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Abstract

Space missions require fuel to be expended, and every kilogram of fuel on-board is
a kilogram of scientific equipment sacrificed to preserve the mission feasibility. The
ability to optimize the spacecraft trajectory by minimizing fuel is key to greater
scientific return. In some cases, this becomes the only way for the desired mission
to succeed.
This thesis investigates the problem of trajectory optimization for the case of mul-
tiple Near-Earth Asteroids (NEAs) rendezvous missions using Electric Propulsion
(EP). NEAs are of fundamental interest for the understanding of our solar system as
well as for planetary defence and are stepping stones for interplanetary human flight.
Close-up observations of these objects will drastically increase our knowledge about
the overall NEA population. Furthermore, low-thrust EP represents a viable option
for these missions, offering a higher efficiency compared to chemical propulsion.
To solve the optimization problem an indirect approach is adopted. This allows for
an exact, even though numerical, optimization and presents a lower computational
cost compared to direct methods. However, the capability of achieving an accurate
result is highly dependent on the tentative solution.
In this study suitable procedures to overcome convergence difficulties and to find
low-cost optimized solutions are described. Examples show that by applying these
procedures, the derivation of tentative solutions sufficiently close to the optimal
ones is straightforward, resulting in a faster convergence to the optimum.
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Chapter 1

Introduction
An outline that categorizes the key elements within the general process of spacecraft
trajectory optimization is presented. After that, the problem statement and the
thesis objective are provided. Finally, the thesis overview is given.
The following chapter’s theoretical principles are primarily based on the research of
doctor Shirazi and professors Ceberio and Lozano [1], and professor Conway [2].

1.1 Spacecraft trajectory optimization
The subject of spacecraft trajectory optimization has a long and interesting history.
The general theoretical framework for optimal control applied to spacecraft trajec-
tory optimization is completely presented in the pioneering work by Lawden [3].
The problem can be simply stated as the determination of a trajectory for a space-
craft that satisfies specified initial and terminal conditions, that is conducting a
required mission, while minimizing some quantity of importance. The most common
objective is to minimize the propellant required or equivalently to maximize the
fraction of the spacecraft that is not devoted to propellant [2].
The overall strategy for addressing a spacecraft trajectory optimization problem
can be split into four steps:

• mathematical modeling of system dynamics;

• defining appropriate objectives;

• developing an approach;

• achieving a solution.

These steps are represented by model, objective, approach and solution respectively.
On the other hand, each space mission is characterized by several factors: mission
requirements, goals, expected accuracy, desired convergence, mission plan, etc.
Each of these aspects affects the steps of the mentioned process differently [1].
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Figure 1.1: General scheme of spacecraft trajectory optimization process [1]

The first step involves not just a spacecraft trajectory optimization problem but
any orbital mechanics problem. First and foremost, a solid understanding of the
system’s dynamics is required. The mathematical model of the problem can then
be derived, which involves selecting a set of states to represent the system and
deriving motion equations for the spacecraft.
The second step prescribes the definition of a performance index or cost function
that considers a series of mission objectives identified during the mission design
process. Typical mission objectives are:

1. minimize transfer time for a given payload or propellant mass;

2. minimize propellant mass for a given mission transfer time and lauch mass;

3. minimize propellant mass for a given mission transfer time and payload mass.

In practice, spacecraft trajectories have to be optimized with respect to several
conflicting mission objectives, e.g. minimize transfer time and propellant mass.
Such multi-objective optimization problems are usually reformulated as a series of
single-objective problems [4].
The third step refers to the type of methods and techniques which are dedicated
to solving the trajectory design problem. The approach can be divided into two
categories: analytical and numerical.
The fourth step is to solve the problem regarding the developed approach. If the
analytical approach is developed in the third step, the solution is likely to be a closed
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form analytical solution. However, if the numerical approach is used, the problem
usually turns into a black-box optimization problem and needs numerical algorithms
to achieve a solution. The majority of spacecraft trajectory optimization problems
end up in the latter form. The reason is that a typical spacecraft optimization
problem does not have a closed form solution due to its nonlinearity, unless specific
conditions and assumptions are considered in the approach. Such assumptions may
limit the matching between simulation and reality in spacecraft motion [1].

1.1.1 Model
The mathematical modeling of the spacecraft dynamics is the first step in the
trajectory optimization process. A set of ordinary differential equations can be used
to describe the spacecraft trajectory, providing the time history of the spacecraft’s
position and velocity. Mathematically, these equations can be expressed as:

ẋ = f(x(t),u(t), t) (1.1)

where t represents the time, ẋ(t) is an n-dimensional time history of the state vector
and u(t) is an m-dimensional time history of the control vector. The state vector
generally includes the spacecraft’s position and velocity vectors, while the control
vector represents the system input. The mathematical model can be generally
categorized based on a variety of features.

Figure 1.2: Taxonomy of mathematical models in spacecraft trajectory optimiza-
tion [1]

3
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Figure 1.2 depicts the general classification of mathematical models used in space-
craft trajectory optimization. Two categories can be identified:

• Models based on transfer type, where the simulation of system inputs is the
primary concern. Within this category, the mathematical model can be either
impulsive or continuous, depending on the analysed space mission.

– Impulsive model. The system inputs are assumed to be zero u(t) = 0,
and the spacecraft maneuvers are modeled as sudden velocity increments
(∆V > 0), that is, considering zero burn time (∆t = 0). This model is
typically helpful when engines with relatively low specific impulse (Isp)
and high thrust levels are used, i.e. when high-thrust chemical propulsion
is employed.

– Continuous model. The spacecraft trajectory is modeled considering non-
zero inputs (u(t) /= 0). Thus, this model results more complicated but
also more precise with respect to the impulsive one. This mathemati-
cal representation is frequently used in the analysis of low-thrust space
missions.

• Models based on equations of motion, where the formulation of the differential
equations set (f(x(t),u(t), t)) is the matter of interest. The representation of
the dynamics of spacecraft motion can be divided into two major categories,
depending on the analysed space missions: two-body problems and N-body
problems.

– Two-body problems. These kinds of models consider two point masses and
define their mutual gravitational attraction, assuming the spacecraft’s
mass is significantly smaller than the mass of the body it is orbiting. This
allows the mass of the spacecraft and its gravitational effects on the larger
body to be ignored.

– N-body problems. The gravitational influence of more than one celestial
body is considered on the spacecraft within these models. For instance,
simulations of transfers to the Lagrange’s points exploit the Circular
Restricted Three-Body Problem, which is the simplest model to investigate
the three-body problem.

Clearly, these categories are not mutually exclusive; for example, one can simulate
two-body or N-body problems using either impulsive or continuous models.

1.1.2 Objective
The second critical step in the spacecraft trajectory optimization process is to
define an objective function, based on space mission requirements. The general

4
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form of the objective function, also known as Bolza cost function, can be expressed
as:

J(x,u, t) = ϕ(x(tf ), tf ) +
Ú tf

t0
Φ(x(t),u(t), t)dt (1.2)

where t0 and tf represent the initial and the final time, respectively. The function
ϕ is the Mayer term and indicates the cost related to the final states, while Φ is
the Lagrange term which depends on the state’s and the controls’ time history.
Depending on what is being optimized, the objective function can contain both the
Lagrange and the Mayer terms, or just one of them. Figure 1.3 shows a typical
classification of objective functions, which considers type and quantity:

Figure 1.3: Taxonomy of objectives in spacecraft trajectory optimization [1]

As mentioned, Mayer or Lagrange term can be chosen to express the objective
function. Moreover, cost functions can be categorized according to the number
of objective they include; in particular, a distinction can be made between single
objective and multi-objective ones. Single objective cost functions consider a single
criterion, while multi-objective cost functions involves several distinct criteria. In
these cases, the most straightforward approach to the spacecraft optimization
problem is to consider an overall objective function that is the weighted sum of the
single objective functions. This process is also known as scalarization.

1.1.3 Approach, method and technique
Figure 1.4 depicts the various approaches and methods that can be used to solve
the trajectory optimization problem.

5
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Figure 1.4: Taxonomy of approaches in spacecraft trajectory optimization [1]

After modeling the spacecraft dynamics and defining the objective function, it is
necessary to choose an approach for finding the optimal trajectory. In general,
analytical and numerical approaches can be exploited.

Analytical approaches are the most preferred since they often provide solutions
directly based on mathematical representations with no approximation. However,
due to the difficulty of the problem, they are achieved only in special cases (e.g.
very low-thrust orbit raising).

Numerical approaches are increasingly advantageous as the model and problem
complexity increase. The most popular methods within these approaches are:

• Direct methods. These methods are based on the concept of parameterization
on state variables x(t) and control inputs u(t); the continuous optimal control
problem is transcribed into a parameter optimization problem. The effect
is to generate nonlinear constraint equations that must be satisfied by the
parameters, which are the discrete representations of the state and control
time histories [2]. Although direct methods are less accurate than indirect
methods, they are more attractive due to their ease of implementation, greater
domain of convergence, and reduced problem size.

• Indirect methods are those using the analytical necessary conditions from the
calculus of variations. This requires the addition of costate variable (or adjoint
variables) of the problem, equal in number to the state variables, and their
governing equations [2]. While indirect approaches are often more accurate
than direct methods, three major issues arise. First, there is the necessity
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of deriving analytic formulations for the necessary conditions, which can be
discouraging when working with complex problems. Second, the region of
convergence may be quite small, as it is necessary to guess values for adjoint
variables. Third, for problems with path inequalities, it is necessary to guess
the sequence of constrained and unconstrained subarcs [5].

Figure 1.5 depicts the various techniques that can be used to solve the trajectory
optimization problem.

Figure 1.5: Methods and techniques in numerical approaches [1]

Except for the differential inclusions technique, which is a strictly direct method,
the other techniques presented can be employed with both direct and indirect
methods.

- By using the Differential inclusions technique, the equations of motion are
enforced at each discrete time applying inequality constraints on state deriva-
tives. The upper and lower bounds on the control vector are substituted into
the equations of motion to obtain these inequality constraints. This technique
removes the explicit dependence on control values at each node, but it can
become numerically unstable and its formulation can be problem dependent
[1].

- Shooting technique is an iterative strategy for calculating state histories given
system control histories; this technique can define the problem in terms of a
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relatively small number of optimization variables. This technique is appealing
because the marching integration automatically enforces the equations of
motion. Thus, by reducing the number of constraints that must be applied,
the problem size is decreased.

- Collocation technique uses quadrature rules or interpolation to enforce the
equations of motion. An interpolating function (interpolant) is solved in such
a way that it passes through the state values while maintaining the state
derivatives at the nodes spanning one time interval (or subinterval). The
interpolant is then evaluated at collocation points, which are positions between
nodes. An equality constraint is generated at each collocation point, equating
the interpolant derivative to the state derivative function, ensuring that the
equations of motion hold [1].

1.2 Problem statement and thesis objective
This thesis investigates the problem of trajectory optimization for the case of mul-
tiple Near-Earth Asteroid (NEAs) rendezvous missions, using Electric Propulsion
(EP). The examined space mission, in particular, considers a spacecraft departing
from Earth at t0 and visiting N asteroids at different dates tN , with at most N = 3.
A rendezvous maneuver is carried out for each asteroid, with a stay of about two
months; after that, the spacecraft will continue its journey to the next asteroid.
Figure 1.6 depicts a typical three-target mission trajectory.

For what concern the problem mathematical modeling, the patched-conics ap-
proximation, which considers the two-body model, can be used to describe this
interplanetary trajectory: the hypothesis of a point mass spacecraft under the
influence of a single body, in this scenario the Sun, is thus assumed. Only the
heliocentric legs are considered. Chapter 5 presents the adopted motion equations.
The objective function for the analysed mission is the spacecraft final mass. Con-
sidering the Mayer formulation, it can be expressed as:

J = mf (1.3)

A numerical code that implements an indirect method using shooting techniques is
employed to solve the trajectory optimization problem. As stated in the previous
section, one of the major disadvantages of indirect methods is the requirement to
start the procedure with a tentative solution that must be sufficiently close to the
optimal one. Thus, the goal of this thesis is to propose appropriate procedures
for overcoming convergence issues and finding low-cost optimized solutions to the
analyzed problem.
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Figure 1.6: Multiple NEAs rendezvous mission example

1.3 Thesis overview
The thesis is organized as follows:

In Chapter 2 a brief overview of the mission’s scientific objectives is provided. The
primary motivations for the interest in Near-Earth Asteroids are discussed, as are
the main properties of these celestial bodies.

Chapter 3 introduces the mathematical modelling of the system’s dynamics. In
section 3.1 the basic theory of orbital mechanics is presented. A focus on the
two-body model is given, since it is adopted in this work. Section 3.2 discusses
the basics of space propulsion. A global overview of propulsion systems is offered,
followed by a review of electrical thrusters, that are considered for the examined
missions.

Chapter 4 covers the global properties and mathematical aspects of the indirect
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method used to optimize space trajectories. General notions of the Optimal Control
Theory are explained, since it represents the basis of indirect methods. After that,
a description of the resulting Boundary Value Problem is provided.

In chapter 5 the preceding Chapter’s concepts and generic equations are applied to
the analysed missions. Furthermore, reference parameters are provided to formu-
late the problem in a dimensionless form. Finally a set of appropriate boundary
conditions is provided.

In chapter 6 the methodology for addressing the investigated problem is proposed.
In particular, suitable procedures to define tentative solutions and then to find
multiple optimized rendezvous missions are described.

The obtained results for missions to one, two, and three targets are presented in
Chapter 7, in order to validate the proposed procedures for defining initial guesses.
A summary of solutions is also provided.

Conclusions and possible future advances of this work are provided in Chapter 8.
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Chapter 2

Mission’s scientific
objectives

As mentioned, this thesis investigates the problem of trajectory optimization for
the case of multiple Near-Earth Asteroids rendezvous missions. In this Chapter
will be thus presented the characteristics of these celestial bodies as well as the
main drivers behind the interest in NEAs.

2.1 Near-Earth Objects
Near-Earth Objects (NEOs) are comets and asteroids that have been nudged by
the gravitational attraction of nearby planets into orbits that allow them to enter
the Earth’s neighborhood. In terms of orbital elements, NEOs have a perihelion
distance q (the orbit’s closest approach to the Sun) less than 1.3 AU (1 AU, an
“Astronomical Unit”, is the mean distance between the Earth and the Sun, around
150 million km).
Composed mostly of water ice with embedded dust particles, comets originally
formed in the cold outer planetary system, while most of the rocky asteroids formed
in the warmer inner solar system, between the orbits of Mars and Jupiter. The
scientific interest in comets and asteroids is due largely to their status as the
relatively unchanged remnant debris from the solar system formation process some
4.6 billion years ago [6]. They contain information that has been lost in the planets
through large-scale, planetary processes such as accretion, tectonism, volcanism,
and metamorphism. Knowledge of the asteroids and comets as less processed
material from the early solar nebula, studied together with direct samples in the
form of meteorites, is critical to piecing together a scenario for the formation of
the solar system [7].
The vast majority of NEOs are asteroids, referred to as Near-Earth Asteroids
(NEAs).
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2.1.1 Near-Earth Asteroids
Near-Earth Asteroids constitute the majority of the Near-Earth Objects population.
Thanks to the operation of wide-field high sensitivity automated sky surveys the
number of known NEAs is rapidly growing [8]. The following chart (Figure 2.1)
shows the cumulative number of known Near-Earth Asteroids versus time. Totals
are shown for NEAs of all sizes, those NEAs larger than ∼ 140m in size, and those
larger than ∼ 1 km in size [9]. It also reveals that most of the large NEAs (diameter
> 1 km) have already been detected, and therefore smaller object dominate the
present discoveries.

Figure 2.1: Cumulative number of known Near-Earth Asteroids [9]

NEAs are divided into four groups according to their perihelion distance, aphelion
distance and their semi-major axes:

• Amors are Earth-approaching NEAs with orbits exterior to Earth’s but interior
to Mars’;

• Apollos are Earth-crossing NEAs with semi-major axes larger than Earth’s;

• Atens are Earth-crossing NEAs with semi-major axes smaller than Earth’s;

• Atiras are NEAs whose orbits are contained entirely with the orbit of the Earth.

There are three main drivers behind the interest in NEAs:
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• expected scientific return.

– Scientists can glean information about the formation of the Solar System
by studying their composition and structure.
Furthermore, since some of these objects may collide with the Earth,
asteroids are also important for having significantly modified the Earth’s
biosphere in the past. During the early solar system, the carbon-based
molecules and volatile materials that served as the building blocks of life
may have been brought to the Earth via asteroid and comet impacts.

– Most of NEAs have peculiar orbits that scientists study to reveal orbital
change processes. Most of them appear to have originated from the main
asteroid belt through a combination of processes, including planetary
perturbations, collisions, thermal forces, and solar wind pressure. Dynam-
icists have simulated the pathways that objects might take from unstable
regions of the Asteroid Belt using computations of dynamical forces acting
in the solar system. In some cases, fragments from asteroid collisions
may be violently cast into these regions of instability. However, a softer
touch may play an even bigger role. Constant warming by the Sun causes
asteroids of all sizes to reradiate their heat back into space. Because the
asteroids are rotating, the reradiation does not occur in the same direction
as the incoming sunlight, resulting in a small force acting on the asteroid.
This force acts as a very gentle push on the asteroid, which over many
millions of years can cause the asteroid to slowly drift inward or outward
from its original main-belt location. This is called Yarkovsky drift and is
especially effective on small objects (Figure 2.2).

Figure 2.2: The Yarkovsky Effect [10]
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• Planetary defense. In addition to originating life, NEAs could also destroy
it. It is evident that a ten-kilometer-wide impactor caused the Cretaceous-
Paleocene extinction event, when it made the Chicxulub crater over 64 million
years ago. More recently, the Chelyabinsk bolide in February 2013, which
caused massive property damage and injured around 1500 people, was only
20 m wide, weighed 12,000 metric tons, and entered our atmosphere at a
relative speed of 19 km/s.
Potentially Hazardous Asteroids (PHAs) are currently defined based on pa-
rameters that measure the asteroid’s potential to make threatening close
approaches to the Earth. Specifically, all asteroids with an Earth Minimum
Orbit Intersection Distance (MOID) of 0.05 AU or less and an absolute magni-
tude (H) of 22.0 or less (larger than about 140 m in diameter) are considered
PHAs. Understanding of the physical properties of these threatening objects
and their response to a mitigation action are the first steps to design an
efficient mitigation strategy.

• Mining. As a matter of fact, asteroids offer a source of volatiles and an ex-
traordinarily rich supply of minerals that can be exploited for the exploration
and colonization of our solar system. [6, 7, 11, 12]

For all these reasons, in the last decades, near-Earth asteroids received considerable
attention which in turn stimulated the interest in their exploration. Indeed, close-up
observations of these objects will drastically increase our knowledge about the
overall NEA population. Moreover, near-Earth asteroids’ proximity to the Earth
makes transfers to these bodies relatively low-cost in terms of ∆V and propellant
consumption. The population of known NEAs is already quite large and contin-
uously grows due to the discovery of new objects. The existence of such a large
set of possible targets provides many opportunities for scientific missions to new
objects, in addition to ones already reached. Hence, a multiple NEA rendezvous
mission can help the scientific community to improve our knowledge about these
objects.

14



Chapter 3

Mathematical modelling of
the problem

As the first step of facing the spacecraft trajectory optimization problem, the
dynamics of the spacecraft need to be mathematically modeled. The spacecraft
trajectory model can be referred to a set of ordinary differential equations repre-
senting the time history of position and velocity of the spacecraft [4]. Fundamentals
of Astrodynamics and Space Propulsion are presented below to make clear the
mathematical formalization of the problem.

3.1 Fundamentals of Astrodynamics
The basic theory of orbital mechanics is presented in this section. In particular, the
two-body and N-body equations of motion are introduced. Orbit determination
through the classical orbital elements and coordinate transformations are then
explained. A focus on Kepler’s equation is also presented. Finally, an overview of
interplanetary missions is given with the description of the patched-conics theory.
The following section’s theoretical principles are primarily based on [13] and [14].

3.1.1 Newton’s Law of Universal Gravitation
Sir Isaac Newton was the first scientist to specifically articulate the concept of
gravitational force, and his writings detailed how gravitational attraction affects
both falling objects and the motions of celestial bodies. However, Newton piggy-
backed on the observations and theories of other mathematicians and physicists,
including: Max Kepler, Robert Hooke, Edmund Halley, and Christopher Wren.
Besides enunciating his three laws of motion in the Principia, he formulated the
law of gravity by stating that any two bodies attract one another with a force
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proportional to the product of their masses and inversely proportional to the square
of the distance between them:

Fg = −GMm

r2
r
r

(3.1)

where Fg is the force on mass m due to mass M and r is the vector from M to m.
The universal gravitational constant, G, has the value 6.6742 × 1011 m3/kg · s2.

Figure 3.1: Newton’s Law of Gravity

3.1.2 The N-body problem
By applying Newton’s law of universal gravitation it is possible to examine the
motion of a body, like an Earth satellite or an interplanetary probe. At any given
time in their journey, these objects are being acted upon by several gravitational
masses and may even be experiencing other forces such as drag, thrust, and solar
radiation pressure.
We assume a system of n-bodies (m1,m2,m3, . . . ,mn) within an inertial reference
frame XY Z, illustrated in figure 3.2, one of which is the body whose motion we
wish to study, the ith body, mi. For the sake of simplicity, the following hypothesis
are considered:

• spherical symmetry of the mass distribution;

• homogeneity of the mass distribution;

• punctiform masses concentrated in the bodies’ centers;

• only gravitational interaction among the bodies, neglecting other external or
internal forces acting on the system.
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Figure 3.2: The N-Body Problem

Applying Newton’s law of universal gravitation to this system, the force Fgn exerted
on mi by mn can be expressed as

Fgn = −Gmimn

r2
ni

rni

rni
(3.2)

where
rni = ri − rn

Thus, the vector sum, Fg of all the gravitational forces acting on the ith body is

Fg = −Gmi

nØ
j=1,j /=i

mj

rji2
rij

rij
(3.3)

and its equation of motion is

r̈i = −G
nØ

j=1,j /=i

mj

rji2
rij

rij
(3.4)

Equation (3.4) holds for 1 ≤ i ≤ n, so it is a system of n second order autonomous
vector differential equations, for which numerical integration is needed.

3.1.3 The two-body problem
The motion of a satellite about the Earth is governed primarily by the attraction
between Earth and satellite. This is also true for satellites at an altitude of some
ten thousand kilometers. The effects of the gravitation attraction of the Sun, Moon,
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and planets are very small. If at a first approximation, we completely neglect
these effects, we deal with a two-body problem. Unlike the N-body problem, the
two-body problem can be solved analytically, and since its solution is near to
physical reality, it constitutes the basic algebra of celestial mechanics.
In this model, the motion of the body ith is considered to be determined uniquely
by the mutual attraction with the body kth. Considering a non-rotating reference
frame with its origin at body kth, the motion of the body ith is described by:

r̈ = − µ

r2
r
r

(3.5)

where

µ = G (mk +mi)

and r is the position vector of body ith.
In many cases, however, such as the motion of planets about the Sun or the motion
of satellites about the Earth, we deal with problems where mk º mi. Then, we
can safely approximate µ by

µ = Gmk .

In this case the problem is defined as the Restricted Two-Body Problem, and µ is
called gravitational parameter or attraction parameter of body kth.
Values of µ for each major attracting body are listed in table 3.1.

Gravitational Parameter of Sun [km3s−2] µ¤ 1327.1244 × 108

Gravitational Parameter of Earth [km3s−2] µ♁ 3986.0043 × 102

Gravitational Parameter of Moon [km3s−2] µ$ 4902.8001
Gravitational Parameter of Mars system [km3s−2] µ♂ 42828.3758
Gravitational Parameter of Jupiter system [km3s−2] µX 1267.1276 × 105

Table 3.1: Gravitational Parameter of major attracting bodies

3.1.4 Constants of the motion
The gravitational field is conservative. This means that an object, moving under
the influence of gravity alone does not lose or gain mechanical energy, but only
exchanges one form of energy, kinetic, for another, potential.
Furthermore, because this force is always applied radially toward the center of the
large mass, we would predict the satellite’s angular momentum about the center of
our reference frame to remain constant.
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Conservation of Mechanical Energy
Dot multiplying equation (3.5) by ṙ:

ṙ · r̈ + ṙ · µ
r2

r
r

= 0

which leads to the following expression:

d
dt

A
v2

2 − µ

r

B
= 0

As a consequence of this formalization, it is possible to conclude that the specific
mechanical energy E of a satellite, which is the sum of its kinetic energy per unit
mass and potential energy per unit mass, remains constant during its orbit, neither
increasing nor decreasing as a result of its motion. The expression for E is:

E = v2

2 − µ

r
(3.6)

Conservation of Angular Momentum
Cross multiplying equation (3.5) by r:

r × r̈ + r × µ

r2
r
r

= 0

where the second term vanishes and the first one can be written as:
d
dt (r × v) .

The expression r × v is the vector h, called specific angular momentum. Therefore,
for a satellite

h = r × v (3.7)
remains constant along its orbit. For this reason, the satellite’s motion must be
confined to a plane which is fixed in space, the orbital plane.

3.1.5 The trajectory equation
A partial solution to the equation (3.5) which tell us the size and shape of the orbit
is easy to obtain. Crossing this equation into h leads toward a form which can be
intagrated, and solving for r it is possible to obtain the trajectory equation:

r =
h2

µ

1 +
1
B
µ

2
cos ν

(3.8)
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where B is the absolute value of the vector constant of integration, and ν is the
angle between the constant vector and the radius vector.
This equation has the same mathematical form as the generic equation of a conic
section written in polar coordinates with the origin at a focus, and where ν is the
angle between r and the point on the conic nearest the focus:

r = p

1 + e cos ν (3.9)

In this equation p is called semi-latus rectum and e is called the eccentricity. The
eccentricity determines the type of conic section represented by equation (3.9):

Figure 3.3: General equation of conic sections in polar coordinates [13]

Thus, the family of these curves represent the only possible path for an orbiting
object in the two-body problem.

3.1.6 Classical Orbital Elements
Five independent quantities are sufficient to completely describe the size, shape
and orientation of an orbit. To pinpoint the position of the satellite along the orbit
at a particular time, a sixth element is required. Therefore, the classical set of six
orbital elements are defined as follows:

1. a, semi-major axis, a constant defining the size of the conic orbit. This orbital
element is directly connected to the energy of the orbit, which can be also
expressed as:

E = − µ

2a (3.10)

This relationship, which is valid for all conic orbits, tells us that the semi-major
axis of an orbit depends only on the specific mechanical energy of the satellite.
Circle and ellipse show a positive a, while for the parabola a is infinite and the
hyperbola a is negative. This implies that that the specific mechanical energy
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of a satellite in a closed orbit is negative, while E is zero on a parabolic orbit
and it is positive on a hyperbolic orbit.

2. e, eccentricity, as previously seen, a constant defining the shape of the conic
orbit.

3. i, inclination, the angle between the unit vector of the Z axis and the angular
momentum vector h.

4. Ω, longitude of the ascending node, the angle, in the reference plane, be-
tween the unit vector of X axis and the point where the satellites crosses
through the reference plane in a northerly direction (ascending node) measured
counterclockwise when viewed from the north side of the reference plane.

5. ω, argument of periapsis, the angle, in the orbital plane, between the ascending
node and the periapsis point, measured in the direction of the satellite’s motion.

6. ν, true anomaly at epoch t, the angle, in the orbital plane, between the
periapsis point and satellite.

Figure 3.4: Orbital Elements [14]

3.1.7 Kepler’s Equation
Equation (3.9) gives the position of the satellite in its orbit as a function of the
true anomaly. For many practical reasons, it is necessary to determine the position
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of satellite as a function of time.
The absolute value of the specific angular momentum is:

h = rv⊥ = r2ν̇ (3.11)

Starting from the latter equivalence and considering equation (3.9), it is possible
to write:

dν
dt = h

r2 =
ó
µ

p3 (1 + e cos ν)2

From this equation:

∆t =
ó
p3

µ

νeÚ
ν0

dν
(1 + e cos ν)2 (3.12)

where ∆t is the time interval in which the body’s true anomaly increases from ν0
to νe. The integral in equation (3.12) can be evaluated for elliptic, parabolic and
hyperbolic orbits. The resulting expressions are however cumbersome if the orbit
is an ellipse or a hyperbola.
Considering the elliptic orbit, the concept of eccentric anomaly E is then introduced,
defined such that the equation of the elliptic trajectory can be written as:

r = a (1 − cosE)
The angle E can be constructed by using an auxiliary circle, as is shown in Figure
3.5.

Figure 3.5: The eccentric anomaly
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The introduction of this quantity leads to the following expression:

E − e sinE =
ò
µ

a3 (t− τ) (3.13)

where τ is a constant of integration which represents the time of periapsis passage.
The term on the right side of the equation is defined as the mean anomaly

M = n (t− τ)

where
n =

ò
µ

a3

Thus, equation (3.13) can be written in the form

E − e sinE = M (3.14)
Equation (3.14) is known as Kepler’s Equation. It relates position, through the
angle E, to time elapsed after the periapsis passage. In particular, to calculate
where the body is at a given time, this equation have to be solved with a numerical
iteration method. Ones E is known, then it is possible to evaluate the position of
the body along its orbit.

3.1.8 Interplanetary Missions
In order to study missions toward Near-Earth Asteroids, it is necessary to introduce
some basic notions about interplanetary transfers. These are studied under the
hypothesis of the patched conics method. The mission can be divided into three
phases:

• Escape from the sphere of influence of the departure body;

• Heliocentric Transfer Orbit;

• Arrival in the sphere of influence of the target body.
The sphere of influence (SOI) is the spherical region around the celestial body
where the primary gravitational influence on an orbiting object is that body. This
is usually used to describe the areas in our solar system where planets dominate
the orbits of surrounding objects (such as moons) despite the presence of the much
more massive Sun. In a more general sense, the patched conic approximation is
only valid within the SOI.
The general equation describing the radius of the sphere of influence, rSOI of a
planet in the solar system is:

rSOI = D

A
mp

m¤

B 2
5

(3.15)
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where D is the planet’s distance relative to the Sun, mp and ms are the masses of
the planet and Sun, respectively.
In the patched conic approximation, once an object leaves the planet’s SOI, the only
gravitational influence is the Sun, until the object enters another body’s SOI. The
radius of the Earth’s sphere of influence is Ä 106 km; this dimension, if compared
to the extension of the solar system, is negligible.
This thesis does not cover the departure and arrival phases. The only point of
interest is the heliocentric transfer. The spacecraft leaves the Earth sphere of
influence at the initial time with position and velocity coincident with the planet’s
value. At rendezvous with the target at the final time, position and velocity match
the asteroid’s values.

3.2 Fundamentals of Space propulsion
The basic concepts of space propulsion are given in this section. A global overview
of the ideas shared by all propulsive systems is provided, followed by an examination
of electrical thrusters, which are being considered for the investigated missions. As
previously stated, if no external force is applied to a body in space, its trajectory
is a conic section that is totally determined by the body’s position and velocity
at a given moment. The propulsion system can provide a force that modifies the
velocity of the spacecraft, thereby preserving, or altering the trajectory.

3.2.1 Generalities
The theory of propulsion is founded on the "action-reaction" concept, which states
that whenever one object exerts a force on another, the second object exerts an
equal and opposite force on the first.

Figure 3.6: Action and reaction principle [15]
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As a result, carrying onboard something to exchange momentum with is the most
straightforward way to generate thrust in space: thus, propellant is required.
Because all propulsors use the action-reaction principle, it is possible to explain
their behavior in general and introduce some especially significant parameters by
means of a simplified model.
The isolated system in figure 3.7 is used to introduce these concepts. Aligned
velocity vectors are assumed. By definition, this system is not subjected to any
external forces.

Figure 3.7: Momentum conservation scheme

The system of interest is depicted as a rocket accelerating straight up. On the
left side, at time t, the rocket has a mass m and a velocity v relative to Earth,
and hence a momentum mv. On the right, an infinitesimal interval of time dt has
elapsed during which the rocket ejected a portion of its mass, the propellant mass
dmp. However, the remaining mass (m− dmp) has a higher velocity (v + dv). The
velocity increase dv is proportional to the velocity at which the propellant mass
is discharged. The velocity of the propellant mass relative to the rocket can be
expressed as the effective discharge velocity c.
However, this is not the actual exit velocity of the propellant mass. This is due to
the fact that when the propellant is accelerated in the nozzle, it is subjected to
pressure forces as well. At the nozzle exit section, the portion of propellant that is
still inside the system exchanges indeed a pressure force with the part of propellant
that is already outside. The magnitude of this force, known as static thrust, is
determined by the difference between the exit pressure and the ambient pressure.
Anyway, this term is negligible in space propulsion, and c can be approximated as
the propellant exit velocity.
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Thus, the absolute propellant mass velocity can be expressed as c− v.
Within an isolated system, momentum conservation holds true. As a result, the
following relationship may be written:

mv = (m− dmp)(v + dv) − dmp(c− v)

which, neglecting the second degree infinitesimal terms and introducing the propel-
lant flow ṁp, becomes:

m
dv
dt = c ṁp

According to Newton’s second law of motion, since the term on the left is the
product of the body’s mass and acceleration, the term on the right must be the
force applied to the body itself, the thrust:

T = ṁp c (3.16)

Thus, the amount of power required to accelerate the propellant at the velocity
that produces a thrust of intensity T , known as thrust power, is:

PT = 1
2 T c = 1

2 ṁp c (3.17)

Thrust is one of the most crucial propulsion’s performance parameters. Its integral
over a complete mission is called the total impulse

It =
Ú tf

t0
T dt (3.18)

The total impulse per unit weight of the propellant is the specific impulse, Isp:

Isp = It
mpg0

(3.19)

where mp is the total propellant mass and g0 is the gravitational acceleration on
the Earth’s surface. The specific impulse shows how much impulse can be obtained
from a unit weight of propellant, and as one tries to keep weights as low as possible,
it is evident that a high specific impulse is desirable. The specific impulse may
also be interpreted as the time during which a propellant can deliver a force which
equals the propellant’s initial weights [16].
If T and c are constants, the specific impulse can be expressed as:

Isp = c

g0
(3.20)

Thus, neglecting the constant parameter g0, the values of c and Isp are identical.
In fact, both the specific impulse and the effective discharge velocity indicate how
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efficiently the propellant is used to generate thrust.

The space mission’s propulsive cost can be calculated using the total impulse as
well as the characteristic velocity ∆V . The latter parameter represents the ideal
(because no losses or external disturbances are considered) variation of the body’s
velocity across the manoeuvres. It can be defined as:

∆V =
Ú tf

t0

T

m
dt (3.21)

Substituting Equation (3.16) and considering that

ṁp = −dm
dt

Equation (3.21) can be rewritten as:

∆V =
Ú m0

mf

c

m
dm

If the effective discharge velocity is constant, the Tsiolkovsky equation (or Rocket
equation) can be derived in its two formulations:

∆V = c ln m0

mf

⇐⇒ mf = m0e
−∆V

c (3.22)

The Tsiolkovsky equation relates the propulsive cost and the propellant mass
required to complete the mission. Because propellant consumption and propulsive
effort are linked by an exponential relationship, having an effective discharge
velocity that is at least similar to the ∆V is crucial. In fact, if the specific impulse
is too low, the final mass is negligible in comparison to the initial mass, and hence
no payload can be carried, as showed in Figure 3.8.

Figure 3.8: Rocket equation results for different ∆V/c ratios [17]

As a result, a large specific impulse is required. The higher c, the less propellant is
required to complete the maneuver.
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3.2.2 Electric Propulsion
Figure 3.9 presents typical characteristic velocity values for several space missions.

Figure 3.9: Typical Characteristic Velocities [17]

To achieve the desired effective discharge velocities, processes different from the
simple heating of a propellant stream by chemical reaction or by solid element heat
transfer must be employed; for instance, high enthalpy heating of an insulated gas
stream or direct acceleration of it by applied body forces are viable techniques
for achieving the needed c. Either process is most reasonably accomplished by
electrical means [18].
Electric Propulsion can be thus defined as the "acceleration of gases by electrical
heating and/or by electric and magnetic forces" [18]. This definition can be distinct
into three concepts:

• Electrothermal propulsion, where the propellant is heated using electrical power
and then expanded in a suitable nozzle. Thus thrust is produced converting
thermal energy into kinetic energy.

• Electrostatic propulsion, where the propellant is ionized and accelerated by
direct application of electric body forces. In particular, the ions are accelerated
through an electric field and the exit beam is neutralized.

• Electromagnetic propulsion where a ionized propellant stream is accelerated
by interactions of external and internal magnetic fields with electric currents
driven through the stream.

These mechanisms result more than adequate to qualify for the large velocity
increment space missions outlined in Figure 3.9.
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Mathematical modelling of the problem

Regardless of the physical method used to accelerate the propellant, all electrical
thrusters exhibit some common characteristics. In fact, they all transform electrical
power into thrust. This conversion process presents a specific global efficiency that
changes depending on the thruster category under consideration. Mathematically,
this can expressed as:

ηPE = 1
2Tc (3.23)

where η is the global efficiency and PE is the electric power consumption.
This relationship can be inverted to express the effective discharge velocity:

c = 2ηPE
T

Thus, in case of electric propulsion systems, it is possible to raise c (within the
constraints given by present technologies) while accepting low thrust or large power
source’s mass. When compared to chemical rockets, electrical thrusters have indeed
a higher specific impulse and a lower thrust. Figure 3.10 shows typical thrust and
specific impulse values for both chemical and electric propulsion.

Figure 3.10: Characteristics of Propulsion systems[17]

As mentioned, electrical thusters have low thrusts (10 µN − 1N) but high specific
impulse values (200 − 5000). Given these features, electric propulsion is ideal for
long and efficient missions like the ones examined in this thesis
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Chapter 4

Indirect Optimization of
Spacecraft Trajectories

Global properties and mathematical aspects of the indirect method exploited to
optimize space trajectories are presented in this chapter.
As mentioned in Chapter 1, the spacecraft trajectory optimization problem can
be defined as the identification of a trajectory that maximizes or minimizes a
significant quantity. Given the relevance of propellant consumption, which has a
significant impact on the mission’s cost and feasibility, the most common goal is to
minimize it, or equivalently to maximize the fraction of the spacecraft that is not
devoted to it.
Analytical solutions for the optimal trajectory can be obtained in special cases; as a
result, significant solutions must be found through the use of approximated theories
or numerical approaches. The majority of numerical techniques for optimizing
spacecraft trajectories may be divided into three categories:

• Direct methods;

• Indirect methods;

• Evolutionary algorithms.

This chapter focuses on indirect methods, which provide useful theoretical in-
formation about the problem which is dealt with, while also allowing for exact
optimization, within the dynamical model’s limitations and the precision of nu-
merical integration. Because indirect methods are based on the Optimal Control
Theory, this theory’s general concepts will be discussed. Then, a description of the
derived Boundary Value Problem is presented.
The following chapter’s theoretical principles are primarily based on the research
of professors Casalino [19] and Colasurdo [5].
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4.1 Optimal Control Theory
The optimal control theory (OCT), which is based on calculus of variations, is used
in the indirect approach to optimization.
A set of state variables x describes the system, and differential equations govern
the evolution from the initial to the final state:

dx
dt = f(x,u, t) (4.1)

These differential equations depend on:

• x: state variables vector;

• u: control variables vector;

• t: indipendent variable, time.

Considering the analysed case, it is convenient to divide the trajectory between
the initial and final point (external boundaries) into n sub-intervals, which are
defined as arches. The variables are continuous within each arch, but there may be
discontinuities at the arches’ interfaces (internal boundaries). The jth arc begins
at tj−1+ and finishes at tj− , with respectively xj−1+ and xj− as state variables (j−
and j+ indicate values just before and after point j).
In general, the boundary conditions are both mixed and non-linear. As a result,
nonlinear relations between state and temporal variables at the external and internal
boundaries are involved.These constraints are collected into a vector χ, which is
expressed as:

χ
1
x(j−1)+ ,xj− , t(j−1)+ , tj−

2
= 0 j = 1, . . . , n (4.2)

As steted in Chapter 1 the optimal problem can be defined as the search for the
extremal values (minima or maxima) of the cost function J . Its general form is:

J = ϕ
1
x(j−1)+ ,xj− , t(j−1)+ , tj−

2
+
Ø
j

Ú tj−

t(j−1)+

Φ(x(t),u(t), t) dt j = 1, . . . , n

(4.3)
where

• ϕ is a function of state variables’ and time’s values at internal and external
boundaries;

• integral of Φ, which is a function of state variables’, control variables’ and
time’s values at each instant.
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It is worth noting that the functional J can be rewritten in either the Lagrange
formulation (ϕ = 0) or the Mayer formulation (Φ = 0). To define the optimization
problem in this thesis, Meyer formulation is employed.
The functional can then be reformulated by including Lagrange multipliers µ
(constants associated with boundary conditions) and adjoint variables λ (associated
with the differential equations). The modified functional J∗ can be written as:

J∗ = ϕ+ µTχ+
Ø
j

Ú tj−

t(j−1)+

λT (f − ẋ) dt (4.4)

J and J∗ must clearly coincide if boundary constraints and state equations are
satisfied. It is possible to differentiate J∗ and obtain its first variation:

δJ∗ =
A

−H(j−1)+ + ∂ϕ

∂t(j−1)+

+ µT ∂χ

∂t(j−1)+

B
δt(j−1)+

+
A
Hj− + ∂ϕ

∂tj−
+ µT ∂χ

∂tj−

B
δtj−

+
A
λT(j−1)+ + ∂ϕ

∂x(j−1)+

+ µT
C

∂χ

∂x(j−1)+

DB
δx(j−1)+

+
A

−λTj− + ∂ϕ

∂xj−
+ µT

C
∂χ

∂xj

DB
δxj−

+
Ú tj

t(j−1)+

AA
∂H

∂x + λ̇T
B
δx + ∂H

∂u δu
B

dt j = 1, . . . , n,

(4.5)

where the Hamiltonian of the system has been introduced

H = λT f . (4.6)

For each permissible variation along the path (δx and δu), as well as at boundary
points (δx(j−1)+ , δxj+ , δt(j−1)+ , δtj−), the first variation of J∗ must be null as a
necessary condition for optimality.
The Euler–Lagrange equations for adjoint variables (Equation (4.7)) and algebraic
equations for the control variables (Equation (4.8)) are obtained by nullifying the
coefficients of δx and δu:

dλ
dt = −

A
∂H

∂x

BT
(4.7)

A
∂H

∂u

BT
= 0 (4.8)

Control variables are in general constrained, that is, they are limited to a specific
admissible domain. The absolute value of thrust, for example, must be positive
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and cannot exceed its maximum value Tmax. In these cases, Equation (4.8) may
not provide the optimal control. However, according to the Pontryagin Maximum
Principle, the optimal control value in each point of the trajectory is the one
that maximizes (if maxima for J are required) or minimizes (if minima for J are
required) the Hamiltonian in that point and falls in the admissible domain. The
system exhibits a peculiarity if the Hamiltonian is linear with respect to one of
the constrained controls. Indeed, since the control does not appear explicitly in
the Equation (4.8), it cannot be determined. In this circumstance, there are two
alternatives:

• if, in Equation (4.6), the constrained control coefficient is not null, the Hamilto-
nian is maximized with the maximum value for the control when the coefficient
is positive, or with the minimum one when the coefficient is negative. This is
commonly termed as bang-bang control;

• if, in Equation (4.6), the constrained control coefficient is null, a (singular
arc) occurs. The cancellation of every derivative of the coefficient itself, with
respect to time, must then be imposed until one of them does not explicitly
contain the control. After that, the optimal control is obtained by placing the
last derivative to null.

Finally, the coefficients of δx(j−1)+ , δxj− , δt(j−1)+ , δtj− are nullified to obtain the
optimum boundary conditions:

−λTj− + ∂ϕ

∂xj−
+ µT

C
∂χ

∂xj−

D
= 0 j = 1, . . . , n , (4.9)

λTj+ + ∂ϕ

∂xj+
+ µT

C
∂χ

∂xj+

D
= 0 j = 0, . . . , n− 1 , (4.10)

Hj− + ∂ϕ

∂tj−
+ µT ∂χ

∂tj−
= 0 j = 1, . . . , n , (4.11)

−Hj+ + ∂ϕ

∂tj+
+ µT ∂χ

∂tj+
= 0 j = 0, . . . , n− 1 . (4.12)

By removing the constants Lagrange multipliers from the previous set of Equations
(4.9 - 4.12), optimum boundary conditions and the ones imposed on the state
variables, given by Equation (4.2), can be collected in a single vector σ:

σ
1
x(j−1)+ ,xj− ,λ(j−1)+ ,λj− , t(j−1)+ , tj−

2
= 0 j = 1, . . . , n (4.13)

Equation (4.13), together with the state (4.1) and adjoint (4.7) differential equations
describes a multipoint boundary value problem (MPBVP).
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4.2 Boundary Value Problem
According to the optimal control theory, the optimization problem is formulated as
a Boundary Value Problem (BVP) in which some of the variables’ initial values
are unknowns. The solution to this problem consists in determining which initial
values allow the boundary conditions (imposed and optimal) to be satisfied, once
the set of differential equations is integrated.
The described problem is characterized by some peculiarities:

• arches are used to split the integration domain into subintervals. The differ-
ential equations’ formulation is constant within each arch, but it may differ
from one arch to the next;

• in general, the duration of each arch is unspecified;

• boundary conditions can be non-linear and include the variables’ value at both
the external and internal boundaries;

• at the internal boundaries, the variables may be discontinuous, and their
values after this discontinuity may be unknown.

The solution of Boundary Values Problems is the main challenge when dealing with
indirect optimization methods. This solution is found by breaking down the BVP
into a series of sub-problems, which are then solved using the well-known Newton
method.
To overcome the problem of the arches’ duration being indefinite, the independent
variable t is substituted with a new variable ε, which, in the jth arc, is defined as:

ε = j − 1 + t− tj−1

tj − tj−1
= j − 1 + t− tj−1

τj

where τj is the unkown duration of the jth subinterval. Internal and external
boundaries are therefore established.
The resolution method is described considering a general system of equations (given
by Equations (4.1) and (4.7)), with controls replaced by expression (4.8):

dy
dt = f∗(y, t) (4.14)

where state and adjoint variables have been gathered in a new variable vector
y = (x,λ). Constant parameters, such as the duration of subintervals τj, are also
present in the stated problem; consequently, it is convenient to consider a new
vector z = (y, c), which includes state variables, adjoint variables, and constant
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parameters.
Thus, the differential equations system can be written as:

dz
dε = f(z, ε) (4.15)

Considering the state and adjoint variables vector, the second member of Equation
(4.15) can be expressed as:

dy
dε = τj

dy
dt (4.16)

while for the constants’ vector, the second member of Equation (4.15) is clearly
null:

dc
dε = 0 (4.17)

The imposed and optimal boundary conditions are usually expressed as:

Ψ(s) = 0 (4.18)

where, the y vector’s values at the external and internal boundaries and the constant
parameters are included in the vector s:

s = (y0, . . . ,yn, c) (4.19)

Some of the state and adjoint variables’ initial values are unknown, as well as
several constant parameters. To determine the unknowns that allow the boundary
conditions to be satisfied, an iterative procedure is used. The methodology is here
described considering all of the initial values as unknown; obviously, it becomes
simpler if one or more initial values are explicitly defined.
Initially, tentative values are assumed; it is critical that these starting values are
sufficiently close to the optimal solution to ensure convergence. After the first
iteration, the initial values are those obtained at the conclusion of the previous
iteration. Thus, if the rth iteration is running, the following equality holds:

z(0) = pr (4.20)

where pr are the rth iteration’s initial values.
The numerical integration of equations (4.15) is the first step; values of the state
variables are determined at each boundary, and the error on the boundary conditions
Ψr is obtained. Thus, a variation ∆p on the initial values is required: this variation
causes changes to the error on the boundary conditions ∆Ψ, which can be written
as:

∆Ψ =
C
∂Ψ
∂p

D
∆p (4.21)
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In order to satisfy Equation (4.18), it is necessary that ∆Ψ = −Ψr. That is, the
variation on the initial values can be expressed as:

∆p = pr+1 − pr = −
C
∂Ψ
∂p

D−1

Ψr (4.22)

This process is followed until the boundary conditions are fulfilled with the required
accuracy.
The matrix derived in the second term of equation (4.22) can be obtained both
analytically and numerically.
If the analytical approach is considered, it is useful to write the matrix as the
product of two matrices C

∂Ψ
∂p

D
=
C
∂Ψ
∂s

D C
∂s
∂p

D
(4.23)

where the first may be easily calculated by deriving the boundary conditions with
regard to the involved variables. The second matrix, on the other hand, comprises
the boundary values of: C

∂z
∂p

D
= [g(ε)] (4.24)

This is derived by integrating the system of differential equations (4.15) with respect
to the initial values:

[ġ] = d
dε

C
∂z
∂p

D
=
C
∂

∂p

A
dz
dε

BD
=
C
∂f
∂p

D
(4.25)

Equation (4.25) can be reformulated by exploiting the principal system’s Jacobian:

[ġ] =
C
∂f
∂z

D C
∂z
∂p

D
=
C
∂f
∂z

D
[g] (4.26)

As mentioned, the matrix derived in the second term of equation (4.22) can also
be obtained numerically. In fact, adding a certain ∆p to the ith component of p
and proceeding with the integration of Equation (4.15), it is possible to derive the
related change in the boundary conditions ∆Ψ(∆p). Thus, through linearization, it
is possible to calculate the corresponding row as: ∆ΨT/∆p. In general, the numer-
ical procedure allow to reduce the computational time. However, the convergence
of this method is not certain.

The linearization used to determine the correction ∆p, given by Equation (4.22),
introduces inaccuracies that may invalidate the method’s convergence. Steps to
improve the procedure have been implemented to avoid this issue:
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• The applied correction ∆p is just a fraction of the one calculated by equation
(4.22):

pr+1 = pr +K1∆p (4.27)

where K1 ∈ [0.1, 1].
This can prevent the adopted procedure from moving away from the solution
of the problem.

• At each iteration, the maximum error on the boundary conditions Er+1
max is

compared to the one calculated in previous iteration Er
max. If

Er+1
max < K2E

r
max

the next iteration can be performed. Since the boundary conditions’ error
may grow in the first iterations, the value of K2 must be greater than one. In
general K2 ∈ [2, 3].

• If the error on the boundary conditions, associated with the most recent itera-
tion, is too high in comparison to the prior one, the correction is bisectioned.
That is:

pr+1 = pr +K1∆p/2 (4.28)

The new error is then compared to the previous one. If necessary, the bisection
may be applied again, with a maximum of 5 times. If the new error remains
greater than the old one, then the calculation is stopped.
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Chapter 5

Problem Statement

Notions and generic equations described in the previous chapter are applied to the
missions covered in this study. Moreover, reference parameters to formulate the
problem in a dimensionless form are provided. Finally, a set of suitable boundary
conditions is given in order to define the mission.
The theoretical concepts presented in the following chapter are mainly based on
the works of professors Casalino [20] and Colasurdo [5], and professor Prussing [21].

5.1 Space Trajectories Optimization
A heliocentric reference system is adopted to study optimal trajectories, and, given
the considerations highlighted in Chapter 3, the problem may be analysed using
the approximation of the Two-Body Problem. Indeed, the hypothesis of a point
mass spacecraft under the effect of a single body is commonly used in preliminary
study of spacecraft trajectories. Moreover, since the patched-conic approximation
is frequently utilized in the early studies, the two-body model can be used to
deal with the investigated interplanetary trajectories. Only the heliocentric legs
are considered; at the patch points with the planetocentric legs, proper boundary
conditions take into account the manoeuvres within the planets’ spheres of influence.
The state of the spacecraft is described by position r, velocity v, and mass m, and
the state equations are:

dr
dt = v, (5.1)

dv
dt = g + T

m
, (5.2)

dm
dt = −T

c
, (5.3)
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where r is the position vector of the satellite with respect to the Sun, v is the
velocity vector of the spacecraft and T is the thrust vector. g is the gravitational
acceleration, that can be expressed as g = −µ¤r/r3, where µ¤ is the Sun’s
gravitational parameter. The propellant mass-flow rate is expressed by the ratio of
the thrust magnitude to the constant effective exhaust velocity c.
As mentioned, according to the Theory of Optimal Control, the Hamiltonian can
be stated as:

H = λT f , (5.4)

and substituting the state equations, the following expression is obtained

H = λTr v + λTv
3
g + T

m
u
4

− λm
T

c
, (5.5)

where u, a unit vector in the thrust direction, has been introduced.
The thrust direction and magnitude are typically the control variables, and according
to the Pontryagin Maximum Principle, H must be maximized in order to maximize
the performance index J .
By inspection, the Hamiltonian is thus maximized over the choice of thrust direction
by aligning the unit vector u parallel to the adjoint vector λv. Because of the
significance of the vector λv, Lawden [3] termed it the primer vector λV.
The optimal thrust unit vector is then in the direction of the primer vector,
specifically:

u = λV

λV
(5.6)

Moreover, introducing the Switching Function:

SF = λTv
m

u − λm
c

= λV
m

− λm
c
, (5.7)

equation (5.5) can be rewritten as:

H = λTr v + λTvg + TSf (5.8)

Thus, to maximize the Hamiltonian over the choice of the thrust magnitude T , the
following control law is assumed:

T =
I
Tmax for SF > 0

0 for SF < 0 ,
(5.9)

that is, the thrust magnitude switches between its limiting values of 0 (an NT null
thrust arc) and Tmax (an MT maximum-thrust arc) each time SF (t) passes through
0 according to Equation (5.9) [21]. Figure 5.1 shows an example switching function
for a three-burn trajectory.
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Figure 5.1: Three-burn switching function and thrust profile [21]

When SF remains 0 for a finite period of time, singular arcs arise. In this cases,
equation (5.8) is not sufficient to decide the optimal thrust magnitude. However,
singular arcs are here excluded because, generally, they may be required during
atmospheric flight.

5.2 Equations in spherical coordinates
Vectorial equations must be projected onto a suitable reference system of coordinate.
Considering the absence of Coriolis and inertial accelerations, choosing an inertial
reference frame is the best option. A spherical set of coordinates is adopted within
this reference frame (Figure 5.2). The equatorial plane of the central body — in
this case, the Sun — serves as the basis for this reference frame.

Figure 5.2: Spherical coordinates [22]
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The position vector of the spacecraft, within this coordinate system, can be ex-
pressed as:

r =

 r
θ
φ

 (5.10)

where r is the distance from the Sun, θ is the longitude and φ is the latitude.
The velocity vector is written using local East, North, Up (ENU) coordinates :

v =

 u
v
w

 . (5.11)

Figure 5.3 shows the physical orientation of the velocity components,

Figure 5.3: Velocity components in the horizon (N-E) plane

where γ and ψ represent the flight path angle and the heading angle respectively.
As a result, the state vector may be expressed as:

x =



r
θ
φ
u
v
w
m


. (5.12)

Projecting the state equations in the chosen reference frame, the following expres-
sions are obtained:
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dr
dt = u (5.13)

dθ
dt = v

r cosφ (5.14)

dφ
dt = w

r
(5.15)

du
dt = − 1

r2 + v2

r
+ w2

r
+ T

m
sin γT (5.16)

dv
dt = −uv

r
+ wv

r
tanφ+ T

m
cos γT cosψT (5.17)

dv
dt = −uv

r
+ wv

r
tanφ+ T

m
cos γT cosψT (5.18)

dw
dt = −uw

r
− v2

r
tanφ+ T

m
cos γT sinψT (5.19)

dm
dt = −T

c
(5.20)

where γT and ψT are respectively the thrust flight path angle and heading angle,
which represent the controls that determine the thrust’s direction.
The Hamiltonian’s expression can also be reformulated:

H = λru+ λθ
v

r cosφ + λφ
w

T
+

+ λu

A
− µ

r2 + v2

T
+ w2

T
+ T

m
sin γT

B
+

+ λv

3
−uv

r
+ vw

r
tanφ+ T

m
cos γT cosψT

4
+

+ λw

A
−uw

r
− v2

r
tanφ+ T

m
cos γT sinψT

B
− λm

T

c

(5.21)

It is thus possible to derive the optimal values of γT and ψT by imposing equal to
null the partial derivatives of the Hamiltonian, based on what was discussed in the
previous chapter. Mathematically:A

∂H

∂u

BT
= 0 (5.22)

where u = [γT ψT ] is the control vector.
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Equations (5.23, 5.24, 5.25) formulate optimal values for the control variables.

sin γT = λu
λV

(5.23)

cos γT cosψT = λv
λV

(5.24)

cos γT sinψT = λw
λV

(5.25)

where
λV =

ñ
λ2
u + λ2

v + λ2
w (5.26)

is the primer vector’s absolute value.
The differential equations for adjoint variables λ = [λr λθ λφ λu λv λw λm] are the last
remaining set of equations to be defined. These are provided by the Euler-Lagrange
equations:

dλ
dt = −

A
∂H

∂x

BT
(5.27)

which, for the analysed problem, gives:

λ̇r = 1
r2

C
λθ

v

cosφ + λφw + λu

3
−2
r

+ v2 + w2
4

+

+λv(−uv + vw tanφ) + λw
1
−uw − v2 tanφ

2é
(5.28)

λ̇θ = 0 (5.29)

λ̇φ = 1
r cos2 φ

1
−λθv sinφ− λvvw + λwv

2
2

(5.30)

λ̇u = 1
r

(−λrr + λvv + λww) (5.31)

λ̇v = 1
r

C
−λθ

1
cosφ − 2λuv + λv(u− w tanφ) + 2λwv tanφ

D
(5.32)

λ̇w = 1
r

(−λφ − 2λuw − λvv tanφ+ λwu) (5.33)

λ̇m = T

m2λV (5.34)
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5.3 Dimensionless quantities
Reference quantities to formulate the problem in a dimensionless form are presented
in this section. Reference values for distance, time, velocity, acceleration, and mass
are provided. As a consequence, every dimensionless quantity presented in this
work may be expressed in dimensional form, by exploiting these reference values.

5.3.1 Distance reference value
The astronomical unit

1 AU = 149597870.7 km ,

defined as the mean distance between the Earth and the Sun, serves as a distance
reference. This allows to work with numbers in the order of units, instead of several
millions of kilometers. As a matter of fact, analysing trips to NEAs, the spacecraft’s
distance from the Sun seldom surpasses 3 AU or goes below 0.7 AU. Therefore,
the reference distance is exactly:

rconv = 1 AU

5.3.2 Time reference value
One (sidereal) year represent a complete revolution of the Earth around the Sun;
in other word, Earth covers a 2π rad angle in one sidereal year:

1 year → 2π rad

Radians can therefore be used to measure time instead of years.
As a result of this consideration, the reference time can thus be defined as:

tconv = 365 days
2π = 58.13244088 days

Epoch J2000, a standard point in time used as a reference in astronomy, is employed
as the starting date from which time is measured. J2000 is precisely defined as an
exact point that is very close to noon, January 1, 2000 GMT, i.e., precisely Julian
date 2451545.0. Thus, for example,

if dimensionless t = 138.9927 −→ date = 14/2/2022

5.3.3 Velocity reference value
Based on what has been discussed about distances taking on a dimensionless form,
it is straightforward to assume that velocities will be linked to a characteristic
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velocity of the Earth’s orbit. In practice, all velocities are expressed as a multiple
of the Earth’s circular velocity, which is defines as:

Vconv =
ó
µ¤
rconv

= 29.784642455 km/s

With this option, all of the velocities are around 1, hence the reason for this decision
is similar to that of the dimensionless distance.

5.3.4 Acceleration and mass reference values
The reference acceleration can once again be found by looking at the Earth’s orbit.
Indeed, it is expressed as:

aconv = µ¤
r2
conv

= 5.930063858 × 10−6 km/s2

In terms of mass, the starting mass of the spacecraft serves as a reference point.
Thus, the mass will be equal to 1 at the start of the mission, and the end mass will
be equal to the ratio of the final and starting masses.

5.4 Boundary Conditions
Once the set of differential equations and the dimensionless parameters have been
determined, it is required to introduce the problem’s boundary conditions. As
previously stated, the proposed space mission departs from Earth at time t0 and
visits N asteroids at different dates tN , with at most, N = 3. A rendezvous
manoeuvre is executed for each asteroid, with a stay duration of about two months;
after that, the spacecraft will continue its journey towards the next asteroid. Thus,
diverse boundary conditions can be specified at main points during the mission.
In particular, considering the more generic type of mission (N = 3), the following
points will be constrained:

• Departure from Earth → 0

• Arrival to the first asteroid → 1−

• Departure from the first asteroid → 1+

• Arrival to the second asteroid → 2−

• Departure from the second asteroid → 2+

• Arrival to the third, and final, asteroid → f
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Departure From Earth

The following constraints for the spacecraft’s position and velocity vectors and for
its initial mass may be applied at the time of departure from Earth:

r(t0) = rEarth(t0)

v(t0) = vEarth(t0)

In other words, spacecraft position and velocity are assumed identical to those of
the Earth at time t0, even though its journey begins outside the Earth’s sphere
of influence. This is possible since the sphere of influence’s dimension is relatively
small compared to the distance between Earth and Sun, thus can be neglected.
Clearly, at the beginning of the mission the initial mass is:

m(t0) = 1

More properly, the initial mass is typically a function of the hyperbolic excess
velocity v∞0 = v(t0) − vEarth(t0) [5]:

m(t0) = f(v∞0)

Arrival at/Departure from the first asteroid

Keeping in mind the previous argument, the spacecraft’s position and velocity at
the conclusion of the first arc must be the same as the first asteroid:

r(t1−) = rasteroid1(t1−)

v(t1−) = vasteroid1(t1−)

The second arc begins at t1+, after a stay of around two months. Thus t1+ is
defined as:

t1+ = t1− + tstay1

The following boundary conditions apply while departing from the first asteroid:

r(t1+) = rasteroid1(t1+)

v(t1+) = vasteroid1(t1+)

Considering no propellant consumption throughout the stay duration, between t1−
and t1+ the spacecraft’s mass remains constant:

m(t1+) = m(t1−)
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Arrival at/Departure from the second asteroid

The second arc comes to an end when the second asteroid is reached (t2−). The
spacecraft’s position and velocity vectors must be the same as the second asteroid
at this time:

r(t2−) = rasteroid2(t2−)

v(t2−) = vasteroid2(t2−)

The third arc begins at t2+, after a stay of around two months. Thus t2+ is defined
as:

t2+ = t2− + tstay2

While leaving the second asteroid, the following boundary conditions apply:

r(t2+) = rasteroid2(t2+)

v(t2+) = vasteroid2(t2+)

Again, no propellant consumption is taken into account for the duration of the
stay, therefore:

m(t2+) = m(t2−)

Arrival to the final asteroid

The final asteroid’s arrival is clearly handled the same as the previous ones; the
spacecraft must present the final target’s position and velocity vectors. Mathemati-
cally:

r(tf ) = rasteroidf
(tf )

v(tf ) = vasteroidf
(tf )

The final mass mf is the performance index which is maximized.
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Chapter 6

Resolution methods

As previously stated, the problem presented in this thesis is solved via an indirect
optimization algorithm that makes use of shooting techniques. The numerical
code’s Flowchart is depicted in Figure 6.1.
The code’s executable file requires a set of data inputs to begin the analysis. In
particular:

• calculation’s parameters, as: number of iterations, K1 and K2 parameters
introduced in Chapter 4;

• spacecraft’s features, as: thrust coefficient, initial mass;

• trajectory’s characteristics, as: mission duration, departure time from Earth,
arrival time to intermediate asteroid(s), stay duration.

A text file providing the solution’s initial guess is also needed. The convergence to
the optimum is typically obtained if the tentative solution is sufficiently close to
the optimal one.

In this chapter, suitable procedures to define the initial guess and then to find
multiple optimized rendezvous missions are described.
First, the tentative solution’s general structure is presented. The methodology for
identifying target asteroids is next discussed. In the following section, procedures
for estimating the initial guess to quickly obtain solutions are detailed. Since
the current work searches missions to one, two, or three targets, the estimation
of tentative solutions must be carried out separately for each of these scenarios.
Finally, the obtained solutions are corrected by analysing the switching function
profile.

48



Resolution methods

6.1 Tentative Solution Definition
Initial conditions are contained in the tentative solution file, whose general form
for the analysed case is:

t0 t1 λθ0−1

t2 λθ1−2 t3
λθ2−3 t4 λθ3−4

t∗

tstayi

ri θi φi
ui vi wi
λri λφi λui
λvi λwi V∞ 0
r0 θ0 φ0
u0 v0 w0
λr0 λφ0 λu0
λv0 λw0 m0



with i = 1, 2, 3

where:

• [t0 t1, t2, t3, t4, t∗] are respectively the departure time, the first, second, and
third rendezvous timings, the arrival time, and the optimal time to perform
the mission;

• [λθ0−1 , λθ1−2 , λθ2−3 ,λθ3−4 ] are respectively the value of λθ for the first, second,
third and fourth arc. Indeed, in each arc the adjoint variable λθ is constant.

• [tstay1 , tstay2 , tstay3 ] are the stay time at each intermediate asteroid. The tstayi

is defined as the departure time from the ith intermediate asteroid minus the
arrival time at the ith intermediate asteroid.

• [r0, θ0, φ0, u0, v0, w0, λr0 , λφ0 , λu0 , λv0 , λw0 ] are the state and adjoint variables
at the departure.

• [r1, θ1, φ1, u1, v1, w1, λr1 , λφ1 , λu1, λv1, λw1] are the state and adjoint variables
at the departure from the first intermediate asteroid.

• [r2, θ2, φ2, u2, v2, w2, λr2 , λφ2 , λu2, λv2, λw2] are the state and adjoint variables
at the departure from the second intermediate asteroid.

• [r3, θ3, φ3, u3, v3, w3, λr3 , λφ3, λu3, λv3, λw3] are the state and adjoint variables
at the departure from the third intermediate asteroid.

• [V∞ 0,m0] are the departure hyperbolic excess velocity and the initial mass.
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This file represents the starting point for the integration of the differential equations.
To obtain the desired solution, the initial guess has to be carefully constructed.
The numerical method employed is indeed sensible to the variation of the initial
conditions. At each iteration, the implemented numerical code updates the start-
ing values according to the distance of the obtained solution from the boundary
conditions imposed. Once the requested accuracy is obtained (boundary conditions
error ≤ 10−7), the iterations stop and the optimal solution is found. If the initial
guess is not precise enough, the numerical method does not converge and the error
constantly grows: thus the iteration chain is stopped.

Figure 6.1: Numerical Code Flowchart

6.2 Target asteroids selection
A crucial step to perform the mission is the selection of the target asteroids. Based
on what has been covered in Section 2.1.1, the number of potential targets is
huge. For this reason, it is convenient to narrow the field to asteroids with suitable
characteristics for the considered mission. To obtain solutions with a low propellant
consumption and a reduced duration, asteroid’s orbital parameters and their phase
shift angles (∆θ) with Earth are taken into account. This search is performed by
exploiting the JPL Small-Body Elements Tables [23], which give:

• asteroid’s name or designation, depending on whether the asteroid is Numbered
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or Unnumbered;

• epoch of the elements represented as the Modified Julian Date (MJD), which
is defined as the Julian date - 2400000.5

• semi-major axis of the orbit [AU];

• eccentricity of the orbit;

• inclination of the orbit with respect to the J2000 ecliptic plane [deg];

• argument of perihelion (J2000 - ecliptic) [deg];

• longitude of the ascending node (J2000 - Ecliptic) [deg];

• mean anomaly at epoch [deg].

First of all, the selection based on the asteroid’s orbital parameters is conducted,
choosing asteroids with the following features:

1. semi-major axis:
0.80AU < a < 1.20AU ;

2. eccentricity:
e < 0.20;

3. inclination:
i < 5◦.

In the second place, a departure window from 2025 to 2035 has been fixed. Consider-
ing mission duration between two and four years, an arrival window to the target is
also established. Thus, the analysis on the phase angles between Earth and selected
asteroids, at arrival time, can be conducted. Starting with the mean anomaly at
epoch (M0) for each asteroid, the position after a time t can be calculated via

M = M0 +
ò
µ¤
a3 t (6.1)

with µ¤ being the gravitational constant of the Sun, and a being the semi-major
axis of the asteroid. As mentioned in Chapter 3, to model the movement of celestial
bodies on their orbit, Kepler’s equation (3.14) is needed. There exists a number
of ways to solve this equation, e.g. iterative methods like Newton’s method and
Halley’s method. In this work the former is implemented. The root of the function:

f(E) = E − e sinE −M = 0
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has to be found. This leads to the iteration:

Ei+1 = Ei − Ei − e sinEi −M

1 − cosEi
Once the eccentric anomaly E is found, the calculation of the position vector

r =

rθ
φ


of the asteroid, at specific arrival time, is straightforward. The same procedure
is applied also for Earth; this allows the derivation of the phase shift angle (∆θ)
between Earth and asteroids.
Asteroids with a ∆θ < 50◦ are chosen.

6.3 Tentative Solution estimation
Due to the intrinsic difficulty of trajectory optimization, convergence problems are
generally not simple to manage. In these cases, the user’s experience guides the
convergence process, as each problem may require its peculiar approach [24].
In this section, procedures to estimate the initial guess to quickly obtain solutions
are described. The present work searches missions to one, two or three targets;
tentative solutions estimation has to be characterized for each of these cases sepa-
rately.
For one-target missions, it can be easily found as further explained later on in
this chapter. Initial guesses for two-target mission can be derived by exploiting
one-target missions’ tentative solution. Indeed, starting from the latter and "adding"
an intermediate asteroid, the convergence is more easily achieved. Similarly, three-
target missions’ tentative solutions can be obtained from those used for two-target
missions.

One-target missions

Since one-target missions have a lower number of unknown values, tentative solution
structure is simplified. In particular:

t0 tf λθ0−1

t∗

V∞ 0 r0 θ0
φ0 u0 v0
w0 λr0 λφ0

λu0 λv0 λw0

m0


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Given the considerations in Section 5.4, it is possible to define the position vector
of the spacecraft at the departure

r0 =

r0
θ0
φ0


once the initial time (t0) is fixed. This is defined with respect to the arrival time
(tf ) to the target and duration of the entire mission. V∞0 is set null considering the
spacecraft outside the Earth’s sphere of influence at the departure time. The initial
mass, expressed dimensionless, is m0 = 1; t∗ is fixed null, considering rendezvous
missions. Concerning the adjoint variables, these are imposed to be small, but are
not precisely defined.

Two-target missions

As previously stated, initial guesses for two-target missions can be generated from
the solutions of one-target missions. The first step is to determine an intermediate
asteroid to include in the spacecraft’s journey, as well as an appropriate rendezvous
time with it (t1).
The appropriate intermediary asteroid must be chosen depending on the spacecraft’s
trajectory from Earth to the final destination. The implemented numerical code
determines the temporal evolution of the spacecraft’s position vector:

r(t) =

r(t)θ(t)
φ(t)


It is thus possible to calculate the relative position of asteroids in relation to the
spacecraft using this data.
The selection of the intermediate asteroid is then made based on two primary
criteria:

• its orbital parameters must be similar to those of the final target;

• at approximately half of the mission’s duration, its relative position to the
spacecraft must satisfy the following requirements:

∆r ≤ k1

∆θ ≤ k2

∆φ ≤ k3

with k1 = 0.1 AU , k2 = 15◦ and k3 = 5◦.
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Once the intermediate asteroid, as well as an appropriate rendezvous time with
it, are obtained, the two-target mission’s tentative solution can be derived. Its
framework is:



t0 t1 λθ0−1

tf λθ1−2

t∗

tstay1 r1 θ1
φ1 u1 v1
w1 λr1 λφ1

λu1 λv1 λw1

V∞ 0 r0 θ0
φ0 u0 v0
w0 λr0 λφ0

λu0 λv0 λw0

m0



In the first place, the one-target missions’ initial guess must be edited replacing tf
with t1.
One iteration of the implemented numerical code gives the unknown variables (r, θ,
φ, u, v, w, λr, λφ, λu, λv, λw), at t1. λθ1−2 can be set equal to λθ0−1 at first. tstay1
is set to null in order to force the old path to be followed. When this parameter
is requested as an input from the numerical code executable file, however, it is
set to one, implying that the stay time is nearly two months. All other unknown
parameters are derived from the tentative solution of the single-target mission.

Three-target missions

Tentative solutions for three-target missions can be likewise derived from those
regarding two-target missions. Starting with the spacecraft path for a two-target
mission, the selection of a second intermediate asteroid can be carried out as
previously explained.
Once the second intermediate asteroid, as well as an appropriate rendezvous time
with it (t2), are obtained, the three-target mission’s tentative solution can be
derived. Its framework is:
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

t0 t1 λθ0−1

t2 λθ1−2 tf
λθ2−3

t∗

tstay1 tstay2 r1
θ1 φ1 u1
v1 w1 λr1
λφ1 λu1 λv1

λw1 r2 θ2
φ2 u2 v2
w2 λr2 λφ2

λu2 λv2 λw2

V∞ 0 r0 θ0
φ0 u0 v0
w0 λr0 λφ0

λu0 λv0 λw0

m0


First, the two-target missions’ initial guess must be edited replacing tf with t2.
One iteration of the implemented numerical code gives the unknown variables (r, θ,
φ, u, v, w, λr, λφ, λu, λv, λw), at t2. λθ2−3 can be set equal to λθ1−2 at first. The
definition of tstay2 is similar to that of tstay1. It is initially set to null in order to
force the old path to be followed; it is set to one when this parameter is requested
as an input from the numerical code executable file. All other unknown parameters
are derived from the tentative solution of the two-target mission.

6.4 Trajectory analysis based on switching func-
tion

Once convergence is achieved, the resulting solution may exhibit one or both of
these shortcomings:

• SF (t0) < 0, which indicates that, at the departure time, the spacecraft is not
thrusting. Therefore, the first section of the trajectory is unnecessary: the
optimal trajectory begins when the spacecraft uses thrust for the first time.
The departure time can be then postponed until the Switching Function is
positive;

• SF (tf) < 0 which indicates that, at the arrival time, the spacecraft is not
thrusting. This means that the final segment of the trajectory is a pointless

55



Resolution methods

coasting arch, thus with no propulsion. The arrival time can be then anticipated
until the Switching Function is positive.

These two factors are taken into account, and the solutions obtained are refined by
adapting the initial and final times to achieve optimal mission duration.
These modifications are clearly linked to small or null changes in the payload
fraction, as they simply imply the removal of unnecessary portions of the trajectory.

Figure (6.2) shows an example of the outcome of this analysis, for a single-target
mission. The revised solution, as previously noted, presents a postponed departure
time, an anticipated arrival time (resulting in a lower mission duration), and no
∆V modification, with respect to the initial solution.

Figure 6.2: Correction of a single-target mission based on the Switching Function
analysis
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Chapter 7

Results

In this Chapter the results obtained from the trajectory optimization towards
asteroids are presented. Near-Earth Numbered and Unnumbered Asteroids are
considered as potential targets (whose orbital elements are available on JPL small-
body elements database).
Among these targets, four specific asteroids (Table 7.1), particularly relevant from
a scientific point of view, will be highlighted.

Asteroid
2009 CV

2013 WA44
2014 YD
2018 LQ2

Table 7.1: List of Asteroids recommended for scientific relevance

Before entering the particulars of the solutions, the architecture of this chapter is
explained.
The first section focuses on optimal missions towards a single target. Sections two
and three illustrate missions towards two and three targets, respectively.
For each mission, the following features are taken into account:

- orbital elements of the involved asteroids;

- asteroid’s ∆θ with respect to the Earth at arrival date;

- departure, arrival date and duration;

- ∆V for the entire mission;

- satellite’s final mass.
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Final masses and duration are expressed dimensionless.
For each section, different plots highlighting key aspects of the most interesting
missions are showed. These plots, in particular, depict:

• satellite trajectory projected on the x− y plane, to analyse the spacecraft’s
specific path. A bidimensional plot was chosen due to the low orbit inclination
of the involved celestial bodies (< 5◦);

• aphelion and perihelion distance profiles, to investigate how the mission is
carried out and whether the phase shift angle ∆θ between Earth and the
target asteroid is optimal;

• semi-major axis and eccentricity profiles;

• Switching Function and thrust profiles, to evaluate the propelled and coasting
portions of the mission.

It is worth noting that the correction based on the Switching Function, provided
in section 6.4, has been adopted for each mission.

7.1 One-target missions
Missions from Earth to a final target are presented in this section. Those listed on
Table 7.2 have Numbered asteroids as a target. The following ones, listed on Table
7.4, consider the asteroids recommended for scientific relevance (Table 7.1) as a
target.

Mission n◦ Asteroid Departure Date Arrival Date Duration ∆V(km/s) mf

1 2012 UV136 19/12/2027 14/12/2029 12.50 2.7631 0.9303
2 Apophis 23/6/2026 23/6/2028 12.57 4.5131 0.8887
3 2014 EK24 19/1/2025 12/4/2027 14.00 3.6556 0.9088
4 1996 XB27 10/5/2026 8/2/2028 11.00 3.3710 0.9156

Table 7.2: One-target missions towards Numbered Asteroids

Mission n◦ Asteroid a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
1 2012 UV136 1.0073 0.1392 2.2134 288.6072 209.9000 65.6648
2 Apophis 0.9224 0.1911 3.3409 126.6732 203.89909 39.00
3 2014 EK24 1.0081 0.0701 4.8049 63.7473 340.5876 47.2332
4 1996 XB27 1.1888 0.0578 2.4645 58.1817 179.4123 52.8226

Table 7.3: One-target missions towards Numbered Asteroids: orbital elements
and ∆θ
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7.1.1 Focus on mission towards asteroid Apophis

Figure 7.1: Two-dimensional satellite trajectory towards Asteroid 2013 WA44

(a) (b)

Figure 7.2: (a) Aphelion distance temporal evolution. (b) Perihelion distance
temporal evolution

.
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(a) (b)

Figure 7.3: (a) Semi-major axis temporal evolution. (b) Eccentricity temporal
evolution

.

(a) (b)

Figure 7.4: (a) Switching function temporal evolution. (b) Thrust temporal
evolution

.
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7.1.2 One-target missions (Asteroids from Table 7.1)

Mission n◦ Asteroid Departure Date Arrival Date Duration ∆V(km/s) mf

5 2009 CV 19/9/2027 23/6/2029 11.06 2.6012 0.9342
6 2013 WA44 15/4/2028 13/8/2029 8.34 1.9051 0.9514
7 2014 YD 24/7/2033 7/7/2035 12.25 1.8399 0.9530
8 2018 LQ2 27/11/2032 6/11/2034 12.20 2.3230 0.9411

Table 7.4: One-target missions towards Asteroids from Table 7.1

Mission n◦ Asteroid a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
5 2009 CV 1.1158 0.1508 0.9426 181.3443 22.3980 10.4338
6 2013 WA44 1.0975 0.0580 2.2993 177.5719 55.9866 15.2792
7 2014 YD 1.0721 0.0867 1.7359 34.1325 117.6397 4.1927
8 2018 LQ2 1.0911 0.0576 2.1260 142.8416 178.3061 10.4987

Table 7.5: One-target missions towards Asteroids from Table 7.1: orbital elements
and ∆θ

7.1.3 Focus on mission towards asteroid 2013 WA44

Figure 7.5: Two-dimensional satellite trajectory towards Asteroid 2013 WA44
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(a) (b)

Figure 7.6: (a) Aphelion distance temporal evolution. (b) Perihelion distance
temporal evolution

.

(a) (b)

Figure 7.7: (a) Semi-major axis temporal evolution. (b) Eccentricity temporal
evolution

.
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(a) (b)

Figure 7.8: (a) Switching function temporal evolution. (b) Thrust temporal
evolution

.

7.2 Two-target missions

This section considers two-target missions: before reaching the final body, the
spacecraft performs a rendezvous manoeuvre with an intermediate asteroid. Solu-
tions listed on Tables 7.6 and 7.8 have Unnumbered asteroids as a target. Table
7.10 reports missions involving at least one of the asteroids from Table 7.1 as a
target.

Mission n◦ 1 2 3 4
Intermediate Asteroid 2000 SG344 2015 KK57 2012 WR10 2020 PC

Final Asteroid 2015 VC2 2020 GE 2020 OK5 2018 BC
Departure Date 13/3/2028 2/6/2030 30/3/2028 30/12/2028

Arrival Date to Int. 26/11/2028 13/10/2031 31/10/2029 13/1/2030
Arrival Date to Final 23/1/2031 20/10/2032 13/12/2030 18/7/2031

Duration 18.00 15.75 17.00 16.00
∆Vtot (km/s) 2.5230 3.6570 3.7147 3.8881
∆V01 (km/s) 1.2056 2.1226 1.9626 1.4602
∆V12 (km/s) 1.3173 1.5344 1.7521 2.4279

mf 0.9361 0.9088 0.9074 0.9033

Table 7.6: Two-target missions towards Unnumbered Asteroids (1)
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Mission n◦1 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2000 SG344 0.9773 0.0668 0.1123 275.4000 191.8592 3.3360
2015 VC2 1.0530 0.0744 0.8679 288.2665 186.1519 49.5078

Mission n◦2 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2015 KK7 1.0918 0.0636 1.0319 100.0849 194.4045 8.3298
2020 GE 1.0057 0.0394 2.2842 109.4423 181.1617 25.2137

Mission n◦3 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2012 WR10 1.0853 0.1116 0.3078 146.9155 224.1384 14.1677
2020 OK5 1.0806 0.0836 1.0064 108.1034 295.8514 40.0720

Mission n◦4 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2020 PC 0.9331 0.0957 0.3207 241.4705 228.0415 19.3037
2018 BC 1.0483 0.0697 2.8644 212.8001 297.2204 33.0187

Table 7.7: Two-target missions towards Unnumbered Asteroids (1): orbital
elements and ∆θ

Mission n◦ 5 6 7 8
Intermediate Asteroid 2019 WS3 2011 BL45 2018 GR4 2018 FM2

Final Asteroid 2020 DG3 2019 WS3 2015 VC2 2015 VC2
Departure Date 24/1/2030 18/7/2028 15/4/2027 14/6/2027

Arrival Date to Int. 19/4/2031 20/9/2029 9/5/2028 19/8/2028
Arrival Date to Final 18/4/2032 23/1/2031 28/12/2029 11/3/2030

Duration 14.02 17.87 17.00 17.22
∆Vtot (km/s) 4.4515 4.6031 5.4737 5.5619
∆V01 (km/s) 2.1540 1.9771 1.9579 2.4026
∆V12 (km/s) 2.2975 2.6260 3.5158 3.1593

mf 0.8901 0.8866 0.8666 0.8646

Table 7.8: Two-target missions towards Unnumbered Asteroids (2)

64



Results

Mission n◦5 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2019 WS3 1.063 0.0861 1.9162 188.6622 164.1394 15.0149
2020 DG3 1.0608 0.0934 2.9113 287.6100 157.9154 11.7221

Mission n◦6 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2011 BL45 1.0918 0.0636 1.0319 100.0849 194.4045 5.3529
2019 WS3 1.0631 0.0861 1.9162 188.6623 164.1394 4.7837

Mission n◦7 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2018 GR4 0.9360 0.1110 1.0043 232.8821 167.5899 9.4521
2015 VC2 1.0530 0.0744 0.8679 288.2665 186.1519 19.4625

Mission n◦8 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2018 FM2 0.9418 0.0946 1.1580 191.9393 143.0572 3.9319
2015 VC2 1.0530 0.0744 0.8679 288.2665 186.1519 16.6776

Table 7.9: Two-target missions towards Unnumbered Asteroids (2): orbital
elements and ∆θ
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7.2.1 Focus on mission n°1

Figure 7.9: Two-dimensional satellite trajectory

Figure 7.10: Aphelion distance temporal evolution
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Figure 7.11: Perihelion distance temporal evolution

Figure 7.12: Semi-major axis temporal evolution
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Figure 7.13: Eccentricity temporal evolution

(a) (b)

Figure 7.14: (a) Switching temporal function evolution. (b) Thrust temporal
evolution

.
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7.2.2 Focus on mission n°5

Figure 7.15: Two-dimensional satellite trajectory

Figure 7.16: Aphelion distance temporal evolution
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Figure 7.17: Perihelion distance temporal evolution

Figure 7.18: Semi-major axis temporal evolution
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Figure 7.19: Eccentricity temporal evolution

(a) (b)

Figure 7.20: (a) Switching function temporal evolution. (b) Thrust temporal
evolution

.
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7.2.3 Two-target missions (Asteroids from Table 7.1)

Mission n◦ 9 10 11 12
Intermediate Asteroid 2013 WA44 2017 UQ6 2021 WV1 2010 JK1

Final Asteroid 2009 CV 2013 WA44 2014 YD 2018 LQ2
Departure Date 6/6/2026 30/1/2027 20/6/2032 12/12/2032

Arrival Date to Int. 19/6/2028 30/5/2028 26/3/2034 27/10/2033
Arrival Date to Final 29/4/2029 14/10/2029 3/4/2035 24/5/2035

Duration 18.20 17.00 17.50 15.37
∆Vtot (km/s) 6.0266 5.6557 3.9713 4.7449
∆V01 (km/s) 3.8403 2.8839 3.0222 2.9431
∆V12 (km/s) 2.1862 2.7718 0.9491 1.8018

mf 0.8542 0.8625 0.9013 0.8833

Table 7.10: Two-target missions towards Asteroids from Table 7.1

Mission n◦9 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2013 WA44 1.0975 0.0579 2.2992 177.5719 55.9866 36.9852
2009 CV 1.1158 0.1508 0.9426 181.3443 22.3980 6.6793

Mission n◦10 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2017 UQ6 0.9438 0.1097 0.5906 229.7608 333.3628 7.8268
2013 WA44 1.0975 0.0579 2.2992 177.5719 55.9866 23.1423

Mission n◦11 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2021 WV1 1.0526 0.1064 1.7896 54.0210 82.6199 52.2265
2014 YD 1.0721 0.0867 1.7359 34.1325 117.6397 12.0319

Mission n◦12 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2010 JK1 1.0294 0.1504 0.1671 137.8724 201.7821 38.6009
2018 LQ2 1.0911 0.0576 2.1260 142.8416 178.3061 29.4530

Table 7.11: Two-target missions towards Asteroids from Table 7.1: orbital ele-
ments and ∆θ
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7.2.4 Focus on mission n°9

Figure 7.21: Two-dimensional satellite trajectory

Figure 7.22: Aphelion distance temporal evolution

73



Results

Figure 7.23: Perihelion distance temporal evolution

Figure 7.24: Semi-major axis temporal evolution
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Figure 7.25: Eccentricity temporal evolution

(a) (b)

Figure 7.26: (a) Switching function temporal evolution. (b) Thrust temporal
evolution

.

7.3 Three-target missions
This section considers three-target missions: before reaching the final body, the
spacecraft performs rendezvous manoeuvres with two intermediate asteroids.
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Mission n◦ 1 2 3
First intermediate Asteroid 2015 KK57 2014 HN2 2017 FB3
Second intermediate Asteroid 2020 GE 2014 WX202 2015 NA14

Final Asteroid 2020 XH2 2009 HE60 2006 FH36
Departure Date 30/9/2030 24/11/2029 18/4/2030

Arrival Date to First Int. 18/10/2031 17/3/2031 21/6/2031
Arrival Date to Second Int. 20/11/2032 19/4/2032 20/10/2032

Arrival Date to Final 29/4/2034 6/10/2033 6/3/2034
Duration 22.50 24.30 24.40

∆Vtot (km/s) 6.4184 8.8816 10.8949
∆V01 (km/s) 2.1074 2.2897 3.2142
∆V12 (km/s) 1.5557 2.1903 4.0858
∆V23 (km/s) 2.7552 4.4015 3.5948

mf 0.8455 0.7927 0.7521

Table 7.12: Three-target missions towards Unnumbered Asteroids

Mission n◦1 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2015 KK57 1.0917 0.0636 1.0319 100.0849 194.4045 7.5631
2020 GE 1.0057 0.0394 2.2842 109.4423 181.1617 25.8227
2020 XH2 0.9519 0.1922 1.0414 101.3832 218.3307 32.1063

Mission n◦2 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2014 HN2 0.9266 0.1184 1.2359 207.4161 198.8469 20.1467

2014 WX202 1.0355 0.0587 0.4127 214.1180 243.9468 43.3432
2009 HE60 0.9954 0.2644 1.5831 219.8236 228.9162 3.6163

Mission n◦3 a (AU) e i (deg) ω (deg) Ω (deg) ∆θ (deg)
2017 FB3 1.0469 0.1863 1.0072 42.0314 291.0090 5.6452
2015 NA14 0.9661 0.1839 6.3534 152.8119 281.8254 32.8216
2006 FH36 0.9554 0.1982 1.5830 156.8977 278.1277 3.3620

Table 7.13: Three-target missions towards Unnumbered Asteroids: orbital ele-
ments and ∆θ
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7.3.1 Focus on mission n°1

Figure 7.27: Two-dimensional satellite trajectory

Figure 7.28: Aphelion distance temporal evolution

77



Results

Figure 7.29: Perihelion distance temporal evolution

Figure 7.30: Semi-major axis temporal evolution
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Figure 7.31: Eccentricity temporal evolution

(a) (b)

Figure 7.32: (a) Switching function temporal evolution. (b) Thrust temporal
evolution

.

79



Results

7.4 Results overview
Solutions provided in the previous sections validate the proposed procedures for
defining initial guesses, allowing for a straightforward determination of optimized
multiple rendezvous missions. Indeed, by starting the integration from the tentative
solutions determined as mentioned in Section 6.3, the indirect method’s conver-
gence difficulties were successfully addressed, and solutions were easily obtained.
Furthermore, the presented missions have interesting features. This section gives
therefore an overview of the results, emphasizing the most relevant mission aspects.
Two mission’s attributes, in particular, are considered:

• mission’s propulsive cost, expressed as its characteristic velocity ∆V , which is
directly related to the spacecraft’s final mass (as mentioned in section 3.2).
The fraction of the spacecraft dedicated to propellant storage is influenced by
the ∆V , and thus determines the mission’s feasibility and scientific return;

• mission’s duration, which should be kept to a minimum, for at least a couple
of reasons:

– to accomplish the mission’s objectives as quickly as possible;
– to reduce the interaction of the spacecraft with its orbital environment,

since a variety of hazards are associated with the operation of spacecraft
in the harsh space environment.

It is worth mentioning that, in general, mission’s duration and propulsive cost are
inversely related.
The overview of solutions is presented separately for missions to one, two, and
three targets.

Results overview: one-target missions
Eight different one-target missions were presented. These missions have:

- missions’ duration between 1 year and 4 months (Mission n° 6) and 2 years
and 3 months (Mission n° 3).

- missions’ ∆V between 1.84 km/s (Mission n° 7) and 4.51 km/s (Mission n°
2).

In particular, seven missions out of the eight presented show duration ≤ 2 years (the
only exception is Mission n° 3); moreover five missions out of the eight presented
show ∆V ≤ 3 km/s, and three of them show ∆V < 2.5 km/s.
When both of the mission’s features are taken into account, Mission n° 6 emerges
as the best option, with a duration of 1 year and 4 months and a ∆V of 1.90 km/s.
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Results overview: two-target missions
Twelve different two-target missions were presented. These missions have:

- missions’ duration between 2 year and 3 months (Mission n° 5) and 2 years
and 11 months (Mission n° 9).

- missions’ ∆Vtot between 2.52 km/s (Mission n° 1) and 6.02 km/s (Mission n°
9).

In particular, eight missions out of the twelve presented show ∆Vtot < 5 km/s, and
three of them show ∆Vtot < 4 km/s.
When both of the mission’s features are taken into account, Mission n° 2 emerges
as the best option, with a duration of 2 year and 6 months and a ∆Vtot of 3.65 km/s.

Results overview: three-target missions
Three different three-target missions were presented. These missions have:

- missions’ duration between 3 year and 7 months (Mission n° 1) and 3 years
and 11 months (Mission n° 3).

- missions’ ∆Vtot between 6.42 km/s (Mission n° 1) and 10.89 km/s (Mission n°
3).

When both of the mission’s features are taken into account, Mission n° 1 emerges
as the best option, with a duration of 3 year and 7 months and a ∆Vtot of 6.42 km/s.
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Chapter 8

Conclusions

The problem of trajectory optimization for the case of multiple Near-Earth Asteroids
(NEAs) rendezvous missions, using electric propulsion has been investigated. The
examined space missions, in particular, consider a spacecraft departing from Earth
at t0 and visiting N asteroids at different dates tN , with at most N = 3. A departure
window from 2025 to 2035 has been fixed. A rendezvous maneuver is carried out
for each asteroid, with a stay of about two months. Given the relevance of these
celestial bodies, highlighted in Chapter 2, during this period the spacecraft can
potentially conduct analyses and investigations on asteroids. Cubesats deployment
by the primary mission can be an alternative option, in order to provide additional
data of the asteroids, exploiting the agility of small spacecrafts. Furthermore,
demonstrating the utilisation of smallsat technologies in deep space should push
the boundaries of the technology to achieve higher performance levels and improve
reliability.
Only the heliocentric legs of the spacecraft trajectories are examined in this work:
the spacecraft leaves the Earth’s sphere of influence at the initial time with position
and velocity coincident with the planet’s values. At rendezvous with the target,
position and velocity match the asteroid’s values.
A numerical code that implements an indirect method using shooting techniques
has been employed. This method provides exact and reliable solutions (within the
limitations of mathematical modeling of the system’s dynamics), but it is sensitive
to the precision of the tentative solution. Thus, suitable procedures to estimate
the initial guess and to obtain solutions rapidly for the cases of one, two, and three
target missions have been discussed. In Chapter 7, various examples were presented
to validate these procedures.
These solutions were quickly achieved and present interesting features, including:

• mission duration ≤ 2 years and ∆V ≤ 3 km/s for single-target missions;

• mission duration ≤ 3 years and ∆Vtot ≤ 5 km/s, for two-target missions;
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• mission duration ≤ 4 years and ∆Vtot ≤ 10 km/s, for three-target missions;

As a result, the proposed procedures are simple to implement, allow to overcome con-
vergence difficulties, and produce good outcomes in terms of mission characteristics.

Future advances of this work may include:

- analysis of missions targeting at asteroids not included in this study. Indeed,
not all of the potential targets have been examined. Moreover, new NEAs
discoveries are continuously expanding the number of potential targets;

- analysis of the spacecraft trajectory once the rendezvous maneuver has been
performed. Indeed, the evaluation of close operations required to examine the
asteroid’s characteristics, or necessary to deflect its orbit, could be of interest.
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