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Summary

Nowadays, in conjunction with the tremendous demand for electricity which is
the backbone of the new civilization, humanity searches for renewable and sus-
tainable resources of electric energy and invests a lot of money to find modern
solutions. Thus, one of the innovative technologies in the new era is the power
pumped-storage hydroelectric plants underground. In addition to that, the superb
latest technologies not only generate electricity from these hydropower plants but
restore the excess energy that already exists on the grid. So, these hydropower
plants act as large batteries. Also, these plants have less cost, less environmental
harm, no greenhouse gases emission, and their life cycle has around 40-50 years.

The study reported a discussion about a hydropower plant located 300 meters
below the ground surface in the complexity of geological conditions, heterogeneity,
and anisotropy of the rock mass. the storage capacity of water that will be in the
upper and lower reservoirs reach around three and half million cubic meters. The
head between the upper and lower reservoirs will be around 450 m. The project
consists of around 6 km of underground tunnels. and two caverns that are 97m
long, 18 meters wide, and 27 meters high.

The purpose of the thesis is a scope on back-analysis of a huge underground
caverns excavation of hydroelectric plant and interpretation of monitoring data.
This study is based on data provided by a monitoring system; in particular, the
displacements recorded by the extensometers and the forces provided by the in-
strumented tendons and bar anchors of the caverns are considered. In addition, a
time-dependent analysis is carried out to predict the performance of the rock mass
around the excavation contour, and the stability of the excavated structure over
time.

All the analyses using FEM, implemented in RS3 code (Rocscience,2021) which is an
efficient tool to deal with the high level of details and complexity of the stratigraphy.

The analysis is based on the latest geological model and the mapping information
that was obtained during excavation. Furthermore, the results are compared with
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the results received from FLAC3D code (Itasca,2020) with equivalent geomechani-
cally and in situ stress parameters.

Thanks to the process of the back-analysis and the evaluation of the performance
of the excavated structure, reached outcomes can be used as a handling tool in
prediction procedure to foretell the creep behavior, time dependence of the rock
mass, and the stability of the hydropower plant over the life cycle of the project.
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Chapter 1
Introduction

The thesis is a discussion related to the back analysis of huge underground caverns
belonging to a mega hydroelectric power plant. Moreover, a time-dependent analy-
sis was performed to predict the stability of the excavated structure within the life
cycle of the project and its long-term performance. The caverns were located in a
complex stratigraphy which is consisted of a variety of different basalt class rock
layers, faults, and pyroclastic layers.

The excavated structure consisted of two main caverns, the powerhouse and the
transfer hall. The powerhouse is 97 meters long 18 meters wide and 27 meters
high. the transfer hall is 76 meters long 15 meters wide and 19.5 meters high. the
underground watercourse of the whole hydropower plant consisted of 6 km total
length and the diameters varied between 4 and 5.5 m which distributed between
different parts.

Due to the complexity of geological conditions, heterogeneity, and anisotropy of
the rock mass, the data involved in the back analysis have been updated from rock
mass excavation response, the monitoring data, and the last modified geological
map.

All the analyses using FEM, implemented in RS3 code (Rocscience,2021) which
is an efficient tool to deal with the high level of details and complexity of the
stratigraphy.

In Chapter 2, the geological model and the lithology are illustrated in detail as the
rock mass classification; in addition, the state of stress, the rock mass parameters,
and a general overview of the project are reported. Chapter 3 describes the support
and monitoring design. The back analysis technical route, the constitutive model
and the parameters from the back analysis were explained in Chapter 4.

In Chapter 5, the numerical 3d models have been clarified in detail, simplifying
the geological model, model geometry, excavation stages. And different loads of
simulations are shown. Chapters 6 and 7, which represent the core of the thesis,
the results of the back analysis. Then, the time-dependent simulation is highlighted
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and the prediction method illustrated.



Chapter 2

Geological condition.

2.1 Description of study case

The study case is a hydroelectric power plant that is used to generate electricity
by converting the kinetic or potential energy of water in the upper reservoir to
the lower one through the water turbines. Moreover, the new innovation of the
hydroelectric power plants is analyzed that they are being used as large batteries to
restore the excess electric energy in the network by rising again the water from the
lower reservoir to the top one. So, the hydropower plant has more sustainability
compared to the ordinary electric generation methods, less environmental impact,
less cost and maintenance is affordable. On the other hand, the life cycle of these
hydro-power plants is around 40-50 years.

Principles of a pumped storage power plant

‘ Sub Station

pump-turbine) 4

P
Powershouse
(reversable
o

Figure 2.1: General scheme of the hydropower plant

ili-energy.com/why-pump-storage

3


ili-energy.com/why-pump-storage

Geological condition.

In our case, the upper and lower reservoir’s capacity is 3 million cubic meters.
The excavated structure consisted of two main caverns: the powerhouse and the
transfer hall. The powerhouse is 97 meters long 18, meters wide and 27 meters
high. The transfer hall is 76 meters long, 15 meters wide and 19.5 meters high.
The underground tunnels of the whole hydro-power plant consisted of 6 km total
length and the diameters ranged between 4 and 5.5 m .

Figure 2.2: Scheme of the excavated structure

2.2 Geological model

2.2.1 Lithology

The major part of the stratigraphy is basalt which is extrusive igneous (volcanic)
rock and the pyroclastic part which is formed from clastic material ejected from
volcanoes.

The lithology mainly consists of 3 rock categories including the bs-strong, bs-weak,
and pyroclastic layers according to the excavation and investigation borehole.The
lithology distribution in the area of the powerhouse is shown in Figure 2.3 , figure
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Geological condition.

2.4 | figure 2.5 | figure 2.6, figure 2.7.

The geological mapping of the upstream sidewall of Powerhouse
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Geological condition.

The geological mapping of layer VI of the Machine Hall
0
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Figure 2.5: Geological mapping of machine hall in the 6 layer

The geological mapping of Sump pit
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Figure 2.6: Geological mapping of machine hall in the 6 layer
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Figure 2.7: Geological map on the foundation of the machine hall
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Geological condition.

2.2.2 Geological structure.

Based on the latest geological information and mapping as shown in Figures 2.3 2.4
2.5 2.6 2.7. The zone where our structure is located consists of different intersecting
faults and different deformation digging zones. The detailed information of the
faults and deformation zones is shown in Table 2.1

The contour plot is shown in figure2.8 Based on the information of joints exposed
in the powerhouse.

Orientations
ID Dip / Direction

14 /7 151
83 / 335
85 / 015
85 / 265

333

Equal Angle
Lower Hemisphere
1148 Poles
231 Entries

Figure 2.8: The contour plot of joint sets

The following sets of dominant joints are observed:

1) 151°/ 14°, spacing 0.2-0.6m, flat rough-smooth, close-slightly open, extension
longer.

2) 335° / 83° spacing 0.2-0.4m, flat rough-smooth, slightly open, chlorination,
extension longer.

3) 015° / 85°, spacing 0.2-0.4m, flat rough, slightly open, chlorination, extension
longer.

4) 265° / 85°, spacing 0.2-0.4m, flat rough-smooth, slightly open, chlorination,
extension longer.



Geological condition.

Table 2.1: Summaries of faults and deformation zones

| | Azimuth(Deg) | | |
| No. DD | DA | Width(m) | Exposed section | Filling
f18 | 322-330 | 65-78 | 0.05-0.15 | Upstream gouge,breccia
PL 21.5-22.5
22 15-30 | 40-65 | 0.02-0.1 | normal Upstream gouge,
PR1.1-8.5
f22-1 | 10-20 | 50-60 | 0.08-0.1 | Upstream Rock debris,
PL4.5-11.0 gouge
£30 15-20 70-9 0.3-0.5 Upstream gouge,
PR17.0-19.5
31 5-10 70-80 0.3-0.5 Upstream gouge,
PR31.0-38.5
f46 15-25 | 60-70 | 0.05-0.15 | Upstream -
PR50.5-57.0
£50 | 270-280 | 70-80 | 0.01-0.05 | Upstream Gouge,
PL7.5-8.5
51 | 320-330 | 80-90 | 0.02-0.05 | Upstream Gouge,
PR48.0-49.0
55 | 340-350 | 80-90 | 0.01-0.02 | Downstraem Rock debris
PL 27.5-31.0
57 65-70 | 75-80 | 0.01-0.02 | Upstream Rock debris,
PR30.0-32.0 gouge
f62 | 100-110 | 60-70 | 0.01-0.02 | Downstraem Rock debris,
PR40.0-44.0 gouge
65 0-10 | 70-80 | 0.05-0.10 | NEP Rock debris,
PU 2.0-3.0 green mineral
f66 | 165-180 | 65-85 | 0.05-0.10 | Upstream Rock debris,
PR 8.0-10.0 green mineral
f67 | 350-360 | 80-85 | 0.05-0.10 | SEMH Rock debris,
PU 8.0-9.0 green mineral
69 30-40 | 55-60 | 0.005-0.01 | USMH Rock debris
PL 1.0-PR 2.0
f73 | 320-330 | 65-75 | 0.005-0.01 | Floor of Rock debris
Bnit2#
D1 | 160-200 | 8-15 | 0.10-0.50 | Upstream Rock debris
PR 56.95- 42.0,
D4 | 130-150 | 15-20 | 0.10-0.50 | Upstream Rock debris
PL10.0-34.8




Geological condition.

2.2.3 Rock classification.

The attribution of the rock mass area classification has been represented in table
2. Mainly classes of rock mass are divided between class 11T around 20%, class IV
around 70%, and class V around 10%.

Table 2.2: The proportion of each rock mass class

| | Fair(III) Poor(IV) Very Poor(V)

‘ Location ‘ area(m2) ‘ percentage ‘ area(m2) ‘ percentage ‘ area(m2) ‘ percentage
| USMH | 0 0% | 139.68 |  94% 9.6 6%

| DSMH | 694 | 58% | 4995 | 42% | 0 | 0%

| NEMH | 2142 | 18% | 8127 | 70% | 1468 | 12%

| SEMH | 0o | 0% | 9942 | 8% | 1795 | 15%

| Total | 9082 | 18% | 37032 | 74% | 4223 | 8%

The allocation of the rock mass classification that has been excavated is shown in
figure2.9.

USP

Vault

-

ol ’)l g = I’
o =" DSP
e e o () [
-y

bs-sfong_ pe. ]
| _h::wmic{ m -

be—wenk
i u

Legend [ Jeusmn |:|énm ' I oo v

Figure 2.9: Distribution of rock mass classification



Geological condition.

2.2.4 Geological Model

Based on the latest investigation of the powerhouse and the geological information,
the main rock formation is the bs-strong between the pyroclastic layers number 3,
6, and 9. The bs-weak is located below the pyroclastic layer number 9 as shown
in the figure2.10. In the end, a general overview related to the class v with the
excavated structure is shown in figure2.11

Updated geological model

Figure 2.11: Geological model of the powerhouse(class v)
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Geological condition.

2.3 In-situ stress

The in-situ stress used in the back analysis is the same as the design phase.The
vertical stress is assumed 10 MPa,ky = 1.5 and K} = 0.7.

The orientation of the major principal stress is approximately N11 °W, while the
direction of the minor principal stress is N79 °E.

Table 2.3: Magnitude and orientation of principal stress components.

‘ Stress ‘ Magnitude ‘ Dip ‘ Dip dir ‘

components | MPa [Deg] [Deg]
| 1 |15 | 0 | 349N |
| 2 1w | 9% | - |
| 3 | 7 0 | TN |

2.4 Suggested parameters for rock mass

The input parameters for the Hoek-Brown failure criterion of the rock mass are
illustrated in the table2.4. Laboratory tests have been taken to prove there is no
overestimation of the rock mass parameters. The GSI classification is correlated
to the updated version of the geological mapping and back analysis results. With
respect to the faults, the suggested geological parameters are shown in the table??.

Table 2.4: Hoek-Brown failure parameters data.

Lithology ‘ Rock classification ‘ UCS(MPa) ‘ GSI ‘ mi ‘

|

| bs-strong | 111 | 1013 | 45 | 25 |
| | 111 | 50.81 | 43 |25 |
| bsweak | v 39 |39 |20
| | IV | 166 | 18 |20 |
| pyroclastic | v | 88 | 34 |12

11



Geological condition.

Table 2.5: Input data for faults

‘ ‘ ‘ Mohr-coulomb parameters ‘
‘ fault zone ‘ Description ‘ ¢(MPa) ‘ 4(Deg) ‘

0.1 23
faults Filling :clayey basaltic breccia

12



Chapter 3

Support and monitoring
design

3.1 Support elements and monitoring devices

3.1.1 Rock bolt

A rock bolt or cable bolt consists of a bar inserted in a borehole that is drilled
into a soil or rock mass and anchored to it by means of a fixture (Windsor, 1992,
Windsor and Thompson, 1996). Fully grouted bolts comprise four elements: the
bar, the surrounding ground, the internal fixture to the borehole wall, and the
external fixture to the excavation surface. The main characteristic of fully grouted
bolts is that they only provide support action if the surrounding ground tries to
deform; thus, they are passive reinforcement systems (Tincelin and Fine, 1991)[1].
The ground conditions affect the rock bolt Length and bolt pattern. Several tests
like the pull-out test and torque test have to be done to determine the strength
and capacity of the bolts.

3.1.2 Bar anchors and tendons

Bar anchors have three main components; unbonded length (free stressing), bond
length, and anchor head(anchorage). They are an active system that transfers a
prestressing load to the ground to control or set a limit to the deformations. Bar
anchors can be used with many geo applications such as slope stabilization, dam
construction, and underground constructions. Moreover, strand or bar anchors
could be classified based on their service life, in our case, it is a permanent
application for more than 2 years.

13



Support and monitoring design

Permanent Strand Anchor

Cap Wedge Bearing Plate

Inner Corrugated Sheathing

Quter
Corrugated External
Sheathing Grout Pipe

Corrosion Individually R J
Protection Sheathed and “ Heat Shrink
Wedge Plate Compound Greased Strands Cement Grout  Tube

Figure 3.1: Strand support
https://forcetecgroup.com/strand-anchors/

Permanent Bar Anchor

Anchor Nut
- Anchor Plate

..... S Spacer Cement Grout
Smooth Sheathing

Corrugated

Sheathing

(Factory Grouted)

Sealing Rings

Steel ——Corrosion Protection
Anchor Compound
Cap

Figure 3.2: Bar anchor
https://forcetecgroup.com/bar-anchors/
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Support and monitoring design

Rock Bolts (Fully Grouted)

Anchor Nut
Anchor Plate

.....

Spacer Cement Grout

Figure 3.3: Rock bolt
https://forcetecgroup.com/rock-bolts/
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Support and monitoring design

3.2 Support design

The designed support elements related to the powerhouse and the transformed hall
are summarized in detail in the coming figures and tables.

3.2.1 Vault
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Figure 3.4: Supports of powerhouse vault.

I' ) ]
r T 1 —=
Wﬁ. A
[ - F i
s EE 2 | .
ERE LT -
H i -
T g !
wigs 14 ——— - A
11418 & ':[ 1L Bt e g : ih‘.}. e " Lg‘l‘i
— l ;glmll-h ! dense_ba r
" A T .
1 | i j:n :
: 3
b1 -
&
' - o
' Lty

E Lt Lo |_2 (LR
Suppu of I’gnrhom‘:ulﬂﬂ .

Figure 3.5: Shotcrete of vault.
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Support and monitoring design

Table 3.1: Supports of powerhouse vault.

Support parameters

‘ postton ‘ Powerhouse ‘ Transform Hall
1. pattern rock dowel, 1. pattern rock dowel,
25@1.5mx3m,L=6m 25@1.5mx3m,L=4m
2. rock dowel in local 2. rock dowel in local
area,
area, .32@1.5mx1.2m,L.=10/12m 32@1.5mx1.5m,L=10m
vault

3. pattern hollow rock bolt:
R32@1.5mx3m,L=8m,T=100kN

3. pattern hollow rock bolt:
SR32@1.5mx3m,L=8m,T=100kN

4. 20cm shotcrete with wire mesh,
25cm with double wire
mesh for vault
of auxiliary PH

4. 12cm shotcrete with
wire mesh
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Support and monitoring design

3.2.2 Upstream side wall
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Support and monitoring design

Table 3.2: Support of upstream sidewall.

Support parameters

‘ positon ‘ Powerhouse ‘ Transform Hall
UP 1. pattern rock dowel, 1. pattern rock dowel,
Stream a28@1.5mx3m,L=6m a25/28@1.5mx1.5m,L=4/6m
side 2. pattern rock dowel, 2. shotcrete with wire mesh,
wall 32@1.5mx3m,L=8m 12cm

3. shotcrete with wire mesh
20/35cm with double wire mesh.

4. pattern ten
don@3m/4.5m,L.=25/35m, Tensile ca
pacity=900kN, Pre-tensioning
force=360Kn

5. pattern bar anchor@3m/4.5m with
waler beam, L=26/35.45m, Tensile ca

pacity=800kN, Pre-tensioning
force=b0KN

3. Upstream wall between
busbar tunnels:

bar anchor, L=26m,service

capacity800kN prestressed
force 320kN

bar anchor, L=10m,service

capacity H00kN
,prestressed force 100kN

6. Class V rock mass: 80cm concrete
lining+25cm shotcrete lining
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Support and monitoring design

3.2.3 Downstream side wall.
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Support and monitoring design

Table 3.3: Support of downstream sidewall.

Support parameters

‘ postton ‘ Powerhouse ‘ Transform Hall
Down 1. pattern rock dowel, 1. pattern rock dowel,
stream a28@1.5mx3m,L=6m a25/28@1.5mx1.5m,L=4/6m

side 2. pattern rock 2. Local rock dowel,
wall dowel, .32@1.5mx3m,L=8m 25/28@1.5mx1.5m,L=6/8m

3. shotcrete with wire mesh:
15cm,25cm and 35cm with double

wire mesh

3. shotcrete with wire
mesh, 12cm

4. pattern ten
don@3m /4.5m,L.=25m,Tensile capac
ity=900kN, Pre-tensioning
force=360kN

5. pattern bar anchor@3m/4.5m with
waler beam,L=26m, Tensile capac
ity=800kN, Pre-tensioning
force=50KN

6. Bar anchor, L=10m,service capacit
500kN,prestressed force 50KN
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Support and monitoring design

3.2.4 Southern ending wall.
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Figure 3.11: Shotcrete of south Wall
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Support and monitoring design

Table 3.4: Support of south ending wall.

‘ Support parameters

‘ postton ‘ Powerhouse ‘ Transform Hall
south 1.pattern rock 1. pattern rock dowel,
ending dowel, .28@1.5mx3m,L=6m a25@1.5mx1.5m,L=4/6m

wall 2. pattern rock dowel, 2. shotcrete with wire mesh,

32@1.5mx3m,L=8m

12cm

‘ 3. shotcrete with wire mesh, 15cm

4. Pattern ten
don@3/4.5m,L.=35m, Tensile capac
ity=900kN, Pre-tensioning
force=360Kn

5. Pattern bar an
chor@3m/4.5m,1.=26/35.45m, Tensile
capacity=800kN, Pre-tensioning
force=H0KN

6. Class V rock mass: 80cm concrete
lining+25cm shotcrete lining
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3.2.5 Northern ending wall.
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Support and monitoring design

Table 3.5: Support of the north wall

Support parameters

‘ postton ‘ Powerhouse ‘ Transform Hall ‘
North 1.pattern rock 1. pattern rock dowel,
End dowel, .28@1.5mx3m,L=6m a25/28@1.5mx1.5m,L.=4/6m
wall 2. pattern rock dowel, 2. shotcrete with wire mesh,

2@1.5mx3m,L=8m

12cm

3. shotcrete with wire mesh,
, 1ocm

4. Pattern ten
don@3/4.5m,L.=35m, Tensile capac
ity=900kN, Pre-tensioning
force=360Kn

5. Pattern bar an-
chor@3m/4.5m,L.=26/35.45m,Tensile
capacity=800kN, Pre-tensioning
force=b0KN
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Figure 3.14: Plan view of the vault and longitudinal sections of PH.
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3.3 Monitoring Design

3.3.1 Extensometers and load cells

Extensometer measures the relative displacement between two or more points along
the line, by installing multiple anchors at different depths.

It is used to monitor landslides, tunnels, dams. With respect to the load cell, it
measures load or pressure inside a structural element, in which it is inserted, and
monitors anchors, linings, concrete structures, etc.
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Z “ stable strata
e Sy, L
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Figure 3.19: Multi point extensometer.

2]

31



Support and monitoring design

Figure 3.20: Load cell
earthsystem.it/product/anchor-load-cell-2/
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3.3.2 DMonitoring system

The installed extensometers, load cells, and stress meters are illustrated in the
figure3.21. Furthermore, the optical target is shown in the figure3.22.
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LSS Stress Meter a
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Figure 3.21: Installed monitoring instruments.
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Figure 3.22: Optical targets of convergence
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Figure 3.26: Extensometer section C.
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Chapter 4

Back analysis technical route
and parameters

4.1 Back analysis technical route

The back analysis is a crucial part design of an underground cavern complex during
the construction stage, which is important to check the original support design
capacity and verify if the rock mass parameters and boundary conditions are
suitable . During the execution phases, in-situ stress should be checked concerning
the updated geology mapping and the monitoring data, due to uncertainties in the
representation of the mechanical behavior of the rock mass .

The UCS of intact rock has been validated by further laboratory tests by comparing
the results with the ones of the design stage. The target is to match a reasonable
GSI value with the post-peak behavior of rock mass which is matching with the
monitoring results.

It should be clarified that according to the complexity of the geological con-
ditions, heterogeneity, and anisotropy of the rock mass, it is impossible to reflect
all these characteristics in the numerical model. Thus, the back analysis is not

precisely matched to the monitor data for each device.

The technical route for back analysis is shown in figure4.1
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— Technical Route

Layer i excavation
1

! | !
Updated the geology monitoring data Rock mass excavation
structures analysis response

.
* analysis the parameters of rock mass of layer i
*  Stability and risk evaluation of layer i
* Local stability interpretation

| i=i+l1

The cavern complex complete or not?

[

* Predicting for the sub-excavations
* Updated the alert values

|

Adjustment of support and MS

Figure 4.1: Technical route of back analysis.

4.2 Rock mass constitutive mechanical model

Recently it has been becoming reasonable to take the advantage of the power of
the computer to demonstrate and scrutinize the rock behavior including instability
which occurs as a result of one or more mechanisms of failure. On the other hand,
the appropriate analysis tools and the optimization of the support system rely
on understanding the instability mode.The main instability modes are illustrated
below:

— Brittle-rock failure involves two possible rock mass behavior modes depending
on the jointing density. Massive-brittle behavior is evident in massive rock masses
(GSI > 75) and is probably the most challenging behavior to simulate with existing
numerical methods. Brittle behavior jointed rock masses (30 < GSI < 75) involves
the sliding, rotation, and crushing of rock blocks. This behavior mode is typical of
blocky rock masses and is common in many mining environments. The predominant
post-failure behavior (strain-softening model) is the jointed brittle type illustrated
in the middle sketch in Figure4.2.

— Weak-rock shear failure occurs in a heavily jointed, weak rock mass (Geological
Strength Index (GSI) < 30) or weak intact rock dominated by stress-driven shear
yielding behavior. Continuum-based plasticity models (perfect elastic-plastic model)
are well suited to this instability mode, which is illustrated in the bottom sketch in
Figured.2.

— Structurally controlled failure is dominated by geological structures such as
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gravity-controlled wedge instability. The limit equilibrium method and the distinct
element method are fit to this instability mode.

Brittle spalling
Massive-brittle
% ¥
E-I'J /‘J \' GIIII'-
Strain &
Sliding, rotation and
crushing of overstrassed
blocks and joints
Jointed-brittle
B
if
i
£
(73]
Strain &
Fosmation of
plastic zone
Elastic-plastic A
.ilr \‘.L
= ',.' lll
2 i \
o : !
i i |
] P
1 [
I
i
SR B

Strain &
Figure 4.2: Simplified post-failure and tunnel behaviour.(Loren,2013)
Concerning the latest geological model and rock mass conditions, the strain-
softening models might be more reasonable for bs-strong class III and bs-weak class

III. While the pyroclastic class IV and bs-weak class v, could be more convenient
for the perfect elastic-plastic models.
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Figure 4.3: Cohesion and friction angle for different constitutive model.

The path to providing representative rock mass properties must be implemented
through a derived sequence from GSI classification and Hoek-Brown strength
criterion. In addition, several assessments should be involved which start from the
intact rock laboratory properties, strength, stiffness, and rock mass characteristics.
The generalized Hoek Brown criterion for jointed rock mass is expressed as:[3][4]

/

o
oy =05+ Uci(mb—:)" + 5)°

mp = M; exp [

ct

GSI — 100}
28 — 14D

(4.1)

(4.2)

Where ofand o] are the minor and major principal stresses , m; is a reduced
s and a are constants for the rock mass given

value of the material constant m; .

by the following relations:

S =

GSI — 100
9-3D
40

exp

(4.3)
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1 1 —-GST —20
_ = 4.4
a= 5 + 6 exp 5 exp 3 (4.4)

The uniaxial compressive strength is obtained by setting ¢4=0 in equation 4.1:

O, = Oz * S° (4.5)
Thus,the tensile strength is:
S % O¢y
= — 4.6
O o ( )

The deformation modulus is derived from:

D Teg GSI—10
=(1-— . 40 4.
E,.(GPA) = (1 2),/1 510 (4.7)

The equivalent angles of friction and cohesive strength are given by:

6amy(s + myoh,)* !

A |
¢’ =sin 2(1+a)(2 + a) + 6amy(s + mpos, )+

(4.8)

= O'm'[(l + 2@)8 + (1 — a)mbgén] (5 + mbagn)a—l (49)
(1+a)(2+ a)y/1+ (6amy9s +m — bob,)6a — 1)/((1+ a)(2 + a))

Where 0%,=0%maz/0ci-
The concept of a global rock mass strength could be estimated from the Mohr-
Coulomb relationship:

2c cos ¢
S = —————— 4.10
Te 1 —sin¢’ ( )
where ¢’and ¢'calculated within the stress range o,<o}<o.;/4 giving:
P = o, T As —alm —b B/ S g

2(1+a)(2+a)

The studies results for the deep tunnels are shown in figure??.and the fitted equation

1S:
/

O3maz Ocm\—.94
=047(—= 4.12
e — 0.47(758) (112)

Where « is the unit weight of the rock , ¢/,,is the rock mass strength,H is the
depth of the tunnel below the surface.

If the horizontal stress is higher than the vertical stress,the horizontal stress value
should be used in place of vH.
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Figure 4.4: Major and minor principal stress for Hoek-Brown and equivalent
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Figure 4.5: Calculation of },,,.for equivalent Mohr-Coulombe and Hoek-Brown
parameters for tunnels
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The Mohr-Coulombe parameters could be derived from the Hoek-Brown crite-
rion(2002),according to the formula in figure4.6.

2c cos¢’  1+sing
= : + : * 0
1—sing’ 1—sing¢’

03

(4.13)

Mohr Coulomb

Hoek Brown

u
\ 2c cos@ | +sing
0 =

a3
0| =0y +0,| my—=+5
ol

I=sing 1-sing

—
£ (GPa) = I_Q.\Hﬂ_ 10((GS1-10)/40)
GS1 " 2 Nioo a-1
- Oamy, (s + nyo, ) |
» 0 =sin — |
S GSI-100) [ 200+ a)2+a)+6amy,(s+me ) |
O, b =M R T1aD | ) ’
ci \ 2
g p’ GSI-100) ”.Jl”‘3'”‘*"|"“"’/yf'uL“”'h”,” !
* §=¢ ¢
mi 9-3D ) (I+af2+a »\'VI '|.fmm/‘|\ tmyo ) "HI +a)2+a)l
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2 6

a=

Figure 4.6: The parameters of rock mass when using the MC model

With respect to the strain-softening model, the residual strength should be back
analyzed through the monitoring data. Furthermore, a fault characterized by a
thickness greater than 2m should be simulated by solid zone by assigning the perfect
elastic-plastic model,while for the thickness lower than 2m ,the fault is modelled
by interface with a linear strength criterion.

4.3 The parameters from back analysis

According to the back analysis results,the parameters are identified in table4.1 and
table4.2.
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Table 4.1: Updated parameters for bs-strong class III and bs-weak class 11I/IV

‘ Lithology ‘ UCS ‘ GSI ‘ mi ‘ D ‘ Em ‘ Peak strength ‘ Residual  strength
(MPa) (GPa) | Cohesion | Fricton | Cohesion | Fricton
(MPa) | angle(deg) | (MPa) | angle(deg)
bs-strong | 101.3 | 45 | 25 7.5 2.7 47.01 0 47.01
classlII
bs-weak | 50.81 | 43 |25 | 0 | 4.76 2.05 41.08 0 41.08
classIII
bs-weak 33.9 39 1200 3.09 1.55 34.8 0 34.8
class IV

Table 4.2: Updated parameters for pyr IV and bs-weak V

‘ Lithology ‘ ucCs ‘ GSI ‘ m; ‘ D ‘ Em ‘ Peak Strength ‘

(MPa) (GPa) | Cohesion | Fricton
(MPa) | angle(deg)

| Pyr | 88 |34 |12]0] 118 | 07 | 1976 |

| bs weak V| 16.6 | 18 [ 20 | 0 | 0.645 | 0.765 | 2349 |
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Chapter 5

Back analysis with 3D
models

5.1 3D geological model and excavated structure

5.1.1 3D geological model

As it has been shown before in the second chapter, the geological stratigraphy
is complex. Moreover, it consists of many layers of different classes of rocks and
faults. Thus, to design the geological condition directly in RS3 code is impossible.
So, it is decided to draw it first in Rhino 3D which is a powerful design software to
overcome this issue as shown in the figures 5.1 to 5.4.

Figure 5.1: Class V and class IV
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Figure 5.2: Faults

46



Back analysis with 3D models

Figure 5.3: Pyroclastic layers
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Figure 5.4: 3D geological model
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The geological entities are nested and overlayed with each other. Furthermore,
the curvature of the faults is going to cause issues to the RS3 code during the
analysis. So, the solution is to simplify the geological entities and try step by
step to increase the complexity to overcome the limits of the software. The first
simplification is done on the pyroclastic layers where their curvature was reduced.
Then the bs-class V geometry is to be reduced in size by cutting pieces until the
optimum analysis is obtained. This is done because the bs-class v is tangent to the
excavation contour. All simplifications are shown in figures 5.5 ; 5.6 and 5.8.

Figure 5.5: Modification of the pyroclastic layer
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Figure 5.6: Intersestion between PH and BS-IV
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Figure 5.7: Modified class V to overcome mesh issues.

51



Back analysis with 3D models

5.1.2 Modelling the excavated structures

The excavation structures consist of two main caverns and many intersections
between crossed tunnels that are quite complex to draw directly in RS3 code. So,
they have been designed in Rhino 3D too. Furthermore, the highlighted part with
red circle in the north wall of the powerhouse in figure 5.9 and 5.11 has been
modified because it created many problems for the mesh and the solver during
analysis.The model of primary structure is reported in figure 5.8

Figure 5.8: Primary structure.

Due to the complexity of the stratigraphy, a specific level of detail was defined
as a target to have a balance between the reliability of the analysis results and
the computational time and mesh quality . The selected geological entities are the
most affecting the final results for instance faults No.22,31,18,16 and the pyroclas-
tic layers No.(3,6,9). The scope of details has been shown in the figure5.12 and 5.13.
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Old mat The powerhouse

Pilots

Figure 5.9: Excavation contour n.l1.

m Bus bar tunnels

Transformed hall ,

\ Draft tubes \

Figure 5.10: Excavation contour n.2.
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Figure 5.11: Modified north wall.
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Here in this figure ,the pyroclastic layers are clear and their intersection with
the power house and the transformed hall.Also fault number 22 is intersected with
front part of the power house and it’s curvature is recognized .More over,fault 22 is
affecting the whole up stream side wall.finally,the location of fault 16 is affected
the north wall of the power house mainly .

Figure 5.12: Final level of details to simulate n.1.
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The bs-weak class v here in this figure is located beside the up stream side wall
and intersected with fault 31.Further more,both class V and fault 31 are playing a
key role in the analysis.The bs-weak IV is going to reduce the stability of the pilot
and the north wall.

Figure 5.13: Final level of details to simulate n.2.
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5.2 Numerical models and boundaries

5.2.1 Model geometry and excavation procedure.

The three-dimensional model includes the PH, the TH caverns, and the connecting
Busbar tunnel 2 located in between them. The external box dimensions are
195x105x250m (BxHxL) as in figure5.14. Concerning the excavation stages, the

Figure 5.14: Model external dimension.

powerhouse was divided into six parts as it has been excavated.The first stage
represents the original geological condition. Starting with the second stage, the
pilot and the old mat were excavated. Moving to the third stage where the first
part of the PH was excavated. Then in the fourth stage, the transformed hall was
completely excavated with the second part of the PH. In the fifth and sixth stages,
the third part of the powerhouse, mat, and the busbars were excavated respectively.
Reaching the next two stages the fourth and fifth parts of the PH were excavated.
Finally, in the last stage, the penstock and the draft tubes were excavated plus the
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last part of the powerhouse.
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Figure 5.15: Excavation stages.

5.2.2 Different loads of simulation

To obtain optimum results from numerical software codes, there are three main
components in the numerical models to be controlled. The first one is the level of
details of the models to obtain logical results. Second is the mesh quality which
can affect the computational time and the accuracy of the results. The third is the
judgment on the results and comparing them with the monitoring data .

Three different models have been set up with three different levels of detail. They
have been tested by comparing their output results and their computational time .
The first level( 5.16) consists of fewer geological entities with respect to the second
and third levels. The faults curvature is modified and replaced with straight plans.
On the other hand, the second level(5.17) is more complex where the faults have
been simulated as in reality. In the final model(5.18), all faults have been inserted
and the bs-class IV entity was added as well.
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Figure 5.16: First model .
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Figure 5.17: Second model .
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BS-weak class IV
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Figure 5.18: Third model .

After managing to simulate different levels of detail, the scope has become to
select the best model for performing the back analysis . Thus, a comparison has
been done based on many factors: displacements ,maximum principle stress Sigma
1, minimum principle stress Sigma 3, and the yielding elements concerning the time
which has been taken by the solver. In addition, it is clear that for the second and
third models the results are much closer to each other than the first one, in terms
of the displacements.

Also, the outputs for sigma 1 and sigma3 are quite the same in all the three models.
Finally, the yielded elements are almost uniform in the three models. In accordance
with the comparison results, the second load was selected to be the main model
and to have the supporting elements installed on it. The second model is more
complete and reliable than the first one .Also the second model has less geological
entities than the third one but have almost the same results.In general , the second
model is less time consuming and computational effort.

Different results are shown in the next figures.
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Figure 5.19: Displacements in the first model.
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Figure 5.20: Displacements in the second model.
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Figure 5.21: Displacements in the third model.
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Figure 5.22: Sigma 1 in first model.
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Figure 5.23: Sigma 1 in second model.
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Figure 5.24: Sigma 1 in third model.
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Figure 5.25: Sigma 3 in first model.
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Figure 5.26: Sigma 3 in second model.
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Figure 5.27: Sigma 3 in third model.
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Figure 5.28: Yield elements in the first model.
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Figure 5.29: Yield elements in the second model.
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Figure 5.30: Yield elements in the third model.
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Figure 5.31: Final selected model.
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5.3 Modeling the supports elements

The excavated structure supporting elements have been installed precisely stage by
stage and are shown in the next figures.The supports consist of:

- Shotcrete of variable thickness ranged between 12cm to 25 cm (orange) that are
installed all around the excavated structures and shotcrete of thickness 1.05 m
(gray) which located on the upstream sidewall in the intersection between the faults
31,22 and the pyroclastic layer where high displacements are expected.

-pattern of rock dowel,25/¢$28, L. =7m (cyan). They are installed all around the
power house and the transformed hall with a spacing of 1.5 m.

- 4 additional bar anchors from the first layer of the powerhouse floor towards fault
16.L =44.9 m. (Brown)

- A group of Bar anchors, installed in the north wall towards fault 16 and class IV,
V, L =35.45 m.(light blue).

- A group of Bar anchors distributed over the powerhouse, upstream, downstream,
north, and south wall, with a length of 26m(violet).

- There are bar anchors with the same color (light brown) but different lengths and
pretension as for the ones in the upstream wall between penstocks and the ones in
the north wall also in between busbar tunnels in the downstream wall each reach
11.8m, there is another group of those bar anchors with a length of 19.4m located
in the upstream wall, layer 4 and 5, the last group of those bar anchors are in the
downstream wall between busbar tunnels with a length of 10m.

- The black strand is located in the top part of the upstream wall with a length of
25m.

- The red strand of length 35m is located in the first layer of the powerhouse.
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Figure 5.32: Supports on the powerhouse and transform hall.

Figure 5.33: Rock bolts
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Figure 5.34: Various shotcrete sections

Strand25m
Baranchorl0-11.5-19.4 m
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Figure 5.35: Upstream and north wall supports
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Figure 5.36: South wall and down stream supports
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Chapter 6
The Back analysis results

In this chapter. the results of the model described in chapter 5 have been compared
with the results obtained by previous analyses carried out by the FDM implemented
in code FLAC 3D. Furthermore, both models relied on the updated geological
model and the same input data. The comparison of the two models is related to
major aspects. total displacement, axial force in tendons, bar anchors, stress in
rock dowels, and plastic zones.

6.1 Total displacements

The total displacements in the RS3 model is conformable with the results in FLAC
3D code. Furthermore, the maximum total displacement in both models is localized
in the intersection of the upstream sidewall and fault 22, the pyroclastic layer 9,
and the Class V rock mass.
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‘ Uy Total Displacement =
min(al): - m
~53 =
min (stage} : 0 m.
o

0.038

0.076

0.34

0.38

max (stage) : 0.38 m

Figure 6.1: Displacements in the south and up stream wall.

0 Yz Total Displacement =
min@:  --m
R =
min (stage) : 0 m
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0076

max (stage) : 0.38 m

Figure 6.2: Displacements in the north wall and down stream wall
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FLAC3D 6.00

©2018 Itasca Consulting Group, Inc.

Zone Displacement Magnitude
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Unit: m

Figure 6.3: Displacements results obtained from FLAC 3D code.
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A comparison between the results of Flac 3d code and RS3 code has been done
for five different sections during the stages 6.4. The outputs in the two models are
compatible within the excavation stages, as shown in figures from 6.6 to 6.14.

Section 6 (2% bushar t

EL. 2712 Sleel

Figure 6.4: Different sections for the presentation of the results.
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Figure 6.5: The displacement curve of the section auxiliary PH
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Figure 6.7: The displacement curve of the section erection bay in FLAC 3D.
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Figure 6.8: The displacement curve of the section erection bay in RS3 3D.
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Figure 6.9: The displacement curve of the section PH I in FLAC 3D.
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Figure 6.10: The displacement curve of the section PH I in RS3 3D.
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Figure 6.11: The displacement curve of the section PH II in FLAC 3D.
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Figure 6.12: The displacement curve of the section PH II in RS3 3D.
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Figure 6.13: The displacement curve of the section PH III in FLAC 3D.
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Figure 6.14: The displacement curve of the section PH III in RS3 3D.

80



The Back analysis results

6.2 Axial forces in tendons and bar anchors

In this section, the axial forces on tendons and bar anchors obtianed by both FLAC
3D and RS3 analyses are shown in figures 6.15 , 6.16 and 6.17. The maximum value
reaches 180 tons in both models, located in correspondence to the intersection of
the fault 22, pyroclastic layer 9, class V with the upstream sidewall, as expected.
Moreover, the other tendons are subjected to forces in the range of 70-150 tons.

FLAC3D 6.00

©2018 Itasca Consulting Group, Inc.

Cable Axial Force

1.8000E+00

I 1.6000E+00
1.4000E+00
1.2000E+00
1.0000E+00
8.0000E-01
6.0000E-01
4.0000E-01
2.0000E-01
0.0000E+00

Figure 6.15: The force of tendons in FLAC 3D.
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5 Boims ~
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BT Ea——
mmin (stage) : -1.7458 MN

Figure 6.16: The tendons axial force in RS3.
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Figure 6.17: The tendons axial force in RS3.
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6.3 Stresses in rock dowels

The results in terms of stresses are clarified in figures 6.18 to 6.20.Rock bolts
located in the RS3 model in the upstream reach the maximum capacity, in contrary
to the FLAC code results. In addition, not only the upstream sidewall but also the
intersection between the pyroclastic layers and the excavation contour. In general
stresses in FLAC code is around 365MPa, lower than the stresses in RS3 code
(above 500 MPa). The reason could be that, in RS3 model, the rock dowels are
installed layer by layer and activated at the same stage of the excavation. Thus,
this could lead to an overestimation of the stress on the elements.

FLAC3D 6.00

©2018 Itasca Consulting Group, Inc.

Cable Axial Stress \ N atttl e "f.']-“-‘.':;'é:r'
3 6490E 402 R dhiveen
3.5000E+02 SN LN

3.2500E+02 3
3.0000E+02
2.7500E+02
2.5000E+02
2.2500E+02
2.0000E+02
1.7500E+02
1.5000E+02
1.2500E+02
1.0000E+02
7.5000E+01
5.0000E+01
2.5000E+01
0.0000E+00

Unit: MPa

Figure 6.18: Stress of rock bolts in Flac 3D.
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Figure 6.19: Stress of rock bolts in RS3 .
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Figure 6.20: Stress of rock bolts in RS3.
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6.4 Plastic zones

The comparison between the two models in terms of the plastic zones nearby the
excavation contour is shown in figures from 6.21 to 6.31. The disturbance and
the damage effect duo to the excavation are compatible and coherent between the
models for different cross and longitudinal sections, even on the geological weak
layers(faults and pyroclastic layers).

Figure 6.21: Plastic zones in FLAC 3D.
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Yiekied Elements ~

min (al): =%
min (stage) : 0%

Figure 6.22: Auxiliary section Plastic zone in RS3 .

() Solids ~
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min(al): %

min (stage) : 0%

Figure 6.23: Erection bay section plastic zone in RS3.
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Figure 6.24: PH I section plastic zone in RS3.
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Figure 6.25: PH II section plastic zone in RS3.
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Figure 6.26: PH III section plastic zone in RS3
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Figure 6.27: Slice 1 section plastic zone in RS3.
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Figure 6.28: Slice 2 section plastic zone in RS3.

Figure 6.29: Intersection between the PH and the bus bar tunnels.
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Figure 6.30: Intersection between the TH and the mat.
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Figure 6.31: The view inside the mat.
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6.5 Monitoring data comparison

In this section, a comparison between the load cells measures and the RS3 code
has done in different parts of the excavated structure. The representative anchors
equipped with load cells on the upstream sidewall of PH are shown in figure 6.32.
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Figure 6.32: Load cells distribution on up stream side wall.
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Figure 6.33: Comparison between RS3 results and Monitoring system on up
stream side wall.
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Table 6.1: Results of the monitoring load cells and RS3 outputs on up stream
side wall.

‘ Axial force of anchors on upstream side wall(KN) ‘

‘ Element ‘ Monitoring system ‘ RS3 results ‘
| DPph-21-R49U | 807 | 523 |
| DPph-5-R34U | 747 | 1855 |
| DPph-8-R21U | 689 | 1686 |
| DPph-10-R15U | 522 | 1334 |
| DPph-12-ROU | 782 | 944 |
| DPph-15-L12U | 580 o918 |
| DPph-17-L22U | 716 | 1031 |
| DPph-19-L30U | 627 | 606 |
| DPph-29-R30U | 467 | 1890 |
| DPph-32-R17U | 448 | 1890 |
| DPph-35-ROU | 709 | 1786 |
| DPph-38-L13U | 524 | 1365 |
DPph-512- 741 1625
L23U

| DPph-50-R22U | 815 | 1380 |
| DPph-44-R49U | 286 | 436 |
DPph-add- 295 163
R33U

DPph-522- 579 1874
R15U

| DPph-67-ROU | 361 | 582 |
| DPph-70-L13U | 456 | 1743 |
| DPph-79-L16U | 485 | 1281 |
| DPph-73-L27U | 361 | 436 |
DPph-547- 569 922

L13U
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The representative anchors equipped with load cells on the downstream sidewall
of PH are shown in figure 6.34.
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Figure 6.34: Load cells distribution on down stream side wall.
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Figure 6.35: Comparison between RS3 results and Monitoring system on down
stream side wall.
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Table 6.2: Results of the monitoring load cells and RS3 outputs on down stream
side wall.

Axial force of anchors on down stream wall(KN) |

Element ‘ Monitoring system ‘ Rs3 results ‘
| DPph-88-L26D 440 497
| DPph-86-L18D | 555 | 642 |
| DPph-84-L08D | 575 | T49 |
| DPph-82-L02D | 630 .
| DPph-114-L27D | 372 | 360 |
| DPph-110-L9D | 351 | 1034 |
| DPph-502-R51D | 316 | 1099 |
| DPph-508-R47D | 308 | 1119 |
| DPph-528-R51D | 287 85|
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The representative anchors of load cells on the north and south wall are shown
in figure 6.36.
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Figure 6.36: Load cells distribution on north and south wall.
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Figure 6.37: Comparison between RS3 results and Monitoring system on north
wall.
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Table 6.3: Results of the monitoring load cells and RS3 outputs of the north wall.

| Axial force of anchors on north wall(KN) |

‘ Element ‘ Monitoring system ‘ Rs3 results ‘
| DPph-210-L34N | 766 990 |
| DPph-211-L34N | 295 | 589 |
| DPph-212-L34N | 226 | 526 |
| DPph-140-L34N | 740 | 695 |
| DPph-143-L34N | 569 909 |
| DPph-188-L34N | 239 | 155 |
| DPph-206-L34N | 255 3T
| DPph-207-L34N | 178 | 431 |
| DPph-208-L34N | 358 | 479 |
| DPph-209-L34N | 320 | 526 |
| DPph-137-L34N | 809 | 983 |
| DPph-138-L34N | 285 | 589 |
| DPph-167-L34N | 210 | 630 |
| DPph-175-L34N | 186 | 423 |
| DPph-177-L34N | 238 | 564 |
| DPph-185-L34N | 266 | 170 |
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Figure 6.38: Comparison between RS3 results and Monitoring system on south
wall.

Table 6.4: Results of the monitoring load cells and RS3 outputs of the south wall.

| Axial force of anchors on south wall(KN)

|
| Element | Monitoring system | Rs3 results |
| DPph-121-R56S | 655 | 748 |
| DPph-125-R56S | 840 () S
| DPph-505-R56S | 431 | 221 |
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From previous figures and charts, it is clear that.

The results that are obtained from RS3 code are higher than the monitoring
data. In fact,load cells (DPph-110-L9D-DPph-502-R51D-DPph-508-R47D) on the
downstream side wall have outputs around 320 KN,while, the RS3 results are
around 1000 KN. This difference gives an indication about the low reliability of
RS3 results,due to local missing of data. It should be also pointed out that the rock
mass quality and the geological condition are not homogenous , so the numerical
model is not able to match the monitor data of each device.
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Chapter 7

time dependent behavior of
rock mass

7.1 Introduction

In this chapter, the long-term deformational behavior of the rocks masses has been
studied to forecast the hydro power plant stability within the next 50 years. Two
approaches have been used. The first approach [5] was provided by Aydan et al
.in 1993, in which the stress-strain behaviour of rock mass is analysed.The second
one [6],proposed by Barla and Borgna in 2000, suggests to reduce the strength
parameters as a function of strain levels. Moreover, using these two approaches is
a solution to overcome a considerable limit of the RS3 code which can not handle
time-dependent behavior like FLAC 3D code.

7.2 Prediction of the stress-strain behaviour of
rock mass

The calculation of the proposed method is based on a crucial concept : the analogy
between the axial stress-strain response of rock in laboratory tests and tangential
stress-strain response of rock surrounding tunnels. The results of experiments
clarified that five phases of rock behaviour during a complete testing process have
been distinguished. These five phases are shown in figure7.1. Their descriptions is
summarized as:

1-Elastic phase: the behavior of the rock is linear and no crack is observed.
2-Yielding phase: micro- cracks tend to merge and convert to macro-cracks after
surpassing the peak of the stress-strain curve.

3-Hardening phase: the occurrence of macro-cracks started and their orientation
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has the direction of maximum load.

4-Weakening phase: growth of macro-cracks, which are aligned in the most critical
orientation.

5-Flowing phase: macro-cracks form sliding planes or bands, and fractured materials
flow along these planes.

Based on the statistical analysis of the relationship between rock resistance and
deformation conditions, Aydan derived the following empirical relationships: .

R 7.2
778 - € - Uc ( : )
_ €7f _ 5 —0.32 7 3
77f - € = 90, ( . )

Where: 1,,m5,n; = normalizes peak, weakening and final deformations.

€e,Ep,€s,€¢ = elastic, peak, weakening and final strain values.

0. = monoaxial compressive strength of the rock, this value is also considered
representative of the storage resistance.

CTp_______ e —

® @I @G

Ee EpEs Ef

Figure 7.1: Idealised stress-strain curves and associated states

[5]
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Figure 7.2: Experimental relationship between rock resistance and normalized
deformations.

[5]

For the generic extrapolation of the method to rock masses characterized by the
criterion of Hoek and Brown, the problem arises of the choice of geomechanical
resistance to be considered.The accentuated non-linearity of the Hoek and Brown
breaking criterion and the considerable influence of confinement pressure, lead
these authors to distinguish two types of cluster resistance :

- Monoaxial storage strength

Oem = O * 8¢ (7.4)

- the global cluster resistance, related to the Mohr-Coulomb linear envelope in the
interval oy < 0. < 0./4

Oem(global) = 2¢ % cos ¢/(1 — sin ¢) (7.5)

The global cluster resistance is related to the Hoek and Brown parameters with
the equation proposed by Hoek et al. (2002):

(my + 4s — a(m — b — 85))/(my/4 + 5)+7 !

21+ a)(2 +a) (7.6)

Oem(global) = o.
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Figure 7.3: Hoek-Brown and Mohr-Coulomb envelopes and definition of uniaxial

and global cluster resistance
[7]

In the same article cited, it is highlighted that the monoaxial resistance of
cluster defines the tensional state that originates the onset of fractures on the
excavation contour, while the global resistance provides a more direct indication of
the average resistance that can be mobilized by the cluster after propagation within
the fractures. It is understood that the monoaxial resistance of cluster constitutes
precisely the resistance in the absence of confinement derived from the Hoek-Brown
rupture criterion (and as such is implicitly used in design calculations), we refer to
the global resistance for the sole derivation of the characteristic deformations with
the Aydan method.The deformations obtained are used to modify the real constitu-
tive law of input in design calculations (initial conditions to modified conditions) [7].

Different strain values have been calculated to BS-strong class III, BS-weak class
ITI, and BS-weak class IV as follows:
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Figure 7.4: Stress-strain curve (BS-strong III).
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Figure 7.5: Stress-strain curve (BS-weak III).
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Figure 7.6: Stress-strain curve (BS-weak IV).

Table 7.1: Stress-strain values.

‘ Bs-strong 111 ‘ BS-weak II1 ‘ BS-weak IV ‘
| Strain(-) a) |
| 0.000 | 0.0 \ 0.000 \ 0.000 \ 0.000 \ 0.000 |
| 0004 | 2487 | 0.002 | 11967 | 0.002 | 6.553 |
| 0.005 | 2487 | 0.003 | 11967 | 0.002 | 6.553 |
| 0006 | 1567 | 0.004 | 7.857 | 0.003 | 4659 |
| 0006 | 1550 | 0.004 | 7.677 | 0.003 | 4414 |
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7.3 Strength parameters update

In the second approach, the main purpose is to simulate the squeezing behavior in
tunnels. Concerning three different stages of behavior: the elastic stage, up to the
onset, of time-dependent deformations; the hard-ending stage creep deformation; the
softening stage, stress-strain law is applied. Validation of the results for stress-strain
laws obtained in triaxial compression tests.

The most important factors influencing squeezing:

1- The yielding within the rock mass.

2- Time-dependent behavior.

Constitutive relationships such as elasto-plastic or elasto-visco-plastic are the most
appropriate ones. Using these relationships is quite challenging, with respect to
rock mass characterization. Moreover, the possibility to use elasto-visco plastic
way is not supported by RS3 code.

AS shown in the figure 7.7, there is no time-dependent behavior for stress values
below the threshold value ;. On the other hand, stress values above o, and below
ou,€.g Op, creep is attenuating and stops at a finite strain ;. The higher the
applied stress and closer to the peak value,the shorter is the time to creep failure.

Terminal locus of long term
_creep Lests

Figure 7.7: The complete stress-strain curve (LADANY1,1993).

With respect to the next three stages:
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-stage 1: elastic behavior.
-stage 2: viscous behavior.
-stage 3: permanent large deformations occur.

Moving from the second stage to the third stage occurs to the plastic strain
which is a function of the state of the stress. In the long-term stage, the behavior
considers plastic again according to the Mohr-coulomb plasticity model. Thus, the
friction angle and cohesion have been decreased by using a softening formulation
as a function of the plastic accumulated strain.
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Figure 7.8: Proposed model for the analysis of squeezing behaviour
(Barla and Borgna,2000).

Figure 7.9: Mohr-Coulomb envelopes used to define stage 1 and stage 2 on the
complete stress-strain curve (Barla and Borgna,2000).
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Equations 7.7 and 7.8 have been obtained from doing different simulations of
uniaxial conditions by using the FLAC code (ITASCA,1996). The hardening/-
softening behavior can be simulated with the variation of strength parameters
(cohesion, friction angle, and dilation angles) as a function of plastic shear strain.

e = 13.4(epc — 1)~ 020% (7.7)

CBCc — CA(l — (GBC — EA)) (78)

These relationships have been applied to the case under study. The results are
collected in tables 7.2 and 7.3 .

Table 7.2: Decreasing of the friction angle.

‘ BS-strong class 111 ‘ BS-weak class 111 ‘ BS-weak class IV ‘
| Strain(-) | ¢(°) | Strain(-) | ¢(°) | Strain(-) | ¢(°) |
| 0.000 | 47.0 | 0.000 | 41.1 | 0.000 | 34.8 |
32.2 |
|
|
|

| 0.004 | 329 | 0.002 | 328 | 0.002 |

| 0.005 | 329 | 0003 | 328 | 0002 | 322
| 0.006 | 329 | 0.004 | 328 | 0.003 | 32.2
| 0.006 | 329 | 0.004 | 328 | 0.003 | 322

Table 7.3: Updated cohesion values

‘ BS-strong class 111 ‘ BS-weak class 111 ‘ BS-weak class IV

|
‘ Strain(- ‘ c(Mpa) ‘ Strain(- ‘ c(Mpa) ‘ Strain(- ‘ c(Mpa) ‘
| 0.000 | 270 | 0.000 | 205 | 0.000 | 155 |
| 0.004 | 151 | 0.002 | 115 | 0.002 | 087 |
| 0.005 | 151 | 0.003 | 115 | 0.002 | 0.87 |
| 0006 | 1.51 | 0004 | 1.15 | 0.003 | 0.87 |
| 0.006 | 151 | 0.004 | 1.15 | 0.003 | 0.87 |
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The adopting strain-softening model for BS-strong III, BS-weak III, and BS
weak IV are shown in figures 7.10 to 7.12. The reduction in friction angle is around
30 percent except in BS-weak IV is around 10 percent.With respect to cohesion,in
BS-strong 11T ,BS-weak IIT and BS-weak IV ,cohesion is reduced up to 45 percent
as shown in following figures from 7.13 to 7.15.
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Figure 7.10: Friction angle reduction(BS-strong IIT).
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Figure 7.11: Friction angle reduction(BS-weak III).
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Figure 7.12: Friction angle reduction(BS-weak IV).
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Figure 7.13: Cohesion reduction (BS strong III).
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Figure 7.14: Cohesion reduction (BS weak III).
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Figure 7.15: Cohesion reduction (BS weak IV).
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Table 7.4: Mohr coulomb input parmeters (First scenario simulation).

‘ ‘ Peak  strength ‘ Residual strength ‘

Lithology | ¢(Mpa) | (%) | c(Mpa) | ¢(°)
bs-strong 2.7 47.01 1.51 32.9
classIII

bs-weak | 2.05 | 41.08 1.15 32.8
classIII

bs-weak 1.55 34.8 0.87 32.2
class IV
| Pyr | 07 | 1976 | 0.7 | 19.76 |
| bs weak V | 0.765 | 2349 | 0.765 | 2349 |
| faults | 01 | 23 | 01 | 23 |

In table 7.5, the residual values of the cohesion remained the same as it was
defined in chapter 4 .

Table 7.5: Mohr-coulomb input parameters(Second scenario simulation).

‘ ‘ Peak  strength ‘ Residual strength‘

Lithology | c(Mpa) | ¢(°) | c¢(Mpa) | &(°)
bs-strong 2.7 47.01 0 32.9
classIII

bs-weak 2.05 41.08 0 32.8
classIII

bs-weak 1.55 34.8 0 32.2
class IV
| Pyr | 07 | 1976 | 07 | 19.76 |
| bs weak V| 0.765 | 2349 | 0.765 | 2349 |
| faults | 01 | 23 | 01 | 23 |
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7.4 Long term behaviour results

7.4.1 First scenario simulation

Total displacements

In general with the first scenario, the results of total displacements are more
compatible with the monitoring data after around 2 year from when the construction
was started.The total maximum displacement is 0.18 m.Also,the maximum value is
located in the same spot between faults 22,31 and the pyroclastic layers number
9.The displacements in the north and the south wall are around 10 cm.On the
other hand , the rest part is stable .The results are illustrated in figures 7.16 and

7.17.
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Figure 7.16: Total displacement in south and upstream sidewall(first scenario).

Axial force in tendons and bar anchors

In figure 7.18,the results of axial forces are shown.Group of bar anchors in the
first layer of the power house in the upstream wall reach the maximum capacity
180 tons.But the major part of the tendons and bar anchors are located in range
between 50 to 100 tons.Also in this scenario, the results are quite close to the
monitoring data.
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Figure 7.17: Total displacement in south and upstream sidewall(first scenario).
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Figure 7.18: Axial force in tendons and bar anchors(first scenario).
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Axial stress in rock bolts

The results in terms of stresses are clarified in figure 7.19. Rock bolts which
are located in the intersection among faults,pyroclastic layers and the excavated
structure reach the maximum capacity(above 500 MPa).Thus,that means RS3 is

sensitive to the intersection between different layers. The stress of most rock bolts
is in range of 180 to 250 MPa.
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Figure 7.19: Axial stress in rock bolts(first scenario).
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Figure 7.20: Axial stress in rock bolts(first scenario).
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7.4.2 Second scenario simulation
Total displacements

The total maximum displacement reaches 0.63 m which is around 50 percent more
than the previous results. Also, the maximum value is located in the same spot
between fault 22,31 and the pyroclastic layer number 9. Moreover, the rest part of
the structure is affected by high values of displacement especially the north and
the south wall.
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Figure 7.21: Total displacement in south and upstream sidewall(second scenario).
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Figure 7.22: Total displacement in north wall and downstream side wall(second
scenario).
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Axial force in tendons and bar anchors

The results in terms of axial forces are illustrated in figures7.23 and 7.24. Few bar
anchors in the top part of the north wall reach the maximum capacity. The higher
portion of the tendons and bar anchors are in the range between 90 and 120 tons.
Also, few tendons in both upstream and downstream walls reach 180 tons.
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Figure 7.24: Axial force in tendons and bar anchors(second scenario).
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Axial stress in rock bolts

In this section, the axial stresses in rock bolts are shown in figures 7.25 and
7.26.Most of the rock bolts located in the upstream sidewall, the rock bolts located
in the intersection between the bus bar tunnels and the transformed hall and the
rock bolts in the intersection between the structure and the pyroclastic layers have
been reached failure. The stress of most rock bolts is in the range of 240-550 MPa.

Figure 7.26: Axial stress in rock bolts(second scenario).
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The situation seems worsen over time due to the long term behaviour of rock.It
should be noted that the obtained results have to be considered not in absolute terms
because ,as highlighted in previous chapter, the RS3 analyses give a conservative
results. In relative terms, in any case, a worsening of the stability scenario is
expected.
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Chapter 8

Conclusion

This study is devoted to the project of a complex system of caverns and tunnels of
a big hydroelectric power plant.Numerical analyses by FEM in a 3D environmental
have been performed,by means of RS3 code.The results are compared with previous
analyses performed with FDM approach by FLAC 3D code and with monitoring
data.Moreover,the validated RS3 model has been used to consider the time.
Some key points and suggestions summarized as follows.

1-The outputs of calculation by RS3 code are matching with the results obtained
by FLAC 3D code with equivalent parameters and in-situ stress parameters.

2- In general, the results related to support deformation and stresses from the
numerical analysis are higher than the measured one from monitoring data.

3- Further investigations are mandatory because some elements have different
behavior than the predicted model.

4- The rock bolts stress gauges are very sensitive to the geological joints or rupture
across the sensors.

5- The model reaches equilibrium. However, geological and geomechanical condi-
tions are implemented in the simulation which are less favorable than in reality.
6- By considering the time-dependent results, the achievement of equilibrium in
long-term behavior is guaranteed .

The solutions for withstanding the overloaded tendons and bar anchors are sug-
gested below:

-The overloaded anchor shall be substituted by new anchors or shall be released to
80 percent service capacity.

- The temporary tendons are considered to be released after substituted anchors
are installed.
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