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Abstract

The primary purpose of this thesis is to further advance the development of a
modular hybrid meta-heuristic optimization tool and then apply it for the ESA
European Large Logistic Lander (EL3) RCS thrusters’ orientation optimization
problem. This study was conducted in Thales Alenia Space (TAS), in response
to the desire of the GNC group to have a tool for fastest optimization of complex
functions during different project phases.

Most real-world optimizations are highly nonlinear and multimodal, under
various complex constraints. A study has been carried on hybrid optimization,
focusing on the island model, coupled with a survey on metaheuristic algorithms
used in this field. A first version of the tool implementing Differential Evolution
and Evolution Strategy was already developed in TAS. During the thesis a Particle
Swarm Optimization algorithm, a mechanism of mass mutation and the possibility
to vary the cloning topology has been implemented. The tool has been tested
on a series of benchmark functions and EL3 thrusters’ orientation to show its
effectiveness and make a comparison between the use of individual algorithms
and a combined use of them. ESA EL3 mission has the purpose to support
human and robotic exploration by providing a multipurpose lander. The study
conducted on the orientation of EL3 RCS thrusters required the development of
an approximate solution method. It was then possible to apply the developed tool
into the studying of 2 configurations, 4 and 8 thrusters, and different combinations
of degrees of freedom for the orientation, with the aim of obtaining an acceptable
torque margin in the lander control.

The results on the benchmark functions demonstrate an increase in the effi-
ciency and effectiveness of hybrid optimization in some benchmarks problems, in
conjunction with the use of a suitable cloning topology, and an improvement in the
exploration of the domain thanks to the presence of mass mutation. For the EL3
application problem, the tool was able to show the correlation between the degrees
of freedom in the 4 thrusters’ configuration, while in the 8 thrusters’ configuration
was not able to improve the solution in all the cases analyzed. To improve the
tool’s results on high non-linear problems, future work can focus on algorithms’
parameters tuning and the analysis of different algorithms and topologies.
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Chapter 1

Introduction

The work I have done for this master’s thesis has been carried out within the
company Thales Alenia Space (TAS), in the GNC/AOCS working group. It ad-
dresses the need of the Guidance Navigation Control (GNC) group to have an
optimization tool available to be used for the study in different project phases for
the missions they work on. Within the Polytechnic of Turin heuristic methods are
regularly used, to exploit their qualities, in combination with methods of indirect
optimization. The goal of this work was to:

• Further develop a hybrid global optimization tool, implemented in MAT-
LAB® script language, that uses evolutionary algorithms for a single pa-
rameter optimization. The tool has to be modular, easy to use and without
dependencies from the MATLAB optimization toolbox.

• Review the state of the art of hybrid optimization systems that implement
evolutionary algorithms and the evolutionary algorithms used with particu-
lar regard to the island model.

• Implement some of the algorithms and mechanisms studied. A global mu-
tation mechanism within the tool and the possibility to choose the cloning
topology to be used for optimization. As well as the addition of Particle
Swarm Optimization to the available algorithms. Moreover to prepare the
tool for the addition of a function the implement an approximate function.
It will describes the problem analyzed using the data obtained from the algo-
rithms used. The choice fell on the use of Artificial Neural Networks (ANN).
The idea behind this development of the tool will be briefly introduced.

• Apply the developed tool for the ESA European Large Logistic Lander (EL3)
RCS thrusters’ orientation optimization problem. Studying various config-
urations with different degrees of freedom.

11



1.0 -

Moreover, the participation within the group of the Polytechnic of Turin, to
the Global Trajectory Optimization Competition 11 held between October and
November 2021, allowed me to apply ongoing the work done for this thesis. The
tool has helped the validation of an algorithm used for the calculation of an
optimum orbital plane to locate the Dyson ring.

Numerous application problems encountered everywhere can be modeled as
global optimization problems. In addition most real-world optimizations are
highly nonlinear and underlie various complex constraints. It is therefore impor-
tant to develop and study numerical methods and tools that are able to identify
the overall optimal of the function analyzed.

Heuristic methods are problem-dependent and with the objective to adopt
problem independent strategies researchers studied meta-heuristic algorithms. This
algorithms are used as a high level search strategy and can be applied to a wide
range of problems [1].

Many heuristic algorithms have been developed since the 1970s. Among these
algorithms we encounter: Genetic algorithms, Evolution strategy, Differential evo-
lution, Neuroevolution, Ant Colony optimization, Artificial bee Colony algorithm,
Particle Swarm Optimization, simulated annealing, Tabu search, etc. But recently
these algorithms have been combined within optimization tools with each other
and with other traditional approaches to solve even more complex problems. The
idea behind this thesis is to obtain the combination of algorithms through a is-
land model. This types of work have been carried out over the years with various
contributions. These include:

• PaGMO[2][3]: a parallel global multiobjective framework for optimization;

• Hemoglop[4]: acronym of Hybrid Evolutionary Multi-Optimiser Global Op-
timisation tool;

• ParadisEO[5]: a Framework for the Reusable Design of Parallel and Dis-
tributed Metaheuristics;

• Various works about parallel optimization and island model[1][6][7][8].

These will be the works to which most reference will be made during the work
presented. The island model paradigm allows to efficiently distribute evolutionary
algorithms over multiple algorithms while introducing a new evolutionary oper-
ator, the migration operator. The migration operator, also known as clonation,
is able to improve the overall algorithmic performance. The Generalized island
model can be applied to a broad class of optimization algorithms. In this thesis in

12



1 - Introduction

particular will be applied to evolutionary algorithms (EA), including Differential
Evolution, Evolution Strategy and Particle Swarm Optimization.

A first version of the tool implementing Differential Evolution and Evolution
Strategy was already developed in Thales Alenia Space. During the thesis a Parti-
cle Swarm Optimization algorithm, a mechanism of mass mutation and the possi-
bility to vary the cloning topology has been implemented. The tool will be tested
on a series of benchmark functions and on the optimization of ESA European
Large Logistic Lander (EL3) RCS thrusters’ orientation to show is effectiveness
and make a comparison between the use of individual algorithms and a combined
use of them.

ESA EL3 mission has the purpose to support human and robotic exploration
by providing a multipurpose lander. The study conducted on the orientation of
EL3 RCS thrusters required the development of an approximate solution method.
That’s because in most real applications of EAs, computational complexity is
a prohibiting factor. This computational complexity is due to fitness function
evaluation. It was then possible to apply the developed tool into the studying of 2
configurations, 4 and 8 thrusters, and different combinations of degrees of freedom
for the orientation, with the aim of obtaining an acceptable torque margin in the
lander control.

Within the chapter ”Hybrid heuristic optimization” a study will be carried on
hybrid optimization, focusing on the island model, coupled with a survey on some
metaheuristic algorithms used in this field.

Then in the chapter ”Hybrid Evolutionary algorithms tool” will be described
the reasons that led to the development of the tool object of the thesis. The work
was carried out within Thales Alenia Space. It describes the architecture of the
tool, the algorithms that compose it and the parameters on which they depend.
Also within this chapter, through the results of the tests carried out, the effects
of the mass mutation mechanism implemented and the variation of the cloning
topology are shown.

The chapter ”Results on numerical Benchmark Problems” presents the results
of the tests carried out on the tool using the benchmark functions in the literature.
These results were obtained following a tuning of the parameters, work that is
certainly not conclusive and that therefore leaves room for further improvement.

The next chapter, European Space Agency EL3 Application Problem, presents
the mission of the European Space Agency whose orientation of the Thrusters of
the RCS system represents the application problem of the thesis. ESA EL3 mission
has the purpose to support human and robotic exploration by providing a mul-
tipurpose lander. The study conducted on the orientation of EL3 RCS thrusters
required the development of an approximate solution method. It was then pos-

13



1.0 -

sible to apply the developed tool into the studying of 2 configurations, 4 and 8
thrusters, and different combinations of degrees of freedom for the orientation,
with the aim of obtaining an acceptable margin in the lander control.

The conclusions of the work carried out are then presented.

14



Chapter 2

Hybrid Metaheuristic
Optimization

The work of this thesis is focused on a single parameter global optimization tool
based on the island model, using meta-heuristic algorithms. This chapter intro-
duce the optimization problem, some of the algorithms presented in literature and
the hybrid mechanism. It is organized as follows:

• Section 2.1 presents the global optimization problem;

• Section 2.2 gives an introduction about some meta-heuristic algorithms
present in literature and about the artificial neural networks.

• Section 2.3 presents the hybrid meta-heuristic optimization and focuses on
the parallel island model.

2.1 Global Optimization

Many application problems encountered in the scientific field can be modeled as
global optimization problems. Namely problems in which you have to determine
the overall minimum or the maximum of a function with real values. Global
optimization has as its objectives:

• analysis of non-linear models with multiple optimal solutions;

• the design and study of efficient algorithms capable of identifying the best
solution globally.

The difficulties in solving this type of problem depend on the properties of
the function and on the domain boundaries. From a mathematical point of view,

15



2.1 - Global Optimization

the problem of global optimization in Rn can be formulated as in 2.1. Where
f : S → R is a function defined on S ⊆ Rn set. The function f is called the
objective function and the set S is usually called the eligible solution space.

determine x∗ ∈ S|f (x∗) ≤ f(x), ∀x ∈ S
or minimize f(x), x ∈ S

(2.1)

A maximization problem is easily attributable to a minimization problem because:

max f(x) = −min(−f(x)), x ∈ S (2.2)

Frequently the number of local minimum is unknown and also be very large.
Also local solutions can be very far from the global one. In this case solving the
global optimization problem means identifying the best of all solutions, avoiding
being trapped in a non-global local minimum.

The classes of problems to be solved in the field of optimization, both local
and global, are varied and very different from each other: from problems of combi-
natorial optimization to concave minimization, convex differential programming,
lipschitz optimization, etc. As a result, the proposed approaches to solving these
problems are very diverse: while a very general strategy could be suitable in all
cases, obviously being inefficient in specific cases, on the other hand strictly spe-
cialized methods are applicable only to the class of problems for which they were
designed for.

The main difficulties of solving the global optimization problem depend on:

• the function to be minimised, in particular the computational cost required
for each function evaluation;

• by the number of local minimum and their distribution: the greater the
number of local minimum points of a function, the smaller the measures of
the respective regions of attraction, thus the probability of identifying the
overall minimum;

• from the size of the research space: it is possible to demonstrate that the
computational effort required to generate and store the test points grows
exponentially as the size increases. Moreover, as the size increases, the
number of local minimum increases and the probability of finding an optimal
solution decreases;

• the lack of a characterisation of the overall minimum that is easy to verify:
this does not allow an easy definition of the stop criteria for iterative methods
of minimization.

16



2 - Hybrid Metaheuristic Optimization

A further element of difficulty to consider in addressing the problem 2.1 is the
fact that, in general, the problem of global optimization cannot be solved with
absolute certainty in a finite number of steps. This result, formulated by Dixon
in the 1978[9].

The first algorithms for solving the global optimization problem date back to
the first half of the twentieth century. In the seventies, the first heuristic strategies
were proposed, trying with little success, to extend convergent algorithms in the
one-dimensional case to higher dimensions. Depending on whether or not they
use probabilistic elements, the methods developed for the resolution of a global
optimization problem can be divided in principle into two main classes:

1. Deterministic methods;

2. Stochastic methods.

Typically, all methods of the Branch and Bound type belong to the class of de-
terministic methods, such as the Grid Search method, interval partition methods,
methods based on Peano curves and partition strategies for lipschitz functions.
Some methods that use perturbations of the target function, such as the tunnel-
ing method or the filled function method, also belong to the same class. These
methods provide an absolute guarantee of success but require restrictive assump-
tions about the function. An algorithm is determistic if repeating the run from
the same initial conditions are always found the same iterates. In practice the
direction is deterministically found, the step as well.

Stochastic methods typically require weaker assumptions than the determin-
istic ones and ensure probabilistic convergence to global optimal. This class in-
cludes, for example, Two-Phase methods, Random Search conceptual methods,
Simulated Annealing methods and Random Directions methods. An algorithm is
stochastic when the iterate is updated using something probabilistic. For exam-
ple the descent direction can be stochastic, or the step. And it can be stochastic
for example because the exact gradient calculation would be expensive and so its
used a smaller batchsize. If an algorithm is stochastic, repeating the run from
the same initial conditions are obtained different iterations. Methods based on
stochastic procedures exist in the literature which, under particular conditions,
are empirically competitive but do not provide guarantees of convergence. In
some cases, a method may be required to be empirically competitive without
providing guarantees of convergence, as is the case for heuristic/meta-heuristic
methods. Heuristic methods are problem-dependent while meta-heuristic algo-
rithms are used as a high level search strategy and can be applied to a wide range
of problems. These methods include for example all those approaches that simu-
late the processes of the biological evolution of a system, such as natural selection,
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2.2 - Algorithms

and apply to populations of points that are recombined sequentially to generate
the optimal solution. These include evolutionary methods and genetic algorithms,
an introduction about these algorithm is given in section 2.2.

2.2 Algorithms

2.2.1 Swarm Intelligence

Swarm intelligence arises from biological intuitions, about the incredible ability
of social insects to solve problems of everyday life. There are several examples of
complex behaviors among social insects, from the construction of efficient struc-
tures, to the dynamic distribution of tasks among workers.

Individual insects do not need any representation, map or explicit knowledge
of the overall structure they produce. A single insect is not able to assess a
global situation, to centralize information on the state of the entire colony to
which it belongs, nor to control the tasks that must be carried out by other
workers, as, within these there is no supervisor. A colony of social insects is
like a decentralized system, consisting of autonomous units distributed in the
environment, and can be defined as a set of simple behaviors of response to stimuli.
The rules governing interactions between individuals are performed on the basis
of local information, without knowledge of the global model. Each insect follows
a small set of behavioral rules. The organization of the colony comes from the
sum of the simple behaviors of each individual. All these interactions ensure the
propagation of information through the colony and, in turn, organize the activity
of each individual. Thanks to this network of interactions social insects are able
to offer a very flexible and robust system.

2.2.1.1 Ant Colony Optimization

The study of intelligent swarms, led to the formation of the Ant Colony Optimiza-
tion (ACO) algorithm, first introduced in 1992 by Marco Dorigo[10]. It is used
for solving complex computation problems. A simplified pseudocode for ACO is
preseted with Algorithm 1.

2.2.1.2 Artificial Bee Colony

Another swarm intelligence algorithm is the Artificial Bee Colony Algorithm
(ABC) that mimics the behavior of honey bees to perform research, prioritize,
and other activities. It was developed in 2005 and has been applied to a number

18



2 - Hybrid Metaheuristic Optimization

Algorithm 1 ACO Algorithm

Define End Condition
while End condition not satisfied do
schedule activities
ants activity
pheromone evaporation
daemon actions

end while

of optimization problems. The goal is to determine the best solution to a problem.
The decision-making processes used by bees in nature to solve problems related
to the management of hives can be equally effective in other environments.

A single hive uses a combination of two search methods to return data, in
this case, information about food sources. The first is the use of scouts, which
randomly scan a region to locate specific areas, or neighborhoods, which will
likely give good results. Scouts return to the hive and the other bees decide
which neighborhoods to look for more intensively to identify useful resources.
This combination of random and local search patterns can be optimal for some
search environments. In the algorithm of the bees, the programmer can decide
how many scouts to send, launching them to carry out random searches in all
directions. They identify the most likely sources of useful data or the most optimal
solutions in a range of choices and report with this data. More intense localized
searches in these regions can yield the best results, classified in terms of relevance,
effectiveness and other features that the programmer can set.

2.2.1.3 Particle Swarm Optimization

Particle Swarm Optimization is a population-based stochastic optimization tech-
nique developed by Dr. Eberhart and Dr. Kennedy in 1995[11][12][13][14]. It is
a heuristic method of research and optimization, inspired by the social behavior
of flocks of birds and schools of fish. Individuals follow a very simple behavior:
they emulate the success of neighboring individuals. Flocks of birds stay together,
coordinate when they need to change direction, avoiding collisions with obstacles
and each other. Shoals of fish behave in a similar way. Each bird or fish follows
three simple rules:

• Keeps a specific minimum distance from the object or other nearest birds;

• Equals speed with the neighboring birds;

• It’s close to the center of the flock.
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2.2 - Algorithms

The flock is a self-binding structure to which all individual actions respond
simultaneously and change the general structure of the swarm. Although each
bird or fish only feels the movements of its nearest peers, its reactions to these
movements propagate to the other entities of the structure, so the system as a
whole exhibits a global coordination. Such optimization shares many similarities
with evolutionary computing techniques, such as genetic algorithms.

The system is initialized with a population of random solutions and searches
for the optimal one by updating the generations. However, unlike genetic algo-
rithms, there are no evolutionary operators such as crossovers and mutations in
particle swarm optimization. In this optimization, the possible solutions called
particles, fly through the space of the problem following the optimal current par-
ticles. At each interaction the algorithm identifies a new candidate in the space of
the problem considered, and it does so in reference to a specific measure of quality
called fitness. Optimization with swarms of particles allows exploration of large
spaces of solutions, given the structure of algorithm there is no guarantee that
the optimal solution will ever be found. This type of optimization uses a popu-
lation of candidate solutions, called particles, that move in the research space on
the basis of simple formulas, which take into account their current travel speed,
their knowledge of the fitness space (the best solution found so far) and shared
knowledge (the best overall solution identified).

A particle i in a time t, assumes a position and a velocity. There is a function
called fitness function that evaluates the quality of the position of the particles.
Each particle has a memory in which it keeps track of the best position reached,
and is able to know what is the best position taken by its neighbors. The social
component reflects the information exchanged between neighbors, highlighting the
local nature of the system. The best solution found so far by the particle is called
Pbest and the best overall solution identified is called Gbest.

After finding the two best values, the particle updates its velocity and positions
with following equation 2.3 and 2.4.

v = v + c1 ·RAND1 · (Pbest − p) + c2 ·RAND2 · (Gbest − p) (2.3)

p = p+ v (2.4)

v is the particle velocity, p is the current particle or solution. Pbest and Gbest are
defined as stated before. RAND1 RAND2 and random numbers between (0, 1).c1,
c2 are learning factors. Usually c1 = c2 = 2[15]. A pseudo-code of the algorithm is
presented in Algorithm 2. Particles’ velocities on each dimension are clamped to
a maximum velocity Vmax. If the sum of accelerations would cause the velocity on
that dimension to exceed Vmax, which is a parameter specified by the user, then
the velocity on that dimension is limited to Vmax.
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Algorithm 2 PSO Algorithm

Define End Condition
for each particle do
Initialize particle

end for
while End condition not satisfied do
for each particle do
Calculate fitness value
If the fitness value is better than the best fitness value (pBest) in historyset
current value as the new pBest

end for
Choose the particle with the best fitness value of all the particles as the gBest

for each particle do
Calculate particle velocity according equation 2.3
Update particle position according equation 2.4

end for
end while

2.2.2 Tabu Search

The Tabu Search represents an evolution of the classic descent method that is,
used to find the minimum of a real function f on a set S, solutions space. This
classical methodology consists in starting from an initial solution and performing
a series of moves that lead to a new solution within the surrounding of the current
solution, in which the objective function f assumes a value less than the present
value. The defect of the descent method lies in the fact that, if in the set of
adjacency there are no better solutions than the current one, the search stops.
The optimal solution identified by the descent method is therefore associated with
a minimum local space of the solutions, which is often far, especially in terms of
quality, from the overall optimal solution.

The Tabu Search technique was proposed by Fred Glover as a way to continue
the search beyond local lows. First, in order to escape the trap of local lows,
the Tabu Search allows worsening moves. However, by doing so, there is the
risk of falling back immediately afterwards into the local minimum, unless you
somehow prevent the moves recently made. The fundamental concept of Tabu
Search consists then in making forbidden or, in fact tabu, the last moves made in
the search path, so that the algorithm can not go back on its feet and fall back into
the local minimum. The basic feature of Tabu Search is therefore the systematic
use of memory: to increase the effectiveness of the search process, not only local
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information is kept track (such as the current value of the target function)but also
some information about the itinerary. This information is used to guide the move
from the current solution to the next solution, to be chosen within the adjacency
set. A simplified pseudocode version of the algorithm is presented in algorithm 3.

Algorithm 3 Tabu Search

Define End Condition
while End Condition not satisfied do
Update End Condition
Search the neighborhood
Evaluate candidate solutions
Update Tabu list

end while

2.2.3 Simulated Annealing

Simulated Annealing originates from the analogy between the physical process of
cooling solids, called annealing, and the problem of finding minimal solutions for
optimization problems in the discrete. Annealing denotes a physical process in
which a solid immersed in a hot bath reaches a state of minimum energy by a
slow lowering of the system temperature.

The first solid annealing simulation algorithm is due to Metropolis in 1953. In
1983, Kirkpatrick used this algorithm for combinatorial optimization problems by
replacing energy with a cost function and physical system states with solutions
to an optimization problem. For its success in this type of problem, the study of
Simulated Annealing has also been extended to problems of continuous optimiza-
tion. Apart from the purely heuristic reason for the origin of the method, the
peculiarity of Simulated Annealing is that the algorithm avoids stabilization in a
local minimum that is not global by accepting, as well as transitions corresponding
to a decrease in the value of the function, also transitions that correspond to an
increase in the value of f; these occur however in a limited way. The general idea
of the algorithm is to generate at each test a point based on a given probability
distribution D and its acceptance or rejection depends on an assigned function.
This function constitutes the so-called criterion of acceptance and depends on a
parameter, called temperature, that controls the acceptance of those points to
which corresponds an increase in the value of the objective function. As the tem-
perature decreases, the probability of transitions decreases. The general scheme
of the algorithm is presented in the algorithm 4.
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Algorithm 4 Simulated Annealing

determine the starting point x0 arbitrarily in S
z0 ← {x0}
determine T0 > 0, initial temperature value
k ← 0
while End condition not satisfied do
generate a point yk+1 according to a distribution D (zk; ·)
choose p evenly in [0, 1]
if p ≤ A (xk, yk+1, Tk) then
xk+1 ← yk+1

zk+1 ← zk ∪ {xk+1}
else
xk+1 ← xk
zk+1 ← zk

end if
Tk+1 ← U (zk+1)
k ← k + 1

end while

2.2.4 Evolutionary Algorithms

Within artificial intelligence, an evolutionary algorithm (EA) is a subset of evolu-
tionary computation, a generic population-based metaheuristic optimization algo-
rithm. An EA borrows their mechanisms from biological evolution: reproduction,
mutation, recombination, natural selection and survival of the fittest. Candidate
solutions to the optimization problem play the role of individuals in a population,
and the cost function determines the way in which the person is adapted to the
environment. Evolution of the population then takes place after the repeated
application of the above operators. Evolutionary algorithms consistently perform
well in approximating solutions to all types of problems because they do not make
any assumption about the underlying fitness landscape.

Particularly, major elements of the Genetic Algorithm are [16][17][18][19]:

• Population Representation and Initialisation. EAs and GAs operate on a
number of potential solutions, called a population, consisting of a set of
solutions to the problem that evolve during the algorithms run. The most
commonly used representation of chromosomes in the GA is that of the
single-level binary string. But it is also common to use real value vector
representation. And that will be the case for the tool developed. This
increases efficiency because you save a conversion before you can call the
function evaluation, that is based on a real number problem. The first step

23



2.2 - Algorithms

in the simple genetic algorithm is to create an initial population. This is
usually achieved by generating the required number of individuals using a
uniform or gaussian random number generator that distributes numbers in
the desired range.

• The Objective or Fitness Functions. The objective function is used to pro-
vide a measure of how individuals have performed in the problem domain.
The result value from the evaluation will be considered the fitness value
associated with the individual.

• Selection process. Selection is the process of determining the number of
times, or trials, a particular individual is chosen for reproduction and, thus,
the number of offspring that an individual will produce.

• Crossover or Recombination. The basic operator for producing new chro-
mosomes in the GA is crossover. Like its counterpart in nature, crossover
produces new individuals that have some parts of both parent genetic ma-
terial.

• Mutation. It is a random process where one gene is replaced by another
to produce a new genetic structure. In GAs, mutation is randomly applied
with low probability, typically in the range 0.001 and 0.01, and modifies
elements in the individual.

• Reinsertion. Once a new population has been produced by selection and
recombination of individuals from the old population, the fitness of the in-
dividuals in the new population may be determined. Then a reinsertion
scheme must be used to determine which individuals are to exist in the new
population.

• Termination conditions. Being stochastic methods It is difficult to formally
specify convergence criteria. Different criteria are then proposed, based on
fitness function evaluation, number of generations, time, or relative evolution
of the solution.

A general Evolutionary Algorithm procedure is presented in figure 2.1.

Figure 2.1: General Evolutionary Algorithm Procedure

24



2 - Hybrid Metaheuristic Optimization

2.2.4.1 Differential Evolution

Differential Evolution (DE) generates new vectors of parameters by adding the
weighted difference between two population vectors to a third one[20][21][22]. If
the resulting individual provides a lower objective function than a predetermined
population member, in the next generation the new individual replaces the one
with which it was compared; otherwise, the old individual is retained. G. The
population size does not change during the optimisation process. For each target
vector a mutant vector for the next generation is generated according to 2.5.

vi,G+1 = xr1,G + F · (xr2,G − xr3,G) (2.5)

The chosen vector are random, and have to be different. F is a real factor varying
between 0 and 2 that controls the amplification of the difference vector. This is
the basic strategy for Differential Evolution. By modifying the F value is possible
to obtain DE algorithm that are more focused on the domain exploration or more
focused on exploiting of the solution.

The target vector is mixed with the mutated vector thanks to the crossover.
This operation is governed by the factor CR. CR is a probability that usually vary
from 0 to 1. CR = 0 means no crossover.

2.2.4.2 Evolution Strategy

Evolution strategies are evolutionary algorithms that date back to the 1960s and
that are most commonly applied to black-box optimization problems in continuous
search spaces. Inspired by biological evolution, their original formulation is based
on applying mutations, recombinations and population selections of candidate
solutions.

Individuals are also denoted as parents or offspring, depending on the context.
In a generational procedure:

1. one or several parents are picked from the population and new offspring are
generated by duplication and recombination of these parents;

2. the new offspring undergo mutation and become new members of the pop-
ulation;

3. environmental selection reduces the population to its original size.

Within this procedure, evolution strategies employ the following main principles
that are specified and applied some fundamentals operators.

The parameters that characterize the algorithm are[23]:

• λ ∈ N number of offspring, offspring population size.
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• µ ∈ N number of parents, parental population size. Survive after the envi-
ronmental selection.

• For recombination, ρ (out of µ) parent individuals are used. We have there-
fore ρ ≤ µ.

• σ and τ govern the mutation. The mutation operator introduces small
variations by adding a point symmetric perturbation to the result of recom-
bination. τ is the learning rate.

2.2.5 Artificial Neural Networks

Neural networks, also known as artificial neural networks (ANN) or simulated
neural networks (SNN) are a subset of machine learning and are the central ele-
ment of deep learning algorithms. Their name and structure are inspired by the
human brain, mimicking the way biological neurons send signals.

Artificial neural networks (ANN) are composed of layer nodes that contain
an input layer, one or more hidden layers, and an output layer. Each node, or
artificial neuron, connects to another and has an associated weight and threshold.
If the output of any single node is above the specified threshold value, that node
is activated, sending the data to the next network level. Otherwise, no data is
passed to the next level of the network. Neural networks rely on training data to
learn and improve their accuracy over time. However, once optimized for accuracy,
these learning algorithms are powerful tools in computer science and AI, allowing
us to classify and cluster high-speed data.

Each individual node is a linear regression model, consisting of input data,
weights, a distortion (or threshold) and an output. The formula that defines the
node is near what presented in 2.6.

m∑
i=1

wixi + bias = w1x1 + w2x2 + w3x3 + bias (2.6)

Once an input level is determined, the weights are assigned. These weights help
determine the importance of any given variable, with larger ones contributing more
significantly to the output than other inputs. All inputs are then multiplied by
their respective weights and then summed. Next, the output is passed through an
activation function, which determines the output. If it exceeds a certain threshold,
that output activates the node, passing the data to the next level on the network.
The output of a node then becomes the input of the next node. This process of
passing data from one level to the next defines this neural network as a feedforward
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Figure 2.2: Feedforward Artificial Neural Network

network. Specifically feedforward neural networks are formed by an input level,
one or more hidden levels and an output level as represented in figure 2.2.

Within this thesis were used the ML tools provided by MATLAB for the
development of a neural network, based on the feedforward mechanism. The goal
of this work, only started and which is not the focus of the thesis, is to give the
possibility to the tool to create a surrogate model, an approximate function, of
the analyzed problem. This model will be created by exploiting the information
coming from the individuals analyzed during the evolution of the tool within the
present islands. This allows not to lose the information found but to use them to
train the neural network.

2.3 Hybrid Algorithms Metaheuristic Optimiza-

tion

In recent years there has been a proliferation of investigation that shifted interest
from exact approaches to near-optimal heuristics and metaheuristics. The aim
of these studies was to achieve an optimal or almost optimal solution for this
NP-hard problem within a minimum time budget[24][25][26][27].

Although metaheuristics has met some expectations, the quest for a high-
quality, near-optimal solution has led researchers to design hybrid methods. Con-
sequently, research is evolving towards the hybridisation of metaheuristics. Hybrid
metaheuristics have been promising efforts to transcend the boundaries of meta-
heuristics by leveraging the strength of complementary methods to overcome base
algorithm shortcomings. Inadequacy in traditional metaheuristics such as slow or
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premature convergence and stochastic behaviour.

The hybrid strategies for metaheuristics were born from the need to reduce
the inadequacy of metaheuristics algorithms in some situations. The objectives
of the hybridized model can be summarize in:

• To improve solution qualities.

• To accelerate convergence.

• To avoid local entrapment.

• To reduce search space.

• To improve exploration or exploitation.

Following the survey carried out by a group of researchers in December 2021[1],
which covers 202 resolution methods published between 2003 and 2020, it is pos-
sible to analyse the current state of metaheuristic hybrid optimisation.

The result is that while 25% of solutions use exact or heuristic methods, 40%
use metaheuristic methods and 35% use hybrid metaheuristic methods. Recent
application of hybrid metaheuristic has shown promising results.

One of the most sought-after approaches to improving meta-heuristics. ef-
ficiency has been hybridization with other techniques to attain a better search
mechanism with minimal time complexity. The results of the analysis indicate
that the choice of the algorithm falls on 42% of the cases on Evolutionary Algo-
rithms (EA), 21% of the cases on Particle Swarm Optimization (PSO), 10% of the
cases on the Ant Bee Colony (ABC) and the remaining 27% of the cases on other
types of algorithms. Also the tool object of this thesis will be developed mainly
with Evolutionary Algorithms and in addition PSO and other characteristics will
be added.

The hybrid strategies can be divided in:

• Algorithm operators, 54%;

• Metaheuristics, 20%;

• QoS Modeling, 13%;

• Data Clustering, 8%;

• Machine Learning, 5%.
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The 54% of the studies proposed a hybrid method by replacing or modifying
one or a few operators that characterize. Therefore, much research is dedicated
to proposing a hybrid alternative with dynamic operators. As reported above
Evolutionary Algorithms, particularly genetic algorithms and swarm intelligence
techniques, are the basis of the vast majority of algorithms. Empirical evidence
suggests that genetic algorithm suffers from slow convergence while PSO-based
algorithms diverge at local optima in some circumstances. Operator modification
is shown to be a potent remedy to overcome algorithm weakness by integrating
another algorithm operator. Even randomicity that governs the stochastic opti-
mization process of traditional metaheuristics has been the root of inefficiency.
Therefore, one major effort has been to modify the search operator to generate a
quality initial population with adaptive search mechanisms. These practices ac-
celerate the convergence, improve solution quality and provide immunity against
local entrapment.

Around 20% of research efforts have improved a metaheuristic algorithm by
combining it with another metaheuristic to minimize the weakness and maxi-
mize their strength. The survey shows that a population-based metaheuristic
frequently employed as a base algorithm due to its hybridization capacity. The
major disadvantage of combining multiple metaheuristics is sophistication, which
leads to higher time complexity. Therefore, this strategy has been less popular in
comparison to the practice of operator modifications.

Only 5% of articles incorporate a hybridized fitness function with a combina-
tion of a few techniques to improve the algorithm performance. That is the QoS
modeling.

There is a close association between search space dimensions and search method
efficacy. Therefore, some researchers used service clustering techniques to reduce
the search space in order to improve algorithm performance. Service clustering
has been a proven hybrid strategy to accelerate the search process.

Furthermore in recent years, Machine Learning (ML) has gradually become a
viable hybrid strategy to incorporate into metaheuristics. The machine learning
techniques including Q-learning, deep learning, reinforcement learning has been
employed to improve the search mechanism on different grounds.

The tool, argument of this thesis, uses more strategies. It presents changes in
the operators applied to the available algorithms and these will act in a combined
way to try to maximize their strengths. Machine learning has also been used,
although this is not the focus of the work done. In particular, the hybrid strategy
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used is that of a parallel composition with the Island Model.

2.3.1 Parallel Metaheuristic and Island Model

All methods analyzed in the study have a proposed composition approach that
is semi-automated or fully automated. Regarding the choice of parameters and
algorithms. While as for the way in which to compose the different algorithms
the possible choices are 4 and are reported in the figure 2.3.

Figure 2.3: Composition Modes

The reference models for this work are all based on the method of parallel
composition. This method in fact lends itself optimally to a parallel computation
implemented within the various algorithms. These works are:

• PaGMO[2][3] that is a parallel global multiobjective framework for optimiza-
tion. It is built to tackle high-dimensional global optimisation problems, and
it has been successfully used to find solutions to real-life engineering prob-
lems among which the preliminary design of inter- planetary spacecraft tra-
jectories, both chemical and low-thrust, the inverse design of nanostructured
radiators and the design of non-reactive controllers for planetary rovers.

• Hemoglop[4]: acronym of Hybrid Evolutionary Multi-Optimiser Global Op-
timisation tool. A Phd work, that is a multipopulation algorithm that
exploits three evolutionary algorithms running in parallel and exchanging
information between them during the evolution.

• ParadisEO[5]: a Framework for the Reusable Design of Parallel and Dis-
tributed Metaheuristics. A white-box object-oriented framework dedicated
to the reusable design of parallel and distributed metaheuristics (PDM).
ParadisEO provides a broad range of features including evolutionary algo-
rithms (EA), local searches (LS), the most common parallel and distributed
models and hybridization mechanisms.
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The island model[28] paradigm allows to efficiently distribute genetic algo-
rithms over multiple processors while introducing a new genetic operator, the
migration operator, able to improve the overall algorithmic performance. The
analogy with the islands of an archipelago, where each island hosts a population
that evolves over time governed by an algorithm, gives the name to the Island
Model. The islands will communicate with each other during the evolution of
the analysis, exchanging information thanks to mechanism called migration. This
exchange mechanism involves copying an individual from one island to another,
according to various migration topologies. The information exchange process is
done with an operator called Clonation, that is something similar to a migration
operator for the basic multi-population algorithm. This thesis work will refer to
this operation as migration or clonation considering them synonymous. The ex-
change of information influences the analysis that allows therefore to obtain better
results going to reduce the incidence of the difficulties of the single algorithms on
the analysis. This mechanism that regulates the exchange of information will de-
pend on various factors that will influence the performance of the analysis, these
are:

• The number of islands;

• The migration topology that determines feasible migration paths

• migration rate that tells how many individuals migrate from the source
population at a time;

• The migration frequency that tells how often the migration occurs;

• The migration algorithm that specify all remaining details.

It has been shown that employing the Island Model[29] leads to increased algo-
rithm performance what can be explained in terms of improved balance between
exploitation and exploration of the solution space. In the Island Model, each is-
land can exchange information with its neighbor island as defined in the graph of
possible links between islands, commonly referred to as migration topology. If the
calculation, during the analysis, is divided between several processors, with the
increase in CPU number and power, the number of islands contributing to one
optimization can grow significantly and the resulting optimization is thus affected
more clearly by the way the information is exchanged between the islands and in
particular by the migration topology.

The migration topology has two effects on the underlying optimization process.
The first one, beneficial, is the super-linear speed-up caused by the information
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exchange, and the second one, being sometimes an issue, is the BUS and CPU
overhead caused by the required information flow. Furthermore, if the information
is synchronously exchanged, it will be necessary to wait until all the islands have
evolved so that information can be exchanged before continuing. This does not
happen in the case of asynchronous migration.

A very interesting and exhaustive migration topology study was conducted
by Rucinski, Izzo and Biscani [7]. In the 3.3 paragraph the migration topologies
presented in the tool will be tested, after having introduced the tool in the chapter
2, following a similar approach.
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Chapter 3

Hybrid Evolutionary Algorithms
Tool

Numerous application problems encountered everywhere can be modeled as global
optimization problems. It is therefore important to develop and study numerical
methods and tools that are able to identify the overall optimal of the function
analyzed. The difficulties in solving this type of problem depend on the nature of
the function and the research domain.

The idea of developing this global optimization tool based on meta-heuristic
methods was born within the GNC/AOCS group of the company Thales Alenia
Space (TAS). The team works according to the guidelines imposed by the ESA
documentation and follows the mission life cycle (MLC) process. Following the
different phases of a mission from pre-phase A. The problems that are encountered
are therefore varied and in different fields.

And it is precisely the need to study the real problems that has raised the
interest in the design and implementation of an optimization tool. The tool have
to be modular and easy to use. The tool can be useful in different aspects of the
design process and review. Facing a new problem to be optimized, not having an
analytical model that shows the correlation between the DOF, a meta-heuristic
tool could be able to find an optimum solution and possibly show a correlation
between the DOF. This correlation could allows to reduce the DOF necessary for
the study of the problem in successive phases.

The problem addressed in this thesis is the study of an RCS configuration
for the thrusters orientation study. Given 8 angles to define the orientation of
4 thrusters has been the tool itself to find an ideal configuration in which the
thrusters are arranged with symmetrically direction with respect to the center
of gravity. That while not making preliminary assumptions about the type of
function to optimize. This result will be better explained in chapter 5. Other
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examples analyzed with a previous version of the tool are the research of the
worst case for the release of a satellite, or the worst condition for the angular
velocity of the same satellite.

Moreover, as the project progresses, the refinement in the knowledge of the
problem data and the solution model will allow the tool to refine the solution
looking for an optimal one.

Some of the objectives of the tool are then improving knowledge of the prob-
lem, showing a correlation between the DOF, and to refine the solution optimizing
it with increasing knowledge of the problem data. Furthermore a possible devel-
opment of the tool can give to it the possibility to provide a robust solution. It
is important within the project of realization of the tool the possibility that a
model of the problem is created that allows to obtain a robust solution, able to
remain valid even with a small change of the boundary conditions, situation that
usually occurs during the project phases for which the tool will be used. The
achievement of this robustness of the solution is conditioned to the creation of
an approximate function. To realize this approximate function it was decided to
use a neural network model provided by MATLAB. The approximate model will
be obtained using the data resulting from the optimization analyses carried out,
implementing a surrogate model.

In order to avoid having making assumptions about the problem the optimiza-
tion tool will be based on stochastic methods. It consists of a variable number
of algorithms combined with each other. Each algorithm represent an island and
the tool is therefore called ISOLE (the Italian word for islands). Each algorithm
implemented evaluates the target function on a set of attempt solutions, which
will be referred to as individuals, forming together a population and representing
an island. The algorithms/islands can interact with each other in a system that
is called archipelago, a name derived from the analogy between the system of
algorithms and the set of a group of islands. The number and type of algorithms
used by the tool can be chosen by the user, depending on the type of analysis to
be carried out. In order for the tool to be easy to use, the necessary parameters
are inserted through an input spreadsheet, in addition to this it is necessary to
prepare a cost function and an objective function (which may coincide) in a for-
mat that will be described. It is possible to select the output data in addition to
the individual that corresponds to the optimum found.

The chosen programming language to develop the tool is MATLAB. This is not
only a programming language but also a development environment for numerical
calculation and statistical analysis. Within this environment you can manipulate
matrices, view functions and data, implement algorithms, create user interfaces
and interface with other programs. It is used by millions of engineers and scientists
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for modelling, data analysis and algorithm development and is regularly used
within the GNC/AOCS group in Thales Alenia Space where I have conduct my
thesis experience.

3.1 Tool Structure

For ISOLE to be able to work, the user is required to define an input file and a file
that contains the cost function and the objective function. Once run, the program
will give as output the optimized parameter and in addition the data required.
They must be representative of the optimization problem. The objective function
will be the function that the ISOLE tool will optimize. The two functions can
coincide if the cost function is able to give as result a single value, otherwise if
the cost function result consists of more values it will be the task of the objective
function to put together these values to obtain a single parameter to optimize.
This is because the optimization tool uses a single parameter optimization ap-
proach. It is therefore possible to define through the input file all the parameters
involved in the optimization, starting from the number of islands and the type of
algorithms that will work on each island.

The ideal algorithm presents at the same time the characteristics of speed,
convergence and accuracy. Defined input parameters several algorithms will run
in parallel and exchanging information between them with constancy is possible
to create a synergistic union that improves the result. When the end conditions
chosen among those available is reached by the tool it will be provided the results
in output, with the amount of information desired in addition to the optimum
found.

Upon my arrival in Thales Alenia Space the tool consisted of two algorithms,
Differential Evolution and Evolution Strategy, with sub-versions that vary some of
the parameters that define the algorithms. The input was managed by modifying
the parameters directly from the code. The output was fixed. Upon my arrival at
the company I was asked to work initially on the organization of the tool, so as
to make it modular, easy to use and easily modifiable. The work was started in
MATLAB® and I decided to continue on this path with the intention of achieving
another of the company’s objectives, namely to have an open optimization tool
available. I was given the opportunity to choose which additional algorithms
to implement and I was required to implement the mass mutation mechanism
and the possibility to vary cloning topology. So the work that I did during my
thesis was focused on the organization of the work already carried out to date,
the implementation of new algorithms and operators with the aim to improve the
tool.

35



3.1 - Tool Structure

The tool was then evaluated through various benchmark functions found in
the literature. Input has become settable through a spreadsheet file, as well as
tool parameter management. The output has been standardized and it is possible
to select the data of interest to be obtained at the end of the analysis. A version of
the PSO algorithm has been implemented, a global approximation function based
on the neural network tool offered by the MATLAB® software, the possibility
to choose between various cloning mechanisms and an operator of mass mutation
has been added to reduce the stagnation of solutions in local minimums.

At the end of this work the tool is working and have been implemented the
functions required in the development phase. A tuning of the parameters of the
individual algorithms was performed. Anyway the purpose of this work was not to
propose an optimal tuning of the parameters, a more in-depth work can be done
in this regard. The advantage of the hybrid optimization using the island model
is to improve efficiency and effectiveness thanks to the interaction between the
algorithms. The results obtained by the tool through the benchmark functions
are therefore considered acceptable. During the development of the tool many
ideas were born about how to reuse the data that arises from the algorithms
evolution through a surrogate model applied to machine learning. In particular, a
work that will lead to the union of a neural network and an evolutionary algorithm
has been sketched. The candidates are currently Evolution Strategy and Particle
Swarm Optimization. This will allow to exploit the information obtained from
all the islands for the evolution of a single algorithm thanks to the approximate
function created with the neural network.

This chapter describes the architecture of the tool, the available settings, and
the parameters governing the optimization.

3.1.1 Input

The input requires the user to specify, in a defined script format, the variables of
the problem and to define a cost function and an objective function, which may
coincide, depending on the case, to allow the single parameter optimization. In
figure 3.1 are shown the blocks of which it is composed the input and the parame-
ters that it is possible to set in phase of setting of the program. The yellow colored
blocks represent the areas where the work carried out has led to an improvement
of the initial project, while the green blocks represent the contribution given to
the tool in these months of work.
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Figure 3.1: Input

3.1.1.1 Problem

The problem considered is in the form:

find lb ≤ x ≤ ub

to minimize f(x) ∈ Rn

(3.1)

where x belonging to Rn is the vector of unknowns that will also be referred to as
individual. It’s composed of n real elements that represent the degrees of freedom
of the problem and then define the size of the problem that will be analyzed. lb
and ub belong to Rn and define lower and upper boundaries of the domain. For
example for the search of the thrusters best orientation in an RCS system they
represent the physical limits due to the mounting of the thrusters and the cone of
thrust direction. f(x) represents the function that represents the problem object
of the optimization.

To clarify which data should be defined, the mock-up of a test function is
presented (3.1.1.1), in which the parameters that need to be defined are shown.

1 case PS.OPT FUN1
2 % Dimension of the problem
3 D=30;
4

5 % Define Lower Boundaries
6 lb = -5.12*ones(D,1);
7 % Define Upper Boundaries
8 ub = 5.12*ones(D,1);
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9 % Define Weight used for managing boundaries (if any)
10 Weight=ones(D,2);
11 % Define Weight = 0 for debug purpose
12 Weight pure=zeros(D,2);
13 % Define anonymous function
14 Cost function=@(x) (f1 opt(x,lb,ub,Weight));
15 Cost function pure=@(x) (f1 opt(x,lb,ub,Weight pure));

While the cost function and objective function must present the form reported
in the example of the same problem of mock-up (3.1.1.1). In this case the two
functions coincide and the value resulting from the evaluation is modified by
an augmented cost that aims to keep the exploration of the domain within the
constraints imposed. The user can choose to run the program with the evaluation
of the test functions, which are defined and integrated within it. Each will be
identified by a number and can be selected during the launch of the analysis. Or
can define a new function.

1 function J=f1 opt(x,lb,ub,Weight)
2

3 J pure=sum(x.ˆ2);
4

5 lb cons=lb-x;
6 ub cons=x-ub;
7 Augmented cost = sum(sum(Weight.*[lb cons.*(lb cons>0), ...

ub cons.*(ub cons>0)]));
8

9 J=J pure + Augmented cost;

3.1.1.2 End conditions

The meta-heuristic optimization is conditioned to the satisfaction of an end con-
dition that stops the search. Different criteria are used in the literature, the most
used being the number of generations and the number of evaluations of the target
function. When I started working on the tool it was possible to set a maximum
number of generations for the evolution of the populations analyzed. During the
reorganization of the tool other methods have been implemented and therefore
those currently available are:

• Maximum number of generations. It is a classic condition that foresees the
evolution of algorithms for each island for a fixed number of generations.
Upon reaching the limit, the program asks if the user wants the analysis to
continue and for how many generations, or if the user wants the analysis to
stop.
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• Maximum number of objective function evaluations. This is a very useful
method when the tool is evaluated. Whenever new individuals are produced
and these evolve, their evaluation through the objective function is required.
In this way they can be classified according to the score obtained and they
will continue the evolution. A counter is updated every time the evaluation
function is called, in this way it is possible to compare the runs of algo-
rithms with different parameters with a fixed number of objective function
evaluations.

• Time of execution of the program. Other possibilities to terminate program
executions can be determined by a tolerance between one generation and the
next or by a maximum execution time. Given the large number of executions
that required the tool to be tested and developed, a limit for the execution
time was implemented.

3.1.1.3 Global Net

The tool aims to provide a function approximating the problem analyzed, using the
results of the evaluation of the objective function carried out for each generation
by the algorithms. This is the idea behind a surrogate model. For this reason,
the libraries for the realization of neural networks made available by MATLAB
are used. The FeedForwardNet mechanism has been used. During the parameter
definition it will be possible to decide the following parameters:

• Whether or not to activate the use of neural networks within the tool. If
they are activated, two neural networks will be produced. The first network
that will receive the input of the problem data and will output the value
sought by the optimization (then from Rn to R1). The second one that will
receive in input the expected value and will give in output the values of the
variables that allow to obtain that value (the working from R1 to Rn).

• The number and type of hidden layers that define the neural network from
Rn to R1.

• The number and type of hidden layers that define the neural network from
R1 to Rn.

3.1.1.4 Archipelago

A fundamental part for the execution of the tool is the definition of what are
called archipelago variables. It is left to the user the choice of how many and
which algorithms to use and the number of islands whose populations will evolve
with the generations. The parameters to choose are then:
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• The number of islands and therefore of populations used by the tool. For
the analyses carried out within this thesis the number of islands has been
made to vary from 1, for the evaluation of the single algorithm, to even more
than 10, for the evaluation of the clonation topologies.

• The type of algorithm used for each island. The following describes the
types of algorithms among which it is possible to decide and which are the
characteristics that distinguish them. The choice will be between:

– Differential Evolution: DE1, DE2, DE3, DE4

– Evolution Strategy: ES, ES2

– Particle Swarm Optimization: PSO

– Particle Swarm Optimization + Artificial Neural Newtwork: PSO ANN.
This algorithm was a surrogate model trial. The results at the moment
are not encouraging and will not be discussed further during the thesis.

The characteristics of the implemented algorithms were discussed in Chapter
2.

3.1.1.5 Clonation

Regarding the clonation, the user can choose whether or not to apply it during
the analysis. If is chosen to disable it the algorithms will run in parallel without
actually exploiting the island model possibilities. As for the parameters that are
changeable, these are:

• The clonation rate;

• The clonotation topology;

• The clonation selection mechanism;

• How many individuals clone at every clonation.

The cloning mechanism and the tests carried out are treated in the paragraph 3.3.

3.1.1.6 Mass Mutation

The Mass Mutation operator is an implementation resulting from the work of
Sentinella[4]. Its purpose is to limit the possibilities that algorithms may stuck in
a local minimum during analysis. In case this happens, if the analysis is not able
to improve after a certain number of iterations then the operator proceed to the
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re-initialization of part of the population. This mechanism favors the exploration
of the domain.

The Mass Mutation is explained in more depth, defining the parameters and
showing the tests carried out, in the paragraph 3.2.

3.1.1.7 Resume – Plots

To the user is given the choice of whether or not to enable the presentation of
a resume and some plots at the end of the analysis. The resume describes the
selected problem, the settings of the analysis and the characteristics of each island.
The evolution of the feval with the increase of generations. At the end of the run it
also deals with saving information about the best individual for each island and its
corresponding feval. It also indicates how many times has been activated the mass
mutation mechanism and the duration of the analysis. The plots that present the
tool at the end of the analysis are the average function value depending on the
number of function evaluations for each island of the archipelago.

3.1.2 Initialization and Run

After obtaining the data necessary to set the parameters, the tool can perform
the phase of initialization of the populations. Then they will evolve following the
steps indicated by the algorithm 5.

3.1.3 Output

The tool performs a single-parameter optimization. The expected output is there-
fore the lowest value of the objective function found during the analysis. This value
corresponds to an individual, who will have dimension D of the problem and rep-
resents the best solution found to the implemented problem. The tool is able to
show the optimum achieved for each island and the optimum of the archipelago.
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Algorithm 5 ISOLE Optimization Tool

input Read input parameters
Configuration of plots and resume
Problem data definition: D, lb, ub, weight and cost function
Set End Conditions
Global Neural Net parameters configuration
Define island number
for each island do
–Archipelago settings definition–
Define island population
Define island algorithm

end for
Clonation configuration
Mass Mutation configuration
–Initialization–
for each island do
Initialization of random individuals
Evaluation of the populations

end for
Global neural net initialization
–Run–
while End condition not satisfied do
for each island do
if ES Algorithm then
–Mutation–

end if
–Evolution–
New generation
Domain boundary check
Function evaluation
Save generation and best island individual
–Selection–
Snapshot
if Aggregation Degree exceeds set value then
–Mass Mutation–

end if
end for
Save best archipelago individual
Train global neural net
–Clonation–

end while
Plot and resume
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3.2 Mass Mutation

For evolutionary algorithms it can be difficult to exit a local minimum when
searching on the domain. If an algorithm were to settle in a local minimum,
it would lead to the advance of the number of generations a concentration of
individuals in the minimum zone. This does not help the exploration of the
domain and in general, not being guaranteed that the minimum found is absolute,
could prevent the tool to find a better solution. This condition, in which all the
individuals approach the same point, can be translated from the mathematical
point of view by analyzing the average value of the objective function of individuals
with respect to the value of the best individual. Having indicated the value of the
objective function with f i, for each of the individuals then it is possible to define
the Aggregation Degree R:

R =
fbest∑
fi

(3.2)

When R exceeds a set value called RMAXDEG and the minimum value is
stuck by more than IMAXSTUCK number of iterations then the Mass Mutation
is activated. Only a couple of individuals are saved for the next generation, all
others are deleted and replaced with new, randomly chosen over the entire domain.
It is also possible to choose when R exceeds the set value within an island whether
to reset the island or the whole archipelago. The idea that has given rise to the
inclusion of this parameter is to re-initialize a large part of the population, so as to
introduce new individuals who can continue the research and possibly escape the
local minimum. One effect is the possibility of working with a smaller population,
decreasing the computational cost[4].

To evaluate the utility of mass mutation, a particularly complex 2D function is
used, defined for the occasion with 16 sub-domains function. It appears as shown
in figure 3.2 and 3.3.

The analyzed 2D problem has an absolute minimum at [0, -5.26, -81,87], but
there is also an annoying local minimum at [-5.14, 18.82, -74,91]. To test the
effectiveness of mass mutation, several runs of the tool were performed using the
DE1, ES and PSO algorithms with 30 individuals. The general settings are the
same defined for the statistics analysis presented in Chapter 4. The analysis end
condition is a fixed number of generations.

The table 3.4 and 3.5 show the results obtained with the statistical analysis
for the simple algorithms. The activation of the Mass Mutation (MM) operator
drastically increase the efficiency for the DE1 and PSO. It also increases efficiency
for the ES, but less so than for the other two algorithms. In addition, convergence
towards the global optimum is faster. With active MM the algorithms will have
a greater chance of not getting stuck in a local minimum. While without the
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Figure 3.2: 2D Function

Figure 3.3: 2D Function xy plane
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Table 3.1: Results for F2D without MM

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N
DE1 -8.187854e+01 -7.583791e+01 2.409835e+00 13.33 5070 2907 1037
PSO -8.187854e+01 -6.161204e+01 1.842935e+01 26.67 21750 10808 4472
ES -8.187854e+01 -7.825100e+01 3.452057e+00 43.33 25950 44303 25875

Table 3.2: Results for F2D with MM

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N
DE1 -8.187854e+01 -8.187724e+01 1.308262e-03 100 3450 51918 31920
PSO -8.187854e+01 -7.978754e+01 3.248628e+00 70 11460 44056 31243
ES -8.187854e+01 -7.860851e+01 3.420470e+00 50 30240 33557 25507

Figure 3.4: Function F2D - Average function values, Mass Mutation Disabled

0 1 2 3 4 5 6 7 8 9 10

Number of function evaluations 10
4

-80

-70

-60

-50

-40

-30

-20

-10

F
it
n
e
s
s
 (

A
v
e
ra

g
e
 B

e
s
t)

Function 2D - Mass Mutation Disabled

DE1

PSO

ES

MM once stranded in a relative minimum it will be difficult to get out of it, with
the risk that once the individuals are all concentrated in that point it becomes
impossible to get out.

It is important to consider that the analyses were conducted with a maximum
number of generations of 104 and not with a maximum number of evaluations of
105 as in the Chapter 4. This in order to demonstrate the increased efficiency and
speed of convergence thanks to this introduced mechanism.

It is also interesting to look at the exploration of the domain. The use of the
mechanism of Mass Mutation allows a greater exploration of the domain, as the
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Figure 3.5: Function F2D - Average function values, Mass Mutation Active
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two figures 3.6 and 3.7 visually demonstrate.

Figure 3.6: Function F2D - Domain Exploration, Mass Mutation Disabled
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Figure 3.7: Function F2D - Domain Exploration, Mass Mutation Active
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3.3 Clonation Topology

The information exchange process is done with an operator called Clonation,
that is something similar to a migration operator for the basic multi-population
algorithm. This thesis work will refer to this operation as migration or clonation
considering them synonymous.

To test some of the different topologies studied have been implemented within
the tool 3 cloning topologies with two selection mechanisms. The topologies are:

• Chain, where islands are organized in a sequence and the communication is
allowed only between neighbor islands, figure 3.8(a);

• One-way Ring, where islands are organized in a ring, figure 3.8(b);

• Fully connected, where every island is connected to the others, figure 3.8(c).

Figure 3.8: Clonation Topologies

The selection and insertion mechanisms are:

• Random: the selected individual and the replaced one are selected randomly;

• Elite: in the selection phase you choose the individual with the best feval.
In the insertion phase you go to replace the individual with the worst feval.

To evaluate the potential offered by the selected cloning system, a statistical
analysis was carried out on the f3 function of the 4.1 table. With the general
parameters presented in the paragraph 4.1. The test functions and the settings
are better explained in the next chapter 4.

f2(x⃗) =
n−1∑
i=0

(
i∑

j=0

xi

)2

Global minimum: 0

(3.3)
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The analyses were carried out with 10 islands of 20 individuals for each one
using the Differential Evolution DE1 algorithm. The cloning mechanism imple-
mented is synchronous and the cloning frequency has been set to 20 generations.

The results obtained are shown in figure 3.9 and 3.10. The mechanism that
proves to be better is the ring mechanism. While as expected ([7]) the fully con-
nected performs less well than the other two solutions. The result is influenced
by the characteristics of the algorithms and the frequency of cloning and it is not
has and it’s not a complete study like the one conducted by Rucinski, Izzo and
Biscani. Probably 20 individuals represent a population too small to use a fully
connected cloning type, the turnover of individuals is excessive and does not allow
the algorithm to evolve as expected. The DE1 algorithm is the most exploratory
among the algorithms analyzed, using only islands that implement exploratory
algorithms is not the optimal method. Better results are expected by also mod-
ifying the topology of algorithms, going to analyze an archipelago composed of
islands more dedicated to exploration and islands more dedicated to exploitation.
The passage of the best individuals from the first islands to the second allows the
former to continue exploring the domain and the latter to go deeper into the so-
lutions found. The results obtained by the random selection mechanism were, as
expected, worse than the results obtained by an elitist selection and substitution
of individuals.
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Figure 3.9: Function F3 - Average function values - Random Selection
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Chapter 4

Results on Numerical Benchmark
Problems

By working with various optimization algorithms it is necessary to be able to
evaluate their operation and their effectiveness. This is possible by comparing
the results obtained on known problems treated in literature, in order to verify
their performance. The inspiration for this work comes from two main sources:
the work of J. Vesterstrom and R. Thomsen [30] and the doctoral work of Matteo
Rosa Sentinella [4]. In Vesterstrom work the comparison was performed on a
suite of 34 widely used benchmark problems. For this thesis work I chose 11 of
these problems to perform the tests on the ISOLE tool. The objectives are to
verify the performances of the algorithms with different types of functions, check
performances and if the use of hybrid algorithms improves the effectiveness of the
tool.

4.1 Functions and Experimental Settings

The comparison took place between the various algorithms implemented within
the tool. The algorithms are DE, ES, PSO and their comnbinations: Hybrid
DE-PSO, Hybrid DE-ES, Hybrid ES-PSO, Hybrid DE-ES-PSO. DE algorithm
is implemented in four distinct versions: DE1, DE2, DE3, DE4. The versions
differ for exploration and exploitation characteristics: DE1 is the more exploratory
algorithm, DE4 the less exploratory one. They were initially designed for a hybrid
mechanism in which the first islands face better the exploration, while the latter
are designed to take advantage of the minimums encountered during research. The
DE algorithms were already present in the ISOLE tool, so they are not extensive
tested in the frame of this thesis. For the hybrid versions, algorithm DE1 is used.
The settings used for the various algorithms are, depending on the case, those
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obtained from previous development phases, those recommended in the literature
or manually tuned parameters based on a few experiments.

Each algorithm has been tested on the functions presented in Table 4.1. An
objective function evaluation limit of 500000 has been imposed for each test. Each
experiment has been repeated for 40 times. The results presents the average suit-
ability of the best solutions through optimization, the average number of function
evaluations, their standard deviations and the efficiency of the optimizer quan-
tified in the number of times the global minimum is reached in percentage. A
solution with an absolute lower deviation than 10−6 with respect to the exact
solution has been considered as exact.

Table 4.1: Numerical benchmark functions

Function Dim Domain Minimum Value

f1(x⃗) =
∑n−1

i=0 x
2
i 30 −5.12 ≤ xi ≤ 5.12 f1(

−→
0 ) = 0

f2(x⃗) =
∑n−1

i=0

(∑i
j=0 xi

)2
30 −100 ≤ xi ≤ 100 f2(

−→
0 ) = 0

f3(x⃗) = max |xi| , 0 ≤ i ≤ n 30 −100 ≤ xi ≤ 100 f3(
−→
0 ) = 0

f4(x⃗) =
∑n−1

i=0

(
100 ·

(
xi+1 − (xi)

2)2+ +(xi − 1)2
)

30 −30 ≤ xi ≤ 30 f4(
−→
1 ) = 0

f5(x⃗) =
∑n−1

i=0

(∣∣xi + 1
2

∣∣)2 30 −100 ≤ xi ≤ 100
f5(p⃗) = 0,
−1

2
≤ p < 1

2

f6(x⃗) =
∑n−1

i=0 −xi · sin
(√
|xi| 30 −500 ≤ xi ≤ 500

f6(
−−−−→
420.97)

= −12569.5
f7(x⃗) =

∑n−1
i=0 (x2i − 10 cos (2πxi) + 10) 30 −5.12 ≤ xi ≤ 5.12 f7(

−→
0 ) = 0

f8(x⃗) =
(
x2 − 5.1

4π2x
2
1 +

5
π
x1 − 6

)2
+

+10
(
1− 1

8π

)
cos (x1) + 10

2 −5 ≤ xi ≤ 15
f8(9.42, 2.47)

= 0.398

f9(x⃗) = (1− x1)2 + 100 (x2 − x21)
2

2 −2 ≤ xi ≤ 2 f9(
−→
1 ) = 0

f10(x⃗) =
1

4000

∑n−1
i=0 x

2
i +

(∏n−1
i=0 cos

(
xi√
i+1

))
+ 1 30 −600 ≤ xi ≤ 600 f10(

−→
0 ) = 0

f11(x⃗) = 4x21 − 2.1x41 +
1
3
x61 + x1x2 − 4x22 + 4x42 2 −5 ≤ xi ≤ 5

f11(−0.09, 0.71)
= −1.0316

4.1.1 DE Settings

DE has three parameters: the crossover constant CR, the scaling factor F, and
the size of the population NI. The values was set to: NI = 30, CR = 0.5:1, F =
0.1:1. CR and F were selected randomly within the interval for each individual.
The generation of the individuals is random.
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4.1.2 ES Settings

The ES parameters define the population size NI, the λ factor, the λ
µ
ratio, σ and

τ . The choosen values are: NI = 30, λ
µ
= 10; σinit one-sixth of the interval in the

search space, τpi =
1

(2∗D)0.5
and τinit =

1
(2∗(D0.5))0.5

using the problem dimension as
D.

4.1.3 PSO Settings

PSO has different parameters: the maximum velocity Vmax, the number of parti-
cles in the swarm NI and the parameters for attraction towards personal best C1
and the neighborhoods best solutions C2. The settings used are: Vmax = 10%
of the longest axis-parallel interval in the search space, NI = 30, C1 = 1.8, C2 =
1.8. The generation of the individuals is random.

4.1.4 Generic Settings

All individuals of the populations representing each island are generated by ran-
dom generation. The cloning mechanism used is the fully connected mechanism
with the exchange of a randomly selected individual every 10 iterations. For the
mass-mutation operator, the 99% of the individuals are re-initialised when the
aggregation degree R = 0.98 and the minimum value is stuck for more than 10
iterations.
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4.2 Results

Function F1

f1(x⃗) =
n−1∑
i=0

x2i

Global minimum: 0

(4.1)

Table 4.2: Results for f1

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 0.000000e+00 0.000000e+00 0.000000e+00 100 28340 42703 9867

PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 72060 82745 7565

ES 0.000000e+00 4.2695916e-05 1.1955398e-04 37.5 144030 290048 120124

DE1 + PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 16520 22011 3163

DE1 + ES 0.000000e+00 0.000000e+00 0.000000e+00 100 35420 52397 10925

PSO + ES 0.000000e+00 0.000000e+00 0.000000e+00 100 132370 163446 20082

DE1 + PSO + ES 0.000000e+00 0.000000e+00 0.000000e+00 100 30910 40206 4956
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Figure 4.1: Function F1 - Average function values, simple algorithms
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Figure 4.2: Function F1 - Average function values, hybrid algorithms
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Function F2

f2(x⃗) =
n−1∑
i=0

(
i∑

j=0

xi

)2

Global minimum: 0

(4.2)

Table 4.3: Results for f2

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 2.561405e-02 2.956646e-01 1.950524e-01 0 499020 494034 16866

PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 361460 433411 27264

ES 4.268087e+02 2.028881e+03 1.487244e+03 0 411750 406929 111286

DE1 + PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 152340 172553 13711

DE1 + ES 1.303379e-06 9.518382e-03 3.104854e-02 0 499850 498898 4273

ES + PSO 4.292850e-06 1.488188e-04 2.073223e-04 0 499930 499979 50

DE1 + PSO + ES 0.000000e+00 0.000000e+00 0.000000e+00 100 250280 308014 26220
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Figure 4.3: Function F2 - Average function values, simple algorithms

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
F

it
n
e
s
s
 (

A
v
e
ra

g
e
 B

e
s
t)

10
5 Function 2 - Simple Algorithms

DE1

PSO

ES

Figure 4.4: Function F2 - Average function values, hybrid algorithms
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4.2 - Results

Function F3

f3(x⃗) = max |xi| , 0 ≤ i ≤ n

Global minimum: 0
(4.3)

Table 4.4: Results for f3

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 3.087193e-02 6.820819e-02 2.019127e-02 0 497580 495283 4499

PSO 2.538844e-01 2.525510e+00 1.673269e+00 0 500000 499743 444

ES 1.500666e+01 2.631721e+01 7.545006e+00 0 468360 270474 145228

DE1 + PSO 2.597852e-03 1.160091e-02 7.067836e-03 0 499720 499827 302

DE1 + ES 1.106747e-02 7.144101e-02 6.267689e-02 0 499940 482638 55534

ES + PSO 1.067849e+00 2.441955e+00 5.648996e-01 0 500020 499946 107

DE1 + PSO + ES 1.705502e-02 7.945830e-02 2.920703e-02 0 499650 499971 102
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4 - Results on Numerical Benchmark Problems

Figure 4.5: Function F3 - Average function values, simple algorithms
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Figure 4.6: Function F3 - Average function values, hybrid algorithms
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4.2 - Results

Function F4

f4(x⃗) =
n−1∑
i=0

(
100 ·

(
xi+1 − (xi)

2)2 + (xi − 1)2
)

Global minimum: 0

(4.4)

Table 4.5: Results for f4

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 2.021420e-03 4.422962e+01 3.464887e+01 0 499050 498814 1546

PSO 1.459481e+01 3.821823e+01 3.256155e+01 0 500010 499944 117

ES 1.447965e+01 2.128592e+02 1.886267e+02 0 404490 347887 116220

DE1 + PSO 7.310455e-03 3.448402e+01 2.736140e+01 0 500040 499932 131

DE1 + ES 1.487188e-01 5.663732e+01 5.622800e+01 0 500010 499417 2077

ES + PSO 1.089583e+01 3.847982e+01 2.586338e+01 0 500040 499933 179

DE1 + PSO + ES 1.005843e+01 4.046677e+01 2.745558e+01 0 500040 499879 206

60



4 - Results on Numerical Benchmark Problems

Figure 4.7: Function F4 - Average function values, simple algorithms
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Figure 4.8: Function F4 - Average function values, hybrid algorithms
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4.2 - Results

Function F5

f5(x⃗) =
n−1∑
i=0

(∣∣∣∣xi + 1

2

∣∣∣∣)2

Global minimum: 0

(4.5)

Table 4.6: Results for f5

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 0.000000e+00 0.000000e+00 0.000000e+00 100 56880 119392 40297

PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 109960 124171 7629

ES 6.269644e-06 6.109726e-02 1.998486e-01 0 336180 343124 112708

DE1 + PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 27240 31490 2482

DE1 + ES 0.000000e+00 0.000000e+00 0.000000e+00 100 32490 51966 17593

ES + PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 202260 255462 24775

DE1 + PSO + ES 0.000000e+00 0.000000e+00 0.000000e+00 100 41730 50494 5837
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4 - Results on Numerical Benchmark Problems

Figure 4.9: Function F5 - Average function values, simple algorithms
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Figure 4.10: Function F5 - Average function values, hybrid algorithms
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4.2 - Results

Function F6

f6(x⃗)
n−1∑
i=0

−xi · sin
(√
|xi|
)

Global minimum: − 1.25695e+ 04

(4.6)

Table 4.7: Results for f6

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 -1.256945e+04 -1.256929e+04 1.144972e-01 0 499360 490490 9423

PSO -7.317997e+03 -5.212119e+03 9.298708e+02 0 498160 495151 6487

ES -1.030867e+04 -9.632713e+03 4.237569e+02 0 316650 382224 129989

DE1 + PSO -1.256841e+04 -1.218623e+04 2.077064e+02 0 499470 499690 541

DE1 + ES -1.256113e+04 -1.235832e+04 1.382769e+02 0 449400 496966 9816

ES + PSO -1.104923e+04 -1.025051e+04 4.509264e+02 0 500010 499818 377

DE1 + PSO + ES -1.245105e+04 -1.199686e+04 2.548768e+02 0 499640 499699 656
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4 - Results on Numerical Benchmark Problems

Figure 4.11: Function F6 - Average function values, simple algorithms
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Figure 4.12: Function F6 - Average function values, hybrid algorithms
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4.2 - Results

Function F7

f7(x⃗) =
n−1∑
i=0

(
x2i − 10 cos (2πxi) + 10

)
Global minimum: 0

(4.7)

Table 4.8: Results for f7

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 0.000000e+00 3.316621e-02 1.816577e-01 83.3 233320 371467 79988

PSO 2.487397e+01 3.946666e+01 1.236733e+01 0 499000 497732 2644

ES 1.990009e+00 7.851659e+00 2.122590e+00 0 425220 357416 103965

DE1 + PSO 5.430263e-04 2.677581e+00 1.502977e+00 0 500000 499777 365

DE1 + ES 0.000000e+00 1.107802e+00 1.016416e+00 23.3 362090 457330 51410

ES + PSO 9.953409e-01 4.941792e+00 1.837903e+00 0 499920 498955 3077

DE1 + PSO + ES 0.000000e+00 2.355046e+00 1.466199e+00 33.3 398750 495936 18378
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4 - Results on Numerical Benchmark Problems

Figure 4.13: Function F7 - Average function values, simple algorithms
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Figure 4.14: Function F7 - Average function values, hybrid algorithms
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4.2 - Results

Function F8

f8(x⃗) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos (x1) + 10

Global minimum: 0.3978

(4.8)

Table 4.9: Results for f8

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 3.978874e-01 3.978874e-01 3.295327e-10 100 174330 314092 114354

PSO 3.978874e-01 3.978874e-01 0 100 5580 24054 27861

ES 3.978874e-01 3.978874e-01 0 100 2640 38335 32938

DE + PSO 3.978874e-01 3.978874e-01 1.201596e-09 100 10920 42761 55129

DE + ES 3.978874e-01 3.978874e-01 0 100 5310 30320 34515

ES + PSO 3.978874e-01 3.978874e-01 0 100 7380 14435 3713

DE + PSO + ES 3.978874e-01 3.978874e-01 0 100 12330 23505 9490
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4 - Results on Numerical Benchmark Problems

Figure 4.15: Function F8 - Average function values, simple algorithms
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Figure 4.16: Function F8 - Average function values, hybrid algorithms
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4.2 - Results

Function F9

f9(x⃗) = (1− x1)2 + 100
(
x2 − x21

)2
Global minimum: 0

(4.9)

Table 4.10: Results for f9

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 0.000000e+00 0.000000e+00 0.000000e+00 100 930 1315 255

PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 990 1788 808

ES 0.000000e+00 0.000000e+00 0.000000e+00 100 8670 109341 69188

DE + PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 1740 2524 386

DE + ES 0.000000e+00 0.000000e+00 0.000000e+00 100 2010 2582 547

ES + PSO 0.000000e+00 0.000000e+00 0.000000e+00 100 1830 2916 571

DE + PSO + ES 0.000000e+00 0.000000e+00 0.000000e+00 100 2400 3405 434
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4 - Results on Numerical Benchmark Problems

Figure 4.17: Function F9 - Average function values, simple algorithms
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Figure 4.18: Function F9 - Average function values, hybrid algorithms
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4.2 - Results

Function F10

f10(x⃗) =
1

4000

n−1∑
i=0

x2i +

(
n−1∏
i=0

cos

(
xi√
i+ 1

))
+ 1

Global minimum: 0

(4.10)

Table 4.11: Results for f10

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 2.466174e-03 3.552292e-02 3.274118e-02 0 489270 481826 19274

PSO 2.466168e-03 2.058058e-02 1.802784e-02 0 499440 498906 1376

ES 2.336941e-01 7.167426e-01 3.535200e-01 0 192570 281547 121662

DE + PSO 2.466168e-03 8.523999e-03 1.020188e-02 0 406650 461953 35864

DE + ES 2.466168e-03 1.944423e-02 2.582350e-02 0 488490 382009 80019

ES + PSO 2.466168e-03 1.564104e-02 1.455466e-02 0 495390 498609 1625

DE + PSO + ES 2.466168e-03 1.253275e-02 1.510965e-02 0 494880 498661 1679
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4 - Results on Numerical Benchmark Problems

Figure 4.19: Function F10 - Average function values, simple algorithms
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Figure 4.20: Function F10 - Average function values, hybrid algorithms
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4.2 - Results

Function F11

f11(x⃗) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + 4x42

Global minimum: − 1, 03163
(4.11)

Table 4.12: Results for f11

Method Min value Mean value Std Dev V Efficiency NFEmin NFE mean STD Dev N

DE1 -1.031628e+00 -1.031605e+00 2.668678e-05 67 337920 296486 154300

PSO -1.031628e+00 -1.031628e+00 3.232900e-08 100 13380 110215 150003

ES -1.031628e+00 -1.031628e+00 3.933344e-16 100 131850 203205 116062

DE + PSO -1.031628e+00 -1.031628e+00 1.716618e-07 100 38880 99038 131187

DE + ES -1.031628e+00 -1.031628e+00 4.896106e-16 100 21480 194260 145640

ES + PSO -1.031628e+00 -1.031628e+00 5.531940e-16 100 60060 122468 152443

DE + PSO + ES -1.031628e+00 -1.031628e+00 5.376080e-16 100 57630 132154 115696
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4 - Results on Numerical Benchmark Problems

Figure 4.21: Function F11 - Average function values, simple algorithms
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Figure 4.22: Function F11 - Average function values, hybrid algorithms
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4.2 - Results

The results of the analysis performed on the F1-F11 benchmark problems are
presented in the previous pages. For each function is shown the average function
values for simple algorithms (DE,ES,PSO) and hybrid algorithms. For the first
problem there is also a graph that illustrates the behavior of the different DE
algorithms, as can be deduced the only effective DE for this type of analysis
is the DE1, referred to below by the abbreviation DE. For function F1 the ES
algorithm behaves worse than the others and DE is faster than PSO. While all
the hybrids converge faster than the single algorithms. For function F2 instead
the PSO is the only one that always finds the best solution, the DE get closer
than the ES. The bad behavior of the ES affects the convergence of the hybrids,
while where all 3 algorithms are present the help of DE and PSO allows the
convergence. In functions F3 and F4 the best results are obtained from DE and
PSO, their combination gives the best result, while the ES is the worst and slows
convergence in hybrids. In function F5 the ES behaves worse than the others, DE
is faster than PSO. All the hybrids converge to global optimum and with fewer
iterations. Also in function F6, the ES slows down the convergence of hybrids and
is the one that arrives farthest from the global optimal. DE finds better solutions
than PSO on average. For function F7 the worst is PSO. The best is DE, and in
hybrids the PSO slows the convergence towards the global optimum more than
the ES. In function F8 the best are ES and PSO, the ES is the fastest and hybrids
also converge to the global optimum. The function F9 is the Rosenbrock’s function
and all algorithms have excellent convergence, but the simple ones are faster than
the hybrids, except for the ES. In function F10 DE and PSO are the best but no
single algorithm or combination is able to find the optimum. In function F11 the
ES is the best, while DE the worst. DE does not always converge individually,
while with hybrids the efficiency is increased and make it faster requiring less
iterations. Functions F6, F7 and F10 are highly multimodal functions.

The purpose of this work was not to propose an optimal tuning of the param-
eters, a more in-depth work can be done in this regard. Overall, the experimental
results show that DE was far more efficient and robust compared to PSO and the
ES that appears to be the worst tuned algorithm. However in some cases PSO
and even ES perform better than DE. While in almost every cases the hybrid
algorithms obtain better results than the simple ones. This results show that on
average with hybrid algorithms is possible to obtain a better efficiency without
knowing which is the best optimiser for the problem. Eventually the optimum
will be achieved more slowly, with a small increase in computational cost.
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Chapter 5

European Space Agency EL3
Application Problem

The primary purpose of this thesis is to further advance the development of a
modular hybrid meta-heuristic optimization tool and then apply it for the ESA
European Large Logistic Lander (EL3) RCS thrusters’ orientation optimization
problem. This study was conducted in Thales Alenia Space (TAS).

The tool has been tested on a series of benchmark functions and it will be
applied on the EL3 thrusters’ orientation to show if it suitable for these types
of applications. The study conducted on the orientation of EL3 RCS thrusters
required the development of an approximate solution method. It was then possible
to apply the developed tool into the studying of 2 configurations, 4 and 8 thrusters,
and different combinations of degrees of freedom for the orientation, with the aim
of obtaining an acceptable torque margin in the lander control.

The project is passing through a study phase, to conduct the analysis necessary
for this thesis were used the data available in October 2021. The work done is
part of the EL3 descent and landing GNC study and is organized as follows:

• Section 5.1 presents the mission and the geometry of the problem;

• Section 5.2 describes the associated algorithm and the results.

5.1 EL3 Mission

The purpose of the European Large Logistic Lander (EL3) mission is to support
human and robotic exploration by providing a multipurpose lander, the Lunar
Descent Element, capable of carrying different types of cargo through the use of
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5.1 - EL3 Mission

specific interfaces for the mission, nominally the Cargo Platform Element. The
mission will be launched from the Kourou site in French Guiana with an Ari-
ane 64. With different types of missions available including cargo, science rover,
sample return stage, technology demonstration packages, in-situ resources, power
generation equipment and more [31].

The EL3 Space System consists of the following elements:

• Lunar Descent Element (LDE):

– It is recurring lander, common to all EL3 missions;

– It is designed to be compatible with different delivery missions without
undergoing modifications;

– The LDE provides the functions of Payload transport to the Moon’s
surface as well as the main mission functions common to all the different
missions.

• Cargo Platform Element (CPE):

– The mission-specific element that provides a standard interface between
the modular LDE and different Payloads;

– This element is intended to accomplish the functions proper to specific
missions allowing for a better design of both the LDE and CPE.

• Payload:

– It is intended to be either a Lunar Rover for south pole exploration or
a Cargo Delivery mission.

The three elements are the constituents of the Robotic Landing Stack (RLS),
which is the generic name for an EL3 composite, a render is shown if figure 5.1.

In this stage of development of the project the physical architecture is pre-
sented in figure 5.2 that let identify the elements that make up the LDE layout.
The propulsion system is analyzed with characteristics that can be summarized
in this way:

• A cluster of three 7 kN Main Engines, to meet thrust level requested for
EL3 lunar descent maneuver and to guarantee a 1FT (failure tolerance)
configuration;

• In an independent propulsion system, 4 (main) + 4 (redundant) RCS (Re-
action Control System) bipropellant thrusters (400N thrust level) and 8
(main) + 8 (redundant) FCS bipropellant thrusters (10N thrust level for
fine maneuvers and rolling control) shall be implemented;
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5 - European Space Agency EL3 Application Problem

Figure 5.1: Robotic Landing Stack overview

• RCS and GNC thrusters shall operate in pressure regulated mode;

• Propulsion system shall be 1 Failure Tolerance (1FT), including Main Engine
cluster.

Figure 5.2: EL3 LDE bottom view

The Lunar Descent Element reference frame is described in figure 5.3.

5.1.1 Reaction Control System

The Reaction Control System (RCS), is able to provide small amounts of thrust
in any direction or combination of directions desired, to allow control of rotation
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5.1 - EL3 Mission

Figure 5.3: LDE S/C reference frame

(rolling, pitch and yaw). The Reaction Control System is first intended to com-
pensate the disturbances and control the S/C attitude during the maneuvers with
the Main Engines (ME). These disturbances are mostly associated with the ME,
the S/C CoG dispersions and the sloshing.

At this early phase of the project, the control torque available should exceed
the worst case disturbances by a margin of 40%. Following the adoption of a
simplified solution method, this requirement will subsequently be expressed as a
torque margin for the system. The sections below present the ME subsystem,
the RCS thrusters data, the FCS data and the data used for the Monte Carlo
campaigns all based on pre-phase A data.

5.1.1.1 Main Engines Disturbance Torques

The Main propulsion system is composed of three 7 kN engines with position and
orientation as defined in table 5.1.

The disturbance torque resulting from the activation of the engines is anal-
ysed with a Monte Carlo campaign of 5000 runs by considering the uncertainties
reported in talbe 5.2. The data concerning the centre of gravity consider the con-
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5 - European Space Agency EL3 Application Problem

Table 5.1: Main Engines Position and Orientation

Main Engine Position [mm] Orientation

XSC YSC ZSC XSC YSC ZSC

1 -1250 0 830 0 0 -1

2 0 0 830 0 0 -1

3 1250 0 830 0 0 -1

figuration (LDE+CPE+P/L). The uncertain range for ME thrust is set at 5% of
the nominal thrust value.

Table 5.2: Monte Carlo Campaign Data

Nominal value
Uncertain range

(uniform distribution)

XSC 0 [-50, 50]

YSC 0 [-50, 50]
CoG position

BOL [mm]
ZSC 965 [-500, 500]

CoG position

EOL [mm]
XSC -1250 [-50, 50]

YSC 0 [-50, 50]

ZSC 1972 [-500, 500]

XSC [-5, 5]

YSC [-5, 5]
Main engines

position [mm]
ZSC

As reported in Table5.1

[-5, 5]

Thrust [N] 7000 [-350, 350]

The components of the disturbance torques produced by the EM and resulting
from the Monte Carlo campaign are shown in the graphs 5.4 for the case Begin
of Life (BOL) and 5.5 for the case End of Life (EOL). Both are analysed with a
thrust of 7 kN for each engine. This value will then be reduced during the analysis
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to reach an acceptable torque margin.

Figure 5.4: Distribution of the components of the disturbance torque at BOL
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Figure 5.5: Distribution of the components of the disturbance torque at EOL
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5.1.1.2 Reaction Control System Thrusters

The baseline Reaction Control system is composed of four 400 N thrusters, and a
redundant branch of four 400 N thrusters with positions presented in table 5.3.

In order for the RCS to be able to compensate the disturbance torques, the
thruster of the RCS must be able to generate a torque higher than the disturbance
torques resulting from the main engine, with a given margin. The analyses are
carried out using either the 4 main thrusters or using 8 total thrusters considering
the 4 redundants as if they were in the nominal branch. In this case it will be
necessary to consider the presence of a 8 thrusters redundant branch for failure
tolerance. In addition the analysis consider different levels of thrust produced by
the Main Engines until an acceptable torque margin is reached.

Table 5.3: Reaction Control System Thrusters

Position [mm]

XSC YSC ZSC

Nominal Branch

1a -1712 -1168 504

2a -1712 1168 504

3a 1712 1168 504

4a 1712 -1168 504

Redundant Branch

1b -1168 -1712 504

2b -1168 1712 504

3b 1168 1712 504

4b 1168 -1712 504

5.1.1.3 Fine Control System Thrusters

The Fine Reaction Control system is composed by a baseline of eight 10N thrusters,
and a redundant branch of eight 10N thrusters. The FCS system is not the subject
of this study.
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5.2 RCS Orientation Analysis

The tool object of this thesis has been evaluated through the analysis of different
test functions. Each with some peculiarities and with variable problem sizes be-
tween 2 and 30. The results served to show the strengths and weaknesses of the
algorithms used and their combination through the use of an island model with a
clonation mechanism between the various islands for each generation.

A further aim of the thesis was to evaluate the ISOLE tool on a real problem
applying it for the ESA European Large Logistic Lander (EL3) RCS thrusters’
orientation optimization problem. The work done is part of the EL3 descent and
landing GNC study during this study phase.

5.2.1 Objective function

In most real applications of evolutionary algorithms, the computational complex-
ity due to fitness function evaluation is a prohibiting factor, since an evaluation
must be made for each individual for each generation. For this reason, a solution
to the problem must often be proposed through an approximate solution. Here-
after, the exact problem and the associated approximate solution for the case of
RCS orientation analysis are presented.

On board the spacecraft, the RCS system is activated as a result of a calcula-
tion performed using the resolution of the linear system 5.1. The unknown value
is represented by the ignition times of the thrusters (ton), which can act within
the time window represented by the Tctrl. The torque produced by the thrusters
of the RCS system (RCST ) must be able to compensate the torque produced by
the Main Engines (ME DIST T ).

RCST · ton =ME DIST T · Tctrl (5.1)

Instead of solving the linear system to find an exact solution, that is compu-
tationally very expensive, it is possible to verify whether a positive margin with
respect to ME DIST T exists or not.

This approximate solution becomes the cost function to be implemented in the
tool. The problem to solve is to be able to consider the presence of a torque margin
in the direction of the disturbance. If one of the components of the disturbance
exceed the torque potential in that direction than it is not possible to ensure a
margin for control.

The Objective function is then structured as the Algorithm 6, within which is
implemented the function that directly deals with calculating the torque margin
in the considered direction (Algorithm 7).
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The idea behind the solution model presented with Algorithm 6 and Algorithm
7 is as follow:

• A Monte Carlo campaign (MC) with data from table 5.2 is run, 5000 runs
are included. The MC campaign will result in the identification of many
directions around which the ME disturbance torque can act.

• For each thruster of the RCS system the orientation is defined given the 2
angles considered in the analysis. The analysis is conducted with a total
number of RCS thrusters ranging from 2 to 8. Is the computed the RCS
matrix.

• For each identified direction, the maximum RCS torque capability is eval-
uated. The search for the maximum torque is performed in two steps with
Algorithm 7:

1 The maximum torque along the ME disturbance is searched in the xy
plane;

2 In order to find the third component, a similar search is performed in
the plane perpendicular to the xy direction.

The computation of the maximum torque achievable in a certain direction,
given the disturbance torques generated by the MEs, is obtained by consid-
ering all possible combinations of positive and negative RCS torques with
coefficients variable between 0 and 1.

• Then, the difference between the maximum RCS torque and the ME distur-
bance torque is computed. The figure of merit used to assess the validity of
the RCS configuration (i.e. define mounting angles of each thruster) is the
minimum among all these torque differences. If the minimum value of this
difference is above zero, then the considered orientation provides a positive
margin between RCS torque and ME torque even in the worst case, and
therefore is acceptable. If the minimum value is negative, it means that a
direction exist, around which the disturbance torque produced by the ME is
bigger than the one of the RCS. Therefore, that orientation give a negative
margin and it is not valid.
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Algorithm 6 Objective function

input RCS parameters
input ME parameters
input CoG parameters
input Set Monte Carlo runs: MCn
for i = 1 to MCn do
Set random CoG position
for each ME do
Set random ME position and direction error
Compute ME disturbance torque: ME DIST T

end for
end for

input RCS orientation Compute RCS matrix
for i = 1 to MCn do
for each RCS Thrusters do
Compute torque matrix: RCST

end for
Compute max RCS torque opposite to ME disturbance torque(Algorithm 7)
Compute torque margin: max RCS - ME DIST T
Store minimum margin

end for

Algorithm 7 Compute Max RCS torque opposite to ME

input RCST , ME DIST T
for each axis: x,y,z do
Compute torques available from mounting matrix

end for
Compute disturbance direction
Compute max torque in xy plane
for each quadrant do
check which is the limiting component
compute max torque with limited components

end for
Add z component
Compute max torque for provided Me direction
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5.2.2 RCS Configurations and Results

The objective of the analysis is to find the mounting angles that maximize the
torque margin with respect to disturbances. The design statement originally re-
quired that the margin should exceed the worst case disturbances by a margin
of 40%, this requirement is translated into the request for a margin of 400 Nm.
Given that, various analyses are carried out, for each configuration, by reducing
the thrust provided by the main engines up to the thrust that allows to obtain the
required positive margin. The analyses are carried out for the two configurations
of Begin Of Life (BOL) and End Of Life (EOL) of the centre of gravity.

For each configuration it will be indicated how the angles are measured. The
reference system for EL3 has been presented in the figure 5.3. The analyzed
configurations are:

• 4 Thrusters with a total of 2 DOF: two angles are used to define the thrust
direction of all the four thrusters;

• 4 Thrusters with a total of 8 DOF: two angles are used to define the thrust
direction for each of the four thrusters;

• 8 Thrusters with a total of 2 DOF: two angles are used to define the thrust
direction of all the eight thrusters;

• 8 Thrusters with a total of 3 DOF: three angles are used to define the thrust
direction the thrusters.
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5.2.2.1 4 Thrusters 2 DOF

The first configuration analyzed involves the use of the 4 main Thrusters with 2
degrees of freedom, the ψ angle and the θ angle. The analysis includes four cases.
The first considers the current situation with three 7 kN MEs, and then the other
configurations have been studied to obtain an adequate torque positive margin
reducing the thrust of the main engines.

The angles are measured as shown in Figure 5.6. The angle ψ is measured as
shown in the figure for the third thruster. Optimization is carried out with the
use of a single value of ψ, with which the thrust directions of the four thrusters
are obtained through the following transformation:

ψ1 = 180◦ + ψ

ψ2 = 180◦ − ψ
ψ3 = ψ

ψ4 = −ψ

(5.2)

Figure 5.6: 4 Thr. 2 DOF Configuration Angles Reference Frame
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The optimization procedure obtained the results presented in table 5.2.2.1, the
corresponding angles are listed from 5.3 to 5.10. The margin increment is graphed
in figure 5.7.

Table 5.4: 4 Thr. 2 DOF Torque Margin Results

ME Thrust BOL EOL

Option A 7 kN - 505.03 Nm - 493.8 Nm

Option B 5 kN 13.129 Nm 14.709 Nm

Option C 4 kN 217.99 Nm 227.55 Nm

Option D 3 kN 410.86 Nm 427.39 Nm
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Figure 5.7: 4 Thr. 2 DOF Torque Margin

Option A BOL:

θ = 12◦

ψ = 175◦
(5.3)

Option A EOL:

θ = 44◦

ψ = −157◦
(5.4)
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Option B BOL:

θ = 14◦

ψ = 180◦
(5.5)

Option B EOL:

θ = 35◦

ψ = −132◦
(5.6)

Option C BOL:

θ = 16◦

ψ = −90◦
(5.7)

Option C EOL:

θ = 35◦

ψ = −122◦
(5.8)

Option D BOL:

θ = 19◦

ψ = −54◦
(5.9)

Option D EOL:

θ = 38◦

ψ = −114◦
(5.10)
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5.2.2.2 4 Thrusters 8 DOF

The second configuration analyzed considers for the analysis 8 degrees freedom, 2
for each of the thrusters used.

The optimization procedure obtained the results presented in table 5.5, the
corresponding angles are listed from 5.11 to 5.18. The margin increment is graphed
in figure 5.8. There is a slight improvement in the torque margin obtained. It’s
interesting to see how the results present the same symmetry that was shown in
the previous analysis. The results are presented with decimals, as obtained from
the analysis, it is important to underline that this precision can not be obtained
in the real mounting of the thrusters due to mechanical limitations. The reference
frame for the angles is the same presented in figure 5.6, but for this analysis each
thruster has its own 2 angles to define the orientation.

Table 5.5: 4 Thr. 8 DOF Torque Margin Results

ME Thrust BOL EOL

Option A 7 kN -504.97 Nm -488.77 Nm

Option B 5 kN 15.14 Nm 15.49 Nm

Option C 4 kN 218.66 Nm 229.08 Nm

Option D 3 kN 412.07 Nm 427.38 Nm
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Figure 5.8: 4 Thr. 8 DOF Torque Margin
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Option A BOL:

Thruster 1 : θ = 12, 21◦;ψ = 355.89◦

Thruster 2 : θ = 12.17◦;ψ = 4.12◦

Thruster 3 : θ = 12, 19◦;ψ = 175.87◦

Thruster 4 : θ = 12, 22◦;ψ = 184, 15◦

(5.11)

Option B BOL:

Thruster 1 : θ = 14.06◦;ψ = 0.65◦

Thruster 2 : θ = 14.13◦;ψ = 359.35◦

Thruster 3 : θ = 14.17◦;ψ = 180.55◦

Thruster 4 : θ = 14.11◦;ψ = 179.37◦

(5.12)

Option C BOL:

Thruster 1 : θ = 16.27◦;ψ = 89.18◦

Thruster 2 : θ = 16.29◦;ψ = 270.79◦

Thruster 3 : θ = 16.18◦;ψ = 269.17◦

Thruster 4 : θ = 16.23◦;ψ = 90.84◦

(5.13)

Option D BOL:

Thruster 1 : θ = 18.81◦;ψ = 127.57◦

Thruster 2 : θ = 18.82◦;ψ = 232.58◦

Thruster 3 : θ = 18.79◦;ψ = 307.44◦

Thruster 4 : θ = 18.81◦;ψ = 55.55◦

(5.14)

Option A EOL:

Thruster 1 : θ = 43, 72◦;ψ = 23.18◦

Thruster 2 : θ = 43, 67◦;ψ = 337, 11◦

Thruster 3 : θ = 43, 71◦;ψ = 202, 8◦

Thruster 4 : θ = 43, 74◦;ψ = 516, 8◦

(5.15)

Option B EOL:

Thruster 1 : θ = 35.48◦;ψ = 47.81◦

Thruster 2 : θ = 35.46◦;ψ = 312.19◦

Thruster 3 : θ = 35.32◦;ψ = 227, 78◦

Thruster 4 : θ = 35.32◦;ψ = 132.21◦

(5.16)
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Option C EOL:

Thruster 1 : θ = 36.33◦;ψ = 57.32◦

Thruster 2 : θ = 36.31◦;ψ = 302.72◦

Thruster 3 : θ = 35.93◦;ψ = 237, 32◦

Thruster 4 : θ = 35.95◦;ψ = 482.71◦

(5.17)

Option D EOL:

Thruster 1 : θ = 39.21◦;ψ = 66.32◦

Thruster 2 : θ = 38.78◦;ψ = 294.12◦

Thruster 3 : θ = 38.11◦;ψ = 245.79◦

Thruster 4 : θ = 38.32◦;ψ = 114.12◦

(5.18)
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5.2.2.3 8 Thrusters 2 DOF

The third configuration analyzed involves the use of 8 thrusters. In order to be
able to do the analysis, it is assumed that the four redundant thrusters are used
together with the four nominal thrusters. To ensure the failure tolerance, in this
case it would be necessary to mount eight additional thrusters. The system has 2
degrees of freedom, the ψ angle and θ angle, as show in figure 5.9. The analysis
include two cases, since the use of all eight thrusters let to a positive margin
already with the use of a complete thrust of 7 kN for each of the 3 ME. The
option B is analyzed to achieve a margin of more than 400 Nm.

Figure 5.9: 8 Thr. 2 DOF Configuration Angles Reference Frame

The optimization procedure obtained the results presented in table 5.6, the
corresponding angles are listed from 5.19 to 5.22. The margin increment is graphed
in figure 5.10.

Table 5.6: 8 Thr. 2 DOF Torque Margin Results

ME thrust BOL EOL

Option A 7 kN 391.69 Nm 777.92 Nm

Option B 6 kN 627.91 Nm 900.78 Nm

Option A BOL:

θ = 12◦

ψ = 143◦
(5.19)

Option B BOL:

θ = 16◦

ψ = 150◦
(5.20)
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Option A EOL:

θ = 41◦

ψ = 196◦
(5.21)

Option B EOL:

θ = 42◦

ψ = 194◦
(5.22)
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Figure 5.10: 8 Thr. 2 DOF Torque Margin
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5.2.2.4 8 Thrusters 3 DOF

The fourth configuration analyzed involves the use of the 4 main thrusters and
the 4 redundant thrusters (as the previous), with 3 degrees of freedom, a ψ1 angle
for the 4 main thrusters, a ψ2 angle for the redundant thrusters and the θ angle
for both. The reference frame is shown in figure 5.11. The analysis include two
cases, since the use of all eight thrusters let to a positive margin already with the
use of a complete thrust of 7 kN for each of the 3 ME. The option B is analyzed
to achieve a margin of more than 400 Nm.

Figure 5.11: 8 Thr. 3 DOF Configuration Angles Reference Frame

The optimization procedure obtained the results presented in table 5.7, the
corresponding angles are listed from 5.23 to 5.26. The margin increment is graphed
in figure 5.12. The addition of a degree of freedom can at most improve or maintain
unchanged the result obtained with the previous analysis. However, the result
obtained for option B in BOL configuration show a decrease in margin while for
option A the result is almost the same as the one obtained from previous analysis.
Therefore it is clear that the optimization with ISOLE must have fall in a local
minimum and was not able to find a better solution. While solutions for EOL
configurations show an improvement of 4.01% for option A and 16.5% for option
B.

Table 5.7: 8 Thr. 3 DOF Torque Margin Results

BOL EOL

Option A 7 kN 392.87 Nm 809.15 Nm

Option B 6 kN 624.03 Nm 1049.4 Nm
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Figure 5.12: 8 Thr. 3 DOF Torque Margin

Option A BOL:

Thrusters 1, 2, 3, 4 : ψ1 = 140◦, θ = 12◦

Thrusters 5, 6, 7, 8 : ψ2 = 155◦, θ = 12◦
(5.23)

Option B BOL:

Thrusters 1, 2, 3, 4 : ψ1 = 130◦, θ = 16◦

Thrusters 5, 6, 7, 8 : ψ2 = 160◦, θ = 16◦
(5.24)

Option A EOL:

Thrusters 1, 2, 3, 4 : ψ1 = 185◦, θ = 38◦

Thrusters 5, 6, 7, 8 : ψ2 = 191◦, θ = 38◦
(5.25)

Option B EOL:

Thrusters 1, 2, 3, 4 : ψ1 = 230◦, θ = 45◦

Thrusters 5, 6, 7, 8 : ψ2 = 180◦, θ = 45◦
(5.26)

Other analyses were carried out by the company with the aim of obtaining a
control margin of more than 500 Nm. The margin sought was obtained for the
EOL and BOL configurations with a configuration with 10+10 thrusters (main +
redundant). The method used was different, however, because it was decided to
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work only in 2 dimensions, never using more than 2 DOF. While maintaining the
thrust levels of the nominal MEs, this work has achieved an acceptable result with
a solution that has 8 main thrusters and eventually 8 redundant. The increase in
degrees of freedom has shown an increase in the margin in 2 configurations, almost
no change in margin for 1 configuration and an unexpected decrease in another
configuration. It is important to note that the increase in degrees of freedom
together with a meta-heuristic analysis of the problem does not guarantee that it
has been found the optimal solution.

However the tool, although still in an early stage of the development, has been
proven able to manage real problems with a certain level of complexity.
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Chapter 6

Conclusions

Numerous application problems encountered in science can be modeled as global
optimization problems. Most real-world optimizations are highly nonlinear and
multimodal, under various complex constraints. It is therefore important to de-
velop and study numerical methods and tools that are able to identify the overall
optimum of the function to be analyzed. This thesis is focused on the study
of metaheuristic optimization, in particular in the usage of the island model
paradigma coupled with the migration operator. The work I have done for this
master’s thesis has been carried out within the company Thales Alenia Space and
addresses the need of the Guidance Navigation Control group to have an opti-
mization tool available to be used for the study in different project phases. The
objectives of this work were to:

• Review the state of the art of hybrid optimization systems that implement
evolutionary algorithms and the evolutionary algorithms used with particu-
lar regard to the island model.

• Further develop a hybrid global optimization tool, implemented in MAT-
LAB® script language, that uses evolutionary algorithms for a single-objective
problem. In case of multi-objective functions and constraints, they are in-
cluded in the single objective function using weight. The tool have to be
modular, easy to use and without dependencies from the MATLAB® opti-
mization toolbox.

• Include in the tool:

– a global mutation mechanism;

– the possibility to choose different cloning topology;

– the availability of the Particle Swarm Optimization algorithm;
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– The capability to use also an approximate function together with the
user defined one.

• Apply the developed tool for the ESA European Large Logistic Lander (EL3)
RCS thrusters’ orientation optimization problem. Studying various config-
urations with different degrees of freedom.

After almost one year work the development of the tool has been advanced: it
can be described as a multi-population algorithm that exploits three evolutionary
algorithms DE, ES and PSO, running in parallel. The populations exchange
information between the islands during the iterations, in order to achieve a greater
efficiency and try to achieve a smaller computational cost for the analysis. The
new features implemented are:

• The modularity of input and output. These are now editable outside the
MATLAB® script. The user that can decide how to perform the analysis,
including the number of islands, the algorithm type and the number of
individuals for each one, which results will be printout display.

• A PSO algorithm.

• The Mass Mutation mechanism, which can act on the single island or on
the whole archipelago. It is used to re-initialise the 98% of the population
when an aggregation degree is reached for the whole population, it has been
introduced to avoid to stuck on local minimum.

• The possibility to choose between 3 cloning mechanisms, always carried out
in synchronous mode.

• The skeleton of an algorithm that combines PSO with neural networks
(ANN). And the possibility to create a global approximation function using
ANNs that are trained with the information obtained from the other algo-
rithms during the analysis. However, the results obtained so far are only
preliminary and the thesis focused on other topics.

The tool has been tested on a series of benchmark functions and on ESA
European Large Logistic Lander (EL3) RCS thrusters’ orientation. A comparison
between the use of individual algorithms and a combined use of them has been
performed to show is effectiveness. The benchmark functions where used in order
to compare the tool results on well-known problems. The results are:

• No one of the simple algorithms works well on all the problems.

• The Mass Mutation mechanism increase the probability of a convergence to
the global optimum.
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• On average with hybrid algorithms is possible to obtain a better efficiency
without knowing which is the best optimiser for the problem. However a
tuning improvement must be carried out for the algorithm ES that seems
to slow the others.

• Eventually the optimum will be achieved more slowly, with a small increase
in computational cost, but in some cases the computational cost is even
decreased. It is important to remember that the number of function evalua-
tions available for each run of the tool is constant. So the computational cost
is increased, but not proportionally to the rise of the population number.

The study conducted on the orientation of EL3 RCS thrusters required the
development of an approximate solution method. That’s because in most real
applications of EAs, the computational complexity due to fitness function evalua-
tion is a prohibiting factor. It was then possible to apply the developed tool into
the studying of 2 configurations, 4 and 8 thrusters, and different combinations of
degrees of freedom for the orientation, with the aim of obtaining an acceptable
margin in the lander control. The tool, working with 8 degrees of freedom, for the
configuration with 4 thrusters, was able to find a correlation between the DOF.
The torque margin results are very similar to those of the same problem dealt
with 2 degrees of freedom. While analyzing the configuration with 8 thrusters the
increase in the degrees of freedom led to a consistent improvement of the solution
in only 2 cases out of 4. This study case was fundamental to understand what the
potential of the tool can be, it has been proven able to manage real problems with
a certain level of complexity and it may be the subject of further improvements.

Evolutionary Algorithms are usually quite versatile, the use of this tool on
various problems and obtaining good results, even on a real problem like EL3,
is a further proof. To improve tool’s results on high non-linear problems, future
work can focus on algorithms’ parameters tuning and the analysis of different
algorithms and topologies which can be added easily thanks to the modularity of
the tool.
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