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Summary

In the past decades, due to the growing complexity of space missions, the need for
operations such as maintenance, refueling, de-orbiting and re-orbiting has increased.
Missions with such goals, the so called In Orbit Servicing (IOS) missions, can
be accomplished with the help of space robotics systems (or space manipulators).
The use of such systems has been proven to be a promising approach to IOS in
several occasions. For instance space manipulators have been used during the
Space Shuttle missions, on the ISS, and played a key role in the maintenance of
the Hubble Space Telescope.
In addition, IOS missions could be a good solution removing the growing amount
of space debris and inactive satellites orbiting around the Earth, which represent a
hazard due to the risk of collision with new constellation of satellites.
Motivated by the previous considerations, the work of this thesis is to design an
optimal guidance algorithm for a space manipulator. The trajectory planning
was treated as an optimization problem, which gives the advantage of handling
constraints on joint angles and angular velocity. A heuristic optimization algorithm
based on searching methods, the so called Particle Swarm Optimization (PSO)
algorithm, was used to solve such problem. The reference space manipulator is the
one designed for the active debris removal ESA mission e.Deorbit. A simulator
in MATLAB/SIMULINK environment was developed, modeling the dynamics
and kinematics of the robot manipulator and of the base satellite. The designed
guidance algorithm was tested together with two different type of controllers (a
sliding mode controller and a Linear Time-Varying MPC). A Linear MPC was
also developed to control the spacecraft attitude during the movement of the
manipulator. A simulation was performed to analyse the effect of the manipulator’s
torque disturbances on the base satellite to ensure that the attitude was kept
constant during the whole maneuver.
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Chapter 1

Introduction

Nowadays, the current practice for satellites that are inoperable due to malfunction-
ing, a too-low amount of fuel or just aging, is to replace them with new spacecrafts.
Although this may guarantee continuity of satellite services, it worsens the growing
issue of space debris, since the inactive spacecrafts are often left orbiting around
the Earth. In this scenario, IOS missions could play a key role in the sustainable
management of the space environment around our planet, extending the operative
life of the already orbiting satellites, and allowing easier de-orbiting operations for
the disposal.
In the following chapter a brief overview on IOS and the role of space robotics
during this missions will be given. Particular attention will be spent on ESA’s
e.Deorbit mission, whose space manipulator design was taken as a reference for the
development of this thesis. Finally, a brief overview on the work will be presented.

1.1 Overview on IOS
The term In Orbit Servicing refers to a particular kind of space missions regarding
the in-orbit maintenance of a space system. The most common goals of such
missions include the repair, assembly, refuel and upgrade of a space system.[1] The
concept of IOS was first introduced in the 1960’s, and demonstrated by several
space missions during the last century.[2]
For instance, it is worth to mention the five IOS missions on the Hubble Space
telescope (Figure 1.1), which were executed with the aid of the SRMS (Space
Remote Manipulator System), the robot manipulator installed on the Space Shuttle.
Similarly, many more IOS missions where executed with the aid of the so-called
space robotic systems (or space manipulators). A space manipulator is a system
usually composed by two major elements[1]: a base satellite and a n-DOF robot
manipulator (or robotic arm).
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Figure 1.1: SRMS servicing the Hubble Space Telescope during STS-61[3]

The most relevant examples of such systems are the aforementioned SRMS installed
on the Space Shuttle fleet and the MSS (Mobile Servicing System) mounted on the
ISS.[4]
The SRMS, also known as Canadarm 1 is a 15.3 meters long robotic arm with
6 DOF, a mass of 408 kg, and a payload capability of 29,500 kg[5]. It was used
during the shuttle program as a main tool for loading and unloading cargo from
Shuttle payload bay on Earth orbit. In addition to the Hubble servicing missions,
the space shuttle robotic arm played also a crucial role in the assembling of the
ISS, removing the new elements of the station from the shuttle’s cargo bay and
transferring them to the SSRMS[4]. A schematic of the shuttle robotic manipulator
is illustrated in figure 1.2.
The MSS (Mobile Servicing System) was developed by the Canadian Space Agency
and consists of three main robotic elements[7]:

• The Space Station Remote Manipulator System (SSRMS): a 7-meter,
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Figure 1.2: Schematic of SRMS[6]

7-DOF, robotic manipulator. It played a key role in the construction of the
ISS. Its main tasks include helping with the IOS of the space station, and
providing a platform for astronauts performing assembly and maintenance
operations during EVA. It is also used to move supplies, equipment and the
robotic arm Dextre from one point to another of the ISS. In addition, SSRMS
is used to grasp and berth the vehicles visiting the ISS, such as SpaceX Dragon
and Orbital Cygnus. The SSRMS can be either operated by the astronauts
on the ISS or by the ground station operators[8].

• The Special Purpose Dextrous Manipulator (SPDM) or Dextre: a
15-DOF two arm robot, with a length of 2.5 m, a mass of 1,662 kg and payload
capacity of 600 kg[5]. It can be attached either to the tip of SSRMS, onto the
ISS Mobile Base System, or to a number of fixed locations around the ISS[3].
After its launch in March 2008, many delicate tasks previously performed by
astronauts during EVAs, such as assembly and maintenance, were then carried
out by the SPDM.

• The Mobile Base System (MBS): a support platform that provides power
and data links for the SSRMS and the SPDM

A picture of the SSRMS and Dextre is shown in Figure 1.3.
In addition, other memorable examples of space robotics systems are the European
systems ERA (European Robotic Arm) and ROTEX (Robot Technology Experi-
ment), and the Japanese systems JEMRMS (Japanese Experiment Module Remote
Manipulator System) and ETS-VII (Engineering Test Satellite VII).
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Figure 1.3: The International Space Station’s Canadarm2 and Dextre [9]

• ERA is a 7-DOF manipulator, with a length of 11.3 meters. It has a shoulder
with 3 DOF, an elbow with 1 DOF and a wrist with 3 DOF[10]. Furthermore,
the end-effector and the shoulder are operationally interchangeable. It was
launched to the ISS in 2021 and installed on the Russian segment. Its main
tasks include the installation, deployment and replacement of solar arrays, the
inspection of the ISS, handling of external payloads and acting as a supporting
platform for astronauts during spacewalks [2].

• ROTEX was a space robot technology experiment, developed by the German
space agency DLR and successfully tested in space during the Spacelab Mission
D2 in 1993. The ROTEX was the first remotely controlled robot ever launched
in orbit [11] and was developed to study and experimentally demonstrate
robotics technologies on the Space Shuttle. The main components of the
systems included a small, six-axis robot, its gripper with sensors, an array of
9 laser range finders and a pair of stereo cameras [2]. It performed operations
such as tests of assembling a truss structure and catching a free-floating object.

• JEMRMS is a robotic space manipulator developed by the Japan Aerospace
Exploration Agency (JAXA), which included a main and a small fine arm.
The main arm has 6 DOF and is 10 meters long and was launched in 2008
in a pressurized module of the JEM (Japanese Experiment Module) during
STS-124. The small fine arm has 6 DOF and is 2 m long. It was launched
on board of HTV-1 and mounted on the end effector of the main arm[2].
The main task of JEMRMS is to support the experiments conducted on the
Exposed Facility (EF) of the JAM[1].
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• ETS-VII was the first satellite in the world to be equipped with a robotic
manipulator. It was developed by the National Space Development Agency of
Japan (NASDA) and launched in November 1997 to verify on-orbit servicing
technologies. It consisted of two satellites, Hikoboshi and Orihime, and had a
total mass of 2860 kg. Hikoboshi, the chaser satellite, was equipped with a
6-DOF, 2 meters long robotic arm, with a mass of 45 kg. The tested servicing
operations included the inspection of a predetermined position of the target,
refueling, the assembly of the truss structure and the installation of the test
antenna[2].

Figure 1.4: Schematics of ERA [12]

1.2 e.Deorbit mission
ESA’s e.Deorbit mission concept was born in 2013 as an active debris removal
(ADR) mission in the context of ESA Clean Space, an initiative with the goal of
shifting towards a more sustainable space industry. The initial idea was to capture
ESA’s former Earth remote sensing satellite Envisat and burning it during a safely
controlled atmospheric re-entry. The choice of Envisat as target of the mission was
motivated by its large mass of about 8000 kg and its high probability of collision
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with other satellites in sun-synchronous orbit, which may lead eventually to the
so-called "Kessler Syndrome" [13]. The mission was scheduled for launch in 2024 on
board of a Vega vector, and the satellite had to be delivered to a sun-synchronous
orbit between 800 and 1000 km near the polar region[14]. Although the baseline
option for the capture mechanism was a robotic arm, further strategies to capture
the target were proposed and investigated e.g.robotic arm grippers, clamping mech-
anisms, nets, harpoons and tethers[15]. Some of these concepts are illustrated in
Figure 1.5. In 2018, the fundings for e.Deorbit were stopped, and ESA Clean Space

Figure 1.5: Three different e.Deorbit capture concepts [15]

initiative started to work on the ClearSpace-1 mission, as follow-up of e.Deorbit.

For the purpose of this thesis the design concept of e.Deorbit chaser was taken
as a reference. The chaser system can be divided into two subsystems: the base
satellite and the robot manipulator.

• The base satellite (Figure 1.6) is a 1500-1600 kg spacecraft. Particular
attention for the purpose of this work is payed to the GNC attitude control
actuator configuration, which will be necessary for the implementation of the
spacecraft attitude dynamics and kinematics model described in chapter 2.
The satellite is provided with a cluster of 24 cold gas thrusters[16], as shown
in figure 1.7. Further details on the GNC actuator configuration and modeling
will be provided in the next chapter.
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Figure 1.6: e.Deorbit base satellite configuration[17]

Figure 1.7: Detail on e.Deorbit ACS thruster configuration[17]

• The manipulator consists in a 7-DOF robotic arm with 7 identical revolute
joints. The DOF are distributed as follows: 3-DOF (Roll-Pitch-Roll) in the
shoulder, 1-DOF (Pitch) in the elbow, 3-DOF(Roll-Pitch-Roll) in the wrist.
Such kinematic redundancy has several advantages, allowing for a greater
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dexterity and robustness with respect to kinematics singularities[18]. For
kinematically redundant manipulators the inverse kinematics problem has,
indeed, infinite solutions, allowing the robotic arm to fulfill additional tasks,
such as minimization of the base disturbances and avoidance of singular
configurations. A schematics of the manipulator arm is reported in figure 1.8
Further details on the manipulator subsystem geometry and physical model
will be provided in the following chapter.

Figure 1.8: e.Deorbit robotic arm in stretched and stowed configurations[18]

All the data concerning the base satellite and the manipulator were provided as a
gentle concession of Thales Alenia Space.

1.3 Work Overview
The scope of this thesis is to develop an optimal guidance algorithm for a space
manipulator. This goal is achieved through innovative heuristic optimization algo-
rithms based on searching methods. In particular the Particle Swarm Optimization
(PSO) algorithm was used to solve the trajectory planning treated as an optimiza-
tion problem. For the purpose of the thesis, a GNC model comprehensive of both
the base satellite and the robot manipulator was developed. The navigation part
was not studied, assuming, for simplicity, that all state variables are measurable,
thus no observer is required. Therefore, both the satellite and the manipulator
models consists of the following three main parts:

• Guidance: provides the desired state of the system. For the base satellite
attitude, it is a constant output, since the ACS aims to stabilize the attitude
during the maneuver. In the manipulator case, it consists of the optimal
trajectory planning computed off-line by the PSO-based algorithm.

• Control: consists in an algorithm which provides the required control to
achieve a certain state of the system.
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• Plant: contains the kinematics and dynamics equation of the system, and
provides the state variables.

The two models were chosen to be kept separated for simplicity, and influence one
another through the share of information on the state of the models. In particular,
the satellite angular velocity and acceleration influences the manipulator, and the
base reaction torque of the manipulator is introduced as an external disturbance
affecting the spacecraft attitude.
The overall work can be summarized as follows. Initially a simulator of the dynamics
and kinematics of the robot manipulator was developed in a MATLAB/SIMULINK
environment. A simple polynomial guidance and a sliding mode controller were
developed, and the model was tested simulating some simple maneuvers with both
a joint-space and a cartesian control. After this initial phase, an off-line optimal
guidance algorithm was developed. In order to test the trajectory planned by the
guidance algorithm, the model was completed with a Linear Time-Varying MPC,
and a simple maneuver was simulated. Finally, to analyse the disturbance torque
exerted by the manipulator on the base satellite, the spacecraft attitude model was
introduced. A simple Linear MPC was designed to control the spacecraft attitude,
stabilizing it during the whole maneuver. The rest of this thesis is organized as
follows:

• Chapter 2 contains a mathematical description of the systems modeled in
this work. It is divided into three main sections: Satellite, where the attitude
kinematics and dynamics is discussed together with the actuator model,
Robot Manipulator, where the kinematics and dynamics of the robotic arm is
introduced, and Disturbance torque, where the complete space manipulator
model will be briefly introduced in order to compute the reaction torque of
the robotic arm.

• Chapter 3 introduces the optimal guidance algorithm and is subdivided into
three subsections: Trajectory Planning, where the optimization problem is
described, PSO , where the Particle Swarm Optimization is introduced, and
Results.

• Chapter 4 reports the different controllers implemented and their theoretical
base.

• Chapter 5 introduces the MATLAB/SIMULINK model and simulations and
discusses the results obtained.

• Chapter 6 discusses the conclusions of the work and the future works.

9



Chapter 2

System Mathematical Model

In the following chapter an accurate mathematical description of the space manipu-
lator system will be given. The overall system is composed of two main components:
the base satellite and the manipulator. For the purpose of this work only the
attitude of the base satellite is considered, whereas the position dynamics were not
studied. The first section of this chapter presents the mathematical model regarding
the base satellite attitude. In addition, in the second section, the mathematical
model of the robotic manipulator is introduced. Finally a brief overview of the
complete space manipulator is given, which is necessary to calculate the base torque
of the robotic arm.

2.1 Base Satellite
As anticipated in the introduction, the reference base satellite considered for
this work is the one designed for the mission e.Deorbit. The spacecraft attitude
kinematics and dynamics are modeled in order to analyze the effect of the external
disturbances introduced by the movement of the manipulator. A quaternion-based
attitude kinematics is studied since it can avoid gimbal lock singularities which
may occur with the use of other attitude representations, such as Euler angles or
axis-angle. Furthermore, the attitude dynamics is described by the Euler equations.
Finally, in the last subsection, the mathematical model of the ACS actuators
(Reaction Wheels and Thrusters) is described.

2.1.1 Attitude Kinematics
When it comes to attitude representation, several valid possibilities exist. For
instance a very common method of expressing an orientation is the so called
rotation matrix. However, this solution gives a redundant description of a frame

10
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orientation[19]. It is, indeed, characterized by nine elements that are not linearly
independent from one another. Since 6 equations for the orthonormality condition
hold, it follows that a minimal attitude representation can be given by a vector of
three linearly independent elements only. This is the case of the Euler angles. Such
parameters are given by a set of three angles, expressing three consecutive rotations
around the frame axes (it must be guaranteed that two successive rotations are not
made about parallel axes). Although this option allows the use of three parameters
only, the angles are not uniquely defined in some cases: the so-called gimbal lock.
This problematic can be overcome with the use of a four-parameters representation
called unit quaternion (also known as Euler parameters). In general, a quaternion
is a collection of four real parameters, of which the first is a scalar and the other
three constitutes a vector[20]:

q =
C

q0
qv

D
(2.1)

where qv =
è
q1 q2 q3

éT
.

In particular, the unit quaternion is a special type of quaternion that holds the
following property:

q2
0 + qT

v qv = 1 (2.2)

To understand how the unit quaternion can be used to express attitude orientation,
the Euler’s eigenaxis rotation theorem must be introduced first. The theorem states
that it is possible to express the rotation from an initial to a final reference frame
with a rotation by an angle θ about an axis â (Euler’s axis) that is fixed in both
frames[21]. The unit quaternion representing the rotation is then defined as follows:

q =
C

cos( θ
2)

âsin( θ
2)

D
(2.3)

The unit quaternion is always defined no matter the attitude configuration of the
spacecraft. For this reason this option was chosen to represent the orientation of
the base satellite. Before introducing the spacecraft attitude kinematics equation,
the quaternion product must be defined as:

q ⊗ p = Q(q)p = P(p)q (2.4)

Where:

• Q(q) =
C

q0 −qT
v

qv q0I3 + qx
v

D

• P(p) =
C

p0 −pT
v

pv p0I3 − px
v

D
11
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I3 is the 3x3 identity matrix and qx
v =

 0 −q3 q2
q3 0 −q1

−q2 q1 0

 is the skew symmetric

matrix expressing the cross product operator qv × (·). The spacecraft attitude
kinematics equation can be now expressed as the quaternion evolution over time
and involves the quaternion and the angular velocity of the spacecraft.

q̇ = 1
2ω ⊗ q = 1

2Ω(ω)q (2.5)

Where ω =
è
0 ωx ωy ωz

éT
is the quaternion extension of the angular velocity.

From Eq. 2.5 another advantage in using the unit quaternion formulation follows:
this linear kinematics equation is less computationally expensive than the one
derived with the Euler’s angle[21]. However, in this case, since the 4 components of
the unit quaternion are not linearly independent, it must hold the unit norm con-
straint. In order to avoid numerical errors during the integration of the kinematics
equation, an additional term is added and the kinematics equation is modified as
follows:

q̇ = 1
2Ω(ω)q + k(1 − qTq)q (2.6)

Where k is a positive real constant.

2.1.2 Attitude Dynamics
The equation of the attitude dynamics is the so called Euler’s equation. It is
possible to derive such equation starting from the law of conservation of angular
momentum of the spacecraft[21].

dL
dt

= M (2.7)

Where L is the total angular momentum and M is the total torque acting on the
system. Expressing the equation in a reference frame fixed with the base satellite
(body frame) and denoting all the quantities expressed in such frame with the
notation (·)b it becomes:

dLb

dt
+ ωb × Lb = Mb (2.8)

The total torque acting on the base satellite can be written as the sum of the
control torque Mc and the external disturbances Mext, that in this work will be
given by the reaction torque of the manipulator. All the environmental torques (e.g.
gravity gradient) are neglected for simplicity. In addition, assuming a constant
inertia matrix Ib and rewriting in function of ω̇, the equation becomes:

ω̇ = Ib
−1 (Mb) − Ib

−1 (ωb × Ibωb) (2.9)
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For the purpose of the control algorithm design it can be useful to write complete
equation of the dynamical system combining both the attitude kinematics and
dynamic equation and obtaining the following non-linear system of differential
equations describing the evolution of the spacecraft attitude:q̇ = 1

2Ω(ωb)q
ω̇ = −Ib

−1 (ωb × Ibωb) + Ib
−1 (Mb)

(2.10)

2.1.3 Actuators
In the following section, the mathematical model of the attitude control actuators
is described. Two different actuation solutions were chosen. In addition to the
cluster of 24 cold gas thruster designed during e.Deorbit B1 phase, a pyramidal
cluster of 4 Reaction Wheel was added as main ACS actuator, in order to allow a
fine attitude stabilization. A comparison of the results of the stabilization with the
Reaction Wheels and with the Thrusters will be given in chapter 5.

Reaction Wheel Modeling

A reaction wheel is a devices that allows the exchange of angular momentum with
the spacecraft. In this way, a continuous actuation of the control torque calculated
by the ACS is provided, modifying the attitude orientation of the overall system.
On the other hand, a reaction wheel is subject to saturation, hence the imposition
of constraints on the maximum angular momentum and the maximum feasible
torque. To take into account these limitations, a model of the reaction wheel
system was implemented in MATLAB/SIMULINK. The reaction wheel pyramidal
configuration chosen is reported in fig.2.1.

Figure 2.1: Reaction Wheel pyramidal configuration [22]
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Figure 2.2: Detail on reaction wheel tilt angle [22]

The relation between the desired control torque computed by the controller and
the torque corresponding to each reaction wheel is the following:

Mc = −ZMRW (2.11)

where

• MRW ∈ R4,1 is the column vector containing the torque of the four reaction
wheel about their rotation axis.

• Z =

cos(β) 0 −cos(β) 0
0 cos(β) 0 −cos(β)

sin(β) sin(β) sin(β) sin(β)

, with β representing the reaction

wheel tilt angle as shown in fig 2.2.

Since the reaction wheels introduce an internal torque in the system, the attitude
Euler equation becomes the following:

ω̇ = Ib
−1 (Mc) − Ib

−1 (ωb × (Ibωb + hRW )) (2.12)

Where hRW is the reaction wheel angular momentum. The MATLAB/SIMULINK
model of a single reaction wheel is the one reported in fig.2.3. The control torque
in input is multiplied by -1 to express it with respect to the reaction wheel. The it
is received as input by a low-pass filter and finally a saturator is added to take into
account the actuator limitations on the maximum torque. The resulting torque is
then integrated to compute the reaction wheel angular momentum needed as input
for the Euler equation. The model is defined by the filter parameter τRW which
has been carefully tuned by trial and error.
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Figure 2.3: Scheme of the reaction wheel model

Thrusters Modeling - PWPF Modulator

To stay coherent with the original e.Deorbit mission design, a cluster of 24 attitude
control thruster was implemented. The configuration, shown in fig1.7 consists of 4
thrusters on the corners of each face of the spacecraft, pointing with an outgoing
direction, perpendicular to the face. The relation between thruster forces and
resulting torque is the following:

Mth = TFth (2.13)

where

• Mth ∈ R3,1 is the column vector of the torque acting on the spacecraft along
the x y and z direction in a body frame.

• Fth ∈ R24,1
+ is the column vector containing the force of each one of the 24

thrusters.

• T ∈ R3,24 is called thruster configuration matrix and allows the conversion of
the thruster force into the resulting torque.

Even though the control output coming from the controller is a continuous signal,
the thrusters have an on-off non-linear behaviour by nature[23]. In addition, for
certain types of controllers the control torque does not take into account the
saturation level of the thrusters that imposes a constraint on the maximum feasible
torque. Therefore, it is necessary to translate the desired torque computed by the
controller into an on-off signal that can be actually actuated by the thrusters. The
Pulse-Width/Pulse-Frequency (PWPF) modulator can be used to give such on-off
quasi-linear steady state behaviour to the control signal. The system is depicted in
fig 2.4 and consists of a feedback loop with of two main parts: a first order filter
and a schmitt trigger.

• First order filter: it is used to give a quasi-linear steady state behaviour to
the output. It receives as input the error between the output of the schmitt
trigger and the input command signal.
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Figure 2.4: Schematics of a PWPF modulator [24]

• Schmitt Trigger: it is an hysteresis/dead-zone system. The hysteresis gives
both on and off values to the trigger. When the input is greater then Uon the
trigger is activated until the value drops below Uoff . In addition, to avoid
excessive thruster chattering, a dead-zone is introduced. When the input is
within this interval, the filter gives a null output. This implies a reduced
thruster activity, thus resulting in a reduction in fuel consumption[25].

In general, the modulator is defined by 4 parameters:

• Two filter parameters: Kf and τf , provided the following transfer function for
the filter: Kf

τf +1

• Two trigger parameters: Uon and Uoff

The aforementioned parameters have been carefully tuned with a trial-and-error-
based method.

The complete thruster model is reported in fig 2.5. The input received is the

Figure 2.5: Schematics of the thruster model implemented on MAT-
LAB/SIMULINK

desired control torque computed by the controller. This torque is multiplied by the
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Moore-Penrose pseudo-inverse of the thruster configuration matrix T†, resulting in
the desired force for each one of the 24 thrusters. Then each force is modulated
with a PWPF filter and, finally the resulting vector is multiplied by T, resulting in
the modulated feasible torque.

2.2 Robot Manipulator
In the following section the mathematical model of the robot manipulator is
introduced. At first, a brief introduction on the main geometric and physical
parameters is given. Then, the manipulator direct and differential kinematics is
described. Finally the manipulator dynamics is derived, following two different
approaches: the Lagrangian approach based on the Lagrangian mechanics and the
Newton-Euler approach based on the equilibrium of the forces and momenta acting
on the manipulator.

2.2.1 Geometric Characterization
The robot manipulator is modeled as a kinematic chain composed of seven rigid
bodies called links connected by seven rotational joints. In addition, seven reference
frames are defined, each one fixed with a link and with the origin lying in the
respective i-th joint. The robot manipulator scheme is reported in fig.2.6. The

Figure 2.6: Schematics of the space manipulator[26]

robot arm is defined form a geometric and physical standpoint by the following
parameters:

• an is the number of joints (or Degree of Freedom). In this case the manipulator
has 7-DoF.
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• alf [m] is the distance between the i-th joint frame and the (i+1)-th expressed
in the i-th joint frame.

• alc[m] is the distance between the i-th joint and the i-th link CoM expressed
in the i-th joint frame.

• arot is the [3x3] rotation matrix transforming points expressed in the i-th joint
frame into the (i+1)-th joint frame.

• am[kg] is the mass of the i-th link

• ai is the [3x3] inertia matrix of the i-th link expressed in a frame with origin
in the i-th CoM oriented as the (i+1)-th frame.

These parameters will be useful to define the direct and differential kinematics of
the manipulator in the following subsection.

2.2.2 Manipulator Kinematics
When it comes to manipulator kinematics, it is useful to distinguish between direct
kinematics and differential kinematics. The direct kinematics of the manipulator
has the aim to compute the position of the end-effector with respect to the base
frame, as a function of the manipulator configuration, uniquely defined by the joint
angles or joint variables. The differential kinematics is the relationship between
the end-effector linear and angular velocities and the joints’ angular velocities.

Direct Kinematics

To express the direct kinematics, an homogeneous transformation matrix must be
defined, that links the expression of a vector in the base frame to the expression in
the end-effector frame with the following direct kinematics equation:

v0 = T0
nvn (2.14)

Where T0
n ∈ R4,4 is the homogeneous transformation matrix, transforming vectors

from the end effector frame to the base frame. The notation (·)i denotes a vector
expressed in the frame i. In addition, v0 ∈ R4,1 and vn ∈ R4,1 are expressed in the
base frame denoted with 0 and the end-effector frame denoted with n, and they are
a four dimensional extension of a three elements vector, as shown in the following
equation:

v =


vx

vy

vz

1

 (2.15)
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The homogeneous transformation matrix T0
n can be computed as a combination of

the n homogeneous transformation matrices Ti−1
i , with i = 1, . . . , n transforming a

vector form the i-th joint frame to the (i-1)-th joint frame. The general expression
for these matrices is:

Ti−1
i =

Rz(θi)aroti Rz(θi)alfi

01,3 1

 (2.16)

where Rz(θi) =

cos(θi) −sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

 is the elementary rotation matrix expressing

a rotation by the i-th joint angle θi about the z axis of the i-th joint frame. It
follows that:

T0
n = T0

1 T1
2 . . . Ti−1

i . . . Tn−1
n (2.17)

Differential Kinematics

The goal of the differential kinematics is to find a relationship to express the
end-effector linear and angular velocity as a function of the joint angles and angular
velocities. Such relation is given by a the linear equation:

v =
C
ṗ
ω

D
= J(θ)θ̇ (2.18)

The matrix J is the manipulator geometric Jacobian matrix. It is a function of the
manipulator configuration and can be derived through kinematics considerations on
the contributes of each joint angular velocity to the end-effector linear and angular
velocity[19]. The general expression for the jacobian matrix is the following:

J =
è
J1 J2 ... Ji ... Jn

é
∈ R6,n (2.19)

Ji is the i-th joint jacobian matrix and is related to the i-th joint contribute to the
end-effector linear and angular velocity. It can be computed as follows:

Ji =
C
z0

i−1 × (p0
n − p0

i )
z0

i−1

D
∈ R6,1 (2.20)

where z0
i−1 is the z axis of the (i-1)th joint frame expressed in the base frame, and

p0
n and p0

i are respectively the position of the origin of the end-effector and the
i-th joint frames with respect to the base frame. The differential kinematics has
several applications, and plays a key role in solving the so-called inverse kinematics
problem[19]. For the purpose of this thesis the differential kinematics will be useful
for the derivation of the manipulator dynamics, in particular with the Lagrangian
formulation, as described in the following section.
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2.2.3 Manipulator Dynamics
The manipulator dynamics aims to describe the motion of the manipulator through
a dynamics equation as a function of the forces and momenta acting on it[19].
There are typically two different approaches[19]:

• Lagrangian approach: is based on Lagrangian mechanics and and has the
advantage to give a systematic derivation of the equation of motion which is
independent from the chosen reference frame.

• Newtonian approach: is based on Newtonian mechanics and derives the
dynamics equation starting from the study of the equilibrium of the forces
and momenta acting on the manipulator. This approach allows to derive the
system model through a recursive algorithm, thus it is computationally more
efficient[19].

These two methods for the derivation of the manipulator dynamics will be now
described in detail.

Lagrangian Approach

The Lagrangian approach is based on the Lagrangian mechanics, whose fundamental
equation, the so called Euler-Lagrange equation, is the following:

d

dt

∂L
∂θ̇i

− ∂L
∂θi

= τi i = 1, ..., n (2.21)

Here the Lagrangian of the system is defined as the difference between the system
total kinetic energy and the system total potential energy

L = T − U (2.22)
The therm θ is a proper generalized coordinate, which in the case of the manipulator
is the joint variable, and the therm τ is the generalized force associated to θ. The
contribution to the generalized force is in general given by all the non conservative
forces acting on the system, i.e., joint torques, friction acting on the joints, contact
forces acting on the end-effector, etc. For the purpose of the thesis a simplified
model is considered, where all the friction forces are neglected and the joint torques
are considered only as contribution to the generalized force. In addition, since the
space manipulator is supposed to operate in a micro/zero-gravity environment,
another simplification hypothesis is made, neglecting all the gravity dependent
therms. Thus, the total potential energy is negligible and the only contribution to
the Lagrangian is the total kinetic energy. The total kinetic energy is given by the
sum of the total kinetic energies of the n links:

T =
nØ

i=1
Ti (2.23)
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The kinetic energy of the i-th link can be derived as follows:

Ti = 1
2

Ú
Vi

ρ ṗ∗
i

T ṗ∗
i dV (2.24)

Where p∗
i is the position of an infinitesimal particle in the i-th link, expressed in

base frame, as shown in fig.2.7, and ρ is the infinitesimal particle density.

Figure 2.7: Kinematic description of the i-th link for Lagrangian formulation[19]

The i-th link center of mass is defined as follows:

pli = 1
mi

Ú
Vi

ρ p∗
i dV (2.25)

Differentiating p∗
i it follows that:

ṗ∗
i = ṗli + ωx

i ri (2.26)

Where ri = p∗
i − pli. Substituting in Eq. 2.24, three contributes to the i-th link

kinetic energy can be highlighted:

1. Translational contribute:
1
2

Ú
Vi

ρdV ṗT
li ṗli = 1

2miṗT
li ṗli (2.27)

2. Rotational contribute:
1
2

Ú
Vi

ρ ωx
i ri

T ωx
i ridV = 1

2ωT
i

Ú
Vi

ρ ri
xT ri

xdV ωi = 1
2ωT

i Iiωi (2.28)

where Ii = RiaiiRT
i is the i-th link inertia matrix in the base frame
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3. Mutual contribution:

ṗT
li ω

x
i

Ú
Vi

ρ ridV = 0 (2.29)

for the Eq. 2.25

By summing the three contributions and rewriting the expression in matricial form,
it results:

Ti = 1
2

C
ṗli
ωi

DT C
miI3 03,3
03,3 Ii

D C
ṗli
ωi

D
(2.30)

Defining:

Mi =
C
miI3 03,3
03,3 Ii

D
(2.31)

and remembering that: C
ṗli
ωi

D
= Jliθ̇ (2.32)

where Jli is the geometric Jacobian matrix referred to the i-th link center of mass.
It is possible to rewrite the total kinetic energy of the system as follows:

T = 1
2 θ̇T

A
nØ

i=1
Jli

T MiJli

B
θ̇ = 1

2 θ̇T B(θ)θ̇ (2.33)

Substituting the total kinetic energy in the Euler-Lagrange equation it is possible
to obtain the dynamics equation of the robot manipulator:

B(θ)θ̈ + C(θ, θ̇)θ̇ = τ (2.34)

where:

• B(θ) = qn
i=1 Jli

T MiJli ∈ Rn,n is called the inertia matrix, and is computed
in the MATLAB/SIMULINK model using the equation derived with the
Lagrange formulation

• C(θ, θ̇) ∈ Rn,n is called the Coriolis/centripetal matrix and contains the therms
related to Coriolis and centripetal acceleration. This matrix will be computed
using the recursive algorithm based on the Newton-Euler formulation of the
dynamics.
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Newton-Euler Approach

The Newton-Euler approach to the manipulator dynamics consists in a recursive
algorithm that takes the joint angles θ, angular velocities θ̇ and angular accelerations
θ̈ the angular velocity ω0, angular acceleration ω̇0 and linear acceleration p̈0 acting
on the base of the manipulator, and the force fn+1 and torque τn+1 acting on the
end-effector. The algorithm computes the force f , and moment µ acting on each
link and gives as output the torque τ acting on each joint. The use of a recursive
algorithm allows an higher computational efficiency[19]. The N-E algorithm is
based on the Newtonian mechanics, and is formulated through the study of the
equilibrium of the forces and momenta acting on each one of the n links. Starting
from the kinematics relations between the links, it is possible to write the angular
velocity, angular acceleration and linear acceleration on the i-th link as a function
of the angular velocity, angular acceleration and linear acceleration on the (i-1)th
link[19]. 

ωi = fω(ωi−1, θ̇i)
ω̇i = fω̇(ω̇i−1, ωi−1, θ̇i, θi)
p̈i = fp̈(p̈i−1, ω̇i, ωi)

(2.35)

Starting from the forces and moments equilibrium, it is possible to write the force
and moment acting on the i-th link as a function of the force and moment acting
on the (i+1)th link. fi = ff (fi+1, p̈i)

µi = fµ(µi+1, fi+1, fi, ω̇i, ωi)
(2.36)

Finally the joint torque can be computed as a function of the moment acting on
the i-th link:

τi = fτ (µi) (2.37)

Starting from the manipulator’s base boundary conditions ω0, ω̇0, p̈0 a forward
recursion is performed to calculate ω, ω̇ and p̈ for each link using Eq. 2.35. Then, a
backward recursion is performed, starting from the boundary conditions at the end
effector fn+1 and τn+1 to calculate f and τ acting on each link through Eq. 2.36
and subsequently computing the joint torques τ through Eq. 2.37. A schematic
representation of the algorithm is illustrated in fig.2.8.
The Newton-Euler algorithm can be used to solve the direct dynamics problem.
It consists of determining the evolution of the joint angles, angular velocities and
angular accelerations, starting from an initial known condition and knowing the
joint torques. To do so it is sufficient to rewrite the dynamics equation explicitating
θ̈.

θ̈ = B(θ)−1
1
τ − C(θ, θ̇)θ̇

2
(2.38)
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Figure 2.8: Schematics of the Newton-Euler recursive algorithm[19]

as previously explained, the inertia matrix B(θ) can be computed with the Lagrange
formulation, whereas it is possible to compute the product C(θ, θ̇)θ̇ as the torque
output of the Newton-Euler algorithm, when θ̈ = 0n,1. Then substituting into Eq.
2.38 θ̈ is obtained. Finally θ̇ and θ can be computed as follows:

θ̇ = θ̇0 +
Ú t

t0
θ̈ dt (2.39)

θ = θ0 +
Ú t

t0
θ̇ dt (2.40)

In the MATLAB/SIMULINK simulator Eq. 2.39 and 2.40 are, of course, performed
through numerical integration.

2.3 Disturbance Torque
In order to define the disturbance torque acting on the base spacecraft a complete
dynamic and kinematic model must be defined, describing the whole space manipu-
lator comprehensive of both the base spacecraft and the space manipulator. During
the last decades of the past century, several attempts to define a model describing
the complicated coupled kinematics and dynamics of a space manipulator have been
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made[1]. For instance the so-called Virtual Manipulator introduced by Vafa and
Dubowksy in 1987[1][27], the Dynamically Equivalent Manipulator introduced by
Liang et. al[1][28], and the Generalized Jacobian approach introduced by Umetani
and Yoshida in 1989 [1][29]. The guidelines introduced by Umetani and Yoshida in
their publication were taken as a reference to compute the base reaction torque of
the manipulator. In particular, the total angular momentum acting on the space
manipulator system is given by the sum of two contributes: the one linked to
the base satellite angular rate and the one given by joint angular velocities of the
manipulator:

L = Hbωb + Hbmθ̇ (2.41)

Where:

• ωb is the base satellite angular velocity

• Hb ∈ R3,3 is a function of the geometric and physical characteristics of the
base satellite.

• H0b ∈ R3,3 is called the dynamic coupling matrix [30] and can be calculated as
follows[30],[29]:

H0b =
nØ
1

C
mir0i

x 03,3
03,3 Ii

D
Jli (2.42)

In conclusion the base disturbance torque given by the manipulator motion can be
computed as the derivative over time of the contribute of the manipulator on the
total angular momentum. Therefore, the equation of the base disturbance is the
following:

Mext = d(H0bθ̇)
dt

(2.43)

The MATLAB/SIMULINK simulator performs the computation through numerical
differentiation.
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Chapter 3

Guidance Algorithm

In this chapter the problem of guidance of the manipulator is discussed. At first
the trajectory planning is introduced, with a brief overview on the state of the art,
then the optimization problem formulation is given. Finally, the Particle Swarm
Optimization algorithm is described.

3.1 Trajectory Planning
The goal of the trajectory planning is to generate the reference input for the control
system. Subsequently, the controller ensures the tracking of the desired trajectory
computed by the guidance. For the purpose of this thesis a point-to-point trajectory
is generated, which means that only the initial and final positions and orientations
of the end-effector are assigned. The trajectory can be planned in the joint space,
specifying the time sequence of the desired joint angles, or in the operational space,
where the reference end-effector position over time is generated. The joint space
trajectory has the advantage of generating the motion of each joint independently,
but it does not take into account the actual position of the end-effector between
the initial and final pose. With the operational (or Cartesian) space trajectory, on
the other hand, the joint motion must be computed through the solution of the
inverse kinematics problem, which can be generally done using algorithms based
on the pseudo-inverse of the Jacobian [19].
Usually, the easiest solution for guidance, both in the joint or in the cartesian
space, is to choose a polynomial trajectory interpolating the initial and final desired
point, in a given execution time[31]. Even though this solution may be simple, it
does not take into account the several constraints that the manipulator is usually
subject to during its motion. For instance, constraints on the joints’ limits or
on the joint velocities must be handled. For this reason, a good approach may
be to treat the trajectory planning as an optimization problem. The optimal
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trajectory planning has been of great research interests during the years, and
several approaches have been employed. For instance, an analytical approach to the
optimization issue is given by Seweryn and Banaszkiewicz [32] and by Rybus et al.
[33], using Hamiltonian mechanics in combination with the Lagrangian multipliers
to handle the optimization constraints. Another innovative and rather successful
approach is given by solving the optimization problem through searching algorithms,
such as variational approaches [34], genetic algorithms [35], differential evolution
[36][37], and Particle Swarm Optimization[38][39][40][41]. In addition, treating the
trajectory planning as an optimization issue gives the advantage of the fulfillment
of additional tasks, such as minimizing the base disturbances or collision avoidance
capability. In particular, the minimization of the base reaction torque may be of
great interest when it comes to space manipulators, since the spacecraft attitude
needs to be stable in order to satisfy pointing requirements for communication or
payload purposes. Several methods to minimize the base disturbances have been
investigated in literature. For example the Reaction Null Space method, introduced
by Yoshida et al. [42], and widely used in several works [43][44][37][40] consists in
using the null space of the dynamic coupling matrix to formulate a velocity profile
that gives zero angular momentum to the base spacecraft throughout the whole
maneuver. However, for low redundant manipulators, the reaction null space has a
limited volume[38], and other approaches may be eventually employed to obtain
satisfying results. For example, the base disturbance may be added to the objective
function to be minimized as done by Wang et al. [38], leaving to the optimization
process the task of finding the best solution in terms of lowest reaction torque.
In the work in this thesis, an original approach is studied, where the reaction
torque is subject to a dynamic constraint, given, eventually, by the ACS actuators
limitations (e.g. maximum control torque exerted by thrusters/ reaction wheels).
As explained in the following sections, the use of a parametric curve to describe
the joint trajectory is crucial for the handling of the aforementioned constraints.

3.1.1 Optimization Problem Description
The optimization problem aims to find an appropriate joint angle profile θ(t) such
that an objective function (or fitting function) Γ(θ) gives the minimum possible
output. Usually the problem is subject to a certain number of kinematic or dynamic
equality and inequality constraints.

min Γ(θ)
gi(θ) = 0 i = 1, ..., ng

fi(θ) < 0, i = 1, ..., nf

(3.1)

In the case treated in this work, the objective function is given by the error of the
final pose of the end-effector with respect to the desired final pose. Such quantity
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can be computed as a function of the joint angles, as follows. The end-effector
position is calculated through the direct kinematics relation derived in chapter 2.C

re(θ)
1

D
= T0

n(θ)
C
03,1
1

D
(3.2)

The end-effector orientation is formulated with the unit quaternion, and it is
computed starting from the elements of the rotation matrix R0

n(θ) as follows[19]:

qe(θ) = 1
2


√

r11 + r22 + r33 + 1
sgn(r32 − r23)(r11 − r22 − r33 + 1)
sgn(r13 − r31)(r22 − r33 − r11 + 1)
sgn(r21 − r12)(r33 − r11 − r22 + 1)

 (3.3)

where rij is the element of the i-th row and j-th column of R0
n, and sgn(x) is the

sign function defined as:

sgn(x) =

 1 if x ≥ 0
−1 if x < 0

(3.4)

The vector expressing the end-effector pose is thus defined as:

xe(θ) =
C
re
qe

D
(3.5)

The error vector with respect to the desired position is defined as follows:

δxe =
C
rd − re

δq

D
(3.6)

where δq ∈ R3,1 is the quaternion error, defined as the vector part of qd ⊗ q−1
e and

q−1 = [q0, −qv]T . The quaternion error is an intuitive way to express the error
between orientations, since, when two frames are aligned all the components of
δq become zero. The fitting function can now be defined as the norm of the error
vector multiplied by an appropriate weighting matrix.

Γ(θ) = ∥Qδxe∥ (3.7)

The weighting matrix Q ∈ R6,6 can be chosen starting from the tolerance on the
position and orientation error.

Q =
C 1

tollposition
I3 03,3

03,3
1

tollorientation
I3

D
(3.8)
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Finally, the complete optimization problem can be formulated by adding the
equality and inequality constraints on the joint angles, velocities and accelerations
and on the reaction torque.

min ∥Q δxe∥
θ̇(ti) = θ̇(tf ) = θ̈(ti) = θ̈(tf ) = 0n,1

θmin < θ < θmax...θ̇... ≤ θ̇max

∥Mext∥ ≤ Mmax

(3.9)

where ti and tf are the initial and final time of the maneuver respectively. In order
to ensure the satisfaction of all the constraints, a parametrization, together with a
constraint handling strategy in the PSO algorithm, is introduced in the following
sections.

3.1.2 Parametrization
The angular velocity profile of the manipulator’s joints is parametrized with a
Bézier curve, a particular kind of curve widely used in computer graphics for its
smoothness[38]. The general expression for the i-th joint velocity written as a
Bézier curve is the following:

θ̇i(t) = 1
T

˙̄θi(τ) = 1
T

mØ
j=0

A
m

j

B
Pij(1 − τ)m−jτ j (3.10)

where:

• T = tf − ti is the execution time of the maneuver

• τ = t
T

is the normalized time

• ˙̄θ is the parametrized joint velocity

• Pij is the j-th coefficient of the Bézier curve

• m is the order of the Bézier curve, which in this case was chosen as m = 4.

To ensure that all the equality constraints are satisfied, the initial and final condi-
tions on the joint velocities and accelerations are imposed:

˙̄θi(0) = 0 ⇒ Pi0 = 0
˙̄θi(1) = 0 ⇒ Pi4 = 0
¨̄θi(0) = 0 ⇒ Pi1 = 0
¨̄θi(1) = 0 ⇒ Pi3 = 0

(3.11)
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Hence, substituting into Eq.3.10, the joint angular velocity profiles becomes:

θ̇i(t) = 1
T

˙̄θi(τ) = 6
T

Pi2(1 − τ)2τ 2 (3.12)

Subsequently, the joint angles can be computed integrating the velocity profile:

θ = θ0 +
Ú tf

ti

θ̇(t) dt = θ0 +
Ú 1

0

˙̄θ(τ) dτ (3.13)

The joint velocity profile and, therefore, the joint angles profile are completely
defined if the n Bézier coefficients [P12, P12, ..., Pn2]T are defined. Thus, the prob-
lem can be reformulated writing the fitting function as a function of the Bézier
coefficients. Hence, these coefficients become the design variables to be determined
by the PSO algorithm. Furthermore, it is possible to choose an appropriate execu-
tion time of the maneuver T , in order to satisfy the inequality constraints on the
joint velocity and on the reaction torque. Once the all the Bézier coefficient are
determined, the joint velocity profile can be written as:

θ̇ = 1
T

˙̄θ (3.14)

and the corresponding reaction torque is given by:

Mext = d(H0nθ̇)
dt

= 1
T 2

d(H0n
˙̄θ)

dτ
= 1

T 2 M̄ext (3.15)

The execution time can then be chosen accordingly:

T ≥ max

 ˙̄θmax

θ̇max

,

öõõôM̄max

Mmax

 (3.16)

where ˙̄θmax and M̄max are the maximum joint velocity and the maximum reaction
torque reached during the maneuver, respectively. Concerning the inequality
constraints on the joint angles, a constraint handling strategy is introduced in
the PSO algorithm in order to guarantee that these conditions are not violated.
Even though all the constraints are satisfied and the final end-effector pose error is
minimized, this optimization strategy does not take into account the magnitude of
the execution time, eventually leading to excessively slow maneuvers. To handle
this problem, the execution time T may be introduced as a secondary objective
function to be minimized. In this regard, the PSO algorithm is a really convenient
choice since it has been proven to be able to successfully solve multi-objective
optimization problems[45][46].
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3.2 PSO
The Particle Swarm Optimization is a heuristic stochastic searching algorithm
used to solve optimization problems. Like many similar algorithms, such as genetic
algorithms, it mimics a behaviour found in nature[47]. The PSO was introduced
by J. Kennedy and R. Eberhart in 1995 [48], inspired by the movements of swarms
of birds and schools of fishes. These animals cooperates in a group to find food,
changing their position according to the shared information on the experience of
their own and of other members of the swarm. Similarly, it is possible to define
a swarm of candidate solutions (particles) that will change their position at each
iteration of the algorithm according to their personal best position and the global
best position of the swarm, in order to find the optimum of a certain function
by searching in a large space of solutions. Like many meta-heuristic optimization
algorithms, it is not gradient-based and therefore can be employed in the solution of
complex non-differentiable optimization problems. In addition, a great advantage
of the PSO is its rather simple mathematical formulation together with a low
computational effort. However, the convergence of the algorithm to the global
optimum is not guaranteed, and it may suffer from problems of stagnation at local
optimum points.
The algorithm’s principle can be illustrated with the schematics in Fig.3.1. At first,

Figure 3.1: Schematics of PSO[38]

the algorithm initializes a swarm of random possible solutions as particles. In the
example in Fig.3.1 the swarm is composed by 4 particles with a dimension of 2,
but in general the dimension of the particle is represented by the number of design
variables which, for the algorithm developed in this thesis, are given by the vector
of Bézier coefficients p = [P12, P22, P32, P42, P52, P62, P72]T with dimension n=7, the
number of DoF of the manipulator. The algorithm calculates the personal best
position of each particle and the global best position of the entire swarm, based
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on the objective function. Subsequently, the position of each particle is updated
according to the following formula:

pt+1
i = pt

i + vt+1
i (3.17)

where vi is the particle velocity and is calculated at each iteration with the following
equation:

vt+1
i = wvt

i + c1r1(pt
pbest − pt

i) + c2r2(pt
gbest − pt

i) (3.18)

According to Eq. 3.18, the velocity of a particle consists of three major contributes
illustrated in Fig.3.2:

1. Previous velocity contribute: wvt
i , where w is called inertia weighting

factor and balances between global and local search in the solution space.

2. Cognitive learning contribute: c1r1(pt
pbest−pt

i), proportional to the distance
between the current position of the particle and the personal best position
ever reached by the particle in the past. The coefficient c1 is the cognitive
coefficient, and is a parameter of the algorithm giving the acceleration constant
of the cognitive learning contribute to the velocity. The term r1 is a random
normal distributed real number between 0 and 1.

3. Social learning contribute: c2r2(pt
gbest − pt

i), proportional to the distance
between the current position of the particle and the global best position ever
reached by the swarm in the past. The coefficient c2 is the social coefficient,
and gives the acceleration constant of the social learning contribute to the
velocity. The term r2 is a random normal distributed real number between 0
and 1.

A slightly modified formula for the velocity was adopted for this thesis, taking
as a reference the work of Clerk and Kennedy[50], who analyzed the convergence
behavior of PSO and introduced a variant of the algorithm with a constriction
factor χ to improve the velocity of convergence[51].

vt+1
i = χ(vt

i + c1r1(pt
pbest − pt

i) + c2r2(pt
gbest − pt

i)) (3.19)

The constriction factor can be calculated as follows:

χ = 2---2 − ϕ −
√

ϕ2 − 4ϕ
--- , ϕ = c1 + c2 (3.20)

The algorithm will perform the iterations, calculating the personal best and global
best and then updating the particles’ position, until the cost function Γ(pgbest)
drops below a pre-defined tolerance ϵ. In addition, a maximum number of iterations

32



Guidance Algorithm

Algorithm 1 PSO pseudo-code
1: ▷ Random initialization of p0

i and v0
i

2: ▷ Set ppbest,i = p0
i and pgbest as the ppbest,i with the lowest Γ(ppbest,i)

3: ▷ Set iter=1
4: while Γ(pgbest) > ϵ and iter < itermax do
5: ▷ Evaluate ppbest and pgbest

6: ▷ Update pi and vi according to Eq. 3.17 and 3.19
7: ▷ iter=iter+1
8: end while
9: ▷ return pgbest as the optimal solution
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Figure 3.2: Contributes to the velocity of a particle in the PSO[49]

is defined to stop the algorithm if the objective function does not reach below the
threshold. The pseudo-code for the PSO is given in Algorithm 1:
In order to evaluate the personal best and the global best particles, the objective
function must be involved. In general, when the constraints are not taken into
account, for an optimization problem with one objective function only, the personal
best position of the i-th particle is initially set equal to the first random generated
position, and subsequently updated with pi if:

Γ(pi) < Γ(ppbest,i), i = 1, ..., np (3.21)

where npis the number of particles in the swarm. Similarly, the global best position
of the swarm is selected among all the personal best positions as the personal best
solution with the minimum objective function.

Γ(pgbest) = min
∀i∈[1,np]

Γ(ppbest,i) (3.22)

3.2.1 Constraint Handling
An important issue, introduced in the previous section, is the fact that the opti-
mization problem defined in Eq. 3.9 is subject to a constraint on the joint angles.
Therefore, a strategy for constraint handling is introduced in the algorithm, based
on the concept of constraint domination defined in the work presented by L.D. Li
et al. [52]. The degree of constraint violation can be measured with a function
Φ(pi):

Φ(pi) =
nØ

k=1
[max(0, θ(pi)k,max − θmax) + max(0, θmin − θ(pi)k,min)] (3.23)
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When Φ(pi) = 0 the solution is said to be feasible, otherwise the higher is Φ(pi) the
more the solution is infeasible. A solution pA is constraint dominant with respect
a solution pB in two cases:

1. The solution pA has less constraint violations than pB

2. Both the solutions have the same degree of constraint violations but pA has a
better fitting value than pB

That is, transposed into a logical expression:

Φ(pA) < Φ(pB) ∨ [Φ(pA) = Φ(pB) ∧ Γ(pA) < Γ(pB)] (3.24)

Therefore, the constraint it taken into account during the selection of the personal
best position of a particle, substituting the condition in Eq. 3.21 with the following
condition:

Φ(pi) < Φ(ppbest,i) ∨ [Φ(pi) = Φ(ppbest,i) ∧ Γ(pi) < Γ(ppbest,i)] (3.25)

3.2.2 Multi-objective Optimization
As anticipated in the previous section, the strategy adopted to handle the inequality
constraints on the joint velocity and the reaction torque by adjusting the execution
time of the maneuver accordingly, may eventually lead to excessively slow maneuvers.
A solution can be obtained introducing the execution time T as a secondary
objective function to be minimized. However, since the primary objective of the
optimization is the minimization of the final pose error of the end-effector, a strategy
to prioritize the different objectives of the optimization must be introduced, to
ensure that ∥Q δx∥ drops below the threshold ϵ. The Lexicographic method[53] is
used to ensure the priority of the the objective to optimize. With this method, the
functions are ordered according to their importance and the optimization problem
is reformulated as follows: min T (p)

subject to Γ(p) ≤ ϵ
(3.26)

The minimization of the first objective function can be treated as a constraint.
The constraint domination concept can be then applied and, in this case, the
constraint violation function is Γ(p) itself. The condition for the selection of the
personal best is now modified as follows. A particle’s best position pbest,i is updated
with its current position pi in either of these three cases:

1. pi has less joint constraint violations than pbest,i
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2. pi has the same joint constraint violations as pbest,i and Γ(pi) is lower than
Γ(ppbest,i)

3. pi has the same joint constraint violations and objective function as ppbest,i

but T (pi) is lower than T (ppbest,i)

That is, transposed into a logical expression:

Φ(pi) < Φ(ppbest,i) ∨
[Φ(pi) = Φ(ppbest,i) ∧ Γ(pi) < Γ(ppbest,i)] ∨
[Φ(pi) = Φ(ppbest,i) ∧ Γ(pi) = Γ(ppbest,i) ∧ T (pi) < T (ppbest,i)]

(3.27)

Similarly, the global best position is updated with a particle among the n personal
best position. In this way the prioritized optimization of Γ(p) is guaranteed.

A schematics of the complete PSO algorithm designed for the guidance of the ma-
nipulator is illustrated in Fig.3.3. The algorithm starts by randomly initializing np

Figure 3.3: Flowchart of the designed PSO algorithm

particles p0 = [P12, P22, P32, P42, P52, P62, P72]T and their velocities. Subsequently,
the iterations starts and for each particle the relative joint velocities (Eq.3.12 ) and
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joint angles (Eq.3.13 ) are computed, parametrized over τ . Then, the maximum
velocity, base torque and maximum and minimum joint angles are computed. Fi-
nally, for each particle, Φ (Eq.3.23), Γ (Eq.3.7) and T (Eq.3.16) are computed. The
algorithm then proceeds to select for each iteration the np personal best positions
through Eq.3.27 and , with the same criteria, the global best position. Finally, the
threshold for Γ(pgbest) is checked. If the objective function is below the tolerance,
the algorithm stops, otherwise, each particle and its velocity are updated following
Eq.3.17 and Eq.3.19. The iteration number is increased and the algorithm starts
again until the threshold is reached or the iteration surpass the limit.
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Chapter 4

Controllers

In this chapter the different control strategies adopted for the space manipulator
are described and discussed. The Control system is composed of two main parts:

• Attitude control, used to stabilize the spacecraft at a constant attitude,
expressed with the unit quaternion q = [1, 0, 0, 0]T .

• Manipulator Control, used to track the optimal trajectory generated by the
guidance algorithm.

For the attitude control a linear MPC was designed, whereas, for the manipulator
two different approaches were chosen. The first one is a Linear Time-Varying MPC
and the second one is a sliding mode control. These two control strategies are then
confronted and discussed in chapter 5.

4.1 Attitude Control
The attitude control of a spacecraft has the goal to maintain a stable, constant
orientation of the satellite. This may be necessary during a mission for the pointing
requirements of the payload or the communication system. In addition, during the
maneuver with the robotic arm, because of the complex dynamics of the space
manipulator, the base disturbances perturb the satellite attitude, which acquires
angular acceleration and velocity that in turn influences the manipulator. If not
kept stabilized, the attitude variations may cause the manipulator to not follow
properly the optimal trajectory and therefore not reach the desired pose of the
end-effector. In this regard, a linear MPC may be an effective approach, since the
attitude should be kept constant and the system can be easily linearized around
the equilibrium point.
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4.1.1 Linear Model Predictive Attitude Control
The model predictive control is a rather famous modern control strategy that
combines the theory behind feedback control and optimization. Because of its
computational cost, which is higher than that of other simpler control strategies
(PID, Sliding Mode, etc.) it was not immediately applied in the control of spacecraft
attitude[54]. However, thanks to the increasingly rapid advancement in terms of
computational capabilities of the spacecraft On Board Computers, the application
of MPC for attitude control started to be investigated more and more in literature
during the last decades. The MPC is mainly composed of two main parts:

• Predictive model, which in this case is derived by linearizing the attitude state-
space equation around the equilibrium point q = [1, 0, 0, 0]T and ω = [0, 0, 0]T

• Optimizer, which solves an On-line optimization problem at each time step of
the simulation.

The presence of the optimization gives a notable advantage, since it makes it
possible to eventually handle constraints on the command torque, which in a real
spacecraft is usually limited by the nature of the actuators (maximum thrust for
the thrusters and saturation for the reaction wheels).
The concept behind MPC is depicted in Fig 4.1. A prediction horizon np and a
control horizon nc are defined. The goal of the controller is to find the optimal
control command sequence for the next nc time steps that minimizes a certain
cost function J over the np time steps of the prediction horizon. Once the optimal
control sequence is computed, the first control command is taken as output of the
MPC and the rest of the sequence is discarded. The process is then repeated for
each time step, until the system reaches the desired steady state.
Starting from the spacecraft attitude dynamics and kinematics equation, the state-
space equation can be written. Recalling the attitude dynamics and kinematics
introduced in chapter 2:q̇ = 1

2ωb ⊗ q
ω̇ = −Ib

−1 (ωb × Ibωb) + Ib
−1 (Mc)

(4.1)

The kinematic equation can be further simplified, using the linear dependence of
the scalar quaternion. Since q0 =

ñ
1 − (q2

1 + q2
2 + q2

3), the number of variables in
the equation can be reduced and the quaternion kinematics equation becomes:
q̇1
q̇2
q̇3

 = 1
2


ñ

1 − (q2
1 + q2

2 + q2
3) −q3 q2

q3

ñ
1 − (q2

1 + q2
2 + q2

3) −q1

−q2 q1

ñ
1 − (q2

1 + q2
2 + q2

3)


ω1
ω2
ω3


(4.2)
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Figure 4.1: The principle of MPC[55]

The state-space equation can be rewritten in the form:

ẋ = f(x) + Bu (4.3)

where:

• x is the state vector
x =

C
ω
qv

D
(4.4)

• u is the control vector
u = Mc (4.5)

•
f(x) =

C
−Ib

−1 (ωb × Ibωb)
1
2Q(qv)ωb

D
(4.6)

•
B =

C
Ib

−1

03,3

D
(4.7)

In order to implement the Linear MPC, the system must be linearized around the
equilibrium point, and then discretized. Using the first order Taylor expansion
around the point x = [0, 0, 0, 0, 0, 0]T , the linearized system becomes[54]:C

ω̇b

q̇v

D
=
C
03,3 03,3
1
2I3 03,3

D C
ωb

qv

D
+
C
Ib

−1

03,3

D
u = Ax + Bu (4.8)
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The discretization of the system is performed through the embedded MATLAB
command "c2d" and the resulting discrete time system becomes:x(k + 1) = Adx(k) + Bdu(k)

y(k) = Cx(k)
(4.9)

with

• y = qv

• C =
è
03,3 I3

é
Once the system has been discretized it is possible to write the vector containing
the predicted output of the system over the next np time-steps.Ypre = Sx + WU

U = Uold + L∆U
(4.10)

where:

S =


CAd
CA2

d
...

CAnp
d

 ∈ R3np,6 (4.11)

W =


CBd 03,3 ... 03,3

CAdBd CBd ... 03,3
... ... . . . ...

CAnp−1
d Bd CAnp−2

d Bd ... CBd

 ∈ R3np,3np (4.12)

L =



I3 ... 03,3
... . . . ...
I3 ... I3
... . . . ...
I3 ... I3

 ∈ R3np,3nc (4.13)

Uold =


uold

uold
...

uold

 ∈ R3np,1 (4.14)

∆U =


∆u(k)

∆u(k + 1)
...

∆u(k + nc − 1)

 ∈ R3nc,1 (4.15)
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From equation 4.10 it is possible to calculate the prediction of the outputs over
the next np time-steps taking as input the current state vector x and the previous
command vector uold. Once the discrete linearized predicting model is defined, the
objective function to be minimized is written as:

J = ∥Q(Ypre − Yref )∥2 + ∥R∆U∥2 (4.16)

where:

• Q ∈ R3np,3np and R ∈ R3nc,3nc are two appropriately chosen weighting matrices

• Yref =


03,1

...
03,1

 ∈ R3np,1 is the vector containing the desired qv over the np time

steps

The online optimization problem to be solved at each time step by the MPC can be
defined, adding the constraints on the control and on the variation of the control
command between time steps, to make it as smooth as possible:

min J
umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax

(4.17)

In order to be solved, the optimization can be converted into a quadratic program-
ming (QP) problem through a mathematical reformulation of the objective function
and of the constraints. Defining:

E = Yref − Sx − WUold (4.18)

The objective function becomes:

J = ∥Q(WL∆U − E)∥2 + ∥R∆U∥2 (4.19)

Carrying out the calculations it is possible to come up with the following quadratic
form:

J = ∆UT H∆U + fT ∆U (4.20)

where:

• H = LTWTQTQWL + RTR

• f = −2LTWTQTQE
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In addition, the constraints can be rewritten as:


L1
−L1
L2

−L2

∆U ≤ bc (4.21)

where

L1 =


I3 03,3 ... 03,3

03,3 I3 ... 03,3
... ... . . . ...

03,3 03,3 ... I3

 ∈ R3nc,3nc (4.22)

L2 =


I3 03,3 ... 03,3
I3 I3 ... 03,3
... ... . . . ...
I3 I3 ... I3

 ∈ R3nc,3nc (4.23)

bc =



∆umax(k)
...

∆umax(k + nc − 1)
−∆umin(k)

...
−∆umin(k + nc − 1)

umax(k) − uold
...

umax(k + nc − 1) − uold

uold − umin(k)
...

uold − umin(k + nc − 1)



(4.24)

The quadratic programming problem is solved online at each time step, through
the MATLAB embedded function quadprog.

4.2 Manipulator Control
In the following section the two different control strategies adopted for the manipu-
lator’s controller are discussed: a Linear Time-Varying MPC and a sliding mode
control. A comparison between the two controller is then carried out in chapter 5.
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4.2.1 Linear Time-Varying MPC
As previously discussed in the section on the attitude control, MPC is a complex
modern control strategy that is quite computationally expensive. Up to now,
several much simpler controllers such as PID are widely used for the control
robot manipulators. However, these methods rarely take into account dynamic
constraints[56]. For this reason, in this thesis, a linear time-varying MPC is
proposed, taking as a reference the work of Quirong Tang et al. [56]. The dynamics
equation of the manipulator, derived in chapter 2, is recalled below:

B(θ)θ̈ + C(θ, θ̇)θ̇ = τ (4.25)

Let x = [x1, x2]T =
è
θ, θ̇

éT
be the vector of the state variables. The state space

representation of the dynamic model at time t is then:
ẋ1 = x2

ẋ2 = k(x1)u(t) + g(x1, x2)
y(t) = x1

(4.26)

where k = B−1 and g = −B−1(Cθ̇). Following [56] the state variable is discretized
through the first and second Taylor expansion as follows:

x(t + ∆t) =
C
x1(t + ∆t)
x2(t + ∆t)

D
=
C
x1(y) + ẋ1(y)∆t + ẍ1(y) ∆t2

2
x2(t) + ẋ2(t)∆t

D
(4.27)

substituting equation 4.26 into the expression above, a linear state space equation
can be obtained: x(i + 1) = Ax(i) + Bu(i) + D

y(i) = Cx(i)
(4.28)

where

A =
C
In ∆tIn

0n,n In

D
, B =

C
k∆t2

2
k∆t

D
, C =

è
In 0n,n

é
, D =

C
g∆t2

2
g∆t

D
(4.29)

It is important to notice that, in order to linearize the state space equation, these
matrices are considered constant throughout the whole prediction horizon. This
is a strong assumption since, in general, k and g depends on the manipulator’s
configuration, which varies with time. However, the MPC is linear time-varying,
which means that at each time step k and g and, consequently, B and D are
updated on-line with the current manipulator’s configuration. Once the state-space
equation is defined, it is possible to define the vector containing the predicted
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outputs at each time-step of the prediction horizon similarly to the case of the
spacecraft’s attitude. Ypre = Sx + WU + V

U = Uold + L∆U
(4.30)

The matrices and the vectors are similar to the one defined in the previous section,
but with appropriate dimensions. In addition, the matrix V is defined as:

V =


CD

C(AD + D)
...

C(Anp−1D + Anp−2D + ... + AD + D)

 (4.31)

Then, the optimization problem is defined:
min∥Q(Ypre − Yref )∥2 + ∥R∆U∥2

umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax

(4.32)

Finally, the optimization is transposed to a quadratic programming problem. Let
E = Yref − Sx − WUold − V. By substituting into 4.30 and carrying out the
calculations it follows:

J = ∆UT H∆U + fT ∆U (4.33)

where:

• H = LTWTQTQWL + RTR

• f = −2LTWTQTQE

Finally, the constraints are rewritten as:
L1

−L1
L2

−L2

∆U ≤ bc (4.34)

where L1, L2 and bc are defined similarly to the attitude case, but with appropriate
dimensions.

4.2.2 Sliding Mode Control
The sliding mode control is a well established approach for the control of systems
with non-linear dynamics. The SMC is characterized by a robust mathematical
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base, and, in general, has proven a good rejection of disturbances over a limited
knowledge of the system dynamics[57]. The principle behind the SMC is to drive the
state of the system towards a surface σ defined in the state-space, and called sliding
surface. Then, the controller keeps the system’s state on the surface and guides it
toward the desired steady-state equilibrium point. Therefore, the controller can be
implemented in two steps:

1. Definition of the sliding surface σ

2. Design of the control law to make the surface attractive

The sliding surface is typically a function of the state error and its derivatives. A
rather common choice is to define σ as a polynomial function as follows.

σ =
NØ

i=0
kie

(i) (4.35)

where

• e is the state error

• e(i) denotes the ith derivative of the state error

• the coefficients ki are usually positive definite constants with appropriate
dimension.

Let P (x) = qN
i=0 kix

i be the polynomial associated to σ. The choice of the
coefficients ki is crucial for the stabilization of the system, since they have to lead
to roots of P (x) with a negative real part. In such a way, when the state will reach
the sliding surface, the tracking error will exponentially drop to zero. Since the
purpose of the SMC for this thesis is the tracking of the optimal trajectory, the
state error considered is the tracking error e = θd − θ. The sliding surface is defined
as:

σ = ë + Kdė + Kpe (4.36)

where ė = θ̇d − θ̇ and ë = θ̈d − θ̈. Once the sliding surface is designed, it is possible
to define the control law to make the surface attractive, starting with the dynamics
of the system.

B(θ)θ̈ + C(θ, θ̇)θ̇ = τ (4.37)

Imposing the sliding surface equal to zero and rewriting the expression to explicit
θ̈ it is possible to obtain:

σ = 0 ⇒ θ̈ = θ̈d + Kdė + Kpe (4.38)
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Substituting into 4.37 it follows:

τ = B(θ)(θ̈d + Kdė + Kpe) + C(θ, θ̇)θ̇ (4.39)

To make the surface more attractive, usually a term proportional to the sign of the
sliding surface is added to the command input. However, since the sign function
is discontinuous, this may lead to the so-called chattering, a discontinuous high-
frequency control. In the case of the manipulator this is particularly problematic,
since the chattering may cause relevant disturbances to the base satellite, rendering
useless the effort of the guidance to generate a low disturbance trajectory. To
overcome this issue usually continuous functions (like sigmoids) are employed. In
this work a term proportional to the hyperbolic tangent is added to the control
input as follows:

τ = B(θ)(θ̈d + Kdė + Kpe) + C(θ, θ̇)θ̇ + c tanh(σ) (4.40)

where c is a positive coefficient of appropriate dimension.
Furthermore, additional attention must be paid to the choice of the coefficient
matrices Kd and Kp, which have to be carefully tuned in order to preferably obtain
an over-dumped response the system. Even though the reaching time of the system
may be larger, an over-dumped design will avoid excessive oscillations around the
desired trajectory, further minimizing the base disturbances on the base satellite.
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Chapter 5

Simulation and Results

In the following chapter, the simulation environment is described and the results
of the simulations are discussed. The chapter is organized as follows: at first
the MATLAB/SIMULINK simulator is briefly introduced. Then, the different
simulations are described. The results of both the guidance algorithm and the
simulation of the trajectory tracking are then reported and discussed. The different
actuators modeled for the attitude control (thrusters and reaction wheels) are
tested and compared in performance. Afterwards, the same maneuver is performed
with both the SMC and the linear time varying MPC for the trajectory tracking
of the manipulator. The results are shown and discussed. Finally, the results of
the tracking error during a Montecarlo simulation are reported for both the SMC
and the linear time-varying MPC. The different performance are discussed and
conclusion are drawn on which may be the best solution and on how to eventually
improve the controllers.

5.1 Simulator Overview
The simulator is implemented in a MATLAB/SIMULINK environment and it is
composed of two main subsystems:

• 3 DoF base satellite attitude

• 7 DoF robotic arm

The schematics of the simulator are depicted in fig. 5.1. It is possible to notice
that the dynamics of the two subsystems influence one another. The attitude
model receives the base torque disturbance as input form the robotic arm, and the
manipulator model receives the the satellite’s angular velocity and acceleration.
The two subsystems are now discussed in detail.

48



Simulation and Results

Figure 5.1: MATLAB/SIMULINK complete space manipulator simulator

5.1.1 Attitude Subsystem
The attitude simulator is reported in fig 5.2. The subsystem is composed by four

Figure 5.2: Attitude subsystem

main parts:

• Attitude Dynamics: It contains the Euler’s equations derived in chapter 2.
It receives the actuator’s torque and angular momentum as input, together
with the base disturbance generated by the robot manipulator. The block
computes the angular acceleration and velocity of the spacecraft as output.
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• Quaternion Kinematics: It receives the spacecraft’s angular velocity as
input and computes the unit quaternion describing the attitude state of the
spacecraft. Together with the attitude dynamics block, they constitute the
subsystem of the plant dynamics.

• Controller: It contains the model predictive control algorithm, comprehensive
of both the predictive model and the optimizer. It receives the attitude state
(angular velocity and quaternion) as input and computes the desired control
command in terms of torque.

• Actuator: It contains the model of the attitude actuators which can be either
reaction wheels or thrusters (PWPF filter). The schematics of these models
have already been described in detail in chapter 2. The block receives the
desired control torque generated by the MPC and gives the actuated control
torque as output.

5.1.2 Manipulator Subsystem
The schematics of the robot manipulator subsystem are reported in fig. 5.3. From

Figure 5.3: Manipulator subsystem (MPC version)

the figure, three main components can be identified:

• Guidance: It gives as output the optimal reference trajectory already com-
puted off-line by the PSO algorithm.

• Control: Two different version of this block were implemented. It contains
either the linear time-varying MPC or the sliding mode controller for the
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trajectory tracking of the manipulator. The block takes the state of the system
x = [θ, θ̇]T as input, together with the dynamics parameters computed in the
plant dynamics subsystem B(θ) and C(θ, θ̇)θ̇, and the reference trajectory
generated by the guidance block. The algorithm then computes the desired
command torque τ as output.

• Plant Dynamics: this block takes as input the desired command torque τ
computed by the controller and the angular velocity and acceleration of the
base satellite. It computes the state variables of the system (θ, θ̇, θ̈) using
the equation of the dynamics of the manipulator. In addition, the dynamics
matrices B(θ) and C(θ, θ̇)θ̇ are computed with the Lagrangian and Newton-
Euler approach, respectively. The state variable and the dynamics parameters
are given as output to the controller. Finally, the block computes and gives
as output the base reaction torque of the manipulator, generated during the
maneuver.

5.2 Results
During the simulated maneuver the end-effector of the robotics arm moves from an
initial position and orientation s0 =

è
x0 y0 z0 q0 qx0 qy0 qz0

éT
which corre-

sponds to the deployed configuration of the arm, θ0 = [90, 140, −90, 90, 0, 0, 0]T
in joint space, to a final position and orientation sf . For the Monte Carlo simulations
100 random sf are generated.

5.2.1 Guidance Results
A Monte Carlo simulation was performed to test the capability of convergence
of the PSO algorithm. 100 random final poses were generated and the optimal
trajectory to steer the end-effector from s0 to sf was computed. The results of
the simulation is reported in fig. 5.4. From the figure it is possible to notice that
the algorithm converged in most of the cases after 100/200 iterations. However, in
about the 10% of the cases the algorithm did not converge to a satisfying solution,
and the iteration stopped because the maximum number of iterations was reached.
The reason behind this phenomenon has to be searched in the PSO behaviour.
Indeed, as anticipated in chapter 4, the algorithm is defined in such a way that
does not guarantee the convergence to the global minimum. When the function
to minimize is rather complex, several local minima are present, and the swarm
may eventually be trapped by one of them, leading to the stagnation of the PSO.
During the stagnation, no improvements are made on the personal best position
or global best position of the swarm, making it impossible to escape the local
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Figure 5.4: Fitting function Vs Iterations for the Monte Carlo simulation

minimum. Several strategies for stagnation avoidance already exists in literature,
for example[58]:

• Modified PSO, where the algorithm is slightly improved by modifying the
tuning parameters (e.g. adaptive inertia weights)

• PSO with mutation, where a random mutating agent is added to the formula
used to update the population. This will help to increase the diversity and
eventually escape the local minimum.

• Hybrid PSO, where the PSO is used in combination with other meta-heuristic
algorithms such as genetic algorithm or differential evolution.

• Multi Swarm PSO, where more than one swarm is defined. In this way a
larger search space can be employed and the stagnation should eventually be
avoided.

In addition, other approaches for stagnation avoidance can be employed, for example
by re-initializing the positions and velocities every time the stagnation occurs.
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5.2.2 Trajectory Tracking Results

In this section, the results of the simulation of the maneuver are reported and
discussed. The different actuators for attitude control and strategies for trajectory
tracking are compared, and the solutions are discussed.

Thrusters Vs Reaction Wheels

To compare the efficiency of the different actuators, a maneuver that aims to move
the end-effector from the initial position and orientation s0 to a random chosen
final position sf = [0.99, 1.38, 1.08, 0.27, 0.03, 0.27, 0.92]T is performed . The results
are reported in fig. 5.5 to fig. 5.11.

From the tracking error it is possible to immediately notice the difference between
the continuous action of the reaction wheel and the on-off behaviour of the thrusters.
This is true also for the joint torques and the base disturbances, that follows a
similar trend in both cases, but presents a series of oscillations in the thrusters’ case.
However, the magnitude of the reaction torque is contained, therefore preserving
the effort of the guidance in computing a trajectory with low disturbance on the
base. The attitude is maintained constant throughout the maneuver in both cases,
and the angular acceleration of the spacecraft is relatively low, around 10−4 rad/s
in both cases. Although, a slightly more disturbed angular acceleration for the
thrusters is observed , with peaks that keeps occurring even after the manoeuvre
is concluded. By comparing the control torques computed by the controllers and
the actuated torque, the reason behind the difference of the results between the
two simulations is evident. In fact, the PWPF modulation makes it harder for the
thrusters to follow the desired torque computed by the controller. This results
in additional disturbances and in a much less fine attitude control than the one
of the reaction wheels’ case. Therefore, the trajectory tracking control of the
manipulator must compensate for these additional disturbances, by generating a
control that oscillates around the main trend. For the reasons above, the reaction
wheels actuation resulted in a better, more efficient attitude control strategy. To
improve the thruster actuation, several strategies may be employed. For example
thrusters with lower maximum thrust level may be used. In addition, the parameter
tuning for the PWPF could be performed following more rigorous methodologies.
For instance, PSO based methods have been investigated in literature [24].

SMC Vs MPC

The same maneuver used for the previous simulation is taken as a reference for the
comparison between the two controllers implemented for the trajectory tracking of
the manipulator. The results of the simulation are reported in fig. 5.12 to fig. 5.18.
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From the comparison of the tracking error it is possible to immediately notice
a difference of more than 3 orders of magnitude. The tracking error of the MPC
is relatively high, with peaks around 5 deg, whereas the SMC gives an extremely
low error of 10−4 deg at most. The same phenomenon takes place with the joint
torques, which are lower in the case of SMC, with a maximum value of 8 · 10−2 Nm
compared to the higher value of 2.6 · 10−1 Nm of the MPC case. However, the
reaction torque appears to be more or less the same in both cases. The attitude
is maintained stable and constant during the whole maneuver. The spacecraft
angular velocity is low in both cases, but in the SMC case is 2 orders of magnitude
lower than the one in the MPC case. Finally, the control torque generated by the
MPC appears to be much greater than the one computed by the MPC.

In addition, to further understand the differences in terms of performance of the
two controllers, two Monte Carlo simulations were performed, with 100 maneuvers
with a random desired final pose of the end effector each. The results of the Monte
Carlo simulations are reported in fig. 5.19 to fig. 5.21.
During the Monte Carlo simulation the MPC was highly unstable and the error
diverged in 40% of the simulations. Only the cases where the error did not diverge
are reported. For the SMC case, instead, the error converged to zero in 100% of
the cases. From the comparison of the tracking error it is possible to notice a
very high tracking error generated by the MPC, which in some cases has peaks up
to 20 deg. The tracking error of the SMC, on the other hand, is maintained low
for all the simulations, at a magnitude of 10−4 deg. The control torque, however,
appears to have the same average magnitude for both the MPC and the SMC case.
Finally, the reaction torque appears to be lower on average in the SMC case. The
huge difference between the MPC and the SMC in terms of tracking error can
be motivated by the intrinsic characteristics of the linear time-varying MPC. The
dynamics of the manipulator is highly non-linear, therefore, the sliding mode was
expected to behave as a good controller for the trajectory tracking. On the other
hand, the MPC linearizes the dynamics of the manipulator, and, moreover, makes
assumptions on the dynamic parameters, which are considered constant at each
time-step when the model computes the predicted state. In order to improve the
controller, a non-linear MPC should be studied, to better handle the non linearities
of the manipulator’s dynamics. The selection of a SMC as a controller may result
in a good compromise, however, some strategies have to be studied to take into
account the constraints given by the limitations of the actuators.

5.3 Discussion of Results
In this section the simulation results are discussed in detail. For what concerns
the results of the guidance algorithm, the PSO has been proven to be a promising
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approach to the generation of a low disturbance optimal trajectory. In fact, the
algorithm plays a crucial role for the success of the maneuver, being able to
generate a feasible trajectory while satisfying the constraints on the joint angles,
angular velocity and on the reaction torque. However, a well known problem[58] of
premature convergence to a sub-optimal solution has raised during the simulation.
In fact, as shown in fig.5.4, in 10% of the maneuvers the final trajectory was not
satisfying, since the final error of the end-effector’s position and orientation was not
lower than a tolerance threshold. The reason to this phenomena is given by the fact
that, as the iteration number increases, the momenta of the particles reduces and
the swarm tends to converge to a single point. The convergence of the algorithm
may be a favorable property, however, for particularly complex problems, with
many local minima, this may result in a solution which is not the global optimum.
It is obvious that, in order to avoid such phenomenon, the whole structure of
the algorithm must be modified. As already mentioned in the previous section,
several strategies have already been investigated in literature [58] to handle the
convergence to a sub-optimal solution.
In addition, the comparison between the linear time-varying MPC and the SMC as
highlighted a huge difference in performance between the two control strategies.
The sliding mode control is notoriously able to handle the non-linearities of a
dynamic system, and, as expected, as given rather satisfying results in therms
of tracking error. Furthermore, the low reaction torques of the optimal guidance
have been preserved, making it easier for the attitude control to keep the attitude
stable during the maneuvers. On the other hand, the linear time-varying MPC
was highly unstable and resulted in a divergent tracking error in 40% of the cases.
The remaining maneuvers presented, anyway, a very large tracking error, with
peaks around 20 degrees. The inability to properly follow the optimal trajectory
resulted in a high reaction torque transferred to the base satellite and , therefore,
higher effort of the ACS to stabilize the attitude of the spacecraft. The radical
performance difference between the two controllers lays on the approximation of
the manipulator’s dynamics performed in the linear time-varying MPC. At each
time step the state-space equation are linearized around the desired point of the
optimal trajectory, and the dynamic matrices are assumed constant for the whole
duration of the prediction horizon. This presumably results in a poor ability of the
predictive model to accurately forecast the future state of the system. Therefore,
the control output computed by the MPC does not actually minimize the objective
function of the on-line optimization leading to a tracking error higher than expected.
In order to overcome this issue a different formulation for the controller must be
employed, considering, for instance, a non-linear MPC, in order to better predict
the state of the system over the prediction horizon.
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(a) Reaction Wheels

(b) Thrusters

Figure 5.5: Manipulator tracking error with reaction wheels and thrusters as
actuators for the ACS
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(a) Reaction Wheels

(b) Thrusters

Figure 5.6: Joint torques during trajectory tracking with reaction wheels and
thrusters as actuators for the ACS
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(a) Reaction Wheels

(b) Thrusters

Figure 5.7: Reaction torque during trajectory tracking with reaction wheels and
thrusters as actuators for the ACS
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(a) Reaction Wheels

(b) Thrusters

Figure 5.8: S/C quaternions during trajectory tracking with reaction wheels and
thrusters as actuators for the ACS
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(a) Reaction Wheels

(b) Thrusters

Figure 5.9: S/C angular velocity during trajectory tracking with reaction wheels
and thrusters as actuators for the ACS
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(a) Reaction Wheels

(b) Thrusters

Figure 5.10: Command torque generated by the controller during trajectory
tracking with reaction wheels and thrusters as actuators for the ACS
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(a) Reaction Wheels

(b) Thrusters

Figure 5.11: Actuated control torque during trajectory tracking with reaction
wheels and thrusters as actuators for the ACS
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(a) MPC

(b) SMC

Figure 5.12: Manipulator tracking error with MPC (a) and SMC (b) as controllers
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(a) MPC

(b) SMC

Figure 5.13: Joint torques during trajectory tracking with MPC (a) and SMC
(b) as controllers
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(a) MPC

(b) SMC

Figure 5.14: Reaction torque during trajectory tracking with MPC (a) and SMC
(b) as controllers
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(a) MPC

(b) SMC

Figure 5.15: S/C quaternions during trajectory tracking with MPC (a) and SMC
(b) as controllers
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(a) MPC

(b) SMC

Figure 5.16: S/C angular velocity during trajectory tracking with MPC (a) and
SMC (b) as controllers
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(a) MPC

(b) SMC

Figure 5.17: Command torque generated by the controller during trajectory
tracking with MPC (a) and SMC (b) as controllers
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(a) MPC

(b) SMC

Figure 5.18: Actuated control torque during trajectory tracking with MPC (a)
and SMC (b) as controllers
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(a) MPC

(b) SMC

Figure 5.19: Trajectory tracking error with MPC (a) and SMC (b) as controllers
during a Monte Carlo simulation
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(a) MPC

(b) SMC

Figure 5.20: Joint torque with MPC (a) and SMC (b) as controllers during a
Monte Carlo simulation
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(a) MPC

(b) SMC

Figure 5.21: Reaction torque with MPC (a) and SMC (b) as controllers during a
Monte Carlo simulation
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Chapter 6

Conclusions and Future
Work

The aim of this thesis is to develop an innovative guidance algorithm for a space
manipulator. In order to develop and analyze the performances of such algorithm a
complete simulator on MATLAB/SIMULINK had to be developed, comprehensive
of both the base satellite and the robotic arm. The model simulated the attitude
dynamics of the base spacecraft, in order to analyze the effects of the reaction
disturbances exerted by the manipulator’s motion on the whole system. The
trajectory planning was treated as an optimization issue and solved off-line with a
meta-heuristic algorithm called Particle Swarm Optimization, a method inspired
by to movement of the swarms of birds. Then, a Monte Carlo simulation was
performed to test the convergence of the algorithm, solving 100 different trajectory
planning problems. The simulation suggested that the PSO may be a promising
method for the guidance of space manipulators, being able to converge in 90% of the
cases. This approach gives several advantages, for instance the possibility to impose
constraints on the join angles, velocities and on the reaction torque generated by
the movement of the manipulator. In addition to the guidance algorithm, several
controllers were implemented to track the optimal trajectory generated by the
PSO. In particular, a linear time-varying MPC and a sliding mode controller. The
two controllers were tested, together with an MPC for the attitude control of the
spacecraft, with a Montecarlo simulation, performing 100 different maneuvers of
the manipulator. The simulation suggested that the SMC would be a good solution
for the tracking of the optimal trajectory, given its ability to deal with non linear
dynamics such as the one of the manipulator. The linear time-varying MPC, on
the other had did not give satisfying results, showing instability in 40% of the cases.
This may be due to the linearization of the manipulator’s dynamics which, as a
consequence, makes the model unable to accurately predict the evolution of the
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system over the prediction horizon. As a result of these simulations, this work
has opened the scenario to several ideas for further improvements to be eventually
studied in future works. For instance, the convergence rate of the algorithm can be
further increased by adopting a strategy for stagnation handling. The PSO can
be modified, used in combination with other meta-heuristic optimization methods
(such as genetic algorithms or differential evolution), or a multi swam PSO may be
eventually employed to ensure the convergence to a satisfying solution. Furthermore,
several improvements may be applied to the controller for the trajectory tracking,
adopting a non-linear MPC to better handle the non-linearities of the manipulator’s
dynamic. In addition, a more complete simulator may be studied, introducing
the complete model of the space manipulator’s dynamics using, for instance, the
generalized jacobian method. Finally, in order to develop a more realistic model,
the environment disturbances (such as the gravity gradient and the solar pressure)
may be taken into account, together with a model of the joint motors, to actuate
the desired joint torques generated by the controller.
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