Politecnico di Torino

Department of Mechanical and Aerospace Engineering

I’ ?%Q 3
A =" ,‘
h = .i{ ;

Politecnico
di Torino

A \\ 859 J’

Master’s Degree in Aerospace Engineering

Implementation of a Python-based
software approach in aviation data

analysis
Supervisor Author
Prof. Giorgio GUGLIERI Giovanna Francesca
CALLEGARI

Co-supervisors

Beatrice CONTI, PhD
Giuliano ANTONICIELLO, PhD

April, 2022

Abstract

Aviation safety is considered a vital topic to study and enforce periodically as
recommended by the proper authorities. At European level every state uses their
own methodology for safety data analysis, it is then important to revise and update
the procedures. The purpose of this thesis is to investigate an alternative method
for processing safety data in aviation. The results suggest a potential future shared
approach.

A Python-based user-friendly software pipeline has been developed, which seeks to
be comprehensive and collective. The choice of the programming language has been
motivated by the need for an efficient manipulation and an optimal elaboration
of the input data. The process started with Excel spreadsheets containing Italian
safety data, which were cleaned, organized, and then used as a benchmark for our
analysis.

The selected topics are Safety Performance Indicators and Dangerous Goods,
respectively. The former are parameters defined to measure safety performances
and the latter are any hazardous substances that happen to occur in in-flight
or in ground operations. Using input files provided by ENAC, several templates
have been derived that give as an outcome the analysis embedded in the yearly
ENAC Safety Report!. In addition, the method allows to assess the accuracy
of the analysis through warnings and validation, and it can be easily updated
for incoming years. The presented results are twofold: tabular data results and
graphical visualisations.

Thttps://sites.google.com/enac.gov.it /enacsafetyreport /introduction?authuser=0

Abstract

Nell’ambito dell’aviazione civile la safety e considerata uno tra gli aspetti piu
essenziali da esaminare e migliorare periodicamente secondo le direttive delle
autorita competenti. A livello europeo ogni stato utilizza le proprie metodologie
nell’analizzare i dati riguardanti la safety, ¢ dunque importante verificare e rinnovare
i processi. Lo scopo di questa tesi e ricercare un metodo alternativo per processare
i dati safety. I risultati ottenuti suggeriscono un potenziale approccio condiviso in
futuro.

E stato sviluppato un software pipeline basato su Python, tale da essere intuitivo,
generale ed esauriente. La scelta del linguaggio di programmazione ¢ derivata dalla
necessita di manipolare ed elaborare i dati di input in modo efficiente. Partendo da
fogli di lavoro in Excel, in seguito ad una pulizia ed ad un’organizzazione dei dati
a livello italiano, questi sono stati utilizzati come riferimento per la nostra analisi.
Gli argomenti selezionati sono gli Safety Performance Indicators e i Dangerous
Goods. 1 primi sono parametri utilizzati nella misurazione del livello di safety
performance, mentre i secondi sono qualunque sostanza pericolosa segnalata durante
operazioni in volo o a terra. Utilizzando come input i documenti forniti da ENAC,
sono stati realizzati vari template tali da fornire come output l'analisi annuale
presente nellENAC Safety Report?. Il metodo, inoltre, permette di accertare
I’accuratezza dell’analisi attraverso messaggi di errore e validazioni, oltre ad essere
facilmente aggiornabile per i prossimi anni. I risultati proposti sono di duplice
natura: in forma tabulare e in forma grafica.

Zhttps:/ /sites.google.com/enac.gov.it /enacsafetyreport /introduction?authuser=0

II1

To the people I care the most

Table of Contents

List of Tables

List of Figures

Acronyms

1

Introduction
1.1 General view on Safety
1.2 Organisations and safety programs

Safety at Italian level
2.1 Safety Report Portal

Topics of analysis

3.1 Dangerous Goods
3.1.1 General definitiono
3.1.2 Classification and coding
3.1.3 FEuropean stateofart

3.2 Safety Performance Indicators

3.3 ENAC reporting system

Python-based Pipeline: Dangerous Goods

4.1 Python

4.2 Inputdata
421 ExcelFiles.
4.2.2 Readingfiles. o

4.3 Event types L
4.3.1 Grouping
4.3.2 Checks and validation

4.4 Dangerous Goods types.
4.4.1 Gathering alldata

VII

VIII

XI

15
15
15
17
19
25
28

4.4.2 TCAO codes
4.4.3 Grouping
4.4.4 Checks and validation

5 Python-based Pipeline: Safety Performance Indicators
5.1 Imputdata
5.1.1 Reading Excel files
5.2 General templateo
5.3 Event types templateo
5.4 Checks and validation

6 Output graphics
6.1 Reproducing Safety Portal results
6.1.1 Dangerous Goods
6.1.2 Safety Performance Indicators
6.2 Finding new visualisation options
6.2.1 Dangerous Goods
6.2.2 Safety Performance Indicators

7 Conclusions
A Python-based Pipeline: DGs template
B Python-based Pipeline: SPI template

C Implementation of a Python-based dashboard
C.0.1 Plotting Adaptation
C.0.2 Designing the layout

Bibliography

VI

81

83

111

123
124
125

149

List of Tables

1.1
1.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
9.3

Categories of safety risk probability and severity. 2
Safety risk tolerability. oL 3
ENAC summary table on Outcome oriented SPI. (Tabella 1 — Indi-

catori operativi from [10]) Lo 26
Table model of Event types counting output. 38
Resulting table of Event types analysis. 41
Intermediate resulting table of Dangerous Goods analysis. 46
ICAO codes and classes., 48
Table model of DG types counting and matching output. 49
Division of codes into class 9 groups. L. 50
Resulting table of Dangerous Goods types analysis. 51
Resulting table of general SPI analysis on Runways Fxcursions. . . 59
Resulting table of general SPI analysis on Runways Incursions. . . . 59
Resulting table of Event types analysis on Runways Incursions. . . 60

VII

List of Figures

1.1

2.1

2.2
2.3
24

3.1
3.2
3.3

3.4
3.5

3.6
3.7
3.8
3.9

4.1
4.2

4.3

4.4
4.5

4.6
4.7

Acceptable level of safety performance (ALoSP). (Figure 8-4 from [1]) 5

Data analysis on Runway Excursions (RE) from ENAC Safety Report

Portal. 11
Event types analysis from ENAC Safety Portal. 12
Dangerous Goods Classes analysis from ENAC Safety Portal. 13
Legends of Dangerous Goods analysis in ENAC Safety Portal. . . . 13
An example of how Dangerous Goods list is presented by ICAO.[12] 17
Reported events on RAMP from 2019 report in Austria. 19
Occurrences related to the transport of Dangerous Goods reported

by Belgian organizations.o 0oL 20
Hazardous goods incidents reported to the LBA in Germany. 21
Summary of the 6,697 occurrence reports submitted by Irish AOC

holders during 2017. (DGs on the 16" row) 21
Dangerous Goods reported in the Netherlands. 22
Reports on Dangerous Goods in Norway from 2019 report. 23
Reports on Dangerous Goods in Poland from 2018 report. 24
Reports on Dangerous Goods in Spain from 2016 report. 24
Flowchart of the Dangerous Goods analysis. 32
Example of input data for the time period 2014-2019. (’Source’ and

'UTC date’ are classified and indicated generally.) 34
Example of input data for the time period 2020-2021. (’Source’ and

'UTC date’ are classified and indicated generally.) 34
Example of input data in the attached files. 34
Example of multiple Event types in a single Excel cell. (’Source’ and

'UTC date’ are classified and indicated generally.) 42
Python report for 2019 on analysis validation. 42

Example of different descriptions for the same DG type from 2019
data. (’Source’ and 'UTC date’ are classified and indicated generally.) 43

VIII

4.8 Example of exceptions in DG type definitions from 2019 data.
(’Source’ and "UTC date’ are classified and indicated generally.)

4.9 Code output of the validation check on attached files’ length from
2020 data.

4.10 Code output of the validation check on attached files’ length from
2020 data.

4.11 Python output for codes’ check.

4.12 Python report for 2019 on analysis validation.

4.13 Python report for 2020 on analysis validation.

5.1 Flowchart of the Safety Performance Indicators analysis.

5.2 Example of general input data of SPIs. (Sensible data is classified
and indicated generally.)o Lo

5.3 Example of input data of SPIs with Event types data. (Sensible
data is classified and indicated generally.)

6.1 Event types output chart.
6.2 Legend of figure 6.1
6.3 Dangerous Goods Types output chart.
6.4 Legend of figure 6.3.
6.5 Bar plot on occurrences per year and rate per year of Runway
FExcursion, as included in ENAC safety portal.
6.6 Trend of movements per year.,
6.7 Bar plot on occurrences per year and rate per year of Runway
Incursion, as included in ENAC safety portal.
6.8 Trend of fights per year.
6.9 Trend of occupancy duration per year.
6.10 Bar plots on Event types analysis of "Runway Incursions’, as included
in ENAC safety portal.
6.11 Trend of total amount of Event types reported yearly.
6.12 Stacked bar plot of Event types focusing on the years.
6.13 Stacked bar plot of Event types focusing on the types..
6.14 Legends of stacked plots of Event types analysis.
6.15 Multiple bar plots of Event types focusing on their values.
6.16 Trend of total amount of Dangerous Goods types reported yearly.
6.17 Stacked bar plot of DG types focusing on the years.
6.18 Stacked bar plot of DG types focusing on the classes.
6.19 Legends of Dangerous Goods analysis in ENAC Safety Portal.
6.20 Trend of fights per year for Runway Fxcursions.
6.21 Trend of fights per year for Runway Incursions.

47

o6

66

4
5
75
76
7
7

6.22 Bar plots and line plots on Event types analysis of Runway Incursions. 78

IX

6.23 Legend of figure 6.24. 78
6.24 Stacked bar plot on Event types analysis of Runway Incursions. . . 79
6.25 Line plot on Event types analysis of Runway Incursions with rate

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8

trends together.o 79
Flowchart relating to the implementation of the dashboard. 124
Example of a tooltip in an interactive plot included in the dashboard.124
Drop-down menus in the SPI page of the dashboard 126
Drop-down menu in the Dangerous Goods page of the dashboard. . 126
Home page of the dashboard. 126
Safety Performance Indicators page of the dashboard. 127
Dangerous Goods page of the dashboard. 127
About page of the dashboard. 127

Acronyms

AAR
Consolidated Annual Activity Report

ADREP
Accident/incident data reporting

ALoSP

Acceptable level of safety performance

ANSV

Agenzia nazionale per la sicurezza del volo

API

Application programming interface

ASR

Annual Safety Review

DG
Dangerous Good(s)

Doc

Document

EASA
European Union Aviation Safety Agency

ECAC
European Civil Aviation Conference

XI

eE-MOR
electronic ENAC - Mandatory Occurrence Reporting

ENAC
Italian Civil Aviation Agency

ICAO

International Civil Aviation Organisation

MOR

Mandatory Occurrences report

MST
Member State Tasks

PAS

European Plan for Aviation Safety

SMS

Safety management system(s)

SPAS
State Plan for Aviation Safety

SPD

Single Programming Document

SPI

Safety performance indicator

SPT

Safety performance target

SRM

Safety risk management

SSP

State safety programme

UN
United Nations

XII

Chapter 1

Introduction

1.1 General view on Safety

The concept of safety describes a state or a place where someone is safe and not in
danger and it is a concern valued in many fields regarding everyday life. Working,
travelling and living in a safer environment has became a fundamental topic to
study, analyze and implement.

In civil aviation, safety is:

‘the state in which risks associated with aviation activities, related to, or
in direct support of the operation of aircraft, are reduced and controlled
to an acceptable level’ [1].

As aviation itself has been evolving through the years, also safety is a dynamic
concept: since the early 1900s, different approaches have been implemented to
continuously identify and mitigate new hazards and risks. In order to define an
international standard to manage safety, since 2006 the International Civil Avia-
tion Organization (ICAO) has been publishing periodically the document Safety
management manual (Doc 9859)[1] and in November 2013 published the Annex
19, regarding Safety Management. This concept aims at directly addressing safety
risks mitigation and accident/incident prevention and it supports a state managing
its activities more accurately toward risks and more efficiently in term of resources.
The implementation of these actions is made possible by two main tools: the State
Safety Programme (SSP) and the Safety Management System (SMSs). The first
one is a collection of regulations and activities performed by each state in order
to improve safety, whereas the second one is a systematic approach to identify
hazards, collect and analyze data and continuously manage safety risks, aiming at a
better safety performance. The benefits of enforcing safety management can include
strengthened safety culture, better understanding of safety-related interfaces and

1

Introduction

relationship, enhanced early hazard detection, data-driven decision-making, and
cost avoidance [1].

Particular emphasis should be given to the subject of safety culture. This topic
is a key element to understand how safety is perceived, valued and prioritized
by management and employees. Organisations with a positive safety culture are
more likely to achieve their goals thanks to the collaboration of all stakeholders. A
positive safety culture relies on a high degree of trust and respect between personnel
and management, which is the foundation of an efficient safety reporting. As a
matter of facts, the reporting system helps to gather data and information in order
to detect existing and potential safety deficiencies and hazards [1].

Looking into ICAO definition of safety, it is important to understand how risk
is reduced and controlled and what can be considered as an acceptable level. In
particular, Safety Risk Management(SRM) is a continuous activity that follows
the aviation evolution over time and includes hazard identification, safety risk
assessment, safety risk mitigation, and risk acceptance. Hazards are inevitable com-
ponents of aviation since they are considered as dormant potentials for harm, but
they are not an issue as long as they are controlled and mitigated by understanding
their consequences. The aim of hazard identification is to identify risks before
they actually lead to dangerous events. This process can include reporting system,
inspections, audits, brainstorming sessions, expert judgments and also reviews of
internal and external investigation reports on accidents or incidents [1].

As far as defining safety risks, I[CAO presents an indication of safety risk tol-
erability, which is based on the measurements of safety risk probability and safety
risk severity. However, these are only guide-lines: every safety organisation adapts
them to its specific needs and complexities. Safety risk probability is the likelihood
of an occurrence to happen, whereas safety risk severity is the level of danger that
can be expected from that occurrence.

The safety risk probability and severity may be categorized as shown in Table 1.1.

Likelihood Severity
Frequent Catastrophic
Occasional Hazardous
Remote Major
Improbable Minor
Extremely improbable Negligible

Table 1.1: Categories of safety risk probability and severity.

With the categories of Table 1.1, it is possible to build a matrix assigning to each
2

1.1 — General view on Safety

slot the acceptable level of safety. Safety risk tolerability can be divided into three
levels as shown in Table 1.2 [1]:

« Intolerable (red), requiring to take immediate actions to mitigate the risk or
stop the activity;

« Tolerable (orange), requiring to pay attention to the mitigation process;

« Acceptable (yellow), requiring no additional mitigation.

’ Probability /Severity H Catastrophic \ Hazardous \ Major \ Minor \ Negligible ‘

Frequent
Occasional
Remote
Improbable

Extremely improba-
ble

Table 1.2: Safety risk tolerability.

With a look at safety risk mitigation, the purpose of the process is to reach an
acceptable safety level through the application of appropriate controls. Such
goal can be achieved by reducing the severity of the potential consequences, the
probability of occurrences or the exposure to that safety risks. Usually the second
option is more common to be applied. Mitigation actions often result in changes in
operating procedures, equipment or infrastructures and can be categorized as:

» Avoidance, cancelling the operation;
» Reduction, reducing the frequency of the operation;
» Segregation, isolating the effects of the consequences of the risk.

In order to choose the appropriate mitigation alternative, different perspectives
should be taken into account in the interests of finding an optimal solution. There-
fore the decision should be postponed after examining effectiveness, cost/benefits,
practicality, acceptability, enforceability, durability, residual safety risks, unintended
consequences, and time [1].

Another fundamental process is the safety performance management, that helps
to verify the effectiveness of implemented safety activities towards the objectives,

3

Introduction

checking the functionality of SSPs and SMSs. Therefore, a set of Safety performance
indicators (SPIs) need to be defined to measure performances and to understand
whether the taken actions are adequate or further mitigation is required. They
both describe the ongoing scenario and support decision-making. The choice of
these parameters is based on the available data for each specific State.

The safety objectives to pursue are:

e Process-oriented: stated in terms of safe behaviours expected from operational
personnel or the performance of actions implemented by the organization to
manage safety risk;

o Qutcome-oriented: encompassing actions and trends regarding containment of
accidents or operational losses.

SPIs generally can be divided into: quantitative, qualitative, lagging, and leading
indicators. A quantitative indicator is expressed with a number or a rate, whereas
a qualitative one is descriptive based on quality. Quantitative indicators can be
counted and compared, so that they are a preferable choice over the qualitative
indicators. Lagging indicators, also known as 'outcome-base SPIs’, measure past
events, so they allow to study the overall long-term efficiency. They can be classified
into low probability /high severity and high probability /low severity. Leading SPIs
are known as "activity or process SPIs" and they measure conditions that can
potentially result in a specific outcome. For leading SPIs the focus is on inputs
and procedures, in order to anticipate failures [1].

Additional parameters to set safety achievements are the Safety performance targets
(SPTs), which define short-term and medium-term goals. Once SPIs are defined
and data is analyzed, trends will stand out and indicate the direction along which
the safety performances are steering, so the organisation can set reasonable and
achievable SPTs for each SPI. This process should be periodically reviewed to
guarantee that targets are pointed toward safety performance improvements [1].

The combination of SPIs and SPTs defines the Acceptable level of safety per-
formance (ALoSP), which indicates the safety levels that a State demands for
its aviation system. It represents what the State evaluates as significant in this
matter and needs to be developed according to the safety objectives in the SSP.
It includes targets for each sector and measures to determine the effectiveness of
safety activities [1].

As an indication of the relation between SPIs, SPTs and ALoSP, Figure 1.1 is
presented.

1.2 — Organisations and safety programs

Stafe safely objectives
QOutcome oriented Process oriented
SPIs SPIs SPls SPls SPIs SPIs
operational ~ operational operational State functions, Compliance SMS
risk #1 risk #2 risk #3 and activiti i p {
SPTs SPTs
ALoSP
agreement ALOS P
> Communicate results > Perform additional SRM
> Continue monitoring > SPI, SPT, ALoSP periodic review
Management actions

Figure 1.1: Acceptable level of safety performance (ALoSP). (Figure 8-4 from [1])

1.2 Organisations and safety programs

As aviation industry had grown in the last decades, regulations and controls became
essential. Almost every country owns and flies aircraft around the globe, so it is
important to manage and control the scenario and to avoid dangerous events. As a
result, associations and agencies were founded to the purpose.

ICAO [2] is the International Civil Aviation Organization, found in 1944 at the
Chicago Convention. It is formed by 193 national governments and it supports their
diplomacy and cooperation in air transport in order to accomplish a sustainable
growth of the global civil aviation system. Its mission includes developing policies
and standards, undertaking compliance audits, performing studies and analyses,
providing assistance, and building aviation capacity through many other activities
and the cooperation of its Member States and stakeholders.

The organisation is committed to strengthen the aviation system by providing
suggestions and solutions, that the Member States are encouraged to follow but
they are not obligated.

Introduction

ICAO collective objectives can be summarized as:

Safety

Air Navigation Capacity and Efficiency

Security & Facilitation

Economic Development of Air Transport

Environmental Protection.

At European level, EASA [3] is the European Union Aviation Safety Agency, founded
in 2002 and based in Cologne, Germany. The member states who collaborate are
27 from the European Union plus Switzerland, Norway, Iceland, and Liechtenstein.
Its mission can be summarised as following:

o Ensure the highest common level of safety protection for EU citizens;

Ensure the highest common level of environmental protection;

Single regulatory and certification process among Member States;

Facilitate the internal aviation single market and create a level playing field;

Work with other international aviation organisations and regulators.

The agency works publishing periodically programs and reports, which contain
documentations useful to the Member States. There are four key programming
documents [4]: Single Programming Document (SPD), Consolidated Annual Activ-
ity Report (AAR), European Plan for Aviation Safety (EPAS), and Annual Safety
Review (ASR). The first one contains the activities and the resources required to
achieve a safer European Aviation Space. The second one reports how the annual
work program, budget and staff resources have been implemented evaluating the
results in term of objectives, performance indicators and timetable set, the risks
associated with those activities, the use of resources and the general operations of
the Agency, and the efficiency and effectiveness of the internal control systems. The
third one is a key component of EASA’s integrated Safety Management System
(SMS) at the European level, it covers a five-years period and addresses three
key-issues: systemic issues, operational issues and emerging issues. The last one
consists in a report of the most common key risk areas and associated safety issues
that lead to accidents in each of the different operational aviation domains.

In particular, the European Plan for Aviation Safety [5] provides a regional safety
plan for the Member States at European level, including the strategic priorities,

6

1.2 — Organisations and safety programs

strategic enablers, main risks affecting the aviation system and the necessary ac-
tions to mitigate those risks. The purpose of this document is to ensure that the
system for the management of aviation safety in the EU delivers the highest level
of safety performance, uniformly enjoyed across the whole Union, and continuing
to improve over time, while taking into account other important objectives, such
as environmental protection. It explains the functioning of the European aviation
system to manage the safety of civil aviation in the EU in accordance with Regula-
tion (EU) 2018/11393 (‘Basic Regulation’). It describes the processes, roles and
responsibilities of the different actors and lays down general principles for European
safety management, including safety action planning. The document is divided in
three volumes: Vol. I contains strategies and key-indicators, Vol. II contains the
actions and Vol. III the "Safety Risk” The actions in Vol. II are divide in:

o Evaluation Tasks

e Memeber State Tasks
« Reasearch Tasks

o Rulemaking Tasks

« Safety Promotion Tasks.

In particular, the Member State Tasks (MST) are actions directly addressed to
the members and have to be considered for their State Plan for Aviation Safety

(SPAS).

ENAC [6] is the Italian Civil Aviation Authority, regarding technical regulation,
certification, surveillance, and control. Its main activities includes ensuring safety
during both in-flight and ground operations and security. It is also monitoring the
observance of The Passengers’ Bill of Rights and subcontracts airport national
properties. Among its roles, it defines and recommends developing programs for the
airport national system, ensures both operations in national air space and services
of air navigation and implements policies against air and noise pollution. Lastly,

it represents Italy at international level, collaborating with the major aviation
organisations; for instance ICAO, ECAC, EASA, and EUROCONTROL.

As demanded by art.8 of Regulation (EU) 2018/1139, every EU member state
is required to write a Safety Plan for Aviation Safety (SPAS), following EASA
directions included in the EPAS and its timeline.

The aim of this document is reaching a higher level of safety performance through
a constant improvement of institutional activities. The actions the state promotes
to achieve the goals are based on the available national safety data. The safety per-
formance is valued in terms of Safety Performance Indicators, which are compared

7

Introduction

with the Safety Performance Targets. The measurements and analyses of these
indicators are included in the Safety Report, which is published annually, according
to art.13 of Regulation (EU) 376/2014 [7].

With reference to Regulation (EU) 376/2014, there are no specific indications on
what this report must include, therefore every state has the authority to decide on
what and how to displays data and analyses. For this reason, the Safety Reports
appear really different depending on the states that is considered and consultation
could be challenging [8].

Chapter 2
Safety at Italian level

Each EU member states needs to provide an indication of the level of safety
performance, defined by Safety Performance Indicators, as mentioned in section
1.2. It is mandatory to publish at least once a year the Safety Report, as required
by art. 13 of Regulation (EU) no. 376/2014.

In order to comply with European and aviation requirements, ENAC had published
Safety Reports in paper format until 2019, from 2020 the agency has implemented
a Safety Report Portal [9].

2.1 Safety Report Portal

An overview of the Safety Report Portal is important to understand how Italy
evaluates safety at Italian level and what is identified as crucial to analyze. ENAC
has implemented a portal to share the results of safety data analysis, that used
to be included in the Safety Report in paper format. The change is based on the
modern technological habits that encourage the use of a user-friendly Web page
instead of a paper document.

The website contains information allocated in multiple sections. Some sections
introduce descriptions and regulatory references and they are: Introduction, Why
a Safety Portal?, Safety at Italian level, State Plan for Aviation Safety, and Oc-
currence Class. Some other sections contain data analyses, which differ from one
another in term of considered years and outputs and they are Accident Rate, SPI-O,
SPI-S, Dangerous Goods, Unruly Pax, and Clear Air Turbulence. Lastly, the final

'From now on, as Safety Report Portal, it is intended ENAC Safety Report published on
the related Web portal [9], whereas as Safety Report or Safety Review, it is intended the
traditional paper document.

Safety at Italian level

sections present informative material, and they are: Final remarks, Information
Sources, Past Safety Report, and Useful links. From now on, the focus is on the
conducted analyses.

In the section Accident Rate, ENAC reports a comparison of the accident rate
registered in Italy, Europe and the entire world. The outputs are line plots and the
timeline is from 2008 to 2020.

The SPI section reports the analysis of Safety Performance Indicators as they are
described in the document ’Safety Performance Indicators’ [10]. They are divided
in the two categories: outcome oriented (O) and process oriented (S). The fifteen
considered SPI-O are:

« Runway Excursions (RE)

« Runway Incursions (RI)

 Loss of Control in-Flight (LOC-I)

« TCAS Resolution Advisories (TCAS)

 Activation of TAWS (TAWS)

« Ramp events (RAMP)

« Collision while taxiing to or from a runway in use (GCOL)
o Fire or smoke on aircraft (F-IN)

« Laser beam interferences with flight operations (LASER)
« BRI (Bird Strike Index) (BIRD)

o Airspace Infringements (UPA)

 Separation Minimum Infringement number (SMI)

o Technical Failure (ATM Failure)

o Interferences of APR with manned aircraft during take-off or landing (APR
Interfence).

Generally, they are displayed with three graphs: rate per year, occurrences per
year and movements/flights per year in a timeline from 2015 to 2020, by bar and
line plots. There are, however, some exceptions: BIRD and ATM failure present
only the occurrences per year graph, UPA and SMI consider the occupancy time
in the sky. Then LASER and RAMP reports additionally geographical references

10

2.1 — Safety Report Portal

and RI and TCAS consider further examinations. As a general example, Figure 2.1
displays the graphs relating to Runway Excursions.

Rate per year

0,12
011 el

0,10

0,08

2017 2018 2019 2020

Movements per year
Qccurrences per year

1,65Min

1,62MIn

15M -
SMin 1.54MIn

Movements

1,0MIn

2015 2016 2017 2018 2019 2020 0.71Min
2015 2016 2017 2018 2019 2020

Year

Year

Figure 2.1: Data analysis on Runway Excursions (RE) from ENAC Safety Report
Portal.

SPI-O are explained in details in section 3.2, as they are one of the subjects of this
thesis.

Regarding the other category, the five considered SPI-S are: Inspections Per-
formed, Occurrences reported by private pilots, Occurrences reported by APR
pilot/operators, Training activities on aviation safety, and Reactivity index to
Safety Recommendations issued by ANSV. In this case, the analysis is specific to
each one of the them and it is more varied, but the most common visualization
method is the bar plot.

The Dangerous Goods section displays information about hazardous goods re-
ported at ENAC. This is one of the subject of this thesis and it is examined in
depth in section 3.1. In the safety portal analysis, four different plot are addressed:
Dangerous Good Undeclared, Event Type’s role in DGORs?, Classes’ role in DGORs
and Event Classification per Year; in a timeline from 2015 to 2020. The first chart
represents a category of Event types and, as well as the fourth, it is a bar plot.

2The definitions of Event types and DG classes are addressed in section 3.3

11

Safety at Italian level

Whereas the two middle charts are pie charts. Moreover the fourth plot represents
the level of safety effects related to the DG reports. In particular, the second and
the third plots will be fundamental to the development of this project, so they are
presented in Figure 2.2 and Figure 2.3.

Then, Unruly Pax section considers passengers who do not respect one or multiple
rules related to the airplane or the airport. The displayed plots are three: rate per
year, occurrences per year and flights per year in a timeline from 2015 to 2020, by
bar and line plots. This approach is similar to the one used in SPI-O section (see
figure 2.1).

Lastly, in the Clear Air Turbulence section, it is presented the number of turbulence
occurrences per year and the number of those with injury. Both the subjects are
displayed as bar plots in a timeline from 2015 to 2020.

Event Type - 2015 Event Type - 2016 Event Type - 2017

1(8.33%) — . 1(809%) —

1(0.09%) —3(27,27%)

2(18,18%) —

Event Type - 2018 Event Type - 2019 Event Type - 2020

2(3.13%) —, 3(3,00%) 2(1,74%) —,

5 (4,35%) —\

6 (5,22%) —

5(12,82%) —

—23(5897%) 06 (83.48%)

Figure 2.2: Event types analysis from ENAC Safety Portal.

12

2.1 — Safety Report Portal

Class of DGOR - 2015 Class of DGOR - 2016 Class of DGOR - 2017

2125% ND10% —

71818% —, T 20%
410% —,
— ND37,5%

9- LiBAT

e 310%

ND 27,27% —~

"\ g - LiBAT 54,55%
Loasx L9 Lipat 20%

Class of DGOR - 2018 Class of DGOR - 2019 Class of DGOR - 2020

4213%) 8095%
63,19% —, 9 - LIBAT 1252% —
ND 5,328

4
55.26% 283% B

2789% —

—33421% 33511%

9- LiBAT __
1064%

1053%

227388
9- LiBAT 18,42% —

g 1842% 812,77% \— 2 1596% \— 35798%

Figure 2.3: Dangerous Goods Classes analysis from ENAC Safety Portal.

Legenda Classes of Dangerous Goods

Number Class

Event Type -

® Dangerous Goods Undeclared 1 Explosives

@ Dangerous Goods Handling & Loading 2 Flammable Gases

@ Dangerous Goods Forbidden 3 Flammable Liquids

@ Dangerous Goods Labelling/Marking 4 Flammable Solids

@ Dangerous Goods Not Matching Documentation 5 Oxidizing

@ Dangerous Goods Leaking 6 Toxic & Infectious

© Other 7 Radioactive

® Smoke/Fumes/Fire Li-BAT 8 Corrosives

L]

Dangerous Goods Damaged 9 Miscellaneous - other than Li-BAT

® Dangerous Goods Packaging . .)
9 - LIBAT Miscellaneous - Li-BAT
ND Not defined

(a) Legend of figure 2.2. (b) Legend of figure 2.3.

Figure 2.4: Legends of Dangerous Goods analysis in ENAC Safety Portal.

13

14

Chapter 3
Topics of analysis

The analyses developed in this thesis have two main focuses: Dangerous Goods
and Safety Performance Indicators, which are two of the topics included in the
ENAC Safety Report Portal. In this section, both these two topics are explained
in-depth in the interests of understanding the decision-making process of the
analyses, explained in chapter 4 and chapter 5, and the presented results. We
provide general definitions and categorisations, and in addition a description of the
current European scenario on DGs. Lastly, at the bottom of the chapter there is a
brief summary on the Italian reporting system.

3.1 Dangerous Goods

3.1.1 General definition
Following ICAQO definition, Dangerous goods are defined as

"articles or substances which are capable of posing a risk to health, safety,
property or the environment and which are shown in the list of dangerous
goods in the Technical Instructions or which are classified according to
those Instructions" [11].

To guarantee safety at any level, DGs need to be listed and identified in order
to be carried by air without placing an aircraft or its passengers at risk. The
classifications and the recommended procedures are described in the Technical
Instruction for the Safe Transport of Dangerous Goods (ICAO Doc 9284) [12] and
revised periodically. Generally, DGs are divided into different classes or divisions
according to the hazard they present. For instance some goods can be carried both
in passengers and all-cargo aircraft following required conditions, but others are
restricted to only all-cargo aircraft or with specific approval from the concerned

15

Topics of analysis

States, and some DGs are too dangerous to be carried on any aircraft.

In transporting, they need to be packed, marked and labelled to be easily recog-
nized. In addition, the pilot-in-command needs to be informed on what is on board
because in case of emergency DGs could be crucial when deciding on actions.

Considering packing and labelling, packages must be in good quality, strong
enough to resist the transport and the related loads. They need to be closed in
the interest of avoiding leakage. Shippers must follow packing instructions and
evaluate the package conditions.

Every Dangerous Good (identified as so by ICAO) must be tagged with a danger
class label for the specific hazard it entails. Labels are required to be fully visible
firmly affixed to or printed on the package. Moreover, labels must resist open
weather exposure without loss of effectiveness and they must follow precise design
in term of colour, symbols and general format, for instance contrasting colour in
the background, solid outer boundary line, etc [12].

There are two types of occurrences related to DGs: accident and incident. The first
one is "an occurrence associated with and related to the transport of dangerous
goods by air which results in fatal or serious injury to a person or major property
or environmental damage" [12]. The second one is "an occurrence, other than a
dangerous goods accident, associated with and related to the transport of dangerous
goods by air, not necessarily occurring on board an aircraft, which results in injury
to a person, property or environmental damage, fire, breakage, spillage, leakage of
fluid or radiation or other evidence that the integrity of the packaging has not been
maintained. Any occurrence relating to the transport of dangerous goods which
seriously jeopardizes the aircraft or its occupants is also deemed to be a dangerous
goods incident" [12].

Both DGs accidents and incidents have to be reported so the authority can deter-
mine the causes and take action to prevent a recurrence, whenever possible.

ICAO provides a table containing the list of all Dangerous Goods most com-
monly carried, it can not be considered exhaustive but it illustrates all dangerous
substances of commercial importance. The above-mentioned table is named as
"Table 3-1. Dangerous Goods List’ in the ICAO relating document. There
are 13 columns, each of them with specific information on the DG considered.
The notable columns for this thesis are the second one and the third one, called
"UN no. and ’Class or division’, respectively. The first column is called as 'Name’
and indicates the proper alphabetically shipping name of the good, but it is not
essential for following developments.

In order to show how the table is built, a row is presented as an example in
Figure 3.1.

16

3.1 — Dangerous Goods

3-2-4 Part 3

Passenger and cargo Cargo aircraft only

aircraft

Class Max. net Max. net
or Sub- State |Special| UN quantity quantity

UN divi- | sidiary varia- | provi- | packing |Excepted| Packing per Packing per
Name No. sion | hazard Labels tions | sions | group | quantity | instruction package instruction package

1 2 3 4 5 6 7 8 9 10 11 12 13

Acetonitrile 1648 | 3 Liquid flammable 1] E2 353 5L 364 60 L

Y341 1L

Figure 3.1: An example of how Dangerous Goods list is presented by ICAO.[12]

3.1.2 Classification and coding
Classification

As a general rule, ICAO provides a classification of DGs in nine classes according
to the hazard or the most predominant hazard they present. However the catego-
rization is affected by state variations, as a matter of facts the appropriate national
authority is required to define it.

A summary of the classes can be represented as following.

e Class 1: Explosives

Division 1.1: Substances and articles which have a mass explosion hazard

Division 1.2: Substances and articles which have a projection hazard
but not a mass explosion hazard

Division 1.3: Substances and articles which have a fire hazard and either
a minor blast hazard or a minor projection hazard or both, but not a
mass explosion hazard

Division 1.4: Substances and articles which present no significant hazard

Division 1.5: Very insensitive substances which have a mass explosion
hazard

Division 1.6: Extremely insensitive articles which do not have a mass
explosion hazard

e Class 2: Gases

Division 2.1: Flammable gases
Division 2.2: Non-flammable, non-toxic gases

Division 2.3: Toxic gases

o Class 3: Flammable liquids
17

Topics of analysis

e Class 4: Flammable solids; substances liable to spontaneous combustion;
substances which, on contact with water, emit flammable gases

Division 4.1: Flammable solids, self-reactive and related substances and
desensitized explosives

Division 4.2: Substances liable to spontaneous combustion

Division 4.3: Substances which, in contact with water, emit flammable
gases

e Class 5: Oxidizing substances and organic peroxides

Division 5.1: Oxidizing substances

Division 5.2: Organic peroxides
e Class 6: Toxic and infectious substances

Division 6.1: Toxic substances

Division 6.2: Infectious substances
e Class 7: Radioactive material
o Class 8: Corrosive substances

o Class 9: Miscellaneous dangerous substances and articles, including environ-
mentally hazardous substances.

The considered order is not a representation of the degree of danger, which is
furthered in the relating document. For each class, ICAO defines definitions, sub-
divisions, packing instructions and specific properties. To each considered good,
the number of the class/division is assigned, as shown in the third columns of
Figure 3.1.

Coding

Each Dangerous Good is identified by a serial number assigned to the article or
substance under the United Nations classification system. This number is composed
of four digit, as shown in Figure 3.1. There are, however, two exceptions: goods that
do not have assigned a UN number are identified with a temporary identification
number in the 8000 series and those that can be forbidden on aircraft under any
circumstance are labelled as 'FORBIDDEN".

18

3.1 — Dangerous Goods

3.1.3 European state of art

EU Member states have the authority to manage data on their reports as they
consider more appropriate, so it is important to look into the current outline of
the European states to understand if and how these states display their data and
what can be identified as the preferable approach. In this comparison the research
considers national safety reports from official websites and authorities. It must be
noted that the analysis takes place on a qualitative level.

The countries that are going to be examined are: Austria, Belgium, Germany,
Ireland, Italy, Netherlands, Norway, Poland and Spain. Some of them use their
official language in their reports, so a common online translator is used to read the
papers in English.

In the following investigation it will be clear that the scenario is really varied.
Therefore there is not indeed a common way to analyze this topic. It is in this
regard that our developed method may set the starting point for a future common
approach.

Austria

On Austrian civil aviation authority website all safety reports since 2017 are
available and there are some relating content. From 2018 to 2020 Dangerous Goods
are included in the RAMP category, which considers Ground Handling activities.
An example of the trend of reported events is showed in Figure 3.2, from 2019
report. Whereas, in the 2017 report no data is included [13].

RAMP: GROUND
HANDLING

1605

1040

106
168
187

2015 2016 2017 2018 2019

Figure 3.2: Reported events on RAMP from 2019 report in Austria.

19

Topics of analysis

Belgium

About Belgium aviation safety, there are available two safety plans: 2016-2020
and 2020-2024. In both documents, DGs are considered as a Safety Performance
Indicator and there are explanations about actions/objectives on handling DGs,
however only in the second one some data is presented [14][15]. In Figure 3.3 it is
shown information of 2019 occurrences through percentages.

Transport of dangerous goods
Occurrences - 2019

= Other dangerous goods
\ 39,39%

= Unknown

= Radioactive Substances

= Dry ice

= (Lithium) Batteries

22,73%

Figure 3.3: Occurrences related to the transport of Dangerous Goods reported
by Belgian organizations.

Germany

The German civil aviation authority (LBA) publishes safety reports since 1995.
Germany does a continuous monitoring on the topic including its trend throughout
the years. In particular, since 2006 all air carriers and airports have additionally
been reporting all dangerous goods incidents/accidents to the LBA [16]. Figure 3.4
represents the trend from 2000 to 2018; only in 2017-2019 report it is displayed as
a graph, whereas in the other reports only by tabular data.

Ireland

Consulting safety reviews from 2016 to 2020, Irish authority takes into account DGs
only in some years. In particular, in 2016 and 2017 DGs are considered individually,
whereas in 2019 and 2020 there is no evident specification. Figure 3.5 represents
one of the graphs included in 2016 and 2017 reports, it shows how many occurrences
correspond to DGs. A second graph is added which represent a summary of MOR
reports in a 4-years period for the Irish AOC holders [17, 18, 19].

20

3.1 — Dangerous Goods

An das LBA gemeldete Gefahrgutzwischenfalle

180000

171.091

162.451
160000

140000

120000

100704 g5 g37

100000

80000

60000

40000

20000

5.231
785 719 814 1.360 1.385 1.149

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 3.4: Hazardous goods incidents reported to the LBA in Germany.

Figure B.4: Summary of the 6,697 occurrence reports submitted by Irish AOC holders during 2017
(The AOC holders conducted 1,018,827 flights over this period)

Evacuation 1
Loss of lift 1
Toletrike I ARMS Score: 1-10 H
Collision on Take-Off or Landing ARMS Score: 20 - 102 2
Unknown or Undetermined I ARMS Score: 500 - 2,500 7
Loss of Control - Ground 10
Abrupt Maneuver 1"
Wildlife Strike 13
Level Bust 20
Icing 21
Unmanned Aerial Vehicle 21
Runway Excursion 22
Aerodrome 23
Runway Incursion (Not Animal) 24
Flight/Cabin Crew Incapacitation 29
Dangerous Goods 30
Controlled Flight Toward Terrain 36
Ground Collision 37
Fire/Smoke (Non-Impact) 45
Navigation Errors 64
Fuel Related 67
Consequential Event 84
Shining of lasers at aircraft 87
Abnormal Runway Contact 97

111

Incident during maintenance

Turbulence Encounter I 136
Engine Failure or Malfunction |G 161
Human Factors Crew I 161
Passenger illness/injury — 169
Security Related —— 178
Other I 268
Airprox/Near Midair Collision I] 293

T 293
Air Traffic] 303
Ground Handling] 427
Birdstrike 429
Loss of Control - Inflight] 429
Cabin Safety Incidents 636

Medical 862
System Failure or Malfunction | 1,073

No. of Occurrences

o
Q
s
N
Q
)
w
<]
S
IS
S
S
@
<]
3
@
3
S
-
]
)
®
<]
3
©
S
S
9
]
S
o
S

Figure 3.5: Summary of the 6,697 occurrence reports submitted by Irish AOC
holders during 2017. (DGs on the 16" row)

21

Topics of analysis

Italy

In the current Italian scenario, safety reports refer to DGs only in 2014-2015,
whereas there are no data available from 2016 to 2019. However in 2020 a Safety
Portal has been created where data from 2015 is displayed [20, 21, 22][9]. There
are different reported data, in particular the analysis considers the topic in terms
of Event types and DG classes.

For additional details, consult chapter 2.

Netherlands

On the Dutch website it is presented a dashboard, showing safety indicators,
including DGs. The timeline considered is between 2017 and 2021 and the reported
occurrences are divided in notifications about batteries, leakage notifications and
other, as showed in the Figure 3.6.

It is noticeable that the dashboard contains several filters, to show information
separately in terms of subtopic, type of aviation and location [23].

Gevaarlijke goederen

25

20

Type melding
@ Melding over batterijen @ Melding over lekkende stoffen @ Anders

Figure 3.6: Dangerous Goods reported in the Netherlands.

Norway

The only document available is the 2019 safety review and it does reference to DGs.
Norwegian civil aviation authority presents the trend on DG reporting occurrences

22

3.1 — Dangerous Goods

from 2012 to 2019, as shown in Figure 3.7 [24].

Rapporteromhandlende farlig gods
140

120

100
80
60
40
ol
.

2012 2013 2014 2015 2016 2017 2018 2019

o

Figure 3.7: Reports on Dangerous Goods in Norway from 2019 report.

Poland

Safety reviews of 2017 and 2018 are available on the official website and Poland
analyzes DGs and their trends. Dangerous goods are considered as an additional
Safety Level Indicator.

Looking at the Figure 3.8 from 2018 report, it is clear that both graphical and
tabular data are presented, however in 2017 report only tabular data can be found.
In particular the Figure 3.8a refers to occurrences, divided in incident, accident and
other, whereas the Figure 3.8b refers to type of events, such as freight, luggage and
mail. There are also two more graphs included in the report presenting incidents
in terms of passengers only, and cargo only plus mail [25] [26].

Spain

On the website only reports from 2015, 2016 and 2017 are available. The Spanish
authority considers DGs included in the Handling category and it analyses event
rate divided in categories and specifically by types, as shown in Figure 3.9. In 2016
report it is reported data from 2015 and 2016, whereas in 2015 report from 2014
and 2015 [27][28].

In the 2017 report the handling category is not included [29].

23

Topics of analysis

wyes 122 Wykres 123 ~ Wszysikie zdarzenia zwiqzane 2 Transport maferiatow niebezpiecznych drogq powietrnd (TMNDP)w po-
e dicle na fracht, bagaz i poczte, Reeczpospolita Polska, wlatach 2014-2018

340

320

300

280

260

210

220

200

180

160

140
120
100
50 =S
.
a0
20
° 2014 2015 2016 2017 2018
— Fract 7 e m @ w0
sagat 1 1 o 108 4
Poczta 0 0 o f B

(a) All incidents related to Transport of Dan- (b) All events related to Transport of Danger-

gerous Goods by air, broken down by event ous Goods by air, broken down into freight,

categories, Republic of Poland, in 2014-2018. luggage and mail, the Republic of Poland, in
2014-2018.

Figure 3.8: Reports on Dangerous Goods in Poland from 2018 report.

160 NUMERO DE SUCESOS POR CADA 100,000 OPERACIONES
HTASAS 2014 o 10 2 B w 50 B S B
HTASAS 2015
140
H
g120
2
§
o100
g
g
80
3
3
=
2 60 7053
g
§ a0 <
2 g
20 2
1081 1345 H
251 2,9 B
0 , | e —
HANDLING INFRAESTRUCTURA Y DARIOS A/DE LA AERONAVE INCURSIGN DE ANIMAL H
GESTION DE AERODROMO ENTIERRA S5 imcunsidn da aimal an ampa/catie darodacurs [J 5
Figura 8-6. Tasa de sucesos de Entorno Aeroportuario (2014/15) Figura 8-7. Tasa de Sucesos de Entorno Aeroportuario por tipos

(a) Airport Environment event rate (b) Airport Environment Event Rate by type.
(2015/16).

Figure 3.9: Reports on Dangerous Goods in Spain from 2016 report.

24

3.2 — Safety Performance Indicators

Other cases

In Europe, there are some states that do not report any information about Danger-
ous Goods. There are also some others that do not make available to the public
theirs Safety Report. Further investigations should take place, if interested.

3.2 Safety Performance Indicators

Safety Performance Indicators are parameters that help the aviation authorities
measuring the characteristic level of safety performance of a state. They are chosen
depending on the safety data available to be analyzed and they need to illustrate
the safety national objectives.

Each SPIs should include:

a description of what it measures;

its purpose;

the units of measurement and any requirements for its calculation;

the person in change for collecting, validating, monitoring, reporting and
acting on the SPI;

where or how the data should be collected;

- the frequency of reporting, collecting, monitoring and analysis of the SPI data
[1].

Regarding safety at Italian level, ENAC has drawn up the recommended SPIs in
the document Safety Performance Indicators [10]. A work group identified them

and ENAC Safety Board evaluated and validated them.
SPIs are divided in two categories:

o Qutcome oriented. They derive from the measurement of events that could be
the precursors of "undesired events" (accident or serious incident) and normally
they are measured considering mandatory reports received in the eE-MOR
system. These indicators have been chosen taking into account types of events
which are particularly relevant in all the domains of civil aviation: Aerodrome,
Air Traffic Control, Airworthiness, Operations and UAS.

o Process oriented. They derive from the most typical processes of the Civil
Aviation Authority and plan to measure the effectiveness of ENAC activi-
ties trying to ensure the highest possible level of safety of the aeronautical
operations [10].

25

Topics of analysis

ENAC provides two tables containing the required information for each SPI. Since
the focus of this thesis is on SPI-outcome oriented, Table 3.1 illustrates them as
displayed in the related document. The first column indicates the specific code of
the considered SPI; the second its extended name; the third a short description of
what it defines; the last one indicates the sources of the data (eE-MOR, system,
ENAC or EUROCONTROL).

Table 3.1: ENAC summary table on Outcome oriented SPI. (Tabella 1 - Indicatori

operativi from [10])

Codice | Safety Performance | Descrizione Origine
Indicator (SPI) dell’indicatore dei dati
SPI-O-01 | RE - Rateo di Runway | Number, every 10.000 move- | Sistema
Excursions ments, of occurrences involv- | eE-MOR, /
ing a veer off or overrun off | Movimenti
the runway surface aeroportu-
ali (fonte
ENAC)
SPI-O-02 | RI - Rateo di Runway | Number, every 10.000 move- | Sistema
Incursions ments, of occurrences involv- | eE-MOR /
ing the incorrect presence of | Movimenti
an aircraft, vehicle or per- | aeroportu-
son on the protected area of | ali (fonte
a surface designated for the | ENAC)
landing and take-off of air-
craft
SPI-O-03 | LOC-I - Rateo di casi | Number, every 10.000 | Sistema ekE-
di perdita di controllo | flights, of occurrences with | MOR / Nu-
in volo loss of aircraft control while, | meri di voli
or deviation from intended | (fonte FEu-
flight path, in flight rocontrol)
SPI-O-04 | TCAS — Rateo di Reso- | Number, every 10.000 | Sistema
lution Advisories (RA) | flights, of TCAS Resolution | eE-MOR /
Advisories following a | Numero di
TCAS activation voli (fonte
Eurocon-
trol)

26

3.2 — Safety Performance Indicators

SPI-O-06 | TAWS — Rateo di atti- | Number, every 10.000 | Sistema
vazione del TAWS flights, of Terrain and | eE-MOR /
Avoidance Warning System | Numero di
activations voli (fonte
FEurocon-
trol)

SPI-O-07 | RAMP — Rateo di | Number of occurrences, | Sistema
eventi di rampa (Ra-| every 10.000 movements, | eE-MOR /
teo di eventi di rampa | where a collision occurred | Movimenti
nei quali ci sia stato | while servicing, boarding, | aeroportu-
I'urto di un mezzo e/o | loading, and deplaning the | ali (fonte
di un’apparecchiatura | aircraft ENAC)
con un aeromobile
fermo al parcheggio)

SPI-O-08 | GCOL — Rateo di colli- | Number of occurrences, | Sistema
sioni a terra (Rateo di | every 10.000 movements, | eE-MOR /
collisioni, di mancate | where an aircraft comes into | Movimenti
collisioni o conflitti | contact with another air-| aeroportu-
di traffico che coinvol- | craft, a vehicle, a person, a | ali (fonte
gano veicoli/mezzi ed | structure, a building or any | ENAC)
aeromobili) other obstacle while moving

under its own power in any
part of the airport other
than the active runway,
excluding power pushback

SPI-O-09 | F-NI - Rateo di eventi | Number, every 10.000 | Sistema
classificabili come | flights, where fire or smoke | eE-MOR /
"Fire or smoke on | was detected on an aircraft, | Numero di
aircraft" in flight, or on the ground | voli (fonte

Eurocon-
trol)

SPI-O-10 | LASER - Rateo di | Number of occurrences, ev- | Sistema
interferenze di raggi | ery 10.000 movements, in | eE-MOR /
laser con aeromobili | which a laser beam inter- | Movimenti
durante le operazioni | fered with the flight opera-| aeroportu-
di volo tions of an aircraft taking off | ali (fonte

or landing ENAC)

27

Topics of analysis

SPI-O-11 | BIRD - Rateo di | Si veda Circolare APT-01 | Sistema
Bird/Wildlife Strikes | (ultima revisione) eE-MOR /
(BRI - Bird Strike Movimenti
Index) aeroportu-
ali (fonte
ENAC)
SPI-O-12 | UPA - violazioni | Number of airspace infringe- | Sistema eE-
(airspace infringe- | ments that occur when | MOR
ments) di spazi aerei | an aircraft enters notified
controllati airspace without previously
requesting and obtaining
clearance from the ATC or
enters the airspace under
conditions that were not con-
tained in the clearance
SPI-O-13 | SMI - Separation Min- | Numbers of occurrences, ev- | Sistema eE-
imum Infringements ery 10000 flight hours, where | MOR
prescribed separation be-
tween aircraft minima was
not maintained
SPI-O-14 | ATM Failures - Nu- | Number of serious techni- | Sistema ekE-
mero di avarie gravi | cal failures affecting the safe | MOR
nei settori terminali | provision of air traffic ser-
ATM vices
SPI-O-15 | APR Interferences -| Number of occurrences | Sistema eE-
Numero di interferenze | where an APR interferes | MOR

di APR con aeromobili
pilotati durante le fasi
di decollo e/o atterrag-

gio

with the flight of a manned
aircraft during take-off or
landing

3.3 ENAC reporting system

Hazard identification and prevention are built on the effectiveness of the authority
reporting system. The reported safety data and information are the foundation
of safety analyses and investigations. ICAO describes in the Safety Management
Manual [1] what is intended as a successful reporting system. Specifically, a re-
porting system is based on the reciprocal and continuous exchange of information
between organizations and individuals and the protection of those information and
the related sources is fundamental to maintain the operator’s trust in the system.

28

3.3 — ENAC reporting system

The operator is more likely to report hazards and errors when protected and treated
in a fair and consistent manner guaranteeing continuity of information.

Until January 1st, 2022, ENAC had been using the eE-MOR system in reporting.
The acronym eE-MOR stands for electronic ENAC - Mandatory Occurrence Re-
porting, and it consists of the combination of WebDAS interface and ECCAIRS
5 software to manage the reporting dataset at European level [31]. The interface
allows the users to enter the data in the system. The software is provided by the
Joint Research Center of the European Commission [32]; the center supports EU
policies with independent scientific evidence throughout the whole policy cycle [33].
Inside the software, the definitions of the reported events follow ICAO guidelines
defined in the ADREP Taxonomy, which is a compilation of attributes and the
related values [32][34].

Considering European and Italian regulations on reporting, Regulation (EU) No
376/2014 handles reporting, analysis and follow-up of occurrences in civil aviation.
In addition to general instructions and safety manners, it defines what is considered
as Mandatory reporting (art. 4) and how it is required to be done. In particular,
an occurrence is defined as "any safety-related event which endangers or which, if
not corrected or addressed, could endanger an aircraft, its occupants or any other
person and includes in particular an accident or serious incident'. Specifically, the
Regulation (EU) 2015/1018 lays down a list classifying occurrences in civil aviation
to be mandatorily reported according to Regulation (EU) No 376/2014. When an
occurrence happens, the authorized personnel must report the event to the related
organization, who has 72 hours to inform the competent authority [35]. All ENAC
reports are performed through this system.

Regulation (EU) No 376/2014 has been revised in 2020 with the publication of
Regulation (EU) 2020/2034, that will enter in service in 2023.

As far as Dangerous Goods reporting is concerned, during Chicago Convention in
1944 TICAO released Annex 18, named "The Safe Transport of Dangerous Goods
by Air’, which represents the international standard; it was followed by the Doc
9284 presenting specific transporting instructions. In 1948 Italy subscribed to the
ICAO Annexes and from 1997 ENAC has been in charge of providing technical
regulations in Civil Aviation at Italian level, according to Decreto Legislativo n.
250. Since 2008, following Regulation (EC) No 216/2008 European standards have
been EASA responsibilities, in order to establish and maintain a high uniform level

'From January 2022, ENAC has started using ECCAIRS 2 system in reporting, but this
change is not part of this thesis [30]. Dangerous Goods are not subjected to this change.

29

Topics of analysis

of civil aviation safety in Europe [36].

Details for the following analysis

In order to understand the following analysis on Dangerous Goods, it is important
to define two terms which are used in ENAC reporting system. The first one is
FEvent type, which means the general happening while an occurrence arises; for
instance when the package of DG is not compliant to the packaging rules, the
corresponding event type may be 'Dangerous Goods Labelling/Marking’. The
second one is Dangerous Goods type, which indicates the kind of substance that is
discovered, and its definition follows ICAQO indications. These two terms are the
two main topics on which the data analysis is based.

The term Ewvent type is relevant also to the SPI analysis.

In addition, in the definitions of SPIs in section 3.2, there are three terms that need
to be defined because they are involved in the following analysis on this topic. The
first one is movement, which means "an aircraft take-off or landing at an airport; for
airport traffic purposes one arrival and one departure is counted as two movements"
[37]. The second one is (domestic) flights, which indicate "all flights of national or
foreign aircraft in which all the airports are located in the territory of the same
State; in both cases the flight shall be considered as the operation of an aircraft on
a stage or number of stages with an unchanging flight number" [37]. The third one
is occupancy duration/flight hours, which illustrates the occupancy time in the sky
[9].

30

Chapter 4

Python-based Pipeline:
Dangerous Goods

The development and the results of the Python-base pipeline are the core of this
project. In this chapter and in the following one, every step of the building process
is described highlighting the issues, the reasons behind specific decisions and the
advantages of this approach. The theme here is the analysis on Dangerous Goods,
divided in Event types analysis and DGs types analysis. The process starts from
data-sets provided by ENAC, proceeds with data evaluation and ends with tabular
and graphical results. In Figure 4.1, a flowchart is presented to illustrate the logical
process of the analysis.

4.1 Python

The programming language that has been used to carry out the analysis is Python
3. Python is "an interpreted, object-oriented, high-level programming language
with dynamic semantics. Its high-level built in data structures, combined with
dynamic typing and dynamic binding, make it very attractive for Rapid Application
Development, as well as for use as a scripting or glue language to connect existing
components together" [38].

It is known for its simplicity and appeal, since the focus is on readability. This rever-
berates on a less steep learning curve (compared to other programming languages)
and in lower cost of maintenance, in term of overall resources required. Moreover,
Python is open source, therefore all the tools necessary to our analysis are available
to everybody for free. It also supports the use of custom made modules, which
inherently allows a modular code design and makes easier to reuse and readapt
already existing code to new purposes.

31

Python-based Pipeline: Dangerous Goods

{ENAC datasets

N

Event Dangerous
types data Goods types data
! 1
Grouping Grouping ICAO
and counting and counting codes

| |

Is the Is the
analysis analysis
consistent? consistent?

Plotting Plotting
‘ Analysis output ’ ‘ Analysis output ’

Figure 4.1: Flowchart of the Dangerous Goods analysis.

Traditionally in aviation the most used tool is Microsoft Excel (MS Excel)
because of it is widely employed and easy to use for basic tasks. MS Excel is
a spreadsheet-based software developed by Microsoft that offers calculation and
graphing tools, pivot tables, and a macro programming language called Visual
Basic for Applications (VBA)[39]. Although MS Excel is appealing for its advan-
tages in terms of simplicity of use, a more versatile tool like Python offers more
opportunities both in term of quality and performance. So Python has been chosen
for this thesis, with the explicit goal to provide a different and improved approach
to the current state of safety aviation data analysis.

In this thesis we mainly used the following Python software libraries: NumPy
[40], pandas [41], matplotlib [42] and seaborn [43]. NumPy is a scientific computing
package, offering a fast and versatile arrays computation and a wide range of nu-
merical tools; Pandas is a package specifically designed to work with tabular data;

32

4.2 — Input data

Matplotlib is a library for creating static, animated, and interactive visualizations,
it allows the user to create quality plots and interactive figures but also to customize
them entirely and export them. Lastly, Seaborn is a data visualization library well
integrate into the NumPy and Matplotlib environment that provides a high-level
interface for drawing attractive and informative statistical graphics.

The base of this work is a Python script, run through Jupyter Notebook by
Anaconda, which contains all the necessary steps to run the data analysis. The
notebook allows the user to create and edit documents that display cell by cell the
input and output of Python scripts. Hence the final product of the project is a
Jupyter notebook file with .ipynb extension.

4.2 Input data

The input files are provided by ENAC as Excel files. These files are the collection
of all the reports and are subordinated to a manual intervention done by agency’s
operators. Any manually changes or adjustments are not subjects of this project, in
fact the actual starting point is the Excel files obtained following ENAC supervision.
Input files can be divided in a general file and some attached files. The first one
contains all general data in terms of Event types and Dangerous Goods types,
whereas the attached files concern multiple reports of DG types, that will be
explained later. All input data is included in a folder, named ’Dangerous_Goods’,
which itself contains two folders containing the attached files, named ’2020’ and
2021, respectively. In order to simplify the analysis and the logical process
behind, the analysis is divided in two sectors: Fuvent types and Dangerous Goods
types (see section 3.3), therefore also the explanation process is divided just the
same.

4.2.1 Excel Files

For both the considered sectors, we are presenting how the Excel files are assembled
and which kind of data we are dealing with. First of all, the available time period
is from 2014 to 2021. In the general file, a sheet is assigned to each year. Over the
course of the years the reporting system has experienced changes and improvements,
thus the data has also experienced different frameworks. With that in mind, it is
easy to identify two scenarios: from 2014 to 2019 and from 2020 to 2021. In the
first six-years period data is minimal, no attached files exist and the quantity of
reports is limited, whereas in the last two-years period data is more complex and
extended and attached files need to be taken into account.

In this project we are handling just the minimum amount of data required to
conduct the analysis due to data classification restriction, which is not subject of

33

Python-based Pipeline: Dangerous Goods

this thesis.

In the interest of understanding fully the input data, an example for each scenario is
presented in Figures 4.2 and 4.3. In addition, in Figure 4.4 an example of attached
files data is given.

Source UTC date Dangerous Good Event Type
[452] B 1477 B3 [688] s [390] [~

Dangerous Goods Handlin
1845 - Carbon dioxide, g g

0000 dd/mm/yyyy lid
soli

and Loading
Return to Stand

Figure 4.2: Example of input data for the time period 2014-2019. (*Source’ and
'UTC date’ are classified and indicated generally.)

Source UTC date Dangerous Good Event Type
[452] [477] [688] [390]
3480 - Lithium ion batteries X
N . Dangerous Goods Handling
0000 dd/mm/yyyy 3481 - Lithium ion batteries

. . . and Loading
contained in equipment

Figure 4.3: Example of input data for the time period 2020-2021. (*Source’ and
'UTC date’ are classified and indicated generally.)

] Type of Goods 5
1950 - Aerosols, flammable

Figure 4.4: Example of input data in the attached files.

Event types

The data regarding Event types is defined in both figures 4.2 and 4.3 as 'Event
Type [390]" and only that column will be necessary to be proceeded.

34

4.2 — Input data

Dangerous Goods types

In this part of the analysis data interconnections may be complex. First of all, the
considered columns in Figures 4.2 and 4.3 are 'Source’, 'Dangerous Good [688]’
and ‘count’, and also figure 4.4 is taken into account (only for 2020 and 2021). In
particular, the first column represents the identification number of that report and
the third column represents the number of DG types.

For the period 2014-2019, we extract the information from the general file according
to the mentioned columns. For the years 2020 and 2021, when the ‘count’ column
contains a number equal to 1, the involved DG types data is included only in the
"‘Dangerous Goods [688] column. On the other hand, when the ‘count’ column
contains a number higher than 1, the involved DG types data is included in an
attached file whose name is defined in the ’Source’ column. Lastly, when the
‘count’” column is equal to 0 the report is not valid, so it does not contribute to the
analysis!.

4.2.2 Reading files

In order to use the data, it is necessary to read the Excel files and save the informa-
tion. An efficient way to do that is to implement pandas reading commands?. We
provide an example used in the code to save 2014 data in a DataFrame®, accessing
the general Excel file:

data_2014=pd.read_excel (’Dangerous_Goods/DG_2021.x1sx’,
sheet_name=years[0])

The command is defined by many parameters, whose that can be read above
are the source file with its directory and the specific Excel sheet to consider. For
each year (from 2014 to 2021) a different DataFrame is created (they will be
identified as the ’original DataFrames’ later). The resulting output is a sort of
a table, that can be accessed by indexes and labels for rows and columns. This
is really useful when extracting specific part of the DataFrame is required, as a
matter of facts when we proceed with Event types analysis and DGs types analysis
we define new DataFrames including just the necessary columns from the original
data-sets.

The method for reading the attached files is the same, however the reading process

!The reason why some reports are not valid needs to be addressed to ENAC.
2Ref. to code lines 18-25 in Appendix A.

3A DataFrame is a two-dimensional pandas structure containing labeled axes (rows and
columns) [44].

35

Python-based Pipeline: Dangerous Goods

is dynamic and it will be describe in section 4.4.1.

In reference to the code, it is shown how data is extracted for the different analyses?.
In particular, Event types analysis needs column number 7 (titled "Event Type
[390]°) of the original DataFrames, whereas DGs types analysis needs columns
number 0 (titled ‘Source’), 6 (titled "Dangerous Goods [688]") and 8 (titled "count’)®.

Ultimately, it is important to underline that both the general file and the attached
files contain empty columns due to data restrictions, even though in the analysis
this detail has been considered in order to generalize the study, in Figures 4.2, 4.3
and 4.4 it is not shown.

4.3 Event types

The process behind Event types analysis starts with the identification of all the
Event types categories that can be used in reporting, then it follows with the
counting of them in the different years and it ends with the grouping into specific
mMacro-groups.

The first part consists in reading the specific column for every year and append
them together in order to create a list of every present item without the need to
insert them manually®. At this point, it is important to clear this list deleting
duplicates and removing special characters. In addition, it can happen that in
the Excel file more than one item is written in a single cell, so it is fundamental
to split them so they can be counted individually. The used command is pandas
Series.str.split(’\n’). It allows the user to divide words that are linked with
the specified string in brackets, which in this case represents the Enter command.
Even though this issue can be solved easily, it can be problematic when checking if
the total number of event types extracted is equal to the total number of event
types reported, this matter will be addressed in section 4.3.2.

Now, using the the chain command from itertools package, we are able to create a
list and then we transform it in a pandas Series. In addition, after gathering those
multiple types individually, it is required to clean further the data, deleting new
duplicates.

As a result, the list of every Event types used in reporting is:

4Ref. code lines 37-41 and 377-415 in the Appendix A.
®DataFrame’s indexes start as 0,1,..
6Ref. code lines 45-50 in Appendix A.

36

4.3 — Event types

Action Performed Incorrectly

Aerodrome Emergency or Fire Services Deployed
Baggage Non-Compliant Carriage of Load
Baggage Security Check

Cargo Labelling/Marking

Crew Door Fails to Open/Close

Dangerous Goods Damaged

Dangerous Goods Exceeds Storage Compartment Limitations
Dangerous Goods Forbidden

Dangerous Goods Handling and Loading
Dangerous Goods Labelling/Marking
Dangerous Goods Leaking

Dangerous Goods Load Weighting

Dangerous Goods Loading/Unloading
Dangerous Goods Not Matching Documentation
Dangerous Goods Not Recorded

Dangerous Goods Packaging

Dangerous Goods Security Check

Dangerous Goods Undeclared

Dangerous Goods Unsecure without Shift
External Load - Release

Fire - Lithium Battery

Fumes - Passenger Baggage

Helicopter RPM Exceedance

Lack of Communication

37

Python-based Pipeline: Dangerous Goods

o Passenger Carry-On Baggage
o Qualifications

e Return to Stand

e Smell - PEDs

e Smoke - Lithium Battery

e Smoke - PEDs

o Smoke or Fumes in Aircraft

o Use of Emergency Equipment.

At this moment, we can proceed with the second part of the analysis”. It is

necessary to count how many times each event type in the above list can be found
in each considered year using the pandas Series.value counts(). In particular,
for years 2020 and 2021 we have to make sure to exclude those reports with ‘count’
equal to 0. So it is possible to create a table with event types as rows and years as
columns, as can be found in the code’s outputs.

‘ Years

Event types ‘ (counts)

Table 4.1: Table model of Event types counting output.

Before proceeding, we have to motivate the operation placed at line 27 in Ap-
pendix A. During the development process it was found out that in 2014 data the
description of the event type 'Dangerous Goods Leaking’ was in fact 'Dangerous
Goods Leaking related event’. This discrepancy interfered with the process explain-
ing in this section, because it looked like a different event type. Since this problem
was registered only in this case, we decided to change the single datum, in order to
make the code works and the analysis accurate.

4.3.1 Grouping

It is clear that studying such a long list could be chaotic, so a good way to reduce
the amount of items is to group them together following a certain rule®. In this

"Ref. code lines 54-72 in Appendix A
8Ref. code lines 77-136 in Appendix A.

38

4.3 — Event types

specific case, the macro-groups have already been defined by a previous examination
by ENAC, so we are going to list them and identify the grouping method.
The macro-categories can be listed as:

« Dangerous Goods Undeclared

« Dangerous Goods Forbidden

« Dangerous Goods Labelling/Marking

e Dangerous Goods Leaking

« Dangerous Goods Damaged

e Dangerous Goods Packaging

« Dangerous Goods Handling and Loading

« Dangerous Goods Not Matching Documentation
« Smoke/Fumes/Fire Li-BAT

e Other.

Some items, such as Dangerous Goods Undeclared, Dangerous Goods Forbidden,
Dangerous Goods Labelling/Marking, Dangerous Goods Leaking Dangerous Goods
Damaged, Dangerous Goods Packaging, are the same categories as considered before,
whereas the other items are a combination of more than one event type.
Dangerous Goods Handling and Loading item contains:

« Dangerous Goods Handling and Loading

» Dangerous Goods Loading/Unloading

Dangerous Goods Load Weighting
» Dangerous Goods Exceeds Storage Compartment Limitations
o Dangerous Goods Unsecure without Shift.

Dangerous Goods Not Matching Documentation item contains:
o Dangerous Goods Not Matching Documentation

« Dangerous Goods Not Recorded.
39

Python-based Pipeline: Dangerous Goods

Smoke/Fumes/Fire Li-BAT item includes every event type which contains the
words ’Smoke’, 'Battery’, ’Fumes’ or ’Smell” and lastly Other item contains every
other event type not mentioned above.

Particular emphasis should be made for the last item, Other, because it contains
many different event types that sometimes are not consistent with the analysis. It
can happen that, in reporting, operators do not know exactly the correct type to use,
so a certain amount of event types should be removed in the interest of coherence.
In this project, ENAC identified those that are not suitable: Action Performed
Incorrectly, Baggage Non-Compliant Carriage of Load, Baggage Non-Compliant
Carriage of Load, Baggage Security Check, Cargo Labelling/Marking, Crew Door
Fails to Open/Close, External Load - Release’,’Helicopter RPM Exceedance, Lack
of Communication, Passenger Carry-On Baggage, Qualifications, Return to Stand,
Use of Emergency Equipment.

After due consideration, it is possible to obtain a comprehensive table where
for each year the total counts of each macro-group is presented, as shown in

Table 4.2.

4.3.2 Checks and validation

Data analysis results could look correct at first glance but they may hide some
errors that can be prevented implementing some checks®. In this case, the control
aims at comparing the total amount of event types extracted and the total amount
of event types in the Excel file for each considered year.

The first one can be easily calculated summing each column of the general Table 4.1,
whereas the second needs several steps. Firstly, we check the length of the Excel
file for each year measuring the length of the original DataFrames, so we get the
total number of reports (number of rows), but it can happen that more than one
event type is written in a single cell. An example is provided in Figure 4.5.

So, secondly, we have to calculate the additional event types that are in single
cells. To do that, we check every row in the original DataFrames and count how
many times the Enter command is present. When breaking lines, Python registers
\n, so if in that row there is one it means there are two event types together; if
there are two it means there are three event types, and so on. However, sometimes
if, in the Excel file, the Enter command had been used twice consecutively, Python
registers \n\n, so we need to verify that reading two \n means either three event
types or two event types.

9Ref. code lines 141-196 in Appendix A.
40

4.3 — Event types

2014

2015

2016

2017

2018

2019

2020

2021

Dangerous
Goods
Undeclared

23

25

96

255

Dangerous
Goods
Forbidden

Dangerous
Goods
Labelling /-
Marking

Dangerous
Goods
Leaking

Dangerous
Goods
Damaged

Dangerous
Goods
Packaging

Dangerous
Goods
Handling and
Loading

15

Dangerous
Goods Not
Matching Doc-
umentation

Smoke-Fumes-
Fire Li-BAT

Other

0

Total

Table 4.2: Resulting table of Event types analysis.

12

41

11

39

97

115

271

Python-based Pipeline: Dangerous Goods

Source UTC date
[452] [477] [~ |
0000 dd/mm/yyyy

Dangerous Good Event Type
[688] [~ [390] - |

Dangerous Goods
Loading/Unloading
. Dangerous Goods
1415 - Lithium
Undeclared
Smoke - Lithium Battery

Fumes - Passenger Baggage

Figure 4.5: Example of multiple Event types in a single Excel cell. (’Source’ and
'UTC date’ are classified and indicated generally.)

The script includes some cases, however if a different multiple event types arrange-
ment happens, Python provides a warning: ’Check the count!’.

The counting validation can be done comparing the sum of the total reports with
the additional event types and the total extracted amount. If these two numbers
do not correspond, the code will provide a warning: ’Missing data!’; in this
scenario the user needs to take action. Additionally, as Figure 4.6 is showing, the
code provides a yearly report of the numbers previously calculated to inform the

user.

Total number of events in 2019: 103
Total number of reports in 2019: 87
Total additional event types: 16

event type:
event type:
event type:
event type:
event type:

AUV hs whN

6

R ® R

Figure 4.6: Python report for 2019 on analysis validation.

In reference to Figure 4.6, the third line correspond to the linear combination of the

rows below. In this specific case:

Total additional event types = (2 event type)*1
+ (3 event type)*2 + (4 event type)*3 + (5 event type)*} + (6 event type)*5 .

42

4.4 — Dangerous Goods types

4.4 Dangerous Goods types

The Dangerous Goods types analysis requires a different approach than the one
used for Event types analysis, because the data is distributed differently and it
demands an alternative manipulation. At first, we tried to implement a similar
method listing all the individual DG types used in reporting. However this method
was not beneficial because, in reporting, the way DG types are defined is not unique.
To each UN code can correspond multiple descriptions, as shown in Figure 4.7. As
you can see, the opening numerical part is the same, but the following description
has variations, so these two DG types look different but they are exactly the same.

Source UTC date Dangerous Good Event Type
[452] [477] - [688] [390]
3481 - Lithium ion batteries .
0000 dd/mm/yyyy . . . Dangerous Goods Forbidden
contained in equipment
0000 dd/mm/ 3481 - Lithium ion batteries Dangerous Goods
mm,
wwy packed with equipment Labelling/Marking

Figure 4.7: Example of different descriptions for the same DG type from 2019
data. (*Source’ and "UTC date’ are classified and indicated generally.)

With this in mind, the new approach plans to exclude the descriptions and analyze
the data relying just on the UN codes. Unfortunately, there are some exceptions
that emerge during the analysis: not every report indicates the UN code, sometimes
there can be the class number or no numbers at all. In Figure 4.8 some examples are
displayed. These cases need to be managed individually, as shown in section 4.4.2.

Source UTC date Dangerous Good Event Type
[452] [477] - [688] K [390] [~]
0000 dd/mm/yyyy Battery, wet, filled with acid Dangerous Goods Leaking
i Helicopter RPM Exceedance
0000 dd/mm/yyyy 1 - Explosives
Aerodrome Emergency or
X Dangerous Goods Not
0000 dd/mm/yyyy 8000 - Consumer commodity 1 .
Matching Documentation
0000 dd/mm/ 0 - Wheelchair, electric with Dangerous Goods
mm/yyyy batteries Loading/Unloading
0000 dd/mm/yyyy 2.1 - Flammable Gas Dangerous Goods Forbidden
Dangerous Goods
0000 dd/mm/yyyy Not defined g .
Loading/Unloading

Figure 4.8: Example of exceptions in DG type definitions from 2019 data. ("Source’
and "UTC date’ are classified and indicated generally.)

43

Python-based Pipeline: Dangerous Goods

4.4.1 Gathering all data

Before proceeding with the analysis itself, it is necessary to import the required
data!®. This process needs to be diversified for 2014-2019 data and 2020-2021 data,
because in the second scenario the attached files need to be read. What is common
for both scenarios is defining new DataFrames extracting the required columns
from the original DataFrames (see section 4.2.2), even though the required columns
are different, as explained later, we unified the script for every year.

From 2014 to 2019

Regarding just data of years from 2014 to 2019, we need to consider just the ‘DG
types’ column and we have to manipulate it in order to get only UN codes and
their counts for every year.

Firstly, we list all the DG types (in a year) paying attention to those that could be
written together in a single cell, so we use the pandas split command and obtain a
pandas Series. It it important to clean the data dropping NaN values, replacing
special characters and sorting the list. Secondly, for each row of the series we split
it at every blank space and we keep only the first part, which corresponds usually
to the UN code. Then, using the pandas Series.value_counts() command we
count how many time a UN code occurs yearly.

The final outputs are six DataFrames containing reported UN codes and their
counts.

2020 and 2021

For both the considered years, the process is divided in two parts relating to the
number in the ’count’ column. As matter of facts, when extracting data we filter
the rows in order to get the cases separated. When the ‘count’ column is equal to
1, the process is the same explained for the 2014-2019 scenario, resulting with two
pandas Series containing reported UN codes. When the ‘count’ column is more
than 1, the process changes because of the attached files. In this case, the required
data is no longer read from the general file but from the specific appended file, so it
is required to read also the ‘source’ column (from the general file) which contains
the relating appended file name.

As far as 2020 data is concerned!?, for each row with ’count’ greater than 1,

10Ref. code lines 377-415 in Appendix A.
Ref. code lines 426-471 in Appendix A.
12Ref. code lines 476-509 in Appendix A.

44

4.4 — Dangerous Goods types

we identify the corresponding file name that is composed by its directory and the
wording of the ’source’ column. For instance, assuming tha file name is 0000,
’Dangerous_Goods/2020/0000.x1sx’. At this point, for every considered report
we read the specific file and we add all the DG types extracted together in a list,
then we split every row at every blank space and keep the first part, doing so the
result is a pandas Series containing the reported UN codes.

In this code section we add a validation check that will be useful later, in sec-
tion 4.4.4. Every time we read a file, we check that its length corresponds to the
number in the corresponding ’‘count’ column. Those two number should be the
same, but sometimes we can find some mistakes. In this regard, the Python code
provides a warning when finding inconsistencies, as shown in Figure 4.9.

The attached file ¥NSNNSMER contains 42 instead of [41] reported

Figure 4.9: Code output of the validation check on attached files’ length from
2020 data.

As far as 2021 data is concerned!3, the method is almost the same used for year
2020, the only difference is defining the attached files names. In this case, looking
at the files in the >2021° folder the names have variations, so using the ’source’
as the name is not enough. For each row with ’count’ greater than 1, we define
different possible file names, based on the options in the folder. There are six
possibilities as following, assuming the source code is ’0000’:

e ’Dangerous_Goods/2021/0000.x1sx’

« ’Dangerous_Goods/2021/eE-MOR 0000.x1sx’

e ’Dangerous_Goods/2021/EE-MOR 0000.x1sx’

e ’Dangerous_Goods/2021/0000 (modificato).xlsx’
e ’Dangerous_Goods/2021/EE-MOR_0000.x1sx’

e ’Dangerous_Goods/2021/eE-MOR 0000 .xlsx’.

At this point, we verify which of these possibilities exists in the directory, using
os.path.isfile() command and then we read the file, extracting the DG types
and listing them in a pandas Series.

Regarding the validation check on the attached files length, the process and the
Python warning are the same explained for year 2020. This time the errors are

13Ref. code lines 513-568 in Appendix A.

45

Python-based Pipeline: Dangerous Goods

shown in Figure 4.10.

The attached file ¢ contains 4 instead of [6] reported

The attached file GNENSSSNMEN contains 25 instead of [32] reported

Figure 4.10: Code output of the validation check on attached files’ length from

2020 data.

Lastly, for both years, we append the two obtained Series (one for 'count’ equal to
1 and one for ‘count’ greater than 1) resulting in a Series containing all reported
UN codes, and using pandas Series.value counts() we collect the final counts.

It is possible now to join all the data and create a general DataFrame with
all years'*. To do so, we use pandas concat () command, filling with '0” when some

codes are not included in a year.

The result is displayed in Table 4.3.

Table 4.3: Intermediate resulting table of Dangerous Goods analysis.

code 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021
0 0 1 0 1 0 1 1 0 25
1 1 0 0 0 0 0 1 0 1
2 1033 0 0 0 0 0 0 1 0
3 1044 0 0 0 0 1 4 3 0
4 1050 0 0 0 0 0 1 0 0
86 9 0 0 0 0 3 4 0 2
87 | Battery, 0 0 0 0 0 1 0 0
88 Not 0 0 0 0 0 4 0 1
89 UNK 0 3 3 1 0 0 0 0
90 | radioactive 0 0 0 0 0 0 0 1

1Ref. code lines 651-655 in Appendix A.

46

4.4 — Dangerous Goods types

4.4.2 ICAO codes

After gathering all the data and the counts for each year, it is important to underline
that every Dangerous Goods type is defined by its code. However, this is not a
good way to visualize results because of the amount of data, so we will group them
into classes defined by ICAO (see section 3.1.2). The grouping process will be
addressed in the following section, whereas now we focus on how to match codes
and classes. In particular, we consider the main classes and not the sub-classes
(divisions).

First of all, we need to create a list with all the possible combinations of code-class
and this can be done reading a specific document published by ICAO, Technical
Instructions for the Safe Transport of Dangerous Goods by Air [12]. There, from
page 2 to 234 (the pdf source *doc_9284_2019_ 2020’ is a partial extraction of the
manual) there are tables containing the searched relation. Then, thanks to pandas
reading command we can read all those pages and obtain the resulting table, shown
in Table 4.4. The reading process, however, is not simple because Python acquires
the data in a odd way, so some manipulation is needed!®. Using tabula package
we can read the selected pages obtaining a table, then we have to clean the data
depending on how Python acquires the pages. For instance, we have to divide codes
and classes at \r character or deleting the lines named "FORBIDDEN". In addition,
we want to keep only the class number ignoring the sub-class, since the sub-class
number is reported as, for instance, 4.5, we delete any numbers after the point.
It is important to note that not every page is acquired in the same way, so in the
code there is a check that helps understanding if some necessary codes have not
been acquired, thus the user can check if some pages have not been read correctly.
As Figure 4.11 explains, Python provides a warning if there are some missing codes
that are required in the analysis and in this case they will be displayed in order to
the user to take action. The problem could be either a failure of the Python code
or an outdated version of the ICAO document.

Codes not found in Icao document are:
Series([], Name: code, dtype: object)
Please check pdf reading or new versions of the document.

Figure 4.11: Python output for codes’ check.

The misread pages are considered individually and then combined with the rest of

15Ref. code lines 658-703 in Appendix A.
47

N

Python-based Pipeline: Dangerous Goods

the codes'®; in particular, pages 130, 131 and 220.
The total number of codes obtained from the ICAO document is 2328.

codes | classes
1088 3
1089 3
1841 9
2332 3
2789 8
3125 6
3172 6
3462 6
0212 1
0306 1

Table 4.4: ICAO codes and classes.

A way to match codes and classes is to define a Python function that given an input
code, it attributes the corresponding class, according to Table 4.4. The function
used is defined as following:

def matching (x): #defining a function to match from the code the
corrisponding class

if codes_icao[’codes’].str.contains(x).any(): #verifing if the
string exist in the icao pdf

for i in range(0,len(codes_icao[codes’])):
if (x=codes_icao[’ codes’][i]):
match=codes__icao[’ ' classes][]
else:
match="Notfound’
return match

16Ref. code lines 667-679 in Appendix A.

48

4.4 — Dangerous Goods types

In the above code, x is the input code, code icao is the DataFrame corresponding
to Table 4.4, whereas match is the resulting class.

As the input codes are various!”, we have to divide the different options when
matching.

Input code

4 digits — use matching function

1 digit — keep it as resulting class

There are then some specific cases that need to be treated individually. For example,
the next rows explain how items are processed:

Input word

'Battery,” — class 9
'Not” — ND (Not Defined)
'UNK’ (Unknown) — ND (Not defined)

radioactive’ — class 7

As a result it is possible to create a table that combine yearly counts and ICAO
classes, as shown in Figure 4.5.

‘ Years ‘

Codes ‘ (counts) ‘ Classes

Table 4.5: Table model of DG types counting and matching output.

17This diversity originates when splitting the DG types in order to get the UN codes, but not

all the types are alike (see section 4.4), so sometimes the extracted first part of the type is not a
4 digit string.

49

Python-based Pipeline: Dangerous Goods

4.4.3 Grouping

The grouping process is similar to what explained for Event types analysis: defined
some macro-groups we fill them in with all the previous types!®. This time, the
macro-groups are already clarified by ICAO (see section 3.1.2) and also ENAC
has introduced a request. In particular, it was required to split class 9 into two
different groups: Miscellaneous - Li-BAT and Miscellaneous - other than Li-BAT.
Particular emphasis should be made for class 9 grouping, as matter of facts it is
not automatic but it needs the user intervention. From a previous examination by
ENAC, the division of the two class-9 groups was defined and the considered codes
were listed:

Miscellaneous || Miscellaneous
- other than |- Li-BAT
Li-BAT

1845, 2807, 3077, || 0, 3090, 3091,
3082, 3316, 3363, || 3171, 3480, 3481,

8000, 9, 2990, || Battery,
3166

Table 4.6: Division of codes into class 9 groups.

In the interest of making the process more reliable, the Python code provides a
control whether some class 9-codes are not assigned to one of the two groups'®. In
this way the user can decide which class is more appropriate and add the new code
to that class.

Lastly, there is an additional class, named ND: Not Defined, which contains DGs
defined as 'Not Defined” and "UNK’(Unknown) and also the number of empty cells
existing in the Excel files (see section 4.4.4).

As a result, the Table 4.7 is the expected output.

18Ref. code lines 747-811 in Appendix A.
9Ref. code lines 789-795 in Appendix A.

50

4.4 — Dangerous Goods types

2014

2015

2016

2017

2018

2019

2020

2021

class 1:
Explosives

0

0

0

0

class 2:
Flammable
(Gases

15

375

336

class 3:
Flammable
Liquids

13

33

792

687

class 4:
Flammable
Solids

class 5:
Oxidizing

class 6: Toxic
and Infectious

class 7:
Radioactive

class 8:
Corrosives

12

13

16

class 9:
Miscellaneous
- other than
Li-BAT

10

14

class 9-Bat:
Miscellaneous
- Li-BAT

10

171

252

ND: Not
defined

Total

Table 4.7: Resulting table of Dangerous Goods types analysis.

5

8

11

51

10

38

94

1366

1317

Python-based Pipeline: Dangerous Goods

4.4.4 Checks and validation

As well as for Event types analysis, also in this analysis it is necessary to check
if there are any errors in the data results®*. The calculated values for each year
are the total amount of DGs types extracted, the total amount of reports and the
additional multiple types, besides the number of blank cells and the miscounts.
The total amount of DGs types extracted comes from the sum of each columns of
Table 4.7.

The total amount of reports is the length of the general Excel file or, for 2020 and
2021, of the collective attached files; to calculate it we sum the ’count’ column
yearly (for years 2014-2019, the ’count’ columns was set to 1).

The additional types are the amount of multiple DGs types that are written in a
single cell; we proceed in the same way done before: reading each row and detecting
how many \n there are and thus how many additional DGs types.

Concerning the sum of blank cells, it can happen that some reports have empty cells
corresponding to the searched data and we find them using pandas Series.isna()
command. Counting them is important in order to make the numbers work because
these empty cells are counted also as number of reports.

Lastly, with the term 'miscounts’ we imply possible errors in the Excel file "count’
column. As a matter of facts, the number reported in that column should be equal
to the length of the corresponding attached file, but this is not always the case.
The calculation has been conducted in section 4.4.1.

As shown in Figures 4.12 and 4.13 Python reports the calculated numbers for
each years, adding the miscounts for 2020 and 2021. In case the figures don’t
add up, the code provides a warning: ’Missing data!’. The third row is the lin-
ear combination of the rows below, as indicated before in section 4.3.2; in Figure 4.6.

Total reports of Dangeruos Goods in 2019: 87
Total number of dangerous goods extracted in 2019: 93
Total additional DG types: 7

2 DG type: 3
3 DG type: 2
4 DG type: ©
5 DG type: ©
6 DG type: ©

Blank cells: 1

Figure 4.12: Python report for 2019 on analysis validation.

20Ref. code lines 573-648 in Appendix A.

52

4.4 — Dangerous Goods types

Total reports of Dangeruos Goods in 2820: 1356

Total number of dangerous goods extracted in 20206: 1365
Total additional DG types: 9

2 DG type: 6

3 DG type: ©
4 DG type: 1
5 DG type: ©
6 DG type: ©

Blank cells: 1
Number of missing counts:[1]

Figure 4.13: Python report for 2020 on analysis validation.

Since the code found out some errors in 2020 and also in 2021, ENAC has been
informed and the errors have been corrected. The results presented in chapter 6
consider the adjustments.

53

54

Chapter 5

Python-based Pipeline:
Safety Performance
Indicators

The theme is the analysis of Safety Performance Indicators - outcome oriented. It
aims at creating a template that can be used for any SPI study. In ENAC Safety
Report Portal the displayed parameters are fourteen and they are mentioned in
chapter 2. Following, we focus on two study cases, however the Python code can be
run for any of the SPIs-O included in the Safety Report Portal. The chosen samples
are Runway Ezcursions and Runway Incursions; the first one is characterized by
a type of analysis that is common between many other SPIs, whereas the second
one includes a further examination about Event types. In section 5.2, the whole
code will be explained even though the graphical outputs in chapter 6 are only
about the two cases mentioned above. Then, specifically in section 5.3 there are
references to the Event types analysis.

Figure 5.1 presents the flowchart regarding the analysis.

5.1 Input data

The input data come from Excel files, one for each requested SPI. Every file contains
as many sheets as the total number of considered years. In particular, the analysis
covers a time-period from 2015 to 2020.

Generally, every file contains the data about the occurrences of the specific SPI,
in Figure 5.2 an example of an Excel file is presented. The second studying case
contains also data about Event types, as shown in Figure 5.3. The general data
on occurrences and the data about Event types are assigned to different columns,

55

Python-based Pipeline: Safety Performance Indicators

therefore the coexistence of them doesn’t compromise one analysis or the other.

‘ ENAC datasets

General data
(Occurrences)
'

Event
types data
'

Grouping and counting

Grouping and counting

Is the
analysis
consistent?

Plotting

|

Analysis output

yes
Plotting

|

Analysis output

Figure 5.1: Flowchart of the Safety Performance Indicators analysis.

UTC date | UTC time | File number
dd/mm/yyyy 00:00 XXXX

Figure 5.2: Example of general input data of SPIs. (Sensible data is classified
and indicated generally.)

UTCdate pgUTCtime pggFile number gEventtype g
dd/mm/yyyy 00:00 XX Incursions

Figure 5.3: Example of input data of SPIs with Event types data. (Sensible data
is classified and indicated generally.)

56

5.2 — General template

In Figure 5.2, there are three filled columns, but in the analysis only the column
named 'UTC date’ is used. In Figure 5.3 there are four filled columns, but the
necessary ones are those named "UTC' date’” and 'Event type’.

The input files include empty columns due to data restrictions!, even though it is
not shown in Figures 5.2 and 5.3.

5.1.1 Reading Excel files

To conduct the analysis it is necessary to read the files>: we need to read one
file for each run because the analysis of one SPI ends in itself. Since the code is
generalized, it provides the reading of all Excel files even though we present only
the first two cases with their Excel files.

So, through the use of a if-condition it is specified which Excel file is required to
be read. In particular, at line 14 in the code, the user has to indicate the name of
the considered SPI, then according to that choice, the code selects three specific
variables: subject, which is the extended name of the SPI, name, which is the
contracted name (used in naming output files) and file_name, which is the name
of the Excel file input.

At this point, it is possible to read the file using pandas read_excel() com-
mand?. In particular, we read every sheet of the file (according to the considered
years) and we append them together, saving all in a single DataFrame (following
referred as the ’original DataFrame’).

5.2 General template

The analysis starting point is the original DataFrame, where all data is contained.
The only necessary column is the number 5, where the dates are indicated, because
it allows us to diversify data relating to the year and to count the total number
of reports of that year. In SPIs analysis, differently from DGs analysis, we study
the total number of events yearly, so the total number of reports of a specific
year, that is also equal to the length of the specific Excel sheet. When extracting
the data from the original DataFrame, we also convert the data to date format
and then we keep only the indication of the year; to do so we use the pandas
to_datetime() .dt.year.

From now on, we need to differentiate the analysis according to the definition of

!Data restrictions have to be addressed to ENAC and they are not subject of this thesis
2Ref. code lines are 20-39 in Appendix B.
3Ref. code lines 58-68 in Appendix B.

57

Python-based Pipeline: Safety Performance Indicators

the specific SPI, however the process has the same steps: counting the occurrences,
calculating the relating rate (only for the first three groups) and creating a resulting
DataFrame. The different categories are four and consist of the following SPIs:

spi_mut : RE, RI, TCAS, RAMP, GCOL, F-NI, LASER, APR_ interference

spi_fit . LOC-I, TAWS

spi_occ : BIRD, UPA, ATM _failure

spi__dur : SMI

The first category considers SPIs whose rate is defined by the number of move-
ments*; the second one whose rate is defined by number of flights®; the third one
whose rate is defined by the occupancy duration; the fourth one considers SPIs
whose only output is the number of occurrences yearly. In order to divide the code
lines respectively, if-conditions are used.

For each of the first three categories, we count the total number of events yearly
using the pandas Series.value counts() command, then we calculate the rate.
Changing category, the denominator of the fraction assigned and the multiplication
factor change. In particular, the first group is calculated every 10000 movements,
the second one every 10000 flights and the third one every 1 million minutes.

As an example we provide the calculation for the first category in equation 5.1.

yearly occurrences
rate =

* 10000 (5. 1)
movements

The values for movements and occupancy duration are provided by ENAC, while
the number of flights comes from EUROCONTROL.

The resulting DataFrame is presented in Table 5.1 and Table 5.2.

Similar resulting DataFrame can be obtained for the other two groups.

As far as the fourth category is concerned, since their output is only the number
of occurrences, using the pandas Series.value counts() command the code will
count the number of events yearly. The tabular result is a DataFrame composed of
just one column.

4See section 3.3 for the definition.

5See section 3.3 for the definition.

58

5.3 — Event types template

Movements | Number of events | Rate
2015 1544643 12 0.08
2016 1624966 11 0.07
2017 1653242 16 0.10
2018 1722254 20 0.12
2019 1655381 18 0.11
2020 708602 8 0.11

Table 5.1: Resulting table of general SPI analysis on Runways FExcursions.

Movements | Number of events | Rate
2015 1544643 80 0.52
2016 1624966 72 0.44
2017 1653242 127 0.77
2018 1722254 180 1.05
2019 1655381 187 1.13
2020 708602 86 1.21

Table 5.2: Resulting table of general SPI analysis on Runways Incursions.

5.3 Event types template

Regarding Event types analysis, it is automatically run if the required data is
available, that is when the 'Event type’ column is filled.

To implement the analysis, columns number 5 and number 12 of the original
DataFrame are extracted®. The data about dates is converted in date format using
pandas to_datetime () command.

Differently from the DGs analysis, in this case we consider only specific Event types
to count, which are requested by ENAC. In particular, they are three:

o Runway Incursions by an Aircraft

SRef. code lines 254-269 in Appendix B.
59

Python-based Pipeline: Safety Performance Indicators

o Runway Incursions by an Person
« Runway Incursions by an Vehicle/Equipment.

It is important to underline that these mentioned event types refer only to the SPI
of Runway Incursions, but the code can work for any event type used in reporting,
after appropriate changes.

At this point we count how many times the specific types appear and we save the
scores in a new DataFrame. Then, we calculate the rate using the equation 5.1.
In this case we consider the rate per 10000 movements and in addition, we round
the results at third decimals. As a result we obtain a DataFrame containing six
columns, as shown in Table 5.3.

) Q

) :/cg g = ,? ;

g £r| §| §F s | & gz

£ I8 | §| ~S | &5 8§
T | eSS & es | F§ | £8S
] g5 | 2F TS
Sy A N N ¥
2015 | 46 0.298 3 0.002 5) 0.019
2016 | 43 0.265 2 0.002 10 0.012
2017 | 75 0.454 10 0.003 28 0.060
2018 | 112 0.650 13 0.004 35 0.075
2019 | 111 0.671 4 0.004 40 0.024
2020 | 38 0.536 7 0.008 17 0.099

Table 5.3: Resulting table of Event types analysis on Runways Incursions.

5.4 Checks and validation

With the interests of verifying that the results are accurate, the implementation of
a check is required. In particular, we calculate the number of rows in the Excel file,
for each year, and the number of blank cells and we compared them with the the
total number of occurrences extracted’.

The number of rows is calculated using the 1len() command, the number of blank

"Ref. code lines 64-65 and 121-123 in Appendix B.
60

5.4 — Checks and validation

cells using isna() .sum() and the total number of occurrences are the values in the
second column in Table 5.1 or Table 5.2. Whenever the numbers do not correspond
the code provides a warning: ’Missing data!’.

In the Event types analysis, implementing a check is ineffective because the analysis

does not consider all the event types in the Excel file, so the validation results
irrelevant.

61

62

Chapter 6
Output graphics

The graphical output of the project is twofold: the code aims, firstly, at obtaining
the same results displayed in the Safety Portal and secondly, at identifying new
and more appropriate graphical visualisations!.

The first target helps to understand how using Python can be easier compared to
the use of other visualisation software? and so, to target a possible change in the
current scenario maintaining the current shape. The second goal tries to improve

the current scenario, operating with different types of plots and new design.

6.1 Reproducing Safety Portal results

Regarding obtaining the same results of the Safety Portal, we focus on following
the existing layout, therefore the chosen types of graph are pie charts, bar plots
and line plots. The diagrams that we are going to replicate can be see in sec-
tion 2. The layouts are similar to the old ones but also reflect Python characteristics.

6.1.1 Dangerous Goods
Event types

Figure 6.1 represents the graphical output of Event Types analysis, following its
legend in Figure 6.2. Looking at the evolution over the years, the changing in ENAC

!Referring code lines of Event types plots are 202-369 and of Dangerous Goods types plots are
817-950 in Appendix A, whereas code lines of SPI are 123-249 and 274-433 in Appendix B.

2Generally avionic agencies make use of Microsoft Power Bi, which is an interactive data
visualization software developed by Microsoft.

63

Output graphics

reporting system is evident. In 2014 and 2015 reporting was minimal as the event
types reported are few; from 2016, and even more from 2018, the reporting system
has became more and more efficient. An important variation is registered from
2020 when the attached files were introduced, as a matter of facts the possibility of
reporting many events together has favored the notification of 'Dangerous Goods
Undeclared’ as a general definition of any events. This trend could lean to an
inaccurate analysis, due to the fact that the input data is misrepresented.

Event Types
2014 2015 2016 2017
2018 2019 2020 2021

G600

Figure 6.1: Event types output chart.

Dangerous Goods Undeclared

Dangerous Goods Forbidden

Dangerous Goods Labelling/Marking

Dangerous Goods Leaking

Dangerous Goods Damaged

Dangerous Goods Packaging

Dangerous Goods Handling and Loading
Dangerous Goods Not Matching Documentation
Smoke/Fumes/Fire Li-BAT

Other

BORRUENEN

Figure 6.2: Legend of figure 6.1

64

6.1 — Reproducing Safety Portal results

Dangerous Goods types

Figure 6.3 represents the analysis output of Dangerous Goods types, followed by its
legend in Figure 6.4. The registered trend over the years looks different from the
one in Figure 6.1 because it is a different analysis and also it is affected differently
by the changes in the reporting system. In particular, what stands out is the
increase of 'Flammable Liquids’ from 2018.

2014

2018

PROneuonnng

Dangerous Goods Types
2015 2016 2017

9362

2019 2020 2021

CG-O06

Figure 6.

3: Dangerous Goods Types output chart.

class 1: Explosives

class 2: Flammable Gases

class 3: Flammable Liquids

class 4:Flammable Solids

class 5: Oxidizing

class 6: Toxic & Infectious

class 7: Radioactive

class 8: Corrosives

class 9: Miscellaneous - other than Li-BAT
class 9-Bat: Miscellaneous - Li-BAT
ND: Not defined

Figure 6.4: Legend of figure 6.3.

It is important to underline that we do not note the percentage values and the
number of occurrences on the pie charts, because it can look disorganized. In

respond to this omission,

we suggest to attach a table (similar to Table 4.2), which
65

Output graphics

is easier to consult and to extract numerical and precise results.

6.1.2 Safety Performance Indicators

Regarding the general analysis, the requested plots are two bar plots and a line
plot. The first two are about the number of occurrences per year and rate per year,
whereas the third is about the trend about movements per year. The last graph
can change according to the considered SPI; in some cases it can represent the
trend of flights per year and in one other case the trend of occupancy duration in
the sky.

These three graphs can be found for almost all the considered SPIs, clearly following
the indicator’s definition to conduct the analysis. Figure 6.5 presents the requested
bar plots and Figure 6.6 the line plot. Since we examined two study cases, we
present also the results for the second case in Figure 6.7. Looking at the bar plots
on the number of events/occurrences, it is clear that the decrease in 2020 is a
consequence of the Covid-19 pandemic, which can be also identified in the line plot
in Figure 6.6.

In order to make the graphical outputs as complete as possible, we present, in
figures 6.8 and 6.9, also the trends of flights and occupancy duration.

Runway Excursions

Number of events Rate
20.0 I 0.12
17.5 -
0.08
3125
: B AR B
o 2
510.0 N & 0.06
75 [
5.0
N A EEENI
0.0 0.00
2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020

Figure 6.5: Bar plot on occurrences per year and rate per year of Runway
Excursion, as included in ENAC safety portal.

66

6.1 — Reproducing Safety Portal results

175

150

125

100

Occurrences
~
w

wv
o

2

w

o

Figure 6.7: Bar plot on occurrences per year and rate per year of Runway

Movements (in Min)
© © » = B = = N
(o)} (o] o N H [e)] (o] o

0.4

Movements per year

2015

2016

2017 2018 2019 2020

Figure 6.6: Trend of movements per year.

Runway Incursions

Number of events Rate

1.2
1.0
0.8
-]

206
0.4
0.2
0.0

2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019

Incursion, as included in ENAC safety portal.

Only three SPIs, such as BIRD, UPA, ATM failure require only the bar plot about
occurrences per year. The SPIs, named RAMP and LASER, present also further

geographical examinations, which are not considered in this project.

In addition, we decide to not show the values at the top of the bar plots, because

it would be a repetition since the vertical axis is always shown.

67

Output graphics

Flights per year

2015 2016 2017 2018 2019 2020

Figure 6.8: Trend of fights per year.

Occupancy Duration (min)

~
o

w)]
o o
A
\
\
\
\
\
\
-
-

D
o
-

N
o

=

o
L

~~

Occupancy Duration (in MIn of min)
3
o

<
®
i
|
|
|
[3

2015 2016 2017 2018 2019 2020

Figure 6.9: Trend of occupancy duration per year.

Regarding the Event types analysis, the requested plots are six bar plots, three on
occurrences per year and three on rate per year. Figure 6.10 present the output as
included in the Safety Portal. It is possible to understand the runway incursions by
an aircraft are the more frequent types, followed by those by vehicle/equipment.

68

6.2 — Finding new visualisation options

Event Types (RI)

Runway Incursion by an Aircraft

Aircraft rate Aircraft x10000 mvts
B N
0.50 1
30 0.25
0.00
2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020

Runway Incursion by a Person

Person rate Person x10000 mvts

0.005 .

2015 2016 2017 2018 2019 2020 0.000 2015 2016 2017 2018 2019 2020

Runway Incursion by a Vehicle/Equipment

Vehicle/Equipment rate Vehicle/Equipment x10000 mvts
40 0.10 I
20 0.05] .
0 v v v v v v 0.00
2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020

Figure 6.10: Bar plots on Event types analysis of 'Runway Incursions’, as included
in ENAC safety portal.

6.2 Finding new visualisation options

When presenting any data analysis to an audience?, it is fundamental to understand
which information we are sharing and the best way to do so. In this regard, we
focus the attention on the types of plots that can be used to visualise the data and
their properties to make the representation clear and exhaustive. As mentioned
before, Python offers advanced methods of visualisation. Those that have been
chosen in this project will be discussed further on.

3ENAC Safety Report Portal is a public accessible site for consulting.
69

Output graphics

6.2.1 Dangerous Goods
Event types

Concerning Event types analysis, the first attempt of a different visualisation is a
simple bar plot, which represents the amount of event types reported yearly. It can
be useful to understand how the safety culture has spread over the years, displaying
the total number of occurrences.

In this case we use matplotlib.pyplot.bar () command to generate the output.

Event Types

Trend overtime

i 250
1200
(75}
q) I
)
[
o +150
é I
S I i I-1oo

I I I-SO
-0

Figure 6.11: Trend of total amount of Event types reported yearly.

2014
2015
2016
2017
2018
2019
2020
2021

A second option is a horizontal stacked bar plot, with two different perspectives.
The characteristic of this type of plot is that it shows the percentages in a clearer
and more consistent way than a pie chart, when the amount of data is significant.
It is possible to understand the mutual relation between the event types and their
weights in each year, following the percentage indication at the bottom line of the
graph. Figures 6.12 and 6.13 differ in term of the focus: the first one points out
the years, whereas the second one the event types themselves.

We operate a pandas plotting command, DataFrame.plot.barh(), to generate
both graphs.

70

6.2 — Finding new visualisation options

In Figure 6.12 it is shown, as in Figure 6.1, the widely use of 'Dangerous Goods
Undeclared’ in reporting. The introduction of the second stacked bar plot helps
to understand how the reporting of a specific type has evolved in the considered
time-period. For instance, it is clear that reporting 'Dangerous Goods Undeclared’
is more predominant in 2021 than in all the other years. The possible reason behind
this trend is explained in section 6.1.1.

Lastly, in Figure 6.15 we present the values of every category of Event types.
In this way we can have a clear idea on their order of magnitude. It is also rep-
resented the individual trend over the considered time-period. It is important to
notice that the vertical axis is different for each graph.

In this last case, as well as the first bar plot, we use matplotlib.pyplot.bar()
command.

Event Types

2021

2020

2019

2018

Years

2017

2016

2015

2014

0% 20% 40% 60% 80% 100%
Figure 6.12: Stacked bar plot of Event types focusing on the years.

71

Output graphics

Types

Dangerous Goods Not Matching Documentation

Event Types

Dangerous Goods Undeclared

Dangerous Goods Forbidden

Dangerous Goods Labelling/Marking

Dangerous Goods Leaking

Dangerous Goods Damaged

Dangerous Goods Packaging

Dangerous Goods Handling and Loading

Smoke/Fumes/Fire Li-BAT]

Other

0%

Figure 6.13: Stacked bar plot of Event types focusing on the types.

Dangerous Goods Undeclared

Dangerous Goods Forbidden

Dangerous Goods Labelling/Marking

Dangerous Goods Leaking

Dangerous Goods Damaged

Dangerous Goods Packaging

Dangerous Goods Handling and Loading
Dangerous Goods Not Matching Documentation
Smoke/Fumes/Fire Li-BAT

Other

(a) Legend of figure 6.12.

20%

40%

60% 80%

2014
2015
2016
2017
2018
2019
2020
2021

(b) Legend of figure 6.13.

Figure 6.14: Legends of stacked plots of Event types analysis.

72

100%

6.2 — Finding new visualisation options

Event Types
Dangerous Goods Undeclared Dangerous Goods Forbidden
200 5.0 i
100 L ‘ 2.5 I
0 n |l 0.0
< n ©o ~ oo} o o — < n o ~ oo} o o —
— — ~— — - — o~ o~ - — — - — — o~ o~
o o o o o o o o o o o o o o o o
o o~ (o] o (o] (o] o (o] o~ (o] (o] o~ (o] o~ o~ (o]
Dangerous Goods Labelling/Marking Dangerous Goods Leaking
5.0
2.5
0.0 0 I
< n ©o ~ © o o — < n o ~ © o o —
— - — — — — o~ o — — — — — — o~ o
o o o o o o o o o o o o o o o o
o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~
Dangerous Goods Damaged Dangerous Goods Packaging
2
1
2
0 0
< n ©o ~ oo} (<] o — < n o ~ oo} o o —
— — — — — — o~ o — — — — — — o~ o~
© © o o o o o o © © o o o o o o
o~ o~ o o o o~ o o o~ o o~ o~ o o~ o~ o

Dangerous Goods Handling and Loading Dangerous Goods Not Matching Documentation

5.0 |
10 i I
2.5 I l
0 < n © ~ © o o — 0.0 < n © ~ © o o —
— — —~ - — —~ o~ o~ — — — — —~ — o~ o~
o o o o o o o o o o o o o o o o
o o~ (o] o o (o] o (o] o~ o o~ o~ o o o~ o~
Smoke/Fumes/Fire Li-BAT Other
2
5
0 0
< \n © ~ @ o o — < n © ~ © o o —
— - ~ — — ~ o o~ — ~— — — — — o o~
o o o o o o o o o o o o o o o o
o~ o~ o~ o~ o~ o~ o o~ o~ o~ N o~ o~ o~ o~ o~

Figure 6.15: Multiple bar plots of Event types focusing on their values.

73

Output graphics

Dangerous Goods types

In this section we present the graphical outputs that suit better the results of DGs
types analysis.

The first graphs are bar plots, which represent the total number of occurrences
over the considered time-period. In Figure 6.16, there are two plots: the first one
uses the decimal scale, whereas the second one uses the logarithmic scale. This
choice can be explained looking at the left plot, where it is clear that data from
2014 to 2019 is misrepresented, so using a logarithmic scale it is better showing the
orders of magnitude.

In this case we use matplotlib.pyplot.bar() command to generate the output.

Dangerous Goods Types

Trend overtime - Decimal Scale Trend overtime - Log Scale
1400
103_
1200+
,, 1000 "
]]
£ 800 £ 102
: g 10%
> >
9 600 9
@] @]
400+
1]
2001 10
0" T % T T o o o o < 1 © N~ © O o o
— — — — — — o o — — — — — — o o
O O o o o o o o O O o o o o o o
o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o o o o~ o~ o~

Figure 6.16: Trend of total amount of Dangerous Goods types reported yearly.

As a second possible visualisation, we present a stacked bar plot. This type of plot
shows all important details in a better way than a pie chart, when the amount
of data is significant. Figure 6.17 and Figure 6.18 show the relation between the
total number of occurrences per class and their weights yearly, with different focal
points.

We operate a pandas plotting command, DataFrame.plot.barh(), to generate
both graphs.

74

6.2 — Finding new visualisation options

Dangerous Goods Types

Classes

0% 20% 40%

60%

80%

Figure 6.17: Stacked bar plot of DG types focusing on the years.

Dangerous Goods Types

class 1: Explosives

class 2: Flammable Gases
class 3: Flammable Liquids
class 4:Flammable Solids
class 5: Oxidizing

class 6: Toxic & Infectious
class 7: Radioactive

class 8: Corrosives

class 9: Miscellaneous - other than Li-BAT:
class 9-Bat: Miscellaneous - Li-BAT
ND: Not defined

0% 20% 40% 60% 80%

Figure 6.18: Stacked bar plot of DG types focusing on the classes.

75

100%

100%

Output graphics

class 1: Explosives

H class 2: Flammable Gases 2014
B class 3: Flammable Liquids 2015
I class 4:Flammable Solids
. B 2016
class 5: Oxidizing
. . 2017
class 6: Toxic & Infectious 2018
class 7: Radioactive 2019
I class 8: Corrosives 2020
class 9: Mlscelllaneous - otherlthan Li-BAT - 2021
B class 9-Bat: Miscellaneous - Li-BAT
ND: Not defined
(a) Legend of Figure 6.17. (b) Legend of Figure 6.18.

Figure 6.19: Legends of Dangerous Goods analysis in ENAC Safety Portal.

While investigating which graphical visualisation could suit better the analysis, we
conclude that with such many categories to display a tabular representation could
be the best option (similar to Table 4.7).

6.2.2 Safety Performance Indicators

Considering new ways of visualization for SPI analysis, we decide to represent the
rate as a line plot to highlight the trend instead of its specific values, as shown in
Figure 6.20 and Figure 6.21.

Regarding the Event types analysis, Figure 6.22 present the output as a pos-
sible variation, using line plots of rate graphs instead.

In addition to Figure 6.22, we consider other two ways of visualising the Event
types results. The first one studies the number of occurrences implementing a
stacked bar plot, in order to show the relation of the three considered event types
respectively. Figure 6.24 presents the weight of each event type relating to the
others. It is important to underline that we do not use percentages because these
event types are just a portion of all those reported.

The second implemented graph is a line plot that illustrates all three rate trends of
the considered event types together. In this way, it is possible to compared them
easily, as shown in figure 6.25.

76

6.2 — Finding new visualisation options

Rate per year (RE)

0.12] &
/
0.111 / | °

0.101 L

Rate

0.09" /!
0.08{ @ /

0.07- ¢
2015 2016 2017 2018 2019 2020

Figure 6.20: Trend of fights per year for Runway Ezcursions.

Rate per year (RI)

1.21 _.®
1.11 I
1.0 7

9 0.9

« 0.8 e
0.7 /
0.6 2
05{ @~/

2015 2016 2017 2018 2019 2020

Figure 6.21: Trend of fights per year for Runway Incursions.

77

Output graphics

Event Types (RI)

Runway Incursion by an Aircraft

_____ [}
100 i i 06 ,,.— \\\\
§ ,,/ \\\.
» ERR |
5 50 504 et
2l B H H B I
. 03 @-—___ _~
. il : : : :
2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020
Runway Incursion by a Person
0.008 hd
10]
E I I 0.006 //
g 8 y
= © /
o /7
g s] 0.004 I
o /’./‘
0.002{ @-—--—-- Rl : : : :
2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020
Runway Incursion by a Vehicle/Equipment
40 0.10 ®
/
/
430 0.08 L}
[y [0} _-" \ /
g £0.06 . /
520 2 A
o] 0.04 //, N I
© 10 ¥ \\.,
0.02{ @~
' , ' , ' : — @ : : : :
2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020

Figure 6.22: Bar plots and line plots on Event types analysis of Runway Incursions.

HElE Runway Incursion by an Aircraft
Il Runway Incursion by a Person
Runway Incursion by a Vehicle/Equipment

Figure 6.23: Legend of figure 6.24.

78

6.2 — Finding new visualisation options

Event Types (RI)

2020

2019

2018

Years

2017

2016

2015

0 20 40 60 80 100 120 140 160

Figure 6.24: Stacked bar plot on Event types analysis of Runway Incursions.

Event Types rates (RI)

0.7
/.- _________ -.\\\\
0.6 7 N
/,/ \..
0.5' ,//
/"
(0] 0.47 // -@- Runway Incursion by an Aircraft
© // -@- Runway Incursion by a Person
03] @-—____ ‘/ -@- Runway Incursion by a Vehicle/Equipment
0.2
0.1 —®
______ P e
0.0 .::::::::::.:: ________ P ——— @ ---—-—————- ‘.‘ __________ Y
2015 2016 2017 2018 2019 2020

Figure 6.25: Line plot on Event types analysis of Runway Incursions with rate
trends together.

79

80

Chapter 7

Conclusions

This thesis started from ENAC data-sets. Its output is a Python code that can
analyze both Dangerous Goods data and Safety Performance Indicators data. The
software pipeline managed to replicate ENAC Safety Report results' and to extend
the analysis up to 2021 data. As a byproduct, two kinds of graphical visualisations
have been presented: we reproduced a subset of already available plots and we
suggested some new ones that provide a different and improved insight of the subject.

Since safety is such an essential matter in aviation, an accurate and user-friendly
analysis of safety data is fundamental for a more effective prevention of potential
hazards. This practice helps to deepen the knowledge on the Italian safety scenario
and to understand what is important to monitor. It should be noticed that safety
culture is growing, since the total number of reports has increased over the years.
However a revision of the reporting system is desirable in order to make the results
more accurate.Furthermore, results of 2020 and 2021 are not reliable without a
discussion on the effects on aviation during the Covid-19 pandemic. The interpreta-
tion of such data is still an ongoing process, since an adequate time-frame is needed
in order to gather a clear view of the scenario and the consequences on aviation.

Every national safety authority develops its unique method to process and analyze
safety data, making it difficult to compare safety results and trends belonging to
different states. An extended use of this Python-based pipeline could be the key to
find a common ground on studying this matter. In this regard, this project aims at
providing Excel format files as outputs, that could be used in already existing tools
for post-processing. For instance, the use of Microsoft Power Bi to draw plots can
be carried on: given the Excel files as inputs it works as usual.

! As the publication date of this work, the ENAC Safety Report displays data up to 2020.

81

Conclusions

All presented Tables, 4.1, 4.2, 4.4, 4.5, 4.7, 5.1, 5.2 and 5.3, are saved in a folder,
named ’Analysis_Excel’ and allow the user to benefit from the data analysis
outside the software. The connection between Python and Excel is provided by
pandas, in particular using DataFrame.to_excel(’directory/filename.x1lsx’)
command.

A further improvement on the quality of data availability and presentation is
a Python-based interactive dashboard. This tool is a Web interface that displays
results that can be consulted by the interested parties and that are connected to
the prior analysis.

This application does not required any technical knowledge to be used. The pro-
gramming language used in the building process is Python and the performed
analyses are based on the pipeline illustrated in chapter 4 and chapter 5. An
extensive and technical explanation of the design of this dashboard can be found
in Appendix C.

The programming language is the same used in the whole project, so no additional
skills are required. The layout and the content can be modified based on the
user’s needs and changes are easy to implement. In addition, there is a connection
between the input and the output, therefore any changes in the initial Excel files
will affect directly the information displayed in the dashboard.

The dashboard consists of four pages and a sidebar, which allows to choose which
page is visualized. The four pages are respectively: Home that is the opening front
page, Safety Performance Indicators, Dangerous Goods, and About that gives some
information about the project and the developers. In particular, the second and
third pages collect the results given as output of the previous analyses: there is
an introduction of the subject illustrating the main definitions and visualisations,
both tabular and graphical, as provided in chapter 6. All the included plots are
interactive, thus the interpretation of the analysis results is more easily delivered
and the user is highly engaged.

This project could be the starting point for an actual shared approach on safety
among EU Member states. Therefore, the optimization of the Python code, which
is currently under development, is encouraged. We also underline the potential of
the dashboard, which can become more refined, exhaustive and structured.

82

AW N e

[} Tt

~

10

11

12

13

15
16

17

Appendix A

Python-based Pipeline: DGs
template

This appendix contains the Python code of the Dangerous Goods analysis.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.colors as mcol
import matplotlib as mpl

j|import seaborn as sns

from itertools import chain #to append lists of list

import matplotlib.ticker as mtick #to show percentage ticks in
matplotlib graphs

import os.path #to verify the existence of a file in a specific
directory

import tabula #to read pdf files

from matplotlib. gridspec import SubplotSpec #to title every row of in
figure with subplots

#Indicating the years considered for the analysis.

years=['2014",°2015",72016",°2017 ", 2018 ,°2019,°2020 ", 2021 "]

#READING DATA
#Reading all data from each Excel sheet and creating a specific
Dataframe for each year.

data_ 2014=pd.read__excel (’Dangerous_Goods/DGOR, 2021. xlsx ’ ,sheet_name=
years [0])

data_2015=pd.read__excel(’Dangerous_Goods/DGOR,_2021. xlsx ’ sheet_name=
years[1])

83

Python-based Pipeline: DGs template

20| data_2016=pd.read__excel (’Dangerous_ Goods/DGOR,_2021. x1sx ’,sheet_name=

years [2])

21| data_ 2017=pd.read__excel (’Dangerous_Goods/DGOR, 2021. xlsx ’ ,sheet_name=
years [3])

22| data_ 2018=pd.read__excel (’Dangerous Goods/DGOR,_2021. xlsx ’ ;sheet_name=
years [4])

23| data_2019=pd.read__excel (’Dangerous_ Goods/DGOR_2021. x1sx ’ ,sheet_name=
years [5])

21| data_ 2020=pd.read__excel (’Dangerous Goods/DGOR, 2021. xlsx ’ ,sheet_name=
years [6])

25| data_ 2021=pd.read__excel (’Dangerous_ Goods/DGOR_2021. x1sx ’,sheet_name=
years [7])

o7l data_2014.1iloc [2,7]="Dangerous Goods Leaking’ #In 2014 the Event Type
about Leaking is identified differently , so we changed it (It was
"Dangerous Goods Leaking related event ’.)

20|#Creating a dataframe to contain all data.
30| data=[data_2014, data_2015, data_2016, data_2017, data_2018,
data_ 2019, data_ 2020, data_2021]

o |
31| 7

32 ,'I,/
33| #EVENT TYPES ANALYSIS
34| #

s5|#Extracting only event types data and defining a list of every type,
without manually insert them.

37| ets__all=pd. Series (dtype=str) #new dataframe
ss| for year, df in zip(years,data): F#for each year dataframe,
extracting the column of event type and appending them all

together
39 et= pd. Series ()
10 et=df.iloc [:,7] #Event Type
a1 ets__all=ets_all.append(et) #putting together every event type

13|#from the whole list it is necessary to remove parenthesis, to drop
dulicates and then to split the event types that are together in a
single cell (divided by \n)

15| ets__all=ets_all.str.replace(’(’,’).str.replace(’)’,’ 7).
drop_duplicates (keep=""first ’).str.split(’\n’).tolist ()

a7|#then we got a list of lists , so with the command chain, all the
items are concatenated in a single list that is transformed into a
Series , which can be manipulated deleting other duplicates,
sorting in ascending order and deleting also blank spaces

48

©

et_all=pd.Series(list (chain(xets_all))).str.lstrip().drop_duplicates(
keep="first ")

84

Python-based Pipeline: DGs template

50 et _all=et__all.drop(et_all[et__all=""].index).sort_values (ascending=
True)
si|#et__all is the list of 35 event types that can be used in reporting.

53| #COUNTING

51| eventtype__count=pd.DataFrame (index=et__all , columns=years) #new
dataframe as columns the years and indexes all even types.
s5|#for each year the count of each event type is recorded in the
specific cell in the new dataframe

57| data__plus=[data_2014, data_2015, data_2016, data_2017, data_2018,
data_2019, data_2020[data_2020] count’]!=0], data_2021[data_2021[’
count ’]!=0]]

ss|#for years 2020 and 2021 it is necessary to not consider those
occurences with ’count’=0, so I defined a new general Dataframe(
data_plus)

6| for year, df in zip(years, data_plus):

61 for dg in et_all:

62 eventtype_ count.loc [dg,year|=df.iloc [:,7][df.iloc[:,7].str.
contains (dg)]. value__counts () .sum/()

63
61| #Dataframe with total count per year (uncomment following rows if
necessary)

6s|#total _counts_ tot=pd.DataFrame(index=['Total ’], columns=years)

6| #total counts tot[years|=eventtype count[years].sum()
67|#eventtype count=eventtype count.append(total counts_tot)

68
69| #
eventtype_count.to_excel(’Analysis Excel/eventype all.xlsx’) #saving

/]
£
7

eventtype_ count

~

i
W N =

1| #GROUPING

#In order to make data more understandable, we define new groups
merging some old ones together. The 10 new categories are listed

76|# in new_types, the first six are the same considered above, whereas

the last four contain more groups.

e B R BN |
N

[

77| new__type=[’Dangerous Goods Undeclared’, ’'Dangerous Goods Forbidden’,’
Dangerous Goods Labelling /Marking’,’Dangerous Goods Leaking’,’
Dangerous Goods Damaged’, Dangerous Goods Packaging’, Dangerous

Goods Handling and Loading’,’Dangerous Goods Not Matching
Documentation’, ’Smoke/Fumes/Fire Li-BAT’,’Other’]

79|#At each new row of the new dataframe we insert specifically the data
of the considered group.

so| newtype_ count=pd.DataFrame(index=new_type, columns=years) #new
DataFrame

81

85

82
83

[

84
85

86

87

88

89
90

91

92
93
94

95
96

97

98

99

100
101
102

103
104

105

106
107

108

109
110
111
112

Python-based Pipeline: DGs template

#DG UNDECLARED
newtype_ count.loc [’Dangerous Goods Undeclared ’]=eventtype_count.loc |
Dangerous Goods Undeclared |

)

#DG HANDLING AND LOADING

DG Handling and Loading contains also: Dangerous Goods Loading/
Unloading , Dangerous Goods Load Weighting, Dangerous Goods Exceeds
Storage Compartment Limitations, Dangerous Goods Unsecure without

Shift
load=[’Dangerous Goods Handling and Loading’,’ Dangerous Goods Loading
/Unloading’, ’Dangerous Goods Load Weighting’, ’Dangerous Goods

)

Exceeds Storage Compartment Limitations’, Dangerous Goods Unsecure
without Shift’]
newtype__count.loc [’Dangerous Goods Handling and Loading’]=

eventtype_count.loc [load].sum/()

4#DG FORBIDDEN
newtype_ count.loc [’Dangerous Goods Forbidden’]=eventtype_count.loc |
Dangerous Goods Forbidden’]

)

#DG LABELLING/MARKING
newtype_ count.loc [’Dangerous Goods Labelling /Marking’]=
eventtype_count.loc [Dangerous Goods Labelling/Marking]

#DG NOT MATCHING DOCUMENTATION

#Dangerous Goods Not Matching Documentation contains also Not
Recorded

doc=["Dangerous Goods Not Matching Documentation’,’Dangerous Goods
Not Recorded’]

newtype_ count.loc [’Dangerous Goods Not Matching Documentation’]=
eventtype_count.loc[doc].sum()

#DG LEAKING

newtype_ count.loc [’Dangerous Goods Leaking’]=eventtype_count.loc|[’
Dangerous Goods Leaking’|]

#DG DAMAGED

newtype_ count.loc [’Dangerous Goods Damaged’]=eventtype_count.loc|[’

Dangerous Goods Damaged’ |

#DG PACKAGING
newtype_count.loc [’Dangerous Goods Packaging’]=eventtype_count.loc |
Dangerous Goods Packaging’|]

)

#SMOKE/FUMES/FIRE (Smoke/Fumes/Fire Li-BAT):

flame=pd . Series (eventtype_ count.index)

flame=flame [flame . str.contains(’|’.join (['Smoke’, ’Battery’, Fumes’,
Smell’]))]. tolist () #keeping only the categories that contain
certain words.

)

86

Python-based Pipeline: DGs template

13| newtype__count . loc [’Smoke/Fumes/Fire Li-BAT’]=eventtype_count.loc|
flame | . sum ()

114
115 | #OTHER,

16| other=new_ type[0: —4]+load+doc+{lame

17| newtype__count.loc [’Other ’|=eventtype_count.drop(other).sum() #
combining all left groups, so all without those already considered
just above

118
o|#In "Other’ category there are some event types that are not
consistent with the analysis: from ENAC existing analysis, we can
identify which event types had been ignored

120l et_ignored=["Action Performed Incorrectly’, Baggage Non—Compliant
Carriage of Load’,’Baggage Non—Compliant Carriage of Load’,’
Baggage Security Check’,’Cargo Labelling/Marking’,’Crew Door Fails
to Open/Close’,’External Load — Release’,’Helicopter RPM
Exceedance’,’Lack of Communication’, Passenger Carry—On Baggage’,
Qualifications’, ’Return to Stand’, Use of Emergency Equipment’]

9

121
122|#defining a new dataframe to save this change: the first 10
categories stay the same

123| newtype__count_wother=pd.DataFrame(index=new_type, columns=years)

124| newtype__count__wother. loc [’Dangerous Goods Undeclared ’: ’Smoke/Fumes/
Fire Li-BAT’]=newtype_count.loc [’ Dangerous Goods Undeclared’:’
Smoke /Fumes/Fire Li-BAT’]

125| #ANEW OTHER

126| other__riduced=new_ type[0: —4]|+load+doct+flame+et__ignored

127\ newtype__count__wother.loc [’Other ’|=eventtype_count.drop (other_riduced)
.sum () #combining all left groups, so all without those already
considered just above

128
20| #Dataframe with total count per year (uncomment following rows if
necessary)

130|#total__counts__et=pd.DataFrame(index=["Total ’], columns=years)
131|#total_counts__et[years]=newtype_count_wother[years].sum()

132|#newtype count_ wother=newtype count wother.append(total counts et)
133 | #
131 newtype__count__wother.to__excel(’Analysis_Excel/event_type_collapsed.
xlsx) #saving

o= | 4L
135 #

136 newtype_ count_ wother #df with modified OTHER category
137
138| #CHECKS AND VALIDATION

130|#As a check, we count the total number of events in each year(14—19
and 20—21 are separated at the beginning with if conditions) this
check is done considering OTHER category complete (no event types
have been removed as ENAC intervention), because it allows us to
proper check the accuracy of the analysis.

140

87

141
142
143

144
145

146

147

148

149
150

151

152

153

154

155

156
157

158

160
161

162

163
164
165
166
167
168
169
170
171
172
173
174
175
176

177

Python-based Pipeline: DGs template

for year, df in zip(years, data):

total__event=newtype_count|[year].sum() #total number of event type
after manupulation
print (f’Total number of events in {year}: {total event}’)

if year=="2014"or year==’'2015"or year=—='2016"or year=—="2017or
year=—"2018 "or year=—="2019 ":

total reports=len(df.iloc [:,7]) #total number of reports (
number of excel file rows)
print (f’ Total number of reports in {year}: {total_reports}’)

multiple=list (df[df.iloc [:,7]. fillna(’ ’).str.contains(’\n")
].index) #delete blank cells and list which cells as \n

if year="2020"or year="2021": #for 2020 and 2021 just ’count’'=1
is evaluted (attached files souldn’t have this necessity)

total reports=len (df[df[’ ’count’]!=0].iloc[:,7]) #total number
of reports (number of excel file rows)
print (f’ Total number of reports in {year}: {total reports}’)

multiplel=df[df[’count’|]==1].reset__index (drop=True) #
considering only rows with ’'count’==1 because those could have
multiple types in a single cell

multiple=list (multiplel [multiplel.iloc [:,7]. fillna(’ 7).str.
contains(’\n’)].index)

df=multiplel

num_dg 2=0 #initiating variables: _2: two event types, _3: three
event types
num_dg 3=0
num_dg 4=0
num_dg 5=0
num_dg 6=0
for i in multiple:
ex=df.iloc [i,7].count(’\n’) #counting how many \n
if ex==1: #1 addition event type
num_dg 2=num_dg 2+1
if ex==2: #2 additional event type
num_dg 3=num_dg 3+1

if ex==3: #...
num_dg 4=num_dg 4+1
if ex==4:

num_dg 5=num_dg 5+1
exx=df.iloc[i,7].count(’\n\n’) #counting how many \n\n
consecutively
if exx==1#one addition event types

88

Python-based Pipeline: DGs template

179 num_dg 3=num_dg 3—1 #deleting that '3 event types’
counted before

180 num_dg 2=num_dg 241 #considering 2 event types, so 1
additional

181 if exx==2:

182 num_dg 5=num_dg 5—1

183 num_dg 3=num_dg 3+1

184 if exx==5:

185 num_dg 6=num_dg 6+1

186 if exx!=1 and exx!=2 and exx!=5 and exx!=0 and ex>4: #
checking other options

187 print (’Check the count!’)

188 print (f Total additional event types: {num_dg 2 +2%(num_dg 3)+

3x(num_dg 4)+4x(num_dg 5)+5«(num_dg 6)}7)

189 print (f’2 event type: {num dg 2}7)

190 print (f’3 event type: {num dg 3}’)

191 print (f’4 event type: {num_dg 4}’)

192 print (f’5 event type: {num_dg 5}7)

103 print (f’6 event type: {num dg 6})

194 print(’)

195 if total event!=total reports + num dg 2 +2x(num_dg 3)+ 3x(
num dg 4)+4*(num dg 5)+5+(num_dg 6):

196 print (’Missing data!’)

197

108| #GRAPHICS

199 | 7
200|# Pie Charts about Event Types
201 | #

202 fig , ax = plt.subplots (2, 4,figsize=(12, 6)) #creating figure box
203
204| fig . suptitle ("Event Types’, y=1,fontsize=28) #title

205

26| color=["lightcoral’,’red’, chocolate’,’sienna’, ’gold’, khaki’,’
yvellowgreen’, forestgreen’,’lightblue’, ’cornflowerblue ’| #colors

207 | #

205l ax = ax.ravel ()

209
210/ for i in range(len(years)): #using a loop to draw every pie chart

211

212 axes = ax|[i]

213

214 axes.pie(newtype_count_wother|[years[i]], colors=color, shadow=
False, labeldistance=1.1, startangle=90, radius=1.1, wedgeprops =
{"edgecolor" : "black",’linewidth’: 0.3, antialiased’: True})

215

216 axes.set_title(years[i], fontsize=22, y=0.97)

217

215| legend=fig .legend (new_type, loc="center left’, bbox_ to_anchor=(1,
0.5), prop={’size’: 14}) #legend

89

Python-based Pipeline: DGs template

210|#plt.rc(’legend’, fontsize=22) # legend fontsize

i

220|
201| fig . tight_layout ()

22| fig . savefig (' Graphics/event_ types/event type general.pdf’ format =
pdf’, dpi = 300) #saving

)

223

24| fig . tight__layout ()

205 fig . savefig (’Graphics/event__types/event_type_general withlgd.pdf’,
bbox_inches="tight ', format = ’'pdf’, dpi = 300)#saving chart and
legend

226
27| def export_legend (legend, filename=’Graphics/event_types/
event_type_ ldg pie.pdf’):

228 fig=legend . figure

229 fig.canvas.draw ()

230 bbox=legend . get_window_ extent () .transformed (fig.dpi_scale_ trans.
inverted ())

231 fig.savefig(filename, dpi=300, bbox_inches=bbox)

232
233| export_legend (legend) #saving only the legend

234
1

235 | H
236|# Bar Chart about Event Types General
237| #
23s| fig , ax = plt.subplots (1,1, sharex = False, sharey=False, figsize
=(7, 6)) #creating figure box

239

2000 fig . suptitle ("Event Types’,y=1.05,fontsize=28) #title

212| axisx=np.arange (len (years))
/]
243| #

2441 aXes = aX

216 axes . bar (x=axisx , height=newtype_count_wother.sum(), width=0.5,
tick_label=years, color="tab:blue’)

2as| axes . set__title(’Trend overtime’, fontsize=16, pad=20)

250l axes . yaxis.tick_right () #setting ticks on the right axis
2s1] axes. grid (axis="y’) #showing only y grid

252| plt . xticks (rotation="vertical)

253| plt . re("xtick’, labelsize=16)

254 plt.re(Tytick ’, labelsize=16)

255/ ax. set__ylabel ("Occurrences’, fontsize=18) #axis title
.| AL

- 17
257| fig . savefig (' Graphics/event types/event_ type overtime.pdf’,
bbox_inches="tight ', format = ’'pdf’, dpi = 300)#saving

i
259 | 7

90

260
261
262
263
264

265

266
267

268

269

270

&
=
w N =

[L

0~

B B N BN BN B B BN
h o B

NN ONONN NN N NN
®
= O ©

N
0
N

283
284

285

289

290

291
292

293

294
295
296
297

298

Python-based Pipeline: DGs template

#Stacked Bar chart with percentage for years
i
i

fig , ax = plt.subplots(1l, 1, figsize=(12, 8)) #creatng figure box
fig.suptitle (’Event Types’, fontsize=28) #title

color=["lightcoral’,’red’, chocolate’, ’sienna’,’gold’, khaki’,’
yvellowgreen’, forestgreen’,’lightblue’, cornflowerblue ’| #colors

1

7

(newtype_count_wother/newtype_ count_wother.sum()*100).T. plot.barh(
stacked=True, color=color , legend=True, lw=0, width = 0.95, ax=ax)

legend=ax.legend (new_type, loc=’center left’, bbox_to_anchor=(1, 0.5)
) #legend

ax.set__ylabel(’Years’ ,fontsize=18) #axis title

ax.spines|[’top’].set_visible (False) #deleting top box line

ax.spines|[’'right '].set_visible (False) #deleting right box line

ax.spines ['bottom ’].set visible(False) #deleting bottom box line

ax.grid (axis="x") #shwoing only x grid

j|plt.re('xtick’, labelsize=18)

plt.re('ytick’, labelsize=18)
fmt = "%.0f%%" #setting percentages on x axis
xticks = mtick.FormatStrFormatter (fmt)

ax.xaxis.set_major_formatter(xticks)
1/
i

ax.legend () .set__visible (False)
fig .tight_layout ()
fig .savefig(’ Graphics/event_types/
event type_ stackedbar_ normalized nolgd.pdf’, format = ’'pdf’, dpi =
300)#saving chart without legend

ax.legend (new_type, loc="center left’, bbox to_ anchor=(1, 0.5)).
set__visible (True)

fig.savefig(’ Graphics/event types/
event type_ stackedbar normalized withlgd.pdf’, bbox_inches="tight’
, format = ’'pdf’, dpi = 300)#saving chart plus legend

def export_legend(legend, filename=’Graphics/event_types/
event_ type_ stackedbar normalized lgd.pdf’):
fig=legend . figure
fig .canvas.draw ()
bbox=legend .get_window__extent () .transformed (fig.dpi_scale_trans.
inverted ())
fig .savefig (filename, dpi=300, bbox_inches=bbox)

export_legend (legend) #saving only the legend

i

7

91

299
300
301
302
303
304

305

306
307
308

309

310

311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

328

329

330

331

332

333

334

335

336

337

Python-based Pipeline: DGs template

#Stacked Bar chart with percentage for event type

i
7

fig , ax = plt.subplots(l, 1, figsize=(18, 10))
fig.suptitle (’Event Types’, fontsize=28)

) 7
)

color=["lightcoral ’,’red’, chocolate’, gold’, yellowgreen
forestgreen’,’lightskyblue’, ’cornflowerblue ’]

A

/
7

(newtype_ count__wother.T/newtype_count_wother.T.sum()*100).T. plot.barh
(stacked=True, color=color ,legend=True, lw=0, width = 0.95, ax=ax)

legend=ax.legend (years, loc=’center left’, bbox_to_anchor=(1, 0.5))#
legend

ax.set__ylabel ('Types’, fontsize=18) #axis title

ax.spines|[’top’].set_visible(False) #deleting top box line

ax.spines [’ 'right’].set__visible (False) #deleting right box line

ax.spines ['bottom’].set_visible (False) #deleting bottom box line

ax.invert_ yaxis ()

ax.grid (axis='x") #shwoing only x grid

plt.rc(’'xtick’, labelsize=18)

plt.rc(’ytick’, labelsize=18)

fmt = *%.0f%% #setting percentages on x axis
xticks = mtick.FormatStrFormatter (fmt)
ax.xaxis.set_major_formatter(xticks)

i

7

ax.legend () .set__visible (False)

fig.tight layout ()

fig .savefig (’Graphics/event_types/
event_ type_ stackedbar normalized nolgd2.pdf’ ,bbox_inches=’tight ’,
format = ’pdf’, dpi = 300)#saving chart without legend

ax.legend (years, loc=’center left’, bbox_to_anchor=(1, 0.5)).
set__visible (True)

fig .savefig (’Graphics/event_types/
event_type_stackedbar normalized withlgd2.pdf’, bbox_inches="tight
7, format = 'pdf’, dpi = 300) #saving

def export_legend(legend, filename='Graphics/event_ types/
event_type_stackedbar_normalized lgd2.pdf’):
fig=legend . figure
fig .canvas.draw ()
bbox=legend . get_window__extent () .transformed (fig.dpi_scale_ trans.
inverted ())
fig.savefig(filename, dpi=300, bbox_inches=bbox)

92

Python-based Pipeline: DGs template

338
ss0| export__legend (legend) #savinh just the legend

340

341| #
sa2|# Bar Chart about Event Types
343 | #
a1 fig , ax = plt.subplots (5,2, sharex = False, sharey=False, figsize
=(16, 22)) #creating figure box

345
sas6| fig . suptitle ("Event Types’, fontsize=28,y=0.92) #title
sa7| plt . subplots__adjust(hspace=0.9)

348
sao| color=["lightcoral’,’red’, chocolate’, ’sienna’, ’gold’, orangered’,’
yvellowgreen’, ’forestgreen’,’lightblue’, ’cornflowerblue’| #colors
350
s51| axisx=np.arange (len (years)) #defining x positions
352
353| #

ss1lax = ax.ravel ()

355
ss6| for 1 in range(len (new_type)): #using a loop to draw every bar chart
357

358 axes = ax|[i]

359

360 axes.bar (x=axisx, height=newtype_count.iloc[i,:], width=0.3,
tick _label=years, color=color[i])

361

362 axes.set_title (new_type[i], fontweight="bold’, fontsize=18) #
title

363 axes.grid (axis="y’) #showing only y grid

364 axes.set_xticklabels (years,rotation = 90)

365

s66| plt .re("xtick’, labelsize=18)

se7| plt.re(Tytick’, labelsize=20)

368 | #F

seo| fig . savefig (’Graphics/event_ types/event type barchat.pdf’, format =
pdf’, dpi = 300)#saving

)

R 7
371 | FH

373| #DANGEROUS GOODS TYPES ANALYSIS
374 | H#
s7s|#Extracting Data from Excel files about DG Types from 2014 to 2021,
creating a new dataframe for each year

s77| dgs_ 2014 = pd.DataFrame ()

srs| dgs__ 2014 ["source ']=data_2014.iloc [:, 0] #source
sro| dgs_ 2014 [*goods type’']=data_2014.1iloc [:,6] #type
ss0| dgs_ 2014 [counts ’]=1 #Number of goods set to 1

93

Python-based Pipeline: DGs template

#2015
dgs_2015 = pd.DataFrame()

3| dgs_2015["source ']=data_2015.iloc [:, 0]

dgs_2015['goods type’]=data_2015.1iloc [:,6]
dgs_2015[counts ’]=1 #Number of goods set to 1
#2016

dgs_2016 = pd.DataFrame()

dgs_2016['source ']=data_2016.1iloc [:, O]

dgs 2016 ['goods type’']=data 2016.1iloc [:,6]
dgs_2016['counts ']=1 #Number of goods set to 1
#2017

dgs_2017 = pd.DataFrame()

dgs_2017['source ’]=data_2017.1iloc [:, O]
dgs_2017[goods type’]=data_2017.1iloc [:,6]
dgs_2017[counts’]=1 #Number of goods set to 1
#2018

dgs_ 2018 = pd.DataFrame ()

dgs_2018['source ']=data_2018.1iloc [:, O]
dgs_2018['goods type’]=data_2018.1iloc [:,6]
dgs_2018[’counts ’]=1 #Number of goods set to 1
#2019

dgs 2019 = pd.DataFrame ()

dgs_2019['source ']=data_2019.iloc [:, 0]
dgs_2019['goods type’]=data_2019.iloc [:,6]

dgs 2019[’counts’]=1 #Number of goods set to 1
#2020

dgs_ 2020 = pd.DataFrame ()

5| dgs_2020['source ']=data_2020.1iloc [:, O]

dgs_2020['goods type’]=data_2020.1iloc [:,6]

dgs 2020[’counts ’']=data_2020.iloc [:,8] #Number of goods
#2021

dgs_ 2021 = pd.DataFrame()

dgs_2021[’source ']=data_2021.iloc[:, 0]

dgs_2021[goods type’]=data_2021.1iloc [:,6]

dgs 2021[’counts ’]=data_2021.iloc [:,8] #Number of goods

#2014—2019

#Process for each year:

#Read data from the specific column, deleting blank rows and
resetting the index

#Listing the dg types dividing those that are in a single cell(
divided by \n), then removing special characters and sorting them

#Creating a new dataframe listing all the codes, taking only the
string before the first space (usually xxxx)

3|#Counting how many time a code reoccurs.

#2014
goods_ 14=dgs_2014[’goods type’].dropna().reset_index (drop=True)

94

428
129

130

431

132
133
134

435

136
137

138

439

140
141
442

443

L
445

446

148
449
450

151

452
453

154

<
ot

456
457

158

Python-based Pipeline: DGs template

| goods__14=pd. Series (list (chain(xgoods_14.str.split(’\n’).tolist ()))).

7

str.replace(’’’ 7). str.replace(’’’,’ 7). .sort_values(ascending=True
) .reset__index (drop=True)

dgs_codeld=pd. Series (dtype=str)

for i in range(len(goods_14)):
dgs_codeld=dgs_codeld.append(pd. Series (goods_14[i].split () [0]),
ignore_index=True)

counts__14=pd.DataFrame (dgs_codeld.value_counts () ,columns=["2014"]) .
astype(str) #counting

42015

goods_ 15=dgs_2015["goods type’].dropna().reset_index (drop=True)

goods_15=pd. Series (list (chain (xgoods_15.str.split(’\n’).tolist ()))).
str.replace(’’’,77) .str.replace(’’’,’ 7). .sort_values(ascending=True
).reset__index (drop=True)

dgs_codelb=pd. Series (dtype=str)

for i in range(len(goods_15)):
dgs_codel5=dgs_codel5.append(pd. Series (goods_15[i].split () [0]),
ignore__index=True)

counts_ 15=pd.DataFrame(dgs_codel5.value_counts (), columns=[’2015"]).
astype (str)

#2016

goods_ 16=dgs_2016['goods type’].dropna().reset_index (drop=True)

goods_16=pd. Series (list (chain(xgoods_16.str.split(’\n’).tolist()))).
str.replace('’ ,7 ") .str.replace(’’’,"").sort_values(ascending=True
) .reset__index (drop=True)

dgs_codel6=pd. Series (dtype=str)

for i in range(len(goods_16)):
dgs_codel6=dgs_codel6.append(pd. Series(goods_16[i].split()[0]),
ignore_index=True)

counts_ 16=pd.DataFrame(dgs_codel6.value counts(), columns=["2016"]).
astype(str)

#2017

goods_ 17=dgs_2017[’goods type’].dropna().reset_index (drop=True)

goods_ 17=pd. Series (list (chain(xgoods_17.str.split(’\n’).tolist()))).
str.replace(’’’,7 ") .str.replace(’’’,"").sort_values(ascending=True
) .reset__index (drop=True)

dgs_codel7=pd. Series (dtype=str)

for i in range(len(goods_17)):
dgs_codel7=dgs_codel7.append(pd. Series (goods 17[i].split()[0]),
ignore__index=True)

counts 17=pd.DataFrame(dgs codel7.value counts(),columns=["2017"]).
astype(str)

#2018
goods_ 18=dgs_2018['goods type’].dropna().reset_ index (drop=True)

95

159

460
461

462

463

164
465
466

467

468
469

470

479
480

481

482

483

484

%

486

Python-based Pipeline: DGs template

goods_18=pd. Series (list (chain (xgoods_18.str.split(’\n’).tolist ()))).
str.replace(’’7 7). .str.replace(’’’,”) .sort_values(ascending=True
) .reset__index (drop=True)

dgs_codel8=pd. Series (dtype=str)

for i in range(len(goods_18)):
dgs_codel8=dgs_codel8.append(pd. Series (goods_18[i].split () [0]),
ignore_index=True)

counts__18=pd.DataFrame (dgs_codel8.value_counts (), columns=["2018"]).
astype (str)

#2019

goods__19=dgs_2019['goods type’].dropna().reset_index (drop=True)

goods_19=pd. Series (list (chain (xgoods_19.str.split(’\n’).tolist ()))).
str.replace (7,7 7) .str.replace(’’’,”) .sort_values(ascending=True
) .reset__index (drop=True)

dgs_codel9=pd. Series (dtype=str)

for i in range(len(goods_19)):
dgs_codel9=dgs_codel9.append(pd. Series (goods_19[i].split () [0]),
ignore__index=True)

counts_ 19=pd.DataFrame(dgs_codel9.value_counts(), columns=[’20197]).
astype (str)

#The focus is on the occurences with ’count’ equal to 1, namely those
without attached files. It is the same process that 2014—2019

#2020
goods_ 20=pd. Series (dtype=str)

7| goods_ 20=dgs_ 2020 [dgs_2020[counts’]==1]['goods type’].dropna().

reset__index (drop=True)

goods_20=pd. Series (list (chain(*goods_20.str.split(’'\n’).tolist()))).
str.replace('’ ,’7) . .str.replace(’’’,’7).sort_values(ascending=True
) .reset__index (drop=True)

dgs_code20=pd. Series (dtype=str)

for i in range(len(goods_20)):
dgs__code20=dgs__code20.append (pd. Series (str(goods_20[i]) .split ()
[0]), ignore_index=True)

#In this case the focus is on the occurrences with multiple ’count’
reported , so it is mnecessary to read attached files correlated by
the ’source’

5|#2020 plus

#listing all the ’source’ with ’'number of goods’ higher than 1 and
than defining the strings to read corresponding attached files

1s7| goods__pos=dgs_ 2020 [(dgs_2020["counts ']!=1) & (dgs_2020[counts’]!=0)

488
489

490

][’source’].str.lstrip ()

good=pd. Series (dtype=str)
goods_ 20plus=pd. Series (dtype=str)

96

491

492

493

494

495

496

497

498

499

500

501

502

503

504
505

506

507

508

509

510

511

Python-based Pipeline: DGs template

error_count20=0 #difference error to be considered in the check of
total DGs extracted compared to the sum of ’count’

for it in goods_ pos:

goods_source="Dangerous_ Goods/2020/ +it+’.xlsx’ #sttached file
name
good=pd.read__excel(goods_source) [Unnamed: 3’].dropna().
reset__index (drop=True).drop(index=0) #reading the columns in the
attached files , removing blank cells as the title (index=0), adding
a check about the length of the attached files and the number
reported in the ’count’ columns
num_ count=dgs_ 2020 [dgs_2020["source ’'|.str.contains (it)][counts’
]. values
if (len(good)!=num_count).all(): #possible error in ’count’
column

print (f’The attached file {it} contains {len(good)} instead
of {num_count} reported’)

error__count20=error_ count20+(num_ count—len (good))

goods_ 20plus=goods_ 20plus.append(good) #listing together all DG
types from all the files

goods_20plus=pd. Series(list (chain(*goods 20plus.str.split(’\n’).
tolist ()))).str.replace(’’’,’) .str.replace(’’ 7, ") .sort_values(
ascending=True) .reset__index (drop=True)

dgs_code20plus=pd. Series (dtype=str)

for i in range(len(goods_20plus)):
dgs_code20plus=dgs_ code20plus.append(pd. Series (str (goods_20plus|i
]).split () [0]), ignore_index=True) #taking only the first string/(
UN code)

#2020 TOTAL : adding together 2020 and 2020plus codes list and
countig them.

counts_ 20tot=pd.DataFrame (dgs_code20.append(dgs_code20plus).
value__counts (), columns=[’2020"]) .astype(str)

#2021 occurrences with ’counts’ equal to 1 need the same process of
2020.

2| #2021

513| goods_ 21=pd. Series (dtype=str)

516
517

518

goods_ 21=dgs_ 2021 [dgs_2021[counts’|==1]['goods type’].dropna().
reset__index (drop=True)

5| goods_21=pd. Series (list (chain(*goods_21.str.split(’\n’).tolist()))).

79 3

str.replace(") .str.replace(7,7 7). .sort_values(ascending=True
) .reset__index (drop=True)

dgs_code2l=pd. Series (dtype=str)

for i in range(len(goods_21)):
dgs_code2l=dgs_code2l.append(pd. Series (str(goods 21[i]).split ()

[0]), ignore_index=True)

97

Python-based Pipeline: DGs template

s19] counts_ 21=dgs_ code21.value_counts ()
520
521|#2021 occurrences with ’“counts’ higher that 1 are linked to attached
files , but for 2021 the file names have variations.

522| #2021 plus

s23|#getting all the sources listed

521 goods__pos=dgs_ 2021 [(dgs_2021[counts’]!=1) & (dgs_2021[counts’]!=0)
][’source’].str.lstrip ()

526| good=pd . Series (dtype=str)

7| goods_21plus=pd. Series (dtype=str)

ses| error__count21=0 #difference to be considered in the check of total dg
extracted compared to the sum of ’count’

529
s30| for it in goods_pos: #for each source we defined the possible file
name between the different wvariations

531 goods_sourcel="Dangerous_ Goods/2021/ '+it+’ . xlsx’

532 goods_source2="Dangerous_ Goods/2021/eE-MOR '+it+’. xlsx’

533 goods__source3="Dangerous_ Goods /2021 /EE-MOR '+it+’.xlsx’

534 goods__source4="Dangerous_ Goods/2021/ '+it+’ (modificato).xlsx’

535 goods__sourceb="Dangerous_ Goods/2021/EE-MOR _"+it+’.xlsx’

536 goods__source6="Dangerous Goods/2021/eE-MOR '+it+’ .xlsx’

537

538 if os.path.isfile (goods_sourcel): #we verify which of the
possible namnes exists in the directory and than read the file

539 good=pd.read__excel(goods_sourcel) [Unnamed: 3’].dropna().
reset__index (drop=True) .drop (index=0)

540 elif os.path.isfile (goods_source2):

541 good=pd.read__excel(goods_source2) [Unnamed: 3’].dropna().
reset__index (drop=True).drop(index=0)

542 elif os.path.isfile (goods_source3):

543 good=pd.read_excel(goods_source3d) [Unnamed: 3’].dropna().
reset_index (drop=True) .drop (index=0)

544 elif os.path.isfile (goods sourced):

545 good=pd.read__excel(goods_source4) [Unnamed: 3’].dropna().
reset__index (drop=True).drop(index=0)

546 elif os.path.isfile (goods_sourceb):

547 good=pd.read excel(goods_ source5) [Unnamed: 3’].dropna().
reset__index (drop=True) .drop(index=0)

548 elif os.path.isfile (goods source6):

549 good=pd.read__excel(goods_source6) [Unnamed: 3’].dropna().
reset__index (drop=True).drop(index=0)

550 else:

551 print (f 'Name file not recognized {it}’) #if the name is

different or doens’t exist this is this check

553 #adding a check about the length of the attached files and the
number reported in the ’count’ columns

98

Python-based Pipeline: DGs template

554 num_ count=dgs_ 2021 [dgs_2021['source’|.str.contains (it)][counts’
]. values

556 if (len(good)!=num_count).all():

557 print (f’The attached file {it} contains {len(good)} instead
of {num_count} reported’)

558 error__count2l=error_ count21+(num_ count—len (good))

559

560 goods_ 21plus=goods_ 21plus.append(good)

561
s62| goods_ 21plus=pd. Series (list (chain(xgoods_21plus.str.split(’\n’).
tolist ()))).str.replace(’’’,77) . .str.replace(’’," ") .sort_values(
ascending=True) .reset_index (drop=True)

s63| dgs__code21plus=pd. Series (dtype=str)

s64| for 1 in range(len(goods_21plus)):

565 dgs_code2lplus=dgs_code2lplus.append(pd. Series (str(goods_21plus|i
1) .split () [0]), ignore_index=True) #taking the UN code

s67|#2021 TOTAL : adding together 2021 and 2021plus codes list and
coutig them.

ses| counts_ 21tot=pd.DataFrame (dgs_code2l.append(dgs_code2lplus).
value__counts (), columns=[’2021"]) .astype(str)

569
s70| #CHECK AND VALIDATIONS

s71|#for each year we count the number of total rows we get from the
Excel files and the total DGs we get after the manipulation: they
can be different because in one Excel cell can be more DGs. Then,
we compare the two numbers with those of blank cells , and those of
multiple data cells.

s|data_dgs=[dgs 2014, dgs_2015, dgs_2016, dgs 2017, dgs 2018, dgs_ 2019,
dgs_ 2020, dgs_2021]

s71| data__code=[dgs_codeld, dgs_codelb, dgs_codel6, dgs_codel7, dgs_codel8
, dgs_codel9, dgs_code20, dgs_code2l,dgs_code20plus,dgs_code2lplus

]

s76| cell _blank=pd.DataFrame (index=["blank cells '], columns=years) #new df
to contain number of blank cells

7s| for year, df in zip(years, data_dgs):

580 total reports=df[’counts’].sum() #total number of rows in Excel
Files
581 print (f "Total reports of Dangeruos Goods in {year}: {

total_reports}’)

583 if year=—="2014"0or year=—=’2015"or year=—"2016"or year=—’2017 or
year=—="2018 "or year=—='2019 ":

99

585

586

587

588

589

591

592

593

594
595

596

598

599

600

601

602
603
604
605
606
607
608
609
610
611
612
613
614
615

616

617

618

Python-based Pipeline: DGs template

multiple=list (df [df[’goods type’]. fillna(’ ’).str.contains(’\
n’)].index) #delete blank cells and list which cells as \n

total dg=len (data_code[years.index(year)]) #total number of
dg after manipulation

print (f’ Total number of dangerous goods extracted in {year}:
{total__dg}’)

cell blank[year|=df[’ goods type’].isna().sum() #number of
blank cell to be conider

if year="2020"or year=='2021": #for 2020 and 2021 just ’count’'=1
is evaluted (attached files souldn’t have this necessity)

multiplel=df[df [’ counts’]==1].reset index(drop=True) #I
remove dropna() differently than what i did before because it gave
me an empty df

multiple=list (multiplel [multiplel [’goods type’]. fillna(’ 7).
str.contains(’\n’)].index)

df=multiplel

total _dg=len (data_code|[years.index(year)])+len (data_code]
years.index (year)+2]) #total number of dg after manipulation (’+2’
is to indicate the index of ’plus’)

print (f’ Total number of dangerous goods extracted in {year}:
{total _dg}’)

cell_blank [year]=df[’goods type’].isna().sum() #number of
blank cell to be conider when ’count’=1 !!!!

num_dg 2=0 #initiating variables: _2: two event types, _3: three
event types
num_dg 3=0
num_dg 4=0
num_dg 5=0
num_dg 6=0
for i in multiple:
ex=df | ’goods type’|[i].count(’\n’) #checkinh how many \n
if ex==1: #two types together
num_dg 2=num_dg 2+1
if ex==2: #three types together
num_dg 3=num_dg 3+1

if ex==3: #...
num_dg 4=num_dg 4+1
if ex==4:

num_dg 5=num_dg 5+1
exx=df['goods type’][i].count(’\n\n’) #checkinh how many \n\n
consecutively
if exx==1:
num_dg 3=num_dg 3—1 #no three types

100

619
620
621
622
623
624
625

626

627

628
629
630
631
632
633
634

635

636

637
638
639
640

641

642
643
644
645

646

647
648
649
650

651

653

654

655

Python-based Pipeline: DGs template

num_dg 2=num_dg 241 #yes two types
if exx==2:
num_dg 5=num_dg 5—1
num_dg 3=num_dg 3+1
if exx==b:
num_dg 6=num_dg 6+1
if exx!=1 and exx!=2 and exx!=5 and exx!=0 and ex>4:
print (’Check the count!’) #check in case new arragement
happens
print (f’Total additional DG types: {num dg 2 +2«(num_dg 3)+ 3=(
num_dg 4)+4+(num_dg 5)+5%(num_dg 6)})

print (f’2 DG type: {num_dg 2}7)

print (f’3 DG type: {num_dg 3}7)

print (f’4 DG type: {num_dg 4}7)

print (f’5 DG type: {num dg 5})

print (f’6 DG type: {num dg 6})
(f

print (f’Blank cells: {cell blank[year].sum()}")

if year="2014"or year==’2015"or year=='2016"or year=—="2017or
year=—"2018 'or year=—='2019 ":

if total dg+ cell blank[year].sum()!=total_ reports + num_ dg 2

+2%(num_dg 3)+ 3x(num_dg 4)+4x(num_dg 5)+5*(num_dg 6):
print (’Missing data!’) #warning in case of miscounting
print (’)
elif year="2020’: #taking into account ’count’ column errors
print (f 'Number of missing counts:{abs(error count20)}’)

if total_dg+ cell_blank[year].sum()!=total_reports + num_dg 2

+2+(num_dg_3)+ 3x(num_dg 4)+4*(num_dg_5)+5*%(num_dg_ 6)—
error_count20:
print (’Missing data!’)
print(’)
elif year=—"2021": #taking into account ’count’ column errors
print (f ’Number of missing counts:{abs(error count21l)}’)

if total_dg+ cell_blank[year].sum()!=total_reports + num_dg 2

+2%(num_dg 3)+ 3x(num_dg 4)+4x(num_dg 5)+5*%(num_dg 6)—
error_ count21:
print (’Missing data!’)
print (>)

dgs_allyears=pd.DataFrame () #new dataframe where insert all the data
counts

2| dgs_allyears=pd.concat ([counts_14 ,counts_15,counts_16 ,counts_17,
counts__ 18 ,counts_19,counts_20tot , counts_21tot],axis=1). fillna (’0’)

.sort_index ()

dgs_allyears.reset_index (inplace=True)

dgs_allyears = dgs_allyears.rename(columns = {’index’: ’code’}) #
naming correctly codes columns.

dgs_allyears

101

658
659
660

661

662

663

664

665

666

667

668

669

685

686

687

688

689

690

Python-based Pipeline: DGs template

#CAO CODES READING

page=list (range(2,235)) #up to the next page in order to end at 235

filel = "Dangerous_Goods/doc_9284 2019 2020.pdf"

table = tabula.read_ pdf(filel ,pages=page)

df=table #creating a dataframe with the data of the pages, table[0]
corresponds to the first page etc..

#each table has all the interesting data at the second row in
Unnamed :0’ and ’UN/rNo.’ columns.

#from a check control below, we could verified that some pages didn’t
get read correctly with the above method, so for these pages (in
this case 130,131,220) the method is adapted.

#PAGE 130

tablel = tabula.read pdf(filel ,pages=130)

dfl=tablel [0]

pgl30=dfl [["Unnamed: 2, Unnamed: 3’]].dropna().reset index(drop=True
) .drop (index=[0,1])

#PACE 131

table2 = tabula.read_ pdf(filel ,pages=131)

df2=table2 [0]

pgl31=df2 [["Unnamed: 2’ ,’Unnamed: 3’]].dropna().reset_index (drop=True
) .drop (index=[0,1])

#PACE 220

table3 = tabula.read pdf(filel ,pages=220)

df3=table3 [0]

7| pg220=df3 [['Unnamed: 2’ , Unnamed: 3’]].dropna().reset_index(drop=True

) .drop (index=[0,1])

more=pgl30.append ([pgl31, pg220]) .reset_index (drop=True).rename({’
Unnamed: 2’:’codes’, ’Unnamed: 37:’classes’}, axis=1)

more | 'classes ']=more['classes ’].str.split (7. ,expand=True) [0]

#new variables

codes=pd. Series (dtype=str) #auxiliary variable: will become a columns
of the dataframe

classes=pd. Series (dtype=str) #auxiliary variable: will become a
columns of the dataframe

codes__icao=pd.DataFrame () # will contains codes and classes from the
ICAO document

for i in range (0,len(page)): #both classes and codes need to be
separated at \r
codes=codes.append (pd. Series (str(df[i].iloc[2,0]).split(’'\r’))).
reset__index (drop=True)
classes=classes.append(pd. Series (str(df[i].iloc[2,1]).split(’\r’)
)).reset_index (drop=True)

102

691

692
693
694
695

696

697

698

699

707

708
709

710

1
P Y
IS S TS SUR R

N4 N N NN N

—
~

N
=~

N
ot

N
~

N
o0

S B A B SRS BN |
) N 0
(=]

Python-based Pipeline: DGs template

#What we actually need is just the general classes and not the sub—
classes , so we can remove the number after the point and delete
possible duplicates

for i in classes:

if len(i)>1:
i=i.split(’.")[0]

#in the ICAO document there are some rows with ’FORBIDDEN’ and those
have to be deleted

codes_icao [’ ’codes’]=codes|[codes!="FOR’ |

codes_icao [’classes '|=classes[classes!="IDDE’].str.split(’. ,expand=
True) [0]

codes_icao=codes_icao.drop_duplicates(keep="first ’,ignore_index=True)

.append (more, ignore_index=True)
1/
i
codes_icao.to_excel(’Analysis Excel/codes icao.xlsx”)
i
7t

codes_icao

5| #MATCHING

def matching (x): #defining a function to match from the code the
corresponding class
if codes_icao[codes’].str.contains(x).any(): #verifying if the
string exist in the ICAO pdf

for i in range(0,len(codes_icao[codes’])):
if (x=codes_icao[codes’][i]):
match=codes_icao[' classes][]
else:
match="Notfound’
return match

matches=pd. Series (dtype=str)

for i in dgs_allyears[’code’]:
if len(i)<2: #classes already defined
et=i
elif len (i)==4: #codes of 4 numbers
et=matching (i)

elif i==’Battery,’: #a specific case that needs to be considered
individually

et="9"
elif i="Not’: #Not defined

et="ND’
elif i="UNK’: #Unknown

et="ND’
elif i='radioactive’: #a specific case that needs to be
considered individually

et="7"

103

742
743
744
745
746

747

766

Python-based Pipeline: DGs template

else:
(f’ {i} not identified’)
matches=matches.append (pd. Series (et)).reset_index (drop=True)

dgs_allyears |’ class ’]=matches #resulting table

|

7

dgs_allyears.to_excel(’Analysis_Excel/dg_types_all.xlsx)
1/

display (dgs_allyears)

#From the matching, codes not found in ICAO document are listed below
This is a check to understand if the ICAO document is read

correctly: if the Series in EMPTY no mistakes have been committed,
on the contrary if there are nay codes showing a manual
intervention is needed.

print ('Codes not found in Icao document are:’)

print (dgs_allyears[dgs_allyears[’class ’]=="Notfound’][code’])

print ('Please check pdf reading or new versions of the document.’)

#GROUPING

new_ classes=[’class 1: Explosives’, ’class 2: Flammable Gases’, class
3: Flammable Liquids’, ’class 4:Flammable Solids’, ’'class 5:
Oxidizing ', ’class 6: Toxic & Infectious’, ’'class 7: Radioactive’,
"class 8: Corrosives’, ’'class 9: Miscellaneous — other than Li—

BAT’, ’class 9—Bat: Miscellaneous — Li-BAT’, 'ND: Not defined’]

dgs_inclasses=pd.DataFrame(index=new_ classes, columns=years) #new
dataframe to collect data divided in classes and years.

#Class 1: Explosives

cll=dgs_allyears[dgs_allyears|[’class’|=="1"].index

dgs_inclasses.loc[new_classes[0]]=dgs_allyears.loc|[cll|[years].astype
(int) .sum()

s|#Class 2: Flammable Gases

cl2=dgs_allyears[dgs allyears[’class’|=="2"].index
dgs_inclasses.loc[new_classes[1]]=dgs_allyears.loc[cl2][years]. astype
(int) .sum()

#Class 3: Flammable Liquids

cl3=dgs_allyears[dgs_allyears[’class’]=="3"].index

dgs_inclasses.loc[new_ classes[2]]=dgs_allyears.loc[cl3]|[years]. astype
(int) .sum()

#Class 4:Flammable Solids

cld=dgs_allyears[dgs_allyears[’class’]=="4"].index

dgs_inclasses.loc[new_classes[3]]=dgs_allyears.loc[cld]|[years]. astype
(int).sum() .astype(int)

104

-~ ~ ~ -~
I s B |
[S

-~ ~ ~ -~

786

78
788
789
790
791
792
793

794

795

796

797

798
799
800
801

802

Python-based Pipeline: DGs template

#Class 5: Oxidizing

clb=dgs_allyears[dgs_allyears|[’ class’]=="5"].index

dgs_inclasses.loc[new_classes[4]]=dgs_allyears.loc[cl5][years]. astype
(int) .sum()

#Class 6: Toxic & Infectious

clé=dgs_allyears[dgs_allyears|[’ class’]=="6"].index

dgs__inclasses.loc[new_classes[5]]=dgs_allyears.loc[cl6][years]. astype
(int).sum () .astype(int)

5|#Class 7: Radioactive

cl7=dgs_allyears[dgs_allyears|[’ class’]=="7"].index
dgs_inclasses.loc[new_classes[6]]=dgs_allyears.loc[cl7][years].astype
(int) .sum/()

#Class 8: Corrosives

cl8=dgs_allyears[dgs_allyears|[’ class’]=="8"].index

dgs_inclasses.loc[new_classes[7]]=dgs_allyears.loc[cl8][years]. astype
(int) .sum/()

#Class 9: Miscellaneous — other than Li-BAT /Class 9—Bat:
Miscellaneous — Li—BAT

cl9=dgs_allyears[(dgs_allyears|[’class’]=="0") | (dgs_allyears[’class’
]=="97)].reset__index (drop=True) #filter in class 9 but also for
code=0 which is ’’a manual operation by enac’’

5| miscthan=[’1845",°2807 ", 3077, 3082, 73316, °3363",78000",°9", 2990

,73166°] #codes to be written MANUALLY
misc=[’0",730907,730917,°3171°,°3480",73481 ", ' Battery ,’] #codes to be
written MANUALLY
cl9miscthan=pd.DataFrame (columns=years)
cl9misc=pd.DataFrame (columns=years)
for i in range(0,len(cl9)):
if cl9[’code’][i] in miscthan:
cl9miscthan=cl9miscthan .append(cl9.iloc[i])
if ¢l9[’code’][i] in misc:
cl9misc=cl9misc.append(cl9.iloc[i])
elif c¢l9[’code’][i] not in miscthan and cl9[’code’]|[i] not in
misc :
print (cl9[’code’][i], is not considered in the classification
of Class 9. A manual operation is needed.’)

dgs_inclasses.loc[new_ classes[8]]=cl9miscthan [years].astype(int).sum

9)

dgs_inclasses.loc[new_classes[9]]=cl9misc [years].astype(int).sum()

#Class ND: Not defined

clnd=dgs_allyears[dgs_allyears[’class’]=="ND’]. index

dgs_inclasses.loc[new_classes[10]]=dgs_allyears.loc[clnd][years].
astype(int).append(cell_blank).sum() #Adding blank cells

105

803

804

805
806
807
808
809
810
811
812

813

814 | F

815
816
817
818
819

820

821
822
823
824
825
826
827

828

829
830
831
832

833
834
835
836
837
838
839

840

841

842

Python-based Pipeline: DGs template

#Dataframe with total count per year (uncomment following rows if
necessary)

#total counts=pd.DataFrame(index=["Total '], columns=years)

#total counts|[years]=dgs_inclasses|[years].sum()

#dgs_inclasses=dgs_inclasses.append(total counts)

/]

dgs_inclasses.to_excel(’Analysis_Excel/dg_types_collapsed.xlsx)

dgs_inclasses

#GRAPHICS

i

17
Pie Charts about Event Types
/]
i

fig , ax = plt.subplots(2, 4,figsize=(12, 6)) #creating figure box

fig.suptitle (’Dangerous Goods Types’,y=1, fontsize=28)#title

color=["lightcoral’,’red’, chocolate’, ’sienna’, ’gold’, khaki’,’
yellowgreen ’, "forestgreen’,’lightblue ’ |, cornflowerblue’, ’violet ']
#colors

#

ax = ax.ravel ()

for i in range(len(years)): #using a loop to draw every pie chart
axes = ax|[1i]

axes.pie(dgs_inclasses|[years[i]], colors=color, shadow=False,
labeldistance=1.1, startangle=90, radius=1.1, wedgeprops = {"
edgecolor" : "black",’linewidth’: 0.3, ’antialiased’: True})

axes.set_ title(years[i], fontsize=22, y=0.97)

legend=fig .legend (new__classes, loc=’center left’, bbox_to_anchor=(1,
0.5), prop={’size ' :14}) #legend

a
/
7

fig.tight_layout ()

fig .savefig (’Graphics/dg_types/dg_type_general.pdf’,
format = ’pdf’,
dpi = 300)

fig.tight_layout ()

fig.savefig(’Graphics/dg_types/dg_type_general withlgd.pdf’,
bbox_inches="tight ', format = ’'pdf’, dpi = 300)#saving chart and
legend

def export_legend(legend, filename='Graphics/dg types/
dg_types_ldg_pie.pdf’):

106

Python-based Pipeline: DGs template

843 fig=legend . figure

844 fig .canvas.draw ()

845 bbox=legend . get_ window__extent () .transformed (fig.dpi_scale_trans.
inverted ())

846 fig .savefig(filename , dpi=300, bbox_inches=bbox)

847

sis| export__legend (legend) #saving only the legend

849

- 1/
850 | Ff

ss1|# Bar Chart about DG types General
852 | #

ss3| fig , ax = plt.subplots (1,2, sharex = False, sharey=False, figsize
=(14, 6)) #creating figure box

ss1| fig . suptitle (’Dangerous Goods Types’, y=1.05 ,fontsize=28) #title

s55| axisx=np.arange (len (years))

856 | #
s57| dgs__inclasses [years].sum() . plot.bar(stacked=True, ax=ax[0]).grid (axis
:7y7)

sss|ax [0]. set__title (’Trend overtime — Decimal Scale’,fontsize=16, pad=20)
859 | #
seo| dgs__inclasses [years].sum () .plot.bar(stacked=True, logy=True, ax=ax
[1]) . grid (axis="y ")

sotlax [1].set_title('Trend overtime — Log Scale’,fontsize=16, pad=20)

862 | #
sos| plt . re(xtick’, labelsize=16)

so1| plt . re(’ytick’, labelsize=16)

ses|ax [0].set__ylabel(’Occurrences’, fontsize=18) #axis title
ses|ax [1].set__ylabel(’Occurrences’, fontsize=18) #axis title
867
sos| fig . savefig (' Graphics/dg types/dg types_ overtime withlog.pdf’,
bbox_inches="tight ', format = ’'pdf’, dpi = 300)

869
870 | #
s71|#Stacked Bar chart with percentage for years

/]
.

872 | #
s7s| fig , ax = plt.subplots (1, 1, figsize=(12, 8)) #creating figure box
s74| fig . suptitle (’Dangerous Goods Types’, fontsize=28) #title

875
s76| color=["lightcoral’,’red’, chocolate’, ’sienna’, ’gold’, khaki’,’

yvellowgreen’, ’forestgreen’,’lightblue ', ’cornflowerblue’,’ violet ’]
#colors

877 | #

s7s| (dgs_inclasses/dgs_inclasses.sum()*100).T. plot.barh(stacked=True,
color=color, legend=True, lw=0, width = 0.95,ax=ax)

s7o| legend=ax.legend (new__classes, loc=’center left’, bbox_to_anchor=(1,

0.5)) #legend

sso|ax.set__ylabel (’Years’, fontsize=18) #axis title
ssi|ax.spines | top’].set_visible(False) #deleting top box line

ss2| ax.spines [right ’].set__visible (False) #deleting right box line

107

883
884
885
886
887
889
890
891
892
893

894

895

896

w0
©
~

898

899

900
901

902

903
904
905

906

907 [F

908
909

910

911
912
913
914
915
916
917
918
919
920

921

922

Python-based Pipeline: DGs template

ax.spines | 'bottom’].set_visible (False) #deleting bottom box line
ax.grid (axis='x") #shwoing only x grid

plt.rc(’xtick’, labelsize=18)

plt.rc(’xtick’, labelsize=18)

fmt = "%.0f%% #setting percentages on x axis
xticks = mtick.FormatStrFormatter (fmt)

ax.xaxis.set__major_ formatter(xticks)

/]
f
1T

ax.legend () .set__visible (False)

fig.tight_layout ()

fig .savefig (’Graphics/dg_types/dg_types_stackedbar.pdf’, bbox_inches=
"tight ’, format = ’'pdf’, dpi = 300)#saving chart without legend

ax.legend (new_ classes, loc=’center left’, bbox_to_anchor=(1, 0.5)).
set__visible (True)
fig .savefig (’Graphics/dg_types/dg_types_stackedbar_withlgd.pdf’,
bbox_inches="tight ’, format = ’pdf’, dpi = 300)#saving chart plus
legend

def export_legend (legend, filename='Graphics/dg types/
dg_types_stackedbar_lgd.pdf’):
fig=legend . figure
fig.canvas.draw ()
bbox=legend . get_window__extent () .transformed (fig.dpi_scale_ trans.
inverted ())
fig.savefig(filename , dpi=300, bbox_inches=bbox)

export_legend (legend) #saving only the legend

/]

T

#Stacked Bar chart with percentage for DGs

#defining a new dataframe to use in plotting (Problem in division by
zero)

data_graph=pd.DataFrame (index=years, columns=new_ classes)

for i in new_ classes:

if dgs_ inclasses.T[i].sum()!=0:
data_graph[i]=dgs_inclasses.T[i]/dgs_inclasses .T[i].sum() =100

else:
data_ graph[i]=0

fig , ax = plt.subplots(1l, 1, figsize=(18, 10)) #creating figure box

fig .suptitle (’Dangerous Goods Types’, fontsize=26) #title

color=["lightcoral’, ’red’, ’chocolate’, ’sienna’,’gold’, khaki’,’
yellowgreen’, "forestgreen’,’lightblue’,’cornflowerblue’, ’violet ']
#colors

17

108

923

924

925
926
927
928
929
930
931
932
933
934
935
936
937
938

939

940

941

942

943

944

945
946

947

948
949

950

Python-based Pipeline: DGs template

(data_graph).T. plot.barh(stacked=True, color=color , legend=True, lw
=0, width = 0.95, ax=ax)

legend=ax.legend (years, loc="center left’, bbox_to_anchor=(1, 0.5)) #
legend

ax.set__ylabel(’Classes’, fontsize=18) #axis title

ax.spines|[’top’].set_visible (False) #deleting top box line

ax.spines [’ right '].set visible(False) #deleting right box line

ax.spines | ’bottom’|.set__visible (False) #deleting bottom box line

ax.invert__yaxis ()

ax.grid (axis='x") #shwoing only x grid

plt .rc(’xtick’, labelsize=18)

plt.rc(ytick’, labelsize=18)

fmt = "%.0f%% #setting percentages on x axis
xticks = mtick.FormatStrFormatter (fmt)
ax.xaxis.set__major_formatter(xticks)

i

ax.legend () .set visible (False)
fig.savefig(’ Graphics/dg types/dg types_ stackedbar2.pdf’, bbox_inches
="tight’, format = ’pdf’,dpi = 300) #saving chart plus legend

ax.legend (years, loc=’center left’, bbox_to_anchor=(1, 0.5)).
set__visible (True)

fig.savefig(’ Graphics/dg types/dg types stackedbar withlgd2.pdf’,
bbox_inches="tight ’, format = ’'pdf’, dpi = 300)#saving chart plus
legend

def export_legend(legend, filename=’Graphics/dg_types/
dg_ types_stackedbar_ lgd2.pdf’):
fig=legend. figure
fig .canvas.draw ()
bbox=legend . get_window_extent () .transformed (fig.dpi_scale_ trans.
inverted ())
fig .savefig (filename, dpi=300, bbox_inches=bbox)

export_legend (legend) #saving only the legend

109

110

S N I

~

Appendix B

Python-based Pipeline: SPI
template

This appendix contains the Python code of the Safety Performance Indicators
analysis.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.colors as mcol
import matplotlib as mpl

j|import seaborn as sns

from itertools import chain #to append lists of list

import matplotlib.ticker as mtick #to show percentage ticks in
matplotlib graphs

import os.path #to verify the existence of a file in a specific
directory

import tabula #to read pdf files

from matplotlib.gridspec import SubplotSpec #to title every row of in
figure with subplots

#Insert the requested SPI to analyze
subject__required="Runway Incursions’ #the user decides which analysis
to run

s|#According to the user choice, a file is selected to be read through

if —conditions. Given the extended name of a SPI, the code acquire
the contracted name (used for naming output files) and the source
file name.

111

23

24

25

26

27
28

Python-based Pipeline: SPI template

#The two study cases are 'Runway Excursions’ and ’Runway Incursions’,
so it is attached the source file. For all the other SPIs, the
code can run as long as it is provided a file source instead of
the black space in quotes.

#SPIs to be analyszed

spi_selection=['Runway Excursions’, ’Runway Incursions’, ’'Loss of
Control In—Flight’, "TCAS Resolution Advisories’,

"Activations of TAWS’ |, ’Ramp events’, ’'Collision while taxing to/from
a runway in use’,

"Fire or smoke on aircraft’, ’“Laser beam interferences with flight
operations’,

"Bird Wild Strike rate’, ’Airspace Infringements’, ’Separation
Minimum Infringement’, 'AIM technical failures’,

"Interferences of APR with manned aircraft during take—off or landing
]

#short name of each SPI
spi_name=['RE’, 'RI’, 'LOG-1’, TCAS’ , "TAWS’ , 'RAMP’ , 'GCOL’ , "F—NI’, '"LASER
" ,’BIRD’, "UPA” | ’SMI’ ,"ATM _ failure’,” APR_interference ’ |

#file name for each SPI
files=[’SPI-0—-01 (RE every 10000 mvt).xlsx’, >SPI-0—-02 (RI APV every

. b B b b b b b b b b b b b
10000 mvt).xlsx ', 77,77 77 77 00 00 00 0 o 0 0]

if subject_ required in spi_selection:
subject=subject_required
position=spi_selection.index (subject)
name=spi_name [position]
file_name=files [position |
else:
print ("The requested SPI is not correct. Please, check the name.

)

SPIs divided into categories based on the specific analysis than we
want to run for each one

spi_mvt=["RE’, ’RI’, 'TCAS’, '/RAMP’ , "GCOL’ , "F—NI’ , "LASER’ ,’
APR_interference’]| #rate calculated with movements

spi_ flt=['LOCG-1", 'TAWS’] #rate calculated with flights

spi_occ=["BIRD’, UPA’ ;" ATM_ failure’] #rate calculated with occupancy
duration

)

5/ spi_dur=["SMI’] #only occurrences to calculate

External data required in the analyses

movements=np.array ([1544643,1624966,1653242,1722254,1655381,708602])
#provided by ENAC

flights=np.array ([1695821, 1733589, 1785541, 1880252, 1962182,
781672]) #provided by EUROCONTROL through ENAC

duration=np.array ([0,0,58e6,63e6,67e6,27e6]) #provided by ENAC

112

Python-based Pipeline: SPI template

52| #READING DATA

s3|#extracting the data for each year

54| years=['2015",72016",°2017°,72018 " ,72019",°2020 "] #considered years
55| data=pd . DataFrame () #new DataFrame

56| check_length=pd.DataFrame (index=["black cells’,’length’], columns=
years) #new DataFrame for validation

ss| for 1 in range(len(years)):

60 data_excel=pd.read excel(’SPIs/ ’+file name ,sheet name=years[i]) #
reading data from excel file sheets

61 data=data.append(data_excel) #appending all the data together

62

63 #calculating the length of the Excel sheet and the the number of
blank cells per sheet

64 check length.iloc[0,i]=data_excel.iloc[:,5].isna () .sum()

65 check_length.iloc[1,i]=len (data_excel.iloc[:,5])

66

#keeping only the column with the required information about dates,
converting data in date—format and keeping only the information
about the year

6s| data__date=pd.to_datetime (data.iloc [:,5].dropna().reset_index (drop=

True)).dt.year

6

~

7o|#For each SPI categories we run a different analysis

71| if name in spi_mvt:

72 #resulting DataFrame

73 data_tab=pd.DataFrame (columns=[’Movements’ , 'Number of events’,’
Rate’])

74 data_tab [’Number of events’]=data_date.value_ counts().sort_index(
ascending=True) #counting the total number of occurrences

75 data_tab [’Movements’]=movements

76 #rate per 10000 movements, rounding at 2 decimal digits

7 data_tab['Rate’]=round (data_tab [Number of events’]/data_tab[’
Movements ' |*10000,2)

79 variation_name='everyl00000mvt’ #specific name for saving the
data

80
si| elif name in spi_ flt:

82 #resulting DataFrame

83 data_tab=pd.DataFrame (columns=[’Flights >, ’Number of events’, Rate
1)

84 data_tab['Number of events’]|=data_date.value_counts().sort_index(
ascending=True) #counting the total number of occurrences

85 data_tab[Flights '|]=flights

86 #rate per 10000 movements, rounding at 2 decimal digits

113

Python-based Pipeline: SPI template

87 data_tab ['Rate’]=round (data_tab ['Number of events’]/data_tab][’
Flights ’]%x10000,2)

88

89 variation_name=’everyl0000flt > #specific name for saving the data

90
91| elif name in spi_dur:

92 #resulting DataFrame

93 data__tab=pd.DataFrame (columns=[’Occupancy duration’,’Number of
events’, ’Rate’|)#counting the total number of occurrences

94 data_tab ['Number of events’|=data_date.value_counts().sort_index(
ascending=True)

95 data_tab [Occupancy duration’]=duration

96 #rate per 1MIln minutes, rounding at 2 decimal digits

97 data_tab['Rate’]=round (data_tab ['Number of events’]/data_tab][’

Occupancy duration’]*1000000,2)
98
99 variation_name=’everylMlnmins’ #specific name for saving the data
100
11| elif name in spi_occ:

102 #resulting DataFrame

103 data_ tab=pd.DataFrame (columns=[’Number of events’])

104 data_tab ['Number of events’]|]=data_date.value_counts().sort_index(
ascending=True)#counting the total number of occurrences

105

106 variation_name=’" #no addition information in the output file
name is required

07| else :

108 print (’Input data do not corresond to study cases’)

109
1o|#implementing a check to verify the number of events extracted
corresponds to the total events reported

1| for i in range(len(years)):

12 if data_tab.iloc[i,1]!=check_length.diff().iloc[1,i]:
113 print (’Missing data!’)
114|#

data_tab.to_excel(’Analysis Excel/ ’+nametvariation name+’.xlsx ') #
saving the resulting table in an Excel file

11

ot

116 | #

17
17| display (data_tab)
118
119|#According to the chosen SPI, one of the three graphs below will be
performed .

| L
120| 7

121|# Movements Trends
1/

122|#

123 if name in spi_mvt:

124

125 fig , ax = plt.subplots(1,1, sharex = False, sharey=False,

figsize=(8, 6)) #creating a figure box

114

Python-based Pipeline: SPI template

126 fig.suptitle (’Movements per year’, fontsize=28) #title

127 axisx=np.arange (len(years)) #defining x positions

128 #

129 ax.plot (years ,movements /1000000, 'go—’', linewidth=2, markersize
=12)

130

131 ax.spines[’top’].set_visible (False) #deleting top box line

132 ax.spines[’'right ’]. set__visible (False) #deleting right box line

133 ax.set__ylabel (’Movements (in Mln)’,fontsize=18) #axis title

134 ax.grid (axis=’y’) #showing only y grid

135 plt.rc(’'xtick’, labelsize=18)

136 plt.rc(’'ytick’, labelsize=18)

137 plt.ylim ((0.4,2))

138 #

139 fig.savefig(’Graphics/spi/SPI_movperyear.pdf’, format = ’pdf’,dpi
= 300)#saving

140 | #

1ui1|# Flights Trends

142| £

143 elif name in spi_ flt:

144

145 fig , ax = plt.subplots (1,1, sharex = False, sharey=False,
figsize=(8, 6))#creating a figure box

146 fig .suptitle (’Flights per year’, fontsize=28) #title

147 axisx=np.arange (len(years)) #defining x positions

148 #

149 ax.plot (years, flights /1000000, go— ", linewidth=2, markersize=12)

150

151 ax.spines[’top’].set_visible (False) #deleting top box line

152 ax.spines[’'right ’].set__visible (False) #deleting right box line

153 ax.set__ylabel (’Flights (in Mln)’,fontsize=18) #axis title

154 ax.grid (axis=’y’) #showing only y grid

155 plt.rc(’'xtick’, labelsize=18)

156 plt.rc(’'ytick’, labelsize=18)

157 plt.ylim ((0.5,2.1))

158 #

159 fig.savefig(’Graphics/spi/SPI_flightperyear.pdf’ format = ’pdf’,
dpi = 300)

i
160 | 77

161|# Occupancy Duration
162 ,/,’/
163 elif name in spi_dur:

164

165 fig , ax = plt.subplots (1,1, sharex = False, sharey=False,
figsize=(8, 6)) #creating a figure box

166 fig.suptitle (’Occupancy Duration (min)’, fontsize=28) #title

167 axisx=np.arange(len (years)) #defining x positions

168 #

115

169

170
171
172

173

174
175
176
177
178

179

180
181
182

183

184

185

186
187
188
189
190
191
192

193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

211

Python-based Pipeline: SPI template

ax.plot (years ,duration /1000000, go—’, linewidth=2, markersize
=12)

ax.spines | ’top’].set_visible(False) #deleting top box line
ax.spines |’ 'right ’].set_visible (False) #deleting right box line

ax.set__ylabel (’Occupancy Duration (in Mln of min)’, fontsize=18) #

axis title

ax.grid (axis="y’) #showing only y grid
plt.re('xtick’, labelsize=18)
plt.re('ytick’, labelsize=18)
#plt.ylim ((0.4e6,2¢e6))

fig .savefig(’Graphics/spi/SPI_durationmin.pdf’, format = ’pdf’,
dpi = 300)

#OCCURRENCES and RATE (per year) GRAPHICS

71

if name in spi_mvt+spi_ flt+spi_dur: #plotting number of occurrences
and rate

fig , ax = plt.subplots(1,2, sharex = False, sharey=False,
figsize=(16, 8)) #creating a figure box

fig.suptitle (subject , fontsize=28,y=1) #title
axisx=np.arange(len (years)) #defining x positions
color=["lightcoral’, ’red’] #colors

topic=[’Number of events’, Rate’] #topic to visualize

.
17

ax=ax.ravel ()

for i in range(len(topic)): #using a loop to plot the tw bar
plots

axes = ax|[1i]

axes.bar (x=axisx ,

height=data_tab[topic[i]],

width=0.4,

tick_label=years,

color=color [i])
axes.set_title(topic[i], fontweight="bold’, fontsize=24)
axes.grid (axis="y’) #showing only y grid

#plt . ylim ((0,24))

plt.re('xtick’, labelsize=20) #setting x ticks size
plt.rc(ytick’, labelsize=20) #setting y ticks size

ax [0].set__ylabel(’Occurrences’, fontsize=18) #axis title
ax [1].set__ylabel('Rate’, fontsize=18) #axis title

1]
£

7
fig.tight_layout ()

116

Python-based Pipeline: SPI template

212 fig .savefig (’Graphics/spi/SPI_occrateperyear_ '4namet’ . pdf’,
format = ’pdf’, dpi = 300)#saving

214] elif name in spi_occ: #plotting only the total number of occurrences

216 fig , ax = plt.subplots (1,1, sharex = False, sharey=False,
figsize=(12, 6)) #creating a figure box

217 fig .suptitle (subject, fontsize=28,y=1) #title

218 color="lightcoral ’ #color

219 topic="Number of events’

220

221 ax.bar ([1,2,3,4,5,6],height=data_tab[topic],width=0.4, tick_label
=years, color=color)

222 ax.set__title (’Occurrences per year’, fontweight="bold’)

223 ax.grid (axis=’y’) #showing only y grid

224 plt.rc(’'xtick’, labelsize=20) #setting x ticks size

225 plt.rc('ytick’, labelsize=20) #setting y ticks size

226 ax.set__ylabel(’Occurrences’, fontsize=18) #axis title

227 #

228 fig.tight_ layout ()

229 fig .savefig(’Graphics/spi/SPI_occperyear ’+name+’.pdf’, format =

"pdf’,dpi = 300)#saving

231|#As a new way of visualisation , we present a different type of graph
for plotting rates.
232|# Rate Trends with line plots

1/

233 | 7

234| if name in spi_mvt+spi_ flt+spi_dur:

235

236 fig , ax = plt.subplots(1,1, sharex = False, sharey=False,
figsize=(8, 6)) #creating a figure box

237 fig.suptitle(’Rate per year (’4namet’)’, fontsize=28) #title

238 axisx=np.arange (len (years)) #defining x positions

239 #

240 ax.plot (years ,data_tab[Rate’], ’go—", linewidth=2, markersize
~12)

241

242 ax.spines|[’top’].set_visible (False) #deleting top box line

243 ax.spines [’ right ’].set_visible(False) #deleting right box line

244 ax.set__ylabel ('Rate’ ,fontsize=18) #axis title

245 ax.grid (axis=’y’) #showing only y grid

246 plt.rc(’'xtick’, labelsize=18) #setting x ticks size

247 plt.rc(’ytick’, labelsize=18) #setting y ticks size

248 #

249 fig .savefig (’Graphics/spi/SPI_rateperyear_ '4namet’ _line.pdf’,

format = ’pdf’, dpi = 300)#saving
250
251

252| #AEVENT TYPES ANALYSIS (plus plots)

117

Python-based Pipeline: SPI template

253| #

251 if data.iloc [:,12].notnull().values.any(): #for now it means only RE

256 data__events=pd.DataFrame({ date’: pd.to_datetime(data.iloc[:,5]),

"event types’: data.iloc[:,12]}) .dropna()

257 data_events | date’]=data_events|['date’].dt.year

258

259 event__types=[’Runway Incursion by an Aircraft’, Runway Incursion
by a Person’, ’Runway Incursion by a Vehicle/Equipment’]

260

261 events=pd.DataFrame(columns=[’ Aircraft’,’rate Aircraft x10000
mvts’, 'Person’, ’rate Person x10000 mvts’,’ Vehicle/Equipment’, 'rate

Vehicle /Equipment x10000 mvts’])

262

263 for 1 in range(len(event_types)):

264 events.iloc [:,i+i]=data_events[data_events[’ ’event types’]==
event_types[i]][’date’].value_counts().sort_index (ascending=True)

265 events.iloc [:,(i+i)+1]=round(events.iloc [:,i]/movements
£10000,3)

266 #

267 events.to_excel(’Analysis FExcel/ ’4name+’ eventtypes.xlsx’)

268 #

269 display (events)

270

271 #

272 #Bar charts

273 #

274 fig , ax = plt.subplots (3,2, sharey = False, figsize=(14, 12))

275 fig .suptitle (Event Types (’+4mame+’)’, fontsize=28, y=1)

276 plt.subplots_adjust(hspace=0.9)

277 color=["lightcoral’,’red’, ’chocolate’, ’sienna’, ’lightblue ’,’
cornflowerblue '] #colors

278 axisx=np.arange (len (years))

279 #

280 ax = ax.ravel ()

281

282 for i in range(len(events.columns)):

283

284 axes = ax|[i]

285

286 axes.bar (x=axisx ,height=events[events.columns[i]],width=0.5,
tick _label=years ,align="center’,color=color[i])

287 axes.set_title (events.columns[i], fontweight="semibold’,
fontsize=18)

288 axes.grid (axis=’"y’) #showing only y grid

289 if i==0 or i==2 or i==4:

290 axes.set_ylabel(’Occurrences’,fontsize=16)

291 elif i==1 or 1==3 or i==b:

292 axes.set_ylabel(’Rate’,fontsize=16)

118

293
294
295
296
297

298

299
300
301

302

303
304
305
306
307
308
309
310
311

312
313
314

315

316
317
318
319
320
321
322
323

324

w

~

w
NN R
P

w
o)

329

330

331

332

333

334

Python-based Pipeline: SPI template

else:

plt.rc(’xtick’, labelsize=18)
plt.rc(’ytick’,labelsize=20)
/'//I
#function to insert title at every row
def create_subtitle(fig: plt.Figure, grid: SubplotSpec, title:
str):
"Sign sets of subplots with title'
row = fig.add_subplot(grid)
the ’\n’ is important
row.set__title(f’{title}\n’, fontweight="bold’, fontsize=24, y
=1.1)
hide subplot
row.set_frame_on(False)
row.axis(off”)
rows = 3
cols = 2
grid = plt.GridSpec(rows, cols)
create_subtitle (fig, grid[0, ::], event_types[0])
create_subtitle (fig, grid[1, ::], event_types[1l])
create_subtitle (fig, grid[2, ::], event_types[2])
fig .tight_layout ()
fig.savefig (' Graphics/spi/SPI_eventtypes ’'+name+’.pdf’, format =
'pdf’,dpi = 300)
print ('The data—set does not contain Event types.’)

#EVENT TYPES GRAPHICS
if data.iloc[:,12].notnull().values.any():

1L
7

#Bar charts stacked > not with percentage because these

events types are just a few of the total

"
i
17

only__events=events [[> Aircraft ', Person’,’ Vehicle /Equipment’]]

fig , ax = plt.subplots(1l, 1, figsize=(12, 8)) #creatng figure box
fig.suptitle (’Event Types (’'4name+’)’, fontsize=28) #title
color=["red’, forestgreen’, gold’, lightblue’, cornflowerblue’] #
colors

1L
17

only events.plot.barh(stacked=True, color=color, legend=True, lw
=0, width =0.95, ax=ax)

119

343
344

345

346

347

348

349

350

351
352

353

354
355
356
357
358
359
360
361
362

363

364
365
366
367
368

369

370

Python-based Pipeline: SPI template

legend=ax.legend (event_types, loc=’center left’, bbox_to_anchor
=(1, 0.5)) #legend

ax.set__ylabel (’Years’ ,fontsize=18) #axis title

ax.spines | ’top’].set_visible(False) #deleting top box line
ax.spines | 'right ’].set_visible(False) #deleting right box line
ax.spines | ’bottom’|.set__visible (False) #deleting bottom box line
ax.grid (axis='x") #shwoing only x grid

plt.rc(’xtick’, labelsize=18)

plt.re('ytick’, labelsize=18)

i
£
7

ax.legend ().set__visible (False)
fig.savefig(’ Graphics/spi/SPI_eventtypes_ '+namet+’ _stacknolgd.pdf’
, format = 'pdf’ ,dpi = 300)#saving chart without legend

ax.legend (event_types, loc="center left’, bbox_to_anchor=(1, 0.5)
).set__visible (True)
fig.savefig(’ Graphics/spi/SPI_eventtypes_ '+namet+’ stack.pdf’,
bbox_inches=’tight’, format = 'pdf’, dpi = 300)#saving chart plus
legend
def export_legend(legend, filename='Graphics/spi/SPI eventtypes ’
+name+’ _stack_onlylgd.pdf’):
fig=legend . figure
fig .canvas.draw()
bbox=legend . get__window__extent () .transformed (fig.
dpi_scale_trans.inverted ())
fig .savefig(filename , dpi=300, bbox_inches=bbox)

export_legend (legend) #saving only the legend

/]
f

7
#Line plot of rate trends

1]
/

17

fig , ax = plt.subplots(1,1, sharey = False, figsize=(12,6))
fig.suptitle (Event Types rates (’+4namet+’)’, fontsize=28)
plt .subplots_adjust(hspace=0.9)

color=["lightcoral’,’red’, ’chocolate’, ’sienna’,’lightblue’,
cornflowerblue '] #colors

)

axisx=np.arange (len(years))
i
i

axes= ax

axes.plot (years,events[events.columns|[1]], color=color [1], marker=
o', linestyle="dashed’, linewidth=2, markersize=12)
axes.plot (years,events|[events.columns[3]], color=color [3], marker=
0o’, linestyle="dashed’, linewidth=2, markersize=12)
axes.plot (years,events[events.columns[5]], color=color [5], marker=

9)

o’, linestyle="dashed’, linewidth=2, markersize=12)

7

)

120

373
374
375
376
377
378
379
380

381

382
383
384
385
386
387
388

389

390
391
392
393
394
395
396
397

398

399
400
401
402
403
404
405
406
407

408

409
410

411
412
413
414

415

Python-based Pipeline: SPI template

axes.spines | top’].set_visible(False) #deleting top box line
axes.spines | right ’].set_visible(False) #deleting right box line
axes.set__ylabel ('Rate’,fontsize=18) #axis title

axes.grid (axis="y’) #showing only y grid

legend=ax.legend (event_types, prop={’size’: 14}) #legend
plt.rc(’'xtick’, labelsize=18)

plt.rc(’'ytick’, labelsize=18)

1]

fig.savefig(’Graphics/spi/SPI_ ratestoghether et ’4namet+’.pdf’,
format = ’pdf’, dpi = 300)

/]
71
#Bar charts and line plots

i
+
17

fig , ax = plt.subplots (3,2, sharey = False, figsize=(14, 12))
fig .suptitle ('Event Types (’4name+’)’, fontsize=28, y=1)

plt .subplots_adjust(hspace=0.9, wspace=0.3)
color=["lightcoral ’,’red’, chocolate’, ’sienna’,’lightblue’,’
cornflowerblue '] #colors

axisx=np.arange (len (years))
/]

i
ax = ax.ravel ()

for i in [0,2,4]:
axes = ax|[1i]

axes.bar (x=axisx, height=events[events.columns[i]], width
=0.5, tick_label=years, align="center’, color=color[i])
axes.set__ylabel(’Occurrences’,fontsize=16)
axes.grid (axis="y’) #showing only y grid
plt.rc(’'xtick’, labelsize=18)
plt.rc(’ytick’, labelsize=18)

for i in [1,3,5]:
axes= ax|[1i]

axes.plot (years,events[events.columns[i]], color=color[i],
marker="0", linestyle="dashed’, linewidth=2, markersize=12)

axes.spines|[’top’].set__visible(False) #deleting top box line

axes.spines [’ right ’].set_visible(False) #deleting right box
line

axes.set__ylabel (’Rate’ ,fontsize=16) #axis title

axes.grid (axis=’"y’) #showing only y grid
I’///
#function to insert title at every row
from matplotlib. gridspec import SubplotSpec

121

Python-based Pipeline: SPI template

116 def create_subtitle(fig: plt.Figure, grid: SubplotSpec, title:
str):

417 "Sign sets of subplots with title"

418 row = fig.add_subplot(grid)

419 # the ’\n’ is important

420 row.set_title(f’{title}\n’, fontweight="bold’, fontsize=24)

421 # hide subplot

422 row.set_frame_ on(False)

423 row.axis (' off”)

124

425 rows = 3

426 cols = 2

127 grid = plt.GridSpec(rows, cols)

128 create_subtitle (fig, grid[0, ::], event_types[0])

429 create_subtitle(fig, grid[1l, ::], event_ types[1l])

430 create_subtitle(fig, grid[2, ::], event_types[2])

131 4

432 fig.tight_layout ()

433 fig.savefig(’ Graphics/spi/SPI_eventtypes ’+name+’ withline.pdf’,
format = ’pdf’,dpi = 300)

122

Appendix C

Implementation of a
Python-based dashboard

One of the conclusive output of this thesis is an interactive dashboard. A dashboard
is a Web interface that displays information that can be consulted by the interested
parties. The aim is to provide a tool to present the results that is both available to
the public and connected to the prior analysis.

The programming language on which the application is based is Python. In
addition, it is required the used of some libraries provided by HoloViz, which is a
collaboration between the maintainers of several Python packages [45]. The neces-
sary Python libraries are huvplot, Panel, and Param. The first one is a high-level
plotting API for the PyData ecosystem [46]. The second one is a library that allows
creating custom interactive web apps and dashboards by connecting user-defined
widgets to plots, images, tables, or text [47]. The last one is a library for handling
all the user-modifiable parameters, arguments, and attributes that control your
code [48].

The choice behind this package of libraries is its integration with Anaconda, even
though it is partially still under development.

The concept behind the implementation of the dashboard is presented in Figure C.1.
The starting point is the Excel files provided by ENAC, whereas the final outcome
is the dashboard itself. The in-between process can be divided in two parts: data
analysis and dashboard design. The data analysis is the one previously conducted
and explained in chapter 4 and chapter 5. The building process includes both
plotting adaptations and layout design.

123

Implementation of a Python-based dashboard

Excel file Input

Python code

Interactive dashboard

Figure C.1: Flowchart relating to the implementation of the dashboard.

C.0.1 Plotting Adaptation

With plotting adaptation, we indicate the process of implementing interactive plots
with hwvplot library. The starting point is the data in DataFrame format, which
is the output of the data analyses. The types of plots are the same displayed in
chapter 6, but the used commands are different.

An interactive plot is a plot with special characteristics which help gain a better
understanding of the subject. In particular, all the provided charts are fitted with
tooltips, as shown in Figure C.2.

Number of events per year (RE)

20 O
'%’
15+
§ eP
c
2 E]
o 10+
O
o | =
|ndex 2015
5 Number of events: 12
o

2015 2016 2017 2018 2019 2020
Years

Figure C.2: Example of a tooltip in an interactive plot included in the dashboard.

124

Implementation of a Python-based dashboard

Bar plots and line plots are the main types included and they are implemented
with hvplot commands: hvplot.bar() and hvplot.line()*hvplot.scatter().
Whereas pie charts are not a plotting type included in the mentioned library, so we
used Bokeh, which is a Python library for creating interactive visualizations for
modern web browsers [49]. The required command for pie charts is figure.wedge().

In the dashboard there are additionally tabular representations of the result-
ing data. In particular, the panel command pn.widgets.DataFrame() is used to
present a DataFrame that is also interactive. Every column can be sorted and the
rest of the cells adapts to that filtering.

C.0.2 Designing the layout

The layout of a dashboard is subjective. There are many ways of arranging the
outputs on a blank page. The way we decided to proceed aims at displaying data
as clearly and easily as possible.

The main structure of the dashboard consists of 4 pages and a sidebar. The sidebar
allows to choose which page is visualized. The four pages are respectively: Home,
Safety Performance Indicators, Dangerous Goods, and About. The first page works
as the opening front page, the second one contains all the results about SPIs, the
third one contains all the results about DGs and the four one gives some information
about the project.

Each page is defined in a different way according to the content it contains. Gener-
ally, the writing sections are generated with panel command pn.panel (HTML()),
that allows to use html programming language. The layout of these sections is
made it possible through the panel commands pn.Row() and pn.Column(), which
allow to arrange the context in rows or in columns. These two commands are also
used in the arrangement of tables and plots.

As far as the data results, such as tables and plots they are displayed in the
following order:

« tables,
o plots similar to those included in the ENAC Safety Report,
« additional plots.

In particular, the setup of the plots makes use of tabs, which are a technique that
allows switching between multiple objects by clicking on the corresponding tab
header. The panel command is pn.Tabs().

In the SPI page, two drop-down menus are used to select what to visualize.

125

Implementation of a Python-based dashboard

The first menu allows to select the requested SPI, whereas the second one the
analysis to run, in this case the options are 'general analysis’ and ’event types
analysis’, as shown in Figure C.3.

Please select the requested SPI

Analysis to run

v

general analysis
event types analysis

Figure C.3: Drop-down menus in the SPI page of the dashboard

In the DG page, a drop-down menu is used to select the requested analysis to display,
as shown in Figure C.4. The options are 'Event types analysis’ and 'Dangerous
Goods analysis’.

Analysis to run

Event Types
Dangerous Goods Types

Figure C.4: Drop-down menu in the Dangerous Goods page of the dashboard.

The resulting layout is presented in Figures C.5, C.6, C.7, and C.8.

= Interactive Dashboard on Aviation Safety

- &,
(IR
&%ﬁﬂ Politecnico
i unyy di Torino
4

patery

Interactive Dashboard on Aviation Safety data

nnn

Figure C.5: Home page of the dashboard.

126

Implementation of a Python-based dashboard

Safety Performance Indicators

Runway Excursions

Movements per year

B]
008 Lo |4
— . [S & *
2016 1624366 ' 007 £ o
H
2017 1653200 16 01 £
2018 17225 » 012 §
2019 1655381 s on 3 |
=
2020 708502 s o N
L3
Years

Figure C.6: Safety Performance Indicators page of the dashboard.

= Interactive Dashboard on Aviation Safety

- 2020
8 Dangerous Goods 55 %
G '
Falawing CAO defiton TS 5 .
o 2 s
2
5

Master Thesis in Aerospace Engineering

Author: Callegari Gi

Figure C.8: About page of the dashboard.

The code lines regarding the plotting and the layout arrangements are illustrated
in the cells below.

127

oA W

0
o

Implementation of a Python-based dashboard

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.colors as mcol
import matplotlib as mpl

j|import seaborn as sns

from itertools import chain #to append lists of list

import matplotlib.ticker as mtick #to show percantage ticks in
matplotlib graphs

import os.path #to verify the existence of a file in a specific
directory

import tabula #to read pdf files

from matplotlib.gridspec import SubplotSpec #to title every row of in
figure with subplots

from IPython.core.display import display , HIML

import ipywidgets as widgets

import holoviews as hv

import panel as pn

j| import xarray as Xr

import hvplot.pandas # noqga: API import

import hvplot.xarray # noqa: API import

import holoviews as hv

import param

from math import pi

from bokeh.plotting import figure , show

from bokeh.io import output_notebook, show,save
from bokeh.transform import cumsum

from bokeh.layouts import row,column

| pn. extension ()
|

7
#OME PAGE ——> first page of the dashboard
pn.config.sizing_ _mode = ’stretch__width’ #sizing configuration

#defining elements of home page

logo_ poli=pn.pane .PNG(’../logo polito.png’ ,width=250) #logo
politecnico

title=pn.panel (HIML('<p><hl><center>Interactive Dashboard on Aviation
Safety data</center></hl></p>"))

sub_ title=pn.panel (('<p><h4><center>Final product of the
implementation of a python—based software approach in aviation
data analysis </center></h4></p>"))

128

36

37
38

40

41

42

43

44

45

46

47

48

49

Implementation of a Python-based dashboard

expl=pn.panel (HIML('’ '<p>The Dashboard presents the results obtained
implementing a python—base software pipeline rearding
safety manners, in particular Safety Performance Indicators</
em> and Dangerous Goods as they are displayed in <a href
="https://sites.google.com/enac.gov.it/enacsafetyreport/
introduction?authuser=0" target="_blank">ENAC Safety Report .

For further information consult the About section.</p>’""))

#buiding home page
home_ page=pn . Column (pn.Row(pn. Spacer () ,logo_poli) ,pn.Spacer(height
=10),title , sub_title, expl)

m

#ABOUT PAGE ——> last page of the dashobard

#defining elements of about page

authors=pn.panel (HIML('<p><h4>Master Thesis in Aerospace
Engineering </h4>Author: Callegari Giovanna Francesca
</p>’

'<p>Professor: Giorgio Guglieri
Supervisions: Beatrice

Conti & Giuliano Antoniciello </p>"))

abstract=pn.panel (HIML(>’ ’<p>Aviation safety is considered a vital
topic to study and enforce periodically as recommended by the
proper authorities. At European level every state uses their own
methodology for safety data analysis, it is then important to
revise and update the procedures. The purpose of this thesis is to
investigate an alternative method for processing safety data in
aviation. The results suggest a potential future shared approach.<
br>

A Python—based user—friendly software pipeline has been developed,
which seeks to be comprehensive and collective. The choice of the
programming language has been motivated by the need for an
efficient manipulation and an optimal elaboration of the input
data. The process started with Excel spreadsheets containing
Italian safety data, which were cleaned, organized, and then used
as a benchmark for our analysis.

The selected topics are Safety Performance Indicators and Dangerous
Goods, respectively. The former are parameters defined to measure
safety performances and the latter are any hazardous substances
that happen to occur in in—flight or in ground operations. Using
input files provided by ENAC, several templates have been derived
that give as an outcome the analysis embedded in the yearly ENAC
Safety Reportl. In addition, the method allows to assess the
accuracy of the analysis through warnings and validation , and it
can be easily updated for incoming years. The presented results
are twofold: tabular data results and graphical visualisations.</p

> 79))
#building home page

129

Implementation of a Python-based dashboard

about__page=pn.Column (pn. Spacer (height=5) ,authors ,pn.Spacer (height=20)
, abstract)

ot

17
54| #DANGEROUS GOODS
55| #EVENT TYPES ANALYSIS
s6|##Here the Event types analysis needs to be run. The code is the same
reported in the Appendix A, resulting in a DataFrame named
newtype_count_wother’ ##

N

55| dg__eventtypes_ df=pn.widgets.DataFrame (newtype_count_ wother , widths={
index 7:60} ,width=600)#interactive dataframe to display in the
dashboard

/]
59| 7

60|# Pie Charts about Event Types

61| #
62| years=[’20157,72016,72017’,°2018",°2019",°2020"]
63
61| pl=figure (height =200, width=200,title=years[0], toolbar_location=None
, tools="hover", tooltips="Qtypes: Qvalue",x range=(—0.5, 1.0),
background_fill color="#00000000 ")

65| p2=figure (height =200, width=200,title=years|[1], toolbar_location=None
, tools="hover"', tooltips="Qtypes: @value',x_range=(—0.5, 1.0),
background_fill color="#00000000 ")

66| p3=figure (height =200, width=200,title=years[2], toolbar_location=None
, tools="hover", tooltips="Qtypes: Qvalue",x range=(—0.5, 1.0),
background_fill color="#00000000 ")

67| p4=figure (height =200, width=200,title=years|[3], toolbar_location=None
, tools="hover", tooltips="Qtypes: @value",x_range=(—0.5, 1.0),
background_fill color="#00000000 ")

os| pb=figure (height =200, width=200,title=years[4], toolbar_location=None
, tools="hover", tooltips="Qtypes: Qvalue",x range=(—0.5, 1.0),
background_fill color="#00000000 ")

60| p6=figure (height =200, width=200,title=years|[5], toolbar_location=None
, tools="hover", tooltips="Qtypes: Qvalue",x_ range=(—0.5, 1.0),
background fill color="#00000000 ")

70| leg=figure (height =350, width=350, toolbar_location=None, tools="hover
", tooltips="Q@types: @value",x range=(0, 1.0),

background_ fill__color="#00000000")

»|rest=[pl,p2,p3,p4,p5,p6,leg]

7| for 1 in range(0,len(years)):

76 X = newtype_count_wother[years[i]]

78 pie = pd.Series(x).reset_index (name=’value’).rename (columns={"
index’: ’types’})

79 pie [’angle’] = pie[’value’]/pie[’ ’value’].sum() * 2xpi

130

80

81

82

83

84
85

86

88
89
90
91
92

93

94
95

96

98
99
100

101

102

103

104
105
106

107

108

109

110
111
112

Implementation of a Python-based dashboard

)

pie[’color’] =[’lightcoral’,’red’, chocolate’,’sienna’, gold’,
khaki’,’yellowgreen’, forestgreen’,’lightblue’,’cornflowerblue |

rest [i].wedge(x=0, y=1, radius=0.5,start_angle=cumsum(’angle ’,
include_zero=True), end_angle=cumsum(’angle’), line_color="white",
fill_color=’"color’, source=pie)
rest [6].wedge(x=0, y=1, radius=0.0001, start_angle=cumsum(’angle’
include__zero=True), end_angle=cumsum(’angle’), line_color="white

", fill_color="color’, source=pie, legend_ field="types’)
rest [i].axis.axis_label = None
rest [i].axis.visible = False
rest [i].grid.grid_line_color = None
rest [i].outline line color = None
rest [6]. axis.axis_label = None
rest [6]. axis.visible = False
rest [6]. grid.grid_line_color = None
rest [6].outline line color = None
dg_events_ pie= pn.pane.Bokeh (row (column (row(pl,p2,p3) ,row(p4,p5,p6)),
leg))

A
/

17
Bar Chart about Event Types General

i
17

7| dg__events_bar=newtype_ count__wother.sum().hvplot.bar(height=400,width

=550,shared_axes=False , grid=True, title="Trend overtime’ 6 xlabel=’
Years’,ylabel="Occurrences’)

i

17
#Stacked Bar chart with percentage for years
1/
17

color=["lightcoral’,’red’, ’chocolate’, ’sienna’, gold’, khaki’,’
yellowgreen’, ' forestgreen’,’lightblue’,’cornflowerblue ’|

dg_events_stackl=((newtype_count_wother/newtype_count_wother.sum /()
x100).T) . hvplot.barh(color=color , shared_axes=False ,height=400,
width=1000,stacked=True, grid=True, xlabel="Years’ ,ylabel="’
Occurrences (%)’).opts(legend_ position="right)

1]
f

7
#Stacked Bar chart with percentage for event type
1]

color=["lightcoral’, ’red’, chocolate’, ’gold’, yellowgreen’,
forestgreen’,’lightskyblue’, ’cornflowerblue ’ |

)

dg_events_stack2=(newtype_count_wother.T/newtype_count_wother.T.sum/()
x100) .T. hvplot.barh(stacked=True,shared__axes=False , height =400,
width=1000,xlabel="Years’ ,ylabel="Occurrences (%)")

/]
£
7

Bar Chart about Event Types

A
/
7

131

113

114

115

116

117

118

119

120

123

Implementation of a Python-based dashboard

color=["lightcoral’,’red’, chocolate’, ’sienna’, ’gold’, orangered’,’
yellowgreen’, forestgreen’,’lightblue ’, cornflowerblue’] #colors

dg_events_barl=(newtype_count_wother.T).hvplot.bar(y=
newtype_ count_wother.index [0], color=color [0],height=300,width
=400,grid=True,shared_axes=False , title=newtype_count_wother.index
[0],xlabel="Years’ ,ylabel="Occurrences’).opts(fontsize={"title :
10})

dg_events_bar2=(newtype_count_wother.T).hvplot.bar(y=
newtype_count_wother.index [1], color=color[1],height=300,width
=400,grid=True,shared_axes=False , title=newtype_count_wother.index
[1],xlabel="Years’ ,ylabel="Occurrences’).opts(fontsize={"title’
10})

dg_events_bar3=(newtype_count_wother.T).hvplot.bar(y=
newtype_count_wother.index [2], color=color [2], height=300,width
=400,grid=True,shared_axes=False , title=newtype_count_wother.index
[2],xlabel="Years’ ,ylabel="Occurrences’).opts(fontsize={"title ’:
10})

dg_events_bard=(newtype_count__wother.T).hvplot.bar(y=
newtype_count_wother.index [3], color=color [3],height=300,width
=400,grid=True,shared_axes=False , title=newtype_count_wother.index
[3],xlabel="Years’ ,ylabel="Occurrences’).opts(fontsize={"title ’:
10})

dg_events_barb5=(newtype_count_wother.T) . hvplot.bar(y=
newtype_ count__wother.index [4], color=color[4],height=300,width
=400,grid=True,shared axes=False , title=newtype_count_wother.index
[4],xlabel="Years’ ,ylabel="Occurrences’).opts(fontsize={"title ’:
10})

dg__events_bar6=(newtype_count__wother.T) . hvplot.bar(y=
newtype_count_wother.index [5], color=color [5],height=300,width
=400, grid=True,shared_axes=False , title=newtype_count_wother.index
[5] , xlabel="Years’,ylabel="Occurrences’).opts(fontsize={"title ’:
10})

dg_events_bar7=(newtype_count_wother.T) . hvplot.bar(y=
newtype_ count__wother.index [6], color=color [6],height=300,width
=400, grid=True,shared_axes=False , title=newtype_count_wother.index
[6],xlabel="Years’ ylabel="Occurrences’).opts(fontsize={"title ’:
10})

dg__events_bar8=(newtype_count__wother.T) . hvplot.bar(y=
newtype_ count__wother.index [7], color=color[7],height=300,width
=400, grid=True,shared_axes=False , title=newtype_count_wother.index
[7],xlabel="Years’ ,ylabel="Occurrences’).opts(fontsize={"title :
10})

dg_events_bar9=(newtype_count_wother.T).hvplot.bar(y=
newtype_ count__wother.index [8], color=color [8],height=300,width
=400, grid=True,shared_axes=False , title=newtype_count_wother.index
[8],xlabel="Years’,ylabel="Occurrences’).opts(fontsize={"title’

10})

132

127
128
129

130

131

132

133
134
135
136
137

138

139

140

141

142

143

145

146

147

148

149

150

Implementation of a Python-based dashboard

dg_events_barl0=(newtype_count_wother.T).hvplot.bar(y=
newtype_ count__wother.index [9], color=color[9],height=300,width
=400,grid=True,shared_axes=False , title=newtype_count_wother.index
[9],xlabel="Years’,ylabel="Occurrences’).opts(fontsize={"title ’:

10})

i|dg__events_barall=pn.Column(dg_events_barl+dg_events_bar2,

dg_events_bar3+dg_events_bar4 ,dg_events_barb5+dg_events_bar6,
dg_events_bar7+dg_events_bar8,dg_events_bar9+dg events_ barl0)

1/
,
7

i
17

#DANGEROUS GOODS TYPES ANALYSIS

##Here the DGs types analysis needs to be run. The code is the same
reported in the Appendix A, resulting in a DataFrame named
dgs_inclasses’ ##

dg_types_df=pn.widgets.DataFrame(dgs_inclasses ,widths={"index ’:300},
width=600)

i
£
7

Pie Chart
/]
i

years=[’2015",72016°,°2017,72018°,72019 ", 2020 "]

pl=figure (height =200, width=200,title=years[0], toolbar_location=None
, tools="hover", tooltips="Qtypes: Qvalue",x range=(—0.5, 1.0),
background fill color="#00000000 ")

p2=figure (height =200, width=200,title=years[1], toolbar_location=None
, tools="hover"', tooltips="Qtypes: @value',x_range=(—0.5, 1.0),
background_ fill__color="#00000000 ")

p3=figure (height =200, width=200,title=years[2], toolbar_ location=None
, tools="hover", tooltips="Q@types: Qvalue",x range=(—0.5, 1.0),
background fill color="#00000000 ")

pd=figure (height =200, width=200,title=years[3], toolbar_location=None
, tools="hover"', tooltips="Qtypes: @value',x_range=(—0.5, 1.0),
background_ fill__color="#00000000 ")

ps=figure (height =200, width=200,title=years[4], toolbar_ location=None
, tools="hover", tooltips="Qtypes: Q@value",x range=(—0.5, 1.0),
background_ fill__color="#00000000 ")

p6=figure (height =200, width=200,title=years[5], toolbar_location=None
, tools="hover", tooltips="Qtypes: Qvalue',x range=(—0.5, 1.0),
background_ fill_color="#00000000 ")

leg=figure (height =350, width=350, toolbar_location=None, tools="hover
", tooltips="Qtypes: Qvalue",x_ range=(0, 1.0))

rest=[pl,p2,p3,p4,p5,p6,leg]

in range(0,len(years)):

for i
x = dgs_inclasses|[years[i]]

133

152

153

154

155

158
159
160
161
162
163
164
165
166

167

168

169

170 %

171

Implementation of a Python-based dashboard

pie = pd.Series(x).reset_index (name=’value’).rename (columns={"’
index’: ’types’})

pie [’angle’] = pie[’value’]/pie[’value’].sum() * 2xpi
pie[’color’] =[’lightcoral’,’red’, chocolate’, ’sienna’, gold’,”’
khaki’,’yellowgreen’, ’forestgreen’,’lightblue’, ’cornflowerblue’,’
violet '] #colors

rest [i].wedge(x=0, y=1, radius=0.5,start__angle=cumsum(’angle’,
include_zero=True), end_ angle=cumsum(’angle’), line_color="white",
fill_color="color’, source=pie)

rest [6].wedge(x=0, y=1, radius=0.0001,start__angle=cumsum(’angle’,
include_zero=True), end_angle=cumsum(’angle’), line_color="white"
, fill_color=’color’, source=pie, legend_ field="types’)

rest [i].axis.axis_label = None

rest [i].axis.visible = False

rest [i].grid.grid_line_color = None

rest [i].outline line color = None

rest [6].axis.axis_label = None

rest [6].axis.visible = False

rest [6]. grid.grid_line_color = None

rest [6].outline_line_color = None

dg_types_pie= pn.pane.Bokeh(row (column (row(pl,p2,p3) ,row(p4,p5,p6)),
leg))
/'///

Bar Chart about Event Types General

/]

dg_types_barl=dgs_inclasses.sum().hvplot.bar(height=300,width=400,
grid=True, shared_axes=False, title="Trend overtime’,xlabel="Years’

,ylabel="Occurrences’)

/]
r
7

173|#Stacked Bar chart with percentage for years

174 | #

175 color=["lightcoral >, ’red’, ’chocolate ’, ’sienna’,’gold ', "khaki ’,’
yellowgreen’, ' forestgreen’,’lightblue’, ’cornflowerblue’, ’violet ’]
#colors

178

179

180| %

181

182
183

184

dg_types_stackl=((dgs_inclasses/dgs_inclasses.sum()*100).T).hvplot.
barh (color=color ,shared axes=False, height=400,width=900,stacked=

True, grid=True, xlabel="Years’ ,ylabel="Occurrences’)
/1

17
#Stacked Bar chart with percentage for event type
1/

7
) b

color=["lightcoral’, ’red’, chocolate’,’gold’, yellowgreen’,
forestgreen’,’lightblue’,’cornflowerblue’, ’violet '] #colors

data_graph=pd.DataFrame(index=years, columns=new_ classes)
for 1 in new_classes:

134

186
187
188
189
190

191
192
193
194

195

196

197

198
199
200
201

202

203
204
205
206
207

208

Implementation of a Python-based dashboard

if dgs_inclasses.T[i].sum()!=0:
data_graph[i]=dgs_inclasses.T[i]/dgs_inclasses.T[i].sum()*100
else:
data_graph[i]=0

dg_types_stack2=(data_graph/data_graph.sum()=*100).T.hvplot.barh(

stacked=True, color=color ,shared__axes=False)
1

#DANGEROUS GOODS ANALYSIS PAGE

>page 2 of the dashboard

#defining elements of the top section of the DGs page

title_dg=pn.panel (HIML('<p><hl><center >Dangerous Goods</center ></hl
></p>"))

dg_descr=pn.panel (HIML('’ '<p>Following ICAO definition , Dangerous
goods are defined as: ’"articles or substances which are
capable of posing a risk to health, safety, property or the
environment and which are shown in the list of dangerous goods in
the Technical Instructions or which are classified according to
those Instructions’’ .</p>

<p>ICAO provides a classification of DGs in nine classes according to
the hazard or the most predominant hazard they present. However
the categorization is affected by state variations, as a matter of
facts the appropriate national authority is required to define it
.

A summary of the classes can be represented as following.

Class 1: Explosives

Class 2: Gases

Class 3: Flammable liquids

Class 4: Flammable solids; substances liable to spontaneous
combustion</1i >

Class 5: Oxidizing substances and organic peroxides

Class 6: Toxic and infectious substances

Class 7: Radioactive material

Class 8: Corrosive substances

li>Class 9: Miscellaneous dangerous substances and articles ,
including environmentally hazardous substances

The considered order is not a representation of the degree of danger
, which is furthered in the specific document. Besides, for each
class , ICAO defines definitions , sub—divisions , packing
instructions and specific properties. To each considered good, the
number of the class/division is assigned, as shown in the proper
tables.

135

209

210

21

212
213
214
215

216

V)
-~

218
219

220

222
223
224
225
226
227
228
229

230

233
234

Implementation of a Python-based dashboard

Each Dangerous Good is identified by a serial number assigned to the
article or substance under the United Nations classification
system . This number is composed of four digit. There are, however,
two exceptions: firstly , some goods do not have assigned a UN
number so they are identified with a temporary identification
number in the 8000 series; secondly, some goods can be forbidden
on aircraft under any circumstances, so they are labelled as '
FORBIDDEN". < br>

To learn more about the topic, consult <a href="https://www.icao.int/
safety /DangerousGoods/Pages/Doc9284—Technical—Instructions.aspx"
target="_blank">ICAO document.</p>’""))

dg_analysis=pn.panel (HIML(’’’<p>The Dangerous Goods analysis is
divided in two section: Event types analysis and Dangerous Goods
types analysis. The required analysis can be selected below.’’7))

#building the top section of the DGs page

dg_ pagel=pn.Column(title dg ,dg descr,dg_analysis)

#Event types analysis page

title__et__dg=pn.panel (HIML('<p><h3><center >Event types analysis </
center ></h3></p>"))

dg_page2=pn.Column(title et dg ,pn.Row(dg_eventtypes_df),pn.Spacer(
height=20) ,pn.Tabs(('Pie chart’,pn.Column(pn.Spacer (height=15),
dg_events_pie)) ,(’Stacked bar plots’,pn.Column(dg_events_stackl ,pn
.Spacer (height=10),dg_events_stack2)) ,(Trend overtime’,
dg_events_bar) ,(’Bar plots’,dg_events_barall)))

#Dangerous Goods analysis page

title_ty__dg=pn.panel (HIML('<p><h3><center>Dangerous Goods types
analysis </center ></h3></p>"))

dg_ page3=pn.Column(title ty_ dg ,pn.Row(dg_types_df) ,pn.Spacer (height
=20) ,pn.Tabs((’Pie chart’ ,pn.Column(pn.Spacer (height=15),
dg_types_pie)),(’Stacked plots’ ,pn.Column(dg types stackl pn.
Spacer (height=10), dg_types_stack2)),(Trend overtime’,
dg_types_barl)))

#objects for the following selectors
objects2=["", Event Types’, ’Dangerous Goods Types’]| #options
data_df2=[’’,dg_page2,dg_paged] #corresponding page to display

data2="" #initializing a variable, used in the class below
#defining class ’Selectingdata’
class Selectingdata (param.Parameterized):
Analysis_to_run=param.ObjectSelector (default="",0bjects=objects2)
#selector for DGs analyses
@param . depends (" Analysis_to_run’)
def data_view(self): #function to display one analysis or the
other
for obj, df2 in zip(objects2, data_df2):
if obj=self.Analysis_to_run:

136

235
236
237
238
239
240
241
242
243

244

245
246

247

248

249

250
251
252
253
254
255

256

Implementation of a Python-based dashboard

data2=df2
return data?2
rd=Selectingdata (name=’") #class propriety
dg_page=pn.Column(dg_pagel ,rd.param,rd.data_view)

7t
#SAFETY PERFORMANCE INDICATORS——> page 3 of the dashboard

#defining elements of home page

title spi=pn.panel (HIML('<p><hl><center>Safety Performance Indicators
</center ></h1></p>"))

spi__descr=pn.panel (HIML(<p>Safety performance indicators are
characteristic level of safety performance of a state. They are
chosen depending on the safety data available to be analyze and
they need to illustrate the safety national objectives.

SPIs are divided in two categories:

<l1i >Outcome oriented . They derive from the measurement
of events that could be the precursors of "undesired events' (
accident or serious incident) and normally they are measured
considering mandatory reports received in the eE-MOR system. These
indicators have been chosen taking into account types of events
which are particularly relevant in all the domains of civil
aviation: Aerodrome, Air Traffic Control, Airworthiness,
Operations and UAS.</1li>

Process oriented . They derive from the most typical
processes of the Civil Aviation Authority and plan to measure the
effectiveness of ENAC activities trying to ensure the highest
possible level of safety of the aeronautical operations.

The conducted analysis considers only SPI—outcome oriented , as they
are included in the Safety Portal.

To learn more about the topic, consult <a href="https://www.enac.gov.
it /sites/default/files /allegati/2020—Lug/
Safety Performance Indicators_ Edizione 2.pdf" target="_blank">
ENAC document.</p>

<p>(*) Additional graphical visualisations.</p>’’"),width=600)

#bulding the top of the spi page

spi_pagel=pn.Column(title spi ,spi_descr)

29

#defining elements to use in the following analysis
#SPIs to be analyzed

spi_selection=['Runway Excursions’, ’Runway Incursions’, ’'Loss of
Control In—Flight’, TCAS Resolution Advisories’,

"Activations of TAWS’, ’'Ramp events’, ’Collision while taxing to/from
a runway in use’, ’Fire or smoke on aircraft’, ’Laser beam
interferences with flight operations’, 'Bird Wild Strike rate’, ’
Airspace Infringements’, ’Separation Minimum Infringement’, ’ATM
technical failures’, ’'Interferences of APR with manned aircraft

during take—off or landing’]
#short name of each SPI

137

260

261

262
263
264
265
266
267

268

269

270

285

286

287

288
289
290
291

292

293

294

Implementation of a Python-based dashboard

o/ spi_name=["'RE’, ’RI’,’"LOG-1", "TCAS’ , "TAWS’ , 'RAMP’ , 'GCOL’ , '"F—NI’ |, "LASER

’,’BIRD’, 'UPA’ ,’SMI’ ,>ATM_ failure’,” APR__interference ’]
#file name for each SPI
files=[’SPI-O—-01 (RE every 10000 mvt).xlsx’, ’SPI-0-02 (RI APV every
10000 mvt) . xlsx 77,77 77 70 00 00 00 o o o 0 0]
#objects for the selector in class ’
objects3=[" ’|+spi_selection
objects2=[" ’,’general analysis’, ’event types analysis’]

spi__analysis’

class spi_page_building (param.Parameterized): #defining a class
Please_select__the_requested__SPI=param.ObjectSelector (default=" ",
objects=objects3) #selector for the SPIs

Analysis_to_run=param.ObjectSelector (default=" ", objects=
objects2) #selector for

@param . depends ('Please_select__the_requested SPI’,’Analysis_to_run
)
)
def spi_analysis(self): #function for analyzing spi data
#SPI analysis
subject_required=self.Please_select_the requested_ SPI
if subject_required in spi_selection:
subject=subject_required
position=spi_selection.index(subject)
name=spi_name [position |
file_name=files [position]
else:
subject ,name, file_name="empty ', 'empty’, empty’

SPIs divided into categories based on the specific analysis
than we want to run for each one

spi_mvt=['RE’, 'RI’, 'TCAS’ , 'RAMP’ , "GCOL’ , "F—N1’ , "LASER’ ,’
APR_interference’] #rate calculated with movements

spi_flt=['LOCG-1", TAWS’] #rate calculated with flights

spi_occ=["BIRD’,'UPA’ ,”ATM _failure’] #rate calculated with
occupancy duration

spi_dur=[’SMI’] #only occurrences to calculate

External data required in the analyses

years=[’2015",2016",°2017’,72018",72019",°2020]

movements=np.array
([1544643,1624966,1653242,1722254,1655381,708602]) #provided by
ENAC

flights=np.array ([1695821, 1733589, 1785541, 1880252,
1962182, 781672]) #provided by EUROCONTROL through ENAC

duration=np.array ([0,0,58e6,63e6,67e6,27e6]) #provided by
ENAC

138

295

296
297
298

299

300
301
302
303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

326

327

Implementation of a Python-based dashboard

external__data=pd.DataFrame(index=years, data={’movements’:
movements, ’flight ’':flights , duration’:duration})

#extracting the data for each year

data=pd.DataFrame () #new DataFrame

check_length=pd.DataFrame(index=["black cells’ ’length’],
columns=years) #new DataFrame for validation

if namel!=empty :
for i in range(len(years)):
data__excel=pd.read_excel(’SPIs/’+file_ name ,sheet_name
=years[i]) #reading data from excel file sheets
data=data.append(data_excel) #appending all the data
together

#calculating the length of the Excel sheet and the
the number of blank cells per sheet

check length.iloc[0,i]=data_excel.iloc[:,5].isna ().
sum ()

check_length.iloc[1,i]=len(data_excel.iloc[:,5])

#keeping only the column with the required information
about dates

#converting data in date—format and keeping only the
information about the year

data__date=pd.to_datetime (data.iloc [:,5].dropna().
reset__index (drop=True)).dt.year

#For each SPI categories we run a different analysis
if name in spi_mvt:
#resulting DataFrame
data_ tab=pd.DataFrame (columns=[’Movements’, ’Number of
events ', Rate’])
data_tab [’Number of events’]=data_date.value_counts().
sort__index (ascending=True) #counting the total number of
occurrences
data_ tab [’Movements ’|=movements
#rate per 10000 movements, rounding at 2 decimal digits
data_tab ['Rate’]=round (data_tab [Number of events’]/
data__tab [Movements’]*10000,2)

variation_ _name=’everyl00000mvt’ ' #specific name for saving
the data

elif name in spi_ flt:
#resulting DataFrame
data_tab=pd.DataFrame (columns=["'Flights
events’, Rate’])

)

, 'Number of

139

328

329
330

331

332
333

334

335

336

338

339

340

341

342

343

344

345

346

348

362

Implementation of a Python-based dashboard

data_tab['Number of events’]=data_date.value_counts().
sort__index (ascending=True) #counting the total number of
occurrences

data_tab[’ Flights |=flights

#rate per 10000 movements, rounding at 2 decimal digits

data_tab['Rate ’]=round (data_tab ['Number of events’]/
data_tab[Flights ’]*10000,2)

variation_name=’everyl0000flt > #specific name for saving
the data

elif name in spi_dur:

#resulting DataFrame

data_ tab=pd.DataFrame (columns=[’Occupancy duration’,
Number of events’,’Rate’])#counting the total number of
occurrences

data_tab ['Number of events’]=data_date.value_counts().
sort__index (ascending=True)

data_tab[’Occupancy duration’]=duration

#rate per 1MIn minutes, rounding at 2 decimal digits

data_tab[’Rate’]=round(data_tab [Number of events’]/
data_tab [’ Occupancy duration’]*1000000,2)

)

variation__name=’everylMlnmins’ #specific name for saving
the data

elif name in spi_occ:
#resulting DataFrame
data tab=pd.DataFrame(columns=[’Number of events’])
data__tab[’Number of events’]=data_date.value_counts().
sort__index (ascending=True)#counting the total number of
occurrences

variation_name=’" #no addition information in the output
file name is required
elif name!=’empty ’:
print ('Input data do not correspond to study cases’)

#implementing a check to verify the number of events
extracted corresponds to the total events reported
if name!=’empty :
for 1 in range(len(years)):
if data_tab.iloc[i,1]!=check_length.diff().iloc[1,i]:
print (’Missing data!’)
data_to_ print=data_ tab
data_to_print.index=data_tab.index.astype(str)
data_ df=pn.widgets.DataFrame(data_tab , widths={"index ’:40,
"Number of events’:90},height=350)
else: #default case (to not run the event types analysis)

140

Implementation of a Python-based dashboard

363 data=pd.DataFrame (np.zeros ((10, 14)))

364 data.iloc[:,12]=np.nan

365 data_df=""

366

367 #According to the chosen SPI, one of the three graphs below

will be performed.
368 | 7
360|# Movements Trends

270 |
370 | #

371 if name in spi_mvt:
372 line=(external data/1000000).hvplot.line (x="index’ ,y=’
movements’ | color=’green’ ,line_dash= ’'dashed’,title=’Movements per

bl

year ', ylabel="Movements (in Mln)’, xlabel=’Years’ 6 grid=True,
height =400,width=>500)

373 dots=(external data /1000000).hvplot.scatter (x="index’ ,y=’
movements’ ,height=400,width=500).opts(color="green’, size=12,
marker="0")

374 descr line=linexdots

375 | #F

s76|# Flights Trends
/]

377 | Ff

378 elif name in spi_ flt:

379 line=(external__data/1000000).hvplot.line (x="index’ ,y=’
flights’, color="green’ line_ dash= ’dashed’,title="Flights per
year ', ylabel="Flights (in Mln)’, xlabel="Years’ ,grid=
True, height=400,width=500)

380 dots=(external data /1000000).hvplot.scatter (x="index’ ,y=

381 "flights) .opts(color="green’, size=12, marker="0")

382 descr line=linexdots

aga | £
383 |7

ssa|# Occupancy Duration
/]

385 | #

386 elif name in spi_dur:

387 line=(external__data/1000000).hvplot.line (x="index’ ,y=’
duration’, color="green’ ,line_dash= ’dashed’,title="Occupancy
Duration (min)’, ylabel=’Occupancy Duration (in Mln of min)’,
xlabel="Years’,grid=True, height =400,width=500)

388 dots=(external data/1000000).hvplot.scatter (x="index’ ,y="
duration’).opts(color="green’, size=12, marker="0")

389 descr line=linexdots

390

391 elif name=’empty’: #default case

392 descr_line=""

303 | #

s0a|#Occurrences per year and rate per year
e | L
395 | FF

396 if name in spi_ mvt4+spi_ flt4+spi_dur: #plotting number of
occurrences and rate

397

141

398

399

400

401

402

403
404

405

406

407

408

409
410
411
112
413
414
415
416

417

419

Implementation of a Python-based dashboard

occ__bar=data_tab.hvplot.bar(x="index’ ,y="Number of events
" height =400,width=500,color="lightcoral ', title="Number of events
per year (’4mnamet’)’, xlabel=’Years’ ,ylabel="Occurrences’)

rate__bar=data_tab.hvplot.bar(x="index’,y="Rate’ height
=400,width=500,color="red’,title="Rate per year (’4name+’)’,
xlabel="Years’ ,ylabel="Rate’)

line2=data_tab.hvplot.line (x="index’,y="Rate’, color="red
" line__dash= ’dashed’,title="Rate per year (’+namet+’)’, ylabel=’
Rate’, xlabel=’Years’,h grid=True, height=400)

dots2=data_tab.hvplot.scatter (x="index’ ,y="Rate’).opts(
color="red’, size=12, marker="0")

rate line=line2x*xdots2

rate_tab=pn.Tabs((’Bar chart’,rate_bar) ,(’Line chart (%)’
,rate_line))

elif name in spi_occ: #plotting only the total number of
occurrences
occ__bar=data_tab.hvplot.bar(x="index ’,y="Number of events
", height=400,width=500,color="lightcoral ", title="Number of events

(’4name+’)’, xlabel="Years’,ylabel="Occurrences’)

rate__bar=""

rate line=""

rate tab=""

else: #default case

occ__bar=""

rate _bar=""

rate line=""

rate tab=""

spi_title selec=HIML('<p><h2><center >{spi}</center ></h2></p>"’
.format (spi=self.Please_select_the_requested_SPI))

spi__page2=pn.Column (spi_title_selec ,pn.Row(pn.Column(pn.
Spacer (height=18) ,data_df) ,descr_line) ,pn.Row(pn.Column(pn. Spacer (
height=22) ,occ_bar) ,rate_tab))

if data.iloc[:,12].notnull().values.any(): #for now it means
only RE
data__events=pd.DataFrame({ date’: pd.to_datetime(data.
iloc[:,5]), ’event types’: data.iloc[:,12]}).dropna()
data_events[’date’|=data_events[’date’].dt.year

event_types=[’Runway Incursion by an Aircraft’, Runway
Incursion by a Person’,’Runway Incursion by a Vehicle/Equipment’]

events=pd.DataFrame (columns=[’ Aircraft’, ’rate Aircraft

x10000 mvts’,’Person’, rate Person x10000 mvts’,’ Vehicle/Equipment
’,’rate Vehicle/Equipment x10000 mvts’])

142

Implementation of a Python-based dashboard

128
429 for i in range(len(event_types)):

130 events.iloc [:,i+i]=data_events[data_events[event
types’']==event_types[i]][date’].value_counts().sort_index(
ascending=True)

431 events.iloc [:,(i+i)+1]=round(events.iloc[:,i]/
movements*10000,3)

432
433 events__to_ print=events

134 events_to_ print.index=data_tab.index.astype(str)

435 events_ df=pn.widgets.DataFrame(events_to_print, widths={
Aircraft 7:50, 'rate Aircraft x10000 mvts’:150, 'Person’:50, 'rate
Person x10000 mvts’:150, Vehicle /Equipment ’:130, 'rate Vehicle/
Equipment x10000 mvts’:220},width=750)

/]
f

436 | 7
137|#Bar charts
138 | 7

439 color=["lightcoral’,’red’, chocolate’, ’sienna’, ’lightblue
", ’cornflowerblue’] #colors

440
141 et__barl=events.hvplot.bar(x="index’ ,y=events.columns|[0],
height=250,width=350,color=color [0], title=events.columns[0]+ ('+
name+’)’, xlabel="Years’, ylabel="Occurrences’).opts(toolbar="right
" fontsize={"title’: 10})

442 et__bar2=events.hvplot.bar(x="index’ ,y=events.columns[1],
height=250,width=350,color=color [1], title=events.columns[1]+ " ('+
name+’)’, xlabel="Years’,ylabel="Rate’).opts(toolbar="right’,
fontsize={"title ’: 10})

443 et__bar3=events.hvplot.bar(x="index’ ,y=events.columns[2],
height =250,width=350,color=color [2] , title=events.columns[2]+ ('+
name+’)’ , xlabel="Years’, ,ylabel="Occurrences’).opts(toolbar="right
",fontsize={"title ’: 10})

144 et__bard=events.hvplot.bar(x="index’ ,y=events.columns[3],
height=250,width=350,color=color [3], title=events.columns[3]+ ('+
name+’)’ xlabel="Years’,ylabel="Rate’).opts(toolbar="right ’,
fontsize={"title’: 10})

145 et__barb=events.hvplot.bar(x="index’ ,y=events.columns[4],
height=250,width=350,color=color [4], title=events.columns[4]+ ('+
name+’)’, xlabel="Years’,ylabel="Occurrences’).opts(toolbar="right
",fontsize={"title’: 10})

446 et__bar6=events.hvplot.bar(x="index’ ,y=events.columns[5],
height=250,width=350,color=color [5], title=events.columns[5]+ " ('+
name+’)’, xlabel="Years’,ylabel="Rate’).opts(toolbar="right’,
fontsize={"title ’: 10})

447
448 air=et barl+et bar2
449 pers=et_ bar3+et_ bar4
150 equip=et_ barb+et_bar6

143

Implementation of a Python-based dashboard

451 et__bars=pn.Column (pn. panel (HIML('<p><h3><center >Runway
Incursion by an Aircraft </center></h3><p>’)) ,air ,pn.panel (HIML('<p
><h3><center >Runway Incursion by a Person</center ></h3><p>’)), pers
,pn. panel (HIML('<p><h3><center >Runway Incursion by a Vehicle/
Equipment</center ></h3><p>’)) ,equip)

S| 4
452| 7

13| #Event types graphs all together
154|#Bar charts stacked > not with percentage because these events
types are just a few of the total

A

455 | 7

456 only__events=[’Aircraft’, Person’,’ Vehicle /Equipment ’]

457 color=["red’, forestgreen’, gold’, lightblue’,’
cornflowerblue ’]

458

459 et__barstack=events.hvplot.barh(x="index’ ,y=only_ events,

stacked=True,shared_axes=False, legend=’bottom_ right’, width=700,
color=color , title="Event Types total occurrences per year (’+namet+

)7, xlabel="Years’,ylabel="Occurrences’)
160 | #
11| #Line plot of rate trends

/]
462| %

463 only_rates=['rate Aircraft x10000 mvts’, rate Person
x10000 mvts’, ’rate Vehicle/Equipment x10000 mvts’]

464 color=["red’,’sienna’,’cornflowerblue]

465

466 line3=events.hvplot.line (x="index’ ,y=only_rates,
shared_axes=False ,color=color ,line__dash= ’dashed’,title="Event

types rates per year (’4mamet+’)’, ylabel="Rate’, xlabel=’Years’,
grid=True, width=800, height=400)

467 dots3=events.hvplot.scatter (x="index’ ,y=only_rates ,
shared axes=False, color=color, marker="0",6size=20)
468 et _rates line=line3xdots3

470 | #

ar1|#Bar charts and line plots

/]

a72|#

473 color=["lightcoral ’,’red’, chocolate’, ’sienna’, ’lightblue
’,’cornflowerblue ’] #colors

474

475 lined=events.hvplot.line (x="index ’ ,y=only_rates[0], color
=color [1],line dash= ’dashed’,title=only rates[0], ylabel="Rate’,
xlabel="Years’,grid=True, height =250, width=350).opts(fontsize={"
title ': 10})

476 dotsd=events.hvplot.scatter (x="index ’ ,y=only_rates [0]) .
opts(color=color [1], size=12, marker="0")

a77 et_line2=(line4xdots4).opts(toolbar="below ")

478

144

479

480

481
482

483

485
486
487
488
489

490

491
492
493

494

495

496

497

498

499

500

501

502

503

Implementation of a Python-based dashboard

lineb=events.hvplot.line (x="index’ ,y=only_rates[1], color
=color [3],line_dash= ’dashed’,title=only_rates[1], ylabel="Rate’,
xlabel="Years’,grid=True, height=250,width=350).opts (fontsize={"
title ’: 10})

dotsb=events.hvplot.scatter (x="index ’ ,y=only_rates[1]) .
opts(color=color [5], size=12, marker="0")

et_lined=(line5xdots5).opts(toolbar="below’)

line6=events.hvplot.line (x="index’ ,y=only_rates[2], color
=color [5],line_dash= ’dashed’,title=only_rates[2], ylabel="Rate’,
xlabel="Years’ ,grid=True, height=250,width=350).opts (fontsize={"
title ’: 10})

dots6=events.hvplot.scatter (x="index’ ,y=only rates[2]).
opts(color=color [5], size=12, marker="0")

et_line6=(line6xdots6).opts(toolbar="bhelow’)

airl=et barl+et line?2

persl=et_bar3+et_line4

equipl=et_barb+et_lineb6

et__barandline=pn.Column (pn. panel (HIML(<p><h3><center >
Runway Incursion by an Aircraft </center></h3><p>’)) ,airl ,pn.panel(
HIML('<p><h3><center >Runway Incursion by a Person</center ></h3><p>
’)) ,persl ,pn.panel (HIML(<p><h3><center >Runway Incursion by a
Vehicle /Equipment</center ></h3><p>")) ,equipl)

#defining elements of spi page to lay the plots out
et_tab = pn.Tabs((’Only Bar charts’,et_bars),(Bar and
line charts (*)’,et_barandline) ,('More (%)’ ,pn.Column(et_barstack,
et_rates_line)))
title__et=pn.panel (HIML('<p><h3>Event types</h3></p>"))
intro__et=pn.panel (HIML(’’'<p>The Event types analysis
aims at counting how many time a specific event has ocurred. Two
values are then calculated: the total number of occurrences and
the rate. The rate follows the formula indicated above.

In this case, we take into account only
three categories of event types:
Runway Incursions by an Aircraft

Runway Incursions by an Person
Runway Incursions by an Vehicle/
Equipment</1li ></p>’""))
#building the section of the spi page on plots of the
general analysis
spi_etpage=pn.Column(title et ,intro_et,events_df,pn.
Spacer (height=15) ,et_tab)

elif name!=empty’: #defining the section of the spi page on
plots of the event types analysis

145

505

506
507
508
509

510

Implementation of a Python-based dashboard

events_df ,et_bars,et_barandline ,et_barstack ,et_ rates_line
=’None’, "None’ , "None’ , "None’ , "None’
no_events__data=’The data—set does not contain Event types
spi_etpage=pn.Column(no_events_data)
else:
spi_etpage=’" #empty string to display when ’default’

if self.Analysis_to_run==’'general analysis’: #selecting which
page to display: general analysis or event types analysis
page=spi_ page2
elif self.Analysis_to_run=’event types analysis
page=spi_ etpage
else:
page=’" #empty string to display when ’'default’

’ .

return page
rd5=spi_page_building (name="") #class propriety

#building the page, depending on the selections
spi__page=pn.Column (spi_pagel ,rd5.param, rd5.spi_analysis)

#DASHBOARD
pn.extension (sizing_ mode="stretch_width") #sizing property
pages = {

"Home": home_ page,

"Safety Performance Indicators": spi_page,

"Dangerous Goods’: dg_page,
"About ’:about_page,} #dict on the pages names and variables

def show(page): #function to show the pages
return pages [page]

starting_page = pn.state.session_args.get("page', [b"Home"]) [0].
decode () #default starting page
#defining page selector
page = pn.widgets.RadioBoxGroup (
value=starting_page,
options=list (pages.keys()),
name="Page"
sizing_ mode=""fixed ",
button_type="success")

ishow = pn.bind (show, page=page) #defining parameters for the
dashboard template

146

Implementation of a Python-based dashboard

DEFAULT PARAMS = {'"accent__base_color": '#0E7397’, "header_background"
"HOET397 7}

#building the dashboard through the template
dash=pn.template.FastListTemplate (
title="Interactive Dashboard on Aviation Safety",
sidebar=[page], #sidebar
main=[ishow], #main page

x*DEFAULT PARAMS) . show ()

147

148

Bibliography

ICAO. Safety Managament Manual - Doc. 9859. 4th. 2018 (cit. on pp. 1-5,
25, 28).

ICAO Website. URL: https://www.icao.int/Pages/default.aspx (cit. on
p. 5).

FEASA Website. URL: https://www.easa.europa.eu/the-agency/the-
agency (cit. on p. 6).

EASA Safety Programms. URL: https://www.easa.europa.eu/annual -
programmes-reports (cit. on p. 6).

EASA. European Plan for Aviation Safety (EPAS 2020-2024). 2009 (cit. on
p. 6).

ENAC Website. URL: https://www.enac.gov.it/ (cit. on p. 7).

ENAC. State Plan for Aviation Safety 2021-2025. 2021 (cit. on p. 8).

Lucas Fernandes, Giorgio Guglieri, and Beatrice Conti. «A comprehensive
analysis of Aviation Safety Reports in Europe». Politecnico di Torino, 2021
(cit. on p. 8).

ENAC' Safety Portal - Italy. URL: https://sites.google.com/enac.gov.
it/enacsafetyreport/introduction?authuser=0 (cit. on pp. 9, 22, 30).
Safety Performance Indicators. Edizione 2 (cit. on pp. 10, 25, 26).

ICAO Website - SAFETY. URL: https://www.icao.int/safety/airnavig
ation/ops/cabinsafety/pages/dangerous-goods.aspx (cit. on p. 15).

ICAO. Technical Instructions for the Safe Transport of Dangerous Goods by
Air. 2019-2020 (cit. on pp. 15-17, 47).

Austrian Safety Reviews. URL: https://www.austrocontrol.at/luftfahr
tbehoerde/safety/sicherheitsbericht (cit. on p. 19).

Belgium Safety Review 2018. URL: https://mobilit.belgium.be/sites/
default/files/DGLV/belgian plan_for aviation_ safety_update _
2018_en.pdf (cit. on p. 20).

149

https://www.icao.int/Pages/default.aspx
https://www.easa.europa.eu/the-agency/the-agency
https://www.easa.europa.eu/the-agency/the-agency
https://www.easa.europa.eu/annual-programmes-reports
https://www.easa.europa.eu/annual-programmes-reports
https://www.enac.gov.it/
https://sites.google.com/enac.gov.it/enacsafetyreport/introduction?authuser=0
https://sites.google.com/enac.gov.it/enacsafetyreport/introduction?authuser=0
https://www.icao.int/safety/airnavigation/ops/cabinsafety/pages/dangerous-goods.aspx
https://www.icao.int/safety/airnavigation/ops/cabinsafety/pages/dangerous-goods.aspx
https://www.austrocontrol.at/luftfahrtbehoerde/safety/sicherheitsbericht
https://www.austrocontrol.at/luftfahrtbehoerde/safety/sicherheitsbericht
https://mobilit.belgium.be/sites/default/files/DGLV/belgian_plan_for_aviation_safety_update_2018_en.pdf
https://mobilit.belgium.be/sites/default/files/DGLV/belgian_plan_for_aviation_safety_update_2018_en.pdf
https://mobilit.belgium.be/sites/default/files/DGLV/belgian_plan_for_aviation_safety_update_2018_en.pdf

BIBLIOGRAPHY

[20]
[21]
[22]
23]

[24]

[25]

[26]

[27]

[28]

Belgium Safety Review 2010. URL: https://mobilit.belgium.be/sites/
default/files/DGLV/belgian_plan_for_aviation_safety_bpas_2020-
2024 _update_2020_en.pdf (cit. on p. 20).

German Safety Reviews. URL: https://www.lba.de/DE/Presse/Publikati
onen/_Funktion/Jahresberichte_node.html (cit. on p. 20).

Irish Safety Reviews. URL: https://www.iaa.ie/publications?taxonomy=
categories&propertyName=category&taxon=y2fpublication-categorie
s/h2fcorporate-publications’,2fperformance (cit. on p. 20).

Irish Safety Review 2017. URL: https://www . iaa.ie/docs/default-
source/publications/corporate-publications/performance/13161-
iaa-safety-report-2017-v07-(002) .pdf (cit. on p. 20).

Irish Safety Reviews 2018. URL: https://www.iaa.ie/docs/default-
source/publications/corporate-publications/performance/annual -
safety-performance-review-2018.pdf ?sfvrsn=c7b00£3_0 (cit. on p. 20).

Italian Safety Review 2020. URL: https://drive.google.com/file/d/
1£3csETwrM6QHRW3rGo5Zx7ulqrtNo-ql/view (cit. on p. 22).

Italian Safety Review 2019. URL: https://drive.google.com/file/d/
1flc_iywltJSHcIhnv0z8IVMheDpbt__F/view (cit. on p. 22).

Italian Safety Review 2016. URL: https://drive.google.com/file/d/
lezuhihW1zhHfXAMBal8imTADoQIFwkfq/view (cit. on p. 22).

Dutch Safety Portal. URL: https : //dashboards . ilt . rijkscloud .nl/
luchtvaartvoorvallen/ (cit. on p. 22).

Norwegian Safety REport 2019. URL: https://luftfartstilsynet.no/
globalassets/dokumenter/flysikkerhet/norske-flysikkerhetsresult
ater/norske-flysikkerhetsresultater-2019.pdf (cit. on p. 23).

Polish Safety Review 2017. URL: https://ulc.gov.pl/_download/bezp
ieczenstow_lotow/analizy/Sprawozdanie o_stanie_bezpieczenstwa _
lotnictwa_cywilnego_za_rok_2017_v1.pdf (cit. on p. 23).

Polish Safety Review 2018. URL: https://ulc.gov.pl/_download/bezp
ieczenstow_lotow/kultura-promocja-bezpieczenstwa/Sprawozdanie _
o_stanie_ bezpieczenstwa_lotnictwa_cywilnego_za_rok_2018_vl.pdf
(cit. on p. 23).

Spanish Safety Review 2015. URL: https://www.seguridadaerea.gob.es/
sites/default/files/memoria_2016.pdf (cit. on p. 23).

Spanish Safety Review 2016. URL: https://www.seguridadaerea.gob.es/
sites/default/files/memoria_2015_sns_y_ceanita.pdf (cit. on p. 23).

150

https://mobilit.belgium.be/sites/default/files/DGLV/belgian_plan_for_aviation_safety_bpas_2020-2024_update_2020_en.pdf
https://mobilit.belgium.be/sites/default/files/DGLV/belgian_plan_for_aviation_safety_bpas_2020-2024_update_2020_en.pdf
https://mobilit.belgium.be/sites/default/files/DGLV/belgian_plan_for_aviation_safety_bpas_2020-2024_update_2020_en.pdf
https://www.lba.de/DE/Presse/Publikationen/_Funktion/Jahresberichte_node.html
https://www.lba.de/DE/Presse/Publikationen/_Funktion/Jahresberichte_node.html
https://www.iaa.ie/publications?taxonomy=categories&propertyName=category&taxon=%2fpublication-categories%2fcorporate-publications%2fperformance
https://www.iaa.ie/publications?taxonomy=categories&propertyName=category&taxon=%2fpublication-categories%2fcorporate-publications%2fperformance
https://www.iaa.ie/publications?taxonomy=categories&propertyName=category&taxon=%2fpublication-categories%2fcorporate-publications%2fperformance
https://www.iaa.ie/docs/default-source/publications/corporate-publications/performance/13161-iaa-safety-report-2017-v07-(002).pdf
https://www.iaa.ie/docs/default-source/publications/corporate-publications/performance/13161-iaa-safety-report-2017-v07-(002).pdf
https://www.iaa.ie/docs/default-source/publications/corporate-publications/performance/13161-iaa-safety-report-2017-v07-(002).pdf
https://www.iaa.ie/docs/default-source/publications/corporate-publications/performance/annual-safety-performance-review-2018.pdf?sfvrsn=c7b00f3_0
https://www.iaa.ie/docs/default-source/publications/corporate-publications/performance/annual-safety-performance-review-2018.pdf?sfvrsn=c7b00f3_0
https://www.iaa.ie/docs/default-source/publications/corporate-publications/performance/annual-safety-performance-review-2018.pdf?sfvrsn=c7b00f3_0
https://drive.google.com/file/d/1f3csETwrM6QHRW3rGo5Zx7ulqrtNo-qI/view
https://drive.google.com/file/d/1f3csETwrM6QHRW3rGo5Zx7ulqrtNo-qI/view
https://drive.google.com/file/d/1f1c_iywltJSHcIhnv0z8IVMheDpbt__F/view
https://drive.google.com/file/d/1f1c_iywltJSHcIhnv0z8IVMheDpbt__F/view
https://drive.google.com/file/d/1ezuhihW1zhHfXAMBaL8imTADoQIFwkfq/view
https://drive.google.com/file/d/1ezuhihW1zhHfXAMBaL8imTADoQIFwkfq/view
https://dashboards.ilt.rijkscloud.nl/luchtvaartvoorvallen/
https://dashboards.ilt.rijkscloud.nl/luchtvaartvoorvallen/
https://luftfartstilsynet.no/globalassets/dokumenter/flysikkerhet/norske-flysikkerhetsresultater/norske-flysikkerhetsresultater-2019.pdf
https://luftfartstilsynet.no/globalassets/dokumenter/flysikkerhet/norske-flysikkerhetsresultater/norske-flysikkerhetsresultater-2019.pdf
https://luftfartstilsynet.no/globalassets/dokumenter/flysikkerhet/norske-flysikkerhetsresultater/norske-flysikkerhetsresultater-2019.pdf
https://ulc.gov.pl/_download/bezpieczenstow_lotow/analizy/Sprawozdanie_o_stanie_bezpieczenstwa_lotnictwa_cywilnego_za_rok_2017_v1.pdf
https://ulc.gov.pl/_download/bezpieczenstow_lotow/analizy/Sprawozdanie_o_stanie_bezpieczenstwa_lotnictwa_cywilnego_za_rok_2017_v1.pdf
https://ulc.gov.pl/_download/bezpieczenstow_lotow/analizy/Sprawozdanie_o_stanie_bezpieczenstwa_lotnictwa_cywilnego_za_rok_2017_v1.pdf
https://ulc.gov.pl/_download/bezpieczenstow_lotow/kultura-promocja-bezpieczenstwa/Sprawozdanie_o_stanie_bezpieczenstwa_lotnictwa_cywilnego_za_rok_2018_v1.pdf
https://ulc.gov.pl/_download/bezpieczenstow_lotow/kultura-promocja-bezpieczenstwa/Sprawozdanie_o_stanie_bezpieczenstwa_lotnictwa_cywilnego_za_rok_2018_v1.pdf
https://ulc.gov.pl/_download/bezpieczenstow_lotow/kultura-promocja-bezpieczenstwa/Sprawozdanie_o_stanie_bezpieczenstwa_lotnictwa_cywilnego_za_rok_2018_v1.pdf
https://www.seguridadaerea.gob.es/sites/default/files/memoria_2016.pdf
https://www.seguridadaerea.gob.es/sites/default/files/memoria_2016.pdf
https://www.seguridadaerea.gob.es/sites/default/files/memoria_2015_sns_y_ceanita.pdf
https://www.seguridadaerea.gob.es/sites/default/files/memoria_2015_sns_y_ceanita.pdf

BIBLIOGRAPHY

)
e e =)

e~
—_

o
)

_—rE T T w
W

e~
Ot

=
D

=
\]

=~
o

=

L X N

—_— o o o —

Spanish Safety Review 2017. URL: https://www.seguridadaerea.gob.es/
sites/default/files/memoria_2017.pdf (cit. on p. 23).

ENAC occurrences reporting website. URL: https://reporting.enac.gov.
it/eemor-4103/index.php (cit. on p. 29).

ENAC. VADEMECUM - guida pratica all’utilizzo del sistema eE-MOR,
R376/2014, R2015/1018. Settembre 2019 (cit. on p. 29).

Ing. Rosario Concilio. «Il nuovo che avanza - Il sistema eE-MOR ed il Rego-
lamento 376/2014». In: Rome, July 2015 (cit. on p. 29).

Joint Research Center Website. URL: https://ec.europa.eu/jrc/en/
about/jrc-in-brief (cit. on p. 29).

ADREP Taxonomy. URL: https://www.icao.int/safety/airnavigation/
aig/pages/adrep-taxonomies.aspx (cit. on p. 29).

ENAC. LA SEGNALAZIONE OBBLIGATORIA DEGLI EVENTI AERO-
NAUTICI (MANDATORY OCCURRENCE REPORTING) - GEN - 01E.
2021 (cit. on p. 29).

ENAC. REGOLAMENTO - TRASPORTO AEREO DELLE MERCI PERI-
COLOSE. 2nd. 2019 (cit. on p. 30).

ICAO. Reference Manual on the ICAO Statistics Programme - Doc. 9060/5.
5th. 2013 (cit. on p. 30).

Python Website. URL: https://www.python.org/doc/essays/blurb/ (cit.
on p. 31).

URL: https://en.wikipedia.org/wiki/Microsoft_Excel (cit. on p. 32).
Numpy Website. URL: https://numpy.org/ (cit. on p. 32).

Pandas Website. URL: https://pandas.pydata.org/ (cit. on p. 32).

URL: https://matplotlib.org/ (cit. on p. 32).

URL: https://seaborn.pydata.org/ (cit. on p. 32).

URL: https://pandas.pydata.org/docs/reference/api/pandas.DataFr
ame.html (cit. on p. 35).

HoloViz Website. URL: https://holoviz.org/ (cit. on p. 123).
huplot Website. URL: https://hvplot.holoviz.org/ (cit. on p. 123).
Panel Website. URL: ttps://panel.holoviz.org/ (cit. on p. 123).
Param Website. URL: https://param.holoviz.org/ (cit. on p. 123).

Bokeh Website. URL: https://docs.bokeh.org/en/2.4.1/index . html#
(cit. on p. 125).

151

https://www.seguridadaerea.gob.es/sites/default/files/memoria_2017.pdf
https://www.seguridadaerea.gob.es/sites/default/files/memoria_2017.pdf
https://reporting.enac.gov.it/eemor-4103/index.php
https://reporting.enac.gov.it/eemor-4103/index.php
https://ec.europa.eu/jrc/en/about/jrc-in-brief
https://ec.europa.eu/jrc/en/about/jrc-in-brief
https://www.icao.int/safety/airnavigation/aig/pages/adrep-taxonomies.aspx
https://www.icao.int/safety/airnavigation/aig/pages/adrep-taxonomies.aspx
https://www.python.org/doc/essays/blurb/
https://en.wikipedia.org/wiki/Microsoft_Excel
https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://holoviz.org/
https://hvplot.holoviz.org/
ttps://panel.holoviz.org/
https://param.holoviz.org/
https://docs.bokeh.org/en/2.4.1/index.html#

	List of Tables
	List of Figures
	Acronyms
	Introduction
	General view on Safety
	Organisations and safety programs

	Safety at Italian level
	Safety Report Portal

	Topics of analysis
	Dangerous Goods
	General definition
	Classification and coding
	European state of art

	Safety Performance Indicators
	ENAC reporting system

	Python-based Pipeline: Dangerous Goods
	Python
	Input data
	Excel Files
	Reading files

	Event types
	Grouping
	Checks and validation

	Dangerous Goods types
	Gathering all data
	ICAO codes
	Grouping
	Checks and validation

	Python-based Pipeline: Safety Performance Indicators
	Input data
	Reading Excel files

	General template
	Event types template
	Checks and validation

	Output graphics
	Reproducing Safety Portal results
	Dangerous Goods
	Safety Performance Indicators

	Finding new visualisation options
	Dangerous Goods
	Safety Performance Indicators

	Conclusions
	Python-based Pipeline: DGs template
	Python-based Pipeline: SPI template
	Implementation of a Python-based dashboard
	Plotting Adaptation
	Designing the layout

	Bibliography

