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Abstract 

In this work a space trajectory is optimized for the case of a kinetic impactor 

spacecraft sent to collide with a threatening Earth-approaching asteroid, with the 

objective of maximizing the subsequent miss distance of the asteroid at its closet 

approach to Earth.

The direction of the  thrust vector to direct the low-thrust spacecraft from Earth to the 

asteroid, the launch and interception dates, and initial Earth V-infinity departure 

direction are found by solving an optimal control problem so that the impact maximizes 

the resulting perigee of the subsequent Earth hyperbolic flyby. Due to the fact that the 

solution space considered by the optimizer is large and the objective function is 

complicated, intuition is not sufficient to provide an adequate initial guess for the 

nonlinear programming problem (NLP) solver used to optimize all aspects of the 

trajectory. A heuristic algorithm method called particle swarm optimization (PSO) is 

used to find an approximate solution that can then be used as an initial guess to the NLP 

optimizer and enable the problem to be treatable. 



Abstract 

In questo lavoro viene ottimizzata una traiettoria spaziale per il caso di un 

veicolo spaziale ad impatto cinetico inviato a collidere con un minaccioso asteroide che 

si avvicina alla Terra, con l'obiettivo di massimizzare la successiva distanza di mancato 

impatto dell'asteroide al suo prossimo avvicinamento alla Terra.

La direzione che il vettore di spinta deve avere per dirigere il veicolo spaziale a bassa 

spinta dalla Terra all'asteroide, le date di lancio e di impatto, e la direzione di partenza 

iniziale V-infinito dalla Terra sono trovate risolvendo un problema di controllo ottimale 

in modo che l'impatto massimizzi il raggio di perigeo risultante del successivo flyby 

iperbolico della Terra. A causa del fatto che lo spazio di soluzione considerato 

dall'ottimizzatore è grande e la funzione obiettivo è complicata, l'intuizione non è 

sufficiente a fornire un'adeguata ipotesi iniziale per il solutore del problema di 

programmazione non lineare (NLP) utilizzato per ottimizzare tutti gli aspetti della 

traiettoria. Un metodo di algoritmo euristico chiamato particle swarm optimization 

(PSO) viene utilizzato per trovare una soluzione approssimativa che può poi essere 

utilizzata come ipotesi iniziale per l'ottimizzatore NLP e consentire al problema di 

essere trattabile. 
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Chapter 1:  Introduction

1.1  Asteroid Deflection Missions

Humans think they live in a safe place and that all the dangers they face in their 

lives are in front of them, on earth, disregarding the dangers coming from the space in 

which our planet has been moving for millennia.

The Earth gets hit by asteroids and small debris all the time. Most of them break up in 

the atmosphere and the probability of a large asteroid hitting the earth, reaching the 

ground and causing damage to on a regional scale is small but not negligible. 

The extreme character of the impacts between the Earth and the asteroids makes it 

difficult for the general public to understand the true nature of the problem we are 

facing. The fact that this type of collisions are rare does not mean that they are 

impossible [16]. In fact, there are evidences both indirect and direct showing that this 

kind of episodes have occurred in the past and will take place again in the future.

Planetary Defence has started to be taken seriously only in the last two decades, 

following events that have demonstrated the danger of an asteroid impact, such as the 

impact of the comet Shoemaker-Levy with Jupiter in July 1994 or the “Tunguska 

event”, the atmospheric explosion of a stony meteoroid, which took place in Siberia in 

June 1908. 

Among the population of asteroids only the ones with orbits close to Earth's, known as 

Near Earth Asteroids (NEAs), constitute a serious threat. There are three classes of 

Near-Earth Asteroids: Atens, Apollos, and Amors. Atens-type asteroids have a semi-

major axis smaller than 1 AU and an aphelion greater than 0.983 AU, while Apollo-type 

asteroids have a semi-major axis greater than 1 AU and a perihelion smaller than 1.017 

AU. Hence, Apollo- type and Atens-type asteroids can have Earth-crossing orbits. 

Amors have orbits that lie completely outside Earth’s orbit (perihelial distance between 

1.017 and 1.3 AU) but have the potential to be perturbed into Earth-crossing trajectories 

[21]. 

There is a number of different measures that can be taken to mitigate this hazard. The 

most basic measures have a preventative nature and aim at cataloging the whole NEA 

population. A complete catalog of accurate orbits would allow us to know, well in 

advance, the asteroids that are on a collision course. The second type of measures, more 
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selective and targeted for a particular threatening asteroid, include different deflection 

techniques to avoid its collision with the Earth. Finally, if the previous actions fail, it is 

still possible to implement a third kind of measures, such as population evacuations 

before the impact or construction of refuges near the shock area, to mitigate the effects 

of a certain collision [1]. 

With these purposes in the 2016 NASA established the Planetary Defense Coordination 

Office, whose task is indeed to provides early detection of potentially hazardous objects 

(PHOs), tracks and characterizes PHOs and issues warnings of the possible effects of 

potential impacts and studies strategies and technologies for mitigating PHO impacts.

Figure 1.1 shows the orbits of all the known Potentially Hazardous Asteroids (PHAs), 

numbering over 1,400 as of early 2013. These are the asteroids considered hazardous 

because they are fairly large (at least 140 meters in size), and because they follow orbits 

that pass close to the Earth's orbit (within 7.5 million kilometers). But being classified 

as a PHA does not mean that an asteroid will impact the Earth [22].

In the NASA Planetary Defense division different methods to deflect an asteroid on a 

course to impact Earth are being studied. 

2

Figure 1.1 - Orbits of all the known Potentially Hazardous 

Asteroids (PHAs) [Credit: NASA/JPL-Caltech]



One of these techniques is called a gravity tractor which would deflect another object in 

space without physically contacting it, using only its gravitational field to transmit the 

required impulse.

A kinetic impactor, which is the method chosen in this work, is currently the simplest 

and most technologically mature method available to defend against asteroids. In this 

technique, a spacecraft is launched and simply slams itself into the asteroid. If this is 

done far enough in advance then it will only be necessary to change the speed by a 

millimeter a second or less and then it will miss the Earth entirely. Scientists are testing 

the kinetic impact technique by the Double-Asteroid Redirect Test mission (DART) on 

an asteroid system called Didymos.

Nuclear explosive device methods are considered the last resort when it comes to NEO 

deflection, although they may be the most effective for preventing a cataclysmic event.

This is the most effective option when the warning time is short or the asteroid is large. 

In this method, a nuclear device is detonated a few hundred meters above the surface of 

the asteroid, emitting energy in the form of X-rays. It is this energy that instantly 

reaches the surface of the asteroid, causing it to vaporize, which creates a thrust that 

deflects its trajectory. 

1.2 Optimization Methods for Low-Thrust Spacecraft 

          Trajectory 

The main purpose of a Near-Earth Object deflection mission through a kinetic 

impactor is to transfer the maximum amount of momentum to the asteroid.

To achieve this, the spacecraft has to impact its target with the greatest possible mass.

Chemical rocket propelled spacecraft can offer a high thrust, but it has an excessive 

mass reduction due to high propellant consumption and so this type of spacecraft is not 

suitable for the type of mission analyzed.

Low-thrust electric motors have a higher specific impulse and greater efficiency and are 

therefore preferable for the deflection mission. On the other hand electric propulsion 

produces a very small thrust, with typical spacecraft acceleration on the order of  g, 

so much so that the thrust is used continuously or almost continuously over the duration 

of the mission instead of applying the required v as an impulse. This can prove to be a 

complication for trajectory optimization as there is no analytical solution to the general 

10−5

Δ
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problem of optimizing a continuous-thrust trajectory. It is therefore necessary to use 

numerical methods. 

The Spacecraft Trajectory Optimization problem may simply be expressed as the 

determination of a trajectory for a spacecraft that satisfy specific initial and final 

condition, while minimizing some quantity of importance. The most common missions 

are those that aim to minimize the propellant required or those where minimizing the 

time of flight is the important thing or again, problems where these two things are 

synonymous, as happens in cases of continuous thrust.

In the context of numerical optimization methods for continuous control 

problems, two types of solutions can be generically identified. On the one hand there are 

the solutions that use the analytical necessary conditions from the calculus of variations, 

these are called Indirect solutions. These solutions require the addition of the costate 

variables of the problem, equal in number to the state variables, and their governing 

equations. This doubles the size of the dynamical system. 

On the other hand there are the solutions, called Direct solution, which transcribe the 

continuous optimal control problem into a parameter optimization problem. Satisfaction 

of the system equations is accomplished by integrating them stepwise using either 

implicit or explicit rules. The problem is thus converted into a nonlinear programming 

problem [2]. 

Significant progress in the direct solution for the optimal control problem has occurred 

over the past decade. All solutions can be roughly categorized into being analytical or 

numerical.

1.2.1   Analytical Solutions

This is the original approach for spacecraft trajectory optimization. The problem can be 

described in terms of a dynamical system of differential equations: 

                                                                (1.1)

where  represent an n-dimensional state (vector) and  represent the m-dimensional 

control (vector). The state vector is problem dependent and it can be formulated in 

different way, for the three-body problems are typically used the cartesian coordinates. 

The control vector is typically a control of thrust magnitude and direction or its 

equivalent. Some initial and terminal conditions are specified for the problem.

·x = f (x, u, t)

x u
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The goal is then to minimize the objective:

                                                                              (1.2)

subject to constraints on the path    and the controls  . 

The problem can be solved by defining a system Hamiltonian. The set of all 

equations constitutes a two-point-boundar-value problem (TPBVP). For all but the most 

elementary optimal control problems, the solution of this TPBVP is challenging and 

numerical solutions are required. The optimal control is instead chosen according to 

Pontryagin’s Minimum Principle [2]. 

1.2.2  Numerical-conversion to NLP

Many method have been developed to solve the TPBVP numerically. These methods 

seek to reduce the optimal control problems to parameter optimization problems that 

can be solved by a nonlinear programming (NLP) problem solver. 

These methods include: the most obvious and well known shooting, the finite-difference 

methods and the collocation methods. The long-recognized difficulty of the "indirect" 

approach to determining the optimal trajectory is that the initial costate variables of the 

TPBVP are unknown and further that the nonlinearity of the problem means that the 

vector flow is very sensitive to some or all of these initial costate variables [2].

A variety of direct solution methods have been developed. The most successful 

approach is called “direct transcription”. In this method the continuous problem is 

discretized and state and control variables are known only at discrete times. Satisfaction 

of the equations of motion is achieved by employing an explicit or implicit numerical 

integration rule that needs to be satisfied at each step. 

This approach is significantly more robust than shooting methods because it eliminates 

the sequential nature of the shooting solution, with its forward numerical integration, in 

favor of a solution in which simultaneous changes in all of the discrete state and costate 

parameters are made in order to satisfy algebraic constraints. 

Direct methods has been significantly developed in the last two decades and it would be 

accurate to say that the grate majority of optimal space trajectories are now determined 

numerically. 

J = ϕ[x(T ), T ] + ∫
T

0
L[x, u, t]dt

⃗x (t) ⃗u (t)
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1.2.3  Evolutionary and Heuristic methods

Recently, a different approach is becoming increasingly popular: the use of  

“evolutionary” algorithms (EA). The best known of the EAs is the genetic algorithm 

(GA), which model the evolution of a species based on Darwin's principle of survival of 

the fittest.  These numerical optimizers determine, using methods similar to those found 

in nature, an optimal set of discrete parameters that has been used to characterize the 

problem solution. Two main advantages can be identified using the EA: no initial 

“guess” of the solution is required, and they are more likely than other methods to 

locate a global minimum in the search space rather than be attracted to a local 

minimum. 

The use of EA allows the problem solution to be described by a relatively small set of 

discrete parameters, compared to the vector of parameters of a nonlinear program. The 

set of parameters describing the solution is written as a string or sequence of numbers. 

Each of these sequences if converted to binary form can remember a chromosome.  

Every sequence can be "decoded" to yield a trajectory whose cost or objective value can 

be determined.

The first step in the GA is the generation of a “population” of sequences using a 

random process. Three natural processes are then used to improve the population: 

•  Selection: removes the worst sequences and may also, via elitism, guarantee that the 

best sequence survives unchanged;

• Combination: remaining sequences are used as “parents”,  partial sequences from two 

parents are combined to form new individuals;

• Mutation: changes a randomly chosen bit in a small fraction of the population.

The process is then repeated and the cost of every individual in the new generation is 

determined.  Since the best individual from the previous generation was retained, the 

objective may improve but cannot worsen [2]. 

Termination of the algorithm is usually done after a fixed number of generations or after 

the objective has reached a plateau and a minimum has been found. 

Similar to EAs are Heuristic methods, in which no solution is discarded but 

every particle tries to improve its cost. Among these the most famous is method is 

particle swarm optimization (PSO). This particular method uses some number of 

particles randomly distributed in a N-dimensional decision parameter space. The 

objective value is determined for the solution vector corresponding to each particle. 

6



It is assumed that the particles can communicate with each other, according to an 

anthropomorphic view, so that all know the objective value for all the others. Every 

particle take a step in the parameter space at every time step. This step has three 

components: the first is an “inertia” that causes the particle to move in the direction it 

had previously been moving, the second is the “nostalgia” component that reflects a 

tendency for the particle to move toward its own most satisfactory position, and the 

third “social” component draws the particle toward the best position found by any of its 

colleagues. 

As already seen with the GA, the process can be terminated after a fixed number of 

iterations or when the “best” solution has not changed for several iterations. This 

method has proven quite robust, is also very simple to use, and particularly good in 

locating global minima when the solution space contains many local minima.

For all these reasons, PSO has been very useful when applied to optimizing 

space trajectories, especially when used to provide an initial guess for more accurate 

methods, for example collocation with NLP as we did in this project.

1. 3   Objective

Knowledge of numerical solutions for trajectory optimization, both direct 

transcription and heuristic methods, was developed during the development period of 

this project.

This has been made possible by studying and solving increasingly sophisticated 

example problems, starting from the application of the various methods in the solution 

of the well-known Hohmann transfer with two impulses. Understanding the use of PSO 

in this easy example, we moved on to the application of this method on low-thrust 

problems, starting with the problem of maximizing the final energy of a low-thrust 

trajectory. This problem has been solved both by using PSO and by using the fmincon 

optimizer already present in Matlab. With this example we also tried to replace the 

Matlab ODE integration, used to integrate the equations of motion, with an Euler step 

based integration.

Then we approached what was the final goal by starting to solve the problem of 

intercepting a fictitious asteroid, first in 2D in both cylindrical and Cartesian coordinates 

and then in the 3D version. 

7



The latter was made progressively more complete with the addition of the mass 

equation to the set of equations of motion, the initial impulse   that the upper stage 

of the launch vehicle gives to the spacecraft when it releases it, and the true position and 

velocity of the Earth.

The knowledge of position and velocity at a certain time of the various celestial bodies 

involved in the analysis has been possible thanks to the introduction in the code of 

orbital mechanics tools such as SPICE, a toolkit developed by NASA that can compute 

many kinds of observation geometry parameters at selected times. 

The ultimate goal is the full simulation of optimal asteroid mitigation using a low-thrust 

spacecraft that through collision brings the asteroid to a maximum deflection of its orbit 

at the time of its closest approach to the Earth.

Deflection is calculated through the use and evaluation of the State Transition Matrix 

(STM) which calculates the perturbation in position and velocity of the asteroid as a 

result of the initial perturbing impulse. 

 

1.4  Thesis Outline

Chapter 2 describes the numerical optimization method including the 

presentation of some examples, and the different numerical integration methods used 

during the development of the project. Chapter 3 contains a description of the mission, 

the derivation of the objective function, the definitions of the coordinate variables and 

the equations of motion, and a description and justification of the units used. Chapter 4 

presents the formulation of the optimal problem and discusses the results. Chapter 5 

contains conclusions and recommendations for future work. 

δ ⃗v
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Chapter 2:  Numerical Optimization Method

2.1  Optimization of a dynamic system using PSO

The determination of optimal (either minimum-time or minimum-

propellant-consumption) space trajectories has been pursued for decades with different 

numerical optimization methods, which in general can be classified as deterministic or 

stochastic methods. In the last decade, the development of effective stochastic methods 

has been preferred over deterministic gradient-based methods because the latter have 

limitations. In fact, gradient-based methods assume the continuity and differentiability 

of the objective function to be minimized and they are local in nature and require the 

identification of a suitable first-attempt "solution" in the region of convergence, which is 

unknown a priori and strongly problem dependent [3].

The stochastic methods are also referred to as evolutionary algorithms and are inspired 

by natural phenomena. Evolutionary computation techniques exploit a population of 

individuals, representing possible solutions to the problem of interest. The optimal 

solution is sought through cooperation and competition among individuals.

Heuristic algorithms, also inspired by natural phenomena, represent an alternative to the 

previously mentioned evolutionary algorithms.

The particle swarm optimization (PSO) technique was first introduced by 

Eberhart and Kennedy in 1995 and belongs to the category of swarm intelligence 

methods [4,5] . It mimics the unpredictable motion of bird flocks while searching for 

food, taking advantage of the mechanism of information sharing that affects the overall 

behavior of a swarm.

The initial population that composes the swarm is randomly generated at the first 

iteration of the process. Each particle is associated with a position vector and a velocity 

vector at a given iteration. More specifically, the position vector includes the values of 

the unknown parameters of the problem, whereas the velocity vector determines the 

position update. Each particle represents a possible solution to the problem and 

corresponds to a specific value of the objective (or fitness) function. A the end of the 

process, the best particle (i.e., the best solution with reference to the objective function) 

is selected. Both the position and the velocity vector are updated in a single iteration. 

9



For each particle, the formula for velocity update includes three terms with stochastic 

weights; one of these terms is the so-called social component, related to the collective 

best position ever visited by a portion of the particles that form the swarm. 

Let  denotate the position of particle  at the nth time step. At the next iteration, the 

particle take a step  in the parameter space so that the new position of particle  

becomes 

  (2.1)

with

                  (2.2)

where   is the velocity (step) for component  of particle  at time step ,   is 

the  component of the position of particle  at the  time step,  and  

  are random values in the range [0, 1] sampled from a uniform distribution, 

 is the “personal best” position, the best position located by the particle since the 

first time step,  is the “global best” position, the best position located by the any 

particle of the swarm since the first step. 

Therefore, three different components can be identified within the step. The first one is 

the “inertia” component that causes the particle to move in the direction it had 

previously been moving, the second one is the “nostalgia” component that reflects a 

tendency for the particle to move toward its own most satisfactory position, and the 

third one is the “social” component which draws the particle toward the best position 

found by any of its colleagues. The ’s are constants that weight the importance of the 

three components and the ’s provide stochasticity to the system.

xi(n) i

νi(n + 1) i

xi(n + 1) = xi(n) + νi(n + 1)

νij(n + 1) = νij(n) + c1r1j(n)[yij(n) − xij(n)] + c2r2 j(n)[ ̂y j(n) − xij(n)]

νij(n) j i n xij(n)

jth i nth r1j(n) r2 j(n)

⊂ U(0,1)
yi(n)

̂y j(n)

c

r
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Figure 2.1 - Illustration of the PSO method [23] 



Termination of the algorithm can occur after a fixed number of iterations or when the 

“best” solution has not changed for several iterations.

The basic version of the particle swarm algorithm appears as very intuitive and is 

extremely easy to program. In addition, this kind of method is well suited for finding the 

globally optimal solution to an optimization problem and requires only the definition of 

the search space for the unknown parameters.  Although computationally expensive 

with respect to gradient-based methods, in the scientific literature the particle swarm 

technique is reported to be more efficient when compared to genetic algorithms, due to a 

reduced number of function evaluations. This method has thus proven to be quite 

robust, it is also very simple to use, and particularly good in locating global minima 

when the solution space contains many local minima.

In the context of space trajectories, the optimization problems of interest usually 

consist of minimizing a given objective function related with the time evolution of a 

dynamical system, which can be governed either by differential equations or by 

algebraic equations. The minimization is achieved by selecting the optimal values of the 

unknown parameters and time-varying variables. Several methodologies can be 

employed to translate the optimal control problems that involve continuous time-

dependent control variables into parameter optimization problems. If the system 

dynamics are governed by a set of algebraic (nonlinear) equations the problem reduces 

to a nonlinear programming problem. Definitely, in both cases - in the presence of 

optimal control problems or nonlinear programming problems - the optimization 

process is aimed at finding the optimal values of a set of unknown parameters.

Space trajectory optimization problems must be frequently modeled as 

constrained optimization problems, which means that they involve equalities and/or 

inequalities regarding the unknown parameters. To deal with this type of problem, the 

PSO algorithm must be adapted.  

Equality constraints reduce the degree of freedom of the problem according to their 

number. This leads to increased difficulty in dealing with these types of problems as 

they considerably narrow the search space where a feasible solution can be found. The 

most common approach for dealing with these constraints consist in penalizing them by 

summing additional terms to the objective function.

Inequality constraints are less problematic due to the fact that they reduce the search 

space of feasible solutions without decreasing the degree of freedom of the problem. For 

each particle, the simplest way of treating inequality constraints consists of assigning a 
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fictitious infinite value to the fitness function if the particle violates at least one of them. 

In addition, the corresponding velocity is set to zero, so that the successive velocity 

update  is affected only by the social term and by the cognitive term. This circumstance 

statistically leads the particle to a feasible region of the search space.

2.1.1  Examples

With the aim of becoming familiar with the use of this optimization algorithm, PSO was 

applied to several examples, from the easiest to the most complex.

Hohmann Transfer: The Hohmann transfer is the most energy efficient two-

impulse maneuver for transferring between two coplanar circular orbits sharing a 

common focus. The Hohmann transfer is an elliptical orbit tangent to both circles at its 

apse line. The periapse and apoapse of the transfer ellipse are the radii of the inner and 

outer circles, respectively. Obviously, only one-half of the ellipse is flown during the 

maneuver, which can occur in either direction, from the inner to the outer circe or vice 

versa. [6]  In this type of orbits having the two ∆𝑉 parallel to the velocity components of 

the two circular orbits (thus the two flight path angles are zero) results in minimal 

misalignment losses.

The problem consists of determining the optimal direction and magnitude of the two 

impulses and the time taken to perform the transfer between the two orbits. 

The initial condition of the spacecraft, referred to the instant immediately before 

applying the impulse, are as follows:  

                            (2.3)

where  represents the gravitational parameter of the attracting body,  and  denotate 

the radial and the horizontal component of the velocity,  is the radius.

The following parameters can be used to define the Hohmann transfer trajectory:

    (2.4)

where  and  represent the magnitudes of the two impulsive change of velocity,  

and  their respective direction and finally  is the time spent on the journey.

After the first impulse, the velocity components  and  change to 

      and                        (2.5)

vr(t0) = 0 vθ(t0) =
μ
R1

r (t0) = R1

μ vr vθ

r

[Δv1 γ1 Tf Δv2 γ2]

Δv1 Δv2 γ1

γ2 Tf

vr vθ

vr = vr(t0) + Δv1sin(γ1) vθ = vθ(t0) + Δv1cos(γ1)
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whereas   .

The optimal spacecraft transfer, which is sought by the PSO algorithm, minimizes the 

characteristic velocity of the overall orbital maneuver. This means that the objective 

function for the problem at hand is

                                                 (2.6)

The Hohmann transfer takes the spacecraft from one circular orbit to entry into another 

circular orbit. Therefore, the following constraints must be met:

                                                                             (2.7)

The orbital maneuver must also satisfy the equations of motion, expressed using polar 

coordinates and integrated using the Matlab ODE45 function.

For the problem in hand, the PSO algorithm employs 100 particles and is run for a 

maximum of 200 iterations. Each particle include the values of the five unknown 

parameters

  

The problem is solved by employing a normalized set of units using astronomical unit  

(AU) as a measure of distance and time unit (TU) as a measure of time. This leads us to 

consider the gravitational parameter of the Sun   ,  the radius of the initial 

orbit equal to   AU and the one of the final orbit equal to  AU. 

Instead, the impulsive changes of velocity are normalized by the circular velocities of 

the respective orbits. 

The search space is defined by the following inequalities:

                AU        (2.8)

The table 2.1 collect the results of the optimization process, that are the optimal 

direction and magnitude of the two impulses and the time taken to perform the transfer 

between the two orbits. Figure 2.2 illustrates the optimal Hohmann transfer trajectory.

r = r (t0) = R1

J = Δv1 + Δv2

vr(tf ) = 0 vθ(tf ) =
μ
R2

r (tf ) = R2

[Δv1 γ1 Tf Δv2 γ2]

μ⊙ = 1
AU3

TU2

R1 = 1 R2 = 3

0.1
AU
TU

≤
Δvi

Vci
≤ 0.5

AU
TU

−0.2 ≤ γi ≤ 0.2 0 ≤ Tf ≤ 18 (i = 1,2)
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If we compare these results with those below, obtained from the analytical calculation:

                          

                          

                                                 

we can see an exact agreement between analytical solution and optimized solution.

Table 2.1 Results related with the optimal Hohmann Transfer

Impulse

1 0.2247 0 0 0.3938

2 0.1691 0 8.9094

J (TU)T (deg)γ (AU/TU)Δv

ΔV1 = V1H − V1C
=

μ
R1

( 2R2

R1 + R2
− 1) = 0.2247

ΔV2 = V2C
− V1H =

μ
R2

(1 −
2R1

R1 + R2
) = 0.1691

J = ΔV1 + ΔV2 = 0.3938
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Figure 2.2 Optimal Hohmann Transfer Trajectory



Low-Thrust spacecraft orbit transfer with maximization of the final energy: 

The problem under investigation is a continuous thrust, orbit transfer problem in which 

a constant acceleration is imparted on the spacecraft from the rocket engine. The main 

purpose of this orbital transfer is to determine the time history of the thrust pointing 

angle that maximizes the final energy in a fixed time of flight. Motion is confined to a 

single plane and, as mentioned in the previous example, the spacecraft’s position is 

described using polar coordinates {  } which have their origin located at the center-

of-mass of the attracting body. The only control variable is the thrust angle, , which is 

measured relative to the local horizontal. Finally the thrust acceleration, A, is the thrust 

divided by the mass of the spacecraft and is considered to be of constant magnitude and 

to have the value A = 0.025, for this investigation.

The problem is solved by employing a normalized set of units using astronomical unit  

(AU) as a measure of distance and time unit (TU) as a measure of time. This leads us to 

consider the gravitational parameter of the Sun   .

The equations governing the motion of the spacecraft are then expressed as:

                                                     

where  is the in-plane thrust pointing angle and A is the magnitude of the thrust 

acceleration.

The initial condition of the spacecraft, referred to the instant immediately before 

applying the constant acceleration, are as follows:

 

                                                    AU        (2.9)

The fixed time of flight is chosen to have the value of    TU.

r, θ

β

μ⊙ = 1
AU3

TU2

·r = vr
·θ =

vθ
r

·vr =
v2
θ
r − 1

r2 + Asinβ

·vθ = −
vrvθ

r + Acosβ

β

vr(t0) = 0 vθ(t0) =
μ
R1

r (t0) = R1 = 1.1

Tf = 16

15



The optimal Low-Thrust orbital transfer, which is sought by the PSO algorithm, 

maximize the final energy of the overall orbital maneuver. This means that the objective 

function for the problem at hand is

                                                             (2.10)

where the minus sign in front indicates the maximization of the quantity in parenthesis 

and  .

There are no final condition constraints imposed but the orbital maneuver must satisfy 

the equations of motion integrated using the Matlab ODE45 function.

For the problem in hand, the PSO algorithm use a population of 100 particles and is run 

for a maximum of 200 iterations. 

The problem under consideration was approached by parameterizing the variable  to be 

optimized in two different methodologies. 

In the first case  was parameterized using the following formulation 

                                                                                         (2.11)

Each particle include the values of the four unknown parameters:

                                                                       

and the search space is defined by the following inequalities

                                                                                 (2.12)

The Table 2.2 collect the result of the optimization process, that are the optimal values 

of the parameters that define , whose optimal time history is shown in Figure 2.3, and 

the value of the final energy . Figure 2.4 illustrates the optimal low-thrust transfer 

trajectory and Figure 2.5 show the optimal final energy for varying times.

J = − (V 2

2
−

1
Rf )

V = v2
r + v2

θ

β

β

β = (a + bt)sin(ωt + ϕ)

[a b ω ϕ]

−0.5 ≤ i ≤ 0.5 (i = a , b, ω, ϕ)

β

J
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Table 2.2  Results related with the Optimal Low-Thrust trajectory

0.2003 -0.0318 0.3345 -0.1703 -0.1396

a Jb ω ϕ
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Figure 2.3 Optimal thrust pointing angle time history 
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In the second case, however,  was parameterized using 17 points, which became the 

unknown parameters contained in each particle and optimized by the algorithm. 

                                                                   

The limits of the search space are defined with the same values used previously. 

The Figure 2.6 illustrates the optimal time history of  and the optimal final energy for 

varying times is shown in Figure 2.7.

In this case we achieve a final energy value  of -0.14, very close to that obtained in the 

previous case.

β

[x1 x2 . . . x16 x17]

β

J
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Figure 2.5 Optimal final energy for varying times 
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Figure 2.6 Optimal thrust pointing angle time history (Points)



2.2  Optimization of a dynamic system using NLP problem solver

A spacecraft in flight is a dynamical system. As far as dynamical systems are 

concerned, it is relatively simple; the equations of motion are continuous and 

deterministic, for the unforced case they are essentially integrable, and perturbations, 

such as attractions of bodies other than the central body, are usually small. Difficulties 

arise when considering the complete problem, corresponding to a real space mission. 

For example, a complete interplanetary flight has complicated time-dependent boundary 

conditions, simple equations of motion but requiring coordinate transformations when 

the spacecraft transitions from planet-centered to heliocentric flight (and vice versa), 

and likely discrete changes in the states of the system when the rocket motor is turned 

on and the spacecraft suddenly changes velocity and mass [9]. 

If low-thrust electric propulsion is used, the system becomes even more complicated 

because there are no longer integrable arcs, and the decision variables, which were 

previously discrete quantities, now include continuous time histories.

Due to the fact that the cost of putting a spacecraft into orbit, which is usually the first 

step in any trajectory, is so enormous, it is especially important to optimize space 

trajectories so that a given mission can be accomplished with the lightest possible 

spacecraft and within the capabilities of existing (or accessible) launch vehicles.  
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Figure 2.7 Optimal final energy for varying times (Points) 



Determining the necessary conditions for the optimization of a continuous, deterministic 

dynamical system of the type corresponding to a spacecraft in flight is also a 

straightforward problem, although the result, especially for the common case in which 

staging or impulsive V's are used, is a sophisticated two-point-boundary-value-

problem (TPBVP) with interior point constraints. As described in Chapter 1, the 

solution of this TPBVP, except for certain special cases, is very difficult.

As previously noted, many method have been developed to solve the TPBVP 

numerically. This methods seek to reduce the optimal control problems to parameter 

optimization problems that can be solved by a nonlinear programming (NLP) problem 

solver and are solution methods in which all of the free parameters are adjusted 

contemporaneously. Methods of this type include the finite-difference methods and the 

collocation methods, the best known and most implemented direct transcription method.

The nonlinear programming (NLP) problem solver is used to enforce the constraints 

while simultaneously minimizing the problem objective and they are capable of solving 

the large, sparse NLP problems resulting from the application of the collocation method 

to sophisticated problems [9].

Direct transcription schemes have a number of advantages over other numerical 

optimization methods. Since there are no costate variables, the problem size is reduced 

by a factor of two, and the problematic estimation of initial costates is avoided. Also, to 

a degree, one does not have to specify a priori the precise structure of the problem. In 

addition they present a much better robustness, that is showing the ability to converge to 

an optimal trajectory from poor initial guess, in comparison to other numerical 

optimization methods.

Nonlinear programs are expressed in the following general formulation:

                                                          Minimize 

                                             Subject to                                          (2.13)

where  and  are constraint lower and upper bounds,  is a smooth scalar function, 

 represents any linear constraints, and  is the set of smooth nonlinear constraint 

functions representing the direct transcription constraints and the terminal constraints.

Δ

J(P)

l ≤
P

f (P)
AL(P)

≤ u

l u J(P)
AL f (P)
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Once the NLP problem is clearly defined, it can be solved by using dense or 

sparse solvers. The first solver used in this work was fmincon. 

Fmincon is a Nonlinear Programming solver provided in MATLAB's Optimization 

Toolbox and which performs nonlinear constrained optimization and supports linear and 

nonlinear constraints.

The NLP problem presented (2.13) is interpreted by fmincon in the following way 

 such that                                     (2.14)

where  are the nonlinear inequalities and  are the nonlinear equalities. 

Fmincon optimizes such that  and .  is a real matrix that specifies 

linear inequality constraints, this matrix is an M-by-N matrix, where M is the number of 

inequalities, and N is the number of variables.  is an Me-by-N matrix, where Me is 

the number of equalities, and N is the number of variables, and it specifies the linear 

equality constraints.  and  express the upper and lower bounds, respectively [7].

In code this look like:

[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)    (2.15) 

Where fun is the function to minimize, specified as a function handle or function name, 

x0 is the initial point, specified as a real vector or real array, and nonlcon represents 

the nonlinear constraints, specified as a function handle or function name.

In the development of the various problems, the equations of motion describing 

the trajectory were integrated using various methods.  

2.3  Integration Methods

As seen in the various examples previously given, the equations of motion have 

been integrated in a variety of ways. Below are the main characteristics of each of the 

methods used and the reasons for choosing the one used in the final project.

min
x

f (x)

c(x) ≤ 0
ceq(x) = 0
A ⋅ x ≤ b
Aeq ⋅ x = beq
lb ≤ x ≤ ub

c(x) ceq(x)
c(x) ≤ 0 ceq(x) = 0 A

Aeq

lb ub
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2.3.1  ODE

ODE is a set of functions provided by Matlab [7]. All MATLAB ODE solvers can solve 

systems of equations of the form . The solvers all use similar syntaxes. The 

one used during the development of this project is ODE45, which is based on an explicit 

Runge-Kutta formula. It is a single-step solver – in computing , it needs only the 

solution at the immediately preceding time point, . 

To work it needs to have in input a function handle that defines the functions to be 

integrated, an interval of integration and initial conditions for each equation defined in 

the function handle. 

ODE45 is not a fixed-step integration algorithm but it is an adaptive method. It is 

because of this that in the examples presented in this paper in the presence of this 

method of integration the vectors containing the time history of a given parameter had 

to be linearly interpolated in order to allow their use in the integration of the equations 

of motion. 

Consider a coast arc in a spacecraft trajectory. If the initial states and the duration of the 

arc are known, the system ODEs can be integrated forward. There are then  nonlinear 

constraints reflecting  that the states resulting from the numerical integration are equal 

to the states that the NLP solver allocates to the end of the coast arc. These become 

equations in the  vector in equation (2.14). The situation is similar for a thrust arc 

except that some method needs to be provided to specify the control variables (as 

additional NLP parameters) during the thrust arc.

This integration method is quite accurate and good to use but too time consuming.

2.3.2  Euler Step

Euler-step integration method is a numerical method that is able to determine the 

solution of the differential equation. Using a numerical method we get an approximation 

of the solution, not the exact solution and the solution is calculated incrementally, step 

by step.

Euler integration method is one of the simplest integration method, named after the 

mathematician Leonhard Euler. The Euler method is a first-order method, which means 

that the local error (error per step) is proportional to the square of the step size, and the 

global error (error at a given time) is proportional to the step size [25].

y′ = f (t, y)

y(tn)

y(tn−1)

ceq
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The Euler integration method is also an explicit integration method, which means that 

the state of a system at a later time (next step) is calculated from the state of the system 

at the current time (current step).

                                                                                                 (2.16)   

The Euler integration method is also called the polygonal integration method, because it 

approximates the solution of a differential equation with a series of connected lines 

(polygon).

To use this method it is necessary to define some parameters. The size of the integration 

interval  and the number of integration steps  define the integration step size . 

The smaller the step size, the better the approximation, the smaller the integration error. 

It is possible to directly define the step size, which will further determine the number of 

integration steps.

 The step size  is calculated as: 

                                                                                                                 (2.17)

The initial conditions ,  represent the solution ( ) of the differential equation at a 

given time ( ). Usually  is equal with the start value of the integration interval .

The iterative equation defining the method can be expressed as:

                                                                                                              (2.18)

                                                                                         (2.19)

where  function argument and  is the function approximation.

In each step of the iteration, the Euler approximation calculate the end point of a 

line.  The starting point   is known, it has the coordinates . The point  is 

calculated based on the point  and the slope . The next points  are calculated 

based on the previous points  and the slope [25].

The evaluation of equation (2.19) over many steps and for each state variable supplies 

many nonlinear constraint equations into the  vector of equation (2.14), resulting in 

a much larger NLP problem than would be obtained if explicit numerical integration as 

in Sec 2.3.1 is used.

Euler's method is therefore simple and fast to use. However, the application of Euler's 

method proved to be too inaccurate to be used in the final project.

y(t + Δt) = f (y(t))

[a , b] N h

h

h =
b − a

N
t0 y0 y0

t0 t0 a

ti = t0 + h ⋅ i

yi = yi−1 + h ⋅ f (ti−1, yi−1)

ti yi

A0 (t0, y0) A1

A0 f (t, y) An

An−1

ceq
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2.3.3  3-Step Runge-Kutta Parallel Shooting

The method of direct transcription with Runge-Kutta (RK) integration and parallel 

shooting is used to solve the trajectory optimization problems which are described in 

this work. The algorithm and study related to this method was developed by my 

colleague Alessia Speziale.

It is a direct method that also converts the optimization problem into a NLP problem.

In this method, the continuous optimal control problem is discretized into a series of 

segments  each of length . The time history of each state and control value is 

specified at the  node points between segments as shown in Figure 2.8 . There 

are state variables at each mesh points . [8]

In addition, the control variables are provided at the mash points  and also at the centre 

points  , as shown in Figure 2.9.  

[1,2,...,N ] h

(N + 1)

xi ≅ x(ti)

ti

ti +
h
2
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Figure 2.8 Problem structure for DTRK



From a given mesh point, , the equations of motion are integrated forward from  

to the next mesh point  using the control , ,  and  by step of a four-stage Runge-

Kutta formula:

                                                                                        (2.20)

                                                                                              (2.21)

                                                                                                (2.22)

                          (2.23)

where  refers to the system equations of motion,  are the state variable and  are 

the control variables; and  is an estimate of the state at the next mesh point, so for 

continuity we required that the “Runge-Kutta deflects” 

                                                                                                               (2.24)

The set of the defect equations for all of the states over all of the time segments forms a 

vector of nonlinear constraints which are zero only if the equations of motion are 

satisfied. If they are satisfied, then the equations of motion are effectively integrated 

across the entire problem using the  order Runge-Kutta method.

ti−1 xi−1

ti ui−1 vi ui

y1
i = xi−1 +

h
2

f (xi−1, ui−1)

y2
i = xi−1 +

h
2

f (y1
i , vi)

y3
i = xi−1 + h f (y2

i , vi)

y4
i = xi−1 +

h
6

[ f (xi−1, ui−1) + 2f (y1
i , vi) + 2f (y2

i , vi) + f (y3
i , ui)]

f (x, u) x u

y4
i

Δi = y4
i − xi

4th
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Figure 2.9 Illustration of the parallel-shooting method



The control variables  and  are specified at the five interior points, but the state 

variables  are not. This significantly decreases the size of the problem, increasing 

solution speed without sacrificing accuracy [8].

System control variable parameters are specified much more frequently than system 

state variables. This is especially beneficial for problems, such as low-thrust trajectory 

optimization, where the control changes rapidly while the states, for example the orbit 

elements, change only slowly [9].

2.4  Examples

With the aim of becoming familiar with the use of this optimization algorithm, 

fmincon was applied to several examples, from the easiest to the most complex.

Low-Thrust spacecraft orbit transfer with maximization of the final energy:

The problem considered is the same as the one seen in the previous section describing 

the PSO method. Therefore, it is a continuous thrust, orbit transfer problem in which the 

main purpose is to determine the time history of the thrust pointing angle that 

maximizes the final energy in a fixed time of flight. Motion is confined to a single plane 

and the spacecraft’s position is described using polar coordinates. The problem is solved 

by employing a normalized set of units. 

The only control variable, the thrust angle , is measured relative to the local horizontal 

and is parameterized using 100 points, which are the unknown parameters optimized by 

the optimizer to obtain the maximum value of the objective function 

     

A vector of 100 components set all to zero is given as the initial guess at fmincon for the 

points constituting . The vectors that constitute the upper and lower bounds were set to 

a value of 0.5 and -0.5, respectively.

In the problem under consideration, in contrast to what was previously seen with PSO, 

the satisfaction of the equations of motion and constraints was obtained using two 

different methodologies.

ui vik

x

β

J = − (V 2

2
−

1
Rf )

β
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In an initial case, as also done in the cases already seen using PSO, the equations were 

integrated using ODE45,  which gave almost the same results as the cases already seen 

and a trend of  visible in Figure 2.10. The vector points were linearly interpolated for 

use in the integration.

In a second case, integration of the equations of motion and constraint satisfaction are 

obtained using the Euler-step method.

This leads to an increase in the optimized parameters because the optimizer has to work 

not only on the points that constitute , as seen above, but also on the parameters that 

constitute the state vector, which are optimized in order to satisfy the imposed 

constraints step by step.

Thus, in addition to the initial guess of the angle, it is also necessary to impose an initial 

guess for the parameters that constitute the state vector, i.e.,

                                                                        .

This was given by imposing typical trends for these elements, derived through 

knowledge of the theory.

The optimal time history of the thrust pointing angle  is shown in Figure 2.11, in which 

we can see a smoother curve, as compared to the one in Figure 2.10, thanks to the 

integration method used that does not require a linear interpolation of the vector. 

β

β

X = [r θ vr vθ]

β
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Figure 2.10 Optimal thrust pointing angle time history using 
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2D Fictional Asteroid Interception: The next problem began to move us toward 

what will be then the final project, this is where we started to approach asteroid 

interception. 

The problem under investigation consists in the interception of a fictional asteroid using 

a low-thrust spacecraft. Motion is confined to a single plane and the spacecraft’s 

position is described by employing a normalized set of units. 

Cases have been solved where the equations of motion have been expressed either in 

cylindrical coordinates, as in all the examples seen so far, as well as in Cartesian 

coordinates, thus expressing the state vector as: 

                                                                  .

The equations governing the motion of the spacecraft are then expressed as:

                                                       

X = [x y vx vy]

·x = vx
·y = vy

·vx = − μ

r3 x − Asinβ

·vy = − μ

r3 y + Acosβ
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Figure 2.11 Optimal thrust pointing angle time history using fmincon 

- Euler Step



The goal of the problem is to intercept an asteroid using as little flight time as possible. 

The objective function to be minimized by the optimizer is then defined as: 

                                                                                                                 (2.25)

In the parameters optimized by fmincon two times are added to the well known thrust 

pointing angle , always constituted by 100 points, the start time of trajectory  and the 

end time  , which corresponds to the intercept time with the asteroid.  is chosen such 

that, starting from an initial circular orbit of radius  = 1AU, it reaches the asteroid 

taking the shortest possible time. 

An initial guess for these parameters, from a simple program done with PSO, is given to 

the optimizer and the lower and upper bounds are established.

The following orbital characteristics are given to the fictitious asteroid to be targeted:

• Semi-major axis,   :  2.5 AU;

• Periapsis,  :  30°;

• Eccentricity,  : 0.2;

• Argument of Periapsis,   : 90°;

The parameters are optimized to satisfy the equations of motion, integrated as seen 

above using both ODE45 or Euler step , and the imposed constraints. The nonlinear 

equalities  that the optimizer must bring to zero consist of the intercept 

conditions, i.e., the difference between the position of the spacecraft and that of the 

asteroid both evaluated at . In fact, for the encounter to occur both problem subjects 

must be in the same position in space at the final time,

                                                                           (2.26)

where  indicates the coordinate concerning the asteroid while S/C indicates the 

coordinate concerning the spacecraft. If integration with Euler steps is used the  

will also include satisfaction of the equations of motion.

 The position of the asteroid in time was derived by applying Newton's method to solve 

Kepler's problem,

                                                                      (2.27)

J = Tf − Ti

β Ti

Tf β

r0

a

f0
e

ω

ceq(x)

Tf

ceq = (xa − xs/c)2 + (ya − ys/c)2

a

ceq(x)

M = (t − t0)
μ
a3

+ [E0 − esin(E0)]
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The state vector  is added to the optimization variables ,  ,  in the case where the 

Euler step method is used, as seen in the previous examples.

In the images below we can see: in Figure 2.12 the optimized trajectory for this 2D case 

solved using Euler step, and in Figure 2.13 the trend of . Table 2.3 instead shows the 

main values obtained from the optimization process.

X β Ti Tf

β

Table 2.3  Results related with the Optimal fictional asteroid interception 2D  case

Feasibility

4.6343 14.2743 9.64 2,174E-07

TfTi J
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Figure 2.12 Optimal trajectory fictional asteroid interception 2D  case



3D Fictional Asteroid Interception: From the asteroid interception problem 

confined to a single plane, we then moved on to address the same problem in three-

dimensional space. For both cylindrical and Cartesian coordinate choices, the  

component is then added for both position and velocity, the state vector thus increases 

from four to six components. To the orbital characteristics of the asteroid already listed 

is then added an orbital inclination  equal to 10°.

The problem is solved by employing a normalized set of units. 

The goal of the problem is to intercept an asteroid using as little flight time as possible. 

The objective function to be minimized by the optimizer is then defined as: 

                                                              

The out of plane thrust pointing angle, , still composed by 100 points, is added to the 

parameters optimized by fmincon in the 2D case, which were the in-plane thrust 

pointing angle , the initial time  and the final time .

z

i

J = Tf − Ti

γ

β Ti Tf
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Figure 2.13 Optimal thrust pointing angle time history  fictional asteroid interception 2D  

case



Once again, the constraints imposed on fmincon consist of satisfying the impact 

condition, 

                                                    (2.28)

The position of the spacecraft is obtained by integrating the equations of motion, while 

the one of the asteroid by solving Kepler's problem.

In addition to including the  component for position and the  component for velocity 

in the state vector, this example differs from the 2D case in a number of refinements 

made to make it more complete and similar to reality. In fact, the mass equation,

                                                                                                              (2.29)

where  is the maximum value of the thrust magnitude and  is the exhaust velocity;  

the  of the upper stage launch vehicle, along with the two relative angles, the initial 

impulse in-plane pointing angle and the initial impulse out-of-plane pointing angle, 

which values are chosen by the optimizer within the feasible range; and the Earth's 

position and velocity from SPICE have been added to the original program.

2.5  Nonlinear Programming with SNOPT

The problems defined as above become nonlinear programming (NLP)  

problems. The NLP parameters can be arranged as a single vector  that collects the 

entire time history of state and control variables, along with additional parameters for 

the launch date, the time of flight, and the magnitude and direction of the initial impulse 

in the heliocentric reference frame.

Once a trajectory optimization problem has been clearly defined, it must then be solved 

by nonlinear constrained optimization solver. Two of the most popular algorithms are 

fmincon, which has been analyzed in section 2.2, and SNOPT. 

It seems that fmincon solves the multiple shooting problem by first finding a feasible 

solution, and then attempting to optimize it. This means that fmincon can handle a worse 

initial guess than SNOPT, but it is a little worse at finding the true optimal solution, 

because it does not allow for much flexibility in the constraints, and it is limited to 

modest size problems [10].  

ceq = (xa − xs/c)2 + (ya − ys/c)2 + (za − zs/c)2

z vz

·m = −
Tmax

c
Tmax c

Δv

P
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Therefore, a more capable NLP solver is needed.

The sparse solvers SNOPT can take advantage of the sparsity present in the constraint 

Jacobian. [9]

SNOPT (Sparse Nonlinear OPTimizer) is a software package for solving large-scale 

optimization problems. It minimizes a linear or nonlinear function subject to bounds on 

the variables and sparse linear or nonlinear constraints. It is suitable for large-scale 

linear and quadratic programming and for linearly constrained optimization, as well as 

for general nonlinear programs of the form presented in equation (2.13)  [11].

SNOPT requires that the user supply an initial guess of the solution in the form of an 

NLP parameter vector, a vector of upper and lower bounds for each NLP parameter, a 

specifications file containing the feasibility and optimality tolerances, and routines to 

calculate the vector of nonlinear constraints and the value of the objective function.

This is a software developed by Systems Optimization Laboratory in Department of 

Management Science and Engineering at Stanford University. The source code is re-

entrant and suitable for any machine with a Fortran compiler. SNOPT may be called 

from a driver program in Fortran, Matlab, or C/C++. 

In this work the Matlab interface is used. This particular interface is called snsolve.m 

and matches the call sequence of Matlab’s fmincon function, shown in equation (2.15), 

as can be seen in the code below:

[x,fval] = snsolve(obj,x0,A,b,Aeq,beq,xlow,xupp,nonlcon,options)   (2.30)

2.5.1  Example

With the purpose of getting familiar with the use of this optimization algorithm, it was 

applied to some of the examples seen so far. The results were then compared to verify 

the correct behavior before using it in the final version of the project.

Hohmann Transfer: 

Table 2.4 Results related with the optimal Hohmann Transfer-SNOPT

Impulse

1 0.2247 0 0 0.3938

2 0.1691 0 8.8858

 (TU)T J (deg)γ (AU/TU)Δv
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As we can see in Table 2.1, the results are in agreement with what was obtained through 

PSO. But in this case the optimization ended with a better feasibility than that obtained 

with PSO, 1e-10 versus the previous 1e-7.

Low-Thrust spacecraft orbit transfer with maximization of the final energy: 

As we can see in Table 2.2, the results are in agreement with what was obtained through 

PSO.

2D Fictional Asteroid Interception: To better understand the use of SNOPT and 

before using it in the complete project I tried substituting it for fmincon in the problem 

of intercepting a fictitious asteroid in 2D space while using Cylindrical coordinates and 

Euler step method. 

Table 2.5  Results related with the Optimal Low-Thrust trajectory-SNOPT

0.2104 -0.0326 0.3349 -0.1639 -0.1395

ωa ϕb J
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Figure 2.14  SNOPT Optimal trajectory fictional asteroid interception 2D case



As we can see from the comparison of the figures and the table above with those 

reported in the solution with fmincon (Figure 2.12, Figure 2.13 and Table 2.3) the results 

are almost equivalent.

Table 2.6  Results related with the Optimal fictional asteroid interception 2D  case SNOPT

Feasibility

4.6358 14.2509 9.6151 1.4 E-06

Ti Tf J
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Figure 2.15 SNOPT Optimal thrust pointing angle time history  fictional asteroid interception 2D  

case



Chapter 3:  Asteroid Interception

3.1  Mission Description

Impacts of near-Earth objects (NEOs) onto our planet are natural events where 

the effects of each single impact mainly depend on NEO size, structure, relative 

velocity, and impact location. To determine if a newly discovered object might impact 

on Earth one day, the object’s orbit has to be numerically computed into the future. 

NEOs larger than 150 m in diameter and approaching Earth’s orbit closer than 7.5 

million  (0.05 AU) are called Potentially Hazardous Objects (PHOs). Due to their 

susceptibility to small orbit disturbances on short timescales they are candidates for 

future collisions with Earth. In general the NEO impact risk is a “high-consequence – 

low-probability” level risk. Therefore, it is categorized as a “moderate” level risk which 

requires certain precautionary actions. The benefits of deflection missions can be 

defined simply as the costs of the damages that would occur in the event of a NEO 

impact [12].

Generally, mitigating the impact hazard could be either done by deflecting the 

threatening object from its collision course or by destroying the object itself. 

In case of NEO deflection one can further distinguish between the long-term application 

of a continuous small thrust, and the sudden application of a large impulsive thrust. In 

the first case, the NEO would be propelled for a period of several months. Ideally, the 

force would be applied through the object’s center of mass parallel or antiparallel to its 

velocity vector, which would increase or decrease the semi-major axis of the NEO’s 

orbit, respectively. Thus, its arrival at the intersection point with Earth’s orbit would be 

delayed or advanced, respectively. But, this kind of orbit alteration can be applied only 

if sufficient warning time is given. If less warning time is available, the orbit has to be 

changed rapidly. The correction force should be applied via a high-energy interaction in 

an almost perpendicular direction with respect to the NEO velocity vector. 

Destroying the NEO might not guarantee that the resulting fragments will be very small 

and therefore harmless [12]. 

Currently, various ideas for the deflection and disruption of hazardous asteroids 

and comets are under consideration. 

k m
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Among them are systems that might be technologically feasible at present, such as 

chemical rocket engines, kinetic energy impacts, and nuclear explosives. Others are 

currently under development and might be available with some development effort in 

the near future, such as solar concentrators. But there are also systems that seem to be 

too far off to be realized in the required dimensions for the task of NEO deflection 

within the next decades, such as solar sails, laser systems, and the utilization of the 

Yarkovsky effect. Besides, there are also futuristic technologies such as eaters and the 

use of antimatter [12]. 

The technique chosen in this work is the kinetic impactor, which is currently the 

simplest and most technologically mature method available to defend against asteroids. 

In this method, a spacecraft is launched and simply slams itself into the asteroid. If this 

is done far enough in advance then it will only be necessary to change the speed by a 

millimeter a second or less and then it will miss the Earth entirely.

Low-thrust, high specific impulse propulsion is used because of the significant 

advantages it provides in propulsive mass required for a given mission. However, a low-

thrust departure from Earth would require many revolutions of the Earth, which would 

consume a lot of time. It seems reasonable then to use an impulsive velocity change for 

the initial departure, followed by continuous low-thrust propulsion. [13]

3.1.1 Prior works

The problem of asteroid deflection is an issue that has been widely discussed in the past.

The first technical approach to define a NEO mitigation system was the students’ system 

project “Project Icarus” at the Massachusetts Institute of Technology (MIT) in 1967. 

They recommended the use of six nuclear explosive devices each delivered to Icarus by 

a Saturn V launcher. The first conferences on the problem of asteroid and comet impacts 

on Earth took place in the early 1980s (“Snowmass conferences”) and a total of 288 

scientific papers and conference abstracts on NEO mitigation were published between 

1967 and 2000, together with an average of about ten publications per year on NEO 

mitigation strategies and systems [12]. 

The work presented in this paper is based primarily on the studies done by Professor 

Bruce A Conway, such as the “Optimal Low-Thrust Interception of Earth-Crossing 

Asteroids” paper [13], in which he presents deflection work similar to that of this 

project except that he researches optimal trajectories aimed at minimizing time of flight, 

or the “Near-Optimal Deflection of Earth-Approaching Asteroids”  paper [14], in which 
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he presents the use of STM for the calculation of deflection, and the thesis work 

“Optimal strategies for deflecting hazardous Near-Earth Objects via kinetic impactor” 

done by Jacob Englander during his master's degree studies in Aerospace Engineering at 

the University of Illinois Urbana-Champaign [15].

3.1.2  The Asteroid

The example of Potential Hazardous Asteroid (PHA) that was chosen for the 

implementation of this work is 99942 Apophis. It had been discovered on June 1 , 

2004 by Roy Tucker, David Tholen and Fabrizio Bernardi. Apophis has a mass of 

approximately  kg, it has an elongated shape with a mean diameter of 340 

m, and passes close to the Earth every seven years [16]. 

After its discovery, asteroid 99942 Apophis had been identified as one of the most 

hazardous asteroids that could impact Earth, in fact the first observations showed that it 

had a 1 in 38 chance of impacting our planet on April , 2029, the highest impact 

probability ever recorded. 

That assessment of the impact changed when astronomers tracked Apophis and its orbit 

was better determined. The risk of an impact in 2029 was later ruled out, as was the 

potential impact risk posed by another close approach in 2036. Until March, 2021, 

however, a small chance of impact in 2068 still remained. When Apophis made a distant 

flyby of Earth around March , 2021, astronomers took the opportunity to use 

powerful radar observations to refine the estimate of its orbit around the Sun with 

extreme precision, enabling them to confidently rule out any impact risk in 2068 and 

long after. So, the results from a new radar observation campaign combined with precise 

orbit analysis have helped astronomers conclude that there is no risk of Apophis 

impacting our planet for at least a century [17]. 

9th

2.699 × 1010

13th

5th
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Figure 3.1 - Asteroid 99942 Apophis – radar observations March 8–10, 2021 [Credits: 

NASA/JPL-Caltech and NSF/AUI/GBO]



Apophis is now expected to pass less than 32000 kilometers from our planet’s surface – 

closer than the distance of geosynchronous satellites [18]. During that 2029 close 

approach, Apophis will be visible to observers on the ground in the Eastern Hemisphere 

without the aid of a telescope or binocular.

Although Apophis is no longer a likely threat to the Earth, it is a valuable example of a 

potentially hazardous asteroid and is worthy of study. This work considers a 

hypothetical asteroid based on Apophis, but which impacts the Earth on April , 2029 

instead of merely passing close by. 

Apophis’s orbit elements for the date of close approach to the Earth are given in Table 

3.1 [19].

13th

Table 3.1 Apophis Orbit Elements at Epoch April 13, 2029

Symbol Description Value

semi-major axis 0.9227 AU

eccenticity 0.1914

inclination 3.34°

argument of periapse 126.60°

longitude of ascending 
node 203.96°

true anomaly 232.58°

Ω
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i

ω
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3.1.3  Description of the simulation

The simulation on which the design described in this thesis is based is shown 

schematically in Figure 3.2 and can be broken down into two main parts.

The first part is represented by the trajectory of the spacecraft, colored green in 

the figure, which is determined by the optimization. A simulation start date (  ) is 

decided, from then on it is the optimizer that chooses the launch date, denoted in the 

representation as , that guarantees a better geometry between the the involved bodies. 

The spacecraft leaves Earth's soil thanks to a rocket. The upper stage of the launch 

vehicle provide a velocity impulse to the spacecraft (  ) in a specific direction, 

identified by the two angles  and .  The latter two values were also chosen by the 

optimization. At this time we have 

                                                      

where  and  are the position and velocity vectors of the Earth,  is 

the impulse provided by the launch vehicle.

The trajectory of the spacecraft is described by the equations of motion in Cartesian 

coordinates, as explained in more detail in the next section. 

T0

TL

Δ ⃗v LV

βL γL

{
⃗rs/c(TL) = ⃗r⊕(TL)
⃗v s/c(TL) = ⃗v ⊕(TL) + Δ ⃗v LV

⃗r⊕(TL) ⃗v ⊕(TL) Δ ⃗v LV
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Figure 3.2 - Schematic representation of the simulation



The spacecraft then reaches the asteroid and the impact occurs at the time identified as 

. In order for this to happen, the fulfillment of the intercept condition is imposed. Both 

bodies, either spacecraft and asteroid, must be at time  at the same point in space. So 

this is like imposing that  , where  is the position of the asteroid.  

The final velocity at interception is used to determine the impulsive perturbation on the 

asteroid, using conservation of momentum and assuming an inelastic collision, . 

This work assumes that the impact of the spacecraft against the asteroid is a totally 

inelastic collision. In reality, the impact may knock off pieces of the asteroid and send 

them flying in the opposite direction, causing an increase in the momentum imparted to 

the asteroid.

Once the impact has occurred we move on to the second part of the simulation 

represented by the motion of the asteroid toward the Earth, colored orange in the figure.

The motion of the asteroid is propagated to the boundary with the Earth's sphere of 

influence (SOI). Once it arrives at the Earth's sphere of influence, the position and 

velocity of the asteroid is used together with the impulse received from the impact and 

through the use of the state transition matrix (STM) the deflection, i.e. the displacement 

from the point at which the asteroid would have entered the sphere of influence absent 

the kinetic impact, is calculated.

After entering the Earth's sphere of influence we have a change of coordinates, from 

heliocentric to geocentric, and the motion of the asteroid is propagated further on a 

hyperbolic flyby trajectory, until finding the point of closest approach to the Earth. This 

distance will constitute the objective function  to be maximized in the project. 

3.2  Governing Equations

The choice of a coordinate system on which to express the trajectory 

optimization problem is fundamental and strongly influences the solution process. The 

main choice is whether to use coordinates, for example Cartesian or polar coordinates 

[9].

3.2.1  Equation of Motion in Cylindrical Coordinates

Using this coordinate system has advantages when combined with the use of an NLP 

solver. In this type of coordinate system the position and velocity state variables do not 

change rapidly. The radius will always be positive and change only slowly. 

TI

TI

⃗rs/c(TI) = ⃗r⊗(TI) ⃗r⊗(TI)

δ ⃗v I

J
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Angular position coordinates also change either slowly or rapidly and predictably. In 

case of no retrograde motion, the angular velocities are also generally one sign and do 

not change rapidly. The system control parameters are thus in a form that improves or 

maintains the robustness of the solution using NLP [9].

In the cylindrical coordinates system, a point in space is represented by the ordered 

triple , where  are the polar coordinates of the point’s projection in the

-plane and  is the usual -coordinate in the Cartesian coordinate system, as we can 

see in Figure 3.3. The   plane is the ecliptic plane, and  points towards the first 

point in Aries. 

The motion of the spacecraft is governed, in the 3D space, by: 

                                                                         (3.1)

where  is the in-plane thrust pointing angle,  represents the out-of-plane thrust 

pointing angle and A is the magnitude of the thrust acceleration.

(r, θ, z) (r, θ )
x y z z

x − y x

·r = vr
·θ =

vθ
r

·z = vz

·vr =
v2
θ
r − r

(r2 + z2)
3
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+ Asinβcosγ

·vθ = −
vrvθ

r + Acosβcosγ
·vz = − z

(r2 + z2)
3
2

+ Asinγ

β γ
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Figure 3.3 - Cylindrical 
Coordinate system 
representation [24]



3.2.2  Equation of Motion in Cartesian Coordinates

Using Cartesian coordinates is the simplest choice. It is a particularly natural choice for 

the three-body-problem as the Cartesian form of the system equations, with the system 

origin at the center of mass of the two primary bodies, is the most well known. One 

downside of using this type of coordinate system is that all the position and velocity 

state variables change rapidly, which can cause problems in the efficiency and 

robustness of the NLP solver [9]. Despite this, we decided to use this type of 

coordinates in the final project in order to have a correspondence with the different tools 

used, such as SPICE, which provide results in Cartesian coordinates.

Cartesian coordinates are therefore used to model the motion of the spacecraft in three 

dimensions:

                                                                                             (3.2)

where   is the standard gravitational parameter of the central body,   the 

mass, with  , and  the radius magnitude.

 ( with  ) represent the sum of all the disturbing acceleration for each 

planetary body. For our analysis we took into account the effects of disturbances from 

Venus, Earth-Moon, Mars, and Jupiter. The perturbing acceleration vector is formulated 

as follows:

                                                                                       (3.3)

where  is the standard gravitational parameter of the third body under consideration,  

is the spacecraft position vector and  represents planetary position vector of the third 

body found via SPICE.

·x = vx
·y = vy
·z = vz

·vx = − μ

r3 x +
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m + ax

·vy = − μ

r3 y +
Ty

m + ay

·vz = − μ

r3 z +
Tz
m + az

μ m = −
T

Ispg0

T = T 2
x + T 2

y + T 2
z r = x2 + y2 + z2

ai i = x, y, z

⃗a = − μ[ ⃗y − ⃗r
| ⃗y − ⃗r |3 +

⃗r
r3 ]

μ ⃗y

⃗r
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It is then necessary to add the mass variation equation to the system equation (3.2):

                                                                                                                (3.4)

where  is the maximum thrust magnitude and  is the effective exhaust velocity.

3.2.3  Units

In the final project all calculations in the heliocentric reference frame, including the 

motion of the spacecraft, are performed in normalized units such that , and an 

object in a circular orbit of radius 1 astronomical unit from the sun has an orbital period 

of  time units. The asteroid-Earth encounter and the computation of the state 

transition matrix  are computed in non-normalized units (kilometers, seconds). 

3.3  Objective Function

The goal of this mission is to apply an impulse to the target asteroid such that 

,  the distance of closest approach between the asteroid and the Earth, is  

maximized.  This distance was translated into the project code as the difference between 

the asteroid's actual closest approach distance in 2029 , about 32,000 , and the 

closest approach distance obtained with the deflection given by the impact, . This 

results in the formation of the objective function as follows:

                                                        

·m = −
Tmax

c

Tmax c

μ⊙ = 1

2π

rmiss

rmiss0
k m

rmiss

J = rmiss0
− rmiss
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Figure 3.4 - Schematic representation of the Objective 
Function



As can be seen in the figure above, the white line represents the trajectory of the 

undeflected asteroid, while the green line represents the deviated trajectory.  is the 

difference of the two distances calculated at the closest approach point.  

Maximizing this amount then allows the asteroid to move away from Earth.

 is calculated by propagating the motion of the asteroid within the Earth's SOI in 

geocentric coordinates and finding the minimum radius in its motion.  is found in 

the same way except that the propagation in this case takes deflection into account.

3.3.1  State Transition Matrix

The impulse is provided by a spacecraft that is launched from Earth at an initial time  

and impacts the asteroid at the time of interception, .  At any time  after ,  the system 

state transition matrix  determines the perturbation in position (  ) and velocity 

(  )  of the asteroid as a result of the initial perturbing impulse [14].

At any time  later than , the position and velocity vectors will be a function, not only 

of time, but also of the position and velocity that the vehicle had at the earlier time .

Thus, we may expand  in a Taylor series about the reference quantities 

to obtain, in a vector-matrix notation [20] :

                                                         (3.5)

Where, since the change in position at impact is considered negligible, and therefore 

,

                                                                                                   (3.6)

                                                                                                (3.7)

with

                     (3.8)

                        (3.9)
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                                                                                                                (3.10)

                                                                                                    (3.11)

                                                                                                               (3.12)

                                                                          (3.13)

                                                                                                       (3.14)

                                                                                                                        (3.15)

 is its semi-major axis,   is the gravitational parameter of the Sun,  is the eccentric 

anomaly found by solving Kepler’s problem, and  are the universal functions 

described by Battin [20]: 

                                                                 (3.16)

                                                                                                  (3.17)

                                                                                                  (3.18)

                                                                                                             (3.19)

                                                                                                (3.20)

                                                                                (3.21)
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                                                             (3.22)

     (3.23)

                                                          (3.24)

The value of    is derived from the impact, using conservation of momentum and 

assuming an inelastic collision, 

                                                                             (3.25)

Consequently,  for any initial pulse   and time lapse , we can find

                                                       (3.26)

with a semi-analytical method that requires only a solution of Kepler's equation. This 

method determines the position and velocity of the asteroid at any future time   as a 

result of the sun's gravity alone. Note that equation (3.26) is time dependent, indicating 

that the earlier the perturbing impulse  is applied, the farther the asteroid will be 

moved from its reference position.  In order to accurately model the asteroid's approach 

to Earth, however, Earth's gravity must also be considered.

The choice of applying this method to calculate the deflection in the project is dictated 

by the fact that we can use SPICE to get the precise values of  and  of the asteroid 

once it reaches the Earth's sphere of influence and it is much simpler and faster than 

time-consuming numerical integration with planetary perturbations performed by ODE. 
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1
2

χ2u3( χ)

δ ⃗v 0
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δ ⃗v 0

⃗r ⃗v
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Chapter 4:      Optimal asteroid mitigation using 

                         a low-thrust spacecraft and kinetic 

                         impactor

4.1   Description of the problem

The spacecraft is permitted to launch as early as January , 2026 and must 

deflect the asteroid before it impacts the Earth on April , 2029. The optimizer may 

choose the point in the initial low Earth orbit from which to begin the departure. It may 

also choose the direction in which the departure impulse is applied via in-plane and out-

of-plane  departure angles. The Earth real orbit about the sun, and its true longitude 

on the departure date are found using the ephemeris program SPICE from the The 

Navigation and Ancillary Information Facility (NAIF), acting under the directions of 

NASA's Planetary Science Division [15]. Specific impulse for the low-thrust motor is 

chosen from a range of values (2000– 4000 s) representative of current technology. 

A spacecraft with an initial mass of 10000 kg is launched from Earth. The upper stage 

of the launch vehicle burns all of its fuel in the initial impulse to propel the spacecraft 

out of low Earth orbit and onto the first leg of the mission. The spacecraft then switches 

to low-thrust electric propulsion to travel to the asteroid. 

For the first part already described in the previous section 3.1.3 the trajectory of the 

spacecraft is described by the vector of states, which is one of the parameters to be 

optimized. This vector, in fact, contains the parameters that compose the equations of 

motion in Cartesian form, , as seen in section 3.2.2.

The second part consists of forward integration of the asteroid motion from real data 

obtained from SPICE, the code of this section was obtained from Master's Thesis 

Research work of Andrew Koehler at University of Illinois Urbana-Champaign.

Once we arrive at the entrance of the Earth's sphere of influence, the position of the 

asteroid is updated considering the deflection calculated through the STM as seen in 

section 3.3.1. After crossing the SOI boundary a change of coordinates from 

heliocentric to geocentric is necessary.

1st

13th

Vinf

X = [x, y, z, vx, vy, vz, m]
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When the spacecraft leaves the sphere of influence of one body and enters that of 

another the equations of motion, (3.2), become extraordinarily sensitive to changes in 

some or all of the state variables, which is very disadvantageous for a numerical 

solution using direct transcription and NLP. The obvious solution is to switch from on 

set of coordinates, centered on the body the spacecraft is departing, to a set centered on 

the body to which the spacecraft is arriving, with the switch occurring at the boundary 

of this body's sphere of influence [9].

After the coordinates change occurs, the propagation of the asteroid's motion continues 

to the point of closest approach with the Earth and the objective function is calculated.

4.2   Initial Guess

Solution via the method of direct transcription with NLP requires that the NLP 

problem solver be given an initial guess of the vector of NLP parameters. This vector 

contains the discrete time history of the state and control parameters, which normally 

number in the hundreds or few thousands, and a small number of additional parameters, 

for example, times of certain events and possibly the final time. While modern NLP 

solvers are typically quite robust, it has nonetheless been our experience that a 

"reasonable" initial guess needs to be provided, especially for large problems.

Of course "reasonable" is not a very precise term. In our experience, initial guesses,

that is, approximate candidate optimal trajectories, are more "reasonable" to the

extent that they:

(1) satisfy, at least at the 0th iteration, the system EOM, so that initially all of the 

nonlinear "defects" are very small;

(2) satisfy any specified initial and terminal constraints;

(3) satisfy the boundary conditions given to the NLP problem solver for the upper and 

lower bounds for all of the parameters.

Creating an initial guess that does all three of these things would be very difficult in

most cases; fortunately that is seldom necessary. There are several approaches for the 

generation of a satisfactory initial guess [9], such as the use of genetic or heuristic 

algorithms. 

The experience previously made on example problems, presented in section 2.1.1, 

allowed us to be able to use particle swarm optimization (PSO) algorithm as a possible 

approach to finding optimal spacecraft trajectories.
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Because of the limitations of PSO, these trajectories will necessarily be more inaccurate 

than trajectories found using direct transcription with NLP or even indirect methods, for 

example, methods based on shooting. However, for the purpose of providing an initial 

guess for a direct solution, the suboptimal trajectory found using PSO may be 

completely satisfactory. 

It has also been seen that once an initial guess, even one that has very different initial 

and/or terminal conditions from the desired case, allows the optimizer to converge to an 

optimal trajectory, new optimal trajectories can be obtained using the converged 

solution as the new initial guess. Nevertheless, the initial guess we used to obtain the 

optimal solution was derived directly from a PSO algorithm.  

The task of providing a correct initial guess using this method was carried out by 

Alessia Speziale. She obtained an Initial Guess using a PSO algorithm that use a 

population of 30 particles and is run for a maximum of 50-100 iterations. The PSO 

completed the run with a corresponding deviation from the closest approach point of  

316.6405 .

The lower and upper bounds for initial guess and the optimal values of PSO parameters 

for 3D initial guess are shown respectively in Table 4.1 and Table 4.2.

 

k m

Table 4.1 PSO lower and upper bounds for initial guess

Parameter Lower Bound Upper Bound

Launch Time 163.4543 TU

1 Jan 2026

179.4543 TU

19 Jul 2028

Initial impulse in- plane 

pointing angle (radians)

Initial impulse out-of- 

plane pointing angle 

(radians) 

In-plane thrust pointing 

angle (radians) 

Out-of-plane thrust 

pointing angle (radians)

Interception Time 163.4543 TU

1 Jan 2026

183.4543 TU

8 Mar 2029

π

−π

π

π

−π π

−π

−π
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A time history of the in-plane control angle  , and the out-of-plane control angle  was 

generated. The angles time history and the initial guess trajectory can be found in 

Figures 4.1, 4.2, and 4.3, respectively. 

Table 4.2 Optimal values of PSO parameters for initial guess

Parameter Optimal Value

Launch Time 172.9019 TU

4 Jul 2027

Initial impulse in- plane pointing angle 

(radians)

-0.9197

Initial impulse out-of- plane pointing 

angle (radians) 

0.4439

Interception Time 176.4785 TU

28 Jan 2028

β γ
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Figure 4.1 - In-plane thrust pointing angle initial guess time history



The resulting launch date, interception time, initial impulse magnitude and direction, 

time history of the thrust pointing angles, and the state vector were used as an initial 

guess for the DTRK solution. 
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Figure 4.2 - Out-of-plane thrust pointing angle initial guess time 
history

Figure 4.3 - Optimal PSO initial guess trajectory



4.3 Results

The NLP problem is solved using fmincon. For the problem under investigation, 

29 segments were used to discretize the trajectory, yielding an NLP problem with 564 

variables. 

After several hours of CPU time, the DTRK solver converged to a solution with a 

deviation from the closest approach point of 599.4544  and with a satisfaction of the 

constraints at the intercept, 

                                ,

equal to .

The optimizer is free to choose two parameters that do not explicitly appear in the 

variational equations; two pointing angles, in-plane ( ) and out-of-(ecliptic)-plane ( ) 

pointing angles that describe the direction of  following the impulsive , which 

allows the vehicle to escape from low-Earth orbit. 

In the optimal solution, the spacecraft launches from Earth on April , 2027 and 

applies a  of 1.788 km/s in low Earth orbit, with an initial impulse in-plane pointing 

angle   of -1.9724 rad and an out-of-plane pointing angle  equal to 0.6313 rad. The 

spacecraft then travels via electric propulsion to the asteroid, intercepting it on 

December , 2027 and imparting a  of 1.8878 mm/s to the asteroid. The spacecraft 

burns 2126 kg of propellant along its trajectory, as we can see in Figure 4.4 and 

according to the mass equation (3.4), leaving a 7884 kg spacecraft to impact the 

asteroid. In this equation the maximum thrust  has been set equal to , 

where  is set equal to 1, as is the effective exhaust velocity . All expressed in 

normalized units. 

The decrease in mass leads to a consequent, even if limited, increase in acceleration.

The asteroid then coasts for 465 days until its close encounter with the Earth on April 

13th, 2029. The asteroid is deflected such that it passes 599.4544   from the expected 

closest approach point. So with a safe distance of about 32600  from the center of 

the Earth. 

k m

ceq = (xa − xs/c)2 + (ya − ys/c)2 + (za − zs/c)2

2.8703 ⋅ 10−8

βL γL

⃗v ∞ Δv

27th

Δv

βL γL

29th Δv

Tmax 0.05 ⋅ m0

m0 c

k m

k m
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The control variables in the problem are the thrust pointing angles  and  . Angle  is 

the in-plane thrust pointing angle; it is measured from the normal to the radius vector 

and is a positive angle if it yields a component of thrust pointing radially outward. 

Angle  is the out- of-plane thrust pointing angle. It is positive if it yields a component 

of thrust in the direction of the orbital angular momentum. The time history of the thrust 

pointing angles  and  are chosen by the problem to maximize the performance index, 

subject to satisfaction of the system equation of motion, and the system initial condition 

constraints and the terminal constraint (of interception).

The optimal trajectory and angles time history are given in Figures 4.5, 4.6, and 4.7, 

respectively. In Figure 4.8 can be seen time history of the semi-major axis  of the 

interceptor orbit. The shape of the trajectory in the initial guess in Figure 4.3 is similar 

to the optimal trajectory in Figure 4.5, although the endpoints are different because the 

NLP solver modified the launch and intercept dates.

β γ β

γ

β γ

a
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Figure 4.4 - Temporal variation of mass and acceleration
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Figure 4.5 - Optimal Trajectory

Figure 4.6 - Optimal in-plane thrust pointing angle time history
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Figure 4.7 - Optimal out-of-plane thrust pointing angle time history

Figure 4.8- History of the semi-major axis of the interceptor orbit



Note that the optimizer chose to wait about 480 days after the opening of the mission 

window to launch the spacecraft (January , 2026). This seems counter to intuition; 

since the state transition matrix given in equation (3.26) is time dependent, intercepting 

the asteroid as early as possible would appear to be preferable. In this case, however, it 

is optimal to wait more than a year and then launch the spacecraft, sacrificing time in 

order to intercept the asteroid from a more favorable angle and thus impart a larger .

A local picture of the asteroid’s close encounter with the Earth is given in Figure 4.9.

The Earth’s gravity altered the orbit of the asteroid during its closest approach to the 

Earth. Thanks to the deflection and this alteration the asteroid is now on a new orbit and 

its potential hazard must be re-evaluated. 

Taking as initial conditions for integration of the equations of motion the position and 

velocity of the asteroid as it exited the Earth's sphere of influence following the closest 

approach, the motion of the asteroid has been propagated and a possible further close 

encounter with the Earth has been recalculated. This analysis showed that for at least the 

next 10 years the asteroid will maintain a distance from Earth greater than . 

Therefore it will not represent  a threat to the Earth for at least this period of time. 

1st

Δv

106k m

57

Figure 4.9 - Local view of asteroid’s close approach to Earth after 
deflection



Chapter 5: Conclusion

5.1  Summary

An analytical model for the optimization of hazardous Near-Earth Objects 

deflection missions using a kinetic impactor has been developed and tested. In contrast 

to previous work in this area, this analytical model has been designed for maximizing 

the "real" objective in asteroid hazard mitigation, the distance by which the asteroid 

misses Earth impact. A spacecraft using existing technology was found capable of 

deflecting an asteroid having the same mass and orbit as the asteroid Apophis 599.4544 

 from the expected closest approach point to Earth. Thanks to this impact, the 

asteroid does not become a threat again for at least 10 years. 

Assuming a launch window opening time, the spacecraft is found to depart more than a 

year later intercepting the asteroid in the following months.

Many of the strategies for amelioration of the danger of an asteroid’s collision with the 

Earth involve, at the time of interception, applying a small impulsive velocity change to 

the asteroid. In this work we show how, using the asteroid orbit state transition matrix, 

this impulse should be applied to maximize the deflection of the asteroid at the time of 

close approach.

5.2  Future work

Future research should focus on four main improvements that need to be made: 

changing some assigned parameters in the model, improving the fidelity of the model,  

increasing the maneuvering options available to the spacecraft, and testing it on other 

targets.

Currently the model contains some initially imposed parameters such as the maximum 

thrust value , the launch window opening date  or the value of the initial impulse 

magnitude provided by the upper stage of the launch vehicle . It would be interesting 

to study the evolution of the solution by changing the value of one or more of these 

parameters.

k m

Tmax T0

Δv
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The fidelity of the model can be improved by adding to the existing planetary 

perturbations some of the larger and easier to model perturbations to the asteroid orbit, 

such as the effect of solar radiation pressure and the solar wind. Or even providing 

additional details regarding the spacecraft or the asteroid itself.

Increasing the maneuver options available to the spacecraft is also another improvement 

that needs to be made. At present, the spacecraft can travel propelled by its low-thrust 

engine. Future work should incorporate planetary flybys so that the spacecraft can 

choose to make a close approach to Venus or Mars to gain speed and change its course. 

A planetary flyby would allow the spacecraft to significantly change its trajectory 

without expending any propellant. New and improved intercept geometries could be 

available with this method.

Finally, another action to try is definitely to test the model, in its current form or some 

evolved form taking into account the previous suggestions, against other targets such as 

asteroids with high inclination orbits and short and long period comets. Although low-

inclination asteroids with Earth-like orbits, such as Apophis, are the most likely threat 

due to the fact that they spend a lot of time near Earth, they are by no means the only 

danger. These common threats, in fact, since they would impact the Earth at a lower 

relative velocity would do significantly less damage than a high inclination asteroid or a 

short or long period comet, which due to a higher relative velocity and therefore a 

higher release of energy on impact are more lethal. Although the model was not 

developed with such goals in mind, it should still prove useful. 
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