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Sommario 
 

 

 

Il presente lavoro è incentrato sull’implementazione di un gruppo di codici MatLab® basati su metodi 
semplificati per lo studio dei principali fenomeni aeroelastici applicati ai velivoli ultraleggeri. Le tre ipotesi 
fondamentali che caratterizzano l'analisi riguardano la non viscosità del flusso, le oscillazioni aerodinamiche 
di tipo puramente armonico nel caso di fenomeni non-stazionari e l'analisi strutturale mediante elementi di tipo 
unidimensionale.  

I principali passi seguiti sono: 

- L'analisi aerodinamica, che è stata sviluppata in campo inviscido nel caso stazionario (Vortex Lattice 
Method) e non stazionario (Doublet Lattice Method); 
 

- L'analisi della deformazione strutturale statica e dinamica di strutture unidimensionali di tipo trave 
tramite metodo agli elementi finiti implementato con elementi isoparametrici e Carrera Unified 
Formulation; 
 

- L'analisi dell'interazione statica tra le sollecitazioni aerodinamiche e la deformazione strutturale 
(divergenza torsionale) mediante l'analisi degli autovalori delle matrici di rigidezza aeroelastica; 
 

- L'analisi dell'interazione dinamica (flutter) tra le sollecitazioni aerodinamiche e la deformazione 
strutturale con l'utilizzo del k-method. 

Per ognuno dei punti presentati è stata svolta un’analisi dei modelli utilizzati per il loro studio, seguita da una 
fase di implementazione dei codici MatLab® e dall’applicazione degli strumenti ottenuti al caso del velivolo 

ultraleggero biposto (MTOW<600kg) Syncro, prodotto dall’azienda Fly Synthesis s.r.l. 
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Summary 
 

 

 

Implementation of a group of MatLab® codes based on simplified methods that permit the study of main 
aeroelastic phenomena, applied on ultralight Light Sport Aircrafts. The fundamental hypotheses of these 
analyses concern the inviscid nature of the considered fluid, harmonic oscillations (when unsteady 
aerodynamic phenomena are considered) and 1D beam structural elements. 

The principal steps of this work are: 

- The aerodynamic analysis, developed in the steady case through Vortex Lattice Method and in the 
unsteady one through Doublet Lattice Method. 
 

- The static structural deformation analysis and the free-vibrational analysis, developed through finite 
elements method using isoparametric elements and Carrera Unified Formulation for unidimensional 
beam structures. 
 

- Analysis of the interaction between static aerodynamic loads and structural deformation (torsional 
divergence) through the evaluation of eigenvalues of aeroelastic stiffness matrix. 
 

- Analysis of the interaction between harmonic aerodynamic loads and dynamic structural deformation 
(flutter analysis) through k-method. 

Every point presented in this work has been investigated through the main theories that are related to these 
phenomena. Afterwards, the MatLab® codes have been developed and applied on the Light Sport Aircraft 
(MTOW<600kg) Syncro, produced by the Fly Synthesis s.r.l. company. 
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Chapter 1 

Introduction 
 
1.1 Aeroelastic Phenomena 
 
The project of an aircraft has always been focused on the analysis of the structural and fluid-dynamic 
parameters of its main components, including wing, stabilizer, rudder, and fuselage. The interaction between 
these two sides of the aeronautical project has been investigated for decades, since the structural deformation 
of an aerodynamic element influences the fluid-dynamic forces generated in that configuration. 

A general definition for aeroelasticity was developed by Arthur Roderick Collar [2] in 1947: 

"the study of the mutual interaction that takes place within the triangle of the inertial, elastic, and aerodynamic 
forces acting on structural members exposed to an airstream, and the influence of this study on design". 

This sentence can be explained by a simple scheme, as reported by Hodges and Pierce [1], which identifies 
the main aspects of this field of engineering. It is important to notice that it refers not only to aeronautics, but 
to all the problems where an elastic element with his own mass interacts with aerodynamic forces.  

In Figure 1, three types of actions can be identified at the vertices of the triangle: 

1. Aerodynamic forces (surface 
forces), pressure loads acting on a 
surface generated by the interaction 
of a fluid flow with a body at a 
certain relative speed. 

2. Elastic forces, that represent the 
forces related to the deformation of 
the body under determined loading 
conditions. 

3. Dynamics, which is the study of the 
movement of a body due to certain 
actions.  

Figure 1: Schematization of the aeroelastic problem. 

 

The mutual interaction of these elements is at the origin of the disciplines listed on the triangle sides and at its 
centre. The relation between aerodynamic and elastic forces and the one between all actions defines the two 
main fields of study of aeroelasticity: 

- Static Aeroelasticity, which is the study of the interaction of aerodynamic loadings induced by a steady 
flow and the consequent deformation of the structure. According to A. R. Collar [2], it influences 
controllability, performance, stability, and structural stiffness of an aerodynamic element (a wing 
element will be considered from this section on for the sake of simplicity). All phenomena are intended 
as static ones since this analysis is focused on equilibrium configuration and deformation of the 
considered wing element. 
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- Dynamic Aeroelasticity, in the following pages flutter phenomenon will be considered. It is defined as 
the interaction between aerodynamic forces and dynamic vibrational modes of a wing, that can 
generate undamped oscillations under specific conditions. As stated by Hodges and Pierce [1], p. 3, 
flutter can be perceived as mild vibrations by the pilot and passengers, when it is near to the benign 
end of the spectrum. On the other hand, it leads to the rapid destruction and loss of the aircraft when 
oscillations are huge. 

This work concentrates on static and dynamic aeroelasticity of Light Sport Aircrafts (with MTOW < 600kg) 
and will try to provide a simple instrument able to evaluate potentially critical conditions on airplanes produced 
by Fly Synthesis s.r.l. 

 

1.2 Importance of aeroelasticity prediction 
 
The occurrence of aeroelastic instability, and in particular of flutter, has been the cause of different concerns 
in aviation history; this underlines the importance of its avoidance in all flight conditions. In the following 
chapter, some of these events will be presented to focus on the conditions that generated the insurgence of 
instabilities. Some examples and an historical overview are provided by Michael W. Kehoe [3]; both old and 
modern (referring to aircraft history) planes experience aeroelastic instability, as shown in the next images. 

1.2.1 Handley Page O/400 and first flutter cases 

The first recorded incident caused by flutter was on a twin-engine biplane bomber (Handley Page O/400) in 
1916, during World War I. The oscillating phenomenon was traced to a coupling between the fuselage torsion 
mode and an antisymmetric elevator rotation mode, that were independently actuated. The solution to this 
problem was to interconnect the elevators with a torque tube (Michael W. Kehoe [3], p.5). 

Other flutter situations triggered by control surfaces were experienced during the years of WWI and were 
resolved with an empirical approach: as stated in the work of Michael W. Kehoe [3] the balance mass of control 
surface was increased and in nearly all situations this brought to the resolution of the issue. 

 

Figure 2: Handley Page O/400 Bomber. 

During the 1920’s and 1930’s, flutter was spotted on primary surfaces and many incidents were reported in 
the attempt to break speed records. This was also due to the transition from external wire-braced biplanes to 
cantilevered wings. Later, from 1947 to 1956, many incidents were experienced involving control surface at 
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transonic regimes of flight and the carriage of external stores on wings (such as bombs or external fuel tanks). 
Table 1 resumes this type of incidents, according to Michael W. Kehoe [3] and Garrick and Reed [5]: 

 

Period Field Number of events Aerodynamic elements involved 
WW1 Military Widely Encountered Ailerons 

1925-1935 Civil (Records Challenging) Widely Encountered Primary Surfaces 
1947-1956 Military 11 Servo Tab 
1947-1956 Military 26 Control Surfaces 

1947-1956 Military 7 Carriage of external stores/Pylon 
mounted engines 

1947-1956 Military 7 Tails 
Table 1: Examples of flutter events and incidents recorded in the first period of aviation development. 

 

1.2.2 F-117A Nighthawk elevon flutter 

In 1997, F-117A Nighthawk experienced large elevon oscillations and incipient flutter while performing a fly-
by demonstration at Martin State Airport air show. The oscillations brought to the loss of the aircraft and its 
crash on the ground, while the aircraft was completing its third pass over the demonstration zone.  

The pilot was starting his climb out for departure when the left wing broke. The aircraft crashed into the 
residential area of Bowley's Quarters and caused extensive fire damage to several homes and vehicles. There 
were no fatalities or serious injuries; the pilot, Maj. Bryan K. Knight, ejected himself and received only minor 
injuries (NY Times [4]). 

 
Figure 3: F117A Nighthawk. 

 

The accident investigation report concluded that the cause of the accident was structural failure of a support 
assembly in the left wing. This was due to 4 missing fasteners of the 39 in the assembly, that were improperly 
reinstalled during a scheduled periodic inspection in 1996. 

The entire fleet of F-117 Nighthawk was inspected during a precautionary stand down and none were found to 
have the same defect. Apparently, the four missing fasteners caused the coupling of aerodynamic forces with 
free vibration frequencies of the wing, generating a catastrophic condition. 
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1.2.3 Solution methods and testing historical overview 

The first methodical approach trying to describe flutter was developed after World War I. After some practical 
solution techniques, in 1924-1925 the problem appeared on the British Aeronautical Research Committee 
yearbook: "Of increasing importance is the problem of flutter which has been discussed with representatives 
of a number of firms; a preliminary theoretical attack has been made on the problem. It would appear that the 
subject may need a large amount of experimental inquiry before a complete solution is obtained". 

This stated the start in flutter research, followed by the establishment of a sub-committee addressed to this 
specific topic. A solution based on simplified modes of structural deformation, while aerodynamics relied on 
empirical constants that did not consider the interaction effect of wake vortices (Garrick and Reed [5], p. 901). 
As reported in AGARD Manual on Aeroelasticity, "All the early purely theoretical work on flutter marred 
inadequacy representation the aerodynamic action.", thus the first reliable results were obtained through wind 
tunnel scaled testing, which showed good correlation with the full-scale model. In the same years, some 
research work was carried out at a Massachusetts Institute of Technology, with some theses based on the study 
of flutter from the practical point of view and wind tunnel testing.  

An adequate solution for unsteady aerodynamics was proposed by Theodore Theodorsen in 1934 in NACA 
Rept. No. 496, which contributed to flutter problem solution progression. It refers to the two-dimensional 
oscillating flat plate with translation, torsion, and aileron motions by means of a separation of the velocity 
potential in a circulatory part and a non-circulatory one. As will be explained later, this method is at the basis 
of the strip theory, where flutter is investigated by wing simplification to a representative section.  

Other methods were developed in the same years, the 1930’s, around the world (in Italy, Japan, Russia…) as 

well as some empirical criteria based on the torsional frequency, valid for the type of aircrafts developed at 
that time. 

As reported before, testing has been a valid method for flutter prediction, even thought that it is a dangerous 
technique for the risks concerning test pilots: the procedure consisted into diving the airplane to its maximum 
speed. An alternative was proposed by von Schlippe in 1935 in Germany, as reported by Garrick and Reed 
[5], p. 905. The phenomenon is studied through the induction of forced mechanical oscillations. Tests permit 
to predict the velocity for which the oscillations reach a divergent behaviour through an interpolation of data 
obtained in non-flutter flight conditions. By the late 1940’s flight flutter testing achieved improvements 

through modern flight instrumentation and a better theoretical understanding of the flutter problem. More 
recently, these methods have evolved into advanced procedures using flight and ground based digital 
computers, real time tests and analyses. 
 

1.4 Aim of this work 
 
As it has been specified in the previous section, static divergence and flutter could be disruptive phenomena 
and cause the loss of the aircraft in particular conditions. For this reason, even a simple model for its prediction 
is essential for the complete project of a modern aircraft. 

The advance in aeronautical field and the development of specific models for this type of analysis, as well as 
the development of adequate calculus capabilities, brought to different solutions for flutter problems, as 
described in the historical overview before. 

These models provide a good approximation of flutter speed, but they refer to a 2D approximation of a three-
dimensional problem. Moving from a 2D to a 3D solution permits to include parameters such as sweep angle, 
ailerons, and taper ratio in the analysis. Moreover, the use of finite elements (FE) for static and free vibrational 
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analysis can improve the evaluation of bending and torsional oscillation frequencies of the structure and 
evaluate even coupling between different modes. 

The aim of this work can, thus, be identified in the development of an efficient aeroelasticity prediction tool. 
A compromise between a good approximation of this phenomenon and short calculation times is the 
combination of the following methods for structural and aerodynamic analysis: 

1. Vortex Lattice Method (VLM) and Doublet Lattice Method (DLM), based on the solution of Laplace 
equation in steady (VLM) and unsteady (DLM) case. They use a distribution of vortices and doublets 
on the wing representative surface, which is approximated by a certain number of trapezoidal elements. 
A good approximation of lift is provided, while the evaluation of drag is limited to the induced drag 
contribute. 

2. One-dimensional (1D) structural beam models. The use of 1D Finite Elements (FE) can be a good 
compromise for the representation of wing structures. Nevertheless, there are many orders of 
approximation for beam elements, with different levels of complexity. Next chapters will focus on 
their description and on the presentation of Carrera Unified Formulation (CUF), used in this approach. 

More accurate solutions could be provided using complex models such as: 

- Computational Fluid Dynamics (CFD) codes for aerodynamic analysis. These codes imply longer 
solution times, even though that they permit the study of viscous flows using Reynolds Averaged 
Navier-Stokes (N-S) equations or more precise representations of N-S equations. 

- Two- or three-dimensional models for structural elements, that are more precise in the discretization 
of wing structures, but also more expensive from the computational point of view. 

This last approach will not be presented in the next chapters and is mentioned only for completeness reasons. 

 

1.5 Case study: Fly Synthesis Syncro 

As said before, the final aim is to generate a tool that is able (with specific adaptations made for every case) to 
evaluate static divergence and flutter conditions on aircrafts produced by Fly Synthesis s.r.l. In particular, 
Syncro Light Sport Aircraft case is described in the following lines. 

All data and information provided in this chapter were obtained directly from the technical manual of the 
aircraft or the project database of analysis carried out by the company. 

 
Figure 4: Syncro ultralight aircraft in flight. 
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This airplane project, born in 2006, is the most advanced of the company and combines the advantages of a 
light weight 2 seat aircraft with comfort and good performance. The chosen configuration is high wing, since 
it provides good aerodynamic properties and an easier accessibility.  

Many characteristics could be described in this chapter, including all its flight properties and innovative 
instruments, but they do not concern the aim of this work. The main properties related to aerodynamic surfaces 
and their structure are listed: 

1. The structure of the semi-wing is fully realized in composite materials. Carbon fibre, glass fibre, 
honeycomb, and resins are used in the realization processes. 
 

2. The wing has a trapezoidal shape: root chord is 1.268m and tip chord is 0.805m. 
 

3. Sweep angle is zero, which means that the quarter chord line is parallel to the y axis (perpendicular to 
the symmetry plane of the aircraft). 
 

4. Flaps and ailerons are the semi-wing control surfaces (the aircraft does not need slats). 
 

5. As can be observed in Figure 4, it is equipped with winglets, that provide a reduction of induced drag. 
 

6. The wing is characterized by four different profiles along the span, that vary aerodynamic properties. 
 

7. Dihedral angle is 2.7°. 
 

8. The tail has a traditional configuration, with horizontal stabilizer and vertical fin. 
 

9. Command line is of mechanical type, while flaps are actuated by an electrical engine. 

 

Wingspan 10,4 m Wing area 10,54 m2 
Height 2,26 m Take Off Run 150 m 
Length 6,75 m Landing Run 150 m 
MTOW 600 kg Stall Speed (Vs0) 73 km/h 

Max/Min Load Factors +4g/-2g Cruise speed (Vc) 220 km/h 
Engine Rotax 912 Cruise speed at 75% 250 km/h 
Power 100 hp Never Exceed speed (Vne) 272 km/h 

Fuel Capacity 65x2 l Endurance with 30’ Reserve 1200 km 
Fuel Consumption 75% 18 l/h Number of wing profiles used 4 

Table 2: Fly Synthesis Syncro main technical data. 

 

Between all the aircrafts made by this company, Syncro aircraft has been selected for the following reasons: 

o Its performances are challenging in the Light Sport Aircrafts category and relatively high speeds are 
reached; thus, flutter evaluations should be properly considered. 
 

o With a view to a restyling of the project in the future, this could be an optimum tool for the evaluation 
of thinner structures and wing design, bringing to a more flexible solution. 

 



21 
 

Chapter 2 

Aerodynamic models 
 

2.1 Laplace Equation and inviscid aerodynamic model 
 
As was anticipated in the introduction, this work focuses on the use of simplified aerodynamics to study loads 
on wings in the situation of a steady or an unsteady flow. The main hypothesis introduced (according to 
Corrado C. [6]) are the following: 

- Ideal flux, thus viscosity (μ) and thermal conductivity (k) are null. 
- Irrotational flow field, which means that 𝛻 × 𝑉⃗ = 0. 

These considerations will be later applied to the balance equations of mass, momentum, and energy, that can 
be written in the differential non-conservative case as: 

{
  
 

  
 

𝐷𝜌

𝐷𝑡
= −𝜌𝛻 ∙ 𝑉⃗ 

𝜌 (
𝜕𝑉⃗ 

𝜕𝑡
+ 𝑉⃗ ∙ 𝛻𝑉⃗ ) = 𝛻 ∙ 𝜏̿

𝜌
𝐷𝑒

𝐷𝑡
= −𝑝𝛻 ∙ 𝑉⃗ + 𝜌𝐷 + 𝑘𝛻2𝑇

 (2.1) 

Where the main variables and constants that appear in the equation are: 

- 𝜌 density of the fluid that is considered. 
- 𝑉⃗  velocity vector in 1D, 2D or 3D space. 
- 𝜏̿ stress tensor representing normal and shear stresses. 
- 𝑒 internal energy. 
- 𝑝 local pressure of the fluid. 
- 𝑘 thermal conductivity. 
- 𝐷 dissipation function. 

The hypotheses made before allow to define the kinetic potential function (𝛩), which is related to speed 2.2: 

𝑉⃗ = 𝛻𝛩 (2.2) 

Thus, the potential equation for a non-steady, compressible, irrotational ideal flux can be written as: 

𝛻2𝛩 −
1

𝑐2
[
𝜕2𝛩

𝜕𝑡2
+
1

2
𝛻𝛩 ∙ 𝛻 (||𝛻𝛩||

2
+
𝜕

𝜕𝑡
(||𝛻𝛩||

2
))] = 0 (2.3) 

Where c is the local speed of sound. 

Considering that perturbations affecting the local velocity are small when compared to the module of the 
undisturbed speed (𝑉∞⃗⃗ ⃗⃗ ) can bring to the linearization of the previous equation, which becomes: 

𝛻2𝛩 =
1

𝑐∞
2

𝐷2𝛩

𝐷𝑡2
 (2.4) 
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Eventually, the linearized potential equation for a non-steady, compressible, irrotational ideal flux can be used 
for high Reynolds numbers, thin wake, limited speeds, and small perturbations (profile’s camber is limited). 

Moreover, this means also that the linearized potential equation is valid only for small angles of attack and it 
is not able to evaluate lift around stall angles. 

Now, all the elements necessary for the description of how Vortex Lattice Method works are known, in 
particular the hypotheses that need to be satisfied.  

 

2.2 Singularities for Laplace Equation Solution 
 
Singularities are used in the solution of Laplace equation in the steady and unsteady case. They are a mean to 
represent the characteristics of the flow field generated by a wing through the velocity potential. Usually, this 
is achieved by the superimposition of different distributions of singularities. The next chapter will focus on the 
distributions across three-dimensional space, while in the following lines the two-dimensional equivalent 
singularities will be presented to properly describe the 
phenomena involved (Arina R. [7] (pp.96-101)). 

 

2.2.1 Uniform Current Singularity 

Uniform current singularity function in 2D space 
corresponds to the potential function of a uniform 
fluid flow with two components of velocity in 
cartesian coordinates (𝑢∞, 𝑣∞), respectively in red and 
blue (Figure 5): 

𝛩(𝑥, 𝑦) = 𝑢∞𝑥 + 𝑣∞𝑦 (2.5) 
 

                                                                                                              
Figure 5: Uniform current velocity due to equation 2.5 singularity. 

2.2.2 Vortex Singularity 

Vortex Singularity represents the fluid field where an irrotational vortex in 2D space is considered. In the case 
presented in equation 2.6, the singularity is located at the origin of cartesian coordinates. 

 

𝛩(𝑟, 𝜃) =
𝛤

2𝜋
𝜃 (2.6) 

 

In Figure 6 equipotential lines are represented in red, 
while streamlines generated by 𝛤 vortex are circular 
concentric lines (in blue). Clockwise or anticlockwise 
rotation depends on the sign of the vortex. 

 

Figure 6: Irrotational vortex singularity. 
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2.2.3 Doublet Singularity 

Doublet Singularity is composed by the 
superimposition of source sink singularities (2.7) of 
equal intensity. Their distance (d) is asymptotically 
tending to zero, while the intensity of the two sources 
is q and -q. The doublet is thus represented by the 
parameter 𝜇 = 𝑑𝑞 and is located at the origin of the 
reference system. As for vortex singularity case, 
streamlines are represented in blue, while equipotential 
lines are colored in red (Figure 7).  

                                                                                                                                    
Figure 7: Doublet vortex singularity. 

𝛩(𝑟, 𝜃) =
±𝑞

2𝜋
log(𝑟) (2.7) 

𝛩(𝑟, 𝜃) = −
𝜇

2𝜋

cos(𝜃)

𝑟
 (2.8) 

 

 

2.3 Vortex Lattice Method (VLM) 

VLM is based on the solution of the linearized potential equation in the steady case, which means that the 
previous equation is furtherly simplified (Laplace’s equation): 

𝛻2𝛩 = 0 (2.9) 

The solution (as described by Katz and Plotkin [8] (pp. 380-397)) is provided after the discretization of the 
wing surface in a sufficient number of trapezoidal panels, which is evaluated through some convergence 
considerations that will be shown later. It is important to increase the number of panels in the areas of the wing 
where highest velocity and pressure gradients are expected, for example next to the tip of the wing. An 
appropriate method is to use the cosine law for the spanwise discretization (shown in Figure 8) and equal 
length elements for the chordwise splitting. 

 
Figure 8: Example of cosine law use for grid refinement at wing tips. 
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At this point, each panel is represented by a singularity element which models its lifting properties. Horseshoe 
elements and vortex rings will be used for this steady case: both are built on the vortex singularity element, 
that is an irrotational source of vorticity. 

According to Katz and Plotkin [8] (pp. 380-397), the vortex ring is represented by four elements: 

1. A straight bound vortex segment, modeling the lifting properties (BC). 
2. A left vortex line (AB) parallel to the chord of the panel. 
3. A right vortex line (CD) parallel to the chord of the panel. 
4. A rear vortex (DA) closing the vortex ring. 

In order to complete the definition of a panel, two remarkable points need to be defined, that are Load Point 
and Collocation or Control Point. The first one is positioned at the center of the quarter chord line, while 
Collocation Point is at the center of three-quarter chord line. Right hand rule and the segments defined before 
can be used for the evaluation of the normal vector for each panel, as shown in Figure 9 and Figure 10. 

  

Figure 9: Vortex Ring element represented on the generic j-th trapezoidal panel of the wing. 

 

Figure 10: Horseshoe vortex element represented on the generic j-th trapezoidal panel of the wing. 
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The vortex strength Γ has a constant value for each segment of the vortex ring (or horseshoe in the other case) 
and it satisfies the two-dimensional Kutta condition on every panel. This means that the flow respects the 
condition of zero normal flow across the wing’s solid surface (related to the normal vector to the panel) at the 

Control Point.  

Vortex ring elements are used for all the panels of the wing except for the ones located on the trailing edge. In 
this case it is necessary to model the wake, thus horseshoe elements will be used: they are analogue to the 
vortex rings, but rear vortex is located at a distance from the straight bound one that is much greater than the 
length of segment BC. In this way, the rear vortex is still represented (this permits to satisfy the Helmholtz 
condition), but it is located so far that its influence on lift is negligible.  

Another important condition for trailing panels is that the semi-infinite lines of AB and CD vortices are parallel 
to the streamlines (in this way no force will act on trailing vortices). It is now possible to explain the routines 
for wing lift evaluation from the singularities presented before. 

One of the advantages of vortex ring elements is that they permit to evaluate lift on various wing planform 
shapes and with camber specification for panels. For this reason, a solution of the constant vortex line problem 
in three-dimensional space is presented. The velocity induced by a constant vortex Γ is evaluated through Biot-
Savart’s law: 

∆𝑉⃗ =
𝛤

4𝜋

𝑑𝑙 × 𝑟 

𝑟3
 (2.10) 

𝑑𝑙  is the vortex segment and 𝑟  is the distance from the point of the segment that is considered to P, where ∆𝑉⃗  
is evaluated. Considering a finite length element in 3D space as shown in Figure 11, the velocity at an arbitrary 
point P is: 

𝑉⃗ 12 =
𝛤

4𝜋

𝑟1⃗⃗⃗  × 𝑟2⃗⃗  ⃗

|𝑟1⃗⃗⃗  × 𝑟2⃗⃗  ⃗|
2 𝑟0⃗⃗  ⃗ ∙ (

𝑟1⃗⃗⃗  

𝑟1
−
𝑟2⃗⃗  ⃗

𝑟2
) (2.11) 

 
Figure 11: Generic constant vortex line segment in 3D space. 
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It is obvious that a vortex ring or a horseshoe element can be built as a combination of line elements. All the 
elements necessary for the evaluation of velocity in a generic P point are now available and can be implemented 
in a code solution routine. 

The last step needed is the evaluation of the induced velocity at every Collocation Point by means of all the 
ring and horseshoe elements. An influence coefficient is calculated between the Collocation Point of the 
selected panel and the vortex elements of every other one, defining a matrix of coefficients with NxN 
dimensions, where N is the number of horseshoe and vortex ring total elements. Every element of the matrix 
represents the normal component of velocity (relative to the considered panel) induced on the i-th Collocation 
Point by the j-th unitary singularity element.  

Once these evaluations have been fulfilled, the boundary condition of no normal flow across the panel at 
Collocation Point is imposed for every element of the discretized surface. The obtained equations are then: 

 

(2.12) 

In matrixial shape (2.14) this is equal to the system that must be solved to find the values of vortex singularities. 
It is important to see that the influence coefficients matrix depends only on geometrical parameters, while the 
right-hand side depends on the velocity of the undisturbed flow and on the geometry of panels (since the 
normal vector appears). The result is written in the following equation: 

𝐴𝑖𝑗𝛤 = 𝑅𝐻𝑆 (2.13) 
 

 

(2.14) 

Once the values of vortex singularities have been obtained, lift and drag can be simply computed: 

∆𝐿𝑗 = 𝜌𝑉∞𝛤𝑗𝑒𝑗  (2.15) 

 

∆𝐷𝑗 = −𝜌𝑤𝑖𝑛𝑑,𝑗𝛤𝑗𝑒𝑗  (2.16) 

If the panels are located on the leading edge of the wing (first line of panels). Otherwise: 

∆𝐿𝑗 = 𝜌𝑉∞(𝛤𝑗 − 𝛤𝑗−𝑠)𝑒𝑗  (2.17) 

 

∆𝐷𝑗 = −𝜌𝑤𝑖𝑛𝑑,𝑗(𝛤𝑗 − 𝛤𝑗−𝑠)𝑒𝑗  (2.18) 

Where s is the number of panels for each line of the wing, while 𝑒𝑗  is the spanwise dimension of the considered 
panel. This is due to the rear vortex segment of each vortex ring, that has a subtractive contribute to the lift of 
the following line of panels. 2.17 and 2.18 are used only for vortex rings, while 2.15 and 2.16 are valid for all 
panels when horseshoe vortices are used. 
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The evaluation of 𝑤𝑖𝑛𝑑,𝑗  is done by 𝐵𝑖𝑗 matrix: its terms are obtained using the influence velocity routine with 
the influence of bound vortex segments turned off. If the value of singularities has already been found: 

 

(2.19) 

An example of wing discretization is reported in Figure 12, where all considerations made in the previous 
chapter are visually easier to understand and the panel numbering modes is shown. 

 
Figure 12: Simple example of wing discretization with horseshoe and ring vortex elements (panels numbering order is also shown). 

 

2.4 Doublet Lattice Method (DLM) 

If the unsteady contribution of aerodynamic forces must be evaluated, DLM is one of the most used finite 
elements methods for modeling oscillating lifting surfaces forces in subsonic flows. It reduces to VLM if the 
oscillating frequency is zero and it is based on the same panel’s discretization and considerations. Some 

additional conditions would be added in high frequency problems, concerning the number of panels necessary 
to reduce errors.  

The solution presented (Rodden, Taylor and McIntosh [9]) is an evolution of classic DLM method (developed 
by Rodden, Giesing and Kalman), where the original parabolic approximation of doublet distribution is 
replaced by a quartic polynomial one. The doublet element is represented by a single segment placed at the 
same place of the BC line used in VLM, as can be observed in Figure 13. As for the previous VLM theory, 
also DLM permits a three-dimensional distribution of panels and the introduction of a camber line (thus panels 
are not all parallel to the x axis of the wing), but this will not be considered in the code development phase. 

If w is the normal wash for the considered surface in the case of harmonic motion, then its expression is: 

𝑤 = 𝑤̅𝑒𝑖𝜔𝑡  
∆𝑝 = ∆𝑝̅̅̅̅ 𝑒𝑖𝜔𝑡  

(2.20) 
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Where the amplitude of normal wash on the i-th panel due to the interaction with all the panel’s singularities 

is evaluated through: 

𝑤𝑖̅̅ ̅ =
1

8𝜋
∑∆𝑝𝑗̅̅ ̅̅ ̅

𝑁

𝑗=1

∆𝑥𝑗  

𝑤𝑖̅̅ ̅ =∑𝐷𝑖𝑗∆𝑝𝑗̅̅ ̅̅ ̅

𝑁

𝑗=1

 

(2.21) 

The normal wash factor (𝐷𝑖𝑗) is thus given by equation 2.22: 

𝐷𝑖𝑗 =
∆𝑥𝑗

8𝜋
∫ 𝐾𝑖𝑗𝑑𝜂̂𝑗

+𝑒𝑗

−𝑒𝑗

 (2.22) 

Where 𝐾𝑖𝑗 is the kernel function, that will be evaluated in this chapter through some approximations. Before 
proceeding with this calculations, it is necessary to describe the reference systems used. 

The local coordinate system (𝑥, 𝑦̂) is located on the panel where the sending doublet distribution is located 
(panel j) and the origin is coincident with the middle point of the doublet segment (BC). The global coordinate 
system (𝑥, 𝑦) is located on the wing root chord, as can be seen in Figure 12 (reported in VLM chapter). 

In the local coordinate system (Figure 13), 𝜂̂𝑗 is the distance in y direction of the considered point from the 
Load Point. Considering that the general panel is trapezoidal, the angle between y axis and the doublet 
distribution is 𝛬𝑗 . x position along the doublet segment can be defined as: 

𝜉𝑗 = 𝜂̂𝑗 tan(𝛬𝑗) (2.23) 

 
Figure 13: Representation of global and local coordinate systems for DLM. 
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The subscript i refers to the receiving panel, which is the one where the influence of all the other doublets is 
evaluated. The coordinates (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖 , 𝑦̂𝑖) refer to the Control Point of the considered panel in the two 
reference systems defined before.  

Now, all quantities involved in kernel function calculation are known. Thus: 

𝐷𝑖𝑗 = 𝐷0,𝑖𝑗 + 𝐷1,𝑖𝑗 +𝐷2,𝑖𝑗  (2.24) 

Where the first term is the steady contribute, that could be expressed by its integral form, but is more 
conveniently obtained from Vortex Lattice Method evaluations; the second and the third one are defined by 
DLM, respectively by the planar and non-planar part of the Kernel (as will be seen in equation 2.26). The term 
𝑎𝑖𝑗 in equation 2.25, is the one presented in equation 2.14: 

𝐷0,𝑖𝑗 =
1

2
∆𝑥𝑗𝑎𝑖𝑗 (2.25) 

 

𝐷1,𝑖𝑗 + 𝐷2,𝑖𝑗 =
∆𝑥𝑗

8𝜋
∫

[
 
 
 
 (𝑒

−
𝑖𝜔𝑥0
𝑉∞ 𝐾1 − 𝐾10)𝑇1

𝑟2
+

(𝑒
−
𝑖𝜔𝑥0
𝑉∞ 𝐾2 − 𝐾20)𝑇2

∗

𝑟4

]
 
 
 
 

+𝑒𝑗

−𝑒𝑗

𝑑𝜂̂𝑗 (2.26) 

Where: 

𝑥0 = 𝑥𝑖 − 𝜉𝑗 = 𝑥𝑖 − 𝜂̂𝑗 tan(𝛬𝑗) 
 

(2.27) 
 

𝑅 = √𝑥0
2 + 𝛽2𝑟2 
 

(2.28) 

𝑦0 = 𝑦̂𝑖 − 𝜂̂𝑗  
 

(2.29) 
𝑢1 =

𝑀𝑅 − 𝑥0
𝛽2𝑟

 

 
(2.30) 

𝛽 = √1 − 𝑀2 
 

(2.31) 
𝑘1 =

𝜔𝑟

𝑉∞
 

 
(2.32) 

𝑇1 = cos(𝛾𝑖 − 𝛾𝑗) 
𝑇2
∗ = (𝑧0 cos 𝛾𝑖 − 𝑦0 cos 𝛾𝑖)(𝑧0 cos 𝛾𝑗

− 𝑦0 cos 𝛾𝑗) 
 

(2.33) 
𝑟 = √𝑦0

2 + 𝑧0
2 

 
 

(2.34) 

M: Mach number, 𝑉∞: unperturbed velocity, 𝛾𝑖, 𝛾𝑗: angles of incidence of receiving and sending panel respectively 

According to Blair M. [10] (pp. 79-90) the expressions of 𝐾1 and 𝐾2, and those of 𝐼1 and 𝐼2 are the following: 

𝐼1 = ∫
𝑒−𝑖𝑘1𝑢

(1 + 𝑢2)
3
2

𝑑𝑢
∞

𝑢1

 

 

(2.35a) 

𝐼2 = ∫
𝑒−𝑖𝑘1𝑢

(1 + 𝑢2)
5
2

𝑑𝑢
∞

𝑢1

 

 

(2.35b) 

𝐾1 = 𝐼1 +
𝑀𝑟

𝑅

𝑒−𝑖𝑘1𝑢1

(1 + 𝑢1
2)
1
2

 (2.36a) 
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𝐾2 = 3𝐼2 + [
𝑖𝑘1𝑀

2𝑟2

𝑅2
]
𝑒−𝑖𝑘1𝑢1

(1 + 𝑢1
2)
1
2

+
𝑀𝑟

𝑅
[(1 + 𝑢1

2)
𝛽2𝑟2

𝑅2
+ 2

+
𝑀𝑟𝑢1
𝑅

]
𝑒−𝑖𝑘1𝑢1

(1 + 𝑢1
2)
3
2

 

(2.36b) 

 

For the sake of brevity, the mathematical methods used for the evaluation of the expressions in equations 2.35 
and 2.36 are not reported here, but they can be easily found in the work of Blair [10] cited before. 

The integral that appears in the expression of 𝐷1,𝑖𝑗 is evaluated through the following approximation: 

𝐷1,𝑖𝑗 =
∆𝑥𝑗

8𝜋
{[(𝑦̂𝑖

2 − 𝑧̂𝑖
2)𝐴1 + 𝑦̂𝑖𝐵1 + 𝐶1 + 𝑦̂𝑖(𝑦̂𝑖

2 − 3𝑧̂𝑖
2)𝐷1 + (𝑦̂𝑖

4 − 6𝑦̂𝑖
2𝑧̂𝑖

2 + 𝑧̂𝑖
4)𝐸1]𝐹

+ [𝑦̂𝑖𝐴1 +
1

2
𝐵1 +

1

2
(3𝑦̂𝑖

2 − 𝑧̂𝑖
2)𝐷1 + 2𝑦̂𝑖(𝑦̂𝑖

2 − 𝑧̂𝑖
2)𝐸1] ln (

(𝑦̂𝑖 − 𝑒𝑗)
2
+ 𝑧̂𝑖

2

(𝑦̂𝑖 + 𝑒𝑗)
2
+ 𝑧̂𝑖

2
)

+ 2𝑒𝑗 [𝐴1 + 2𝑦̂𝑖𝐷1 + (3𝑦̂𝑖
2 − 𝑧̂𝑖

2 +
1

3
𝑒𝑗
2)𝐸1]} 

(2.37a) 

 

While 𝐷2,𝑖𝑗  is obtained from: 

𝐷2,𝑖𝑗 =
∆𝑥𝑗

16𝜋𝑧̂𝑖
2 {[(𝑦̂𝑖

2 + 𝑧̂𝑖
2)𝐴2 + 𝑦̂𝑖𝐵2 + 𝐶2 + 𝑦̂𝑖(𝑦̂𝑖

2 + 3𝑧̂𝑖
2)𝐷2 + (𝑦̂𝑖

4 + 6𝑦̂𝑖
2𝑧̂𝑖

2 − 3𝑧̂𝑖
4)𝐸2]𝐹

+
1

(𝑦̂𝑖 + 𝑒𝑗)
2
+ 𝑧̂𝑖

2
{[(𝑦̂𝑖

2 + 𝑧̂𝑖
2)𝑦̂𝑖 + (𝑦̂𝑖

2 − 𝑧̂𝑖
2)𝑒𝑗]𝐴2 + (𝑦̂𝑖

2 + 𝑧̂𝑖
2 + 𝑦̂𝑖𝑒𝑗)𝐵2

+ (𝑦̂𝑖 + 𝑒𝑗)𝐶2 + [𝑦̂𝑖
4 − 𝑧̂𝑖

4 − (𝑦̂𝑖
2 − 3𝑧̂𝑖

2)𝑦̂𝑖𝑒𝑗]𝐷2

+ [(𝑦̂𝑖
4 − 2𝑦̂𝑖

2𝑧̂𝑖
2 − 3𝑧̂𝑖

4)𝑦̂𝑖 + (𝑦̂𝑖
4 − 6𝑦̂𝑖

2𝑧̂𝑖
2 + 𝑧̂𝑖

4)𝑒𝑗]𝐸2}

−
1

(𝑦̂𝑖 − 𝑒𝑗)
2
+ 𝑧̂𝑖

2
{[(𝑦̂𝑖

2 + 𝑧̂𝑖
2)𝑦̂𝑖 − (𝑦̂𝑖

2 − 𝑧̂𝑖
2)𝑒𝑗]𝐴2 + (𝑦̂𝑖

2 + 𝑧̂𝑖
2 − 𝑦̂𝑖𝑒𝑗)𝐵2

+ (𝑦̂𝑖 − 𝑒𝑗)𝐶2 + [𝑦̂𝑖
4 − 𝑧̂𝑖

4 − (𝑦̂𝑖
2 − 3𝑧̂𝑖

2)𝑦̂𝑖𝑒𝑗]𝐷2

+ [(𝑦̂𝑖
4 − 2𝑦̂𝑖

2𝑧̂𝑖
2 − 3𝑧̂𝑖

4)𝑦̂𝑖 − (𝑦̂𝑖
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2𝑧̂𝑖
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4)𝑒𝑗]𝐸2}

+ 𝑧̂𝑖
2 ln (

(𝑦̂𝑖 − 𝑒𝑗)
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+ 𝑧̂𝑖

2

(𝑦̂𝑖 + 𝑒𝑗)
2
+ 𝑧̂𝑖

2
)𝐷2 + 4𝑧̂𝑖

2 [𝑒𝑗 + 𝑦̂𝑖 ln (
(𝑦̂𝑖 − 𝑒𝑗)

2
+ 𝑧̂𝑖

2

(𝑦̂𝑖 + 𝑒𝑗)
2
+ 𝑧̂𝑖

2
)]𝐸2} 

(2.37b) 

 

𝐴1, 𝐵1, 𝐶1, 𝐷1, 𝐸1 are the polynomial coefficients for the fourth order approximation of (𝑒−
𝑖𝜔𝑥0
𝑉∞ 𝐾1 −𝐾10)𝑇1: 

(𝑒
−
𝑖𝜔𝑥0
𝑉∞ 𝐾1 −𝐾10)𝑇1 ≅ 𝜂̂𝑗

2𝐴1 + 𝜂̂𝑗𝐵1 + 𝐶1 + 𝜂̂𝑗
3𝐷1 + 𝜂̂𝑗

4𝐸1 = 𝑄1(𝜂̂𝑗) (2.38a) 
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𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝐸2 are the polynomial coefficients for the fourth order approximation of (𝑒−
𝑖𝜔𝑥0
𝑉∞ 𝐾2 −𝐾20) 𝑇2

∗: 

(𝑒
−
𝑖𝜔𝑥0
𝑉∞ 𝐾2 −𝐾20)𝑇2

∗ ≅ 𝜂̂𝑗
2𝐴2 + 𝜂̂𝑗𝐵2 + 𝐶2 + 𝜂̂𝑗

3𝐷2 + 𝜂̂𝑗
4𝐸2 = 𝑄2(𝜂̂𝑗) (2.38b) 

The coefficients can be calculated through the values of Q1,2 in five different points along BC segment, that 
are equally spaced. The expressions of polynomial coefficients are the same in the first and second case: 

𝐴1,2 = −
[𝑄1,2(−𝑒𝑗) − 16𝑄1,2 (−

𝑒𝑗
2
) + 30𝑄1,2(0) − 16𝑄1,2 (

𝑒𝑗
2
) + 𝑄1,2(𝑒𝑗)]

6𝑒𝑗
2  

 

𝐵1,2 =
[𝑄1,2(−𝑒𝑗) − 8𝑄1,2 (−

𝑒𝑗
2
) + 8𝑄1,2 (

𝑒𝑗
2
) − 𝑄1,2(𝑒𝑗)]

6𝑒𝑗
 

 
𝐶1 = 𝑄1,2(0) 

 

𝐷1,2 = −2
[𝑄1,2(−𝑒𝑗) − 2𝑄1,2 (−

𝑒𝑗
2
) + 2𝑄1,2 (

𝑒𝑗
2
) − 𝑄1,2(𝑒𝑗)]

3𝑒𝑗
3  

 

𝐸1,2 = 2
[𝑄1,2(−𝑒𝑗) − 4𝑄1,2 (−

𝑒𝑗
2
) + 6𝑄1,2(0) − 4𝑄1,2 (

𝑒𝑗
2
) + 𝑄1,2(𝑒𝑗)]

3𝑒𝑗
4  

(2.39) 

 

The integral F is:  

𝐹 = ∫
𝑑𝜂̂𝑗

(𝑦̂𝑖 − 𝜂̂𝑗)
2

+𝑒𝑗

−𝑒𝑗

=
2𝑒𝑗

𝑦̂𝑖
2 − 𝑒𝑗

2
 (2.40) 

 

The missing elements for the problem resolution are the values of Q1,2 at the five interpolation points: 

𝑄1,2(−𝑒𝑗); 𝑄1,2 (−
𝑒𝑗

2
) ; 𝑄1,2(0); 𝑄1,2 (

𝑒𝑗

2
) ; 𝑄1,2(𝑒𝑗) 

 

From this point, only K1 and D1,ij terms will be evaluated. That approximation of the term I1, is obtained as 
described in 2.41 and 2.42: 

- 𝑢1 ≥ 0 

𝐼1(𝑢1, 𝑘1) = [1 −
𝑢1

(1 + 𝑢1
2)
1
2

− 𝑖𝑘1𝐼0(𝑢1, 𝑘1)] 𝑒
−𝑖𝑘1𝑢1 (2.41) 

 
- 𝑢1 < 0 

𝐼1(𝑢1, 𝑘1) = 2𝑅𝑒[𝐼1(0, 𝑘1)] − 𝑅𝑒[𝐼1(−𝑢1, 𝑘1)] + 𝑖𝐼𝑚[𝐼1(−𝑢1, 𝑘1)] (2.42) 
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The value of 𝐼0(𝑢1, 𝑘1) is computed through: 

𝐼0(𝑢1, 𝑘1) = ∫ (1 −
𝑢

(1 + 𝑢2)
1
2

)𝑒−𝑖𝑘1𝑢𝑑𝑢
∞

𝑢1

 (2.43) 

 

Where: 

1 −
𝑢

(1 + 𝑢2)
1
2

=∑𝑎𝑠𝑒
−𝑐𝑠𝑢

𝑛

𝑠=1

 (2.44) 

The integration of the previous term leads to the formulation: 

𝐼0(𝑢1, 𝑘1) = ∑
𝑎𝑠(𝑐𝑠 − 𝑖𝑘1)𝑒

−𝑐𝑠𝑢1

𝑐𝑠
2 + 𝑘1

2

𝑛

𝑠=1

 (2.45) 

The coefficients of the integral approximation, obtained by Desmarais, are written in Table 3: 

 

𝑎1 0,000319759140 
𝑎2 −0,000055461471 
𝑎3 0,002726074362 
𝑎4 0,005749551566 
𝑎5 0,031455895072 
𝑎6 0,106031126212 
𝑎7 0,406838011567 
𝑎8 0,798112357155 
𝑎9 −0,417749229098 
𝑎10 0,077480713894 
𝑎11 −0,012677284771 
𝑎12 0,001787032960 
𝑏 0,009054814793 

𝑛 = 12 𝑐𝑠 = (2
𝑠
𝑚) 𝑏 

𝑚 = 1 
Table 3: Coefficients for Desmarais approximation of I0 integral. 

 

In the end, some considerations about panel discretization need to be done for DLM, since the chordwise length 
of each panel must satisfy the following condition: 

 

∆𝑥 <
0.08𝑉∞
𝑓

=
0.08𝑉∞
𝜔

2𝜋 (2.46) 
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Figure 14: Aspect ratio definition for rectangular panels. 

 

That can be obtained from the work done by Rodden, Taylor and McIntosh [9].  The limits imposed to 
dimensions of the panels are set through the Aspect Ratio (AR), which is defined as the ratio between the two 
dimensions of the panel (the numerator is usually the greatest length, while the denominator is the smallest 
one). The quadratic approximation of doublet distribution allows a smaller aspect ratio than the one allowed 
by the quartic one. The limits imposed by Rodden, Taylor and McIntosh [9] are reported in Table 4. 

 

Quadratic polynomial approximation Quartic polynomial approximation 
AR<3 AR<5 

Table 4: Limits for aspect ratio of DLM panels. 

 

2.5 Aerodynamic Code Development and Verification 

The previous chapters include all details that are necessary for the implementation of a solver able to evaluate 
lifting properties of a wing. The code developed specifically for the purposes of this work, is described in 
section 2.5.1.1. A fundamental part is the verification of the obtained results, achieved through the comparison 
with experimental results or other computational aerodynamics codes.  

 
2.5.1 Steady Aerodynamics Contribute (VLM) 
 
The steady contribute is evaluated through Vortex Lattice Method. A code able to do this potential flux 
computations for a wide range of aerodynamic surfaces has been developed and its structure will be described 
in section 2.5.1.1.  

2.5.1.1 Main steady code development steps 

The code developed for this analysis is divided into the following main sections: 

Data input section (from command prompt), where the following parameters can be set: 

1. The first three parameters are names that refer to the .txt file which contains profile coordinates. In 
each file the upper and the lower surface of the profile are discretized through a certain number of 
points.  

2. The 4th, 5th, 6th parameters are the angle of attack, the freestream velocity and altitude for which the 
induced velocity, lift, and drag are evaluated in the Post processing section of the code. 



34 
 

3. The geometry of trapezoidal wings, defined by root chord, tip chord, span and sweep angle is set 
through the input lines going from the 6th to the 10th. 

4. The 11th and 12th parameters define the number of panels for chordwise and spanwise discretization. 
5. The last two parameters set some characteristics related to the spanwise position at which the wing 

profile changes as described by the first three ones. 

This section also provides the generation of all the parameters related to the fluid flow (temperature, density…) 

with the hypothesis of ISA Atmosphere (Appendix I). 

Profile Camber line generation section permits to obtain the camber line of each profile from upper and lower 
surfaces data. The use of xFoil for this calculations permits to increment the number of discretization points 
along the chord and to evaluate the pressure coefficient generated by the single profile and its polar curve, if 
necessary. Table 5 reports the functions used in xFoil and their action: the code developed can autonomously 
open xFoil and execute all the operations needed.   
 

Function Operations 
LOAD Loads profile coordinates contained in the file which name is reported after the command. 
PPAR Permits to set a new parametrization for the upper surface, lower surface, and camber line 

of the profile. 
ALFA Sets the angle of attack of the profile for Cp evaluation. 
CPWR Writes pressure coefficient along the chord in the addressed file. 
WRTC Writes the coordinates of camber line in the addressed file. 

Table 5: Main xFoil commands used in the described code. 

The results provided by this section are a vector (Centerline_X) and a structure (Centerline_Y), that contain 
respectively the values of x and y coordinates of camber line points. The reference system adopted is the one 
represented in Figure 15 and the number of discretization points for the camber line is equal to the number of 
chordwise panels plus one. It is important to notice that the structure Centerline_Y contains three vectors, 
corresponding to each profile loaded in the first section. 
 

 
Figure 15: Syncro profile representation in its coordinate system. 

Wing geometry construction section, that establishes and plots the main characteristics of the semi-wing. It 
can be observed that the trapezoidal semi-wing will be reflected only after the grid definition, due to the 
hypothesis of symmetric aircraft. 
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Grid generation section, where all the geometric properties of the grid are defined: 
1. Each trapezoidal panel’s vertices have three-dimensional coordinates that are named following the 

convention for the vortex singularity segments: the 
one corresponding to AB vortex, for example, has 
(Xa, Ya, Za) and (Xb, Yb, Zb) coordinates. 

2. Control point and Load point, that are fundamental for 
the collocation of vortices and boundary conditions. 
They also have three dimensional coordinates, that are 
addressed to as: (Control_point_x, Control_point_y, 
Control_point_z). 

3. The surface of each panel, that will be used later for 
lift and pressure evaluations. 

4. Normal vector, which is fundamental to set boundary 
conditions and evaluate normal velocity. 

 

Figure 16: Code structure for the aerodynamic influence coefficients 
evaluation. 

 
Aerodynamic influence coefficients evaluation section, 
where 𝑎𝑖𝑗 coefficients are computed. Four loops (for cycles) 
are used to evaluate the influence of each horseshoe and ring vortex on each other panel of the wing. This 
permits to define 𝐴𝑖𝑗 matrix, remembering that: 
 

1. The first two loops define the receiving panel (i-th), on which the influence coefficient is evaluated. 
 

2. The inner loops permit to scan all the panels (j-th) that in turn influence the receiving one. 
 

The core of this calculations is the application of Biot-Savart’s law for each vortex segment. The workflow 

used for the definition of each sending and receiving panel is schematized in Figure 16. Moreover, 𝑏𝑖𝑗 
coefficients are evaluated considering only the influence of left and right vortices, that correspond to the 
segments AB and CD of each panel. 

The number of panels set in the input section determines the computational time for influence coefficients 
evaluation. These values are directly proportional; thus, it is important to choose a number of singularities that 
is a trade-off between a good approximation and short calculation time. Some convergence considerations will 
be presented in the verification section (2.5.1.3). 
 
Post processing section, in which lift, and induced drag are computed through 2.15, 2.16, 2.17, 2.18 equations. 
Moreover, it evaluates the polar curve for the wing and induced velocity. It is important to notice that the 
influence coefficients matrix is computed only once, while the angle of attack varies. Thus, the right-hand side 
term changes for each considered angle and then the singularities are evaluated through the matrix system 
presented in equation 2.13: 

𝛤 = [𝐴𝑖𝑗]
−1 𝑅𝐻𝑆 (2.47) 

Grid points exportation section, that saves Load and Control Points (where boundary conditions are applied) 
in a .mat file, that will be essential for aeroelastic problems resolution, as explained in the following chapters. 
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2.5.1.2 Syncro wing geometrical properties 

The wing of Syncro aircraft is trapezoidal, as stated in the introduction chapter of this work. Its main properties 
are listed in Table 6, including mean aerodynamic chord, root chord, tip chord and ailerons characteristics. 
Four profiles have been used along wingspan, that were developed properly for this aircraft. 

The coordinates of upper and lower profile surfaces are stored in the .txt files reported in Table 6, while the 
zero sweep condition states that the quarter line of each profile along span is parallel to y axis. 

 

Wing main Surface 
Profile Y Coordinate Local chord 

Profilo_radice.txt 0,000 m (Root) 1,286 m 
Profilo_500.txt 0,500 m 1,214 m 
Profilo_2720.txt 2,720 m 0,974 m 
Profilo_tip.txt 4,280 m (Tip) 0,805 m 

Ailerons Flaps 
Rotation angle -27°/+15° Rotation angle 0°/40° 
Chord 24% of local chord Chord 27% of local chord 
Spanwise extension from 2,720m to 4,280m Spanwise extension from 0,000m to 2,720m 

Table 6: Aerodynamic geometry of Syncro wing. 

 

Figure 17: Wing and tail geometric properties for Syncro aircraft. 
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2.5.1.3 Verification on target analysis aircraft and convergence considerations 

The instrument used for code verification is another Vortex Lattice Method code, named AVL (Athena Vortex 
Lattice), developed by Mark Drela [11]. The main differences between the two codes are related to the input 
methods and the output variables: the code developed in this work provides as an output the aerodynamic 
influence coefficients matrix, that is essential for Doublet Lattice Method evaluations. Moreover, the input 
method used in this case permits a quicker selection of parameters, although the number of variables is more 
limited and is adapt for simple geometry wings (for example the ones that are usually equipped on ultralight 
aircrafts category). 

The first analysis that has been carried out regards the convergence of the results as far as the number of panels 
is changed. As the grid is thickened, the computational time increases exponentially because of the increased 
size of 𝐴𝑖𝑗 matrix and thus the number of variables of the problem is greater. A trade-off between the optimum 
computational time and a good approximation of the results is carried out. The results obtained show how the 
coefficients have an asymptotic behaviour as the number of panels grows: Table 7 reports the percentual 
variability of CL and CD referred to the previous discretization step. 

The compromise condition chosen is the following: 

- 20 chordwise panels, equally spaced. 
- 60 spanwise panels, with a cosine distribution. 

Chordwise panels ΔCL ΔCD Spanwise panels ΔCL ΔCD 
3 14,682% 21,382% 15 0,758% 1,823% 
5 9,144% 13,781% 30 0,434% 0,667% 
8 5,066% 7,659% 45 0,166% 0,266% 

12 3,108% 4,779% 60 0,131% 0,206% 
17 1,962% 3,040% 75 0,080% 0,090% 
23 1,199% 1,821% 90 0,059% 0,101% 
30 1,142% 1,814% 105 0,037% 0,063% 
40 --- --- 120 --- --- 
Fixed spanwise panels number: 60 Fixed chordwise panels number: 20 

Table 7: Grid parameters convergence evaluations. 

The data obtained has been used for the comparison with the equivalent wing configuration on AVL. In both 
cases, only three profiles have been used for simplicity, since Profilo_radice.txt and Profilo_500.txt have 
almost the same geometric properties. 

Figure 18, and Figure 19 describe the main steady aerodynamic properties of the wing, that have been 
compared with results obtained from Athena Vortex Lattice [11]. Considering a range of angles of attack that 
correspond to linear aerodynamics (stall is not represented by these codes), angular lift coefficients are: 

 

𝐶𝐿𝛼 =
𝜕𝐶𝐿
𝜕𝛼

= 4,6903 
Relative error: 

0,6140% 
𝐶𝐿𝛼,𝐴𝑉𝐿 = (

𝜕𝐶𝐿
𝜕𝛼

)
𝐴𝑉𝐿

= 4,6615 

Table 8: Angular lift coefficient error evaluation 
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Figure 18: Lift and drag coefficients versus angle of attack. 

 

The wing polar obtained with AVL is also plotted in Figure 19. As can be observed, the results obtained are 
coherent between the two codes; thus, from this chapter, the code can be considered valid for the calculations 
made for static divergence and flutter studies. 

 

 
Figure 19: Polar curves from present code and Athena Vortex Lattice. 

 

In the end, Figure 20 shows the distribution of local lift coefficient along spanwise coordinate of the complete 
aircraft wing. The integration of lift along the span (y coordinate) permits to evaluate the lift coefficient for 
the considered angle of attack. 
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Figure 20: VLM lift coefficient distribution along span coordinate (angle of attack 2°). 

 

2.5.1.4 Wing symmetry code simplifications 

VLM code presented in chapter 2.5.1.1 can be improved by considering only one semi-wing in lift and induced 
drag computations. This is possible because the influence coefficients of the not-represented semi-wing are 
obtained through the reflection of the other one: only the sign inversion of y coordinates is necessary. In the 
end, the coefficients of the two semi-wings are summed and the result is a smaller influence coefficients matrix; 
The influence coefficients matrix building process has been executed in different conditions and the 
conclusions reached are: 

- Computational time differences are neglectable for poor mesh grids, where the solution time is so short 
that the advantages of the half-wing model are inconsistent. 

- The semi-wing model is necessary for some analysis carried out in the next chapters, where the 
aerodynamic model must be coupled with the semi-wing beam structure. 
 

Mesh grid Complete Wing 
computational time [s] 

Semi-wing computational 
time [s]*** Chordwise Spanwise 

5 20 0,606 0,299 
10 40 1,676 1,284 
20 80 17,967 10,842 
25 100 38,698 23,842 

Table 9: Computational times comparison between semi-wing and complete wing VLM model. 

***Spanwise panels number is half the one reported for the complete wing, thus the results of the two models 
for lift and induced drag are exactly coincident. 

 

2.5.2 Unsteady Aerodynamic Contribute (DLM) 
 
The value of z coordinate for each panel has not been considered in Doublet Lattice Method evaluations, since 
its value is usually much smaller than the other coordinates for wing profiles with limited camber. As 
underlined by Blair [10] in his work, non-planar contributes complicate the calculations, since 𝐷2,𝑖𝑗  term is 
introduced. Nevertheless, the previous hypothesis brings to the simplification of equation 2.48: 

lim
𝑧0→0

𝑇2
∗ = lim

𝑧0→0
(𝑧0 cos 𝛾𝑖 − 𝑦0 sin 𝛾𝑖)(𝑧0 cos 𝛾𝑗 − 𝑦0 sin 𝛾𝑗) = 0 (2.48) 
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The doublet contribute will reduce to the following expression, that is a simplification of equation 2.26: 

𝐷1,𝑖𝑗 =
∆𝑥𝑗

8𝜋
∫

(𝑒
−
𝑖𝜔𝑥0
𝑉∞ 𝐾1 − 𝐾10)𝑇1

𝑟2

+𝑒𝑗

−𝑒𝑗

𝑑𝜂̂𝑗  
(2.49) 

Where 𝑇1 = 1. 
 
2.5.2.1 Main Unsteady Code Development Steps 

Doublets contribute to lift is evaluated through an additional section added to the VLM code. This is possible 
because the grid used for each panel is the same and the collocation of the doublet line is at the quarter line. 
The modified code sections are the following: 

Aerodynamic influence coefficients evaluation section, where a new subroutine is introduced, as it is 
necessary to evaluate the coefficients of D matrix. This subroutine is constituted by the equations presented in 
the first part of the present chapter, that permit to sum 𝐷1 values to 𝐷0 ones (2.50): as stated before, the steady 
contribute is calculated through VLM, while the unsteady one becomes null if the oscillation frequency is zero. 
The structure of this section is reported in Figure 21, that shows how an additional inner loop can be added to 
evaluate the effect of different reduced oscillation frequencies on the wing in a single code execution, but with 
a fast increase in computational time. 

𝐷𝑖𝑗 = 𝐷0,𝑖𝑗 + 𝐷1,𝑖𝑗 =
1

2
∆𝑥𝑗𝑎𝑖𝑗 +

∆𝑥𝑗

8𝜋
∫

[
 
 
 
 (𝑒

−
𝑖𝜔𝑥0
𝑉∞ 𝐾1 −𝐾10)𝑇1

𝑟2

]
 
 
 
 

+𝑒𝑗

−𝑒𝑗

𝑑𝜂̂𝑗 (2.50) 

The values of doublet influence coefficients matrices for every 
frequency are thus saved in a proper variable, that is recalled in the 
post processing section. The central section of DLM code can be 
integrated in the previously described VLM code. 

The values of reduced frequency are an input of the problem and will 
be set through some specific evaluations: the range of variation and 
the step between two contiguous frequencies will be defined in flutter 
chapter. 

Post processing section: for each value of input frequency the 
pressure coefficient on panels can be properly evaluated through the 
resolution of the system of equations presented in equation 2.51: 

{𝐶𝑃} = [𝐷]
−1{𝑤} (2.51) 

Where {𝑤} is the vector of dimensionless normal wash for each panel 
of the wing. In the steady case it differs from the unsteady one 
because it has only the real part (the imaginary contribute is due to 
the wing motion/deformation). This term will be defined more 
precisely in the next chapters since the deformation of the wing is 
obtained through the free vibrational problem resolution. 

Figure 21: Code structure for unsteady aerodynamic influence coefficients evaluation. 
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2.5.2.2 DLM code verification  

Since it is difficult to find data for unsteady aerodynamic analysis, the present code results have been compared 
with the ones obtained by Forschling, H., Triebstein, H., Wagener J. [19], and Rowe, W.S., Sebastian, J.D., 
Petrarca, J.R. [20]. The test case analysis concerns a simple rectangular wing with an oscillating flap, whose 
characteristics are known and are reported in Table 10: 

 

Test semi-wing properties 
Span s = 0,88 m Sweep angle Λ = 25° 

Chord c = 0,60 m Dihedral angle Γ = 0° 
Aileron Chord ac = 0,17 m Aileron deflection α = 0,66° 
Aileron Span as = 0,47 m Reduced oscillation frequency k = 0,372 

Table 10: DLM test semi-wing properties. 

 

Figure 22 represents the configuration of the semi-wing, where the angle of attack is equal to zero, while the 
aileron oscillates with the established frequency. The profile selected for the static aerodynamic contribute is 
a symmetrical profile, thus all panels are located on the z=0 plane. The selected discretization considers 20 
chordwise panels and 30 spanwise panels, to obtain a sufficiently accurate representation. Results will be 
presented as distributions of pressure coefficient along the chord of the semi-wing. 

 

Figure 22: Test semi-wing and aileron geometry. 

The results obtained for the considered reduced frequency are reported in Figure 23, where the real and 
imaginary part of pressure coefficient can be observed. Moreover, the unsteady real part of CP is compared to 
the steady result, underlining the reduction of pressure due to the oscillating aileron surface. The real part of 
CP shows a peak that is located at the connection between the aileron and the remaining part of the wing. A 
secondary peak can be observed at the leading edge of the wing. 
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Figure 23: Test semi-wing pressure coefficient results. 

 

2.5.2.3 Unsteady Aerodynamic Properties of Syncro Wing 

Following the rules presented in the previous chapters regarding aspect ratio and the number of panels 
necessary for computations at a defined airspeed, the hereafter presented grid could be selected for DLM 
application on the semi-wing of Syncro aircraft: 

1. 20 chordwise panels, that are enough to satisfy the condition in equation 2.52 for a reasonable range 
of reduced oscillation frequencies (𝑏 = 𝑐𝑚𝑒𝑎𝑛

2
=

1,094

2
= 0,547, half of the mean aerodynamic chord). 

The estimation of maximum reduced frequency is made on the worst conditions, that is at the root 
chord of the wing. 
 

∆𝑥 <
0,08𝑉∞
𝑓

=
0,08𝑉∞
𝜔

2𝜋 =
0,08𝑉∞
𝑘𝑉∞
𝑏

2𝜋 =
0,08𝑏

𝑘
2𝜋 

𝑘 <
0,08𝑏

∆𝑥
2𝜋 =

0,08𝑏

0,0634
2𝜋 = 4,3368 

(2.52) 

 

2. 30 spanwise panels, that are equally spaced to respect the aspect ratio conditions with a relatively small 
number of panels. In this case, the worst condition if found at the tip of the wing, where the panels are 
more stretched. Nevertheless, the results obtained are compatible with the imposed conditions for 
quartic polynomial Doublet Lattice Method, as shown in 2.53. 

𝐴𝑅 =
𝑙

ℎ𝑚𝑖𝑛
=
0,1430

0,0402
= 3,557 < 5,0 (2.53) 
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The reason why a cosine law is not used for spanwise discretization is that DLM evaluations need to respect 
the conditions described in 2.52 and 2.53. The use of a variable spanwise length of the panels brings to a great 
number of chordwise ones to satisfy AR condition and to a much greater computational time. The equally 
spaced discretization is thus the more suitable for simple wing geometries. 

 

 
Figure 24: Semi-wing geometry and mesh representation for Syncro aircraft. 

 

Even thought that this would be a suitable discretization, solution times must be considered in flutter analysis 
resolution, thus a less accurate grid will be built in the following chapters (at least in the first steps of the study, 
when a wide range of cases is the main target). 
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Chapter 3 

Structural models 
 

Aeroelasticity studies go through the analysis of static deformation and 
free vibrational modes of wing structure, that are then coupled with 
aerodynamics. The elements used to represent the wing structure in this 
work are beams (characterized by a 1D geometry), because the geometry 
has a predominant dimension. This is usually the y axis, while the cross 
section of the beam lies in a plane parallel to the x-z one and has an 
arbitrary shape. The following pages will resume the main points of the 
theories used in this work: the focus is set on Finite Elements methods. 

Figure 25: Reference system for a beam element with circular cross section. 

 

3.1 Stresses and Displacements, Geometrical Relations, and Constitutive Equations 

First, it is important to define the displacement field for each structural variable in 3D space, which is time 
dependent in the most general case. Its expression is reported in equation 3.1: 

𝑢⃗ (𝑥, 𝑦, 𝑧, 𝑡) = {

𝑢𝑥(𝑥, 𝑦, 𝑧, 𝑡)

𝑢𝑦(𝑥, 𝑦, 𝑧, 𝑡)

𝑢𝑧(𝑥, 𝑦, 𝑧, 𝑡)

} (3.1) 

 

At the same time, stresses and deformations vectors 
are defined through equation 3.2. Their components 
are only six because of the hypothesis of angular 
momentum equilibrium, which implies a symmetry 
condition for the cross components addressed to in 
equation 3.3. The results presented in this pages are 
obtained following Carrera E., Cinefra M. [12] 
(chapters 3 and 4). 

 

Figure 26: Representation of stress and strain components in 3D 
space. 

𝜎 = {𝜎𝑦𝑦 , 𝜎𝑥𝑥, 𝜎𝑧𝑧 , 𝜎𝑥𝑧, 𝜎𝑦𝑧 , 𝜎𝑥𝑦}
𝑇

 
(3.2) 

𝜀 = {𝜀𝑦𝑦 , 𝜀𝑥𝑥, 𝜀𝑧𝑧, 2𝜀𝑥𝑧, 2𝜀𝑦𝑧 , 2𝜀𝑥𝑦}
𝑇

 

𝜎𝑖𝑗 = 𝜎𝑗𝑖 , 𝑖 ≠ 𝑗 
𝜀𝑖𝑗 = 𝜀𝑗𝑖 , 𝑖 ≠ 𝑗 

(3.3) 
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Figure 26 displays the stress and strain components in 3D space, addressing to the surfaces on which they act 
(the first subscript refers to the surface through its orthogonal vector) and the direction (the second subscript 
refers to the direction of the stress/strain). The various components can be divided into two sub-vectors, that 
refer to the beam cross section and to the y direction respectively: 

𝜎 𝑝 = {𝜎𝑧𝑧 , 𝜎𝑥𝑥 , 𝜎𝑥𝑧}
𝑇 

𝜀 𝑝 = {𝜀𝑧𝑧 , 𝜀𝑥𝑥, 2𝜀𝑥𝑧}
𝑇 = {𝜀𝑧𝑧 , 𝜀𝑥𝑥, 𝛾𝑥𝑧}

𝑇 
(3.4) 

𝜎 𝑛 = {𝜎𝑦𝑧 , 𝜎𝑥𝑦, 𝜎𝑦𝑦}
𝑇

 

𝜀 𝑛 = {2𝜀𝑦𝑧 , 2𝜀𝑥𝑦, 𝜀𝑦𝑦}
𝑇
= {𝛾𝑦𝑧, 𝛾𝑥𝑦, 𝜀𝑦𝑦}

𝑇
 

(3.5) 

Where the following notation has been introduced: 

𝛾𝑖𝑗 = 2𝜀𝑖𝑗 , 𝑖 ≠ 𝑗 

3.1.1 Geometrical relations 

The displacements and deformation vectors are related through equation 3.6, considering small displacements 
and thus linear relations: 

𝜀𝑧𝑧 = 𝑢𝑧,𝑧
𝜀𝑥𝑥 = 𝑢𝑥,𝑥

𝛾𝑥𝑧 = 2𝜀𝑥𝑧 = 𝑢𝑥,𝑧 + 𝑢𝑧,𝑥
 

(3.6) 𝛾𝑦𝑧 = 2𝜀𝑦𝑧 = 𝑢𝑦,𝑧 + 𝑢𝑧,𝑦
𝛾𝑥𝑦 = 2𝜀𝑥𝑦 = 𝑢𝑥,𝑦 + 𝑢𝑦,𝑥

𝜀𝑦𝑦 = 𝑢𝑦,𝑦

 

The same expressions can be formulated in an alternative way through the following differential operators in 
matrixial form: 

𝑫𝑝 =

[
 
 
 
 
 0 0

𝜕

𝜕𝑧
𝜕

𝜕𝑥
0 0

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥]
 
 
 
 
 

; 𝑫𝑛𝑝 =

[
 
 
 
 0

𝜕

𝜕𝑧
0

0
𝜕

𝜕𝑥
0

0 0 0]
 
 
 
 

;𝑫𝑛𝑦 =

[
 
 
 
 
 
 0 0

𝜕

𝜕𝑦
𝜕

𝜕𝑦
0 0

0
𝜕

𝜕𝑦
0
]
 
 
 
 
 
 

 (3.7) 

That permit to obtain the result presented in equation 3.8: 

{
𝜀 𝑝 = 𝑫𝑝𝑢⃗ 

𝜀 𝑛 = 𝑫𝑛𝑢⃗ = 𝑫𝑛𝑝𝑢⃗ + 𝑫𝑛𝑦𝑢⃗ 
 (3.8) 

 
3.1.2 Constitutive equations 

On the other hand, constitutive equations relate stresses and deformations through the material stiffness matrix 
of elastic coefficients, that can be defined in different reference systems (Carrera E., Cinefra M. [12], chapter 
6). At first, the material reference system will be used, in which the coordinates are identified as (1, 2, 3): 

𝜎 𝑚 = {𝜎33, 𝜎22, 𝜎11, 𝜎21, 𝜎31, 𝜎23}
𝑇 

𝜀 𝑚 = {𝜀33, 𝜀22, 𝜀11, 2𝜀21, 2𝜀31, 2𝜀23}
𝑇 

(3.9) 
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The compact form of constitutive equation can be found in equation 3.10, that introduces the 6x6 material 
stiffness matrix of elastic coefficients: 

𝜎 𝑚 = 𝑪𝑚𝜀 𝑚 (3.10) 

Many hypothesis can be applied to 𝑪𝑚 matrix, that has different levels of complexity depending on the beam 
material. The general form has 21 independent coefficients, because the matrix is symmetric. The following 
equations present the most common simplifications made on material properties: 

Anisotropic material 

𝑪𝑚 =

[
 
 
 
 
 
𝐶33 𝐶23 𝐶13
𝐶23 𝐶22 𝐶12
𝐶13 𝐶12 𝐶11

𝐶43 𝐶53 𝐶63
𝐶42 𝐶52 𝐶62
𝐶41 𝐶51 𝐶61

𝐶43 𝐶42 𝐶41
𝐶53 𝐶52 𝐶51
𝐶63 𝐶62 𝐶61

𝐶44 𝐶45 𝐶46
𝐶45 𝐶55 𝐶56
𝐶46 𝐶56 𝐶66]

 
 
 
 
 

 (3.11) 

Orthotropic material 

𝑪𝑚 =

[
 
 
 
 
 
𝐶33 𝐶23 𝐶13
𝐶23 𝐶22 𝐶12
𝐶13 𝐶12 𝐶11

0    0    0
0    0    0
0    0    0

0    0   0
0    0   0
0    0   0

𝐶44 0 0
0 𝐶55 0
0 0 𝐶66]

 
 
 
 
 

 (3.12) 

Isotropic material 

𝑪𝑚 =

[
 
 
 
 
 
𝐶11 𝐶13 𝐶13
𝐶13 𝐶11 𝐶13
𝐶13 𝐶13 𝐶11

0    0    0
0    0    0
0    0    0

0    0   0
0    0   0
0    0   0

𝐶66 0 0
0 𝐶66 0
0 0 𝐶66]

 
 
 
 
 

 (3.13) 

If the coefficients are constant along the structure, the material is considered homogeneous, while if the 
properties change from point to point it is heterogeneous. In the orthotropic and isotropic case, the coefficients 
are defined in relation to Young’s modulus, Shear modulus and Poisson’s ratio in each direction of the 

material’s reference system (Table 11 summarizes the definitions of all the coefficients): 

Orthotropic 
material 

 

𝐶11 =
𝐸1(1 − 𝜈23𝜈32)

∆
 

 

𝐶22 =
𝐸2(1 − 𝜈13𝜈31)

∆
 

 

𝐶33 =
𝐸3(1 − 𝜈12𝜈21)

∆
 

 

 

𝐶12 = 𝐶21 =
𝐸1(𝜈21 + 𝜈23𝜈31)

∆
 

 

𝐶13 = 𝐶31 =
𝐸1(𝜈31 + 𝜈21𝜈32)

∆
 

 

𝐶23 = 𝐶32 =
𝐸2(𝜈32 + 𝜈12𝜈31)

∆
 

 

𝐶44 = 𝐺21 
 

𝐶55 = 𝐺31 
 

𝐶66 = 𝐺23 
 

∆= 1 − 𝜈12𝜈21 − 𝜈13𝜈31 − 𝜈23𝜈32 − 𝜈12𝜈23𝜈31 − 𝜈13𝜈21𝜈32 

Isotropic 
material 

 

𝐶11 =
(1 − 𝜈)𝐸

(1 + 𝜈)(1 − 2𝜈)
 

 

 

𝐶13 =
𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
 

 

 

𝐶66 =
𝐸

2(1 + 𝜈)
 

 
Table 11: Definition of material stiffness matrix coefficients for orthotropic and isotropic materials. 
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Where 𝐸1, 𝐸2, 𝐸3 are the Young’s moduli along the three directions of the reference system and 𝐺21, 𝐺31, 𝐺23 
are the shear moduli for the orthotropic material (there are three mutually perpendicular planes of elastic 
symmetry). On the other side, the isotropic case shows that the material properties are constant across every 
direction in the space, thus 𝐸 is the Young’s modulus and 𝐺 is the shear one. In the end, Poisson’s ratios are 

defined through the following relation: 

𝜈𝑖𝑗 = −
𝜀𝑗𝑗

𝜀𝑖𝑖
, 𝑖, 𝑗 = 1,2,3 𝑎𝑛𝑑 𝑖 ≠ 𝑗 (3.14) 

Similar considerations lead to the definition of a unique Poisson’s ratio for isotropic materials. 

 
Figure 27: Material and physical coordinates for an orthotropic material. 

Figure 27 shows the material reference system for an orthotropic material, where (1, 2, 3) axes are aligned 
with the planes of elastic symmetry. In general, these directions could be oriented in a different way from 
structural reference system (x, y, z). Therefore, a transformation from material to physical coordinates is 
defined, where stresses and strains in physical coordinates are: 

𝜎 = 𝑻𝜎 𝑚 
𝜀 𝑚 = 𝑻𝑻𝜀  

(3.15) 

Where T is the transformation matrix, that has 6x6 dimensions and is function of the rotation angle θ (matrix 
multiplications necessary to obtain the coefficients in the structural reference system in Appendix II): 

 

(3.16) 

𝑪̃ is the transformed material stiffness matrix in the physical coordinate system: 

𝜎 = 𝑻𝜎 𝑚 = 𝑻𝑪𝒎𝜀 𝑚 = 𝑻𝑪𝒎𝑻
𝑻𝜀 = 𝑪̃𝜀  (3.17) 
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Moreover, if the stress and strain vectors are split according to equations 3.4 and 3.5: 

{
𝜎 𝑝 = 𝑪̃𝑝𝑝𝜀 𝑝 + 𝑪̃𝑝𝑛𝜀 𝑛

𝜎 𝑛 = 𝑪̃𝑛𝑝𝜀 𝑝 + 𝑪̃𝑛𝑛𝜀 𝑛
 (3.18) 

The sub-matrices composing 𝑪̃ are defined as follows: 

𝑪̃𝑝𝑝 = [

𝐶̃11 𝐶̃12 0

𝐶̃12 𝐶̃22 0

0 0 𝐶̃44

] ; 𝑪̃𝑝𝑛 = 𝑪̃𝑛𝑝
𝑇
= [

0 𝐶̃16 𝐶̃13
0 𝐶̃26 𝐶̃23
𝐶̃45 0 0

] ; 𝑪̃𝑛𝑛 = [

𝐶̃55 0 0

0 𝐶̃66 𝐶̃36
0 𝐶̃36 𝐶̃33

] (3.19) 

The same conditions of equation 3.19 are applied to isotropic materials, with some further simplifications since 
there are only three independent coefficients. 

All the basic material and geometrical properties have been defined, as well as constitutive equations. The next 
step necessary to obtain a modal analysis of wing structure is to define the simplified model that will be used 
to represent its stiffness and deformation. 

 

3.2 Beam modeling through Carrera unified formulation 

Displacements of beam structure points can be expressed with the following compact expression (3.20), which 
is composed by two terms: 

1. 𝐹𝜏(𝑥, 𝑧), describes the cross-section deformation. 
2. 𝑢𝜏⃗⃗⃗⃗ (𝑦, 𝑡), describes the displacement of each section depending on time and y coordinate. 

𝑢⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝐹𝜏(𝑥, 𝑧)𝑢𝜏⃗⃗⃗⃗ (𝑦, 𝑡) 
𝜏 = 1,… ,𝑁𝑢 (3.20) 

This compact expression uses Einstein’s notation, with summation respect to subscript 𝜏, that is the arbitrary 
expansion order of the 1D displacement Carrera Unified Formulation (CUF) model. The class of the model 
is determined by the order of approximation adopted for the cross-section deformation. In sub-chapters 3.2.1 
and 3.2.2 the orders of approximation adopted in this work will be described. The necessities determined by a 
good representation of bending and torsion of a beam structure, according to Petrolo M. [13] (p. 94), are related 
to the discretization that is chosen: in this work, as a compromise between the solution time and the accuracy 
of the result, 3-rd and 4-th order McLaurin polynomials will be used for the cross-section deformation and 4-
th order Lagrange polynomials will be used for the element wise nodes discretization. 

 

3.2.1 McLaurin polynomials  

As stated by Carrera E. [12] (pp. 300-304), the cross-section behaviour can be approximated with a method 
inspired by the classical models, but with a higher order approximation. As an example, the first order complete 
beam model (Carrera E. [12], p. 295) is presented in equation 3.21: 

{

𝑢 = 𝑢1 + 𝑥𝑢2 + 𝑧𝑢3
𝑣 = 𝑣1 + 𝑥𝑣2 + 𝑧𝑣3
𝑤 = 𝑤1 + 𝑥𝑤2 + 𝑧𝑤3

 (3.21) 
 

With 3 constant variables (𝑢1, 𝑣1, 𝑤1) and 6 linear ones (𝑢2, 𝑢3, 𝑣2, 𝑣3, 𝑤2, 𝑤3). 
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The use of fourth order polynomials brings to a quartic approximation across the section of the beam, which 
is explained in equation 3.22 with the compact representation (CUF and Einstein’s notation) and the explicit 

one (3.23): 

𝑢⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝐹𝜏(𝑥, 𝑧)𝑢𝜏⃗⃗⃗⃗ (𝑦, 𝑡), 𝜏 = 1,… ,
(𝑁 + 1)(𝑁 + 2)

2
= 𝑁𝑢, 𝑁 = 4 

(3.22) 

𝐹𝜏(𝑥, 𝑧) = 𝑥
𝑖𝑧𝑗, 𝑖, 𝑗 = 0, … , 𝑁 

{
 
 
 
 

 
 
 
 
𝑢𝑥 = 𝑢𝑥1 + 𝑥𝑢𝑥2 + 𝑧𝑢𝑥3 + 𝑥

2𝑢𝑥4 + 𝑥𝑧𝑢𝑥5 + 𝑧
2𝑢𝑥6 + 𝑥

3𝑢𝑥7 + 𝑥
2𝑧𝑢𝑥8 + 𝑥𝑧

2𝑢𝑥9
+𝑧3𝑢𝑥10 + 𝑥

4𝑢𝑥11 + 𝑥
3𝑧𝑢𝑥12 + 𝑥

2𝑧2𝑢𝑥13 + 𝑥𝑧
3𝑢𝑥14 + 𝑧

4𝑢𝑥15

 

𝑢𝑦 = 𝑢𝑦1 + 𝑥𝑢𝑦2 + 𝑧𝑢𝑦3 + 𝑥
2𝑢𝑦4 + 𝑥𝑧𝑢𝑦5 + 𝑧

2𝑢𝑦6 + 𝑥
3𝑢𝑦7 + 𝑥

2𝑧𝑢𝑦8 + 𝑥𝑧
2𝑢𝑦9

+𝑧3𝑢𝑦10 + 𝑥
4𝑢𝑦11 + 𝑥

3𝑧𝑢𝑦12 + 𝑥
2𝑧2𝑢𝑦13 + 𝑥𝑧

3𝑢𝑦14 + 𝑧
4𝑢𝑦15

 

𝑢𝑧 = 𝑢𝑧1 + 𝑥𝑢𝑧2 + 𝑧𝑢𝑧3 + 𝑥
2𝑢𝑧4 + 𝑥𝑧𝑢𝑧5 + 𝑧

2𝑢𝑧6 + 𝑥
3𝑢𝑧7 + 𝑥

2𝑧𝑢𝑧8 + 𝑥𝑧
2𝑢𝑧9

+𝑧3𝑢𝑧10 + 𝑥
4𝑢𝑧11 + 𝑥

3𝑧𝑢𝑧12 + 𝑥
2𝑧2𝑢𝑧13 + 𝑥𝑧

3𝑢𝑧14 + 𝑧
4𝑢𝑧15

 
(3.23) 

The deformation is thus dependent on 15 coefficients for each direction: Figure 28 represents the shape of the 
McLaurin (or Taylor) polynomials used in this work. 

 

 

Figure 28: McLaurin polynomials for N=4. From left to right and from to bottom the polynomials are: 1, x, z, x2, xz, z2, x3, x2z, xz2, 
z3, x4, x3z, x2z2, xz3, z4. 

 

3.2.2 Isoparametric Finite Elements 

Following the finite elements method (FEM), the beam is divided into a certain number of elements along y 
coordinate of the reference system presented before. Each element has a certain length, does not overlap with 
the previous and the following ones, and the mathematical governing equations for the structural problem are 
solved through a numerical approximated approach (that will be explained briefly in the next section). 
Isoparametric 1D finite elements are here considered to approximate the displacement field along the y 
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direction (Varello A. [14], p. 31-36): displacements of any point along the beam longitudinal coordinate are 
obtained through an interpolation of the displacements of nodal points through shape functions or interpolation 
functions. Moreover: 

1. Each element is defined through equally spaced nodes. 
2. The length of the element is Lel and is equal to the distance from node 1 to node 2. 
3. The internal nodes are ordered from left to right (Figure 29). 
4. Lagrange polynomials are the ones that satisfy the conditions imposed for shape functions. 

This approach can be generalized to an arbitrary number of nodes greater than two for each element. Figure 
29 shows the natural coordinate system for a generic third order element, where y1 and y2 are its extremities: 

𝑟 =
(𝑦 − 𝑦1) + (𝑦 − 𝑦2)

(𝑦2 − 𝑦1)
 (3.24) 

The equations that define the general shape functions and the reference system used for each element are 
presented in the following lines: 

𝑁𝑖(𝑟) = ∏
(𝑟 − 𝑟𝛾)

(𝑟𝑖 − 𝑟𝛾)

𝑁𝑁

𝛾=1,𝛾≠1

 (3.25) 

Where NN is the number of nodes (in this case NN=4) and Ni represents Lagrange polynomials of the (NN -1) 
order in the natural coordinate system (the value of Ni is always zero for the i-th node). 

 

 

Figure 29: Natural coordinate system for a 4-node finite element. 

 

The explicit formulation of shape functions for the 4-node element can be found in equation 3.26, they are 
also graphically represented in Figure 30, in the natural coordinate system: 

 

𝑁1 = −
9

16
(𝑟 +

1

3
) (𝑟 −

1

3
) (𝑟 − 1) = −

9

16
𝑟3 +

9

16
𝑟2 +

1

16
𝑟 −

1

16
 

𝑁2 = +
9

16
(𝑟 + 1) (𝑟 +

1

3
) (𝑟 −

1

3
) = +

9

16
𝑟3 +

9

16
𝑟2 −

1

16
𝑟 −

1

16
 

𝑁3 = +
27

16
(𝑟 + 1) (𝑟 −

1

3
) (𝑟 − 1) = +

27

16
𝑟3 −

9

16
𝑟2 −

27

16
𝑟 +

9

16
 

𝑁4 = −
27

16
(𝑟 + 1) (𝑟 +

1

3
) (𝑟 − 1) = −

27

16
𝑟3 −

9

16
𝑟2 +

27

16
𝑟 +

9

16
 

(3.26) 



52 
 

 

Figure 30: Third order Lagrange polynomials in the natural coordinate system. 

 

3.3 1D Finite Elements model 

From the previous section (3.2) considerations, it is possible to define the displacement of each point in three-
dimensional space that belongs to the beam element. This procedure is carried out considering shape functions 
in the beam reference system (and not the natural coordinate one), thus a variable change is introduced from 
equation 3.24: 

𝑟 =
(𝑦 − 𝑦1) + (𝑦 − 𝑦2)

(𝑦2 − 𝑦1)
=
2(𝑦 − 𝑦1) − 𝐿𝑒𝑙

𝐿𝑒𝑙
 (3.27) 

The displacement field can be finally presented in the following formulation: 

𝑢⃗ (𝑥, 𝑦, 𝑧, 𝑡) = 𝐹𝜏(𝑥, 𝑧)𝑁𝑖(𝑦)𝑞𝜏𝑖⃗⃗⃗⃗  ⃗(𝑡), 
 

𝜏 = 1,… ,
(𝑁 + 1)(𝑁 + 2)

2
, 𝑖 = 1,… ,𝑁𝑁 

(3.28) 

Where 𝑞𝜏𝑖⃗⃗⃗⃗  ⃗(𝑡) is the vector containing all nodal displacements in the 3D space and its dimensions are: 
 

o 3𝑁𝑁 ×𝑁𝑢, for a single element. It is obvious that the vector length depends directly on the order of 
approximation chosen. 

o 3[(𝑁𝑁 − 1)𝑁𝐸𝐿 + 1] × 𝑁𝑢, for the whole beam structure. Square brackets identify the global number 
of nodes of the beam, considering that in the case of a cantilever structure each element has in common 
one node with the previous and with the following finite element. 
 

Table 12 resumes the number of degrees of freedom (DOFs) for a beam structure composed of 10 elements of 
different orders: 

10 Beam elements, no boundary 
conditions applied 

Cross section approximation order  
First, Nu = 3 Second, Nu = 6 Third, Nu = 10 Fourth, Nu = 15  

Element Nodes 
2 33 198 330 495  
3 63 378 630 945  
4 93 558 930 1395  

Table 12: Number of DOFs for a 10 elements beam. 
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As can be observed in the previous lines, the cantilever beam considered is free to move in space, thus it is 
fleeting in 3D space and no deformations are experienced due to the applied forces. In the following chapters, 
the applied boundary condition will be specified with reference to the nodal degrees of freedom. 

 

3.4 Principle of Virtual displacements and solution of the problem 

The solution of the elastic problem is obtained through the Principle of Virtual Work (PVW), that according 
to Carrera E. [12] (p.119) can be considered as the universal instrument to solve structural problems. The 
general statement is that the virtual variation of total work done by an equilibrate system of forces and tensions 
on a system “a” acting on a system “b” of congruent displacements and deformations is equal to zero. 

𝛿𝐿𝑎𝑏 = 0 (3.29) 

The system “a” is the configuration in which internal and external forces acting on the body are in equilibrium, 
while displacements and deformations are due to the forces considered. The system “b” is the one where all 

displacements and deformations are congruent, and the forces and tensions are dependent on the deformations. 

It can be rewritten in the simple shape presented in equation 3.30, because of the equilibrium between internal 
and external forces acting on the structure. This formulation is also called Principle of Virtual Displacements 
(PVD): forces are real, while displacements are virtual variations. 

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑒𝑥𝑡 (3.30) 

The definitions of the two terms of the equation are: 

𝛿𝐿𝑒𝑥𝑡 = 𝛿𝐿𝑃 + 𝛿𝐿𝑙 + 𝛿𝐿𝑠 + 𝛿𝐿𝑉 − 𝛿𝐿𝑖𝑛𝑒  

𝛿𝐿𝑖𝑛𝑡 = ∫(𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑦𝑦𝛿𝜀𝑦𝑦 + 𝜎𝑧𝑧𝛿𝜀𝑧𝑧 + 𝜎𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜎𝑦𝑧𝛿𝛾𝑦𝑧)𝑑𝑉
.

𝑉

 (3.31) 

Where 𝜎, 𝜀 are stresses and displacements, while 𝐿𝑃 is the external work done by point loads, 𝐿𝑙 the one due 
to line loads, 𝐿𝑠 the one carried out by surface forces and 𝐿𝑉 the one by volume loads. Also, the work done by 
inertial loads (𝐿𝑖𝑛𝑒) is considered in the external contribute. 

The present equations are referred to a single element with the y axis aligned with the global one. The effect 
of the rotation of elements in the global coordinate system and the assembly procedure will be discussed later. 
Thanks to the previous relations introduced in equation 3.8, the internal work expression becomes: 

𝛿𝐿𝑖𝑛𝑡 = ∫(𝛿𝜀𝑛⃗⃗⃗⃗ 
𝑇
𝜎𝑛⃗⃗⃗⃗ + 𝛿𝜀𝑝⃗⃗  ⃗

𝑇
𝜎𝑝⃗⃗⃗⃗ )𝑑𝑉

.

𝑉

= ∫ ∫ (𝛿𝜀𝑛⃗⃗⃗⃗ 
𝑇
𝜎𝑛⃗⃗⃗⃗ + 𝛿𝜀𝑝⃗⃗  ⃗

𝑇
𝜎𝑝⃗⃗⃗⃗ )𝑑𝛺𝑑𝑦

.

𝛺

.

𝑙

 

 
(3.32) 

𝛿𝜀𝑛⃗⃗⃗⃗ = (𝑫𝑛𝑝𝐹𝜏𝑰)𝑁𝑖𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗ + 𝐹𝜏(𝑫𝑛𝑦𝑁𝑖𝑰)𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗ 
 

𝛿𝜀𝑝⃗⃗  ⃗ = (𝑫𝑝𝐹𝜏𝑰)𝑁𝑖𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗ 
(3.33) 

Where the volume integral can be split in the cross section contribute and in the y coordinate one. Moreover, 
the beam elements considered in this Finite Element approach have a constant cross section. 
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Before proceeding to the substitution in equation 3.32, the transposed components of the three terms in 3.33 
are evaluated: 

[(𝑫𝑛𝑝𝐹𝜏𝑰)𝑁𝑖𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗]
𝑇
= 𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗

𝑇
𝑁𝑖(𝑫𝑛𝑝

𝑇𝐹𝜏𝑰) 
 

[𝐹𝜏(𝑫𝑛𝑦𝑁𝑖𝑰)𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗]
𝑇
= 𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗

𝑇
(𝑫𝑛𝑦

𝑇𝑁𝑖𝑰)𝐹𝜏 
 

[(𝑫𝑝𝐹𝜏𝑰)𝑁𝑖𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗]
𝑇
= 𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗

𝑇
𝑁𝑖(𝑫𝑝

𝑇𝐹𝜏𝑰) 
 

(3.34) 

Following the procedure provided by Varello A. (pp. 43-44) [14], that refers to the formulation of internal 
work expression for a 1D Finite Elements method in Carrera Unified Formulation, the result obtained is: 

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗
𝑇
𝑲𝜏𝑠𝑖𝑗𝑞𝑠𝑗⃗⃗ ⃗⃗  ⃗ (3.35) 

Where 𝑞𝑠𝑗⃗⃗ ⃗⃗  ⃗ is the nodal displacement vector, while 𝛿𝑞𝜏𝑖⃗⃗⃗⃗  ⃗
𝑇 is the transposed virtual displacements vector. 𝑲𝜏𝑠𝑖𝑗  

is the fundamental nucleus of the structural stiffness matrix of this model and is a 3x3 matrix, whose terms are 
obtained through equation 3.35. It is important to underline that at this point no hypotheses have been made 
on material properties. 

𝑲𝜏𝑠𝑖𝑗 = ∫𝑁𝑖𝑁𝑗𝑑𝑦
.

𝑙

∫{(𝑫𝑛𝑝
𝑇𝐹𝜏𝑰)[𝑪̃𝑛𝑝(𝑫𝑝𝐹𝑠𝑰) + 𝑪̃𝑛𝑛(𝑫𝑛𝑝𝐹𝑠𝑰)]

.

𝛺

+ (𝑫𝑝
𝑇𝐹𝜏𝑰)[𝑪̃𝑝𝑝(𝑫𝑝𝐹𝑠𝑰) + 𝑪̃𝑝𝑛(𝑫𝑛𝑝𝐹𝑠𝑰)]}𝑑𝛺

+∫𝑁𝑖𝑁𝑗,𝑦𝑑𝑦
.

𝑙

∫ [(𝑫𝑛𝑝
𝑇𝐹𝜏𝑰)𝑪̃𝑛𝑛 + (𝑫𝑝

𝑇𝐹𝜏𝑰)𝑪̃𝑝𝑛]𝐹𝑠𝑑𝛺𝑰𝛺𝑦

.

𝛺

+∫𝑁𝑖,𝑦𝑁𝑗𝑑𝑦
.

𝑙

𝑰𝛺𝑦
𝑻∫ [𝑪̃𝑛𝑝(𝑫𝑝𝐹𝑠𝑰) + 𝑪̃𝑛𝑛(𝑫𝑛𝑝𝐹𝑠𝑰)]

.

𝛺

𝑑𝛺

+∫𝑁𝑖,𝑦𝑁𝑗,𝑦𝑑𝑦
.

𝑙

𝑰𝛺𝑦
𝑻∫𝐹𝜏𝑪̃𝑛𝑛𝐹𝑠𝑑𝛺

.

𝛺

𝑰𝛺𝑦 

(3.36) 

The remaining terms that must be evaluated are those related to the inertial work, since the modal analysis (or 
free vibrational analysis) is affected by the stiffness and inertial properties of the structure. The virtual variation 
of the work of inertial loadings term is expressed as: 

𝛿𝐿𝑖𝑛𝑒 = ∫𝛿
.

𝑉

𝒖𝑇𝜌𝒖̈𝑑𝑉 = ∫ ∫𝛿
.

𝛺

𝒖𝑇𝜌𝒖̈𝑑𝛺𝑑𝑦
.

𝑙

 (3.37) 

Where the acceleration vector (𝒖̈) and the density of the material (𝜌) are introduced. The integrations across 
the volume of the beam are carried out with the same hypothesis of the internal work. The virtual displacements 
and the acceleration vector are thus (remember that the following notations are equivalent and are referred to 
the displacements and nodal displacements vectors: 𝒖 = 𝑢⃗ , 𝒒 = 𝑞 ): 

𝛿𝒖 = 𝐹𝜏𝑁𝑖𝛿𝒒𝝉𝒊 
 

𝒖̈ = 𝐹𝜏𝑁𝑖𝒒𝝉𝒊̈  
(3.38) 
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The substitution in equation 3.38 brings to the following formulation: 

𝛿𝐿𝑖𝑛𝑒 = 𝛿𝒒𝝉𝒊
𝑇 {∫ 𝑁𝑖 [∫ 𝜌𝐹𝜏𝐹𝑠𝑑𝛺

.

𝛺

𝑰] 𝑁𝑖𝑑𝑦
.

𝑙

}𝒒𝒔𝒋̈  

𝛿𝐿𝑖𝑛𝑒 = 𝛿𝒒𝝉𝒊
𝑇 {∫ 𝑁𝑖𝑁𝑗𝑑𝑦∫𝜌𝐹𝜏𝐹𝑠𝑑𝛺

.

𝛺

𝑰
.

𝑙

}𝒒𝒔𝒋̈  

𝛿𝐿𝑖𝑛𝑒 = 𝛿𝒒𝝉𝒊
𝑇𝑴𝜏𝑠𝑖𝑗𝒒𝒔𝒋̈  

(3.39) 

Where 𝑴𝜏𝑠𝑖𝑗  is the fundamental nucleus of the mass matrix of the considered model. It is a 3x3 matrix that 
represents the inertial properties of the considered structure. 

To complete this presentation, it is important to observe that subscripts s and j are referred to the real 
displacements and forces, while 𝜏 and i are the virtual ones. As stated before, the work of applied loads is 
evaluated only for point loads, because the applied forces are the aerodynamic ones, concentrated on Load 
Points for each panel. 

𝛿𝐿𝑃 = 𝛿𝒖𝑇𝑷 = 𝛿𝒒𝝉𝒊
𝑇𝑁𝑖𝐹𝜏𝑷 = 𝛿𝒒𝝉𝒊

𝑇𝑭𝜏𝑖
𝑃 (3.40) 

Equation 3.40 presents the fundamental nucleus of the vector of nodal forces, equivalent to the point loads (the 
nucleus dimensions are 3x1). 

 

3.5 Static Deformation Problem 

The static analysis problem is solved considering the Principle of Virtual Displacements (PVD) in the 
simplified formulation written in equation 3.41: 

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑙𝑜𝑎𝑑𝑠 − 𝛿𝐿𝑖𝑛𝑒 
 

𝑤𝑖𝑡ℎ: 𝛿𝐿𝑖𝑛𝑒 = 0 
 

𝑲𝜏𝑠𝑖𝑗𝑞𝑠𝑗⃗⃗ ⃗⃗  ⃗ = 𝑭𝜏𝑖  

(3.41) 

Where the expansion indices depend on the nodes and the expansion order chosen for the cross-section: 

𝑠 = 1,… ,𝑁𝑢 
∀𝜏 = 1,… ,𝑁𝑢 

 
𝑗 = 1, … , [(𝑁𝑁 − 1)𝑁𝐸𝐿 + 1] 
∀𝑖 = 1,… , [(𝑁𝑁 − 1)𝑁𝐸𝐿 + 1] 

(3.42) 

The equation is obtained neglecting the inertial work term from the PVD, where the general formulation is: 

𝑲𝑞 = 𝑭 (3.43) 
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3.6 Free Vibration Problem 

The results obtained in chapter 3.4 can be used to rephrase of Principle of Virtual Displacements to obtain the 
governing equations for the free vibration problem. 

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑙𝑜𝑎𝑑𝑠 − 𝛿𝐿𝑖𝑛𝑒 
 

𝑤𝑖𝑡ℎ: 𝛿𝐿𝑙𝑜𝑎𝑑𝑠 = 0 
 

𝛿𝒒𝝉𝒊
𝑇𝑴𝜏𝑠𝑖𝑗𝒒𝒔𝒋̈ = 𝛿𝒒𝝉𝒊

𝑇𝑭𝜏𝑖
𝑃 − 𝛿𝒒𝝉𝒊

𝑇𝑲𝜏𝑠𝑖𝑗𝒒𝒔𝒋 
 

𝛿𝒒𝝉𝒊
𝑇𝑴𝜏𝑠𝑖𝑗𝒒𝒔𝒋̈ + 𝛿𝒒𝝉𝒊

𝑇𝑲𝜏𝑠𝑖𝑗𝒒𝒔𝒋 = 𝛿𝒒𝝉𝒊
𝑇𝑭𝜏𝑖

𝑃 

(3.44) 

Where: 

𝑠 = 1,… ,𝑁𝑢 
∀𝜏 = 1, … , 𝑁𝑢 

 
𝑗 = 1,… , [(𝑁𝑁 − 1)𝑁𝐸𝐿 + 1] 
∀𝑖 = 1,… , [(𝑁𝑁 − 1)𝑁𝐸𝐿 + 1] 

(3.45) 

Equation 3.45 states that the governing equation is referred to the whole structure, since the indices i and j vary 
from 1 to the last element of the beam structure, as seen in the examples of Table 10. The virtual displacements 
in 3.44 can be simplified and the obtained result is: 

𝑴𝜏𝑠𝑖𝑗𝒒𝒔𝒋̈ + 𝑲
𝜏𝑠𝑖𝑗𝒒𝑠𝑗 = 𝑭𝜏𝑖

𝑃 
 

𝑠 = 1,… ,𝑁𝑢 
𝑗 = 1, … , [(𝑁𝑁 − 1)𝑁𝐸𝐿 + 1] 

 
∀𝜏 = 1,… ,𝑁𝑢 

∀𝑖 = 1,… , [(𝑁𝑁 − 1)𝑁𝐸𝐿 + 1] 

(3.46) 

This brings to the general formulation of the elasticity problem where the vector q is the nodal displacement 
vector for each degree of freedom of the structure and K, M, and F are the structural stiffness matrix, mass 
matrix and equivalent nodal forces vector respectively. 

𝑴𝒒̈ + 𝑲𝒒 = 𝑭 (3.47) 

The free vibrational analysis is obtained from 3.47 neglecting the work of loadings: 

𝑴𝒒̈ +𝑲𝒒 = 0 (3.48) 

The eigenvalue problem is solved to obtain the frequencies and eigenvectors of the problem: 

[−𝜔ℎ
2𝑴+𝑲]𝒒𝒉 = 0 (3.49) 
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3.7 Structural stiffness and mass matrices 

The final step necessary to solve the structural modal analysis problem is to build the structural stiffness and 
mass matrices for the considered material and cross section. The present work will consider a simplified 
condition since the materials used will be isotropic or orthotropic: this condition is coherent with the use of 
carbon fibre, glass fibre and their main properties.  

If the material is homogeneous over the cross section of the considered beam structure, the fundamental 
nucleus of the stiffness matrix is evaluated through 3.36 with some simplifications: the coefficients for the 
orthotropic material stiffness matrix are constant over the section (the expressions are evaluated following 
Carrera E., Cinefra M. [12] pp. 295-300 and Varello A. [14] pp. 59-60). 

𝐾𝑥𝑥
𝜏𝑠𝑖𝑗

= 𝐶̃22𝐸𝑗
𝑖𝐽𝑠,𝑥
𝜏,𝑥 + 𝐶̃44𝐸𝑗

𝑖𝐽𝑠,𝑧
𝜏,𝑧 + 𝐶̃26𝐸𝑗,𝑦

𝑖 𝐽𝑠
𝜏,𝑥 + 𝐶̃26𝐸𝑗

𝑖,𝑦
𝐽𝑠,𝑥
𝜏 + 𝐶̃66𝐸𝑗,𝑦

𝑖,𝑦
𝐽𝑠
𝜏 

𝐾𝑥𝑦
𝜏𝑠𝑖𝑗

= 𝐶̃23𝐸𝑗
𝑖𝐽𝑠,𝑥
𝜏,𝑥 + 𝐶̃45𝐸𝑗

𝑖𝐽𝑠,𝑧
𝜏,𝑧 + 𝐶̃26𝐸𝑗

𝑖𝐽𝑠,𝑥
𝜏,𝑥 + 𝐶̃36𝐸𝑗,𝑦

𝑖,𝑦
𝐽𝑠
𝜏 + 𝐶̃66𝐸𝑗

𝑖,𝑦
𝐽𝑠,𝑥
𝜏  

𝐾𝑥𝑧
𝜏𝑠𝑖𝑗

= 𝐶̃12𝐸𝑗
𝑖𝐽𝑠,𝑧
𝜏,𝑥 + 𝐶̃44𝐸𝑗

𝑖𝐽𝑠,𝑥
𝜏,𝑧 + 𝐶̃45𝐸𝑗,𝑦

𝑖 𝐽𝑠
𝜏,𝑧 + 𝐶̃16𝐸𝑗

𝑖,𝑦
𝐽𝑠,𝑧
𝜏  

𝐾𝑦𝑥
𝜏𝑠𝑖𝑗

= 𝐶̃23𝐸𝑗
𝑖,𝑦
𝐽𝑠,𝑥
𝜏 + 𝐶̃45𝐸𝑗

𝑖𝐽𝑠,𝑧
𝜏,𝑧 + 𝐶̃26𝐸𝑗

𝑖𝐽𝑠,𝑥
𝜏,𝑥 + 𝐶̃36𝐸𝑗,𝑦

𝑖,𝑦
𝐽𝑠
𝜏 + 𝐶̃66𝐸𝑗,𝑦

𝑖 𝐽𝑠
𝜏,𝑥 

𝐾𝑦𝑦
𝜏𝑠𝑖𝑗

= 𝐶̃33𝐸𝑗,𝑦
𝑖,𝑦
𝐽𝑠
𝜏 + 𝐶̃55𝐸𝑗

𝑖𝐽𝑠,𝑧
𝜏,𝑧 + 𝐶̃36𝐸𝑗,𝑦

𝑖 𝐽𝑠
𝜏,𝑥 + 𝐶̃36𝐸𝑗

𝑖,𝑦
𝐽𝑠,𝑥
𝜏 + 𝐶̃66𝐸𝑗

𝑖𝐽𝑠,𝑥
𝜏,𝑥 

𝐾𝑦𝑧
𝜏𝑠𝑖𝑗

= 𝐶̃13𝐸𝑗
𝑖,𝑦
𝐽𝑠,𝑧
𝜏 + 𝐶̃55𝐸𝑗,𝑦

𝑖 𝐽𝑠
𝜏,𝑧 + 𝐶̃45𝐸𝑗

𝑖𝐽𝑠,𝑧
𝜏,𝑧 + 𝐶̃16𝐸𝑗

𝑖𝐽𝑠,𝑧
𝜏,𝑥  

𝐾𝑧𝑥
𝜏𝑠𝑖𝑗

= 𝐶̃12𝐸𝑗
𝑖𝐽𝑠,𝑥
𝜏,𝑧 + 𝐶̃44𝐸𝑗

𝑖𝐽𝑠,𝑧
𝜏,𝑥 + 𝐶̃45𝐸𝑗

𝑖,𝑦
𝐽𝑠,𝑧
𝜏 + 𝐶̃16𝐸𝑗,𝑦

𝑖 𝐽𝑠
𝜏,𝑧 

𝐾𝑧𝑦
𝜏𝑠𝑖𝑗

= 𝐶̃13𝐸𝑗,𝑦
𝑖 𝐽𝑠

𝜏,𝑧 + 𝐶̃55𝐸𝑗
𝑖,𝑦
𝐽𝑠,𝑧
𝜏 + 𝐶̃45𝐸𝑗

𝑖𝐽𝑠,𝑧
𝜏,𝑥 + 𝐶̃16𝐸𝑗

𝑖𝐽𝑠,𝑥
𝜏,𝑧 

𝐾𝑧𝑧
𝜏𝑠𝑖𝑗

= 𝐶̃11𝐸𝑗
𝑖𝐽𝑠,𝑧
𝜏,𝑧 + 𝐶̃44𝐸𝑗

𝑖𝐽𝑠,𝑥
𝜏,𝑥 + 𝐶̃55𝐸𝑗,𝑦

𝑖,𝑦
𝐽𝑠
𝜏 + 𝐶̃45𝐸𝑗,𝑦

𝑖 𝐽𝑠
𝜏,𝑥 + 𝐶̃45𝐸𝑗

𝑖,𝑦
𝐽𝑠,𝑥
𝜏  

(3.50) 

Where the expressions of the integrals over the cross section and along the beam element y axis are represented 
with the present notation: 

𝐽𝑠
𝜏 = ∫𝐹𝜏𝐹𝑠𝑑𝛺

.

𝛺

 

𝐽𝑠
𝜏,𝑧 = ∫𝐹𝜏,𝑧𝐹𝑠𝑑𝛺

.

𝛺

 

𝐽𝑠
𝜏,𝑥 = ∫𝐹𝜏,𝑥𝐹𝑠𝑑𝛺

.

𝛺

 

𝐽𝑠,𝑧
𝜏 = ∫𝐹𝜏𝐹𝑠,𝑧𝑑𝛺

.

𝛺

 

𝐽𝑠,𝑥
𝜏 = ∫𝐹𝜏𝐹𝑠,𝑥𝑑𝛺

.

𝛺

 

𝐽𝑠,𝑧
𝜏,𝑥 = ∫𝐹𝜏,𝑥𝐹𝑠,𝑧𝑑𝛺

.

𝛺

 

𝐽𝑠,𝑥
𝜏,𝑧 = ∫𝐹𝜏,𝑧𝐹𝑠,𝑥𝑑𝛺

.

𝛺

 

𝐽𝑠,𝑥
𝜏,𝑥 = ∫𝐹𝜏,𝑥𝐹𝑠,𝑥𝑑𝛺

.

𝛺

 

𝐽𝑠,𝑧
𝜏,𝑧 = ∫𝐹𝜏,𝑧𝐹𝑠,𝑧𝑑𝛺

.

𝛺

 

𝐸𝑗
𝑖 = ∫𝑁𝑖𝑁𝑗𝑑𝑦

.

𝑙

 

𝐸𝑗
𝑖,𝑦
= ∫𝑁𝑖,𝑦𝑁𝑗𝑑𝑦

.

𝑙

 

𝐸𝑗,𝑦
𝑖 = ∫𝑁𝑖𝑁𝑗,𝑦𝑑𝑦

.

𝑙

 

𝐸𝑗,𝑦
𝑖,𝑦
= ∫𝑁𝑖,𝑦𝑁𝑗,𝑦𝑑𝑦

.

𝑙

 

(3.51) 

The fundamental mass matrix coefficients are obtained in an analogue way, as shown in 3.52: 



58 
 

𝑀𝑥𝑥
𝜏𝑠𝑖𝑗

= 𝐸𝑗
𝑖∫𝜌𝐹𝜏𝐹𝑠𝑑𝛺

.

𝛺

 

 

𝑀𝑦𝑦
𝜏𝑠𝑖𝑗

= 𝐸𝑗
𝑖∫𝜌𝐹𝜏𝐹𝑠𝑑𝛺

.

𝛺

 

 

𝑀𝑧𝑧
𝜏𝑠𝑖𝑗

= 𝐸𝑗
𝑖∫𝜌𝐹𝜏𝐹𝑠𝑑𝛺

.

𝛺

 

𝑀𝑥𝑦
𝜏𝑠𝑖𝑗

= 𝑀𝑥𝑧
𝜏𝑠𝑖𝑗

= 𝑀𝑦𝑥
𝜏𝑠𝑖𝑗

= 0 
 

𝑀𝑦𝑧
𝜏𝑠𝑖𝑗

= 𝑀𝑧𝑥
𝜏𝑠𝑖𝑗

= 𝑀𝑧𝑦
𝜏𝑠𝑖𝑗

= 0 
(3.52) 

Fundamental nuclei 𝑴𝜏𝑠𝑖𝑗  and 𝑲𝜏𝑠𝑖𝑗  are used to build the mass and structural matrices of a beam element with 
the properties explained in the previous sections of this chapter. In particular, the indices 𝜏 and 𝑠 are expanded 
to the order of the cross-section polynomials that are adopted, while i and j are related to the number of nodes 
of the single element (the example of Figure 31 is referred to 4-th order McLaurin polynomials and 4-node 
elements): 

 

 

 

Figure 31: Stiffness and mass matrices building procedure for 4-th order cross section approximation and 4-node elements. 

 

 

The global stiffness and mass matrices are built considering that the beam is coincident with the y axis of the 
global reference system, thus no sweep angle is involved, and no rotation of the structural properties is 
necessary. Moreover, each element shares the first and the last node with the previous and the following one. 
The result of the assembly is presented in Figure 32. 

A similar procedure can be used for the equivalent nodal forces vector assembly procedure, where the only 
difference is related to the fact that the result is a vector with 3[(𝑁𝑁 − 1)𝑁𝐸𝐿 + 1] × 𝑁𝑢 dimensions. 
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Figure 32: Stiffness and mass matrices building procedure for a 4-node beam structure (4 elements are considered). 

 

3.8 Global coordinate system 

The y axis of the beams considered in the previous chapters is always parallel to the global one since no sweep 
angle has been introduced from the structural point of view. In this section, this possibility will be introduced, 
coherently to the option given in the aerodynamic code (where sweep angle can be arbitrarily defined by the 
user in the input phase).  

In the local coordinate system, the beam y axis is perpendicular to x-z plane (in which the cross-section is 
located), while the introduction of a global coordinate system permits the rotation of the local system with 
three angular degrees of freedom. In this way, the local y axis is no more perpendicular to the airspeed direction. 
The transformation presented in the following lines is general and permits all three rotations, but the considered 
problem will consider only the presence of sweep angle (dihedral angle and the rotation around the beam axis 
will not be evaluated). The previous displacements evaluated through CUF applied on FE beam model become: 

𝑢⃗ 𝑙𝑜𝑐(𝑥, 𝑦, 𝑧) = 𝐹𝜏(𝑥, 𝑧)𝑁𝑖(𝑦)𝑞𝜏𝑖,⃗⃗ ⃗⃗  ⃗
𝑙𝑜𝑐

 (3.53) 

Where subscript loc refers to the fact that these displacements are in the local reference system. From this 
expression, each element’s properties must be evaluated in the global reference system. This procedure is 

carried out introducing the transformation from local to global reference system (and the reverse procedure): 

{

𝑖 = 𝑒11
𝐺 𝒊𝑮 + 𝑒12

𝐺 𝒋𝑮 + 𝑒13
𝐺 𝒌𝑮

𝑗 = 𝑒21
𝐺 𝒊𝑮 + 𝑒22

𝐺 𝒋𝑮 + 𝑒23
𝐺 𝒌𝑮

𝑘 = 𝑒31
𝐺 𝒊𝑮 + 𝑒32

𝐺 𝒋𝑮 + 𝑒33
𝐺 𝒌𝑮

 

 

(3.54) 

{

𝒊𝑮 = 𝑒̅11
𝐺 𝑖 + 𝑒̅12

𝐺 𝑗 + 𝑒̅13
𝐺 𝑘

𝒋𝑮 = 𝑒̅21
𝐺 𝑖 + 𝑒̅22

𝐺 𝑗 + 𝑒̅23
𝐺 𝑘

𝒌𝑮 = 𝑒̅31
𝐺 𝑖 + 𝑒̅32

𝐺 𝑗 + 𝑒̅33
𝐺 𝑘

 (3.55) 
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Where 𝑒11𝐺 , 𝑒12𝐺 , 𝑒13𝐺  are the global coordinates (equation 3.54) of the local unit vector 𝒊 (in the same way the 
other components are the global coordinates of the local vectors). In an analogue way 𝑒̅11𝐺 , 𝑒̅12𝐺 , 𝑒̅13𝐺  are the local 
coordinates of the global unit vector 𝒊𝑮. It is important to notice that the three vectors (i, j, k) for each reference 
system correspond respectively to (x, y, z) directions. 

Using these expressions, the vectors containing the element degrees of freedom can be used to re-formulate 
the Principle of Virtual Displacements in the global reference system. The vectors 𝛿𝒒𝜏𝑖 and 𝒒𝑠𝑗  are reported 
in equation 3.56: 

𝒒𝑠𝑗,𝑙𝑜𝑐 = 𝒆
𝐺𝒒𝑠𝑗  

 
𝒒𝑠𝑗 = 𝒆̅𝐺𝒒𝑠𝑗,𝑙𝑜𝑐 

𝛿𝒒𝜏𝑖,𝑙𝑜𝑐 = 𝒆𝐺𝛿𝒒𝜏𝑖 
 

𝛿𝒒𝜏𝑖 = 𝒆̅
𝐺𝛿𝒒𝜏𝑖,𝑙𝑜𝑐 

(3.56) 

Finally, the element stiffness matrix is re-formulated in the following way before proceeding with the assembly 
procedure (the global mass matrix is obtained analogously): 

𝛿𝐿𝑖 = 𝛿𝒒𝜏𝑖,𝑙𝑜𝑐
𝑇𝑲𝑙𝑜𝑐

𝜏𝑠𝑖𝑗
𝒒𝑠𝑗,𝑙𝑜𝑐 = 𝛿𝒒𝜏𝑖

𝑇 [𝒆𝐺
𝑇
𝑲𝑙𝑜𝑐
𝜏𝑠𝑖𝑗

𝒆𝐺] 𝒒𝑠𝑗 

 
𝑲𝜏𝑠𝑖𝑗 = 𝒆𝐺

𝑇
𝑲𝑙𝑜𝑐
𝜏𝑠𝑖𝑗

𝒆𝐺 

(3.57) 

Where the transformation matrices are demonstrated to be orthogonal (their product is the identity matrix): 

𝒆𝐺 = [

𝑒11
𝐺 𝑒12

𝐺 𝑒13
𝐺

𝑒21
𝐺 𝑒22

𝐺 𝑒23
𝐺

𝑒31
𝐺 𝑒32

𝐺 𝑒33
𝐺

] 𝒆̅𝐺 = [

𝑒̅11
𝐺 𝑒̅12

𝐺 𝑒̅13
𝐺

𝑒̅21
𝐺 𝑒̅22

𝐺 𝑒̅23
𝐺

𝑒̅31
𝐺 𝑒̅32

𝐺 𝑒̅33
𝐺

] (3.58) 

 
[𝒆̅𝐺𝒆𝐺]𝑇 = 𝑰 

(3.59) 

An example of the reference system transformation is shown in Figure 33, in which a positive sweep angle is 
introduced for the single finite element considered. All the procedure steps presented in this section follow the 
ones presented by Varello A. [14], even thought that the variables are denominated in a different way. 

 

Figure 33: Representation of the local and global coordinate systems relation. 
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3.9 Structural Code Development and Verification 

The previous sections explain the main theory elements necessary to develop a 1D beam Finite Elements 
Model with Carrera Unified Formulation. Although some hypotheses have already been introduced about 
material properties (orthotropic material…), this chapter will present the main code development steps and 

will provide a simplified description of the wing structure geometry adopted. 

There are two different ways to solve the static deformation and free vibration problem that are suitable for 
these evaluations (this distinction is made to clarify the aim of the code developed in this work): 

1. The model presented in this chapter expects an orthotropic rectangular cross section or a cluster of 
simple shaped sections for the beam structure. The main disadvantage is that a simplified model must 
be developed to approximate the real wing. In the Syncro semi-wing case study the structure has 
already been developed, thus this process is unavoidable.  
 

2. The results necessary for aeroelasticity evaluations are provided by a structural analysis commercial 
code, where the structural stiffness and mass matrices are an output of the considered code, with a 
certain number of degrees of freedom.  

The first approach will be presented in this work, but this does not exclude any future development following 
the second strategy described in the previous lines. 

 

3.9.1 Main code development steps 

Data input section permits to select the main parameters concerning beam structure characterization, such as: 

1. The number of elements that discretize the beam. 
2. Global beam length. 
3. Rectangular cross section dimensions. 
4. The order of McLaurin polynomials that discretize the cross section. 
5. The number of natural frequencies to display. 

Element material properties definition section, where all the properties concerning each element are assigned: 

- E1, E2, E3, that are the elastic moduli of the material in the material reference system. 
- G21, G31, G23, the shear moduli of the considered orthotropic material. 
- Poisson ratios. 

From these values, the elements properties are defined through geometrical relations (3.1.1) and constitutive 
equations (3.1.2), as reported in the code developed in this work. 

This section has been properly modified to be suitable for Syncro wing model: a subsection where all 
geometrical properties of the semi-wing are specified is provided. A limitation of this code is determined by 
the fact that the general shape of the section is defined. 

Beam modeling (CUF with Isoparametric elements) section, where the cross-section deformation is defined, 
and the element-wise nodes are defined for the considered structure. Each element is constituted by four 
equally spaced nodes (this parameter is fixed), while the cross-section polynomial order can be varied from 1 
to 4 by the user.  

The inputs necessary to build the stiffness matrix and the material matrix are evaluated through the integrals 
presented in equation 3.51 using bidimensional integration functions developed by MatLab®. Then, the mass 
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and stiffness matrices reported in equations 3.50 and 3.52 are computed for every fundamental nucleus and 
assembled according to the procedures described in the previous sections. 

The final step of this section is the definition of boundary conditions since the structure of the wing must be 
linked to the fuselage of the airplane. In this case, the semi-wing will be clamped to a theorical fuselage 
structure that is not affected by the deformation and forces acting of the wing. For this reason, the 
displacements of the first node of the first element starting from the fuselage would be zero; in particular, this 
condition is applied to all the degrees of freedom of the cross-section (the first cross-section is planar and 
coincident with the y=0 plane). The variation of the clamped DOFs of the first section permits to model other 
fixing systems. 

Free vibrational problem resolution section, in which the system presented in equation 3.60 is solved using 
the functions implemented by MatLab®, that permit to obtain the eigenvalues and the correspondent 
eigenvectors. 

[−𝜔ℎ
2𝑴+𝑲]𝒒𝒉 = 0 (3.60) 

The frequencies obtained are sorted in ascending order and the number imposed by the user in input section is 
extracted. Each eigenvector (𝒒𝒉) contains displacement information for the considered mode and can be 
replaced in 3.61 to obtain the generic displacements for each point of the beam according to the order of 
approximation used: 

𝑢⃗ (𝑥, 𝑦, 𝑧) = 𝐹𝜏(𝑥, 𝑧)𝑁𝑖(𝑦)𝑞ℎ⃗⃗⃗⃗ , 
 

𝜏 = 1,… ,
(𝑁 + 1)(𝑁 + 2)

2
, 𝑖 = 1,… ,𝑁𝑁 

(3.61) 

The solution of the free vibrational system of equations is provided using MatLab® functions that are able to 
identify sparse matrices, such as the sparse() command. This is associated to the function eigs(), that solves 
the eigenvalue problem and finds the first n smallest or highest frequencies of the considered equations system. 

Static deformation problem resolution section, in which the system presented in equation 3.62 is solved using 
the functions implemented by MatLab®, that permit to obtain the nodal displacements for the beam. 

𝑲𝒒 = 𝑭 (3.62) 

Displacement’s information are replaced in 3.63 to obtain the generic deformation for each point of the beam 
according to the order of approximation used: 

𝑢⃗ (𝑥, 𝑦, 𝑧) = 𝐹𝜏(𝑥, 𝑧)𝑁𝑖(𝑦)q⃗ , 
 

𝜏 = 1,… ,
(𝑁 + 1)(𝑁 + 2)

2
, 𝑖 = 1,… ,𝑁𝑁 

(3.63) 

Post processing section, where beam structure displacements are evaluated on a set of points located over the 
whole semi-wing for each considered mode and the displacements obtained are saved in a file (Displace-
ments.mat). These results are computed through CUF formulation and are plotted in order to visualize the 
deformation shapes of the beam structure. Moreover, they will be used later to define the displacement condi-
tions for the unsteady aerodynamic problem resolution. 
 



63 
 

3.9.2 Code verification and convergence considerations 

The code presented in this work has been validated through the results given by other structural codes and 
theorical results in some simple cases, where the beam properties are constant across different elements. This 
choice is only due to the simplicity of the pre-processing and to the possibility to use theorical results for 
verification. 

The beam selected is characterized by a constant square cross-section and a length of L=20m. A different 
number of elements is selected to underline the effect of this parameter on the results obtained; moreover, the 
sweep angle is equal to zero (Figure 34). 

 

Figure 34: Representation of the beam used for verification process. 

 

Free vibration Frequencies [Hz] 

10 Elements 20 Elements 30 Elements 
Euler-

Bernoulli 
2-nd 
order 

3-rd 
order 

4-th 
order 

2-nd 
order 

3-rd 
order 

4-th 
order 

2-nd 
order 

3-rd 
order 

4-th 
order 

Single 
Element 

0.4280 0.4280 0.4280 0.4268 0.4268 0.4268 0.4264 0.4264 0.4264 0.4257 
2.6812 2.6809 2.6809 2.6736 2.6733 2.6733 2.6710 2.6712 2.6710 2.6678 
7.5038 7.5024 7.5024 7.4810 7.4797 7.4796 7.4732 7.4745 7.4732 7.4699 

14.6983 14.6935 14.6935 14.6457 14.6412 14.6412 14.6282 14.6326 14.6282 14.6379 
24.2967 24.2841 24.2841 24.1805 24.1694 24.1694 24.1469 24.1578 24.1468 24.1978 

Table 13: Modal Analysis - Results for different orders of cross-section approximation and number beam of elements. 

 

The results are compared to the classical Euler-Bernoulli beam model, where the formula for the natural 
frequencies of the first five bending modes is (equation 3.64): 

𝑓𝑖 =
1

2𝜋

(𝜆𝑖𝐿)
2

𝐿2
(
𝐸𝐼

𝜌𝐴
)

1
2
 

(𝜆𝑖𝐿)
2

𝐿2
= (1.87510, 4.69409, 7.85476, 10.9955, 14.1372) 

(3.64) 
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Material and geometrical properties of the considered beam are reported in 3.65: 

𝐸 = 75 ∙ 109  𝑃𝑎 
 

𝐺 = 28 ∙ 109 𝑃𝑎 
 

𝜌 = 2700
𝑘𝑔

𝑚3 

𝜈 = 0.33 
 

𝐴 = 𝑏ℎ = 𝑏2 = 0.22 
 

𝐼 =
𝑏ℎ3

12
=
𝑏3ℎ

12
=
𝑏4

12
 

(3.65) 

On the other side, the results of the static deformation problem are presented in Table 14, where a single 
concentrated load along x or z direction (since the cross-section is square, the results are the same on both 
directions) is applied at the last node of the beam considered before (Figure 34). The order of approximation 
and the number of beams chosen do not affect the results obtained in each case for the pure bending problem. 
 

Order of McLaurin 
polynomials 

Number of elements 
10 elements 20 elements 30 elements 40 elements 

2-nd 264.5 mm 265.6 mm 266.0 mm 266.1 mm 
3-rd 264.5 mm 265.6 mm 266.0 mm 266.1 mm 
4-th 264.5 mm 265.6 mm 266.0 mm 266.1 mm 
𝛿𝑚𝑎𝑥 266.7 mm 

Table 14: Static deformation - Results for different orders of cross-section approximation and number beam of elements. 

Where the results for the static deformation of a uniform cross-section cantilever beam, loaded at its extremity 
(P=1000N) and fixed at the other one, are obtained through: 

𝛿𝑚𝑎𝑥 =
𝑃𝐿3

3𝐸𝐼
 (3.66) 

 

3.9.3 Syncro wing geometry simplification 

The semi-wing of Syncro aircraft has been simplified according to the properties of the material and the 
geometry of wing structure. The final shape has been reduced to an assembly of rectangular shaped cross-
sections, on which it is easy to evaluate integrals through the functions implemented in MatLab®. The use of 
structural results from commercial codes is not considered in this chapters, since the aim of this work is to 
create a stand-alone solver, able to predict aeroelastic phenomena on a preliminary project phase semi-wing. 

3.9.3.1 Composite materials properties 

Materials used for Syncro wing model include carbon fibre, glass fibre, PVC foam and resin. The specifications 
for fibre sheets used by Fly Synthesis s.r.l. are reported in Table 15, as well as the ones for resin. Elastic moduli 
and other properties are obtained for the pure materials and then for the sheets with proper fibres orientation. 

Carbon Fibre 
Density 𝝆 1800 kg/m3 
Sigma 𝝈𝑹 3930 MPa 

Elastic Modulus 𝑬 231000 MPa 
Shear Modulus 𝑮 88846,15 MPa 

Poisson Coefficient 𝝂 0,30 - 
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Glass Fibre 
Density 𝝆 2700 kg/m3 
Sigma 𝝈𝑹 3450 MPa 

Elastic Modulus 𝑬 72400 MPa 
Shear Modulus 𝑮 30000 MPa 

Poisson Coefficient 𝝂 0,20 - 

Resin 

Density 𝝆 1200 kg/m3 
Sigma 𝝈𝑹 70 MPa 

Elastic Modulus 𝑬 3000 MPa 
Shear Modulus 𝑮 1086,96 MPa 

Poisson Coefficient 𝝂 0,38 - 

PVC Foam 

Density 𝝆 80 kg/m3 
Sigma 𝝈𝑹 2,8 MPa 

Elastic Modulus 𝑬 100 MPa 
Shear Modulus 𝑮 28 MPa 

Poisson Coefficient 𝝂 0,32 - 
Table 15: Composite materials specifications. 

These values are arranged to evaluate the global material properties for orthotropic orientation of the fibres 
and certain volume percentages of resin. The main results for 45° specimens are reported in Table 16: 

 

Carbon Fibre 160 (C160) Glass Fibre 80 (V80) 
Layer Thickness 0,16 mm Layer Thickness 0,08 mm 
Resin Percentage 0,55 % Resin Percentage 0,55 % 
Density 1470 kg/m3 Density 1875 kg/m3 
Sigma 922,75 MPa Sigma 1591 MPa 
Elastic Modulus (L) 105600 MPa Elastic Modulus (L) 34230 MPa 
Elastic Modulus (T) 105600 MPa Elastic Modulus (T) 34230 MPa 
Shear Modulus 2379,87 MPa Shear Modulus 2313,03 MPa 
Poisson Coefficient 0,344 - Poisson Coefficient 0,299 - 

Table 16: Laminated composite materials - Fibre sheets global properties. 

 

3.9.3.2 Main structural components and equivalent section properties 

The wing structure is composed by different elements with geometrical properties that vary along spanwise 
direction (y direction in the global coordinate system, since sweep angle is zero for Syncro aircraft). The main 
elements that can be identified are: 

- Two spars since the structure is represented by an anterior and a posterior spar with variable distance 
along chordwise direction (the rear one is of secondary importance). The main spar is composed by: 
 

o Upper and lower cap, that have a constant width and a variable height due to the different 
number of layers that are used (Table 17 resumes all the properties that are considered). 
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o Spar web, that is realized in PVC foam and covered by a layer of C160. Its cross-section has 
a constant width along the first part of the wing (10 mm), while a discontinuity brings to a 
reduction to 5 mm on the outer wing. 
 

- Outer shell panels, characterized by the superposition of two layers of C160 (inner wing) and a layer 
of C160 and one of V80 (on outer wing). These layers compose the external panels that contribute to 
the structural torsional stiffness and bending stiffness. 
 

- Other elements, such as connection elements and secondary support elements are not considered in 
the present model, because of the difficulty of representation with the method used. 

The main properties described for the semi-wing are reported in Table 17: all data are detected every 50 mm 
on the semi-wing structure, while the following schematization will introduce a reduction of the number of 
elements, that are 21. Moreover, the cross-section shape is shown in Figure 35, where it is possible to identify 
the geometric properties of each section.  

 

y 
coordinate 

[mm] 
Element 

Web 
distance 

[mm] 

Web 
Width 
[mm] 

Web 
Thickness 

[mm] 

Cap 
Width 
[mm] 

Cap 
Thickness 

[mm] 
0 1   414,00 10,00 145,00 30,00 13,93 

200 2   404,05 10,00 143,20 30,00 12,60 
400 3   394,10 10,00 141,40 30,00 11,35 
600 4   384,15 10,00 139,60 30,00 10,17 
800 5   374,20 10,00 137,80 30,00 9,06 
1000 6   364,25 10,00 136,00 30,00 8,02 
1200 7   354,30 10,00 134,20 30,00 7,04 
1400 8   344,35 5,00 132,40 30,00 6,13 
1600 9   334,40 5,00 130,60 30,00 5,28 
1800 10   324,45 5,00 128,80 30,00 4,49 
2000 11   314,50 5,00 127,00 30,00 3,76 
2200 12   304,55 5,00 125,20 30,00 3,09 
2400 13   294,60 5,00 123,40 30,00 2,48 
2600 14   284,65 5,00 121,60 30,00 1,92 
2800 15   274,70 5,00 119,80 30,00 1,46 
3000 16   264,75 5,00 118,00 30,00 1,06 
3200 17   254,80 5,00 116,20 30,00 0,72 
3400 18   244,85 5,00 114,40 30,00 0,44 
3600 19   234,90 5,00 112,60 30,00 0,32 
3800 20   224,95 5,00 110,80 30,00 0,32 
4000 21   215,00 5,00 109,00 30,00 0,16 

Table 17: Discrete semi-wing cross section properties for Syncro aircraft. 
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Figure 35: Discrete semi-wing cross section geometry for Syncro aircraft (right semi-wing). 

3.9.3.3 Static analysis results 

The procedure presented in the previous chapters will be used to evaluate the differences between each cross-
section McLaurin polynomial order and the effects of an increasing number of degrees of freedom. Figure 36 
and Figure 37, reported in the following pages as a support to static analysis results, represent displacements 
for each node in the three directions of the coordinate system adopted. On the other side, modal analysis 
frequencies can be found in Table 21. 

Switching from a simple cross-section case to the one presented in Figure 35, where the focus has been set on 
the main spar, some further evaluations must be carried out to confirm the validity of the code. The solution 
provided for the I shaped spar underlined convergence issues for both the static and modal analysis. This brings 
to an ill-conditioned systems of equations, that has been solved with classical MatLab® implemented functions. 
For the static deformation case: 

𝑲𝑞 = 𝑭 (3.67) 

- \, that is equivalent to the evaluation of the inverted matrix of the linear problem (3.67). It is used in 
the solution of all classical problems and brought to badly scaled problems for 3-rd or superior orders 
McLaurin polynomials (that are the minimum requirements to execute a flutter analysis). 
 

- ldl(), which is the function that permits the factorization of K matrix in its lower unit diagonal matrix 
(L) and the diagonal matrix (D). The equivalent system of equations that is obtained is written in 
equation 3.68. This algorithm permits to avoid the divergence of the solution for lower order 
approximations, but it still diverges as the deformation is evaluated out of the symmetry axis of the 
beam. 

𝑲𝑞 = 𝑭 
𝑳𝑫𝑳𝑻𝑞 = 𝑭 

 
𝑤ℎ𝑒𝑟𝑒: 𝑳𝑣 = 𝑭 
𝑫𝑳𝑻𝑞 = 𝑣  

(3.68) 
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The same problems have been encountered in the modal analysis problem resolution, where the eig() function 
has been exploited to find eigenvalues and eigenvectors for the modal shapes of the considered beam structure. 

The analysis of these failures identified two problems in the developed model: 

1. The complexity of the cross-section geometry and the entity of geometric variations from the root to 
the tip of the semi-wing is an unavoidable problem with basic solution tools implemented in MatLab®. 
 

2. A secondary effect can be ascribed to the different material properties of the semi-wing. In particular, 
the shear web of the spar is realized in PVC with a carbon fibre external cover, that causes a loss in 
precision as the order of cross-section polynomials grows (only 2-nd order analyses can be executed). 

The conclusion is that a I shaped spar realized with a single material and without consistent section variations 
along spanwise coordinate can be represented by the present solver.  

The problems underlined in this section determine the need for an alternative representation of Syncro’s wing 

structure. The process that has been followed is based on the development of an equivalent rectangular shaped 
cross-section that has the same mass properties of the real semi-wing. 

3.9.3.4 Pure bending section calibration 

Table 18 represents the results obtained from the bending calibration of the Syncro semi-wing model: 
rectangular cross-section dimensions are obtained from an adaptation on the experimental results.  

 

y coordinate 
[mm] Element Section width [mm] Section height [mm] 

0 1   207,00    73,92 
200 2   202,03    72,47 
400 3   197,05    71,05 
600 4   192,08    69,66 
800 5   187,10    68,31 

1000 6   182,13    66,99 
1200 7   177,15    65,69 
1400 8   172,18    64,43 
1600 9   167,20    63,20 
1800 10   162,23    62,00 
2000 11   157,25    60,82 
2200 12   152,28    59,67 
2400 13   147,30    58,55 
2600 14   142,33    57,45 
2800 15   137,35    56,40 
3000 16   132,38    55,38 
3200 17   127,40    54,38 
3400 18   122,43    53,41 
3600 19   117,45    52,48 
3800 20   112,48    51,58 
4000 21   107,50    50,70 

Table 18: Discrete semi-wing cross section properties for Syncro aircraft. 
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This model has the advantage of reducing the solution time (since a single rectangular section substitutes the 
three sections of Figure 35); moreover, each element of the beam precisely reflects the reduction of dimensions 
from the root to the tip, as observed in Table 18. 

 

Figure 36: Static analysis z deformation for Syncro semi-wing, 4-th order McLaurin polynomials and n=1 loading at shear centre. 

The results shown in Figure 36 are a reasonable approximation of the data obtained from the several 
experimental analyses carried out on the test aircraft. More precisely, a specific loading condition (reported in 
Appendix III) has been used to set the calibration for the cross-section dimensions, while another deformation 
result has been used as a comparison for the validity of the results obtained. Since the method adopted is 
empirical, some further considerations about the results validity and meaning must be done: 

- the cross-section loses all the properties related to the lamination of the composite materials, because 
an averaging process is carried out for the material properties. This means that it is symmetric, and 
shear-centre is at the centre of the cross section. 

- The load is concentrated at the centre of the cross section, which is also the shear-centre of the 
rectangular section, thus no torsional effects are highlighted. This implies that this calibration is not 
sufficient to define the torsional stiffness of the beam structure. 

- The relative positioning between the aerodynamic surface and the beam structure must be defined 
properly, to set the proper shear centre location respect to the aerodynamic loads. 
 

 
Figure 37: Static analysis results for Syncro semi-wing with 5-th order McLaurin polynomials and n=1 loading at shear centre. 

Comparison with experimental results. 
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Table 19 reports the different vertical (z) displacements obtained from the four McLaurin polynomial orders 
considered for the extremity node of each structural element that constitutes the beam. The data presented are 
consistent with the convergence analysis carried out in section 3.9.2. 

 

Nodal z displacements for right extremity node [m] 

Element 
McLaurin Polynomials order 

2-nd order 3-rd order 4-th order 5-th order 
1 1,684·10-4 1,699·10-4 1,700·10-4 1,701·10-4 
2 6,386·10-4 6,418·10-4 6,421·10-4 6,424·10-4 
3 1,408·10-3 1,413·10-3 1,413·10-3 1,414·10-3 
4 2,467·10-3 2,475·10-3 2,475·10-3 2,477·10-3 
5 3,807·10-3 3,818·10-3 3,818·10-3 3,821·10-3 
6 5,416·10-3 5,429·10-3 5,430·10-3 5,434·10-3 
7 7,281·10-3 7,298·10-3 7,299·10-3 7,304·10-3 
8 9,388·10-3 9,409·10-3 9,410·10-3 9,416·10-3 
9 1,172·10-2 1,175·10-2 1,175·10-2 1,176·10-2 

10 1,426·10-2 1,430·10-2 1,430·10-2 1,431·10-2 
11 1,700·10-2 1,703·10-2 1,704·10-2 1,705·10-2 
12 1,991·10-2 1,994·10-2 1,995·10-2 1,996·10-2 
13 2,296·10-2 2,301·10-2 2,301·10-2 2,303·10-2 
14 2,615·10-2 2,620·10-2 2,620·10-2 2,622·10-2 
15 2,945·10-2 2,950·10-2 2,950·10-2 2,952·10-2 
16 3,283·10-2 3,289·10-2 3,289·10-2 3,291·10-2 
17 3,628·10-2 3,634·10-2 3,635·10-2 3,637·10-2 
18 3,978·10-2 3,984·10-2 3,985·10-2 3,988·10-2 
19 4,331·10-2 4,338·10-2 4,338·10-2 4,341·10-2 
20 4,685·10-2  4,692·10-2 4,693·10-2 4,696·10-2 
21 5,040·10-2 5,048·10-2 5,048·10-2  5,052·10-2 

Table 19: Discrete semi-wing nodal z displacements for element node 2. 

 

3.9.3.5 Pure twist section calibration 

The analysis of results obtained in section 3.9.3.4 highlights that differential displacements for the extremities 
of the structure provide a torsional effect which is slightly the double of the one observed experimentally 
during load tests. A potentially valid solution to this problem is to calibrate cross-section properties to satisfy 
the real twist of the semi-wing, as shown in Figure 38. The torsional moment applied, and the consequent 
rotation angles obtained during the tests are reported in Appendix III.  

The new calibrated section properties can be observed in Table 20, that underlines a good qualitative coherence 
between the simplified model and the real one, except for the tip of the semi-wing. This calibration provides a 
more rigid bending properties representation but can be used as an instrument for static aeroelasticity torsional 
divergence estimation. 
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y coordinate 
[mm] Element Section width [mm] Section height [mm] 

0 1 492,86   64,87 
200 2 481,01   63,59 
400 3 469,17   62,35 
600 4 457,32   61,13 
800 5 445,48   59,94 

1000 6 433,63   58,78 
1200 7 421,79   57,65 
1400 8 409,94   56,54 
1600 9 398,10   55,46 
1800 10 386,25   54,40 
2000 11 374,40   53,37 
2200 12 362,56   52,36 
2400 13 350,71   51,38 
2600 14 338,87   50,42 
2800 15 327,02   49,49 
3000 16 315,18   48,60 
3200 17 303,33   47,72 
3400 18 291,49   46,87 
3600 19 279,64   46,05 
3800 20 267,80   45,26 
4000 21 255,95   44,49 

Table 20: Discrete semi-wing cross section properties for Syncro aircraft, torsional properties calibration. 

 

 
Figure 38: Static analysis results for Syncro semi-wing with 2-nd order McLaurin polynomials and twist test loading. Comparison 

with experimental results. 
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3.9.3.6 Modal analysis results 

Once the model has been calibrated on the static deformation, the modal analysis can be executed to find the 
vibrational modes of the structure. Table 21 reports the frequencies obtained for the three approximation orders 
that have been considered. 

 

 
Figure 39: Modal analysis results for Syncro semi-wing with 4-nd order McLaurin polynomials. 
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Figure 39 represents the deformation of the beam obtained through the present code for the first 10 free 
vibrational modes. The following modes can be found starting from left to right and from top to bottom: 

1. First pure z bending mode. 
2. Second pure z bending mode. 
3. First bending-torsional mode. 
4. First x bending mode. 
5. Third pure z bending mode. 
6. Second bending-torsional mode. 
7. Fourth pure z bending mode. 
8. Second x bending mode. 
9. Third bending-torsional mode. 
10. Fourth bending-torsional mode. 

 

Free vibrational frequencies [Hz] 

Mode 2-nd order 3-rd order 4-th order 
1 37,80 37,76 37,75 
2 174,81 174,31 174,25 
3 215,40 209,06 205,10 
4 250,30 249,50 249,46 
5 443,03 440,57 440,41 
6 517,99 492,55 482,92 
7 830,81 823,32 822,99 
8 858,06 830,48 828,77 
9 915,59 851,92 835,26 
10 1327,10 1287,90 1262,08 

Table 21: Modal analysis results for square cross-section. 

A final test has been carried out on the I shaped spar, to test an alternative solution methodology: the function 
eig(), that permits to evaluate the eigenvalues and eigenvectors of the free vibrational problem, can specify an 
additional parameter ‘qz’, recalling the Schur’s decomposition. The computational time increases due to the 

time necessary for the decomposition process, but this solves the problems generated by the different materials 
that compose the beam and the ones related to the spanwise geometry variation (provided that the variations 
are not too rough). 

 

3.9.4 Modal analysis results on composite materials beams 

The present code can be applied on different types of structures, such as composite materials beams, that 
usually have orthotropic constitutive relations. The direction of lamination determines the variation of beam’s 

structural properties both on static and modal analysis. In this sub-chapter, a series of results obtained for a 
constant cross section beam will be presented, with particular attention to the variability of vibrational 
frequencies due to the lamination angle that is considered. Figure 40 represents the reference system adopted 
for fibres orientation, in particular: 

a. 0°, fibres are parallel to the y axis. 
b. ±45°, fibres have a positive/negative angle respect to y axis. 
c. 90°, fibres are perpendicular to y axis. 
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Material properties (orthotropic material) 
Elastic Modulus 

Longitudinal direction 
EL = 132,5 GPa Elastic Modulus 

Transversal direction 
ET = 10,8 GPa 

Poisson’s Ratio v = 0,24 Shear Modulus G = 5,7 GPa 
    

Geometrical properties (constant along span) 
Section chord c = 0,15 m Wingspan L = 1,50 m 
Section height h = 0,0045 m Sweep angle Λ = 0° 

Structural Mesh 
Beam elements 20 Element nodes 4 
Cross section McLaurin polynomials order 4-th 

Table 22: Orthotropic beam geometrical and material properties. 

The generic orientation can be both positive or negative 
in modal analysis since the beam is symmetric and the 
consequent vibration frequencies that are obtained are 
the same. This is not valid for static aeroelasticity and 
flutter, where the airspeed direction determines the 
asymmetry of the problem. 

The properties of the beam structure and the ones of the 
orthotropic material are presented in Table 22, while the 
first six frequencies for each lamination case are 
displayed in Table 23. In the same table, the relative 
percentual errors obtained from the comparison with the 
results of MUL2 [18] reference are presented. The 
reference system adopted implies that in the 0° 
condition the longitudinal Young’s modulus (EL) is 
aligned with y axis.  

Figure 40: Lamination angles for an orthotropic beam (from top to 
bottom: 0°, 45°, 90°). 

 

Lamination 
angle 

Modal frequency [Hz] 
1-st 2-nd 3-rt 4-th 5-th 6-th 

0° 2,9921 18,7436 19,3078 52,4547 60,4431 93,8598 
15° 1,9991 12,3332 28,7585 34,6863 63,4774 68,8128 

% error 3,6404%    3,5257%     4,9746%     3,6850%     3,1355%     3,9562% 
30° 1,2766 7,9813 22,5233 33,6265 40,5480 44,9974 

% error 1,7860%     1,8315%     2,0049%  4,9996%     1,2674%     2,3090% 
45° 0,9775     6,1162    17,1656    28,6812    31,4583    33,8814 

% error 1,5111%     1,5170%     1,5739%     3,3684%     1,1481%     1,6771% 
60° 0,8566     5,3640    15,0209    22,9341    28,0353    29,4759 

% error 2,0333%     2,0003%     2,0130%  2,5347%     1,7370%     2,1169% 
75° 0,8187 5,1300 14,3632 19,3454 27,0738 28,1484 

% error 2,4391% 2,4381% 2,4370% 0,6285% 2,3884% 2,4417% 
90° 0,8142 5,1020 14,2852 18,1470 26,9586 27,9924 

% error 2,7493% 2,7434% 2,7447% 0,0924% 2,7175% 2,7484% 
Table 23: Orthotropic beam modal frequencies (4-th order McLaurin polynomials cross-section discretization). 
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Chapter 4 

Splining Process 
 

The final step necessary to complete a static or dynamic aeroelastic analysis is the splining process. The method 
described in the following pages is the Infinite Plate Spline (IPS). To proceed with the splining process, which 
is at the base of structural-aerodynamic coupling, two grids of points must be known: 

1. Pseudo Structural Points, a grid of points that are defined on the undeformed beam x-y plane. Although 
the beam has a 1D geometry from the formal point of view, these points are defined considering their 
expansion through the chordwise direction. 
 

2. Aerodynamic Load and Control Points grid, that has already been defined in Chapter 2 and contains 
the reference points for each aerodynamic panel of the wing. 

The final aim of IPS is to map the structural displacements of Pseudo Structural Points obtained from the 
modal analysis on the aerodynamic Load and Control points grid. This permits to evaluate aerodynamic loads 
on the deformed semi-wing by the means of slopes and displacements at Load and Control points that establish 
boundary conditions for Vortex Lattice Method and Doublet Lattice Method application. 

 

4.1 Infinite Plate Spline method 

Infinite plate spline method is an interpolation method that refers to an infinite uniform surface and was de-
veloped by Harder and Desmarais to evaluate displacements and slopes on 2D aerodynamic surfaces. It per-
mits to evaluate the displacement function for a surface according to a discrete number of points (that are the 
Pseudo Structural Points) for which this displacement is known. The governing differential equation which is 
at the base of the problem formulation is reported in equation 4.1: 

𝐷𝛻4𝑤 = 𝑞 (4.1) 

Where q is the distributed load on the plate, D is the uniform plate bending stiffness and w is the plate deflec-
tion. The problem is solved in polar coordinates, thus the differential operator and x, y coordinates are defined 
in equation 4.2:  

𝑥 = 𝑟𝑐𝑜𝑠(𝜃) 

𝑦 = 𝑟𝑠𝑖𝑛(𝜃) 

𝛻4 =
1

𝑟

𝑑

𝑑𝑟
{𝑟
𝑑

𝑑𝑟
[
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑

𝑑𝑟
)]} 

(4.2) 

For the sake of brevity, the solution process for the fourth order differential equation (4.1) will not be reported 
in this work but can be easily found in the work of Varello A. [14] (p. 155-157) that has been used as the 
reference for IPS model construction. The result is reported in 4.3: 
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𝑤(𝑟) = 𝐴 + 𝐵𝑟2 + 𝐹𝑟2 ln(𝑟2) 
 

𝐴 = 𝐶0, 𝐵 = 𝐶1, 𝐹 =
𝑃

16𝜋𝐷
 

(4.3) 

Where 𝐶0, 𝐶1 are two coefficients that will be obtained from the application of boundary conditions (and in-
terpolation at different points) and D is the bending stiffness. The hypotheses made in these evaluations are: 

- No distributed loads are applied on the infinite plate. 
- A single concentrated load is applied. 
- The load is applied at the origin of the coordinate system. 

The most general case, which is the one used in this work, is characterized by multiple loads applied on the 
infinite plate that are located on a generic number of points all over the plane. For this reason, ri is defined as 
the distance between the point where the vertical displacement of the plate is evaluated (w(x,y)) and the load 
application point, as shown in Figure 41. The general expression for w displacements is obtained through the 
superposition of the effects of the single loads, as reported in 4.4: 

𝑤(𝑥, 𝑦) = ∑[𝐴𝑖 + 𝐵𝑖𝑟𝑖
2 + 𝐹𝑖𝑟𝑖

2 ln(𝑟𝑖
2)]

𝑁

𝑖=1

 (4.4) 

Where N is the number of concentrated loads (Pi) applied on the plate. r and ri are thus: 

𝑟2 = 𝑥2 + 𝑦2 
 

𝑟𝑖
2 = (𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2 

(4.5) 

The previous formula will finally be rewritten as a 
function of xi, yi, r and θ following the procedure pro-
posed by Varello A. [14] (p.158-163), that will not be 
reported in this work for simplicity. The result is a sys-
tem of equations that must be solved in order to deter-
mine the coefficients that describe the plate defor-
mation starting from the known displacements at N 
Load Points.  

Figure 41: Coordinate system and load application points 
representation. 

The final formulation that describes the transverse displacements of the plate charged by N concentrated loads 
located on the same number of Load Points is: 

𝑤(𝑥, 𝑦) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 +∑[𝐹𝑖𝑟𝑖
2 ln(𝑟𝑖

2)]

𝑁

𝑖=1

 

 
𝑤ℎ𝑒𝑟𝑒: 𝐾𝑖(𝑥, 𝑦) = 𝑟𝑖

2 ln(𝑟𝑖
2) 

(4.6) 

Where the unknowns of the spline formulation (N+3) are the following coefficients: 𝑎0, 𝑎1, 𝑎2, 𝐹𝑖, that will be 
determined assigning N displacements at N Load Points and the boundary conditions at infinity (4.7). 
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∑𝐹𝑖 = 0

𝑁

𝑖=1

,∑𝐹𝑖𝑥𝑖 = 0

𝑁

𝑖=1

,∑𝐹𝑖𝑦𝑖 = 0

𝑁

𝑖=1

 (4.7) 

In the end, Pseudo Structural Points are the ones where the displacements are known, thus the formulation in 
equation 4.8 is adopted to define the displacement on each point: 

𝑤𝑗(𝑥𝑗 , 𝑦𝑗) = 𝑎0 + 𝑎1𝑥𝑗 + 𝑎2𝑦𝑗 +∑[𝐹𝑖𝐾𝑖𝑗(𝑥, 𝑦)]

𝑁

𝑖=1

 

 
𝑟𝑖𝑗

2 = (𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
 

 
𝐾𝑖𝑗 = 𝑟𝑖𝑗

2 ln(𝑟𝑖𝑗
2) 

(4.8) 

 

Where 𝐾𝑖𝑗 = 𝐾𝑗𝑖 and 𝐾𝑖𝑗 = 0 when i=j. Subscript j refers to each Pseudo Structural Point in which the vertical 
displacement is evaluated, while subscript i establishes the relation with all the Load Points considered. Equa-
tions in 4.8 can be rewritten in matrixial form introducing the following vectors and matrices: 

{𝑤} = {𝑤1, 𝑤2, … , 𝑤𝑁}
𝑇 

 
{𝑎} = {𝑎0, 𝑎1, 𝑎2}

𝑇 
 

{𝐹} = {𝐹1, 𝐹2, … , 𝐹𝑁}
𝑇 

 

[𝑅] = [

1 𝑥1 𝑦1
1 𝑥2 𝑦2
…
1

…
𝑥𝑁

…
𝑦𝑁

] 

 

[𝐾] = [

𝐾11 𝐾12 … 𝐾1𝑁
𝐾21 𝐾22 … 𝐾2𝑁
…
𝐾𝑁1

… …

𝐾𝑁2 …

…
𝐾𝑁𝑁

] 

(4.9) 

The system that, given all Pseudo Structural Points, permits to evaluate the coefficients of the infinite plate is: 

{
[0] = [0]{𝑎} + [𝑅]𝑇{𝐹}
[𝑤] = [𝑅]{𝑎} + [𝐾]{𝐹}

 

 

{
{0}
{𝑤}

} = [
[0] [𝑅]𝑇

[𝑅] [𝐾]
] {
{𝑎}
{𝐹}

} = [𝐺] {
{𝑎}
{𝐹}

} 

 

(4.10) 

All the data necessary to evaluate displacements on aerodynamic Control and Load Points are now available: 
the next sections of this chapter will explain how these computations are actuated. 

 

4.2 Load and control points notation 

Before proceeding with the evaluation of deformations and displacements for the aerodynamic surfaces, a brief 
resume about the notable points must be carried out: 

o Control Points (Xcont, Ycont) are the coordinates of control points on the wing plane surface. The third 
coordinate will be obtained from the splining process (Zcont).  

o Load Points (Xload, Yload), that analogously are the positions of load points in the same reference system. 
Vertical displacement Zload will be obtained as a result from splining. 
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A discrepancy emerges from the coupling of VLM with DLM and the structural model if aerodynamic panels 
are not located on a 2D surface due to an asymmetric camber line. In the following chapters, the semi-wing 
will be considered planar to avoid the discrepancy between the two aerodynamic codes, even thought that an 
error is introduced in the aerodynamic properties’ representation. 

 

4.2.1 Displacements at Load and Control points 

For the sake of simplicity, the present section will explain how slopes at aerodynamic Control Points can be 
obtained for the case where sweep angle is zero (this permits to avoid the use of superscripts related to local 
and global reference systems and to explain more clearly the processes involved).  

The coefficients 𝑎0, 𝑎1, 𝑎2, 𝐹𝑗 are known from chapter 4.1, thus for the k-th Control Point the following 
equation describes its displacement along z coordinate: 

𝑍𝑐𝑜𝑛𝑡𝑘(𝑋𝑐𝑜𝑛𝑡𝑘 , 𝑌𝑐𝑜𝑛𝑡𝑘) = 𝑎0 + 𝑎1𝑋𝑐𝑜𝑛𝑡𝑘 + 𝑎2𝑌𝑐𝑜𝑛𝑡𝑘 +∑𝐹𝑗𝐾𝑘𝑗

𝑁𝑃𝑆

𝑗=1

 

 

(4.11) 

𝐾𝑘𝑗 = 𝑅𝑘𝑗
2 ln(𝑅𝑘𝑗

2) 
 

𝑅𝑘𝑗
2 = (𝑋𝑐𝑜𝑛𝑡𝑘 − 𝑥𝑗)

2
+ (𝑌𝑐𝑜𝑛𝑡𝑘 − 𝑦𝑗)

2
 

(4.12) 

Where NPS is the number of structural points used for the spline interpolation and NAP is the number of 
aerodynamic panels: 𝑘 = 1,2, … , 𝑁𝐴𝑃. In matrixial notation this is equivalent to the solution of the system: 

 

𝑖𝑛 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑓𝑜𝑟𝑚: {𝑍𝑐𝑜𝑛𝑡} = 𝑫𝒄𝒐𝒏𝒕 {
{𝑎}
{𝐹}

} 

(4.13) 

 

 

𝑖𝑛 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑓𝑜𝑟𝑚: {𝑍𝑙𝑜𝑎𝑑} = 𝑫𝒍𝒐𝒂𝒅 {
{𝑎}
{𝐹}

} 

(4.14) 

4.2.2 Slopes at Control points 

Since the focus is set on slopes of the panels at Control Points, the following relations are obtained: 

𝜕𝑍𝑐𝑜𝑛𝑡𝑘
𝜕𝑥

(𝑋𝑐𝑜𝑛𝑡𝑘, 𝑌𝑐𝑜𝑛𝑡𝑘) = 𝑎1 +∑𝐹𝑗
𝜕𝐾𝑘𝑗

𝜕𝑥

𝑁𝑃𝑆

𝑗=1

= 𝑎1 +∑𝐹𝑗𝐷𝐾𝑘𝑗

𝑁𝑃𝑆

𝑗=1

 (4.15) 
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Where: 

𝐷𝐾𝑘𝑗 =
𝜕𝐾𝑘𝑗

𝜕𝑥
= 2(𝑋𝑐𝑜𝑛𝑡𝑘 − 𝑥𝑗)[1 + ln(𝑅𝑘𝑗

2)] (4.16) 

As shown in 4.13, even slopes can be computed in matrixial form (4.17). Now all the data concerning the 
boundary conditions for aerodynamic panels have been evaluated; since the pseudo structural points used for 
splining process will be the data resulting from modal analysis, slopes and displacements obtained from 4.13, 
4.14 and 4.17 will be the input data for Doublet Lattice Method evaluations. 

 

𝑖𝑛 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑓𝑜𝑟𝑚: {
𝜕𝑍𝑙𝑜𝑎𝑑
𝜕𝑥

} = 𝑫𝑲𝒍𝒐𝒂𝒅 {
{𝑎}
{𝐹}

} 

(4.17) 

 

4.3 Unsteady boundary condition for DLM 

The procedures described in this chapter permit to recall equation 2.5, used in Doublet Lattice Method for the 
evaluation of pressure coefficients. It is now possible to express the normal wash (normalized using the speed 
of the aircraft) in its most general shape, which includes the steady and unsteady contributes obtained in 
chapter 4.1. The results are shown in equation 4.18. 

{𝐶𝑃} = [𝐷]−1{𝑤} 
 

{𝑤} = 𝑖
𝜔

𝑉∞
{𝑍𝑐𝑜𝑛𝑡} + {

𝜕𝑍𝑐𝑜𝑛𝑡
𝜕𝑥

} 
(4.18) 

Where 𝜔 is the input frequency and i is the imaginary unit. If the input frequency reduces to zero, the boundary 
condition becomes the one presented in 4.19, where the imaginary term is no more present: 

{𝑤} = {
𝜕𝑍𝑐𝑜𝑛𝑡
𝜕𝑥

} (4.19) 

This chapter completes the description of all the elements necessary to execute static aeroelasticity and flutter 
analysis for a conventional trapezoidal semi-wing. The next step will be presented in the following chapters, 
where the solution method will be described.  

 

4.4 IPS Code Development and Results 

This section is developed separately from the static and modal analysis code to obtain a structured solving 
process. In the following chapters, a main program that recalls and links the different analyses will be written. 
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The splining process based on IPS is relatively simple to develop and the main issues that can be identified are 
related to the accuracy of the grid. An appropriate grid size must be defined, and the consequent computational 
time must be benchmarked. 

4.4.1 Main code development steps 

It is noteworthy that the present chapter has the aim to explain the main concepts of the routines used and the 
main sections of the code. Following the same schedule used for the other MatLab® programs presented in this 
work, these main code sections can be identified: 

Data input section, where data obtained through the structural code are loaded (from Displacements.mat output 
file) and are used to evaluate displacements on Pseudo Structural Points (PSP). The result will be a set of three 
matrices that contain the coordinates of the considered points: 

- spline_x, coordinates of PSP in chordwise direction (Figure 42). 
 

- spline_y, coordinates of PSP in spanwise direction (Figure 42). 
 

- spline_w, that contains z displacements for PSP, evaluated through the results of structural analysis 
(both static and free vibrational one). 

In order to study flutter phenomenon, the previous splining process is carried out for every modal frequency 
considered in the structural model (for example the first 10 frequencies). Figure 42 reports a general example 
of Pseudo Structural grid on a rectangular semi-wing, that permits a better focus on the problem: PSP 
coordinates are selected to guarantee a good approximation of aerodynamic displacements.  

The elements that can be observed in this figure (42) are: 

- Undeformed wing PSP, that are represented in black. 
 

- Deformed wing PSP, that are represented in red. 
 

- Wing contour, identified by three black segments. 
 

- Root section of the wing is located at y=0 according reference system adopted. 
 

- Tip section is located at y=2.14m. 
 

- Chordwise coordinates range from x=-0.3m to x=0.3m. 

The deformed configuration is referred to the first free vibrational frequency of the modal analysis carried out 
on the semi-wing and the resulting points reported on Figure 42 are concerned by z displacements. 

Spline coefficients evaluation section, in which Pseudo Structural Points are used to evaluate the coefficients 
described in chapter 4.2. The results are obtained through the resolution of the following system of equations: 

 

{
{0}
{𝑤}

} = [𝐺] {
{𝑎}
{𝐹}

} 

 

𝑡ℎ𝑢𝑠: {
{𝑎}
{𝐹}

} = [𝐺]−1 {
{0}
{𝑤}

} 

(4.20) 
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Figure 42: Pseudo Structural Points for a generic simple semi-wing. 

 

Aerodynamic points displacements and slopes evaluation section, where aerodynamic Load and Control 
Points for each panel defined in VLM code are imported from Aerodynamic_ControlPoints.mat file. They are 
used to obtain displacements and slopes at the points of interest through equations 4.13, 4.14 and 4.17. The 
results of this section are three vectors defined as: 

- Displacements at Load Points (w_aer_l). 
- Displacements at Control Points (w_aer_c). 
- Slopes at Control Points (w_aerprime_c). 

All the equations used are presented in the previous chapter and no particular routines are involved in these 
calculations, except for the cycles necessary to build the matrices of displacements and slopes from the 
previous vectors. In this way, the same indices used for the panels in aerodynamic codes can be used. 

DLM input data section, in which the final results are saved in AeroDisplacementsforDLM.mat file. It will be 
the input file used for DLM evaluations: all the data necessary to carry out the aeroelastic analysis are now 
available. 
 

4.4.2 Code verification and convergence considerations 

The present code permits to change the number of Pseudo Structural Points used for the splining process. As 
PSP number increases, two opposite effects can be observed: 

- A more accurate approximation for aerodynamic Control Points displacements is obtained. 
- The solution time increases as the rank of the matrices becomes greater. In particular, the solution time 

is proportional to the square of the number of PSP selected. 

For this reason, a balance between the two effects must be chosen, that also satisfies the requirements 
established for Pseudo Structural Points positioning: 

1. The points cannot be aligned along a line. 
2. Two or more PSP cannot be located on the same spline_x, spline_y coordinates. 
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These conditions would define a singularity condition for [G] matrix, thus failing to define the spline plane, 
as stated by Varello A. [14] p.168. 

4.4.3 Syncro wing geometry simplification 

Once the aerodynamic surface and the structure of the wing have been defined, the splining process can be 
executed, provided that the relative position between spars and the leading edge is correctly established. This 
operation is done by simply adding a constant term to the x coordinate of all Load Points and Control Points: 
displacements in z coordinate are correctly evaluated through this technique. 

Obviously, this does not affect the coordinates of aerodynamic points in VLM and DLM codes, since only 
slopes and displacements are exported from the splining code. Figure 43 represents the configuration that has 
been studied, where the following elements can be identified: 

- Aerodynamic surface contour, represented in black. 
- Front spar, in red. 
- Rear spar, in blue. 
- Quarter chord line, which is the dotted black line. 

 
Figure 43: Syncro wing geometry configuration. Relation between structural elements position and aerodynamic surface collocation. 

If the structure is simplified as a rectangular cross-section beam, the position of the equivalent semi-wing shear 
centre must be the same of the real semi-wing one, as well as the torsional stiffness of each element. The 
second condition is satisfied since in chapter 3.9.3.5 the calibration of the beam section has been executed, 
while the analysis related to the shear centre position will follow these criteria: 

- In static aeroelasticity analysis, the position of shear centre will be varied in order to identify the 
consequent variation of the torsional divergence velocity. This provides a complete analysis of the 
limits for the aircraft’s flight envelope. 
 

- In flutter analysis, the relative position between shear centre and aerodynamic centre will be fixed to 
the real condition. 
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Chapter 5 

Aeroelastic model 
 

The considerations made in the introduction of this work in a qualitative way will be explained in detail in the 
two main sections of the present chapter, with particular attention to the analysis methods used. This is 
particularly important for flutter evaluations, where different solution strategies can be adopted: the focus will 
be set on k-method and p-k method (section 5.2). 
 

5.1 Static aeroelastic model 

The static aeroelastic analysis aim is to evaluate the static deformation of a semi-wing loaded with steady 
aerodynamic forces computed through Vortex Lattice Method. These evaluations are carried out for a range 
of airspeeds that permits to evaluate how the static response of the wing structure changes, as will be observed 
later in this section. The reference used to describe the interaction between aerodynamics and structural 
deformation is the work of Varello A. [14] p. 183-190. 

5.1.1 Steady aerodynamic loads vector 

The first element necessary for the static aeroelastic analysis is represented by the vector that contains all the 
dimensionless pressure loads on each panel of the semi-wing, as written in equation 5.1: 

∆𝒑 =
∆𝒑′

1
2
𝜌∞𝑉∞

2
 (5.1) 

Where: ∆𝒑 is the dimensionless pressure load vector, while ∆𝒑′ is the dimensional pressure load. 

From this expression, it is possible to define for each aerodynamic panel (i) the three force components acting 
in 3D space, thanks to the quantities defined in chapter 2.3: 

- ∆𝑥𝑖 is the average chordwise dimension of the generic panel i. It is equal to the chord of the panel 
measured at its middle spanwise coordinate, since their shape is trapezoidal or rectangular. 
 

- ∆𝑦𝑖 is the spanwise dimension of the considered panel. 
 

- 𝑛𝑥𝑖, 𝑛𝑦𝑖 , 𝑛𝑧𝑖 are the components of the i-th panel normal vector in global coordinates. 
 

- ∆𝒑𝒊 is the dimensionless pressure load on the panel. 

The three force components in three-dimensional space are thus written in equation 5.2: 

𝐿𝑖𝑥 =
1

2
𝜌∞𝑉∞

2(∆𝑥𝑖∆𝑦𝑖𝑛𝑥𝑖∆𝒑𝒊) 

(5.2) 𝐿𝑖𝑦 =
1

2
𝜌∞𝑉∞

2(∆𝑥𝑖∆𝑦𝑖𝑛𝑧𝑖∆𝒑𝒊) 

𝐿𝑖𝑧 =
1

2
𝜌∞𝑉∞

2(∆𝑥𝑖∆𝑦𝑖𝑛𝑧𝑖∆𝒑𝒊) 
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The next step is the assembly of the vector representing aerodynamic forces acting on the considered surfaces: 
this is done by introducing a diagonal matrix that multiplies the dimensionless pressure loads vector (∆𝒑) and 
permits to obtain the forces vector, named L: 

𝑳 =
1

2
𝜌∞𝑉∞

2𝑰𝑫∆𝒑 (5.3) 

Where the matrix 𝑰𝑫 is defined as reported in equation 5.4, (NAP is the total number of aerodynamic panels): 

 

(5.4) 

Now that all the geometric and constant quantities have been defined, VLM results are retrieved to evaluate 
the dimensionless pressure loads through equation 5.5: 

𝒘 = 𝑨 ∙ ∆𝒑 
 

∆𝒑 = [𝑨]−1 ∙ 𝒘 
(5.5) 

Where A is the aerodynamic influence coefficients matrix for the considered discretization and w is the vector 
composed by dimensionless normal velocity components to the i-th panel, as written in 5.6. 

{𝑤} = 𝒘 =
𝒘′

𝑉∞
 (5.6) 

Moreover, a relation between the aerodynamic boundary condition (dimensionless normal wash) and the 
structure deformation can be established through the results of the splining process. The slope at the 
aerodynamic Control Point is equal to the dimensionless normal wash, as stated in chapter 4.3: 

{𝑤} = {
𝜕𝑍𝑐𝑜𝑛𝑡
𝜕𝑥

} (5.7) 

This also permits to relate the displacements in z direction to the structural degrees of freedom, since slopes at 
aerodynamic Control Points are connected to the structural DOFs through the IPS splining process. In the 
following lines, some equations and procedures described in chapter 4 will be recalled, in order to make clearer 
the definition of the aerodynamic stiffness matrix, which is the core of the static aeroelasticity problem. 
Starting from equation 5.5 and introducing the result presented in 5.7, equation 5.8 can be written: 

∆𝒑 = [𝑨]−1 {
𝜕𝑍𝑐𝑜𝑛𝑡
𝜕𝑥

} (5.8) 

Where the vector of slopes at Control Points can be obtained from equation 5.9 as a function of the structural 
nodal degrees of freedom (the link between aerodynamic loading and structural displacements is here 
introduced for the first time): 

{
𝜕𝑍𝑐𝑜𝑛𝑡
𝜕𝑥

} = 𝑫𝑲𝒄𝒐𝒏𝒕 ∙ 𝒂𝒂→𝒔 ∙ 𝒒𝒛 (5.9) 
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The matrix 𝑫𝑲𝒄𝒐𝒏𝒕 is defined in an analogue way to the one presented in equation 4.17 for Load Points slopes, 
while the term 𝒂𝒂→𝒔  represents the connection between aerodynamic Load Points and structural degrees of 
freedom and is composed by the following matrices: 

𝒂𝒂→𝒔 = 𝑺 ∙ 𝒀 (5.10) 

Where the matrix concerning the rotation of the reference system is not considered, since for the sake of 
simplicity the problem description is made in the zero-sweep angle case. The definitions of 𝑺 and 𝒀 are 
presented in equation 5.11 (the definition of 𝑺 recalls equation 4.10) and 5.12: 

𝑺∗ = [𝐺]−1 = [
[0] [𝑅]𝑇

[𝑅] [𝐾]
]
−1

 

 
𝑺 = 𝑺𝒊𝒋

∗  
𝑤𝑖𝑡ℎ ∶ 𝑖 = 1,… ,𝑁𝑁 + 3 (𝑟𝑜𝑤𝑠) 
𝑗 = 4,… ,𝑁𝑁 + 3 (𝑐𝑜𝑙𝑢𝑚𝑛𝑠) 

(5.11) 

Y relates the coordinates of Pseudo Structural Points (that in this situation are the Load Points of each 
aerodynamic panel) to the structural degrees of freedom in z global coordinate system direction: the 
aerodynamic influence matrix and the consequent pressures multiplied by Y are equivalent to the application 
of a generic set of loads on PSP. Each row of the matrix has the following expression: 

𝒀𝒋 = 𝐹𝜏(𝑋𝑙𝑜𝑎𝑑 , 𝑍𝑙𝑜𝑎𝑑) ∙ 𝑁𝑖(𝑌𝑙𝑜𝑎𝑑) 
 

𝑤𝑖𝑡ℎ ∶ 𝜏 = 1,… ,𝑁𝑢  (𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑜𝑟𝑑𝑒𝑟) 
𝑖 = 1, … ,4 (𝑛𝑜𝑑𝑒𝑠) 
𝑗 = 1, … , 𝑁𝐴𝑃  (𝑟𝑜𝑤𝑠) 

(5.12) 

The number of columns of the matrix is equal to the number of degrees of freedom of the problem (where the 
clamped wing condition has not been applied yet), thus Y is different from zero only for the degrees of freedom 
(qz) influenced by the PSP load.  

The expression of aerodynamic forces can be now written in its explicit formulation: 

𝑳 =
1

2
𝜌∞𝑉∞

2𝑰𝑫 ∙ [𝑨]
−1 ∙ 𝑫𝑲𝒄𝒐𝒏𝒕 ∙ 𝑺 ∙ 𝒀 ∙ 𝒒𝒛 

 
(5.13) 

5.1.2 Aerodynamic stiffness matrix 

Chapter 5.1.1 results include the value of loading forces on every aerodynamic panel that constitutes the lifting 
surface of the semi-wing. In particular, loads on aerodynamic Load Points are known and thus they can be 
transferred to the structural nodes. This permits to evaluate the out of plane structural beam deformation 
through the Principle of Virtual Displacements, with an analogue method to the one presented in chapter 3 for 
the solution of the static structural deformation problem. Equation 5.14 represents the virtual work of 
aerodynamic load forces and the one due to structural loads:  

𝛿𝐿𝑎𝑒𝑟𝑜 𝑙𝑜𝑎𝑑𝑠 = {𝛿𝑍𝑙𝑜𝑎𝑑}
𝑇 ∙ 𝑳 = [𝑫𝒍𝒐𝒂𝒅 ∙ 𝒂𝒂→𝒔 ∙ 𝛿𝒒𝒛]

𝑇 ∙ 𝑳 (5.14) 
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𝛿𝐿𝑎𝑒𝑟𝑜 𝑙𝑜𝑎𝑑𝑠 = 𝛿𝒒𝒛
𝑻 ∙ [𝒂𝒂→𝒔]

𝑇 ∙ [𝑫𝒍𝒐𝒂𝒅]
𝑇 ∙ 𝑳 

(5.14) 

𝛿𝐿𝑠𝑡𝑟𝑢𝑐𝑡 𝑙𝑜𝑎𝑑𝑠 = 𝛿𝒒𝒛
𝑻 ∙ 𝑳𝒔𝒕𝒓𝒖𝒄𝒕 

Equation 5.15 shows how structural loads energetically equivalent to the aerodynamic ones are obtained 
through the Principle of Virtual Displacements application: 

𝛿𝐿𝑎𝑒𝑟𝑜 𝑙𝑜𝑎𝑑𝑠 = 𝛿𝐿𝑠𝑡𝑟𝑢𝑐𝑡 𝑙𝑜𝑎𝑑𝑠 
 

𝛿𝒒𝒛
𝑻 ∙ [𝒂𝒂→𝒔]

𝑇 ∙ [𝑫𝒍𝒐𝒂𝒅]
𝑇 ∙ 𝑳 = 𝛿𝒒𝒛

𝑻 ∙ 𝑳𝒔𝒕𝒓𝒖𝒄𝒕 
 

𝑳𝒔𝒕𝒓𝒖𝒄𝒕 = [𝒂𝒂→𝒔]
𝑇 ∙ [𝑫𝒍𝒐𝒂𝒅]

𝑇 ∙ 𝑳 

(5.15) 

In the end, the substitution of load forces vector in the structural loads one leads to the following expression: 

𝑳𝒔𝒕𝒓𝒖𝒄𝒕 = [𝒂𝒂→𝒔]
𝑇 ∙ [𝑫𝒍𝒐𝒂𝒅]

𝑇 ∙ 𝑳 
 

𝑳𝒔𝒕𝒓𝒖𝒄𝒕 = [𝒂𝒂→𝒔]
𝑇 ∙ [𝑫𝒍𝒐𝒂𝒅]

𝑇 ∙
1

2
𝜌∞𝑉∞

2𝑰𝑫 ∙ [𝑨]
−1 ∙ 𝑫𝑲𝒄𝒐𝒏𝒕 ∙ 𝒂𝒂→𝒔 ∙ 𝒒𝒛 

 

𝑳𝒔𝒕𝒓𝒖𝒄𝒕 =
1

2
𝜌∞𝑉∞

2[𝒂𝒂→𝒔]
𝑇 ∙ [𝑫𝒍𝒐𝒂𝒅]

𝑇 ∙ 𝑰𝑫 ∙ [𝑨]
−1 ∙ [𝑫𝑲𝒄𝒐𝒏𝒕] ∙ [𝒂𝒂→𝒔] ∙ 𝒒𝒛 

(5.16) 

 

Equation 5.16 can be rewritten in a simplified formulation that introduces the aerodynamic stiffness matrix, 
which has the same dimensions of the structural stiffness matrix (a square matrix with a rank equal to the 
number of degrees of freedom of the structural problem): 

𝑳𝒔𝒕𝒓𝒖𝒄𝒕 =
1

2
𝜌∞𝑉∞

2[𝒂𝒂→𝒔]
𝑇 ∙ [𝑫𝒍𝒐𝒂𝒅]

𝑇 ∙ 𝑰𝑫 ∙ [𝑨]
−1 ∙ [𝑫𝑲𝒄𝒐𝒏𝒕] ∙ [𝒂𝒂→𝒔] ∙ 𝒒𝒛 

 
𝑳𝒔𝒕𝒓𝒖𝒄𝒕 = −𝑲𝒂𝒆𝒓𝒐𝒛 ∙ 𝒒𝒛 

(5.17) 

 

5.1.3 Aeroelastic stiffness matrix and problem solution 

The results shown in equation 5.17 and the static deformation system of equations obtained in equation 3.43 
can be finally compared as written in 5.18, 5.19 and 5.20: the matrix that is obtained is the aeroelastic stiffness 
matrix, that considers the effects of aerodynamic loadings on the structural stiffness of the beam in this 1D 
case study. In particular, as the aerodynamic forces change due to air density or airspeed variations, the 
consequent aerodynamic stiffness matrix changes and determines different deformation conditions. 

It is extremely important to underline that all the previous equations consider only z degrees of freedom, thus 
the aerodynamic stiffness matrix must be properly manipulated to be summed to the structural one. This 
operation is a simplification, since the aeroelastic coupling is analysed only in the lift loading direction. The 
other terms of the expanded aerodynamic matrix are thus equal to zero. 
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{
𝑳𝒔𝒕𝒓𝒖𝒄𝒕 = 𝑲𝒔𝒕𝒓𝒖𝒄𝒕 ∙ 𝑞
𝑳𝒔𝒕𝒓𝒖𝒄𝒕 = −𝑲𝒂𝒆𝒓𝒐 ∙ 𝑞

 (5.18) 

𝑲𝒔𝒕𝒓𝒖𝒄𝒕 ∙ 𝒒 = −𝑲𝒂𝒆𝒓𝒐 ∙ 𝒒 (5.19) 

[𝑲𝒔𝒕𝒓𝒖𝒄𝒕 +𝑲𝒂𝒆𝒓𝒐] ∙ 𝒒 = 0 
 

[𝑲𝒂𝒆𝒓𝒐𝒆𝒍𝒂𝒔𝒕𝒊𝒄] ∙ 𝒒 = 0 
(5.20) 

Equation 5.20 solution is a singular vector since no perturbation or load is applied to the 1D structural 
geometry. If the right-hand side of 5.20 is different from zero, the deformation of the structure can be mapped 
along y coordinate of the beam reference system and the behaviour of the deformation can be studied as a 
function of: 

- The relative position between the beam shear centre and aerodynamic loads. 
- Air density, and thus the altitude of the aircraft according to ISA atmosphere data (Appendix I). 
- Aircraft True Airspeed (TAS). 

The right-hand side load vector is different from zero as the shape of the semi-wing is deformed, thus the 
structure does not lie on the z=0 plane (it is important to remember the hypothesis of no dihedral angle for the 
beam). This perturbation is supplied by the boundary condition given for the VLM problem resolution, which 
was presented in the previous lines as: 

{𝑤} = {
𝜕𝑍𝑐𝑜𝑛𝑡
𝜕𝑥

} = 𝑫𝑲𝒄𝒐𝒏𝒕 ∙ 𝑺 ∙ ∆𝒙 (5.21) 

The vector ∆𝒙 represents the analogue effect of introducing an angle of attack, that causes the aerodynamic 
forces to be non-zero. The following steps necessary to evaluate the right-hand side vector are equal to the 
ones presented in section 5.1.1 and 5.1.2, thus after applying the Principle of Virtual Displacements: 

𝑳𝑹𝑯𝑺𝒛 =
1

2
𝜌∞𝑉∞

2[𝒂𝒂→𝒔]
𝑇 ∙ [𝑫𝒍𝒐𝒂𝒅]

𝑇 ∙ 𝑰𝑫 ∙ [𝑨]
−1 ∙ [𝑫𝑲𝒄𝒐𝒏𝒕] ∙ 𝑺 ∙ ∆𝒙 (5.22) 

From 5.22 it is possible to write the final formulation of the static aeroelasticity problem: 

[𝑲𝒔𝒕𝒓𝒖𝒄𝒕 +𝑲𝒂𝒆𝒓𝒐] ∙ 𝒒 = 𝑳𝑹𝑯𝑺 
 

[𝑲𝒂𝒆𝒓𝒐𝒆𝒍𝒂𝒔𝒕𝒊𝒄] ∙ 𝒒 = 𝑳𝑹𝑯𝑺 
(5.23) 

The previous procedure may introduce long solution time and inaccuracies. On the other hand, the classical 
aeroelastic analysis approach is based on the eigenvalue problem solution obtained from equation 5.20, which 
is rewritten in the following shape: 

[𝑲𝒔𝒕𝒓𝒖𝒄𝒕 +𝑲𝒂𝒆𝒓𝒐] ∙ 𝒒 = 0 
 

[𝑲𝒔𝒕𝒓𝒖𝒄𝒕 − 𝜆𝑲𝒂𝒆𝒓𝒐
∗ ] ∙ 𝒒 = 0 

 
[[𝑲𝒂𝒆𝒓𝒐

∗ ]−1𝑲𝒔𝒕𝒓𝒖𝒄𝒕 − 𝜆𝑰] ∙ 𝒒 = 0 

(5.24) 
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Where 𝜆 = 1

2
𝜌𝑉∞

2 is the dynamic pressure parameter. The relation between 𝑲𝒂𝒆𝒓𝒐∗  and 𝑲𝒂𝒆𝒓𝒐 is: 

𝑲𝒂𝒆𝒓𝒐 = 𝜆𝑲𝒂𝒆𝒓𝒐
∗ =

1

2
𝜌𝑉∞

2𝑲𝒂𝒆𝒓𝒐
∗  (5.25) 

This formulation is not adopted due to the singularities that may be obtained from the inversion of 𝑲𝒂𝒆𝒓𝒐∗  
matrix, but the alternative solution is to provide the inversion of structural stiffness matrix, multiply it by 
aerodynamic stiffness matrix and compute the eigenvalues of their product. The maximum eigenvalue that is 
obtained from this procedure is the inverse of 𝜆, which has been introduced in equation 5.24; divergence 
velocity can be easily obtained from this term. The obtained results will be reported in chapter 6. 

 

5.2 Dynamic aeroelastic model: flutter 

In the following lines, the focus will be set on the most used flutter investigation strategies. 

 

5.2.1 General problem description 

While static aeroelasticity concerns only static deformations and loads, flutter is a more complex problem and 
can be represented by the governing equations of motion in time domain: 

𝑴𝑢̈(𝑡) + 𝑪𝑢̇(𝑡) + 𝑲𝑢(𝑡) = 𝑭(𝑡) (5.26) 

Where the terms concerned are the following: 

- M is the mass matrix, related to inertial effects mentioned in the previous lines. 
- C is the structural damping matrix, related to the dissipation of energy due to structural deformation. 
- K is the stiffness matrix, representing the effect of elastic forces. 
- F is the applied force vector, including both aerodynamic forces and generic external ones. 
- u(t) is the time dependent vector representing the degrees of freedom of the problem. 

In all the next evaluations, the structural damping matrix [C] will be considered equal to zero and the applied 
force vector will be represented only by aerodynamic forces. Nevertheless, for a first description of the 
equation solution, the formulation with F(t)=0 will be used: 

𝑴𝑢̈(𝑡) + 𝑪𝑢̇(𝑡) + 𝑲𝑢(𝑡) = 0 (5.27) 

If the problem has only a single degree of freedom the matrices M, C, K become single constant terms and u(t) 
is the displacement of the considered degree of freedom (associated to its velocity 𝑢̇(𝑡) and acceleration 𝑢̈(𝑡)). 
The solution of this equation is obtained considering that the displacement is represented in a harmonic form: 

𝑢(𝑡) = 𝑢̅𝑒𝜆𝑡 
𝑢̇(𝑡) = 𝜆𝑢̅𝑒𝜆𝑡  
𝑢̈(𝑡) = 𝜆2𝑢̅𝑒𝜆𝑡  

(5.28) 
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This leads to the characteristic polynomial, which is obtained in the next lines: 

𝑴𝜆2𝑢̅𝑒𝜆𝑡 + 𝑪𝜆𝑢̅𝑒𝜆𝑡 +𝑲𝑢̅𝑒𝜆𝑡 = 0 
 

𝑴𝜆2 + 𝑪𝜆 +𝑲 = 0 
(5.29) 

The solution of the previous second-degree polynomial equation permits to evaluate the eigenvalues of the 
problem, that can be real or conjugate complexes, depending on M, C, K values. If they are both real and 
negative the solution is aperiodic and stable, otherwise it would be unstable. In the case of conjugate 
complexes, the solution is a periodic motion with a pulsation determined by the relations: 

𝜆1,2 =
−𝑪± √𝑪2 − 4𝑴𝑲

2𝑴
= 𝜆𝑅 ± i𝜆𝐼  (5.30) 

𝜔𝑛 = √
𝑲

𝑴
      𝜔 = √

𝑲

𝑴
− (

𝑪

2𝑴
)
2

 (5.31) 

𝑓𝑛 =
𝜔𝑛
2𝜋
              𝑓 =

𝜔

2𝜋
 (5.32) 

Where the imaginary part determines the oscillation period; (𝜔𝑛, 𝑓𝑛) refers to the harmonic oscillation while 
(𝜔, 𝑓) refers to the damped ones. 

It is now possible to explain more clearly the insurgence of flutter phenomenon, which corresponds to the 
solution of the previous equation in the situation of undamped oscillations, that is the limit between an 
asymptotically stable solution and an unstable one. The second one is not acceptable for the operative 
conditions of an aircraft since it leads to disruptive structural deformations and a probable loss of the vehicle. 
In Figure 44 all the types of oscillating solutions are represented to describe clearly the conditions explained. 

 

 
Figure 44: Damped, harmonic, and amplified oscillations for a single degree of freedom system. 
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5.2.2 p-k method 

The solution for the equations of motion presented in chapter 5.2.1 can be obtained in the most general case in 
different ways and with a variable degree of approximation. The case of a multiple variable system can be 
represented in time domain or in frequencies domain (through a proper transformation explained later). In 
frequency domain, the non-dimensional differential operator p can be introduced to reformulate flutter 
equation and its real and imaginary part study permits to identify the occurrence of this phenomenon. As is 
explained by Hassig H. [15] p. 885-887, p is defined as: 

𝑝 =
𝑏

𝑉∞
(
𝑑

𝑑𝑡
) (5.33) 

Where b is the reference length (usually equal to half of the chord length) and 𝑉∞ is the true airspeed. 

Flutter equation, or equation of motion, can be expressed as (with the hypothesis introduced in section 5.2.1): 

𝑴𝒖̈(𝑡) + 𝑲𝒖(𝑡) = 𝑭(𝑡) 
 

𝑤ℎ𝑒𝑟𝑒: 𝑢(𝑡) = 𝜱𝑞(𝑡) 
(5.34) 

It is important to underline that the vector q contains the degrees of freedom for the considered modes (𝛷), 
since the flutter problem involves the free vibrational solution of structural problem. The term F(t) is 
represented by the aerodynamic forces acting on the wing surface, that in matrixial formulation are: 

𝑭 =
1

2
𝜌𝑉∞

2𝑸 (5.35) 

The equation’s system obtained from 5.34 is rewritten in 8.36 as described by Petrolo M. [13] p. 50-56: 

[
𝑉∞

2

𝑏2
𝑴̃𝑝2 + 𝑲̃ −

1

2
𝜌𝑉∞

2𝑸̃(𝑖𝑘)] {𝑞(𝑝)} = 0 (5.36) 

Where the three matrices presented are: 

- 𝑴𝒊𝒋
̃ = 𝜱𝑻𝑴𝜱, M is the mass matrix of the beam structure (described in chapter 3.7). 

 
- 𝑲𝒊𝒊̃ = 𝜔𝑖

2𝑴𝒊𝒋
̃ , K is the stiffness matrix obtained from the structural model (described in chapter 3.7). 

 
- *** 𝑸𝒊𝒋̃ = ∑ ∆𝑝𝑗

𝑁(𝑖𝑘)𝑍̃𝑖
𝑁𝑁𝐴𝑃

𝑁=1 𝑆𝐴𝑃
𝑁 , which is the aerodynamic term obtained from DLM. 

 

Since aerodynamic forces are computed through the DLM code developed in this work, it is important to 
underline that the hypothesis of harmonic forces has been considered. For this reason, p-k method introduces 
an error in the system of equations solution: the pure harmonic nature of aerodynamic forces is not consistent 
with the damped sinusoidal motion assumed for p, but it can be reputed valid in proximity of harmonic 
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oscillations. The use of more accurate methods, both for aerodynamic non-stationary forces definition and for 
the solution of the equations of motion system (such as the g-method), are not considered in this work.  

 

*** 𝑸𝒊𝒋̃(𝑖𝑘) = ∑ ∆𝒑𝑗
𝑁(𝑖𝑘)𝑍̃𝑖

𝑁𝑁𝐴𝑃
𝑁=1 𝑆𝐴𝑃

𝑁  

∆𝒑𝑗
𝑁(𝑖𝑘) 

It is the pressure jump due to the j-th modal shape set of motions. This value 
is computed for the N-th aerodynamic panel and evaluated for the considered 

reduced frequency (k). 

𝑍𝑖
𝑁 

Is the i-th transversal set of motions evaluated on the N-th aerodynamic panel 
starting from the results of free vibrational analysis (this is done by means of 

the splining process). 

𝑆𝐴𝑃
𝑁  Is the area of the N-th aerodynamic panel. 

Table 24: Aerodynamic matrix terms definition through DLM and IPS splining results. 

 

The solution of 5.36 is obtained imposing the determinant equal to zero, thus the expression of p is a 
polynomial with real coefficients that leads to conjugate complex roots: 

𝑝 = 𝛾𝑘 ± 𝑖𝑘 (5.37) 

Where i is the imaginary unit, k is the reduced frequency and 𝛾 is the decay rate. These terms are defined as: 

𝛾 =
1

2𝜋
ln (

𝑎𝑛+1
𝑎𝑛

) 

𝑎𝑛, 𝑎𝑛+1: 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑠 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠 
 

𝑘 =
𝜔𝑏

𝑉∞
 

𝜔: 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

(5.38) 

 
Figure 45: p-k method algorithm for a flutter problem with Nmodes modal shapes. 
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For every true airspeed considered, the vector of p values (10x1 if the number of modal natural frequencies 
considered is equal to 10) must be computed iteratively. Indeed, the k value obtained from p will not be equal 
to the one used for the aerodynamic evaluations. For this reason, the procedure presented in Figure 45 will be 
adopted until the tolerance conditions are satisfied.  

 

5.2.3 k method 

The method presented in 5.2.2 can lead to convergence problems related to the identification of each mode 
reduced frequency. For this reason, an alternative solution that can be adopted is the one provided by the k-
method, which is based on the same motion equations, but in an alternative shape: 

[𝑲̃ − {𝑴̃ +

1
2
𝜌𝑏2

𝑘2
𝑸̃(𝑘)} (

𝜔2

1 + 𝑖𝑔
)] {𝑞} = 0 (5.39) 

Where the three matrices presented are the same of equation 5.36, while: 

- 𝜔 is the dimensional frequency (2𝜋𝑓). 
- 𝑔 is the structural damping required for harmonic motion. 

The equation is solved sequentially on a series of k values for which the aerodynamic matrix is interpolated 
through Doublet Lattice Method: this avoids the iteration process involved in p-k method. This method requires 
short computational times, but it can occasionally generate some inaccuracies due to the “looping” of 

frequencies and damping, as described by Dale M. Pitt [16] p. 1. k-Method solution is valid only when g=0 
and the structural motion is neutrally stable, as well as the aerodynamic motion.  

The results obtained from this type of analysis are usually displayed on two plots that show the adimensional 
damping and the oscillation frequency for each considered speed. The first crossing from a negative damping 
condition to a positive one determines flutter speed, while the flutter frequency can be identified at the same 
velocity for the considered fluttering mode. The solution of the system of equations 5.39 brings to a complex 
eigenvalues vector which has the same length of the considered number of modes. Each vector is evaluated 
for a certain k value and permits to compute damping and frequency for each vibrational mode: 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦: 𝜔 =
1

√𝑅𝑒(𝜆)
 

 

𝐷𝑎𝑚𝑝𝑖𝑛𝑔: 𝑔 =
𝐼𝑚(𝜆)

𝑅𝑒(𝜆)
 

 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 𝑉 =
𝜔𝑏

𝑘
 

(5.40) 

These three parameters permit to completely identify the fluttering mode and its main characteristics. As will 
be underlined in chapter 6, this method permits to study flutter insurgence on flat plates modelled through 1D 
structural models and VLM-DLM, but some limitations are introduced by the structural model limitations: the 
accuracy of the present structural model and of aerodynamic models influence the results obtained. 
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Chapter 6 

Static Aeroelasticity and Flutter Results 
 

This chapter will be the central part of the present work, since it reports the development of analysis methods 
used for static and dynamic aeroelasticity and the main results that are obtained. For the sake of brevity, only 
some of the possible studies will be shown, while this instrument can be adapted to many different cases. 

 

6.1 Static Aeroelasticity code development 

A practical approach has been adopted for this type of analysis, since the aim is to provide an instrument that 
computes autonomously divergence speed. For this reason, the command prompt permits to set the air density 
and the relative position between aerodynamic surface and beam 
structure shear centre. Inside this routine, the following code 
sections can be identified. 

Static aeroelasticity data input section, where the data from VLM 
code are loaded from the proper file. It is important to underline that 
the code previously presented has been modified for this aim: the 
new code evaluates the aerodynamic influence coefficients matrices 
only for the considered semi-wing, coherently with the structural 
representation of the beam that has been adopted. Also, air density 
is defined in this section and sets the altitude at which the aircraft is 
flying. 

Structural code resolution with shear centre and aerodynamic 
centre relative positioning section, where the final part of the static 
structural code is retrieved and the relative positioning between 
aerodynamic centre and shear centre is set. In this part, aerodynamic 
loads are applied at Load Points to furnish a basis for IPS splining 
process, since the output of this section is the vector of static 
displacements for the structural degrees of freedom.  

Figure 46: Main static aeroelasticity code sections. 

Aerodynamic points correlation to structural model and splining section, where the aerodynamic points are 
properly translated to respect the relative positioning between shear centre and aerodynamic centre. Moreover, 
the code lines developed in the IPS splining chapter are used to evaluate the matrices relating the surfaces 
deflection at Load Points and Control Points. According to chapter 5.1, the following outputs are obtained 
from this section: 

[𝑫𝑲𝒄𝒐𝒏𝒕] (6.1) 

[𝑫𝒍𝒐𝒂𝒅] (6.2) 

Aerodynamic stiffness term constitutive matrices section, in which the matrices of equation 6.3 are built up. 
The routines of this section are based on equations 5.11 and 5.12; all the code lines involved are structured to 
respect the discretization imposed from VLM and structural code. 
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[𝒂𝒂→𝒔] = 𝑺 ∙ 𝒀 (6.3) 

Divergence speed computation section, where the adimensional aerodynamic stiffness matrix is built using 
the previously defined components. Once this matrix has been obtained and has been multiplied by the inverse 
of the structural stiffness one, the eigenvalues are computed. The inverse of the maximum one, as explained 
in the previous chapter, leads to the divergence dynamic pressure. 

Post processing: divergence evaluation section. In this part of the code, the divergence velocity for each shear 
centre relative position is identified by the first eigenvalue of the obtained matrix. 

 

6.2 Flutter code development 

The core section of k-method code is reported in this work, since it shows in a simple way how the equations 
of motion are obtained from structural and aerodynamic data and how the related unsteady aerodynamics 
matrices are computed for each reduced frequency. Three main sections can be identified. 

Input data section, where the number of structural modes is selected.  Frequencies and reference chord are 
consequently evaluated. In particular, the modal analysis results are loaded from the previously defined Dis-
placements_Modal.mat data file (output of the modal analysis code). 

Matrices generation and eigenvalue problem solution section, in which the following matrices are built: 

- 𝑴𝒊𝒋
̃ = 𝜱𝑻𝑴𝜱 

 

- 𝑲𝒊𝒊̃ = 𝜔𝑖
2𝑴𝒊𝒋
̃  

 

- 𝑸𝒊𝒋̃ = ∑ ∆𝒑𝑗
𝑁(𝑖𝑘)𝑍̃𝑖

𝑁𝑁𝐴𝑃
𝑁=1 𝑆𝐴𝑃

𝑁 . 
 

It is important to underline that 𝑸𝒊𝒋̃ depends on the input reduced frequency, thus it must be evaluated for every 
k value that has been considered. The solution time is determined by the number of input frequencies that are 
considered and by the number of aerodynamic panels for the semi-wing, since for every k value the DLM 
function is executed to determine 𝑸𝒊𝒋̃. 

DLM function section, that is a modified Doublet Lattice Method code, realized properly to evaluate quickly 
the unsteady aerodynamics contribute for each mode that has been considered. The main equations involved 
in the adimensionalized pressure jump evaluation for each panel and for each mode are reported in 6.4: 

{𝐶𝑃} = [𝐷]−1{𝑤}𝑚𝑜𝑑𝑒 

{𝑤}𝑚𝑜𝑑𝑒 = 𝑖
𝜔

𝑉∞
{𝑍𝑐𝑜𝑛𝑡}𝑚𝑜𝑑𝑒 + {

𝜕𝑍𝑐𝑜𝑛𝑡
𝜕𝑥

}
𝑚𝑜𝑑𝑒

 
(6.4) 

Where 𝜔
𝑉∞
= 𝑘

𝑐𝑚𝑒𝑎𝑛

2
, {𝑍𝑐𝑜𝑛𝑡}𝑚𝑜𝑑𝑒 are the displacements at Control Points for the considered mode and 

{
𝜕𝑍𝑐𝑜𝑛𝑡

𝜕𝑥
}
𝑚𝑜𝑑𝑒

 are the slopes of aerodynamic panels at that points. 
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6.3 Static Aeroelasticity results 

The code used for static aeroelasticity analysis has been tested on some structure examples to evaluate the 
capabilities of this instrument in the practical field. For all cases, aerodynamic properties that have been 
considered are the ones associated to the VLM model validated through the Athena Vortex Lattice [11] code.  

6.3.1 Constant cross-section test beam 

The first model is an isotropic semi-wing with a rectangular cross-section and constant properties along 
spanwise coordinates. Its main characteristics are reported in Table 25: 

 

Material properties (isotropic material) 
Elastic Modulus E = 75 GPa Poisson’s Ratio v = 0,33 
Shear Modulus G = 28 GPa Density ρ = 2700 kg/m3 

Geometrical properties (constant along span) 
Section chord c = 0,5 m Wingspan L = 4,28 m 
Section height h = 0,01 m Sweep angle Λ = 0° 

Structural Mesh 
Beam elements 20 Element nodes 4 

Cross section McLaurin 
polynomials order 

3-rd DOFs (clamped 
boundary condition) 

1800 

Aerodynamic Mesh (equally spaced grid) 
Chordwise panel’s number 10 
Spanwise panel’s number 20 

Panel’s total number 200 
Table 25: Test beam structure properties. 

 

A series of simple static load conditions have been considered for the beam structure of Table 25, where loads 
obtained from the aerodynamic code are applied to the structure to test its behaviour. 

The result of the divergence analysis is reported in Figure 47, following the specifications of Table 26 (that 
establish the relative positioning between aerodynamic Load Points, Control Points, and structural points). 
Load and Control Points are translated by the distance needed to establish the correct shear centre relative 
position, to guarantee that the slopes at Control Points for each aerodynamic panel are assigned correctly. 

 

Torsional Divergence: test case analysis 
Aerodynamic Chord c = 0,500 m 

Span L = 4,28 m 
Shear centre position x0 = c/2 = 0,250 m 

Aerodynamic Centre Location xac = c/4 = 0,125 m ** 
Air density ρ = 1,225 kg/m3 

Torsional stiffness J = ch3/3 
Table 26: Test semi-wing aerodynamic properties. 

**Aerodynamic centre position is evaluated at the root section of the semi-wing, and it is represented by an 
axis parallel to y one, since sweep angle is null. 
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At the same time, a simple model based on the strip theory is used as a verification instrument for the present 
code. The input properties are reported in Table 26 and the results obtained through this model are: 

𝑞𝐷 =
𝐺𝐽

𝑐𝐶𝐿𝛼(𝑥0 − 𝑥𝑎𝑐)
(
𝜋

2𝐿
)
2

= 1,862 ∙ 103 𝑃𝑎 

(6.5) 

𝑉𝐷 = √
2𝑞𝐷
𝜌

= √
2 ∙ 1,862 ∙ 103

1,225
= 55,14

𝑚

𝑠
 

That can be compared with the ones obtained from the code developed in this work, as written in Table 27: 

 

Model Divergence speed 
Strip theory 55,14 m/s 
Present code 57,58 m/s 

Table 27: Static aeroelasticity results comparison. 

 

The results from strip theory are an approximation since aerodynamic loads are considered as a unique force 
applied at 25% of chord from the leading edge; moreover, the divergence condition is determined only by the 
torsional deflection, while the interaction with bending and vertical displacements is not properly considered. 
It is important to underline that the angular lift coefficient is set to the value obtained from Vortex Lattice 
Method (VLM) evaluations. 

The results obtained from the present code show a divergence speed that is greater than the one obtained from 
the other theory. This can be due to the aerodynamic lift distribution determined by the aerodynamic influence 
coefficients matrix. At the same time, the consistence of the present theory results has been proved through 
the variation of several discretization parameters.  

 

Figure 47: Tip angular deflection behaviour for a generic test semi-wing, 3-rd order McLaurin polynomials. 
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In the following table, the focus will be set on the effect of different orders of approximation used for the cross-
section behaviour. This will permit to establish the coherence and convergence of the model. As is shown in 
Table 28, the growth of the cross-section approximation order leads to a lower divergence speed, even thought 
that the variation is limited. The use of 3-rd and 4-th order polynomials leads to the same result, except for 
variations lower than 1/100 of the measure unit (m/s). This behaviour can be justified by the fact that the 
second order approximation does not well represent torsional effects. Once the test model results have been 
analysed, the study moves to the Syncro aircraft wing model.  

 

Cross-section approximation order Divergence velocity 
2-nd order McLaurin Polynomials 58,90 m/s 
3-rd order McLaurin Polynomials 57,58 m/s 
4-rd order McLaurin Polynomials 57,58 m/s 

Table 28: Test semi-wing divergence velocity. 

 

6.3.2 Syncro torsional divergence evaluation 

After the considerations made on the simple constant cross-section beam, the analysis focuses on Syncro 
aircraft’s semi-wing model that has been developed as described in chapter 3.9.3.3. In this case, the divergence 
velocity is evaluated for an aerodynamic grid composed by: 

- 20 chordwise panels. 
- 40 spanwise panels (only the right semi-wing is considered). 

These parameters have been chosen after a trial-and error process, that evidenced the following condition: as 
the number of panels is increased, the result converges to the values obtained for the selected grid (as shown 
in Table 29). A finer grid could be chosen, such as a 30x40 panels one, but this would imply excessive 
computational times and lead to the same result of the 10x40 and the 20x40 meshes. 

 

Chordwise 
aerodynamic panels 

Spanwise aerodynamic 
panels Divergence velocity 

10 
20 191,21 m/s 
30 161,59 m/s 
40 158,05 m/s 

20 
20 192,68 m/s 
30 162,35 m/s 
40 158,75 m/s 

30 40 158,98 m/s 
Table 29: Syncro semi-wing divergence velocity evaluation, aerodynamic grid definition and convergence considerations for Δ=1.54 

(real wing shear centre approximate position). 

 

The relative position between shear centre and aerodynamic centre is defined through equation 6.6: 

∆=
𝑥𝑠ℎ𝑒𝑎𝑟 𝑐𝑒𝑛𝑡𝑟𝑒
𝑥𝑎𝑒𝑟𝑜 𝑐𝑒𝑛𝑡𝑟𝑒

 (6.6) 
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Where x coordinate defines the chordwise direction on the semi-wing reference system: 

- If ∆> 1 the shear centre is backwards respect to the aerodynamic centre. 
- If ∆< 1 the shear centre is located forward respect to the aerodynamic centre. 

 

Shear centre relative 
position (Δ) Divergence velocity 

1 Infinite 
1.1 317,15 m/s 
1.2 246,57 m/s 
1.3 207,10 m/s 
1.4 181,62 m/s 
1.5 163,59 m/s 

1.5426 158,98 m/s 
1.6 149,99 m/s 
1.7 139,25 m/s 
1.8 130,49 m/s 
1.9 123,14 m/s 
2 116,84 m/s 

2.5 94,22 m/s 
3 77,72 m/s 

3.5 62.18 m/s 
Table 30: Syncro semi-wing divergence velocity evaluation, 1.225 kg/m3 air density. 

 

The experimental results show that the real shear centre of the aircraft is located approximatively at Δ=1.5426 

from the leading edge, thus the resulting divergence velocity can be represented by the value in equation 6.7.  

𝑉𝐷 = 158,98
𝑚

𝑠
 (6.7) 

The effect of shear centre relative position is evidenced in Table 30, where the divergence speed decreases as 
the value of Δ grows, for Δ > 1. At the same time, if Δ < 1 the rotation induced by aerodynamic forces on the 
semi-wing induces an opposite rotation, that implies an imaginary solution (there is no divergence velocity). 
The general behaviour that can be identified is described by the following three situations: 

1. ∆> 1 the rotation induced by aerodynamic loads is positive (y axis, right hand rule). 
2. ∆< 1 the rotation induced by aerodynamic loads is negative (y axis, right hand rule). 
3. ∆= 1 the rotation induced is equal to zero,  

For a fixed shear centre position, the effect of air density variation is analysed in Table 31, where divergence 
speed is evaluated for different altitudes, from 0m to 4000m. It can be obtained in two ways, that permit to 
furtherly prove the consistence of the here developed code: 

- The most suitable way is to evaluate it from the divergence dynamic pressure obtained at 0m of altitude 
and substitute the density for the considered flight level (1000m), as presented in 6.8.  
 

- The second way is to execute the static divergence code for the desired density (that is a 
computationally expensive way to evaluate the divergence condition); this permits to establish the 
validity of the code. 
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𝑞𝐷 = 𝜆 =
1

2
𝜌0𝑚𝑉𝐷0𝑚

2 =
1

2
𝜌1000𝑚𝑉𝐷1000𝑚

2  (6.8) 

 

Air Density Altitude Divergence Velocity 
1.2250 kg/m3 0 m 158,98 m/s 
1.1000 kg/m3 1107 m 166,07 m/s 
1.0000 kg/m3 2064 m 174,17 m/s 
0.9000 kg/m3 3097 m 183,59 m/s 
0.8190 kg/m3 4000 m 192,46 m/s 

Table 31: Syncro semi-wing divergence velocity evaluation, altitude variation effect. 

 

The results obtained show that the divergence condition is located outside of the envelope diagram of Syncro 
Light Sport Aircraft. In particular, the limit operational velocities of the aircraft are presented in 6.9, where the 
never exceed velocity and the design one are presented: 

VD = 84,00 m/s 

(6.9) 
VNE = 75,56 m/s 

In the end, the dynamic divergence pressures are obtained for all loading factors that are concerned by the 
flight envelope. The divergence condition at maximum load factor (n) is located outside the envelope for the 
sea level condition (which is the most severe), as presented in 6.10: 

𝑉𝐷 = 79,50
𝑚

𝑠
> 𝑉𝑁𝐸 = 75,56

𝑚

𝑠
 (6.10) 

 

6.3.3 Effect of lamination on divergence speed 

The previous sections (6.3.1 and 6.3.2) 
do not consider the effect of advanced 
composite material properties on 
structural deformation and their effect 
on aeroelastic phenomena.  

These considerations will focus on the 
influence of lamination direction on 
static divergence velocity, through the 
analysis of a rectangular cross section 
beam. The structure analyzed is 
realized with a generic orthotropic 
material (as specified in Table 32) and 
fibers orientation is defined as 
specified in the reference system 
presented in Figure 48. 

Figure 48: Orthotropic material lamination angle reference system for a generic beam structure. 
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In the case presented in Figure 48 the lamination angle is positive (wash out lamination); the angles considered 
in the present analysis will be varied from -90° to +90°: in this way, the complete range of possible lamination 
angles will be investigated. The static structural deformation code is run at different lamination conditions, 
while all the other parameters of the semi wing are intentionally left constant. The static momentum load 
applied on the beam shows different torsion angles as the lamination is varied: 

- Positive lamination angles imply a greater deflection for the trailing edge of the beam than for the 
leading edge if compared with the 0° lamination case 

- Negative lamination angles determine an opposite condition at leading and trailing edge. 

From these considerations, it is already clear that lamination will influence divergence speed (as well as on 
flutter velocity): this phenomenon is called aeroelastic tailoring. Its definition was proposed by Shirk M. [21]:  

 

“the embodiment of directional stiffness into an aircraft structural design to control aeroelastic deformation, 

static or dynamic, in such a fashion as to affect the aerodynamic and structural performance of that aircraft 
in a beneficial way,” 

 

Material properties (orthotropic material) 
Elastic Modulus 

Longitudinal direction 
EL = 30,5 GPa Elastic Modulus 

Transversal direction 
ET = 10 GPa 

Poisson’s Ratio v = 0,33 Shear Modulus G = 5 GPa 
    

Geometrical properties (constant along span) 
Section chord c = 0,5 m Wingspan L = 5,00 m 
Section height h = 0,02 m Sweep angle Λ = 0° 

Structural Mesh 
Beam elements 20 Element nodes 4 

Cross section McLaurin 
polynomials order 3-rd DOFs (clamped 

boundary condition) 1800 

Aerodynamic Mesh (equally spaced grid) 
Chordwise panel’s number 10 
Spanwise panel’s number 40 

Panel’s total number 400 
Torsional Divergence: test case analysis 

Shear centre position x0 = c/2 = 0,250 m 
Aerodynamic Centre Location xac = c/4 = 0,125 m ** 

Air density ρ = 1,225 kg/m3 
Table 32: Orthotropic material beam structure properties. 

 

As presented by Librescu L., Thin-Walled Composite Beams [23] p. 508-512, aeroelastic phenomena are 
typically influenced by the lamination angle of a generic orthotropic material wing structure. In particular, the 
deformation generated by aerodynamic loads on the considered structure can be enhanced by the lamination 
direction, that leads to different tip deformations in the classical structural analysis (where the influence of 
aerodynamic stiffness matrix term has not been introduced).  
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This condition is presented in Figure 49, where tip deflection angles for the complete range of possible 
laminations are reported for the following aerodynamic conditions (red line): 

- 𝑉∞ = 50
𝑚

𝑠
 

- 𝜌∞ = 1,225
𝑘𝑔

𝑚3 
- 𝛼 = 2° 

The same analysis can be carried out for different airspeeds and incidence angles, generating an analogue trend 
but with lower or higher rotation angles. An example of this behaviour is proposed in Figure 49, where tip 
deflection angles for 𝑉∞ = 50

𝑚

𝑠
 are compared with the ones for 𝑉∞ = 40

𝑚

𝑠
 (blue line) and 𝑉∞ = 30

𝑚

𝑠
 (black 

line). Positive and negative rotations are defined as: 

1. Positive rotation when tip leading and trailing edge generate an angle concordant with y direction 
(considering the right hand rule). 

2. Negative rotation in the opposite condition (discordant with y direction, right hand rule). 
 

 

Figure 49: Tip section rotation angles for different lamination angles and airspeeds. 

After this brief introduction on aeroelastic tailoring phenomena, the results of static divergence analysis 
executed on the example test beam are presented in Figure 50, where the x axis represents the lamination angle 
that has been considered, while on y axis the matching static divergence speed is reported. The results obtained 
show that a minimum value for static divergence speed is achieved for lamination angles around -30°, where 
VD=21,79 m/s. This is in accordance with the maximum positive wing tip rotation observed in the static 
structural deformation result presented in Figure 49.  

The general behaviour implies a reduction of divergence velocity for wash in conditions, while wash out leads 
to a rapid growth of divergence velocity. Lamination angles between 5° and 85° return an imaginary value 
from the static aeroelasticity code execution; this means that the divergence condition is not reached. In Figure 
50, this range of angles is included between the two vertical dotted blue lines. In the end, divergence velocity 
obtained for 0° lamination can be considered as the reference value, that permits to make some quantitative 
evaluations (Table 33) on the percentual variation.  
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Lamination angle Divergence velocity Percentual variation (0° 
is the reference value) 

90° 54,96 m/s -2,74% 
85° - 5° Non defined Non defined 

0° 56,51 0,00% 
-5° 35,93 -36,41% 
-10° 28,90 -48,85% 
-15° 25,32 -55,19% 
-20° 23,31 -58,75% 
-25° 22,22 -60,68% 
-30° 21,79 -61,44% 
-35° 21,89 -61,26% 
-40° 22,50 -60,18% 
-45° 23,62 -58,20% 
-50° 25,32 -55,19% 
-55° 27,70 -50,98% 
-60° 30,87 -45,37% 
-65° 34,89 -38,26% 
-70° 39,65 -29,84% 
-75° 44,69 -20,92% 
-80° 49,18 -12,97% 
-85° 52,47 -7,15% 
-90° 54,96 -2,74% 

Table 33: Aeroelastic tayloring effect on divergence velocities, percentual variation. 

 

 
Figure 50: Aeroelastic tayloring effect on divergence velocities. 
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6.3.4 Sweep effect on static divergence velocity 

In the present section, the effect of sweep angle 
of the semi-wing on static aeroelasticity will be 
investigated. It is defined as the angle between 
the y axis on the reference system presented in 
Figure 51 and the quarter chord line, which is 
the line linking each 25% wing section point.  

The variation from a negative angle to a positive 
one will be analysed, but some practical 
considerations must be performed regarding a 
typical real wing case. 

 

Figure 51: Sweep angle reference system on a generic 
tapered right semi-wing. 

 

These observations are related to the following properties: 

- Subsonic aircrafts flying at low velocities (incompressible range of speeds) usually present null or low 
sweep angles, since the primary effect of this parameter is to delay the surging of compressibility 
phenomena when high Mach numbers (M=0.7-0.8) are approached. 
 

- High sweep angles both in the positive and negative range will be investigated, even thought that more 
limited angles will be considered in the project of a Light Sport Aircraft. 

 

 
Figure 52: Sweep angle influence on spanwise lift coefficient distribution (present code results). 
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The test case that has been considered in this work is a rectangular cross-section beam structure realised with 
an isotropic material. In this way, only the effect of sweep will be evidenced: from the aerodynamic point of 
view, Figure 52 represents the lift coefficient distribution for three different sweep angles (a positive angle, a 
negative one and the zero-sweep reference case). 

Material properties (orthotropic material) 
Elastic Modulus  EL = 75 GPa 
Shear Modulus G = 28 GPa 
Poisson’s Ratio v = 0,25 

Geometrical properties (constant along span) 
Section chord c = 0,50 m 
Section height h = 0,02 m 

Wingspan L = 5,00 m 
Structural grid 

Beam elements 20 Element nodes 4 
Cross section McLaurin polynomials 4-th order 

Aerodynamic grid 
Chordwise panels 10 
Spanwise panels 40 on semi-wing (80 total) 

Table 34: Test case beam properties and considered discretization. 

Table 34 resumes the main aerodynamic and structural properties considered for the present case study, while 
Table 35 reports the verification test cases compared to AVL [11] results. Lift coefficients are referred to a 1° 
incidence angle and underline a general good coherence between the two codes considered. 

Sweep angle 
Lift coefficient (CL) 

Present code results AVL [11] results Relative error 
-10° 0,0942 0,0936 0,64% 
0° 0,0955 0,0948 0,73% 

10° 0,0943 0,0936 0,74% 
Table 35: Lift coefficient results verification for three different sweep angles on the considered semi-wing (incidence: 1°). 

 

At this point, the static structural code and the 
aerodynamic one (VLM) have been executed with 
several sweep angle conditions, that brought to the 
following observations: 

1. Positive sweep angle generates a rapid 
increase of divergence velocity, in particular, 
static aeroelasticity code returns an imaginary 
value for angles above 10° (this means that 
the considered system does not present 
torsional divergence problems). 
 

2. Negative sweep angles determine a quick 
reduction of divergence speed. 

Figure 53: Sweep angle influence on static divergence velocity 
(present code results). 
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6.4 Flutter results 

The various attempts made during the code development phase brought to a compromise: the solution proposed 
is based on k-method, that guarantees short solution times and the coherence with results obtained from the 
other instruments used in the following section. A verification of the results has been provided. 

 

6.4.1 Constant cross-section test beam 

The verification case that has been considered is a constant rectangular cross-section beam, that has the 
properties described in Table 36 and Table 37. Flutter velocity has been compared to the ones obtained from 
the following theories: 

- A two degrees of freedom p-k method based on Theodorsen’s unsteady aerodynamics model; this 

code has been developed by Petrolo M. and Zappino E. [17] during Aeroelasticity lessons at 
Politecnico di Torino. 

- MUL2 Aeroelasticità 2020-2021 [18] solver, which is a solver based on multiple degrees of freedom 
structural model, Double Lattice Method, and g-method. 
 

Material properties (isotropic material) 
Elastic Modulus E = 75 GPa Poisson’s Ratio v = 0,33 
Shear Modulus G = 28 GPa Density ρ = 2700 kg/m3 

Geometrical properties (constant along span) 
Section chord c = 0,2 m Wingspan L = 1,5 m 
Section height h = 0,01 m Sweep angle Λ = 0° 

Table 36: Test beam geometrical and material properties for flutter analysis. 

Structural Mesh 
Beam elements 20 Element nodes 4 

Cross section McLaurin 
polynomials order 

4-th DOFs (clamped 
boundary condition) 

1800 

Aerodynamic Mesh (equally spaced grid) 
Chordwise panel’s 

number 
Case 1: 7 
Case 2: 10 

Spanwise panel’s 

number 
20 

Panel’s total number Case 1: 140 
Case 2: 200 

Reduced frequency 
limit 

𝑘 < 0,08𝜋 ∙ (10) = 2,51 

Table 37: Test beam structural and aerodynamic grid properties for flutter analysis. 

 

Damping and oscillation frequencies have been analysed from the k-method solution data. The crossing from 
a negative damping condition to a positive one has been searched in the range of considered velocities. 

The results obtained from the various models show a general coherence between the analyses executed; in 
particular, the solution provided by the here developed k-method and the g-method from MUL2 [18] underline 
consistent results as the number of aerodynamic panels grows. The values imposed for reduced frequency are 
limited in the range of equation 6.11: 

𝑘 < 2.0 (6.11) 



106 
 

Where the maximum reduced frequency is limited by the grid parameters chosen for the semi-wing. The results 
obtained for frequency values are reported in Figure 54, while the damping behaviour is not shown since the 
graphical result is of difficult interpretation for the considered range of speeds. Nevertheless, the velocity 
values for which the crossing from negative damping to positive damping is reported in Table 38, where the 
flutter condition is identified. The unstable mode is the fourth one, which is the first torsional mode for the 
considered beam structure. 

 

Solver Flutter speed 
2 DOFs p-k method 224 m/s 

g-method 
6x20 aerodynamic grid 10x20 aerodynamic grid 

227 m/s 226 m/s 

k-method 
7x20 aerodynamic grid 10x20 aerodynamic grid 12x20 aerodynamic grid 

233 m/s 230 m/s 228 m/s 
Table 38: Test beam flutter results comparison. 

 

For the sake of simplicity, the results shown in Figure 54 include only the frequency values obtained for 
velocities that are lower than 500 m/s: the considered range is still larger than the one of interest, but this 
permits to display the complete behaviour of the considered phenomena. The values obtained for transonic and 
supersonic speeds are meaningless from the physical point of view, since the hypotheses of VLM (based on 
Laplace’s equation) are not valid for that range of velocities. 

Moreover, Figure 54 clearly shows the limitation that has been imposed to reduced frequency (k), that is 
identified by the virtual segment that connects the minimum velocity condition for each considered frequency. 
Finally, another consideration for the analysis that has been executed is related to the frequency values of the 
first unstable mode (4-th), that is merging with the third one. 

 

 
Figure 54: First 10 modes frequencies for the considered test beam. 
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6.4.2 Simple case experimental references and g-method analysis 

Flutter analysis includes a large number of variables and error sources due to the many approximations that 
have been introduced in the steady and unsteady aerodynamic theories as well as in the structural model 
development. The present section has the aim to verify the obtained results with the ones presented by Kemal 
Yaman, Subsonic Flutter of Cantilever Rectangular PC Plate Structure [22], where a comparison between 
experimental evidence and g-method results is carried out. A rectangular polycarbonate plate has been 
considered, with the properties resumed in Table 39 and Table 40: the aerodynamic grid and structural 
discretization adopted in the codes developed in this work are listed in the same tables. 

 

Present code aerodynamic grid 
Chordwise panels 8 
Spanwise panels 36 

Present code structural grid 
Elements 20 

Cross section polynomial order 4-th 
Element’s nodes 4 

Table 39: Reference rectangular beam aerodynamic and structural grids. 

 

The experimental test has been carried out at ART (Kemal Yaman [22]), that is Ankara Wind Tunnel 
(maximum wind speed is 90 m/s), while the computational results were obtained from ZAERO© and MSC 
NASTRAN©. The polycarbonate beam is bound with a clamped boundary condition at the base of the wind 
tunnel; the same conditions are replicated in the software model. 

 

Geometrical properties 
Beam length L = 1,0 m 
Chord length c = 0,125 m 

Cross section height h = 0,005 m 
Polycarbonate material properties 

Density ρ = 1200 kg/m3 
Elastic Modulus E = 3,5 GPa 
Shear Modulus G = 1,30 GPa 
Poisson’s Ratio v = 0,35 

Mass m = 0,75 kg 
Table 40: Reference rectangular beam geometrical and material properties. 

 

Finally, the results obtained from the present code, the g-method ones and the experimental test are presented 
in Table 41. Some considerations have been made on the evidence of this analysis: 

- The present code results have a good coherence with the experimental ones considering the oscillation 
frequency of the polycarbonate beam (Table 42 shows the first six modal frequencies obtained for the 
free-vibration case from the code described in chapter 3.9.1). 

- The flutter velocity obtained from the present k-method is the smallest if compared with the Subsonic 
Flutter of Cantilever Rectangular PC Plate Structure [22] results, but it is also conservative. 

- The detected fluttering mode is the same for all the considered cases. 
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Reference: Present code Subsonic Flutter of Cantilever Rectangular PC Plate Structure [22] 
Theory: k-method Experimental Result ZAERO© g-method ZAERO© k-method 
Speed 21,45 m/s 24,89 m/s 22,5 m/s 23,8 m/s 

Frequency 9,1 Hz 8,9 Hz 10,4 Hz 9,7 Hz 
Mode 2-nd 2-nd 2-nd 2-nd 

Table 41: Flutter results comparison for the rectangular beam test case considered. 

 

Mode 1-st 2-nd 3-rd 4-th 5-th 6-th 
Frequency 8,79 Hz 55,04 Hz 134,85 Hz 154,30 Hz 214,87 Hz 303,13 Hz 

Table 42: First six free vibrational modes for the considered rectangular beam. 

 

6.4.3 HALE aircraft equivalent wing model 

Flutter analysis examples literature is rich of studies regarding small flat plates that have limited aspect ratios, 
that may generate problems in the present structural modal analysis instruments and later in the interaction 
with the aerodynamic code.  

For this reason, an ideal example to test the present k-method is provided by HALE (High-Altitude, Long-
Endurance) aircraft, that will be simplified in the present section due to the different flutter analysis input data 
approach that has been used. The information of this aircraft’s wing are reported in Table 43, where its main 
properties are resumed; all data have been obtained from Kirsch, B., Montagnier O., Bénard, E., Faure, T. 
[24], and Mayuresh J. Patil [25]: 

 

Semi-span L = 16,0 m 
Chord c = 1,00 m 

Mass per unit length μ = 0,75 kg/m 
Centre of gravity (CG) 50% 

Elastic axis (EA) 50% 
Distance between CG and EA 0,00 m 

Bending stiffness (y) EIy = 2,00·104 Nm2 
Bending stiffness (x) EIx = 4,00·106 Nm2 
Torsional stiffness GJ = 1,00·104 Nm2 
Table 43: Geometrical and structural properties of HALE aircraft. 

 

An equivalent rectangular cross section for the present code semi-wing has been developed considering all 
data presented in Table 43: the thickness of the flat plate (h) has been computed from the mass per unit length 
parameter and the x-y planform geometry of the wing. The resulting value is h = 0,05 m, that permits to also 
evaluate Ex, Ey, and G values, while the aerodynamic surface of this high aspect ratio wing is modelled through 
VLM and DLM codes from L and c values. 

This is clearly a simplification since the real wing properties are different from the geometrical point of view 
and the free vibrational results will represent an approximation of the real case.  
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The properties of aerodynamic and structural grid are presented in Table 44: 

 

Present code aerodynamic grid 
Chordwise panels 10 
Spanwise panels 60 

Present code structural grid 
Elements 20 

Cross section polynomial order 4-th 
Element’s nodes 4 

Table 44: HALE aircraft discretization properties. 

 

Figure 55 reports the speed-damping plot obtained for the HALE aircraft model. As can be observed, only the 
fluttering mode is shown and the dynamic instability velocity is 31.92 m/s, while the frequency is 6.43 Hz 
(first mode). From the comparison with Kirsch, B., Montagnier O., Bénard, E., Faure, T. [24], and Mayuresh 
J. Patil [25] results, flutter velocity is properly evaluated by the present code (the reference values from the 
previously quoted sources are included in the range 32.2-32.6 m/s). On the other side, frequency presents a 
high error ratio, probably due to the simplifications introduced in the present wing geometry model. 

 

 

Figure 55: Unstable mode damping-velocity plot for HALE aircraft. 

 

6.4.4 Syncro model flutter evaluation 

Finally, this section considers k-method results on Syncro semi-wing model. The structure and aerodynamic 
properties have already been described in the previous chapters, in particular: 

1. The structural model is made of 22 beam elements with variable spanwise properties; The structural 
analysis code verification has already been provided and the structural properties are the same that have 
been used for the static divergence investigations in chapter 6.3.2. 
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2. The aerodynamic model used for this analysis is a compromise between short computational times for the 
DLM code section execution and the respect of the other conditions that are imposed. In particular, the 
following number of panels has been chosen for the semi-wing model: 
 
2.1. Chordwise elements: 25 
2.2. Spanwise elements: 30 

This permits to set the reduced frequency limit to k = 6.3. Also, aspect ratio limitations are satisfied. 

3. The splining process is then executed through the appropriate MatLab® code, that permits to evaluate 
displacements and slopes at each Load and Control Point for the considered modes. This is the last step 
that anticipates the k-method flutter code run. 

The conditions presented in the previous section become even more complicate for the results concerning the 
model of Syncro aircraft’s semi-wing, since the range of velocities obtained for the reduced frequencies that 
have been considered is extended to supersonic and hypersonic speeds. 

As in the verification case, only the first 10 free-vibration modes have been considered and the results obtained 
are displayed in Table 45, where the fluttering mode and the correspondent velocity are reported.  

Another central point is related to the number of panels that are necessary to properly describe the properties 
of the semi-wing: as the grid is refined, the solution time increases exponentially, determining the need to 
properly balance the number of panels. The grid that has been created satisfies the conditions imposed on the 
aspect ratio with a relatively short execution time. 

 

Number of free-vibration modes 10 
Fluttering mode 2-nd 
Flutter velocity 132,6 m/s 

Flutter Frequency 177,5 Hz 
Table 45: Syncro aircraft flutter results. 

 

This result is an approximation due to the many hypothesis that have been introduced, such as: 

- The creation of the structural model of Syncro aircraft’s semi-wing with the equivalent section model. 
- The use of harmonic aerodynamic properties. 
- The use of k-method to solve the dynamic aeroelasticity problem. 

 

All these simplifications concur to generate possible inaccuracies on the real semi-wing representation, that 
has a much more complex structure than the ones used for verification cases or simple flutter analyses. 

For this reason, the velocity that has been obtained is considered as an indicative result and will be compared 
with the ones provided by commercial structural codes in the future developments (as explained in the 
conclusive chapter).  
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Chapter 7 

Conclusions 
 

The final considerations about the present work are divided into three main sections, that reflect the procedure 
followed in the development phase. The main key points, as well as the advantages and drawbacks that have 
been identified, are underlined for: 

- Aerodynamic analysis. 
- Structural analysis. 
- Aeroelastic analysis. 

 

The codes for steady and unsteady aerodynamic analysis provide data that are coherent with the corresponding 
verification examples. The main hypotheses that were introduced are: inviscid flow and harmonically 
oscillating aerodynamic properties (for the unsteady case analysed through Doublet Lattice Method). This 
implies that the scripts proposed for VLM and DLM are a valid base for the analysis of trapezoidal wings 
aerodynamic properties in the linear range of angles of attack. The representation of stall phenomena is not 
provided by this theory.  

Vortex Lattice Method can also account for limited profile camber effects by considering vortex ring elements: 
each panel is identified by the orthogonal vector with three components in three-dimensional space and the 
results obtained are coherent with the analogue analysis executed with Athena Vortex Lattice [11]. The same 
improvement can be done on Doublet Lattice Method by introducing the D2,ij term, which accounts also for z 
displacements of Load and Control Points. This term has already been presented in chapter 2, but it has not 
been implemented in the present analysis since it determines additional computational time. 

 

The structural analysis instrument that has been developed in this work presents some advantages, but even 
some disadvantages that are determined by the approximations introduced in the model. 

The main advantages are: 

1. The rapidity in prototyping simple beam structures with constant cross-section or linear and limited 
taper ratio. The materials used can be both isotropic and orthotropic with a generic fibre orientation 
angle. The number of elements used to discretize the beam is arbitrary. 
 

2. The structural code can be adapted to represent a general cross-section composed by an arbitrary 
number of rectangular/square elements. This permits to realize all the mainly used beam shapes for 
spars, such as I, T, and C ones. 
 

3. The materials assigned to each section can be varied. This property is particularly useful, for example 
when a spar has a web realised in honeycomb or PVC, while caps are made of composite materials. 

At the same time, some disadvantages have been identified from the various tests carried out: 

1. Complex structures and realistic components, such as junctions and connection elements, are difficult 
to be modelled with this simple model. 
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2. Structures with huge geometrical properties variation from root to tip section tend to generate ill-
conditioning in matrixial problems solution, that can be solved in modal analysis case with the use of 
Schur’s decomposition of matrices (integrated in eig() function, as specified in chapter 3.9.3.6). A 
more effective approach could be to use Lagrange polynomials instead of McLaurin ones to discretize 
cross-section deformations for each element. This solution has already been adopted in other similar 
works and will certainly be a desirable future development for these codes. 

The structural model used to represent Syncro’s aircraft semi-wing is the result of several analysis and 
evaluations executed during the development process. The semi-wing has been modelled as a rectangular 
cross-section equivalent beam, whose deformation properties have been calibrated on the experimental 
bending and torsion results. In this model, the equivalent beam has the same mass properties defined for each 
real element, while geometry, material stiffness and density are derived consequently. 

While it is an efficient and practical method to represent complex structures concerning many elements, the 
disadvantages of this solution are: 

- A calibration phase is always necessary to set the correct cross-section properties, thus it is difficult to 
automatize the development of the model. 
 

- The effect of aeroelastic tayloring cannot be investigated since the obtained beam is an equivalent 
structure where fibres orientation is not represented. 

Finally, an alternative solution is to use the results of a commercial structural solver to analyse the semi-wing 
properties. The results obtained (mass and stiffness matrices) could be used as the input data for aeroelastic 
analyses. 

 

Static divergence analysis results have been tested on a sample beam, that assesses the validity of the model. 
The results obtained are coherent with strip theory, but permit to study a variety of different semi-wings where 
the following properties can be varied arbitrarily: 

1. Material (isotropic, orthotropic). 
 

2. Aerodynamic surface geometry (taper ratio, discretization grid properties…). 
 

3. Beam structure properties (taper ratio, different cross-sections…). 

This permits to apply the obtained code to every static aeroelasticity problem when the structural results do 
not present singularities or ill-conditioning. 

Flutter analysis results, on the other hand, are more complex to be interpreted than static divergence ones since 
many factors can influence this type of study. As described in chapter 5, dynamic aeroelasticity can be 
investigated through k-method, p-k method, and g-method (with an increasing precision from the first to the 
last method indicated). Flutter speeds presented in this work are obtained through k-method, because of the 
difficulties that have been encountered during the development phase: p-k method implies an iterative process 
to evaluate the value of p (which contains the information related to damping and oscillation frequency for the 
considered system of equations), which increases excessively computational time. This is due to the fact that 
every step of the iterative process implies the execution of the unsteady aerodynamics code in order to evaluate 
the contribute for that reduced frequency.  
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On the other hand, k-method avoids this iterative process and shortens the code execution time, while the 
precision of the obtained results is reduced and, in some situations, could generate inaccuracies due to the 
“looping” of frequencies and damping, as described by Dale M. Pitt [16] p. 1. 

In the present codes, k-method represents a good compromise between accuracy and solution time, but p-k 
method remains a fundamental step for future developments from this work. 

The main points of this last chapter underline that there are several perspectives to improve the present work 
from different points of view. Nevertheless, the result of this study is a complete assembly of MatLab® codes 
that permits to analyse, in a simplified way, the wing of a generic ultralight aircraft from the aerodynamic and 
structural point of view. Thus, this work could be a base support instrument for the analysis of future Synthesis 
s.r.l. products. 
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Chapter 8 

Appendix 
 

Appendix I – ISA Atmosphere 

International Standard Atmosphere is the typical model for the variation of density, pressure, temperature and 
viscosity through a wide range of altitudes. For troposphere, which is the first layer of the atmosphere (about 
0-10000m), temperature variation is defined through A1.1: 

 

𝑇 = 𝑇0 − 0.0065ℎ (A1.1) 
 

𝜌 = 𝜌0 (
𝑇0 − 0.0065ℎ

𝑇0
)
4.2561

= 𝜌0 (1 −
0.0065ℎ

𝑇0
)
4.2561

 (A1.2) 

 

Where h is the altitude considered from sea level in meters. 

 

 

 

Figure 56: ISA Atmosphere temperature and density variation. 
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Appendix II – Material stiffness coefficients matrix 

The transformation matrix described in equation 3.16 permits to obtain material stiffness coefficients matrix 
in the structural reference system, given the angle between the orthotropic material lamination direction and 
the reference system, and the values of the coefficients in the material reference (1,2,3). The multiplications 
that must be carried out are the following, where the ~ apex is referred to the structural reference system values: 

 

 

𝐶̃33 = 𝐶33 cos
4(𝜃) + 2(𝐶23 + 2𝐶66) sin

2(𝜃) cos2(𝜃) + 𝐶22 sin
4(𝜃) 

 
𝐶̃23 = 𝐶23(cos

4(𝜃) + sin4(𝜃)) + (𝐶33 + 𝐶22 − 4𝐶66) sin
2(𝜃) cos2(𝜃) 

 
𝐶̃13 = 𝐶13 cos

2(𝜃) + 𝐶12 sin
2(𝜃) 

 
𝐶̃36 = (−𝐶33 + 𝐶23 + 2𝐶66) 𝑠𝑖𝑛(𝜃) cos

3(𝜃) + (𝐶22 − 𝐶23 − 2𝐶66) sin
3(𝜃) cos(𝜃) 

 
𝐶̃22 = 𝐶22 cos

4(𝜃) + 2(𝐶23 + 2𝐶66) sin
2(𝜃) cos2(𝜃) + 𝐶33 sin

4(𝜃) 
 

𝐶̃12 = 𝐶12 cos
2(𝜃) + 𝐶13 sin

2(𝜃) 
 

𝐶̃26 = (−𝐶33 + 𝐶23 + 2𝐶66) 𝑐𝑜𝑠(𝜃) sin
3(𝜃) + (𝐶22 − 𝐶23 − 2𝐶66) cos

3(𝜃) sin(𝜃) 
 

𝐶̃11 = 𝐶11 
 

𝐶̃16 = (𝐶12 − 𝐶13) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 
 

𝐶̃44 = 𝐶44 cos
2(𝜃) + 𝐶55 sin

2(𝜃) 
 

𝐶̃45 = (𝐶44 − 𝐶55) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 
 

𝐶̃55 = 𝐶55 cos
2(𝜃) + 𝐶44 sin

2(𝜃) 
 

𝐶̃66 = (𝐶33 + 𝐶22 − 2𝐶23 − 2𝐶66) sin
2(𝜃) cos2(𝜃) + 𝐶66(cos

4(𝜃) + sin4(𝜃)) 
 

(A2.1) 
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Appendix III – Static test loading conditions 

The experimental loading tests carried out on Syncro aircraft semi-wing have been executed by charging the 
wing with a series of sandbags distributed along y coordinate. Their weight has been distributed on the elements 
of the beam model with a proper interpolation. The condition of 600kg wing loading is considered, thus each 
semi-wing is loaded with 300kg: this corresponds to a unitary contingence factor (n=1) MTOW of 600kg. 

Loading process is intended to only create a bending in z direction, thus the center of mass of each sandbag is 
located on the torsional center of the wing section (this prevents the creation of torsional effects). At the same 
time, a twist test has been carried out: the incremental torsional moments measured for each element are 
reported in the following table. 

 

y coordinate 
[mm] Element 

Pure bending loading Pure torsional 
loading 

Loading [kg] Loading [N] Momentum [Nm] 
0 1    17,225   168,978 329,590 

200 2    16,921   165,999 317,270 
400 3    16,618   163,020 305,380 
600 4    16,314   160,042 293,920 
800 5    16,011   157,063 282,870 

1000 6    15,707   154,085 272,240 
1200 7    15,403   151,106 262,000 
1400 8    15,100   148,127 252,170 
1600 9    14,796   145,149 242,710 
1800 10    14,492   142,170 233,640 
2000 11    14,189   139,191 224,940 
2200 12    13,885   136,213 216,600 
2400 13    13,582   133,234 208,620 
2600 14    17,510   171,770 199,200 
2800 15    12,974   127,277 173,540 
3000 16    12,671   124,298 143,080 
3200 17    12,367   121,320 114,050 
3400 18    12,063   118,341 86,410 
3600 19    11,760   115,362 60,110 
3800 20    11,456   112,384 35,140 
4000 21     8,952    87,822 11,450 

Table 46: Semi-wing loadings for experimental tests. 
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Appendix IV - Code Interfaces 

All the analysis carried out in this work have been presented in the previous chapters, as well as the results 
obtained from each of them. Before proceeding with the conclusions, a short review of the MatLab® codes and 
their user interfaces is presented, since they can be easily adapted to other aircrafts analyses.  

 

IV.1 VLM interface 

Even thought that aeroelastic analyses are based on uncambered profiles, a version of VLM code based on 
vortex rings and horseshoes is provided, thus cambered profiles can be introduced. The validity of the results 
obtained from this code has been proven through the Athena Vortex 
Lattice (AVL) [11]. As the program run button is selected, the 
interface that appears is the one presented in Figure 57. The 
parameters of a generic trapezoidal wing can be set to evaluate 
lifting properties of the surface that is considered: 

- The first three parameters permit to use three different 
profiles along spanwise coordinate. The user must type the 
name of the file containing profile coordinates in two 
dimensions (a .txt file), while the code will automatically 
evaluate camber and panels discretization on the base of 
the following parameters. 
 

- The following three boxes permit to set the conditions on 
which lift and induced drag are computed (the forces in 
Newton will be the output of the code); at the same time, 
the program will compute lift and drag coefficients for all 
the angles in the linear range, while stall is not modelled 
since this theory is based on inviscid aerodynamics. 

 
- The other parameters permit to set geometrical properties 

of the wing and homogeneous grid discretization. 
 

- The last two boxes are the ones that set the spanwise 
coordinate on which profile changes from the first to the 
second and from the second to the last one. The choice of 
a maximum of three different profiles along spanwise 
coordinate is based on the Syncro aircraft case, but it can 
be easily adapted to more complex situations. 
 

 

Figure 57: Vortex Lattice Method code user interface. 
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IV.2 DLM interface 

A version of Doublet Lattice Method code with a user interface has been provided to evaluate the effect of 
oscillating aileron on lift of a generic trapezoidal wing. The input interface permits to set the same parameters 
described previously, and a series of parameters that are specific for 
this analysis: 

- Aileron chord in meters. 
 

- Aileron span, considering that its location extends from 
wing tip towards the root for the value that has been 
provided in the box. 
 

- Aileron deflection in degrees. 
 

- Reduced aileron oscillation frequency (k); if its value is 
equal to zero, the result obtained is the static lift coefficient 
for the considered aileron deflection. 
 

The user must be aware that DLM code requires two conditions for 
the grid definition in the unsteady case, that have been defined in 
chapter 2. The first one relates the maximum reduced frequency to 
the panel chord, while the second relates the maximum aspect ratio 
of each panel: 

 

∆𝑥 <
0.08𝑉∞
𝑓

=
0.08𝑉∞
𝜔

2𝜋 =
0.08

𝑘
2𝜋𝑏 (10.1) 

 

𝐴𝑅 < 5 (10.2) 

 

The output provided will be the pressure coefficient for each panel 
of the semi-wing, that permits to evaluate the real and imaginary 
parts of the lift coefficient for the considered wing. 

 

 

 

 

 

Figure 58: Doublet Lattice Method code user interface. 
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IV.3 Structural static deformation interface 

As for the aerodynamic codes, an user interface has been provided for structural codes, that permits to rapidly 
prototype simple constant cross section wings, where the main geometrical properties and the material ones 
can be easily varied by the user. For more complex cases, such as the one of Syncro aircraft semi-wing, the 
most suitable solution is to assign the variable cross-section properties directly from the code lines. 
Nevertheless, Figure 59 resumes the main properties that can be set by a generic user: 

- The number of structural elements in which the beam is divided. 
 

- The global beam length and its cross-section dimensions (x 
and z), that define its geometry. 
 

- The number of free-vibrational frequencies considered if the 
modal analysis is carried out. 
 

- McLaurin polynomial orders used to represent the beam 
properties (it can be varied in the range that goes from 2-nd 
to 4-th order). 
 

- Sweep angle assigned to the structure. 
 

- The material properties of the beam. The present code 
permits to discretise: 
 

1. Isotropic materials, where elastic moduli and shear 
moduli are equal in the three independent directions 
of the considered reference system. 
 

2. Orthotropic materials, where elastic modulus is 
different in the longitudinal and the transversal 
direction and depends on the lamination properties 
of the considered beam. 
 

- The final three boxes permit to set the density of the material, 
Poisson’s ratio, and fibres orientation for orthotropic 

materials. If the beam is made of isotropic materials, the fibres 
orientation must be set equal to zero degrees. 

Figure 59: Structural code user interface. 

 

IV.4 Other codes 

A simple code interface has been provided even for the aeroelasticity codes, but it is often necessary to set 
some parameters and input conditions on the base of the specific situations that are considered. For this reason, 
a complete automatization of the evaluations is not suitable.  
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