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ABSTRACT 

BRIDGE DAMAGE DETECTION UNDER TRAFFIC LOADING AND 
ENVIRONMENTAL VARIABILITY USING MACHINE LEARNING  

    
MARCH 2022 

 
SARDORBEK ABBOS ÖĞLI NIYOZOV, B. Sc, POLITECNICO DI TORINO 

 
M. Sc., POLITECNICO DI TORINO 

 
Supervised by: Prof. DOMANESCHI MARCO and Prof. CASAS RIUS JUAN RAMON 

Bridges are vital components of the civil infrastructure. They must continue to operate 
safely and reliably.  And the traditional methods of assessing the health of structures are 
based on the idea that a change in the structure's dynamic response might indicate possible 
structural damage. However, in the case of bridges, operational (traffic load effects) and 
environmental (temperature and humidity) variability can both contribute to these changes. 
Indeed, this makes damage detection more difficult since the bridge might remain safe 
while still experiencing changes in the dynamic response if the impacts of traffic and the 
environment are not appropriately removed from the dynamic response. As a result, a false 
positive alert would be set off. 
 
This thesis proposes and tests a methodology for detecting and localizing damage in 
bridges under traffic loads and environmental variability. Due to the difficulty in obtaining 
real data on undamaged and later damaged bridges that are simultaneously influenced by 
traffic and temperature changes, the proposed method is validated using an original 
numerical benchmark bridge developed as part of COST Action TU1402 on Quantifying 
the Value of Information, and it is updated to better simulate a real bridge. A two-span 
reinforced concrete girder bridge with different damage scenarios serves as the benchmark 
model. The vertical acceleration response is derived from a time-history study of the 
numerical bridge subjected to moving load, which is performed using open-source Python 
code accessible on the GitHub platform. 
 
The state of the bridge is determined by evaluating the accelerations recorded by sensors 
at different ambient temperatures. Due to the non-transient nature of recorded data, the Fast 
Fourier Transform (FFT) is not applicable. Instead, one of the more modern approaches, 
such as Vibrational Mode Decomposition (VMD) is used to decompose the signal into 
Intrinsic Mode Functions (IMF). The Hilbert Transform is then used to extract 
instantaneous frequencies, which in this case represent the damage-sensitive features. 
 
Furthermore, the environmental effects were removed from damage-sensitive features 
using Principal Component Analysis (PCA). It is a method for reducing the dimensionality 
of datasets while preserving interpretability and avoiding data loss. 
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Finally, the damage is detected and localized using clustering technique (K-means Machine 
Learning (ML) algorithm). Using symbolic objects to reduce the amount of data a 
technique of moving the time window, it is applied to damage-sensitive features. 
 
The suggested approach is efficient and accurate in identifying and finding damage under 
transient vibrational loads in different temperature conditions, according to the results. The 
accuracy of these damage detection technologies supports their use in structural health 
monitoring of more complex and real structures. 
 
Keywords: Structural Health Monitoring (SHM), Bridge damage identification, 
Numerical benchmark, Hilbert Huang Transform (HHT), Vibrational Mode 
Decomposition (VMD), Principal Component Analysis (PCA), Operational and 
Environmental Variability (OEV), Clustering algorithm, Machine Learning (ML), 
Unsupervised Learning, K-means. 
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1. INTRODUCTION 

1.1 Introduction 

Civil infrastructures play an important role in countries social-economic life. Development 
of the cities, well-being of businesses and the safety of human lives depends on the state 
of the heath of the civil infrastructures. For example, bridges serve millions of people on 
the span on their lifetime. As a result, given the importance of bridges in our society, their 
condition evaluation is an important topic to research. To assure the building of safer and 
more lasting bridges, a well-designed bridge management system is necessary, with the 
understanding that their health condition is altered from its design as soon as they are put 
into operation. 
 
The structural performance of a bridge is dictated by several factors: on the age of 
construction, level of deterioration (involving fatigue, structural deficiencies, and 
corrosion) and in-service loading. The collapse of a bridges can be result of natural or 
manmade hazards, i.e., in earthquakes, mud slides, floods, and accidents, and some other 
construction site related errors, such as early removal of support structures [1]. However, 
most of the bridges fail while in-service, and during their normal operational settings.  
 

 
Figure 1.1 Bridge failures, from left to right: Pittsburgh Bridge [2], and Nanfang'ao Bridge [3] 

 
Figure 1.1 shows an example of the brigde failures. On January 28, 2022, Pittsburgh 
Bridge collapsed hours before President Biden infrastructure visit to the city. 10 people 
were injured, 7 vehicles were stranded inlcuding a Port Authority bus, on the wrecked 
structure that spans a ravine in Frick Park [4]. Fortunately, there were no fatalities. The 52-
year-old steel rigid frame bridge was consistently determined to be in poor condition during 
inspections from 2011 to 2017 and was repaired with estimated costing $1.5 million. 
However, according to a state-wide study, the bridge was last examined in September 2021 
and was still found in a bad condition [4].  
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Furthermore, Nanfang'ao Bridge is an example of inspection and maintenance failures. The 
20-year-old single-arch steel bridge in Taiwan, collapsed in October 2019, injuring 12 
people, and killing six. Even though the reason for the failure is yet unknown, Sung Yuchi, 
dean of the Taipei Technology College of Engineering, believes corrosion in the bridge's 
suspension cables might be a cause. According to the New Civil Engineer magazine [5], 
Simon Bourne, proactive maintenance could have been essential to prevent cables from 
corrosion, wear, and strain. Such maintenance is preferable to reactive maintenance since 
it emphasizes preserving rather than merely repairing the entire bridge and its components, 
extending the bridge's lifespan. According to the Taiwan International Ports Corporation 
(TIPC) in charge of bridge maintenance, the standard yearly inspection went well, and the 
cables cords were examined as documented in the 2016 report. The bridge, however, 
collapsed one year before the next inspection, which was slated for 2020, raising doubts on 
the efficiency of its repair work. As a result, the Taiwanese government has calculated that 
the cost of replacing the bridge will be around $17 million. 
 

 
Figure 1.2 Morandi Genoa Bridge failure 

 
Finally, Morandi Genoa Bridge is an example of extreme catastrophic event. (Figure 1.2) 
On August 14, 2018, the fall of a large section of the 51-year-old bridge killed 43 people. 
The bridge was one of the busiest highways in Europe as a part of European route E80 
linking Italian A10 highway to French A8 motorway.  
 
In 1979, Riccardo Morandi, the structural designer of the bridge, recommended some 
measures to protect the bridge against pollution and salty sea air, as it was located 2.4 km 
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away from the Mediterranean Sea. However, the measures were neglected as a 
maintenance of the bridge was not a high priority at that time. Consequently, by 1992 the 
prestressed concrete cables were highly corroded.  
 
Just four months before the collapse, a management company Autostrade per l’Italia finally 

decided to react and launched a public offer to repair the bridge, but it was already too late. 
This incident known worldwide caused Genoa companies €422 million in direct and 
indirect damages immediately after the collapse [6]. Morgese et al. [1] performed a post-
collapse analysis of the Morandi Bridge and suggested that a real-time structural health 
monitoring would have provided data for maintenance and warned of impending failure.  
 
In view of these diverse examples of the bridge failures, one can see that traffic demand 
has been constantly increasing in most bridges, resulting in higher loads, under harsher 
environments. These conditions, along with the inadequate government funding for 
maintenance, have accelerated deterioration processes of great part of bridges, in particular, 
older bridges. Moreover, it has been shown that a bridge failure has a tremendous impact 
on the economic, environmental, and social sustainability as they depend on the long-term 
durability performance of structures. Therefore, future deterioration must be prevented 
from irretrievable and catastrophic consequences by improving and sustaining their 
condition. 
 
Periodical examination of the identified structure though visual inspection, radiographic 
testing, ultrasonic testing, etc. could be a solution to prevent the structure from single local 
damages. In addition, these traditional testing methods based on the concept of 
Nondestructive Evaluation (NDE) are expensive and sometimes they might not be effective 
enough in revealing suitable safety concerns, as controlled conditions in the laboratory do 
not always mimic actual field conditions. Moreover, a structure can reach a critical level 
before the next scheduled inspection is performed as in the case of the Nanfang'ao bridge. 
Therefore, more reliable, and effective diagnosis tool is required to detect deterioration 
processes during the life cycle of a bridge. This is where Structural Health Monitoring 
(SMH) comes into play as an adequate tool for monitoring of civil structures such as 
bridges during their service life through sensors permanently attached to the structure. The 
SHM process can help to detect, locate, quantify and ins some cases even prognose damage 
to the structure, thus reducing the probability of failures, financial losses and negative 
environmental impacts, as well as ensuring safety.  
 
Another consideration is that various external factors, such as environmental and 
operational conditions, have an impact on the performance of SHM systems. There are 
numerous works in the SHM literature dedicated to address this issue using machine and 
statistical learning tools. For example, João P. Santos et al. [7] proposed online 
unsupervised detection technique for early damage detection. Moreover, W. Soo et al [8] 
suggested a methodology for separation damage from environmental effects for near-real 
time using Principal Component Analysis. However, they do not provide comprehensive 
solution for the bridges under traffic loading and temperature variation. This thesis attempts 
to address this issue by proposing and testing an approach for bridge SHM system.  
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1.2 Objectives 

The main objective of this thesis is to proposes and tests a SHM methodology for detecting 
and localizing damage in bridges under traffic loads and environmental variability. The 
TU102 numerical benchmark selected as a case study is accessible from the GitHub 
platform [9]. 
 
To accomplish the main objective, some specific objectives are fulfilled:  
 
- To study the contribution related to the Hilbert-Huang Transform (HTT). For a better 
understanding of this method, the mathematical formulation of Vibrational Mode 
Decomposition and Hilbert Transform are presented.  
- To define the geometric and mechanical properties, as well as the damage and boundary 
conditions of the two-dimensional Finite Element (FE) bridge model. 
- To study the fundamental modes and damping of the numerical bridge. 
- To perform a time history analysis for the undamaged and damaged configurations of the 
bridge using a Python code wrapped with a Graphical User Interface (GUI). 
- To create a MATLAB® script aimed to apply the HHT-based damage detection method 
in the numerical bridge. 
- To study the application of PCA to separate the environmental effects from structural 
damages by using novel damage features such as the natural frequencies and Instantaneous 
Frequency (IF).  
- To study the application of K-means and Instantaneous Frequency (IF) as the temperature 
effects were removed. 
 

1.3 Scope 

The scope of this thesis has been constrained in the following ways for the sake of 
simplicity and time constraints:  
 
- Damage is modelled with a decrease in stiffness. This thesis does not attempt to determine 
the exact relationship between damage and stiffness variation. 
- Proportional damping is used for this structural system with large degrees of freedom.  
- In the time-history analysis, only the structure's significant bending modes are considered. 
Furthermore, for damage analysis, only vertical accelerations are considered. 
- This thesis is focused on detection and localization of a damage. The determination of the 
remaining life of the numerical bridge due to damage is not considered.  
- The TU102 numerical benchmark has been calibrated to represent in a better way the 
behaviour of a real structure. However, some assumption has been made to save time and 
focus on the maid idea of the study.  Bridge was modelled as 2D beam and effect of the 
shear locking was neglected. 
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1.5 Outline of the thesis  

The thesis is organized as follows: 
 
Chapter 1 starts with introduction to the research topic, determines specific objectives, 
and ends with outlining the scope of the work.  
 
Chapter 2 gives depth introduction to the state of the art in SHM, following different 
approaches used in practice and presents the proposed methodology. 
  
Chapter 3 explains HHT which consist of VMD and HT. Both mathematical formulation 
and application in SHM are presented. 
 
Chapter 4 presents PCA with mathematical formulation for dimensionality reduction. 
 
Chapter 5 introduces clustering algorithm and their application in SHM. Moreover, it 
discusses K-means and describes moving window methodology for damage identification.   
 
Chapter 6 starts with introduction of Numerical benchmark. Later, Modal analysis, Time 
history analysis are carried out. Finally proposed methodology tested and applied to the 
signals, and results are discussed.  
 
Chapter 7 presents the final conclusions and suggestions for future research.  
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2. STATE OF THE ART 

2.1 Structural Health Monitoring  

Regardless of date of construction every structure is subjected to aging from the moment 
they are built. Constant deterioration, fatigue and corrosion are one of the few reasons 
structures lose their performance. They can sometimes cause structures to fail 
unexpectedly. The research in this area [10] increased after the major disaster have 
occurred worldwide [11] resulting to the death of considerable number of people. In this 
regards, SHM systems are becoming important tool to prevent human and economic losses 
a structural failure could result.  
 
SHM is a damage detection strategy which can be deployed to the structure using network 
of devices to monitor any changes in displacement, acceleration, temperature, strain etc. 
Following the continuous measurements, the damage sensitive features can be extracted 
for further statistical analysis and assessment of current performance of the structure [12]. 
In Figure 2.1, the typical components od SHM are illustrated.  

 
Figure 2.1 Typical Components of SHM [12] 

 
A useful classification of SHM is proposed by Rytter [13], who categorized four levels of 
damage assessment depending on the characteristics of damage that particular SHM system 
can achieve.  

• Level 1. A qualitative indication of damage existence (Detection) 
• Level 2. A probable location of the damage (Localization) 
• Level 3. An information about the extent of the damage (Assessment) 
• Level 4 A prognosis of the damage (Consequence) 

 
With the advancement of the ML algorithms, a new level that corresponds to the type of 
the damage, can be introduced above [12]. This new level stands between Level 2 and 3.  
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Figure 2.2 Five-step hierarchical damage identification scheme [12] 

 
 

2.2 Model driven SHM 

Model-driven techniques usually consist of construction of a high-fidelity model of the 
structure, for which health decisions are to be made. Most typically a Finite Element 
Analysis (FEA) model is used as a baseline.  
 
The procedure for Model-driven SHM is often a two-step process. At the first stage the 
model is calibrated to ensure that it appropriately represents the structure under concern. 
This is usually done by updating the model using in-service data of the undamaged 
conditions. The second stage involves obtaining in-service monitoring data, for which the 
heath state is unknown. Then the model us updated again based on this in-service data and 
changes in the inferred model parameters from the baseline calibration are used to perform 
damage identification [14] . 
 
There are numerous works related to model driven SHM. To name a few, Cao et al [15] 
developed a piezoelectric impedance measurement for structural damage identification 
through an inverse analysis. Similarly, Moore et al. [16] identified cracks in a thin plate by 
model updating.  
 
Generally, it is hard to come up with an accurate model. Model discrepancies, especially 
complex structures are inevitable with little no information about joints and bonds. Such 
problem is not well-posed and requires regularization and simplification. Moreover, the 
number and the type of the parameters must be set. This creates huge problems when the 
damage location and type is unknown. Parametrization becomes increasingly challenging 
as the model fidelity increases, where there are large number of parameter sets. 
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2.3 Data Driven SHM 

Instead of having an FEM and updating the model late, the sensing devices’ data from the 

structures are used more conveniently in the undamaged state and under few circumstances 
in the damaged case. In case insufficient data exist augmentation of data driven SHM 
systems with the FEM can generate labelled dataset for training and validation. 
 
However, it is crucial to highlight that physical model are computationally intensive and 
need validation with experimental results. On the other hand, not every ML algorithm is 
capable of damage prognosis, meaning data-driven approaches are not always predictive 
models. Therefore, the decision between employing model-driven or data-driven SHM 
systems or both ultimately boils down to realizing (1) the proposed system’s requirements, 

(2) the complexity of the application where the system is deployed, and (3) if the existing 
data and models can support and provide valuable inferences about the health state of the 
structure. 
 

2.3.1 Damage detection using machine learning and statistical methods  

According to their objective use, machine learning and statistical algorithms can be 
categorized into three main groups: 
 
In Supervised Learning (SL), the model is trained based on the given input and its expected 
output, i.e., the label of the input. Generally, in SHM, SL is performed on extracted features 
for training classifier to differentiate structural damage from environmental effects.  A 
supervised learning algorithm can effectively go through all five damage detection stages 
listed above if both damaged and undamaged information is provided. As stated previously, 
this requires the availability of a large amount of data through sensing systems, physical-
based models, or experiments. However, in many circumstances, this is not possible, and 
current damage state information is limited, if not unavailable [12]. 
 
In Unsupervised Learning (UL), the model is trained only on the inputs, without their 
explicitly provided labels. It classifies the input data into classes that have similar features.  
Compared to supervised learning, the UL method provides clear advantage as it no longer 
requires prior information about the state of the structure (damaged or undamaged). This 
learning approach, on the other hand, can only be used to detect and, in certain cases, locate 
damage. Furthermore, many of the deployed UL machine learning algorithms for damage 
identification ignore environmental and operational factors (EOFs) and depend solely on 
severe structural damage. Temperature effect and traffic loading are two examples of 
neglected variables that have a substantial impact on the response of the structures. As a 
result, an unsupervised technique cannot be used effectively by itself, and external factors' 
dependencies must be considered when determining damage. 
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In Reinforcement Learning (RL), the model tries to maximize the total profit by getting 
feedback on its past outcomes. RL uses rewards and penalties for the actions the 
autonomous agent performs.  
 
The Figure 2.3 shows common categories of Machine Learning algorithms and their use 
in the framework of SHM. Furthermore, Table 1.1 presents most common ML algorithms 
in SHM are used today.  
  
 
 

 
Figure 2.3 Three main categories of ML algorithms 

 
Table 1.1 Most common ML algorithms in SHM 

Supervised Learning Unsupervised Learning Reinforcement Learning 

Random Forest K-means Genetic Algorithms 

Decision Tree Gaussian Mixture Q-learning 

Support Vector Machine Association analysis State-Action-Reward-
State-Action 

k-nearest Neighbor Blind Source Separation  

Bayesian Neural Network  

Neural Network   
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2.4 Proposed methodology 

There are numerous works in the literature, where machine learning and statistical methods 
have been implemented in SHM of bridges under traffic loading. For example, Fernando 
Tenelema Muñoz [17] showed that PCA is efficient for differentiating environmental 
effects from selected data. He used phase differences as damage-sensitive features on a 
steel bridge and demonstrated that 1st Principal Component (PC) is purely related to 
temperature effects. Even though temperature effect was clearly shown, the bridge FEM 
model did not accurately represent a real structure. Moreover, the damage detection was 
based on the variance changes in 2nd PC of PCA, which cannot guarantee certainty in real 
cases because of excess noise. 
 
Meanwhile, Rick M. Delgadillo [18] demonstrated on real steel truss bridge that 
instantaneous frequencies are reliable damage sensitive features. He applied Hilbert-Huang 
Transform to process the vibration data and performed unsupervised cluster-based machine 
learning (K-means) on symbolic data. As a result, K-means was proved to be efficient to 
detect and localize the damage. However, the environmental effects were not considered 
because of insufficient data available for both healthy and damaged bridge at different 
temperatures.  
 
The objective of this thesis is to propose a SHM methodology for a bridge under traffic 
loading and different temperatures. Based on the 2 previous works by Fernando and Rick, 
which do not deal completely with all environmental and operational effects, this study 
treats them in a comprehensive way. Figure 2.4 below shows a flow chart of proposed 
methodology. 
  

 
Figure 2.4 Flow chart of the proposed SHM methodology 

 
1. Signals under traffic loads and at different ambient temperatures are collected from 
sensors. 
2. Hilbert-Huang Transform (HHT) which consist of Vibrational Mode Decomposition 
(VMD) and Hilbert Transform (HT) is applied to recorded data. The goal of this step is to 
decompose the signal into Intrinsic Mode Functions and select damage-sensitive feature 
for the next step. In this study, instantaneous frequencies are considered.  
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3. Principal Component Analysis is performed to reconstruct the data using Principal 
Components (PC) which are not affected by the environmental changes (temperature).  
4. Symbolic data analysis is performed, and cluster based moving window K-means 
algorithm is applied to selected undamaged and damaged scenarios to detect and localize 
the damage.  
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3. HILBERT HUANG TRANSFORM - HHT 

3.1 VMD method 

Variational Mode Decomposition (VMD) has been widely used in different applications 
since it was proposed by Dragomiretskiy and Zosso in 2014 [19]. They proposed an entirely 
non-recursive variational mode decomposition model by extracting modes concurrently. 
The model was developed to overcome Empirical Mode Decomposition (EMD) limitations 
of sensitivity to noise and sampling.  
 
The VMD is widely used in structural identification of modal properties of engineering 
structures based on dynamic response. For example, Bagheri et al. [20] demonstrated the 
efficiency of VMD algorithm by series of numerical, laboratory and field case studies. The 
vibration response of a three-story shear frame was used in laboratory case, whereas a field 
study covered the ambient vibration response of a pedestrian bridge. Moreover, the modal 
properties of the of the shear frame were computed using analytical approach for the 
comparison with experimental modal frequencies. As a result, the VMD-based system 
identification was proven to be robust against noise and sampling frequency with respect 
to traditional signal decomposition such as EMD.  
 
The main “drawback” of this method is that the number of modes K must be set in advance 
[21]. If the selected mode number is not accurate, the VMD will cause the loss of important 
modes. In order to determine the number of IMFs different methods have been proposed 
correlation coefficient method [22], the normalized mutual information method [23], and, the 
most common, the center frequency observation method [24]. 
 
The goal of VMD is to decompose a real valued input signal 𝑓 into a discrete number of 
quasi-orthogonal band-limited sub-signals 𝑢𝑘 (modes). Each mode is compact around the 
center pulsation 𝜔𝑘 and the bandwidth is estimated using 𝐻1 Gaussian smoothness of the 
shifted signal [24].  The VMD is written as a constrained variational problem: 
 

min
{𝑢𝑘},{𝜔𝑘}

{ ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2𝐾

𝑘=1

} 

 

𝑠. 𝑡. ∑ 𝑢𝑘 = 𝑓

𝐾

𝑘=1

 

 
where 𝑢𝑘 and 𝜔𝑘 are the kth intrinsic mode function and it is center frequency, respectively.  

ℒ({𝑢𝑘}, {𝜔𝑘}, 𝜆) = 𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘
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+ ‖𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)

𝑘

‖

2

2

+ 〈𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)

𝑘

〉 

 
where 𝛼 denotes the balancing parameter of the data-fidelity constraint, which is also 
penalty factor.  
The equation above can be solved with alternate direction method of multipliers (ADMM). 
All the modes gained from the solutions in spectral domain are written as: 
 

�̂�𝑘
𝑛+1(𝜔) =

𝑓(𝜔) − ∑ �̂�𝑖(𝜔) + (
�̂�(𝜔)𝑡

2 )𝑖≠𝑘

1 + 2𝛼(𝜔 − 𝜔𝑘)2
 

 
which is identified as a Winer filtering residual, with signal prior 1/(𝜔 − 𝜔𝑘)2. Thus, 
making VMD algorithm much more robust to sampling and noise. The update equation for 
the center frequency is expressed as 
 

𝜔𝑘
𝑛+1 =

∫ 𝜔|�̂�𝑘(𝜔)|2 𝑑𝜔
∞

0

∫ |�̂�𝑘(𝜔)|2 𝑑𝜔
∞

0

 

 
Complete algorithm is extracted from [19]: 

 
Initialize {�̂�𝑘

1}, {�̂�𝑘
1},  �̂�1, 𝑛 ← 0 

 
repeat 
 
 𝑛 ← 𝑛 + 1 
 
 for 𝑘 = 1: 𝐾 do 
 
  Update �̂�𝑘 for all 𝜔 ≥ 0: 

�̂�𝑘
𝑛+1(𝜔) ←

𝑓(𝜔) − ∑ �̂�𝑖
𝑛+1(𝜔)𝑖<𝑘 − ∑ �̂�𝑖

𝑛(𝜔)𝑖>𝑘 + (
�̂�𝑛(𝜔)

2 )

1 + 2𝛼(𝜔 − �̂�𝑘
𝑛)2

 

  Update 𝜔𝑘: 

𝜔𝑘
𝑛+1 ←

∫ 𝜔|�̂�𝑘
𝑛+1(𝜔)|2 𝑑𝜔

∞

0

∫ |�̂�𝑘
𝑛+1(𝜔)|

2
𝑑𝜔

∞

0

 

end for 
 
 Dual ascent for all 𝜔 ≥ 0: 
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�̂�𝑛+1(𝜔) ← �̂�𝑛(𝜔) + 𝜏 (𝑓(𝜔) − ∑ �̂�𝑘
𝑛+1(𝜔)

𝑘

) 

 
until convergence: ∑ ‖�̂�𝑘

𝑛+1 − �̂�𝑘
𝑛‖2

2/‖�̂�𝑘
𝑛‖2

2
𝑘 < 𝜀𝑟 . 

 
 
The stopping criterion of the algorithm is mainly based on relative tolerance 𝜀𝑟 . However, 
in the MATLAB implementation of VMD, two additional criteria are considered: 
1. Maximum number of optimization iterations O  
2. Absolute tolerance 𝜀𝑎 
 

∑‖�̂�𝑘
𝑛+1 − �̂�𝑘

𝑛‖2
2

𝑘

< 𝜀𝑎 

 
In this case, optimization stops either when the number if iterations is greater than O or 
𝜀𝑎 𝑎𝑛𝑑 𝜀𝑟 are satisfied.  
 
The purpose of VMD for signals is to obtain meaningful IMFs. The flow of the VMD 
algorithm presented by Wu et al. [24] is shown in Figure.  
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Figure 3.1 Flow diagram of the VMD algorithm using the centre frequency statistical analysis to find the 

number of IMFs K required, extracted from [24] 
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3.2 Hilbert Spectral Analysis 

3.2.1 Hilbert Spectrum 

The Hilbert transform is a linear operator that transforms a real signal 𝑥(𝑡) into another 
real signal, indicated by 𝐻[𝑥(𝑡)]. It is defined as the convolution of 𝑥(𝑡) with the function 
1/(𝜋𝑡): 
 

𝐻[𝑥𝑘(𝑡)] =
1

𝜋
𝑃. 𝑉 ∫

𝑥𝑘(𝜏)

𝑡 − 𝜏
𝑑𝜏

+∞

−∞

 

 
 
𝑃. 𝑉 denotes the Cauchy principal value of the integral and 𝑥𝑘(𝑡) corresponds to the kth 
IMF component obtained from the mode decomposition technique. For the simplicity 
purposes, the notation 𝑥𝑘(𝑡) is used instead of 𝐼𝑀𝐹𝑘(𝑡) in all equations below. The HT 
allows us to define the complex analytic signal 𝑧𝑘(𝑡), from which instantaneous amplitude 
and phase can be calculates from it. An analytic signal represents rotation in the complex 
plane with the rotation radius 𝑎𝑘(𝑡) and the instantaneous function 𝜃𝑘(𝑡) [21]. This implies 
that analytic signal becomes: 
 

𝑧𝑘(𝑡) = 𝑥𝑘(𝑡) + 𝑖 𝐻[𝑥𝑘(𝑡)] = 𝑎𝑘(𝑡)𝑒𝑖𝜃𝑘(𝑡) 
 
𝐻[𝑥𝑘(𝑡)] – represent Hilbert transform of the 𝐼𝑀𝐹𝑘(𝑡) 
𝑎𝑘(𝑡) – instantaneous amplitude  
𝜃𝑘(𝑡) – instantaneous phase function  
And the formulas of amplitude and phase are taken from [21]. 
 

𝑎𝑘(𝑡) = √{𝑥𝑘(𝑡)}2 + {𝐻[𝑥𝑘(𝑡)]}2 
 

𝜃𝑘(𝑡) = arctan (
𝐻[𝑥𝑘(𝑡)]

𝑥𝑘(𝑡)
) 

 
The instantaneous amplitude 𝑎𝑘(𝑡) describes the envelope of the denoised 𝐼𝑀𝐹𝑘(𝑡), while 
𝜃𝑘(𝑡) is describes the number of the rotations. 
 
The concept of the frequency and phase carry significant importance when applying IMFs 
[25]. If the IMFs can be considered local, then the instantaneous angular frequency 
𝜔𝑘(𝑡) can be defined as: 
 

𝜔𝑘(𝑡) =
𝑑𝜃𝑘(𝑡)

𝑑𝑡
= 2𝜋𝑓𝑘(𝑡) 
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Cohen stated that each IMF is a mono-component signal with a monotonically increasing 
phase and a positive instantaneous frequency. Therefore, each selected IMF can be defined 
as: 
 

𝑥𝑘(𝑡) = 𝑅𝑒(𝑧𝑘(𝑡) = 𝑅𝑒(𝑎𝑘(𝑡)𝑒𝑖𝜃𝑘(𝑡)) = 𝑎𝑘(𝑡)cos [𝜃𝑘(𝑡)] 
 
The total instantaneous frequency phase for the selected 𝜃(𝑡) can be obtained by the sum 
of the instantaneous phases for the selected IMFs: 
 

𝜃(𝑡) = ∑ 𝜃𝑘(𝑡)

𝑘

= ∑ 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐻[𝑥𝑘(𝑡)]

𝑥𝑘(𝑡)
)

𝑘

 

 
where: 
𝑥𝑘(𝑡) – physically meaningful IMFs selected for spectral analysis 
𝜃(𝑡) – the total number of rotations of a significant part of the original measured signal 
𝑥(𝑡) in the complex plane in radians (rad) 
 

3.2.2 Limitations of the Hilbert Transform 

Hilbert Transform can be applied to any arbitrary signal to compute instantaneous 
amplitude, phase, and frequency. However, they have a clear physical meaning only if 
𝑥(𝑡) is an oscillatory signal with narrow band of frequency [26]. In this case, the amplitude 
𝐴(𝑡) coincides with the envelope of 𝑥(𝑡) and the frequency 𝜔𝑘(𝑡) coincides with the 
frequency of the maximum power spectrum computed in a running window.  
 
In real world situations, signals are superpositions of oscillating components with different 
time scales. The instantaneous amplitude, phase, and frequency lack clear physical 
meaning. However, they can be helpful for understanding and characterizing the dynamical 
system that generates the signal. 
 
A well-known method to overcome Hilbert Transform limitations was proposed by Huang 
[ref] A well-established method is the empirical mode decomposition, that breaks down 
the original signal into a set of intrinsic mode functions. Each one of these functions admits 
a “well-behaved” Hilbert transform and is fully characterised by instantaneous amplitude 
and phase with the physical meaning of a rotation 
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4. PRINCIPAL COMPONENT ANALYSIS 

4.1 Overview  

PCA is a multivariate statistical approach that analyses patterns in a data set to highlight 
similarities and differences. It's mostly used to reduce the original data set's dimensions 
without losing too much information [27]. It creates new non-correlated variables (latent 
variables) to represent termed ‘principal components’ to represent the different factors 

affecting the data set [8].  
 

4.2 Mathematical formulation  

4.2.1 Data collection 

 
Let Z denote a 𝑛 × 𝑚 data set if damage sensitivity features collected from m observations 
with a 𝑛 < 𝑚. For each observation, n numbers of damage sensitivity features are collected 
[27]. 
 

𝐙 = (

𝑥1,1 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑚

) = (𝑣1| ⋯ |𝑣𝑗| ⋯ |𝑣𝑚) 

 
To perform PCA on the damage sensitivity features data set, mean cantering of the data 
set is first required. It is achieved by subtracting the mean of each row of the data set to 
each measurement in that row. The resulting matrix X after the mean centring will have 
the same dimensions 𝑛 × 𝑚 as the original data set Z [27]. 

4.2.2 Covariance matrix and PCA objective 

The covariance matrix of the mean centred matrix X is defined as: 
 

CX =
1

𝑛 − 1
𝐗𝐓𝐗 =

1

𝑛 − 1
(

𝑣1
𝑇𝑣1 ⋯ 𝑣1

𝑇𝑣𝑚

⋮ ⋱ ⋮
𝑣𝑚

𝑇 𝑣1 ⋯ 𝑣𝑚
𝑇 𝑣𝑚

) 

 
It is squared symmetric 𝑚 × 𝑚 matrix that measures the degree of linearity within data set 
[ref] The diagonal terms are the variances of the corresponding variables: 
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𝜎𝑣𝑗

2 =
1

𝑛 − 1
𝑣𝑗

𝑇𝑣𝑗 =
1

𝑛 − 1
∑ 𝑥𝑖𝑗

2

𝑛

𝑖=1

 

 
The off-diagonal terms are the covariance between pairs of variables: 
 

𝜎𝑣𝑗,𝑣𝑘
2 =

1

𝑛 − 1
𝑣𝑗

𝑇𝑣𝑘 =
1

𝑛 − 1
∑ 𝑥𝑖𝑗𝑥𝑖𝑘

𝑛

𝑖=1

 

Large covariance values correspond to high redundancy and small values to low 
redundancy.  

4.2.3 Transforming the data matrix 

PCA transforms the data set 𝐗 into new data set 𝐓 with smaller dimensions which 
characterizes most of the variances in the original data set [28]. 𝐏 is a linear transformation 
matrix with dimension 𝑚 × 𝑛. 
 

𝐓 = 𝐗𝐏 
 
To have the minimal redundancy, transformation matrix 𝐏 should be such that the 
covariance of the new data matrix 𝐓 is diagonal 
 

𝐂𝐓 =
1

𝑛 − 1
𝐓T𝐓 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 

 
Substituting into the following 
 

𝐂𝐓 =
1

𝑛 − 1
𝐏T𝐗T𝐗𝐏 = 𝐏T𝐂𝐗𝐏 

 
𝐂𝐗 is symmetric matrix. It has 𝑚 real eigenvalues 𝜆𝑗 , and m orthonormal eigenvectors 𝒑𝒋, 
which form a basis in the 𝑚 - dimensional space. Then the transformation matrix is chosen 
having the eigenvectors in their columns, that is 
 

𝐏 = (𝑝1| ⋯ |𝑝𝑗| ⋯ |𝑝𝑚) 
 
And the following property must be satisfied 
 

𝐂𝐗𝐏 = 𝐏Λ 
 
where  Λ = (𝜆1, 𝜆2, ⋯ , 𝜆𝑚) 
Substituting the equation above into 𝐂𝐓, the condition below is met: 
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𝐂𝐓 = 𝐏T𝐏Λ = Λ 
 
In detail: 
 
 

(𝑡1| ⋯ |𝑡𝑗| ⋯ |𝑡𝑚) = (

𝑥1,1 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑚

) × (𝑝1| ⋯ |𝑝𝑗| ⋯ |𝑝𝑚) 

 
Each column vector in matrix T can be expressed as  
 

𝒕𝑗 = 𝐗𝒑𝑗 
 
Then the variances of these vectors can be computed in the form 
 

𝜎𝑡𝑗

2 =
1

𝑛 − 1
𝒕𝑗

𝑇𝒕𝑗 =
1

𝑛 − 1
(𝐗𝒑𝑗)

𝑇

(𝐗𝒑𝑗) = 𝒑𝑗
𝑇𝐂𝐗𝒑𝑗 = 𝜆𝑗 

 
While covariances are null 
 

𝜎𝑡𝑗,𝑡𝑘

2 =
1

𝑛 − 1
𝒕𝑗

𝑇𝒕𝑗 =
1

𝑛 − 1
(𝐗𝒑𝑗)

𝑇

(𝐗𝒑𝑘) = 𝒑𝑗
𝑇𝐂𝐗𝒑𝑘 = 𝜆𝑗𝒑𝑗

𝑇𝒑𝑘 = 0 
 

4.2.4 Reducing the dimension 

It is possible to reduce the dimensionality of the data of the matrix X by choosing only 
reduced number r of principal components, as the eigenvalues are ordered according to the 
amount of the information. 
 
The definition of the reduced transformation 𝑚 × 𝑟 matrix 
 

𝐏 = (𝑝1|𝑝2| ⋯ |𝑝𝑟) 
 
The original data can be projected on the space by this matrix as before: 
 

𝐓 = 𝐗𝐏 
 
In the full dimension case, this projection is invertible) and the original data can be 
recovered as 𝐗(𝐏𝐏T). Now, with the given T, it is not possible to fully recover X, but T 
can be projected back onto the original m-dimensional space and obtain another data matrix 
as follows: 
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�̂� = 𝐓𝐏T = 𝐗(𝐏𝐏T) 

By simple manipulations (adding and subtracting) in expression above, the following 
decomposition of the original data matrix X can be written: 
 

𝐗 = �̂� + �̃� 
 

�̂� = 𝐗(𝐏𝐏T) 
 

�̃� = 𝐗(𝐈 − 𝐏𝐏T) 
 
where �̂� is the projection of the data matrix 𝐗 onto the selected r principal components and 
�̃� is the projection onto the residual left components. 
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5. CLUSTERING ALGORITHM 

5.1 A Survey of Clustering Algorithms 

Cluster analysis is the study of the methods and algorithms of grouping, or clustering, 
objects according to measured or perceived intrinsic characteristics or similarity. The 
absence of category information distinguishes data clustering (unsupervised learning) from 
classification or discriminant analysis (supervised learning). Unlike supervised algorithms, 
clustering algorithms do not require the definition of reference/training data. They can 
‘understand’ a data set’s structure by attempting to find the most compact and separates set 

of clusters [7].  
 
The main goal of the clustering algorithms is to find a structure in the data. Mathematically 
speaking, it is an attempt to minimize the dissimilarity between data objects within same 
cluster and, meanwhile, to maximize the dissimilarity between objects assigned to different 
clusters [7].However, there is no agreement for the complete definition of clustering, and 
a classical one is given below [29]: 
1. Instances, in the same cluster, must be similar as much as possible. 
2. Instances, in the different clusters, must be different as much as possible. 
3. Measurement for similarity and dissimilarity must be clear and have the practical 
meaning. 
 
As it was mentioned above, the distance (dissimilarity) and similarity are the basis for 
constructing clustering algorithms. Depending on data features, quantitative or qualitative, 
distance or similarity functions are applied respectfully. The Table 5.1 and 5.2 show 
common functions used for quantitative and qualitative data.  
 

Table 5.1 Distance functions [29] 

Name Formula Explanation 

Minkowski distance (∑|𝑥𝑖𝑙 − 𝑥𝑗𝑙|
𝑛

𝑑

𝑙=1

)

1/𝑛

 

A set of definitions for 
distance: 

1. City-block distance 
when n = 1 

2. Euclidean distance when 
n = 2 

3. Chebyshev distance 
when 
n→ ∞ 

Standardized Euclidean 
distance (∑ |

𝑥𝑖𝑙 − 𝑥𝑗𝑙

𝑠𝑙
|

2
𝑑

𝑙=1

)

1/2

 

1. S stands for the standard 
deviation 

2. A weighted Euclidean 
distance based on the 

deviation 
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Cosine distance 1 − 𝑐𝑜𝑠𝛼 =
𝑥𝑖

𝑇𝑥𝑗

‖𝑥𝑖‖‖𝑥𝑗‖
 

1. Stay the same in face of 
the 

rotation change of data 
2. The most commonly 

used 
distance in document area 

Pearson correlation 
distance 

1 −
𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑗)

√𝐷(𝑥𝑖)√𝐷(𝑥𝑗)
 

1. Cov stands for the 
covariance for and D 

stands 
for the variance 

2. Measure the distance 
based 

on linear correlation 

Mahalanobis distance √(𝑥𝑖 − 𝑥𝑗)𝑇𝑆−1(𝑥𝑖 − 𝑥𝑗) 

1. S is the covariance 
matrix 

inside the cluster 
2. With high computation 

complexity 
 
 
 
 

Table 5.2 Similarity functions [29] 

Name Function formula or 
measure method Explanation 

Jaccard similarity 𝐽(𝐴, 𝐵) = |
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
| 

1. Measure the similarity 
of 

two sets 
2. |X| Stands for the 

number of elements of 
set X 

3. Jaccard distance = 1 − 
Jaccard similarity 

Hamming similarity 

The minimum number of 
substitutions needed to 

change one data point into the 
other 

The number is smaller, 
the 

similarity is more 
Hamming distance is the 

opposite of Hamming 
similarity 

Especially for the data of 
string 
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For data of mixed type 

Map the feature into (0, 1) 
Transform the feature into 

dichotomous one 

𝑆𝑖𝑗 =
1

𝑑
∑ 𝑆𝑖𝑗𝑙

𝑑

𝑙=1

 

𝑆𝑖𝑗 = 

(∑ 𝜂𝑖𝑗𝑙𝑆𝑖𝑗𝑙

𝑑

𝑙=1
)/(∑ 𝜂𝑖𝑗𝑙)

𝑑

𝑙=1
 

 

 
The traditional clustering algorithms can be divided into 9 categories, which mainly contain 
26 commonly used. The summary is given below in the table.  
 

Table 5.3 Traditional algorithms 

 
 

As it can be seen from the Table 5.3, there are numerous categories and types of 
algorithms. In this thesis, K-means is taken into consideration. It is a clustering algorithm 
based on partition. The basic idea behind this type of algorithms is to regards the center of 
data points as the center of the corresponding cluster [29]. 
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5.2 K-means 

Let 𝑃𝐾 = {𝐶𝐾, … , 𝐶𝐾} be partitioned into K clusters. Then, the overall within-cluster 
𝑊(𝑃𝐾) dissimilarity can be defined as [7] 
 

𝑊(𝑃𝐾) =
1

2
∑ ∑ ∑ 𝑑𝑖𝑗

𝑐(𝑗)=𝑘𝑐(𝑖)=𝑘

𝐾

𝑘=1

 

 
where 𝑐(𝑖) is many-to-one allocation rule that assigns object 𝑖 to cluster 𝑘, based in a 
dissimilarity measure, 𝑑𝑖𝑗, defined between each pair of data objects, 𝑖 and 𝑗.  
 
The overall dissimilarity of a data set, 𝑂𝐷, is given below. 
 

𝑂𝐷 =
1

2
∑ ∑ 𝑑𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

 
where, 𝑁 is the total number of objects. The between-cluster dissimilarity is obtained by 
subtracting the previous two equations, 𝐵(𝑃𝐾) = 𝑂𝐷 − 𝑊(𝑃𝐾). 
 
The goal of the K-means is to minimize the overall within-cluster dissimilarity, 𝑊(𝑃𝐾), of 
a given partition, 𝑃𝐾, by iterative optimization scheme. The K-means requires that the 
number of K<N clusters be initially defined [7] with randomly defined set of K clusters’ 

prototypes from the same type of data. This step is called initialization as shown Figure 
5.1a. Bigger blue dots represent randomly defined prototypes, while smaller dots represent 
the data that being clustered. Following the initialization, each iteration starts by assigning 
objects to clusters by allocating rule, 𝑐(𝑖), Figure 5.1b. The second step of the K-means 
algorithms is to find the best prototypes that represent clusters defined before. It is called 
representation step and illustrated in Figure 5.1c. K-means represents the clusters by 
finding their centroids. Further allocation and representation are repeated (Figure 5.1d, e) 
until an objective function, which depends on cluster compactness and separation, reaches 
its global minimum value [7].  
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Figure 5.1 K-means clustering algorithm: (a) initialization (three cluster prototypes to describe 11 
objects); (b) iteration 1, allocation; (c) iteration 1, representation; (d) iteration 2, allocation; (e) iteration 2, 

representation; and (f) final set of clusters’ prototypes. [7] 
 
The K-means uses squared within-cluster dissimilarity measured across the K clusters as 
objective function [29]. They are usually based on distance metrics. The most used one is 
Euclidean distance (square root of the sum-of-squares). However, in the application of 
SHM it leads to computational complexity and large incidents of false detection [7]. To 
overcome these difficulties, the Gowda-Diday distance measure is used.  

5.3 A methodology for damage identification 

The k-means algorithm demands the initial definition of the number of 𝐾 ≤ 𝑁 of clusters 
as well as a randomly defined set of cluster prototypes, which are objects of the same type 
as those being clustered. The representation step of each k-means iteration is the process 
of determining which set of prototypes best represents the clusters defined during the 
allocation phase. This number is supposed to be the same as the number of unique structural 
conditions determined on site, and there is no means of knowing it advance. Without 
determining which of the partitions best represents the data's structure, clear conclusions 
cannot be drawn. The global silhouette index is employed in this study since it performed 
better in prior investigations when its formulation was thoroughly discussed [30] [31]  The 
construction of silhouette statistic consists in assigning a fixed number of clusters K to the 
𝑖𝑡ℎ observation, with the following value [18]: 
 

𝑠(𝑥𝑖) =
𝑏(𝑥𝑖) − 𝑎(𝑥𝑖)

max {𝑎(𝑥𝑖), 𝑏(𝑥𝑖)}
∈ [−1,1] 

 
Where 𝑏(𝑥𝑖)is the distance to nearest neighbouring cluster's centre and 𝑎(𝑥𝑖) is the average 
distance between the 𝑖𝑡ℎ object of cluster C and the remaining j objects. The silhouette 
index of clusters and the average of silhouette widths for all samples are respectively given 
below. Where (1 ≤ 𝑀𝑘 ≤ 𝑁), N = set of objects, K = clustering partitions and the value of 
silhouette coefficient varies from 0 to 1.  
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𝑠(𝑥) =
1

𝑀𝑘
∑ 𝑠(𝑥𝑖)

𝑀𝑘

𝑖=1

 

 

𝑆𝐼𝐿 =
1

𝐾
∑ 𝑠(𝑥)

𝐾

𝑘=1

 

 
For the present work, it is important to note that the partition that, among the K tested, 
generates the highest SIL value is the one that best describes the analysed data set, and thus 
which should be considered for SHM purposes. 
 
Cluster analysis is capable automatically distinguishing between structural conditions 
without any assumption regarding prior the structural condition on site. However, the user 
intervention is required to assess the output whether they are compact or mixed over time. 
It creates several difficulties to implement the method near real time application. To 
overcome this issue Santos et al [7] proposed robust strategy for damage detection using 
cluster-based algorithm with moving time windows method. It relies on the average 
difference between cluster rather relying on the allocation of data objects to cluster over 
time [7].  
 

𝐷𝐶 =
1

𝐾(𝐾 − 1)
∑ ∑ 𝑑𝑐𝑘

𝐾

𝑐=1
𝑐≠1

𝐾

𝑘=1

 

 
where K is the number of clusters from the partition with highest SIL, c and k are two of 
the K clusters and 𝑑𝑐𝑘 is Gowda-Diday dissimilarity measured between their centroids. If 
there is no damage and structural behaviour is stable, the clusters generated by the k-means 
are similar and will generate small values of DC. Consequently, if they damage is observed, 
the k-means algorithm will create dissimilar and separate clusters and large values of the 
DC. Moreover, Santos et al [7] argues that DC if highly sensitive to early damage and 
capable of performing significant data fusion, as the data acquired from multiple sensors 
are described as single-value index.  
 
Ideally, TRUE/FALSE binary information should be provided by the detection strategy. 
The time windows are defined with fixed length equal SL, where L is the time length of 
each data sample and S is the number of samples per window. As the value of DC is not 
informative (it does not provide TRUE/FALSE information), by itself, Santos et al [7] 
proposes statistical testing the DC values obtained withing each time window’s length. The 

statistical testing of the DC values results in the definition of the confidence boundary 
(CB), which should be exceed only in case structural system exhibits changes.  
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The CB is defined each time window, by statistically testing DCs distribution, under the 
assumption that the only the random effects influence on the residual errors obtained from 
unchained structures. Generally, Normal statistical distribution is used SHM works related 
to the damage detection. However, the small number of the DC values contained in each 
time window has motivated to use t-student distribution, which is more appropriate for 
describing small samples extracted from Gaussian population [7].  
 
The confidence boundary at each time window is obtained as follows: 
 
 

𝐶𝐵 = 𝐸[𝐷𝐶] + 𝑡
𝑠−1,

1
2

+
𝛽
2

× 𝐸[𝐷𝐶 − 𝐸[𝐷𝐶]]/√𝑆 

 
where 𝑡

𝑠−1,
1

2
+

𝛽

2

 is the  
1

2
+

𝛽

2
 percentile of a t-student distribution with S-1 degrees of 

freedom and β is the confidence level, taken 99.9%.  
𝐸[𝐷𝐶] and 𝐸[𝐷𝐶 − 𝐸[𝐷𝐶]] are expected value and variability estimates of the DC sample 
within analysed time window, respectively.  
 
Finally, using DC and CB values, Santos et al [7] proposed an original detection index, DI. 
It is defined such that (i) its positive values indicate damage detection (“TRUE”) and 

negative or null values stand for unchanged structural response (“FALSE”); (ii) it is 
dimensionless; and (iii) it has unsupervised and window-wise character by using only 
information related to a single time window.  
 

𝐷𝐼 =
𝑚𝑎𝑥𝑖(𝐷𝐶𝑖−𝐶𝐵)

𝑚𝑒𝑑𝑖(𝐷𝐶𝑖)
;     𝑖 = 1, … , 𝑆 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

29 

 

6. CASE STUDY 

6.1 Introduction 

The objective of this chapter is to test the methodology that was proposed above for damage 
detection and localization. Initially, the chapter begins with the introduction of the 
numerical benchmark along with the material and geometry of the bridge that is considered 
in this work. Next, the modal analysis is performed to determine the natural frequencies 
and effective mass participation factor (EMPF). Furthermore, the time history analysis is 
performed to extract the acceleration data. The relationship between temperature and the 
modulus of elasticity of the bridge material is introduced along the way. Finally, the section 
of results and discussion is presented, where the effectiveness of the proposed methodology 
is shown.   

6.2 Benchmark description.  

The TU102 is a numerical benchmark model with open-source code for generation of 
simulated data.  It   represents the superstructure component of a two-span continuous beam 
bridge subjected to changing environmental and operational conditions.  The model was 
developed by Tatsis and Chatzi as part of COST Action TU1402 on Quantifying the Value 
of Information and is to serve as a reference case study for validation of decision-making 
tools relying on the Value of Information [9]. 
 
The numerical model represents a structural dynamics benchmark problem. The 
superstructure consists of a single rectangular-shaped beam considered as the primary 
longitudinal support member for carrying the deck and transferring the load to the piers 
and down to the foundation. The bridge superstructure modelling was developed by Tatsis 
and Chatzi via open-source Python scripts which are made available through GitHub [9]. 
Note that the International System (SI) of units (m, kg, s) is assumed to provide consistent 
results. In this section, the geometry and mechanical properties of the two-span continuous 
beam is firstly presented as well as an estimate of the stiffness for the elastic supports. 
Then, a finite element (FE) analysis is presented. Lastly, different damage scenarios and 
sensing points are shown. 

6.2.1 Geometry and material properties 

The bridge superstructure consists of a two-span continuous beam with equal length (L1= 
L2=10m). The cross section of the beam is rectangular with constant width 10m and height 
0.6m 
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Figure 6.1 Geometry of the two-span bridge in the longitudinal direction with elastic boundaries. 

 
The bridge is assumed to be made from reinforced concrete with  
𝐸 = 35 𝐺𝑃𝑎. It is linear elastic material with density ρ = 2400 kg/m3 at ambient 
temperature 𝑇 = 20° 𝐶 and Poisson’s ratio ν = 0.2. Table 6. 1 below summarizes the 
geometry and the mechanical properties.  

 
 

Table 6. 1 Geometry and mechanical properties of the numerical bridge superstructure 

Geometry (units) Symbol Value 
Left-span length (m) L1 10 

Right-span length (m) L2 10 

Total bridge length (m) L 20 

Bridge height (m) h 0.6 

Bridge width (m) t 10 

Material properties at 𝑇 = 20° 𝐶 
Mass density (kg/m3) ρ 2400 

Young’s Modulus (GPa) 𝐸 35 

Poisson’s ratio ν 0.2 

Shear Modulus (GPa) 𝐺 14.6 

 
For homogeneous isotropic linear elastic materials, the shear modulus G is calculated as 
follows 
 

𝐺 =
𝐸

2(1 + 𝜐)
 

6.2.2 Elastic bearings 

Bridge bearings are required to transfer load from the superstructure to the substructure, 
which includes abutments, piers, and foundation, in a proper and safe manner. The primary 
goal of bearings is to provide flexibility to bridges while also ensuring proper load 
distribution on the substructure. They also enable the superstructure to adjust longitudinal 
movement in response to changes in temperature or moving loads. Because of this, 
bearings' vertical stiffness must be substantially greater than their lateral stiffness. 9 elastic 
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bearings are modelled as a three evenly spaced elastic supports and put on the bottommost 
edge of the bridge superstructure in this case study. 
 
Two elastic supports are located at both ends in a width of 0.3m and one intermediate 
support is located at the middle of the beam in a width of 0.4m. All three supports are 
modelled as point spring supports, each with two degrees of freedom acting at the 
corresponding mesh element nodes. Table 6.2 summarizes the horizontal stiffness, kx, and 
vertical stiffness, ky, adopted for the three spring supports to avoid the “mixing” of 

longitudinal and bending mode shapes as much as possible. 
 

Table 6.2 Horizontal stiffness, kx, and vertical stiffness, ky, adopted for the three spring supports. 

Stiffness (units) Left support Mid support Right support 
kx (N/m) 10714200 19285500 10714200 

ky (N/m) 1015 1020 1015 

 

6.2.3 FE Analysis 

A two-dimensional (2D) FE model is constructed for the plane stress problem using 
isoparametric quadrilateral elements whose formulation is characterized by using the same 
shape functions to interpolate the displacement field and nodal coordinates (geometry), as 
explained by Oñate [32]. There are two degrees of freedom (DOFs) per node in these 
elements, which correspond to vertical and horizontal displacements. Although 
isoparametric elements take up more CPU time, they are preferable to estimate 
displacement fields for complex and simple planar elements like beams, making them ideal 
for our research case: a regular-shaped beam with minimum distortion. In addition, when 
integrating the stiffness and mass matrices of these elements, the Gaussian quadrature (GQ) 
is used to approximate the definite integrals of the shape functions over the element domain 
by a weighted sum of functional evaluations at a specified number of sample points (Gauss 
points), resulting in the desired degree of accuracy in the results. 
 
FIG shows the three isoparametric quadrilateral elements, using either full or reduced 
integration, whose mathematical formulation are implemented in the benchmark’s python 

scripts.  
 
1) A four-node bilinear quadrilateral element (QUAD4: 4-Node, 8-DOFs).  
2) An eight-node Serendipity quadrilateral element (QUAD8: 8-Node, 16-DOFs).  
3) A nine-node Lagrangian quadrilateral element (QUAD9: 9-Node, 18-DOFs).  
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Figure 6.2 Quadrilateral element type in natural coordinates (ξ, η), (b) Polynomial terms contained in the 

shape functions from Pascal’s triangle, (c) Maximum number of Gauss 
 
In this thesis, the QUAD4 elements using 2x2 Gauss are selected for the following reason:  
1) The purpose of this thesis is not to design a bridge properly. Rather than testing stresses 
or deflection limits, we're more interested in validating a damage detection approach. As a 
result, the shear locking effect, which leads to reduced bending displacements, is not a 
concern in this scenario.  
2) The bridge modelling is a system with large degrees of freedom. Therefore, the 
computational cost would increase enormously if using quadratic isoparametric elements. 
Moreover, considering that a wide range of damage scenarios, temperature conditions, and 
load velocities are tested, the choice of QUAD4 are preferable regarding the calculation 
time, especially, when preforming a time-history analysis.  
3) Although the mathematical formulation of quadratic elements (QUAD8 and QUAD9) 
has been implemented in the Python scripts for this benchmark, the creation of a mesh 
using these elements is still not coded.  
4Because the selected reduced integration method is not available in the Python scripts, a 
2x2 GQ scheme was used for the number of Gauss points. As a result, the shear component 
of the elemental stiffness matrices cannot be evaluated at a single Gauss point, but the 
bending component uses a complete integration approach. 
 
In conclusion, the most convenient choice is to use QUAD4 elements with 2x2 GQ rule 
and a mesh size of 0.05m x 0.05m in terms of computational cost and accuracy in vertical 
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displacements. Therefore, as shown in Figure 6.3 the model is discretized in 400 and 12 
elements in x and y directions, respectively, resulting in 4800 elements and 5213 nodes in 
total (10426 DOFs). 
 

 

Figure 6.3 FE mesh of the numerical bridge 

6.2.4 Damage scenarios and sensors 

Structural damage in FE models usually is assumed as a reduction of bending stiffness 
which causes a change in of the dynamic behaviour. In this study, “cracks” on the beam 

surface are considered. They are modelled by reducing Young’s modulus at the Gauss 
points on particular the finite elements.  
 
Six sensing points called “sensors” are considered to provide information about the nodal 

variables in both x and y directions (i.e., displacements, velocities, accelerations, strains, 
etc.). The location of these sensors is described in the Table 6.3. The six selected sensors 
are shown as green points in Figure 6.4 
 

Table 6.3 Sensors’ locations along the bridge 

Sensors Location along the neutral axis (y=0.3m) 

S01 x = 2.5 m  

S02 x = 5.0 m  

S03 x = 7.5 m 

S04 x = 12.5 m 

S05 x = 15.0 m 

S06 x = 17.5 m 

 
Furthermore, six damage scenarios are provided by the benchmark. 
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Figure 6.4 Sensors (in green) and damage locations (in red) in bridge structure 

 
 
The first damage region is found in the centre of the left span (DMG1, DMG2, DMG3), starting 
from the bottommost edge of the beam cross section, while the second damage region is found 
in the intermediate support section (DMG4, DMG5, DMG6), starting from the uppermost edge 
of the beam. Besides, the number of damage-induced mesh elements also varies as shown in 
Figure 6.4. For instance, DMG1 and DMG4 cover an area of two damaged elements, DMG2 
and DMG5, a zone of four damaged elements, while DMG2 and DMG6, a zone of six damaged 
elements. Therefore, the damaged elements have a width of 0.05m and the height ranges from 
0.1 to 0.3m. The description of these six damage scenarios is summarized in Table  
 

Table 6.4 Damage scenarios provided by the benchmark 

Damage scenarios Number of damaged 
elements 

Damaged location 

Undamaged (UND) 0  

Damaged 1 (DMG1) 2  
At 1/2 L1 from left-hand 
support, starting from the 

bottommost edge 
Damaged 2 (DMG2) 4 

Damaged 3 (DMG3) 6 

Damaged 4 (DMG4) 2  
At L1 from left-hand 

support, starting from the 
uppermost edge 

Damaged 5 (DMG5) 4 

Damaged 6 (DMG6) 6 

 
In addition to the damage scenarios, benchmark model allows to control the severity of the 
damage by setting the reduction of the Young’s modulus given damage scenario at a given 

location.  
 
In this thesis, stiffness reduction will be noted by D followed by the amount of reduction. 
For example, D50% means 50% reduction in Young’s modulus at given element and 
damage scenario. 
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6.3 Modal analysis 

To understand the vibration characteristics of the complex structures, particularly multi-
degree-of-freedom (MDOF), the modal analysis must be performed. Furthermore, the 
continuous analysis of modal characteristics such as natural frequencies, mode shapes, and 
modal damping ratios might help to detect a structural weaknesses or defects caused by 
damage [ref]. As an engineer, one must be aware of all possible bridge vibration modes as 
well as the significance of each mode. It's especially important to avoid resonant vibrations 
when the loading frequencies coincide with the bridge's natural frequencies [ref]. This 
occurrence can result in catastrophic damage or structural failure (i.e., the Tacoma Narrows 
Bridge [ref]). 

6.3.1 Mass-normalized mode shapes 

To represent the free-vibration solutions of the structure harmonic motion (i.e., mode 
shapes and natural frequencies), the following equation for a MDOF system must be solved 
 

𝑀�̈� + 𝐾𝑈 = 0 
 
The equation above can be transformed into (67) if the non-trivial solution of (66) is the 
harmonic solution of the form 𝑈 = 𝜙𝑠𝑖𝑛 (𝜔𝑡), where 𝜔 is the circular natural frequency 
and 𝜙 the mode shapes. 
 

(𝐾 − 𝜆𝑀)𝜙 = 0 
 
This equation forms the basis for the generalized eigenproblem, where 𝜆 are the 
eigenvalues (with 𝜆 = 𝜔2) and 𝜙 are the eigenvectors (or mode shapes). 
 
Therefore, each eigenvalue and eigenvector represent a free vibration mode of the structure 
[ref]. The eigenvalue 𝜆𝑖 is related to the i-th natural frequency (in Hz) as follows 
 

𝑓𝑖 =
𝜔𝑖

2𝜋
=

√𝜆𝑖

2𝜋
 

 
Regarding the extraction of the eigenvalues and eigenvectors, the Lanczos method is used 
to solve (67) according to the Python scripts associated to the numerical bridge. 
 
 
Figure 6.5 demonstrates that the vibration modal solutions of an isotropic rectangular plate 
are based on sinusoidal functions. These functions can be even [cosine: f(-x) = f(x) ∀x] or 
odd [sine: f(-x) = - f(x) ∀x], leading to a spatial symmetry or asymmetry regarding the 
center of the plate in both x and y dimensions. This spatial property has an impact on the 
corresponding eigenvalues and hence on the modes of vibration represented by the 
corresponding eigenvectors. 
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Figure 6.5 The first 20 natural frequencies and mass-normalized mode shapes using a scaling factor of 35. 
 

6.3.2 Natural frequencies and EMPFs 

 
The effective mass participation factor (EMPF) represents quantity of the system mass Two 
translations are allowed in this study: one in the longitudinal x direction and the other in 
the vertical y direction. The direction dependent EMPF provides a measure of the energy 
contained within each resonant mode. As a result, the greater the EMPF of a mode, the 
greater its contribution to the dynamic response. EMPF is noted as 𝚪𝑖,𝑗 and can be 
expressed as follows:  
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𝚪𝑖,𝑗 =
𝜙𝑗

𝑇𝑀𝑟𝑖

𝜙𝑗
𝑇𝑀𝜙𝑗

∗ 100 [%] 

 
𝚪𝑖,𝑗 – is the EMPF of the j-th mode for the translation i, 
(It depends on both the direction of the translation and the normalization method used for 
mode shapes) 
𝑀 – is the mass matrix 
𝜙𝑗 – is the eigenvector of the j-th mode, where 𝜙𝑗

𝑇𝑀𝜙𝑗 
𝑟𝑖 – influence vector which represents the displacement resulting from a static unit 
ground displacements in the direction i of the translation. 
 
 

Table 6.5 The first 20 natural frequencies with their corresponding EMPF 

 
 

Mode 𝑗 

 
Natural 

frequency 
[Hz] 

 
Description of 
the k-th mode 

shape 

 Effective Mass 
Participation Factor 

(EMPF), 𝚪 
𝚪𝑥 [%] 𝚪𝑦 [%] 

1 1.223 1st LT mode Asymmetric ~100 5.42E-23 
2 15.677 1st VB mode Symmetric 1.42E-06 9.16E-22 
3 19.967 Asymmetric 7.63E-23 71.59344 
4 48.233 2nd VB mode Symmetric 1.31E-06 2.38E-23 
5 56.425 Asymmetric 5.43E-25 0.151791 
6 95.478 1st LT mode Symmetric 1.90E-24 0.002314 
7 98.775 3rd VB mode Symmetric 1.69E-08 1.46E-24 
8 110.171 Asymmetric 4.58E-29 12.24757 
9 164.994 4th VB mode Symmetric 3.93E-08 7.94E-26 
10 178.348 Asymmetric 6.00E-27 0.12413 
11 190.939 2nd LT mode Asymmetric 5.68E-08 3.24E-28 
12 244.216 5th VB mode Symmetric 1.32E-09 1.15E-28 
13 258.112 Asymmetric 9.77E-28 4.92399 
14 286.378 2nd LT mode Symmetric 1.97E-26 0.000372 
15 333.864 6th VB mode Symmetric 4.52E-09 9.14E-27 
16 346.894 Asymmetric 4.79E-28 0.109547 
17 381.812 2nd LT mode Asymmetric 2.08E-08 9.16E-27 
18 431.704 7th VB mode Symmetric 2.22E-10 2.78E-26 
19 442.357 Asymmetric 1.54E-28 2.801701 
20 477.238 3rd LT mode Symmetric 1.12E-26 0.002224 

SUM ~100% ~91.95708% 
LT – Longitudinal Translation 
VB – Vertical Bending 
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6.4 Time history analysis 

The numerical bridge is subjected to transient loads induced by a moving vehicle. The 
implicit Newmark integration scheme is used to solve the differential equation of dynamic 
system. The final dynamic response of the structure is then represented by sum of important 
eigenmodes of the system using the mode superposition approach. The number of 
significant eigenmodes used to represent the system should be carefully chosen, since the 
number of eigenmodes influences the program’s running time and results.  
 
In this section, the implicit Newmark integration schema is firstly presented. Secondly, the 
choice of the number of significant eigenmodes is discussed based on their corresponding 
EMPF values. Lastly, described as well as the moving load modelling.  

6.4.1 Implicit Newmark integration schema 

In time-history or transient analysis, direct time integration methods are frequently used to 
solve the time-dependent differential equations of motion (70) representative in structural 
vibration. 
 
 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑢(𝑡) = 𝑓(𝑡) 
 
 
This equation corresponds to the general governing equation system for a damped 
structure, where 𝑓(𝑡) is vector of transient loads, 𝑢(𝑡), �̇�(𝑡), 𝑎𝑛𝑑 �̈�(𝑡) are the vectors of 
the generalized displacement, velocity, and acceleration, respectively. 𝑀, 𝐾 and 𝐶 are the 
global mass, stiffens and damping matrices, respectively. For this case study, C is 
approximated by a proportional damping as (76). 
 
In direct integration, the Eq. (70) is integrated using a step-by-step procedure that consists 
of discretizing time domain in a set of discrete time interval, Δ𝑡. The term “direct” means 

that prior to the numerical integration, no transformation of (70) into different forms is 
carried out [33]. Direct integration methods can be categorized into explicit and implicit 
schemes. 
 
Explicit schemes compute the solution 𝑢𝑡+𝛥𝑡  at time 𝑡 + 𝛥𝑡 obtained by using (70) at time 
𝑡, whereas implicit schemes calculate the solution 𝑢𝑡+𝛥𝑡 at time 𝑡 + 𝛥𝑡 by using (70) at 
time 𝑡 + 𝛥𝑡. In other words, explicit methods need a complete historical information of 𝑢, 
�̇� and �̈� at time 𝑡 and before as (71), while implicit methods require knowledge of �̇� and 
�̈� at time 𝑡 + 𝛥𝑡 as (72) 
 

𝑈𝑡+𝛥𝑡 = 𝑓(𝑈𝑡, �̇�𝑡, �̈�𝑡, 𝑈𝑡−1, … ) 
 

𝑈𝑡+𝛥𝑡 = 𝑓( �̇�𝑡+∆𝑡, �̈�𝑡+∆𝑡, 𝑈𝑡, … ) 
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According to Noh et al. [34]explicit methods are usually conditionally stable and are used 
with very small-time steps for short duration, while for structural vibration solutions mostly 
implicit schemes are used with larger time steps. In this thesis, the implicit Newark 
integration schema is used to approximate the solution for the numerical bridge. This 
method is given by, 
 

𝑈𝑡+𝛥𝑡 =  𝑈𝑡 + �̇�𝑡∆𝑡 + [(
1

2
− �̂�) �̈�𝑡 + �̂��̈�𝑡+∆𝑡] ∆𝑡2 

 
�̇�𝑡+∆𝑡 = �̇�𝑡 + [(1 − 𝛾)�̈�𝑡 + 𝛾�̈�𝑡+∆𝑡]∆𝑡 

 
Where �̂� and 𝛾 are parameters to control the integration stability and accuracy. A value of 
𝛾 =

1

2
 is set for avoiding artificial damping and a value of �̂� =

1

6
 is taken since the variation 

of the acceleration of mass in motion is assumed to be linear. The entire Newmark 
algorithm is presented in Figure 6.6 which has been modified from FIG in [33]. Note that 
they used 𝛼 and 𝛿 instead of �̂� and 𝛾, respectively.  
 
Therefore, the velocity field determined from a definite integral of acceleration will be 
quadratic and hence the displacements field will present a cubic form as shown in Figure 
6.7 
 

 
Figure 6.6 Implicit Newmark algorithm, modified from [33] 
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Figure 6.7 Motion assuming a linear variation of acceleration extracted from [35] 

 
The Newmark’s method using 𝛾 =

1

2
 and  �̂� =

1

6
is called Newark’s linear acceleration method 

and it is conditionally stable [33].  

 
Figure 6.8 Stability conditions for implicit Newmark method, extracted from [35] 

 
It can be deduced from Figure 6.8 that the Newmark-�̂� method is stable if the time step Δ𝑡 to 
solve the differential equations of motion fulfils the following condition: 
 

∆𝑡 ≤
1

𝜔𝑚𝑎𝑥
√

4

(𝛾 +
1
2)2 − 4𝛽

 

 
where 𝜔𝑚𝑎𝑥 is the maximum angular frequency among the modes of vibration that has 
been considered for the calculation. 
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6.4.2 Mode superposition technique 

In this study, the mode superposition technique consists of selecting the most representative 
modes that enables us to reproduce an accurate dynamic behavior of the structure. Do not 
confuse this technique with the mode superposition method that is used to solve the 
equilibrium equations instead of the direct integration schemes. 
 
In this case study, only vertical bending modes are considered, thus the longitudinal modes 
1, 6, 11, 14, 17 and 20 are disregarded (see Figure 6.5). As described in earlier, each k-th 
bending mode can be either symmetric or asymmetric. The number of bending modes to 
be considered will depend on their cumulative EMPF. Therefore, the 1st in-plane bending 
mode of vibration corresponding to modes 2 and 3 has a cumulative EMPF of 71.59% (see 
Table 6.6 ). The 1st and 2nd bending corresponding to the pairs of modes (2,3) and (4,5), 
respectively, have a similar cumulative EMPF of about 71.75%. The 1st, 2nd and 3rd 
bending modes have a cumulative EMPF of 83.99%. The first four bending modes have a 
cumulative EMPF of 84.12%; the first five BM modes, a cumulative EMPF of 89.04%; the 
six BM modes, a cumulative EMPF of 89.15%; and lastly the first seven BM modes, a 
cumulative EMPF of 91.95%. These values are summarized in Table 
 

Table 6.6 Cumulative EMPF for different group of bending modes 

The first k-th 
bending modes  

“Individual” bending modes  
 

Cumulative EMPF (%)  
 

1 2, 3 71.59 

2 2, 3, 4, 5 71.75 

3 2, 3, 4, 5, 7, 8 83.99 

4 2, 3, 4, 5, 7, 8, 9, 10 84.12 

5 2, 3, 4, 5, 7, 8, 9, 10, 12, 13  89.04 

6 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16  89.15 

7 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19  91.95 

 
Considering only the first two bending modes for the time-history analysis is not advisable 
since its cumulative EMPF (71.59%) is less than 80% [36] .Therefore, the first three 
bending modes or more can be considered as their corresponding cumulative EMF are 
found between 80% and 90%. As a first approximation, the first three bending modes are 
considered, that is, modes 2, 3, 4, 5, 7 and 8, based on reducing the computational cost. 
Moreover, once the damping ratios and the load speed are set, a new analysis is carried out 
to see if more modes are required for the time analysis based on the convergence of the 
maximum vertical displacements.  
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In this context, the time step for calculation is Δ𝑡=0.001s with 𝜔𝑚𝑎𝑥 = 𝜔8=692.24𝑟𝑎𝑑/𝑠 
corresponding to the 8th mode of vibration and by setting γ = 1/2 and �̂�= 1/6. On the other 
hand, to accurately reproduce a signal it must be sampled at more than twice the highest 
frequency component of the signal according to the Nyquist-Shannon sampling theorem 
[37]. Therefore, if the highest frequency is about 110.171 Hz (692.24rad/s), then the 
sampling rate should be more than 200Hz. Then, a sampling frequency of fs = 400Hz is 
considered to identify all the frequencies corresponding to the selected modes. The half of 
the sampling rate is then 200 Hz also known as the Nyquist frequency. 

6.4.3 Loading 

To perform a time-history analysis simulating traffic flow, a deterministic moving load is 
used. Moving loads are frequently used as an external excitation to predict the dynamic 
response of bridges and to detect damage. The moving load passes across every section of 
the bridge, and singularities in the response are discovered when it passes directly over the 
damaged zone [ref]. Data-processing methods such as the Hilbert Huang Transform can 
detect these singularities in the signal caused by vibrations created by the moving load 
(HHT). The passage of a vehicle is modelled as a moving load F with constant speed v in 
this case study, as shown in Figure 6.9. The weight of a standard truck of about 30 tons is 
considered. 

 
Figure 6.9 Loading in the form of a moving vertical force F with a constant speed v. 

 
 
In conclusion, the following parameters are considered for the time history analysis:  
- The 1st, 2nd, and 3rd bending modes are selected  
- The Rayleigh damping coefficients are α = 0.1654 and β = 5.4333e-6  
- The vehicle velocity is 10 m/s  
- A sampling frequency of fs = 400Hz, a time step for calculation of Δ𝑡=0.001s, a final 
time step Tf =2s and the number of time samples is 800.  
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6.5 Temperature simulation 

The numerical benchmark allows modelling the temperature and Young’s modulus 
relationship. For this study, the work by Yubo Jiao et al. [38] was assumed as a reference. 
The relationship between modulus of elasticity and temperature was given: 
 

𝐸𝑐 = −0.125𝑇 + 29.13 
𝑅2 = 0.9852  

 
However, for this thesis the 𝐸𝑐 = 35𝐺𝑃𝑎 is taken at reference temperature 20ºC. And the 
relationship is modified accordingly.  
 

𝐸𝑐 = −0.125𝑇 + 37.5 
 
 

 
Figure 6.10 The relationship between modulus of elasticity of a concrete and temperature 

 
 
 
 
 
 
 
 
 
 
 



 

45 

 

6.6 Results and discussion 

As it was stated earlier, the main objective of this thesis is to propose and test the 
methodology for damage detection in bridges that will be able to distinguish the real 
damage from the environmental changes. To simulate those conditions, it was decided to 
model a pseudo-continuous passing of the truck at 2 different temperatures at damaged and 
undamaged state.  
 
Therefore, the following scenarios for time history analysis were chosen:  
1. UND, T=-15°C, D0% 
2. UND, T=20°C, D0% 
3. DMG3, T=20°C, D90% 
4. DMG3, T=-15°C, D90% 
 
In Figure 6.11 shown recorded accelerations at S01 from simulated benchmark. All the 
other accelerations from other sensors are provided at Appendix A.   
 

 
Figure 6. 11 Recorded Y-accelerations at S01 

 

6.6.2 VMD 

In this section, VMD signal decomposition techniques with its own experimental 
parameters, are evaluated on a set of 24 time series obtained from six sensors, of which 12 
time series correspond to 2 damage scenarios for each group of damage and the 12 series 
correspond to the undamaged state.  
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For convenience, the vertical acceleration time series recorded in sensor S01 for the 
undamaged state at T=20°C is taken as a reference case, as shown in Figure 6.12. 
Therefore, all the experimental results obtained from each mode decomposition technique 
are related to the undamaged configuration and sensor S01.  
 
Moreover, since the IMFs reveal the frequency information contained in the original signal, 
the peaks in the Fourier spectrum of this signal gives a rough indication of the number of 
IMFs to be extracted from a particular signal decomposition technique. Therefore, the 
single-sided amplitude spectrum of the decomposed IMFs is also discussed in the following 
sections. Figure 6.13 represents Fourier spectrum of the original signal whose peaks 
represent the first three bending modes of vibration, including the asymmetric and 
symmetric modes 
 

 
Figure 6.12 Vertical time-history response for the undamaged state at T=20°C 

 

 
Figure 6.13 FFT applied to the original signal for the undamaged state at T=20°C, sensor S01 

 
Variational Mode Decomposition is implemented using standard VMD code provided by 
MATLAB. There are six parameters that must be set to apply VMD 𝜀𝑎, 𝜀𝑟 , 𝑂, 𝛼, 𝜏 𝑎𝑛𝑑 𝐾. 
𝜀𝑎 𝑎𝑛𝑑 𝜀𝑟 are absolute and relative tolerance respectively. In this case study the absolute 
tolerance is more restrictive than the relative tolerance, as in the implementation of 
MATLAB. Therefore, 𝜀𝑎 = 0.1 and 𝜀𝑟 = 10−5. High number of iterations 𝑂 = 100000 is 
set to stop the VMD only when relative tolerance is met.  
 
The penalty factor α corresponds to the reconstruction accuracy. The bigger the value of α 

is, the faster the attenuation is on both sides of the center frequency. It is mainly determined 
according to the principle of avoiding aliasing between mode functions and is generally 
1/6~2 times sampling frequency, 𝑓𝑠 = 400 𝐻𝑧 [39]. It is specific value should be 
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determined depending on the characteristics of the signal. Different values of the are tested 
in this section. 
The number of K must be determined in advance. However, there is no unified criterion or 
method to determine the value K so far. Shoujun Wu et al [39] divides into 3 categories the 
available methods to determine IMF number in VMD: (1) methods based on the center 
frequency observation, (2) methods based on threshold criteria, and (3) other methods. A 
high number of the K may cause the overlaps among the model central frequencies, 
whereas too small K may render the decomposition inadequate. Since the first three 
bending modes are considered in this case study, including asymmetric and symmetric 
modes, K should be equal or greater than six (K ≥ 6). 
 
The VMD implementation in MATLAB requires to select method to initialize central 
frequencies among the 3 options available:  
 

- 'Peaks' to initialize the central frequencies as the peak locations of the signal in 
the frequency domain (default). 

 
- 'Random' to initialize the central frequencies as random numbers distributed 

uniformly in the interval [0,0.5] cycles/sample. 
 

- 'Grid' to initialize the central frequencies as a uniformly sampled grid in the 
interval [0,0.5] cycles/sample. 

 
The main objective of this section is to properly decompose the signals using VMD, 
finding accurate parameters and a center frequency initialization method.  
 
Here below in the table are shown parameters that were established for each sensor 
signal. 
 

Table 6.7 VMD parameters for each sensor 

Parameters S01 S02 S03 S04 S05 S06 

Number of modes, K 6 5 6 6 5 6 

Relative tolerance, 𝜀𝑟 10−5 10−5 10−5 10−5 10−5 10−5 

Penalty factor, α 1000 1000 1000 1000 1000 1000 

Fidelity coefficient, 𝜏  0.1 0.1 0.1 0.1 0.1 0.1 

Absolute tolerance, 𝜀𝑎 
 

0.1 0.1 0.1 0.1 0.1 0.1 

Number of iterations,  𝑂 100000 100000 100000 100000 100000 100000 

The decomposed signal is shown in Figure 6.14 below 
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Figure 6.14 Y-acceleration signal of undamaged state from S01 at T=20°C and its VMD 
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The efficiency of the VMD method has been demonstrated. The algorithm always seeks to 
reconstruct the time series effectively with minimum error. The VMD method ensures no 
mixture of modes as well as the orthogonality of the transformation. Although, in this 
section is referred to the signal decomposition for the undamaged state at T=20°C in sensor 
S-01, the same procedure is performed for all sensors and compared to the damage 
scenarios. An in-depth study was done for every sensor, damage scenario and group of 
damage and the results can be found in Appendix B. This study revealed that the signal 
decomposition is similar for every damage scenario using the same VMD parameters as in 
sensor S01: 𝜀𝑎 = 0.1, 𝜀𝑟 = 10−5, 𝜏=0.1, 𝜀𝑟 = 10−5 and O=100000, with exception of the 
number of modes K, which varies from one sensor to another as shown in Table 6.7. 
 
K is found to be 6 for sensor S01, S03, S04 and S06 which are located at ¼ from the spring 
supports, whereas K is established as 5 for sensors S02 and S05 which are placed at the 
middle of the left span and right span, respectively. In these sensor signals the 2nd bending 
mode is far less than in the rest of the sensors, which causes in a mix of the asymmetric ans 
symmetric modes as shown in the IMF3 in Figure 6.15 below.  
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Figure 6.15  Y-acceleration signal of undamaged state from S02 at T=20°C and its VMD 

 
 
The mode mixing could have been avoided by increasing the number of modes K and 
adjusting some other parameters. However, different spurious modes may uncontrollably 
appear during the signal decomposition for every damage scenario, resulting in an 
inadequate comparison of the results. Therefore, a lower order regarding of the expected 
IMFs is considered for sensors S02 and S05 to accurately decompose the raw vibration 
signal, that is, K=5. 

6.6.3 Application of Hilbert Transform 

In this section, the Hilbert transform is applied to study the characteristics of different time-
varying parameters obtained from scenarios and to obtain damage sensitive features. In 
particular, the goal is to examine each IMF and obtain instantaneous frequency as functions 
of time. It can be achieved by applying the Hilbert Transform (HT) to each IMF extracted 
from the application of the VMD method.  
 
The instantaneous frequencies 𝑓𝑘(𝑡) are obtained by applying the Hilbert Transform to the 
k physically meaningful IMFs. The Hilbert spectrum relate 𝑓𝑘(𝑡) with time as the energy 
can been contoured on the frequency-time plane. Therefore, since structural damages may 
cause changes in the dynamic parameters, such as the energy (the square of the amplitude 
of the signal), then the Hilbert spectrum may reveal these damage-induced changes.  
 
MATLAB® [129] uses the ℎ𝑖𝑙𝑏𝑒𝑟𝑡 function to compute the Hilbert transform for a real 
time series data, 𝑥(𝑡). Hence, running 𝑧(𝑡) = ℎ𝑖𝑙𝑏𝑒𝑟𝑡(𝑥(𝑡)) will return a complex 
analytical signal 𝑧(𝑡), where the real part of 𝑧(𝑡) is the original real data, 𝑥(𝑡) =  𝑅𝑒(𝑧(𝑡)), 
and the imaginary part is the actual Hilbert transform, 𝐻[𝑥(𝑡)]  =  𝐼𝑚(𝑧(𝑡)). On the other 
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hand, MATLAB® uses the ℎℎ𝑡 function to compute the Hilbert-Huang transform for 
intrinsic mode functions (IMFs). Therefore, for a IMF with a sample length of 𝑚 and a 
sampling frequency of 𝐹𝑠, running ℎℎ𝑡(𝐼𝑀𝐹(𝑡), 𝐹𝑠) will return the Hilbert spectrum (HS), 
the instantaneous frequencies (in Hz), 𝑖𝑚𝑓𝑖𝑛𝑠𝑓, and the instantaneous energies (in 
(measured unit)2), 𝑖𝑚𝑓𝑖𝑛𝑠𝑒, having the same sample length 𝑚 than the IMF. However, if 
the instantaneous frequency 𝑓𝑘(𝑡) is noted here as 𝑖𝑛𝑠𝑡𝑎𝑓𝑟𝑒𝑞, will be a vector of length 
𝑚 − 1. When plotting 𝑖𝑛𝑠𝑡𝑎𝑓𝑟𝑒𝑞 with time, its values can be located at the middle of each 
time interval, that is, at 𝑡𝑗+ 𝑡𝑗+1

2
. Consequently, by a linear interpolation of the 𝑖𝑛𝑠𝑡𝑎𝑓𝑟𝑒𝑞 

values, 𝑖𝑚𝑠𝑖𝑛𝑓 values are obtained and located at the exact time step 𝑡𝑗 and using the first 
and last 𝑖𝑛𝑠𝑡𝑎𝑓𝑟𝑒𝑞 values at 𝑡0 and 𝑡𝑚, respectively. Therefore, both 𝑖𝑚𝑓𝑠𝑖𝑛𝑓 and the 
input 𝐼𝑀𝐹(𝑡) have the same vector length. In this section, the 𝑖𝑚𝑓𝑠𝑖𝑛𝑓 values (not the 
𝑖𝑛𝑠𝑡𝑎𝑓𝑟𝑒𝑞 values) are used as damage-sensitive features along with the instantaneous 
amplitudes, 𝑖𝑚𝑓𝑖𝑛𝑠𝑒.  
 
As mentioned in the previous section, depending on the sensor location, the signal can be 
decomposed into a different number of IMFs. That is, six IMFs associated to sensors S01, 
S03, S04, S06 and five IMFs to sensors S02, and S05. Therefore, the results obtained from 
sensor S01 and S05 are discussed more in detail since they have different behaviour and 
are located on different sides regarding the center of gravity (GoG) of the bridge. However, 
a final graph is presented containing the results of the time-varying parameters for all 
sensors and damage states. 
 
Figure 6.16 illustrates the instantaneous frequency of the physically meaningful IMFs 
obtained from the undamaged condition of the bridge (upper part) and the damage 
scenarios (lower part), regarding the sensor S01. It can be noticed that no mode mixing has 
occurred and that IMF1, IMF2, IMF3, IMF4, IMF5 and IMF6 are clearly in 
synchronization in terms of frequency content, indicating that they are physically 
meaningful, representing the third asymmetric, third symmetric, second asymmetric, 
second symmetric, first asymmetric, and first symmetric vertical bending modes (VB), 
respectively. On the other hand, no significant difference is graphically observed between 
the undamaged and damage scenarios, however the temperature change can be clearly 
noticed.  From now on, the 3rd bending mode is referred as the “high”-frequency mode, 
the 2nd VB mode as the “intermediate”-frequency mode and the 1st VB mode as the “low”-
frequency mode. The terms “high”, “intermediate” and “low” are used in order to facilitate 

the understanding of the results but keeping in mind that the frequency values obtained 
from this numerical benchmark are much higher than the typical frequencies found in real 
bridges. 
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Figure 6.16 Instantaneous frequency for each scenario in sensor S-01. 
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Figure 6.17 Instantaneous frequency for each sensor (rows) and each scenario 

 
As it was noticed the boundary conditions, it was decided to take to concatenate the 
instantons frequencies an only consider in the interval 01.-1.5 sec as shown in figure below.   
 

 
Figure 6.18 Concatenated instantaneous frequencies for each scenario in sensor S-01. 

6.6.4 Application of PCA 

When PCA is applied to the data set, the first principal component (PC1) represents the 
factor that creates the greatest variance within the data set, the second principal component 
(PC2) represents the factor that creates the second greatest variance affecting the data, and 
so on. Soo et al. [27] suggested that to represent the effects of temperature variations in the 
PC1, the data set must be obtained from two extreme and opposite temperature conditions. 
Consequently, the extreme cases will be represented on opposite sides in the PC1 graph, 
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showing negative and positive values of the variance if the data set is standardized. 
Therefore, the other principal components will represent other minor factors affecting the 
data set such as structural damages.  
 
The PCA methodology to filter the temperature effects affecting the vibration parameters 
can be divided into eight main steps. Figure 6.19 shown the flow chart of the proposed 
method applied to the numerical benchmark.  
 
The first step consists of defining the baseline based on two extreme and opposite 
temperature conditions. In this case study, these temperatures are taken at -30ºC and 70ºC. 
For a better performance of the proposed method, the baseline will consist of 8extreme 
cases including five cases at low temperatures [-30ºC, -29ºC, -28ºC, -27ºC,] and five cases 
at high temperatures [66ºC, 67ºC, 68ºC, 69ºC and 70ºC].  
 
The second step consists of collecting the damage-sensitive features associated to the 
undamaged structure under the 8 extreme temperature cases. The vibration features can be 
either the natural frequencies (NF) of the bridge or the instantaneous frequencies (if) of the 
IMFs extracted from VMD.  
 
The third step consists of creating the “baseline matrix” of the undamaged structure, noted 
as B, for each damage-sensitive feature. This matrix consists of n rows that indicate the 
number of extreme temperature cases (n=8) and m columns representing the number of 
modes from which the damage feature has been extracted. The number of m varies from 
one damage-sensitive feature to another.  
 
The fourth step consists of adding a new observation to the baseline. That is, adding a 
new row to the matrix B, resulting in a final matrix Z (n+1 x m), which is referred as “case 

matrix”. Note that this new observation can be obtained at any temperature. On the other 

hand, this new observation can be obtained either from the undamaged condition of the 
structure or any other damage scenario.  
 
The fifth step consists of the application of PCA to the matrix Z. However, matrix Z first 
should be normalized to zero mean and unit variance. Then, the T-scores associated with 
the principal components can be obtained.  
 
The sixth step consists of plotting the T-scores of every principal component for each 
study case.  
 
The seventh step consists of analysing PCs. If there are PC that show the temperature 
effects, they are disregarded.  
 
The eighth step consists of applying inverse PCA to remaining PCs. Moreover, the 
resulting matrix should be back scaled with to have meaningful damage sensitive features.  
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The last step consists of repeating procedures 4 to 8 for a new observation if the same 
damage sensitive feature is studied. In case of switching to a different vibration feature, 
steps 2 to 8 are repeated. 
 

 
Figure 6.19 Flow chart of the PCA based filtering method 

 
The basic data set for typical PCA is a 2-D matrix, 𝑋𝑛,𝑚, consisting of n observations (e.g., 
temperature variability) and m measured variables (e.g., modes). The correlation between 
these variables is examined using the standard PCA method. However, because the 
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observed variables (e.g., instantaneous frequencies) are continuous in time in this case 
study, a third dimension, k is added resulting 𝑋𝑛,𝑚,𝑘. 
  
In this case study, correlations between a particular measured variable (e.g., IF) obtained 
for each IMF m and several temperature observations n, are analysed. Therefore, each time 
sample and each sensor are treated independently. As an illustration, Figure 6.20 shows 
the unfolding in time samples of the data set corresponding to a sensor resulting in a 2-D 
data matrix, 𝑋𝑛,𝑚,𝑘 
 

 
Figure 6.20 Unfolding of PCA matrix for a sensor 

 
Moreover, a fourth dimension, l, must be added in the data matrix when various sensors 
are examined. As a result, a four-dimensional data matrix 𝑋𝑛,𝑚,𝑘,𝑙 with a high number of 
connected variables is created, as illustrated in Figure  
 

 
Figure 6.21 Complete data matrix for PCA 

 
On one hand, the number of observations is n = 9 corresponding to the 8 extreme cases 
observations to create the baseline plus one new observation. On the other hand, the 
number of modes m represents the number of the IMFs in which the original signal has 
been decomposed. As seen in the previous chapter, the number of the IMFs m varies from 
one sensor to another: m=6 for sensors S01, S03, S04 and S06, and m=5 for sensors S02 
and S05. As a remainder, the instantaneous modal parameters were obtained for the interval 
0.1-1.5 seconds and an output time-step size of Δt = 0.0025 seconds (equivalent to a 
sampling frequency of 400Hz) was selected to capture the first three bending modes of 
vibration, hence dimension k = 560. The vertical acceleration response obtained for any 
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temperature condition has been decomposed by means of the VMD-based method with the 
following parameters: 𝛼 = 1000 𝜀𝑎 = 0.1, 𝜀𝑟 = 10−5, 𝜏=0.1, 𝜀𝑟 = 10−5 and O=100000.  
 
In the following sections, the results for the undamaged cases and damage cases 
corresponding to scenarios at temperatures of -15ºC and 20ºC are presented. Moreover, to 
create the baseline, four extreme cases at low temperatures around -30ºC (blue dots) and 
four extreme cases at high temperatures around 70ºC (red dots) are considered. 
Furthermore, each scenario case under consideration is represented as black dots.  
 
The instantaneous frequency 𝑥𝑘(t) of each IMF has been determined earlier. illustrates the 
6 components for four scenario cases at at of -15ºC and 20ºC (from top to bottom). 
Furthermore, it can be noted that the magnitude of the observations in the PC1 is much 
larger than that in the PC2 for all four scenarios. 
 
The motioned cases (black dots) move from the coldest temperature limit (blue dots) to the 
hottest temperature limit (red dots) when increasing temperature.  
 
 

 
Figure 6.22   PCA of  UND T=-15°C, D0%, S01 (black dots); blue dots – extreme negative temperatures 

( -30°C, -29°C, -28°C, -27°C); red dots – extreme positive temprestures (67°C, 68°C, 69°C, 70°C) 
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Figure 6.23 PCA of  UND T=20°C, D0%, S01 (black dots); blue dots – extreme negative temperatures 

( -30°C, -29°C, -28°C, -27°C); red dots – extreme positive temprestures (67°C, 68°C, 69°C, 70°C) 

 
Figure 6.24 PCA of  DMG3, T=20°C, D90%, S01 (black dots); blue dots – extreme negative temperatures 

( -30°C, -29°C, -28°C, -27°C); red dots – extreme positive temprestures (67°C, 68°C, 69°C, 70°C) 
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Figure 6.25 PCA of  DMG3, T=-15°C, D90%, S01 (black dots); blue dots – extreme negative temperatures 

( -30°C, -29°C, -28°C, -27°C); red dots – extreme positive temprestures (67°C, 68°C, 69°C, 70°C) 
 
As can be seen from Figures 6.22-6.25 all PC 1 are related to the temperature, moreover 
they exhibit highest variance in the data. As scenarios under the consideration are at -15°C 
and 20°C they both fall between extreme cases both in damaged and undamaged cases. 
Thus, making it clear that the 1st PC is in fact temperature related.  
 
Moreover, it important to note that the PC2 can reveal some changes in the structure 
response as well. If two cases of damaged and undamaged at T= 20°C are compared, we 
can see the difference in PC2.  
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Figure 6.26 Comparison of the PC2 

(a) UND T=20°C, D0%, S01 (black dots); blue dots – extreme negative temperatures ( -30°C, -29°C, -
28°C, -27°C); red dots – extreme positive temprestures (67°C, 68°C, 69°C, 70°C)  

(b) DMG3, T=20°C, D90%, S01 (black dots); blue dots – extreme negative temperatures 
( -30°C, -29°C, -28°C, -27°C); red dots – extreme positive temprestures (67°C, 68°C, 69°C, 70°C) 

 
As a next step, the damage sensitive features (instantaneous frequencies) are reconstructed 
using 5 last Principal Components (from PC2 to PC6). It worth noting that the 
reconstructed data should be rescaled to have a physical meaning.  
 
In the Figure 6.27 below, the IF from all scenarios at S01 is shown before and after 
application of PCA dimensionality reduction. It is worth noting that IF at 20°C had a slight 
change in their magnitude as it can be seen from their difference. However, IF at -15°C 
have shifted up >6 Hz.  
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Figure 6.27 Instantaneous Frequencies before and after the application of PCA dimensionality reduction 

(all scenarios, S01) 
 
All the other IF from other sensors are provided in the Appendix D 
 
Figure shows the variation of the instanternous frequencies at each damage scenorio from 
S01. As it can be observed, although PCA dimensinality reduction was applied at high 
frequencies (~48 Hz, ~56.5 Hz, ~98.7Hz, ~110 Hz)   the difference between damage and 
temprature scenarios in their value is visibly clear. And the application of the cluster 
analysis to such data will be not appropriate, as the goal of the methodoly is the distinguish 
betweem damaged and undamaged states. Moreover, signals from S02 and S05 were 
desregarded as well, as the mode mixing problem that was described earlier created data 
mixing after the PCA analysis, making instantenous frequencies unreliable.  
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In conclusion, only the first instanetous frequencies (~15.6 Hz) from S01, S03, S04 and 
S06 were considered for the clustering algorithm.  
 
 

 
Figure 6.28 Variation of the Instantaneous Frequencies of different scenarios related to S01 

 
Other IF from other variations from other sensors are provided in the Appendix E 
 
 



 

63 

 

6.6.5 K-means 

Clustering methods, like K-means, are unsupervised machine learning algorithms. They do 
not require the definition of the reference or training data unlike supervised learning 
algorithms. Instead, they have capability to ‘understand’ a data set’s structure by trying to 

find the most compact and separated set of clusters [7].  
 
Before the application of the K-means algorithm, the data must be reduced in more generic 
types and less voluminous information in contrast with classical data used in SHM. The 
extracted damage sensitive features, in this case instantaneous frequency of the four 
scenarios with total time 5.6 seconds are converted into symbolic data (interquartile 
interval). The total number of points were 2240. A symbolic data length L=112 points was 
considered and respective boxplot for each sensor was constructed. 
 
Figure 6.29 below illustrates 1st instantaneous frequency for all scenarios and 
corresponding boxplot which represents symbolic data. 
 

 
Figure 6.29 1st instantaneous frequency of all scenarios for S01 and corresponding box plot 

 
It should be noted K-means algorithm has it is own advantages and disadvantages [40] 
 

Table 6.8 Advantages and disadvantages of K-means 

Advantages Disadvantages 

Relatively simple to implement Choosing k-manually 

Scales to large data sets Being dependent on initial values 

Guarantees convergence Clustering data of varying sizes and 
density 

Can warm-start the positions of centroids Clusering outliers 
Easily adapts to new examples Scaling with number of dimensions 

Genralizes to clusters of different shapes 
and sizes such as elliptical clusters  
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The second step k-means algorithm is to determine the number of the K cluster which best 
describes the data. The silhouette index (SIL) was introduced earlier. Highest number of 
SIL corresponding to K clusters best describes the condition of the structure. It is performed 
for each moving window.  
 
Moreover, in the implementation of the K-means algorithm in the MATLAB, the suitable 
method ‘Start’ to determine the initial clusters centroid positions (or seeds) should be set 
among the options [41]: 
 

‘cluster’ 

Perform a preliminary clustering phase on a random 10% 
subsample of X when the number of observations in the subsample 
is greater than k. This preliminary phase is itself initialized 
using 'sample'. If the number of observations in the random 10% 
subsample is less than k, then the software selects k observations 
from X at random. 

'plus' (default) Select k seeds by implementing the k-means++ algorithm for 
cluster center initialization. 

'sample' Select k observations from X at random. 

‘uniform’ Select k points uniformly at random from the range of X. Not valid 
with the Hamming distance. 

‘numeric matrix’ 

k-by-p matrix of centroid starting locations. The rows 
of Start correspond to seeds. The software infers k from the first 
dimension of Start, so you can pass in [] for k. 
 

‘numeric array’ 

k-by-p-by-r array of centroid starting locations. The rows of each 
page correspond to seeds. The third dimension invokes replication 
of the clustering routine. Page j contains the set of seeds for 
replicate j. The software infers the number of replicates (specified 
by the 'Replicates' name-value pair argument) from the size of the 
third dimension. 

 
For this study case 'sample' was found as a consistent and appropriate method for the initial 
cluster centroid positions. 
 
As explained methodology in Chapter 5.3 damage detection method is based on the value 
of the DC, which is difference between clusters. To calculate DC, the clusters of moving 
window must be defined. In this work the size of windows were selected as S=5 symbolic 
data, each comprising L=112 points of the damage sensitive feature.  Figure 30 shows a 
sequence of mobile windows.  
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Figure 6.30 A sequence of mobile windows 

 
The total number symbolic data equals 20 and the number of mobile windows as well DC 
are 16. 
 

 
Figure 6.31 DC values obtained for each time window 

 
It should be noted that if the time window increases, then we obtain higher sensitivity to 
damage detection, but higher probability of false detections. Moreover, If the samples 
within a time window decreases, it is possible to detect the damage earlier, but the 
probability of false detections increases (there is less sensitivity to damage detection). 
Therefore, it is necessary to find a balance among the 2 objectives: detect damage as soon 
as possible but get high confidence on the detection. 
 
After the DC values are obtained, they must be statistically tested by the Confidence 
Boundary test. CB is defined for each time window containing 5 values of DC. The formula 
of CB is given at Chapter 5.3.  
 
Finally, using DC and CB values the original detection index, DI is calculated. When DI 
value is negative or zero there is no damage in the structure, and while it is positive it 
indicates to the damage in the structure.  
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Figure 6.32 K-means clustering on the S01 1st IF from different scenarios (Dashed line on the DI diagram 

– damage introduction).  
 
 
Figure 6.32 shows whole procedure for the IF (~15.6 Hz) from S01 for the damage 
scenarios. As  it can be seen that the clustering algorithm exactly detects damage when it 
crosses the scenarios between UND T=20°C D0% and DMG3 T=20°C D90% while 
temperature change between scenarios does not create positive DI value.  
 
One of the biggest distadcantages of the k-means algorithm is that is dependent on initial 
values. As the cluster centroids assigned randomly, it may create different output each 
time the algorithm runs. However, in this study case, this property of the algorithms has 
been founds useful to localize the damage. Specifically, k-means gives consistent output 
to the data closet thos the damage -S01, as it can be seen in the 4 tials (experiments) with 
DI index in Figure 6.33 below.  

 
Figure 6.33 4 Experiments with DI for S01 (dashed line- damage introduction) 
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In the case S03, which is the second closest to the damage, K-means has early damage 
detection in all cases. However, the DI also shows the damage introduction at the correct 
place at DI diagram.  
 

 
Figure 6.34 Experiments with DI for S03 (dashed line- damage introduction) 

 
What concerns top DI for sensors S04 and S06, they both provided inconsistent results. 
With thigh randomness in their output. Early and false detection exist in their results.   
 

 
Figure 6.35 Experiments with DI for S04 (dashed line- damage introduction) 
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Figure 6.36 4 Experiments with DI for S06 (dashed line- damage introduction) 

 
As a conclusion it can be said that the damage is located somewhere between the location 
of the S01 and S03, which is correct as the damage was introduced at the middle of the left 
span of the numerical bridge.  
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7 CONCLUSIONS 

7.1 Summary 

 
The research work presented in this thesis is dedicated to proposing testing the 
methodology for damage detection in bridges under traffic loading and environmental 
variability. Moreover, this study treats both operational and environmental effects 
comprehensively by modeling different damage and temperature scenarios.  
  
Since the damage methodology presented in this thesis is based on time series data 
collected from a FE model, accurate information is required to build a robust model. The 
geometry and material properties of the bridge superstructure were modified from those 
established by Tatsis et al. [9], assuming a bridge height of 0.6m, a span length of 10m, 
and that it was made of reinforced concrete with E=35 MPa at T=20°C. 
 
Very small damping (0.1% for the 1st bending frequency) is assumed since more realistic 
damping makes the bridge hardly vibrates and little information is extracted. The load 
speed-mesh size ratio is chosen to avoid as much as possible the appearance of forcing 
frequencies lower than the Nyquist frequency of 200Hz. Hence, a mesh size of 0.05m x 
0.05m and a speed of 10m/s are considered.  
  
To test the methodology for the numerical bridge 4 scenarios were assumed: 

- 2 scenarios at the undamaged state of the bridge at T=-15°C and 20°C.  
- 2 scenarios with damage (0.05m x 0.3 m) at the left mid-span with 90% stiffness 

reduction at T=-15°C and 20°C. 
 
Due to the non-transient nature of recorded data, the Fast Fourier Transform (FFT) is not 
applicable. Instead, vertical acceleration measurements obtained from six sensors spaced 
along the bridge-like structure were analysed using the Hilbert–Huang transform (HHT). 
  
The first step of the HHT-based method is the decomposition of the signal into Intrinsic 
Mode Functions (IMF) by applying of the Vibrational Mode Decomposition (VMD. The 
VMD method ensures no mixture of modes as well as the orthogonality of the 
transformation. Moreover, the signal decomposition is similar for every damage for all 
scenarios using always the same VMD: 𝛼 = 1000 𝜀𝑎 = 0.1, 𝜀𝑟 = 10−5, 𝜏=0.1, 𝜀𝑟 = 10−5 
and O=100000, with exception of the number of modes K, taken as six for sensors S01, 
S03, S04, and S06; as five for sensors S02 and S05. This selection depends on the number 
of the predominant bending modes for a particular sensor location. 
 
In the second step of the HHT-based method, the Hilbert Transform is then used to extract 
instantaneous frequencies, which are the damage-sensitive features.  
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To remove the temperature effects from the damage-sensitive features, PCA 
dimensionality reduction analysis was applied by the method proposed by Soo et al. [8] 
and Mujica, et al. [28]. The method consists of defining the baseline to the data matrix with 
the extreme temperature cases (30ºC and 70ºC) and adding a new observation for each 
scenario. It was observed that 1st Principal Component with the highest variance in the 
data matrix was responsible for the temperature-related effects. As a result, the damage-
sensitive features were reconstructed by removing 1st PC. 
  
Finally, to detect and localize the damage, a machine learning algorithm (K-means) is 
applied. Using the symbolic data to reduce the amount of data, a technique of moving the 
time window is applied to damage-sensitive features. A confidence boundary (CB) was 
deployed to test DC values for each window and detection index (DI) is defined to give a 
result with high confidence. 
 
Results have shown that K-means in combination with PCA dimensionality reduction can 
identify and localizing damages. The methodology is very effective and reliable in the field 
of bridge structural health monitoring under both traffic-induced loads and temperature 
changes. 

7.2 Proposals for future research 

Further investigation of damage detection systems under operational and environmental 
variability is one of this thesis's potential study areas. The proposed methodology can be 
validated on the real structure, given the fact that both damaged and undamaged data is 
available.  
 
In this work, the environmental effects were eliminated from the structure’s response by 
PCA dimensionality reduction, specifically creating a baseline data with extreme 
temperature cases. Although it was proven to effective at the low instantaneous 
frequencies, in the future it can be improved for high instantaneous frequencies as well. 
Moreover, it is worth considering developing a completely new methodology without the 
baseline data, as it computationally expensive. 
 
Finally, the higher levels of the damage assessment can be reached. In this study, the 
capability of the K-means algorithms to detect and localize the damage was shown. The 
damage type, extent and prediction could be achieved by examining machine learning 
algorithms like Neural network (NN) and Support-Vector Machine (SVM). 
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APPENDIX 

Appendix A  
 
The appendix contains Y-accelerations from all six sensors of four case scenarios.  
 
 
Appendix B 
 
The appendix contains Vibrational Mode Decomposition (VMD) of the recorded signals 
from all 6 sensor of four case scenarios. 
 
 
Appendix C 
 
The appendix contains Principal Component Analysis of each case scenario.  
Red dots represent extreme positive temperatures (67°C, 68°C, 69°C, 70°C) 
Blue dots represent extreme negative temperatures (-30°C, -29°C, -28°C  -27°C) 
Black dots represent the case study under the observation. 
 
 
Appendix D 
 
The appendix contains Instantaneous Frequencies (IF) before and after the application of 
PCA dimensionality reduction. Moreover, their difference is presented as well.  
 
 
Appendix E 
 
The appendix contains the variation of the Instantaneous Frequencies (IF) along the case 
scenarios.  
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Appendix B 

UND, T = -15°C, D0%  
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UND, T= 20°C, D0% 
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DMG3, T= -15°C, D90% 
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