1 for the
previous transients were −1.83153×105 [1/s] and 1.81598×105 [1/s] for the first
and −1.82651×105 [1/s] and 1.81598×105 for the second. The little changes are
due to the small perturbation, just 1.21% and 0.78%, lower respect to the ones
of absorption cross section. The discretization by energy, integrating overall the
space, smooths the contributes of the properties, finding a sort of averaged value.
Considering all the space and also that the differentials are equal, coefficients are
influenced by the biggest modifications: perturbation of cross section is higher
than the other one. On the other side, in space-energy case, the integration only
on x direction allows to feel better the change along vertical direction, giving
better and more precise results. Integration on x direction limits perturbation
contribution just on a part of y; conversely considering both the direction the
high values of change affects a lot the final results, so the coefficients.

Concerning only on the second reactivity insertion it appears that neither
the space energy discretization that before offer very good results, is able to
describe what occurs. In some way the considerations done for the energy can
be extended to this case. The modified zone is very limited in horizontal space
(is just 10% of the system while the other is 66%), in this way it is not well
considered what is happening in the x direction, since just a small part of
the system is perturbed on this direction. Again the coefficients are much more
influenced by that small space where absorption cross section increases, than the
rest of core. As in the previous case, in the energy discretization that considers
all the space it was found a value influenced by the absorption cross section,
here there is something similar for the space energy discretization that fails
since the limited perturbation on x.

4.5.2 RI3, RI4, RI5 and RI6 transients

To verify what is just stated above, four others compensated transients are
performed: RI3, RI4, RI5 and RI6. The data that characterize them are listed
in the table 4.8 and the perturbed zones are the ones showed in figures 4.7 and
4.8 (the reference system is the same of figure 4.1).
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δΣr(r⃗)/Σr(r⃗) [%] ∆ρ [pcm]

RI1 10 1210

RI2 40 780

RI3 1 1372

RI4 4 1168

RI5 45 803.2

RI6 400 816.1

Table 4.8: Reactivity removed/inserted

(a) RI3 system (b) RI4 system

Figure 4.7: Systems for the transients RI3 and RI4
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(a) RI5 system (b) RI6 system

Figure 4.8: Systems for the transients RI5 and RI6

These transients are very different between themself and they want to asses
the ideas that come from the main two transients, RI1 and RI2, that can be
considered the reference one since they are similar to ones studied by Dulla
and Nervo. They are designed in order to see better the effects that are just
marked in the two previous transients. For this reason the reactivity removed
and inserted are comparable to the ones caused in RI1 and RI2. The RI3
transient consists in the perturbation of the absorption cross section in a wide
zone, in particular in the whole core region. In this way, in this region every
point suffer both the perturbations. The RI4 time problem is designed in order
to see if the space-energy discretization offer good resolution even if the modified
part is extended in vertical direction. In this way, it can be understood if there
is the sensibility to catch the modifications even if they are very narrow. The
transients RI5 and RI6 finally want to asses the discrepancies found by the
main time problem RI2. The results are:
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(a) RI3 transient (b) RI4 transient

Figure 4.9: RI3 and RI4 transients

(a) RI5 transient (b) RI6 transient

Figure 4.10: RI5 and RI6 transients

The results for RI3 in figure 4.9a show that in case of an overall change of the
properties the methods are able to feel this change. Conversely to the first two
cases the modifications are small and distributed for all the core. Both space-
energy and energy discretization are able to describe what is occurring. The very
small difference between them can be explained by the different discretization
procedure. Distinguish another variable in space to see what is happening on a
particular direction is useless. The perturbations are extended to most part of
the core and they are small: integrating on whole space or just on a direction is
basically equal. The integration procedure does not lose particularity of pertur-
bation since they are diffused. The space discretization does not seem to follow
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the trend given by the other methods. This means that a discretization on en-
ergy groups is more important. Despite this, it is remarkable that the errors
committed between these discretizations are much lower than the ones realized
in the previous analysis. This means that even a discretization on energy is not
so necessary, if it is not required an high accuracy. The reason for the good trend
of space discretization is again the wide distribution of the perturbations. This
makes the system closer to a 0-D system. With such discretization, is treated
the total amplitude and not the single ones of the groups. Another difference
that appears is that the first two reach immediately the equilibrium, that is not
the case for the space focus. This is an expected behaviour since with the first
discretizations it is possible to focus on the single group observing better the
coupling between the neutrons. The passage from a group to another is studied
continuously while for space discretization this is not. However it is remarkable
that even time period studied has a certain effect: a long one can result in bad
prediction (see slope of amplitude for space).

It is showed by the transient RI1 the good capability of the space-energy
discretization to describe a perturbation that is distributed on space. Even the
just showed configuration has demonstrated something similar. For this reason
it is decided to see if the methods are able to study what is happening just
on a narrow line across the core with transient RI4. The results do not show
a good prediction of the model. The values of amplitudes are generally close
to the reference value of one but the slope seem to lead to errors in a longer
time. However the discretization of the energy seems to offer results very sim-
ilar to space-energy discretization. This can be explained by the fact that the
perturbation is very short on horizontal direction and integration on x is not
able to clearly observe what is occurring, since just a limited part is changed.
So the consideration done before for energy, can be extended to this case. The
energy discretization offers similar results since the integration still do not ob-
serve the limited perturbation but this is is wide on y direction. What leads
to failure this study is the integration along x direction, that makes lose how
the properties set on space especially on this direction that is integrated using
both discretization. It was observed that neither turning the system changes so
much the results, so maybe some problems related to nature of perturbation
are connected.

The last two transients are created in order to better study the effect of
small and limited perturbations in space. The effect of these seems to not be
well determined by the three methods. First of all, for RI5, it is remarkable
that the magnitude is slightly bigger than the other case RI2 even if it is
its half. Indeed this perturbation occurs in the region where the flux is at
its maximum: a small perturbation would mean a big insertion or removal of
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reactivity due to the big flux involved. The results show again what the previous
analysis showed. A limited perturbation on space is not well described by the
methods that would fail in a long time study. The reactivity insertion number
six again confirm what is just described but it is reported to show that even
the location of the modification is very important. As it can be seen by the
figure 4.8b the perturbation occurs at the right side of the system, where the
flux changes a lot respect to its normal value. As it can be noted the errors
tend to be higher. Considering also these limited transients and the previous
two, it appears that the energy and space-energy discretization differ when the
perturbation is extended on y direction. The second factorization is still function
of this direction and it is able to feel the changes related to properties. This is
impossible for the other discretization.

4.6 Trend in space for amplitude

The great power of this method is the capability to see how the amplitude
distributes in the space. This can be very important because it could allow
the comprehension on the production of power. So also how the temperatures
distribute along the reactor and finally, in case of emergency, where is necessary
to act firstly to decrease the power generation. The four figures report the shape
of amplitude on space, giving a good idea of what is occurring.

(a) Amplitude on space for HE1 (b) Amplitude on space for HE2

Figure 4.11: Amplitudes on space for HE1 and HE2
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(a) Amplitude on space for RI1 (b) Amplitude on space for RI2

Figure 4.12: Amplitudes on space for RI1 and RI2

The trends reproduce the amplitude correctly: it can be seen that the minimum
amplitude corresponds to the regions where the perturbation is located both for
the transient HE1 and HE2. Overall the amplitude tends to decrease. Moreover
it appears that the biggest changes occur in the first microseconds while passing
time the amplitudes arrange on a certain value. Regarding the transients RI1
and RI2, the amplitude shape in space describes well the system. It can be
noted that it decreases in the perturbed regions while it increases in the core
one, exactly where there is the increase of fission cross sections. Finally it is
remarkable that when there is the compensation of the reactivity removed the
amplitude tends to assess to the value of one and to slowly drop. This can be
again seen with the overlapping of shapes, in particular in the region of the core
for transient RI1.

4.7 Coefficients

It is reported the trend of the coefficients. They are function of flux, adjoints
and properties. The coefficients change most of the time so the ones for transient
RI1, for space energy discretization, are shown.
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(a) α1(y) and α2(y) coefficients for RI1 (b) δ1(y) and δ2(y) coefficients for RI1

Figure 4.13: α and δ coefficients

(a) γ1(y) and γ2(y) coefficients for RI1 (b) η1(y) and η2(y) coefficients for RI1

Figure 4.14: γ and η coefficients
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Figure 4.15: β1(y) and β2(y) coefficients for RI1

It is clear how the flux and the adjoints shape the coefficients: they are very
similar to the flux profile. The alpha coefficients that are given by the product
and integration of the flux and adjoint, times the inverse of velocity, assumes a
bell shape that has symmetric profile. Even delta coefficients have this shape,
that is interrupted by the breaks of lines for the diffusion length that changes
between the reflector and the core region. The gamma are given by the derivative
of the flux and the typical shape of sinus is traceable. The strange profile of
the coefficient is given by the diffusion length that can be seen as a piecewise
function. Indeed those peaks are located where there is the change of diffusion
length. The eta coefficients assume negative values. In η1 only the last term is
subtracted and it is non zero much more times than the other addends; in η2
the values are always subtracted. The fact that on the left side the line loses its
sinuosity is given by the perturbation term. Finally the beta terms have almost
a bell shape: β1 accounts for the fission cross section and its perturbation, indeed
it is zero after the core region; β2 has a bell shape interrupted by the change of
scattering cross section. So coefficients are very dependent on the shape of flux.

4.8 SS transients

The previous sections were limited just to the change of absorption cross section
and fission cross section, neglecting what is happening on the other properties.
With this transient it is decided to study the change of scattering cross section
as it is done for HE1 and HE2. It is remarkable that this does not imply any
modification for the coefficients of equation of group one.
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(a) Trasient SS1 (b) Transient SS2

Figure 4.16: Transients for SS cases

The results show the increase of amplitude as it is expected. This is due to
the increase of the thermal neutrons, the ones that are more incline to produce
power. It can be seen that the space-energy and energy discretization are very
similar while the space study leads to an over prediction of the power pro-
duced. The first two methods indeed study the coupling of the groups for all
the transient: there is a direct updating of the behaviour of amplitudes. The
distinction of two groups allows the possibility in each time step to study that
a fast neutron makes scattering, it becomes thermal and it has more possibility
to make fission leading to new fast neutrons. It is important to remember that
a fast neutron has also the possibility to be absorbed. Conversely the simple
study space records just the positive effect of the augmentation of scattering
cross section. In some way it is neglected the fact that some neutrons are lost.
So for this reason there is an over prediction of the results and it is believed,
even if it is not tested, that a decrease of this cross section would lead to an
underestimation. However the fact that the energy and space-energy study do
not differ so much between themself leads to think that the discretization in
space is not so important as the one on energy.

4.9 DD transients

This kind of transients is studied as an adjoint contribute to the work already
present. The study done by Dulla and Nervo is focused only on the analysis
of the perturbations of the cross sections and not on the length of diffusion.
Moreover this will give another point of interpretation on the difference about
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the methods. Differently from the last two sections, 4.5 and 4.8, here the pertur-
bation occurs on a property that does not couple directly the fast and thermal
neutrons.

(a) Trasient DD1 (b) Transient DD2

Figure 4.17: Transients for DD cases

The increase of diffusion length cause the increase of the path of neutrons in
the system: this means that they have lower possibility to be absorbed as well
as to make fission. The final result is the decrease of the power. This is clearly
showed by the three different methods. As in previous analysis there is again
the difference between the methods that appears. The energy and the space-
energy discretization seems to overlap between themself, giving the idea that
the remarkable thing is not the discretization on space but the one on energy.
It is remarkable that the trend of space does not differ so much from the one
of the other two meaning that even just space discretization can give an idea
of what is occurring inside the reactor.

4.10 FA and DD transients

The previous analysis show the errors that can be committed using the same
magnitude perturbations already used for the transients HE. This may lead to
consider that the differences showed in sections 4.8 and 4.9 can be given by the
magnitude of perturbation. For this reason they are repeated introducing and
removing reactivity values that are comparable to the ones of transients HE.
These are showed in the first table while in the second the relative change of
properties:
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First transient Second transient

FA 1273 776

DD 1174 749

Table 4.9: Reactivities for FA1, FA2, DD3 and DD4 transients (data are in pcm)

First transient Second transient

FA 10.7 60

DD 45.9 800

Table 4.10: Relative change for FA1, FA2, DD3 and DD4 transients (data are in %)

The first one consider a pure augmentation of fission cross section. In this way
it can be understood for an introduction of reactivity like the one on table how
much the amplitude should increase.

(a) Trasient FA1 (b) Transient FA2

Figure 4.18: Transients for FA cases

By the figures 4.18a and 4.18b it comes that the amplitudes increase. This was
an expected behaviour since the higher fission cross section. Differently from
the RI cases the modification is not done for a compensation of the negative
reactivity and this is why such big values. The effects can be explained by
considering what is already observable by the transients SS. The increase of
fission cross section is seen as event that raises the production of power of
the entire reactor. It is neglected that a neutron can be also removed, without
considering the energy discretization.
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Finally other transients that involve the increase of diffusion length are in-
volved, in such a way to comport the same loss of reactivity.

(a) Transient DD3 (b) Transient DD4

Figure 4.19: Transients for DD3 and DD4 cases

Differently from the previous cases the trend do not differ so much. This be-
haviour can be explained by the fact that the increase of diffusion does not
comport that neutrons are lost or produced but they are simply more diffused
in space. For this reason even a space discretization is important but also enough
to describe what is happening inside the reactor. Indeed it is remarked that in
4.19a the space and energy discretizations results are quite close.

The analysis of these transients allow also to make another consideration more
related to physical behaviour. It is reported the errors committed between the
discretization:

t = 50µs t = 100µs t = 150µs t = 200µs

HE1
E/SE 1.63 3.86 6.03 8.16

S/SE 7.57 14.1 20.2 25.9

SS1
E/SE 0.745 1.3 1.85 2.4

S/SE 4.96 9.78 14.8 20.1

FA1
E/SE 1.69 3.22 4.74 6.23

S/SE 6.92 15.3 24.4 34.1

DD3
E/SE 7.21 13.6 19.5 25

S/SE 4.98 11.1 16.9 22.3

Table 4.11: Errors for transients (data are in %)
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Looking at the errors it appears that the errors for FA1 are bigger than the
one noted for HE1 and DD3 (at leat for space discretization). It is believed
that a similar consideration can be extended also to transient SS1 that has an
insertion of reactivity that is 758 pcm so lower than the about 1200 pcm involved
for the first kind of transient. So it is noted that the errors committed between
the space discretization and the space-energy discretization are bigger when
the properties perturbed involve the coupling between the groups. Regarding
the energy and space energy it seems the contrary. Probably this is due to the
different structure of equations. Space energy and energy discretization share
the fact that they create a system of equations and changing fission or scattering
cross section have effect directly on this coupling. Conversely the change of
other properties do not have a direct impact on this characteristic and it is felt
differently depending on the discretization. A particular focus should be done
for the diffusion length. δDg that is present in different ways between the two
discretization and this explains why errors are bigger.

4.11 Insertion of delayed

In this section the presence of delayed is introduced. They were considered in
the work made by Ravetto et al. but neglected by Dulla and Nervo. All the
main previous transients are repeated and the results are showed. In the graphs
even the amplitude for prompt cases are reported: they are the dashed lines.

4.11.1 Assumptions and model set

The transients are characterized by the presence of two new terms: the fraction
of delayed and the decay constant. Even if there are a lot of families of delayed
neutrons, that can be reduced just to six families, it is considered the presence of
only one. For this reason the data chosen for the just listed presented properties
are:

λ = 0.1 1
s

β = 0.0065

In particular the fraction of delayed is the one of uranium-235. Delayed neutrons
are in relation with the prompt ones participating to the overall count when
they are emitted. For the sake of simplicity it is assumed that all the delayed
neutrons emitted are fast and belong to group one. Due to the model set of
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OpenFOAM®, for each variable used (reference flux, amplitudes, etc.) an initial
condition and boundary conditions are requested, so also for the concentration
of neutrons. Even if it is not correct from a mathematical point of view it is
done the hypothesis that the concentration of neutrons at boundaries is zero
(see section 3.1). So the assumptions done are:

- there is only one family of delayed;

- all the neutrons generated by decay of fragments are fast;

- concentrations of neutrons at boundaries is null;
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The system studied are the same of before, so the properties are not reported
again. Despite this the equations are rewritten:
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For energy:
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For space:
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4.11.2 HE

This kind of transients wants the increase of absorption cross section and this
leads to a decrease of amplitude.
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(a) Trasient HE_C1 (b) Transient HE_C2

Figure 4.20: Transients for HE_C cases

The insertion of delayed create a clear different trend of the amplitudes: actually
the power does not drop as before. This was an expected thing. Such behaviour
can be forecasted due to insertion of delayed. They act as sort of source, indeed
the above equations are basically equal to the ones at section 4.1 but there
is the adjoint term of the delayed. So to normal contribution of the prompt
neutrons (even if a small fraction is held by fraction of delayed) there is a small
one of decay of the fragments. So this explains why the amplitude tends to
be higher. The insertion of delayed moreover is a little step towards the real
representation of the physics: delayed neutrons are always present and they can
not be neglected, otherwise big errors can be committed. Maybe this explains
also why the errors committed are lower as it is shown in the tables 4.12 and
4.13. Moreover the insertion of delayed creates a sort of equilibrium: as the
concentration of fragments generate fast neutrons ready for fission, a part of
this goes to the fraction of delayed.

HE_C1 t = 50µs t = 100µs t = 150µs t = 200µs

E/SE 1.63 3.86 6.03 8.16

S/SE 7.57 14.1 20.2 25.9

E_C/SE_C 1.5 3.3 4.72 5.77

S_C/SE_C 6.67 10.8 12.8 13.5

Table 4.12: Errors for HE_C1
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HE_C2 t = 50µs t = 100µs t = 150µs t = 200µs

E/SE 0.703 1.78 2.84 3.89

S/SE 5.29 9.99 14.2 18.7

E_C/SE_C 0.646 1.53 2.26 2.84

S_C/SE_C 4.68 7.63 9.41 10.2

Table 4.13: Errors for HE_C2

As it can be seen the errors tend to be lower for cases where the delayed are
considered. In particular the difference between the two types of error is evident
when time passes.

4.11.3 RI_C transients

The two transients RI1 and RI2 are repeated with the inclusion of delayed
neutrons.

(a) Trasient RI_C1 (b) Transient RI_C2

Figure 4.21: Transients for RI_C cases

The results are similar to the prompt case. This was expected due to the data
decided for the description of these transients with delayed. The presence of
delayed gives higher or lower results of amplitude depending on what occurred
with prompt generation. In case of energy discretization, there is not a good
representation of compensation: the power tends to decrease. The presence of
delayed slows this drop acting as a sort of source. This behaviour was already
observed in the previous transients. Conversely for the space-energy discretiza-
tion, the power arranges on a value close to one but the remarkable thing is that
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it decreases. Observing the trends, it appears that the delayed have a counter
effect on power, slowing the increase and moreover changing its slope. Delayed
insertion implies that a small part of the neutrons are not temporarily available
for the fission. The consequence is the lower production of power. In this case,
the removal of these neutrons does not only cause a lower power production
but addresses it to decline. This may be explained by the fact that neutrons
are emitted and not immediately available: in this fraction of time the prompt
ones are not enough to balance the removal for absorption cross section increase
and the delayed ones are emitted with small rate time. The overall effect is the
decrease of power. Regarding the space analysis of transient RI1 it can be seen
that the delayed insertion cause an effect that was not expected. Since ampli-
tude tends to decrease, the delayed insertion should be a balance, being a sort
of source. This is not the case, since the power generated considering delayed
neutrons is lower than the one only by prompt. This means that even the space
discretization generation showed in the present graph and the one in figure 4.6a,
reach the equilibrium between the created neutrons and the ones lost. The fact
that the amplitude values are close to 0.98 it can be explained by the less infor-
mation that this discretization method has. Regarding the transients RI2 that
show that the method is not good to describe this kind of compensation, it
can be seen that the amplitude considering delayed is always higher, that is an
expected behaviour.

4.11.4 SS_C transient

Even the transient where there is a perturbation of scattering cross section is
repeated.

79



(a) Transient SS_C1 (b) Transient SS_C2

Figure 4.22: Transients for SS_C cases

The figures show what is already said for the transients RI. The consideration
of delayed neutrons makes slower power increase. It is remarkable that even
with the insertion of delayed the discrepancies between the discretization do
not differ so much. Again the space discretization overestimates the real power
generation.

4.11.5 DD_C transients

The trend given by the increase of diffusion length is reported again.

(a) Trasient DD_C1 (b) Transient DD_C2

Figure 4.23: Transients for DD_C cases
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The lines respect the expectations. The power caused considering the delayed
neutrons is higher since they act as sources. In these two cases, it appears even
clearer that in the case of delayed neutrons the errors between the methods are
lower. Indeed the increase of diffusion length create a wider diffusion of neutrons
that do not make fission neither causes removal of them.

4.11.6 HE_C_04 transients

The presence of delayed neutrons implies also that they should reach an equi-
librium. If the neutrons are destined to be removed, a part of them do not
disappear immediately due to presence of delayed. They can slow a lot this
drop, holding the neutrons.

Figure 4.24: Trasient HE_C1_04

As it can be seen by the graphs a lower decay constant leads easily to an
equilibrium. After a fast drop of the amplitude, caused by the more neutrons
absorption there is a sort of stabilization. This can be considered a balance
between the prompt neutrons that suffer the increase of removal cross section
and the delayed ones that are preserved by the removal. On the other side
in case of an higher decay constant (the value chosen does not refer to any
particular physical case) the drop continues. The neutrons have a smaller delay
so they are available earlier for fission as well as for removal and since there
is an increase of absorption cross section, it is more probable that neutrons
disappear. The fact that some amplitudes drop dramatically is believed to be
a numerical effect. However the interesting thing is the asymptotic behaviour
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4.11.7 Delay distribution

It is reported the delay distribution and trend on time, for case HE_C1.

(a) Delayed on time (b) Delayed on space

Figure 4.25: Delayed on time and space

The choice to report only one trend can be even explained by the plots. Due to
the magnitudes, much more bigger than the one of the amplitudes is very diffi-
cult to see the differences between the lines. These differences can be achieved
looking at trends on time and restricting a lot the the range of visibility. Even if
the lines are distinguishable the errors committed are very low, on the order of
10−5. This means that the discretization method chosen is not very important
in case of delayed neutrons study. However it is noted that for space discetiza-
tion there is an increase and then a decrease of concentration. Maybe this is
due to the different coefficients involved, since ζ(y) > (ζ1(y) + ζ2(y)). Moreover
it can be argued that the time of study and also the decay constant that for
case HE_C1 is λ = 0.1 s−1 are very small. This can explains also the strange
trend of the energy amplitude that seems to be constant for certain period of
time. Despite this the time range studied is always between 0 and 0.002 s and
the value of 0.1 s−1 is the closest to physical ones.

Regarding the shape on space of the delayed this was expected. Looking at
formulas for g(y, t) this is function of flux and fission cross section. The first one,
due to symmetry of the system has shape of a bell; the fission cross section is
zero out of the core. This is the reason why g(y, t) is zero towards the edges. The
change of slope at the extremes of the bell can be explained by graphic reason
since there are close points with values with orders of magnitude of difference.

To overcome problems related to short time study it is observed also the
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trend of delay concentration in a larger time period and with different decay
constants.

(a) Delayed on time (b) Delayed on space

Figure 4.26: Delayed on time and space

Studying the transients with different decay constants leads obviously to differ-
ent results. Firstly it has to be noted that between the initial values there is the
difference of one unit, so of one order of magnitude (the graph is in logarithmic
scale). The lower value means that the neutrons are emitted less frequently,
so it decreases slowly. This is also what can be understood by the plots: the
trends with λ = 0.1 s−1 remains always on a value around nineteen. On the
other side the concentration for λ = 1 s−1 decrease quite rapidly. Looking at
the different discretizations, it appears that differently from all other cases, the
space is closer to the line of space-energy discretization. This can be explained
by the difference types of equations involved. The energy discretization returns
a system of ordinary differential equations while in the other cases there is a
system of partial differential equations. These last two are much more similar
between themself and even the structure that describe the delay concentration
is more similar in these two last cases. These effects of different decay constants
have impacts also on the distribution of concentration, as it can be seen by the
figure 4.26b.
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Chapter 5

One group case and 3D study

5.1 Mono-energetic case

In order to have a full description it is done a mono-energetic case, considering
the same system of the previous chapter. To make a good comparison, the data
are changed in order to find a criticality constant equal to one. The properties
are the one listed in table 5.1 and they are not the one of a particular material.
They give k = 1.00002 that can be considered approximately equal to the
reference value.

One group data D [cm] Σa [cm-1] νΣf [cm-1]

Core 1.0 0.03 0.03562

Reflector 0.8 0.03 -

Table 5.1: One group data.

Observing the system and knowing the boundary conditions from the 3.8 it
appears clear that the results has to be symmetric. Such behaviour is obtained
as it seems in figure 5.1. In the image it is showed the distribution evaluated
by the FVM so the surface is not smooth but pixelated. They are the cells that
discretize the surface. This is showed contrary to the the images 4.3 in order
to exhibit the real representation. As it can be seen the minimum value is not
zero but higher due to the method used for computation. It is remarked that
the flux is also the adjoint and values are in neutrons

cm···s .
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Figure 5.1: Flux for one group case

The number of cells are 4800 in line for what is written above and the assump-
tions are:

- study is in one group;

- the system is a two dimensional system;

- there is not a source;

- there is only one family of precursors;

With these the equations form can be simplified and they become (all the
possible perturbations are considered):
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Then it is showed the equation with presence of delayed.
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As it can be seen some terms disappear: there is not the source and proper-
ties can be seen as piece-wise functions, extracting them from the derivatives,
studying just one of them.

5.1.1 HE transients

The first transients studied concern the augmentation of the absorption cross
section (data are in table 4.2). Clearly it is expected that amplitude decreases.

(a) HE transients (b) HE transients with delayed

Figure 5.2: Transients for HE

It appears that the increase of absorption cross section leads to decrease of
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amplitude. The other conclusion that is extracted is the importance of the
extension of the perturbation, that was already observed previously. The most
impactive change is the one by the transient HE1 that is due to an extended
change of the absorption cross section. The presence of delayed, satisfy the
expectation because they slow the decline of the amplitude. Indeed the delay
presence act as a way of source for neutrons.

5.1.2 RI transients

The RI transients provide the reinsertion of reactivity that is removed by the
absorption cross section rise. Theoretically speaking this should compensate the
loses, setting up the power to the value of one.

(a) RI transients (b) RI_C transients

Figure 5.3: RI transients for space

As it appears in the figures 5.3 there is the compensation of the amplitude. The
increase of fission cross section lead to a bigger production of neutrons that
make fission so more power is generated. The effects are clearly visible by the
enhance of the amplitude. However as it is written the theoretical value reached
should be 1. An error between three and four per cent is associated. This may
be due to the boundary conditions assumption that lead to a low values of flux
distorting the physics: assuming the zero value should give lower values of flux
respect to real one. The zero flux should be out of the system. A similar behavior
was noted also for the space discretization in two groups. So it appears that the
amplitude sets up on value that is not one but close to it. This is less obvious in
case of a limited perturbation on space, as it is shown by the transient RI2 The
insertion of delayed does not make things so different: the prompt behaviors
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are retrieved. A little thing that goes against the normal comprehension is
the amplitude for transient RI_C1. The presence of delayed should be a sort
of source for the normal amplitude so it is expected to slow the drop of it.
However considering the delayed is slightly less than the other one. This means
that even the small part removed by the fraction of delayed was necessary to
cause amplitude leveling. Moreover it can be considered also that already with
prompt the amplitude reached an equilibrium and with the insertion of delayed
the neutrons are removed, causing amplitude decrease. Similarly to what is
obtained in sections 4.8 and 4.10. The values of the reactivity removed/inserted
are 946 pcm for RI1 and 442 pcm for RI2.

5.1.3 DD transients

Similarly to what is done for the cross section there is the perturbation of the
diffusion lengths.

(a) DD transients (b) DD_C transients

Figure 5.4: DD and DD_C transients

The increase of diffusion length means that neutrons can continue for its path
without making any collision: the consequence is the lower probability to make
fission or absorption. This is the reason why the effect on amplitude is not so
big because the removal or the production properties are not so modified.

5.2 3D cases

To test the capability of the solver it is performed the study of a 3D case. It
is very simple as well as the transients. Despite this the geometry wants to be
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similar to a real case. This is the reason of the sizes chosen and also the kind
of transients performed. They are two: one where there is the augmentation of
absorption cross section, the other where there is the rise of fission cross section.
The figures 5.7 and 5.8, at the end of the chapter, and the table 5.2 show the
data important for the evaluation of the amplitude.

Two groups data Dg [cm] Σa,g [cm-1] Σg→g+1 [cm-1] νΣf [cm-1] χ [-]

Core
1 1.01 0.01 0.008 0.003946 1.0

2 1.2 0.1 - 0.165 0

Reflector
1 0.9 0.01 0.0095 0.0 1.0

2 0.8 0.1 - 0.0 0

Table 5.2: two groups data.

The first transient studied wants reproduce the first one of two dimensional
cases, so it is extended in x direction and at the edge of this. In this one it is
studied just the increase of absorption cross section. The other study, wants to
observe the effect on fission cross section. This tries to simulate the removal of
a control rod from the center of the reactor and the amplitude response is seen.
The distribution of flux is not reported for space region but it is found again
the symmetry of the quantities due to the configuration.

5.2.1 3D1

Here it is reported the study on an increase of the removal cross section.

Figure 5.5: 3D_1 transient
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The region increase is small and it is similar to the one of HE1. The results
are the one expected: the amplitude tends to decrease. Again the space dis-
cretization does not correspond to the other types, giving lower results. The
reason of this is due to the bad factorization. Using only the space to study
the amplitude trend considers that in the system there is only the increase of
the removal of neutrons. On the other side with the energy discretization, the
decrease is slower, since a neutron does not only disappear but it can just pass
to the other group.

5.2.2 3D2

In this section it is presented the increase of fission cross section. It is considered
like the expulsion of a rod.

Figure 5.6: 3D_1 transient

The graph show what is obtained before. The space discretization overestimates
the results given by the energy and space energy factorization. However it is
noted that the errors committed are sligtly lower than the ones realized in the
transients FA1 and FA2. At instant t = 0.002 s they are 3.87 % and 30.5 %.
Maybe is due to the perturbation size, that is extended along y direction so
consideration done in 4.5 can be extended to this case.
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(a) Section B-B of the system (b) Section B-B of the system

Figure 5.7: 3D systems
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(a) Section A-A of the system (b) Section A-A of the system

Figure 5.8: Sections A-A of the 3D systems
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Chapter 6

Conclusion

In this chapter some final conclusions are done, considering what is simulated
and the results extracted in the previous two chapters. Finally also a list of the
needed updates is done.

Most of the studies are the ones that consider two groups in a 2D system.
Overall it is noted that the EQS method can offer a good prediction of the
results. Not strange effect are noted like decrease of power when it is expected to
rise. The space discretization seems to offer overestimation or underestimation
of the results respect to the two other types of factorization. However the errors
are not so big, if it is considered that only a perturbation is activated and the
consequent trend of amplitude is expected. These tend to increase with time
and with the magnitude of the perturbation. In case of reactivity compensation
it is noted that the method is not so good to predict the expected trend that
wants that the amplitude sets up to one. This is achieved well by the space
and space-energy discretization but not always. It is noted that in case of an
horizontal wide and not centred perturbation it works well, even in case of
mono-energetic approximation despite some errors. The energy discretization
seems to fail. However if the perturbation is small and distributed it seems to
work. Conversely if the modification is localized while the fission cross section is
increased in a large space the compensation fails. Even space energy and energy
discretization differ since this one is not able to report the trend of quantities
on y direction. Indeed it was noted that bigger differences appear when the
perturbation is limited on vertical direction. The failure is bigger depending
also on the location: if it is more displaced, towards the edge of the system, the
errors are bigger. In case of fission and scattering cross section rise the space
discretization seems to differ a lot respect to the one of energy and space-energy.
These offer always lower results respect to the first one: maybe this is due to
the capability to distinguish for all the period of study the division in groups. A
reversed behaviour is expected in case of decrease of scattering and fission cross
section. Finally it seems that the diffusion length can be studied equally by
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the three types of discretization. Moreover it is noted that space discretization
give more different results when the properties changed are the ones that have
a direct effect on coupling. The insertion of delayed generally seem to agree
with the prompt evaluations. Also the one group case seem to offer results that
do not differ from the expectations. The three dimensional problem is studied
well and the behaviours similar to previously cited are again found. The errors
between the space and the others two discretizations are lower respect to the
2D case in case of fission cross section augmentation. Maybe this is due to the
further averaging that integration on another direction causes.

Concerning the needed updates to the code, many things should be inserted.
Starting from the begin of the solver, the possibility to consider more complex
system should be investigated. A big lack of the code is the impossibility to
consider a source of neutron. Even if this is rare inside a reactor, it could be
important for didactic purposes. This should be considered from the reference
flux evaluation, modifying the code. Another interesting developing could be
the increase of number of groups studied. Actually they are just two but more
of them could offer simulations that are closer to the real physics. To this, also
the possibility to the cross sections to change on time enhances a lot prediction
of a true reactor system. Finally as it can be seen by the hypothesis 2.9 and the
successive of this type, the flux is factorized by the amplitude and the reference
flux that is the one of the solution at instant equal to zero. This approximation
is good for limited time period studied, that in case of EQS method could be
also larger respect to the QS study, but of course for longer ones there is the
need of updates. This is quite difficult in OpenFOAM® because it requests a
continuous change of mesh, internal to the code.
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