POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Edile

Anno Accademico 2021/2022

Tesi di Laurea Magistrale

Droni e fotogrammetria digitale per la restituzione di un torrente montano.

Val Troncea, Comune di Pragelato (TO)

Relatore: Andrea Maria *Lingua*

Correlatore: Paolo *Vezza* Candidata: Alessandra Spadaro

MARZO 2022

"Coloro che amiamo e che abbiamo perduto non sono più

dove erano ma sono dovunque noi siamo."

Sant'Agostino

Riassunto

Lo scopo di questa tesi è la ricerca e la sperimentazione nell'ambito della restituzione fotogrammetrica digitale tramite la tecnologia Unmanned Aerial Vehicle (UAV), con particolare interesse all'ambito territoriale, nel dettaglio idraulico fluviale.

L'area di interesse è un tratto di alveo fluviale di 4,5 km del Torrente Chisone in Val Troncea nel Comune di Pragelato (TO). Sono stati effettuati dei voli fotogrammetrici per poter realizzare il rilievo, la modellazione tridimensionale e l'ortofoto del fiume. Impiegando tecniche di Structurefrom-Motion (SfM) sono stati trasformati fotogrammi bidimensionali in modelli 3D, nuvola di punti densa, Mesh e Texture, modello di elevazione del terreno e della superficie (DTM e DSM) e ortofoto. Inoltre, la classificazione della nuvola di punti densa ha permesso l'individuazione di aree bagnate, vegetazione, terreno, strade, edifici e opere create dall'uomo, come attraversamenti e briglie.

Tuttavia, il problema principale di qualsiasi tecnica fotogrammetrica, al fine di ottenere una accurata mappatura batimetrica, è la correzione della rifrazione della luce che passa tra i due diversi mezzi (aria e acqua); questo causa delle profondità dell'acqua più basse rispetto a quanto siano in effettivamente. Si propone quindi l'applicazione di un algoritmo iterativo che calcola una serie di equazioni di correzione della rifrazione per ogni combinazione punto/fotocamera in una nuvola di punti SfM, estraendone la batimetria corretta per fiumi poco profondi dalla fotogrammetria multivista.

Parole chiave: UAV/UAS; Structure-from-Motion (SfM); correzione della rifrazione; batimetria.

Abstract

The purpose of this thesis is research and experimentation in the field of digital photogrammetric plotting using Unmanned Aerial Vehicle (UAV) technology, with particular interest in territorial application.

The area of interest is a stretch of the Chisone stream in Val Troncea in the Municipality of Pragelato (TO). Photogrammetric flights were carried out in order to make the relief, the three-dimensional modeling and the orthophoto of the river. Using Structure-from-Motion techniques, two-dimensional frames were transformed into 3D models, dense point cloud, Mesh and Texture, terrain and surface elevation model (DTM and DSM) and orthophoto. In addition, the classification of the dense point cloud allows to do the identification of wet areas, vegetation, terrain, roads, buildings and man-made objects, such as bridges and bridles.

However, a major limitation about any photogrammetric techniques is that the water measurements are affected by refraction, the bending of the light as it passes the water/air interface. The effect causes in-water measurements to appear shallower, referred to as the apparent depth, compared to the actual depths. Our solution is to implement an iterative approach that calculates a series of refraction correction equations for every point/camera combination in a SfM point cloud, extracting corrected shallow stream bathymetry from multi-view stereo photogrammetry.

Keywords: UAV/UAS; Structure-from-Motion (SfM); bathymetry; refraction correction.

Indice

RIASSUNTOI		
ABSTRAC	٢	II
ELENCO D	EGLI ACRONIMI	v
1. INTR	ODUZIONE	1
1.1	FINALITÀ DEL LAVORO	2
1.2	VAL TRONCEA	3
1.3	STRUTTURA DEL LAVORO SVOLTO	5
2. RILIE	VO FLUVIALE CON DRONE	7
2.1	CONCETTI DI BASE DI GEOMORFOLOGIA FLUVIALE	7
2.1.1	Sistemazione idraulica di un corso d'acqua	.10
2.1.2	2 Opere trasversali: le briglie	.11
2.2	LA FOTOGRAMMETRIA	.15
2.2.1	Il principio di base	.16
2.2.2	Le fasi del processo fotogrammetrico	.19
2.2.3	Le camere da presa	.20
2.2.4	Le immagini digitali	.21
2.2.5	L'orientamento dei fotoarammi	.23
2.2.6	د المعالم المعا المعالم المعالم	.29
2.3	, UNMANNED AERIAL VEHICLE (UAV)	.33
2.3.1	Tipologie di UAV	.33
2.3.2	Componenti di un UAV	.35
S. ACQ	UISIZIONE DEI DATI	.41
3.1	IL PROGETTO DI RILIEVO	. 41 .41
3.1 3.1.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP	. 41 .41 .46
3.1 3.1.1 3.2	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO	.41 .41 .46 .49
3.1 3.1 3.2 3.2.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo	. 41 .41 .46 .49 .59
3.1 3.1.1 3.2 3.2.1 3.3	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI	.41 .46 .49 .59 .66
3.1 3.1.1 3.2 3.2.1 3.3 4. ELAE	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE	.41 .46 .49 .59 .66 .71
3.1 3.1 3.2 3.2 3.3 4. ELAE 4.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE	.41 .46 .49 .59 .66 .71
3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE Elaborazione dei dati	.41 .46 .49 .59 .66 .71 .73 .73
3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1.1 4.1.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE I.1.1 Caricamento delle immagini	.41 .46 .49 .59 .66 .71 .73 .73
3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1 4.1 4. 4.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI SORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE Agisoft MEtashape Elaborazione dei dati 1.1.1 Caricamento delle immagini 1.1.2 Costruzione dei blocco di fotogrammi	.41 .46 .49 .59 .66 .71 .73 .73 73
3.1 3.1 3.2 3.2.1 3.3 4. ELAE 4.1 4.1.1 4. 4.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE Elaborazione dei dati 1.1.1 Caricamento delle immagini 1.1.2 Costruzione dei blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP	.41 .46 .49 .59 .66 .71 .73 .73 73 73
3.1 3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1 4.1.1 4. 4.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE Elaborazione dei dati 1.1.1 Caricamento delle immagini 1.1.2 Costruzione dei GCP 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.2 Ottimizzazione dell'allineamento	.41 .46 .49 .59 .66 .73 .73 .73 .73 73 73
3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1.1 4. 4.1 4. 4.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE Elaborazione dei dati 1.1.1 Caricamento delle immagini 1.1.2 Costruzione dei blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.1 Costruzione dell'allineamento 1.1.3 Generazione della nuvola di punti densa	.41 .46 .49 .59 .66 .71 .73 .73 76 78 82 85
3.1 3.1.1 3.2 3.2.1 3.3 4. ELAE 4.1 4.1.1 4.1.1 4. 4.1	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO E sempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE E laborazione dei dati 1.1 Caricamento delle immagini 1.1.2 Costruzione del blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.2 Ottimizzazione della nuvola di punti densa 4.1.1.3.1 Classificazione della Nuvola densa 1.1.4	.41 .46 .49 .59 .66 .71 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73
3.1 3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1 4.1 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE Elaborazione dei dati 1.1.1 Caricamento delle immagini 1.1.2 Costruzione dei blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.2 Ottimizzazione dell'allineamento 1.1.3 Generazione della nuvola di punti densa 4.1.1.3.1 Classificazione della nuvola densa 1.1.4 Generazione della Mesh e della Texture 1.1.5 Generazione del DSM e del DTM	.41 .46 .49 .59 .66 .71 .73 .73 .73 .73 .73 .73 .73 73
3.1 3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1.1 4.1.1 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE E laborazione dei dati 1.1.1 Caricamento delle immagini 1.1.2 Costruzione del blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.2 Ottimizzazione dell'allineamento 1.1.3 Generazione della nuvola di punti densa 1.1.4 Generazione della Mesh e della Texture 1.1.5 Generazione dell DSM e del DTM 1.1.6 Generazione dell'ortomosaico	.41 .46 .49 .59 .66 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73
3.1 3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1.1 4.1.1 4. 4.1 4. 4.1 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE Elaborazione dei dati 1.1.1 Caricamento delle immagini 1.1.2 Costruzione del blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.2 Ottimizzazione dell'allineamento 1.1.3 Generazione della nuvola di punti densa 1.1.4 Generazione della Mesh e della Texture 1.1.5 Generazione dell DSM e del DTM 1.1.6 Generazione dell'ortomosaico Risultati dell'elaborazione	.41 .46 .49 .59 .66 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73
3.1 3.1 3.2 3.2.1 3.3 4. ELAE 4.1 4.1.1 4.1.1 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE E laborazione dei dati 1.1 Caricamento delle immagini 1.1.2 Costruzione del blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.2 Ottimizzazione dell'allineamento 1.1.3 Generazione della nuvola di punti densa 1.1.4 Generazione della nuvola densa 1.1.5 Generazione della Mesh e della Texture 1.1.5 Generazione dell'ortomosaico Risultati dell'elaborazione Imageneric 2.5 Esportazione dei dati	.41 .46 .49 .59 .66 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73
3.1 3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1.1 4.1.1 4. 4.1 4. 4.1 4. 4.1 4. 4.1 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE Elaborazione dei dati 1.1.1 Caricamento delle immagini 1.1.2 Costruzione del blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.2 Ottimizzazione dell'allineamento 1.1.3 Generazione della nuvola di punti densa 1.1.4 Generazione della nuvola densa 1.1.5 Generazione della Mesh e della Texture 1.1.5 Generazione dell'Ortomosaico Risultati dell'elaborazione Imagenerico 1.1.6 Generazione dell'Ortomosaico Risultati dell'elaborazione Imagenerico II.6 Jaborazione II.6 Generazione dell'Ortomosaico II.6 Generazione dell'Ortomosaico II.6 Generazione deil'Ortomosaico II.7 Faborazione dei dati II.8	.41 .44 .49 .59 .66 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73
3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1.1 4.1.1 4. 4.1.1 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE Elaborazione dei dati 1.1.1 Caricamento delle immagini 1.1.2 Costruzione del blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.2 Ottimizzazione dell'allineamento 1.1.3 Generazione della nuvola di punti densa 1.1.4 Generazione della nuvola densa 1.1.5 Generazione della OSM e del DTM 1.1.6 Generazione dell'ortomosaico Risultati dell'elaborazione I Esportazione dei dati I DI TERRA I	.41 .44 .49 .59 .66 .71 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73
3.1 3.1 3.2 3.2 3.3 4. ELAE 4.1 4.1 4.1 4.1 4.1 4. 4.1 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	UISIZIONE DEI DATI IL PROGETTO DI RILIEVO La materializzazione e misura dei GCP LA PIANIFICAZIONE DEL VOLO Esempio di pianificazione del volo I DATI ACQUISITI BORAZIONE DEI DATI, RISULTATI ED ESPORTAZIONE AGISOFT METASHAPE Elaborazione dei dati 1.1 Caricamento delle immagini 1.1.2 Costruzione dei blocco di fotogrammi 4.1.1.2.1 Inserimento dei GCP 4.1.1.2.2 Ottimizzazione dell'allineamento 1.1.3 Generazione della nuvola di punti densa. 4.1.1.3.1 Classificazione della nuvola densa 1.1.4 Generazione della nuvola densa 1.1.5 Generazione dell'OTM 1.1.6 Generazione dell'OTM 1.1.6 Generazione dell'ortomosaico Risultati dell'elaborazione I Esportazione dei dati I DI TERRA I Elaborazione dei dati I Z.1.1 Importing Image POS Data	.41 .41 .46 .49 .59 .66 .71 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73

4.2.1.3 GCP Management	106			
4.2.1.4 3D Model Reconstruction				
4.2.1.5 2D Map Reconstruction	110			
4.2.2 Risultati dell'elaborazione	111			
4.2.3 Esportazione dei dati	112			
4.3 Agisoft Metashape vs. DJI Terra				
5. BATHYMETRIC STRUCTURE-FROM-MOTION	115			
5.1 I PRINCIPI TEORICI				
5.1.1 Il metodo	119			
5.2 PREREQUISITI E WORKFLOW				
5.2.1 Prerequisiti necessari all'applicazione				
5.2.2 Workflow				
5.3 RACCOLTA DATI E ANALISI PRELIMINARE	125			
5.4 Applicazione del metodo	140			
5.5 RISULTATI E OSSERVAZIONI				
6. CONCLUSIONI	179			
BIBLIOGRAFIA181				
ELENCO DELLE FIGURE				
ELENCO DELLE TABELLE				
RINGRAZIAMENTI				
ALLEGATI				

Elenco degli acronimi

APR	Aeromobile a Pilotaggio Remoto
DSM	Digital Surface Model
DTM	Digital Terrain Model
GCP	Ground Control Point
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
MAE	Mean Absolute Error
ME	Mean Error
MSE	Mean Square Error
RAR	Relative Accuracy Ratio
RMSE	Root Mean Squared Error
RPR	Relative Precision Ratio
SAPR	Sistema Aeromobile a Pilotaggio Remoto
SfM	Structure-from-Motion
UAS	Unmanned Aerial Sysyems
UAV	Unmanned Aerial Vehicle

Capitolo 1

Introduzione

L'utilizzo delle tecnologie UAV (Unmanned Aerial Vehicle) negli ultimi decenni sta conoscendo un incremento sempre maggiore, grazie alle numerose applicazioni per le quali è possibile sfruttare i droni e i mezzi aerei a pilotaggio remoto. La praticità d'uso, i costi relativamente contenuti e la disponibilità di software di elaborazione delle immagini di ottima qualità sono alcuni dei punti di forza del rilievo fotogrammetrico moderno. Questi strumenti permettono di produrre dei modelli digitali del terreno di qualità anche per aree che sono difficilmente accessibili per l'operare in sicurezza e che non potrebbero essere agevolmente rilevate con le consuete metodologie di misurazione.

L'idea di applicare la tecnologia UAV e l'analisi fotogrammetrica per rilievi di grandi zone fluviali a scopo di sistemazione idraulico-forestale si è diffusa seguendo lo sviluppo e il miglioramento dei droni e delle camere fotografiche. Un altro aspetto fondamentale è la continua evoluzione del comparto tecnologico dell'elaborazione e processamento dei dati; la distribuzione di software e strumenti dedicati alla fotogrammetria e alla computer vision (Agisoft Metashape, 3DF Zephyr, Pix4D, DJI Terra) ha facilitato notevolmente il processo di creazione di modelli digitali da nuvole di punti tridimensionali.

Allo stesso tempo nelle applicazioni di scienza fluviale la batimetria del flusso è una variabile critica in numerose applicazioni. Mentre nei fiumi più grandi, la batimetria può essere misurata con strumenti come sonar, LiDAR batimetrici aerei o doppler acustici, nei torrenti più piccoli con profondità inferiore a 2 m, la batimetria è una delle variabili più difficili da mappare ad alta risoluzione.

Tecniche di fotogrammetria multivisione, in particolare Structure-from-Motion (SfM), si stanno sviluppando per ottenere misurazioni fotogrammetriche dirette della batimetria. Tuttavia, l'ostacolo principale per un'accurata qualsiasi mappatura batimetrica con tecnica fotogrammetrica è la correzione della rifrazione della luce passante tra i due

1

diversi mezzi (aria e acqua), che fa apparire le profondità dell'acqua inferiori a quelle che sono. In questo lavoro di tesi si applicherà un approccio iterativo che calcola una serie di equazioni di correzione della rifrazione per ogni combinazione punto-camera in una nuvola di punti SfM.

1.1 Finalità del lavoro

Il Politecnico di Torino, tramite il Dipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture (DIATI), per l'Ente di gestione delle aree protette del parco Alpi Cozie, ha effettuato un rilievo mediante droni di un tratto di alveo fluviale di 4,5 km del Torrente Chisone in Val Troncea nel Comune di Pragelato (TO), per un'area complessiva di 36 ettari.

Le finalità del lavoro sono la:

- Riqualificazione fluviale, ossia l'insieme integrato e sinergico di azioni
 e tecniche, di tipo anche molto diverso (dal giuridicoamministrativo-finanziario, allo strutturale), volte a portare un corso
 d'acqua, con il territorio ad esso più strettamente connesso (sistema
 fluviale), in uno stato più naturale possibile, capace di espletare le sue
 caratteristiche funzioni ecosistemiche (geomorfologiche, fisicochimiche e biologiche) e dotato di maggior valore ambientale,
 cercando di soddisfare nel contempo anche gli obiettivi socioeconomici¹;
- Sicurezza idraulica, ossia la valutazione del rischio idraulico, cioè degli effetti indotti sul territorio dal superamento dei livelli idrometrici critici (possibili eventi alluvionali) lungo i corsi d'acqua principali.

È quindi indispensabile conoscere con accuratezza lo stato dei versanti, del corso d'acqua, ma soprattutto eventuali dissesti di opere idrauliche, come in questo caso le dodici briglie presenti lungo l'area di rilievo.

Verrà dunque effettuata una serie completa di indagini sul territorio e la produzione di un modello tridimensionale, accompagnato da modelli digitali del terreno, di superficie e dall'ortomosaico, utilizzando tecniche di Structure-from-Motion.

¹ Manuale linee guida 113/2014 IDRAIM Sistema di valutazione idromorfologica, analisi e monitoraggio dei corsi d'acqua, ISPRA Istituto Superiore per la Protezione e la ricerca Ambientale, 2014

1.2 Val Troncea

La val Troncea, nel cuore delle Alpi Cozie, si estende per una superficie di 3280 ettari occupando la testata del bacino imbrifero del torrente Chisone, le cui sorgenti prendono origine dai Monti Barifreddo e Appenna; è delimitato per gran parte del suo perimetro da cime di tremila metri di altitudine e insiste totalmente sul Comune di Pragelato, di 775 abitanti, a circa 82 chilometri a ovest dal capoluogo piemontese [Figura 1.1].

Per la quasi sua totalità la valle è inserita nel parco naturale della Val Troncea, istituito nel 1980 con lo scopo di salvaguardare le caratteristiche peculiari della valle.

Figura 1.1 Geolocalizzazione della Val Troncea – Fonte Google Maps.

La vegetazione è costituita da boschi di larice talora in associazione con il pino cembro [Figura 1.2], il sottobosco è caratterizzato da formazioni di ginepro, rododendro, mirtillo e ontano verde e nel fondovalle sono presenti rare betulle e piante di pioppo tremolo.

Figura 1.2 Foto panoramiche della valle da DJI Phantom 4, acquisite nelle giornate dei rilievi.

1.3 Struttura del lavoro svolto

L'elaborato di tesi è strutturato sei capitoli.

Nell'introduzione, vengono descritte le finalità del lavoro, il sito in esame e la struttura del lavoro.

Il secondo capitolo ha come funzione quella di descrivere la teoria del rilievo fluviale con drone; nello specifico i concetti di base di geomorfologia fluviale e di fotogrammetria quali il principio di base, le fasi, le camere e le immagini digitali, il loro orientamento e le equazioni di collinearità. Vengono anche descritte le differenti tipologie di UAV e i loro componenti.

Nel terzo si riporta la fase di acquisizione dei dati, la materializzazione e la misura dei punti di appoggio; viene riportata anche la pianificazione del volo, svolta sia tramite l'applicazione manuale delle formule di pianificazione che con l'utilizzo di un software open source di ArduPilot Mission Planner. Nella parte conclusiva i dati acquisiti durante i rilievi, con tempo di volo totale, numero di fotogrammi acquisiti e traiettorie dei voli.

Il quarto capitolo descrive le fasi di elaborazione dei dati acquisiti, i risultati dell'elaborazione, quali la nuvola di punti densa, sparsa e la sua classificazione, l'ortomosaico, il modello digitale del terreno, di superficie e il modello tridimensionale (mesh e texture) e la loro esportazione. Questo è stato fatto per due differenti software, Agisoft Metashape e DJI Terra, con l'obiettivo di confrontarli e valutarne pregi ed eventuali difetti.

Il quinto capitolo riguarda la Bathymetric Structure from Motion; lo scopo è quello di testare un algoritmo che permetta in maniera iterativa di correggere dalla rifrazione la batimetria per torrenti con bassa profondità, inferiore a 2 metri. Nella prima parte vengono riportati i principi teorici, il metodo, i prerequisiti per l'utilizzo di tale algoritmo e il workflow; nella seconda parte l'applicazione dell'algoritmo per un tratto di fiume di circa 250 ml nella Val Troncea e l'analisi dei risultati ottenuti.

Il sesto e ultimo capitolo riporta le conclusioni generali sul lavoro effettuato.

Capitolo 2

Rilievo fluviale con drone

2.1 Concetti di base di geomorfologia fluviale

La *geomorfologia fluviale* può essere sinteticamente definita come lo "studio dei processi di produzione, flusso e immagazzinamento di sedimenti nel bacino idrografico e nell'alveo fluviale nella breve, media e lunga scala temporale, e delle forme risultanti nell'alveo e nella piana inondabile" (SEAR et al., 2003, WOHL et al., 2013).

Il sistema fluviale che fa parte di un bacino idrografico può essere idealmente suddiviso in tre zone, secondo lo schema proposto da SCHUMM (1977)²:

- 1. La *porzione alta del bacino*, nella quale prevalgono i processi che determinano la produzione di sedimenti (erosione, frane);
- 2. La *porzione intermedia del bacino*, caratterizzata prevalentemente dal trasferimento di sedimenti verso valle da parte dei corsi d'acqua principali del sistema;
- 3. La *porzione più valliva del bacino* idrografico, rappresentante l'area di prevalente accumulo di sedimenti.

I corsi d'acqua convogliano sedimenti dalle zone sorgenti, nelle porzioni alte del bacino, attraverso la zona di trasferimento, alle pianure alluvionali che rappresentano le zone di accumulo. Tale suddivisione riflette la prevalenza, in ognuna delle tre zone [Figura 2.1], di una delle tre principali categorie di processi:

- L'erosione con la produzione di sedimenti;
- Il trasporto solido con il trasferimento di sedimenti verso valle;
- La sedimentazione con l'immagazzinamento di sedimenti.

Le tre categorie di processi agiscono, in misura diversa, in ogni tratto del sistema fluviale, in particolar modo nei tratti in cui il corso d'acqua è di tipo

² The fluvial system, SA Schumm, New York, Wiley, 1977.

alluvionale a fondo mobile, dove si realizzano continui scambi di sedimenti tra le sponde e il fondo.

Figura 2.1 Schematizzazione delle tre zone secondo lo quanto proposto da SCHUMM (1977) -Fonte ADBPO, 2008, modificato da KONDOLF, 1994.

Riguardo le dimensioni dei corsi d'acqua, queste aumentano sistematicamente attraverso il sistema fluviale al crescere dell'area di drenaggio e quindi delle portate liquide.

CHURCH (1992)³ propone uno schema di suddivisione degli alvei scalandone la larghezza rispetto al diametro medio dei sedimenti presenti sul fondo [Figura 2.2]. In base a tale criterio, si possono distinguere:

- Small channels, alvei di piccole dimensioni o corsi d'acqua piccoli, con il fondo costituito da materiale grossolano e larghezza compresa tra 1 e 10 volte circa le particelle presenti sul fondo;
- Intermediate channels, alvei di medie dimensioni o corsi d'acqua intermedi, quando la larghezza dell'alveo è superiore a 10 volte le particelle presenti sul fondo, ma possono essere ancora influenzati da sbarramenti naturali di sedimenti o di tronchi che possono occupare una porzione significativa della loro sezione (il limite superiore di larghezza di questa classe intermedia può collocarsi tra 20 e 30 m);

³ Channel Morphology and Typology in River Flows and Channel Forms; M. Church; Chapter; 1996.

- Large channels, alvei di grandi dimensioni o corsi d'acqua grandi, quando la larghezza è di vari ordini di grandezza rispetto alle dimensioni granulometriche dei sedimenti e non esistono vincoli laterali che condizionano la forma e le dimensioni della sezione (in molti ambienti il passaggio ad alvei di grandi dimensioni avviene per larghezze al di sopra dei 20÷30 m e portate formative a partire da circa 20÷50 m³/s).

Figura 2.2 Grado di confinamento e dimensioni dei corsi d'acqua nelle diverse zone del bacino – Fonte CHURCH (1992) modificato da BRIERLEY & FRYIRS, 2005.

L'efficienza dei processi di trasferimento di sedimenti verso valle dipende dalla connettività tra le diverse unità fisiografiche. Affinché ciò avvenga in maniera funzionale, deve esistere una continuità longitudinale, che esprime il fatto che sono attivi vari processi di scambio dalle zone di origine dei sedimenti al reticolo idrografico, e che tali sedimenti si muovano verso valle senza significative interruzioni (seppure siano possibili fenomeni di sbarramento dovuti a cause naturali, quali frane che invadono l'alveo o affioramenti rocciosi).

Per il funzionamento dei processi ecologici, è importante non solo la continuità longitudinale dei flussi liquidi e solidi, ma anche la:

- *Continuità laterale*, determinata dall'esistenza di una fascia di pertinenza fluviale nella quale si esplicano periodicamente i processi di esondazione e di mobilità laterale del corso d'acqua;

- *Continuità verticale,* determinata dal continuo scambio di acqua tra la falda e il corso d'acqua all'interno della zona iporreica, che è sempre presente quando il fondo dell'alveo è costituito da sedimenti permeabili.

2.1.1 Sistemazione idraulica di un corso d'acqua

La sistemazione dell'asta di un torrente è generalmente ottenuta diminuendone la pendenza con opere trasversali come briglie e soglie per fissare l'alveo. L'obiettivo degli interventi è quello di ridurre l'attitudine al trasporto solido di fondo e di proteggere.

Dovendo programmare e progettare opere di sistemazione idraulicoforestale è indispensabile conoscere con accuratezza sia lo stato dei versanti che quello dei corsi d'acqua: è dunque sempre necessario effettuare una serie completa di indagini sul territorio mediante una campagna di rilevamenti ed ispezioni, appoggiata ad una cartografia sufficientemente precisa oppure tramite la ricostruzione fotogrammetrica di un modello tridimensionale, utilizzando tecniche di Structure from Motion.

Il rilevamento deve portare all'individuazione dei dissesti in atto, delle frane potenziali e dei fenomeni di erosione in atto sui versanti e nel reticolo idrografico, oltre a rilevare e stimare la quantità ed il tipo di trasporto solido nei corsi d'acqua.

Gli interventi progettati ed effettuati sui versanti dovrebbero sempre essere distribuiti e interessare zone più o meno ampie; sistemazione di frane, regimazione delle acque superficiali, rimboschimento sono tutti interventi mirati ad impedire o a limitare i dissesti, eliminandone la causa oppure a riportando i pendii in una condizione di stabilità.

Essi richiedono un tempo abbastanza lungo di realizzazione e quindi fanno sentire il loro effetto con un certo ritardo; inoltre sono sempre collegati, ad esempio, a dissesti in atto sui versanti che hanno un effetto sul comportamento dei corsi d'acqua attraverso il controllo che essi esercitano sui fenomeni erosivi distribuiti, che contribuiscono al trasporto solido in alveo; d'altra parte i fenomeni erosivi in alveo possono compromettere la stabilità dei pendii innescando frane superficiali al piede dei versanti.

In definitiva, una buona programmazione dovrà dunque prevedere livelli di priorità e modalità di esecuzione ben precise.

2.1.2 Opere trasversali: le briglie

Le briglie [Figura 2.3] sono opere trasversali alla direzione della corrente, fondate in alveo e da esso sporgenti, che hanno la funzione di rialzare il letto e fortificarlo localmente, stabilizzare il profilo dell'alveo e contenere con l'erosione di fondo anche l'erosione o lo scalzamento di fianchi e pareti. Sono quindi realizzate prevalentemente in alvei montani a forte pendenza, soggetti nella loro configurazione naturale a spiccati fenomeni di erosione.

Figura 2.3 Esempi di briglie. In alto a sinistra in cemento armato, a destra in pietra. In basso a sinistra in legno, a destra con gabbioni riempiti in pietra.

La riduzione della velocità della corrente viene indotta mediante la riduzione della pendenza d'alveo, chiamata pendenza di compensazione, mediante la sistemazione a gradinata; tale pendenza deve essere tale da evitare fenomeni di erosione e deve essere quindi determinata imponendo l'equilibrio nel lungo periodo fra erosione e deposito. Viene indotto quindi un nuovo profilo detto di compensazione [Figura 2.4]. La determinazione del profilo di compensazione è un'operazione delicata, poiché variabile nel tempo, in funzione del regime della corrente. Un limite inferiore alla pendenza di compensazione è ottenuto imponendo che il materiale di fondo alveo sia stabile, in accordo alla valutazione ottenuta dall'abaco di Shields. Ciò equivale ad imporre che non si verifichi alcuna erosione, condizione tuttavia che potrebbe implicare il verificarsi di deposito di materiale da parte della corrente.

Figura 2.4 Posizionamento longitudinale delle briglie.

A tale scopo è importante e necessario considerare le conseguenze di una progettazione imprecisa.

Se la pendenza di correzione è troppo bassa, si verificherà il deposito di materiale fra le briglie. Il deposito sarà prevalente subito a valle delle briglie, dove la corrente è molto carica di materiale, e successivamente sarà meno significativo, essendosi parte del materiale trasportato già depositato. L'accumulo di materiale nella prima parte di alveo a valle delle briglie provocherà un aumento di pendenza dell'alveo, fino allo stabilirsi della pendenza che assicura condizioni di equilibrio. In taluni casi si è osservato il riempimento dell'alveo a valle delle briglie fino a raggiungere la sommità delle briglie stesse, fenomeno che ha provocato quindi il ristabilimento della pendenza originaria a quota più alta.

Se, invece, la pendenza di correzione è troppo alta si verificherà l'erosione del tratto di alveo subito a valle delle briglie, quale conseguenza della naturale tendenza della corrente a indurre una pendenza d'alveo più ridotta, circostanza che può provocare la rovina delle briglie.

In sede di progettazione, è quindi opportuno considerare le conseguenze sopradette con cura, valutando gli scenari possibili a seguito dell'incertezza della stima.

Riguardo al posizionamento delle briglie, esso è fissato in dipendenza della pendenza di correzione. Questa può essere raggiunta posando in opera numerose briglie di altezza contenuta e poste a distanza più ravvicinata, oppure un numero minore di briglie di maggiore altezza e poste a maggiore distanza.

D'altro canto, è bene evitare opere di altezza eccessiva, che possono essere più vulnerabili ed indurre turbolenze significative a valle. In nessun caso la briglia deve avere altezza superiore a 15 metri (in genere non superiore a 5-7 metri fuori terra) ed indurre un invaso, anche temporaneo, a monte superiore a 1.000.000 di m3, onde evitare di generare situazioni pericolose a valle in caso di collasso.

Una prima importante decisione da prendere nella progettazione è la selezione del materiale da costruzione più indicato in relazione all'obiettivo della sistemazione. Le briglie possono essere realizzate in:

- *Legno*: materiale da costruzione che può essere efficacemente utilizzato per la realizzazione di briglie. Possono essere classificate secondo tre principali tipologie costruttive:
 - Briglie a palificata a una parete, realizzate mediante alcuni pali infissi verticalmente nel terreno, per una profondità variabile tra 1 e 2 m, cui vengono collegati elementi orizzontali, denominati correnti, che accostati determinano la formazione della parete del manufatto.
 - *Briglie Jsser,* costituita da pali disposti con l'asse nel verso della corrente, accostati in maniera da originare una gaveta ribassata. Sono indicate per sezioni fluviali larghe.
 - *Briglie convesse,* realizzate con pali disposti su due piani sovrapposti e orientati con angoli di 30-35° rispetto alla direzione principale della corrente.

- Legno e pietra: sono adottate per ottenere maggiore resistenza del manufatto nei confronti di sollecitazioni meccaniche e si ottengono realizzando dei cassoni collegando fra loro elementi lignei verticali, trasversali e longitudinali, che vengono successivamente riempiti con pietrame.
- *Pietra*: sono realizzate utilizzando materiale di grande pezzatura, disposto trasversalmente al corso d'acqua, collocato anche in più file sovrapposte. La forma è sagomata in modo da originare la gaveta nella zona centrale.
- Calcestruzzo: sono una soluzione frequentemente adottata in ragione della loro flessibilità di utilizzo e ridotto costo. Possono essere rivestite in pietra naturale, per migliorarne l'inserimento ambientale ed anche per proteggere il calcestruzzo dall'erosione, alla quale risulta piuttosto vulnerabile. Le briglie in calcestruzzo possono essere o meno armate, in dipendenza delle loro caratteristiche strutturali.
- Gabbioni metallici: si tratta di una tipologia costruttiva interessante per il costo ridotto e l'ottimo inserimento ambientale. I gabbioni hanno forma parallelepipeda di dimensioni con lati variabili da 0,5 a 2 metri circa e sono realizzati con rete metallica a maglia esagonale a doppia torsione, ottenuta impiegando filo di acciaio zincato.

2.2 La fotogrammetria

La *fotogrammetria* è la scienza che consente di ottenere informazioni affidabili di oggetti fisici e dell'ambiente circostante mediante processi di registrazione, misura e interpretazione delle immagini fotografiche e digitali formate dall'energia elettromagnetica radiante e da altri fenomeni fisici.⁴

Essa può essere classificata in base al tipo di *presa* utilizzata:

- Fotogrammetria terrestre: in cui le prese avvengono da terra e in questo caso gli oggetti si trovano a distanze inferiori a 200 m;
- Fotogrammetria aerea: quando le prese vengono fatte per via aerea e in questo caso il terreno si trova a distanze superiori a 200 m;

al tipo di *elaborazione* utilizzata:

- Fotogrammetria analogica: la ricostruzione degli oggetti rilevati si ottiene con dispositivi fisici che riproducono all'inverso il fenomeno della presa;
- Fotogrammetria analitica: la ricostruzione degli oggetti rilevati si ottiene elaborando numericamente opportune misure effettuate direttamente sui fotogrammi;

al tipo di *fotografia* utilizzata:

- Fotogrammetria classica: le fotografie sono ottenute dallo sviluppo di emulsioni fotosensibili su pellicola, o su lastre di vetro;
- *Fotogrammetria digitale*: le fotografie sono ottenute sotto forma numerica e organizzate in un grigliato di pixel. Possono essere ottenute sia da una macchina digitale, sia per scansione di una fotografia tradizionale.

Tra i risultati finali ottenibili dalla fotogrammetria si possono avere:

- rappresentazioni grafiche, cioè carte topografiche, curve di livello o, più in generale, disegni degli oggetti;
- rappresentazioni numeriche, cioè coordinate di punti appartenenti agli oggetti rilevati;
- ulteriori immagini, cioè fotografie elaborate come le immagini raddrizzate, ortofoto o ortofotopiani.
- Modello Digitale del Terreno e di Superficie (DTM e DSM).

⁴ Manual of Photogrammetry, American Society of Photogrammetry, Brand: Asprs Pubns, 1980

2.2.1 Il principio di base

Per poter determinare le posizioni dei punti di un oggetto nell'ambiente reale del territorio, utilizzando le posizioni dei punti corrispondenti sulla fotografia, è necessario definire le relazioni geometriche fra le posizioni tridimensionali dei punti dell'oggetto e quelle delle loro immagini sul piano della fotografia (lastra). Ad ogni punto dell'oggetto tridimensionale *A*, *B*, ... (spazio oggetto) corrisponde un punto omologo *A'*, *B'*, ... sul piano della lastra (spazio immagine). A questo proposito è possibile, con sufficiente approssimazione, pensare alla fotografia come a una prospettiva centrale, in base alla quale i segmenti che congiungono i punti dell'oggetto con le loro corrispondenti immagini (stella proiettante) si incontrano tutti in un punto *0*, distante pochi centimetri dal piano dell'emulsione fotografica, detto centro di presa [Figura 2.5].

Figura 2.5 Schema della geometria della presa fotografica. Fonte Zanichelli editore S.p.A., Bologna 2012.

Il centro di presa 0 è un punto dell'obiettivo della camera, mentre la distanza di 0 dal piano della lastra è detta distanza principale e indicata con p. Essa si mantiene fissa e può essere considerata (prescindendo dalla distorsione) uguale alla distanza focale f dello stesso obiettivo (p = f). Il punto di proiezione di 0 sul piano della lastra è detto punto principale ed è indicato con P, dunque P0 = p [Figura 2.5].

Tuttavia, una sola immagine piana non contiene informazioni sufficienti a definire la posizione e le dimensioni di un oggetto nello spazio tridimensionale. In [Figura 2.6] si può osservare che il punto *A*', sul piano di una sola lastra con centro di presa O_1 , non è l'omologo del solo punto A sul terreno (oggetto), ma lo è anche per tutti gli infiniti punti A_1, A_2, \dots che si trovano sul raggio proiettante r_1 (AO_1A'), rendendo il problema indeterminato. Queste informazioni possono essere ottenute disponendo di due fotografie che riprendono lo stesso oggetto osservato da due differenti punti di presa $O_1 e O_2$.

Figura 2.6 Una sola fotografia (a) non è sufficiente per definire la posizione dei punti sul terreno. Due fotografie (b), permettono di definire i suoi punti univocamente dalla intersezione dei raggi omologhi r_1 e r_2 (configurazione di presa aerea). Fonte Zanichelli editore S.p.A., Bologna 2012

In questo contesto al punto A del terreno corrisponde il punto omologo A' e il punto A". Conoscendo con precisione la posizione dei punti omologhi e la posizione spaziale delle due lastre e dei due punti di presa $0_1 e 0_2$, il punto A rimane geometricamente definito. Le posizioni dei centri di presa $0_1 e 0_2 e$ l'orientamento delle lastre, però non sono note a priori. È possibile ottenere queste informazioni dalle stesse fotografie, se queste contengono un certo numero di punti di appoggio sul terreno le cui posizioni vengono ricavate da tradizionali operazioni topografiche (fase di orientamento assoluto).

Oggi il problema fotogrammetrico viene risolto ottenendo le coordinate dell'intersezione nello spazio delle rette $r_1 e r_2$ con la risoluzione di un sistema di equazioni (dette di collinearità) ottenute da relazioni di fotogrammetria analitica, mentre in passato le stesse operazioni venivano effettuate con strumenti meccanici o ottici di tipo analogico, che permettevano di stabilire la posizione del generico punto *A* nell'ambito di uno spazio oggetto ricostruito in scala ridotta detto modello (fotogrammetria analogica).

Figura 2.7 Il modello del terreno in scala ridotta uguale al rapporto b : B. Fonte Zanichelli editore S.p.A., Bologna 2012

Ciò si otteneva avvicinando i centri di presa facendoli scorrere lungo la loro congiungente, mantenendo così immutato l'orientamento delle lastre; qualunque fosse la loro posizione, i punti di intersezione dei raggi omologhi generavano un modello spaziale che rappresentava il terreno in una scala N ridotta fornita dal rapporto tra la distanza $b = O_1O_2'$ utilizzata nella ricostruzione e la distanza $B = O_1O_2$ tra i centri all'atto della presa 1: N = b: B [Figura 2.7].⁵

⁵ Misure, rilievo, progetto, Cannarozzo, Cucchiarini, Meschieri, Zanichelli editore S.p.A., Bologna, 2012.

2.2.2 Le fasi del processo fotogrammetrico

Nel processo fotogrammetrico si riconoscono sempre le seguenti fasi:

- *acquisizione*: operazioni riguardanti la presa delle immagini fotografiche, effettuate con opportune macchine fotografiche, dette camere, e opportune tecniche;
- appoggio: operazioni riguardanti la rilevazione dei punti di appoggio naturali o artificiali appositamente scelti in modo da poter correttamente orientare i fotogrammi;
- orientamento: operazioni preliminari per la determinazione dei parametri che consentono di posizionare i centri di presa e le lastre con la stessa posizione nello spazio che avevano al momento della presa, quindi la ricostruzione della forma e delle dimensioni dell'oggetto ripreso;
- *restituzione*: operazioni che consentono di effettuare misure sul modello dell'oggetto ricostruito, utilizzando strumenti detti restitutori, in grado di produrre, come risultato finale, un disegno, un insieme numerico di coordinate o una immagine raddrizzata.
- *integrazione e editing*: operazioni che consentono di integrare con informazioni mancati, toponomastica, codifiche e ricostruzioni delle congruenze geometriche.

Per poter eseguire la fase conclusiva del rilievo, la restituzione, occorre che in precedenza i raggi proiettanti di ciascun fotogramma siano collocati con la stessa posizione nello spazio che avevano all'atto della presa; queste operazioni sono previste nella fase di orientamento, che a sua volta comprende:

- orientamento interno: determinazione dei parametri che consentono di ricostruire la metrica della proiezione centrale, quindi delle stelle di raggi proiettanti. Essi sono uguali per tutti i fotogrammi del rilievo, in quanto legati alla camera utilizzata nella presa, e vengono forniti dal costruttore della camera in appositi documenti (certificati di calibrazione).
- orientamento esterno, che si divide a sua volta in:
 - *orientamento relativo*: determinazione della posizione relativa dei due fotogrammi, realizzando l'intersezione dei raggi proiettanti, dunque del modello tridimensionale dell'oggetto,

ma in una scala arbitraria e con una giacitura spaziale generica (quindi svincola to dal sistema di riferimento assoluto XYZ legato all'oggetto rilevato).

 orientamento assoluto: il modello ricavato nella fase precedente viene rototraslato e scalato, in modo da riferirlo al sistema di riferimento assoluto e dimensionarlo alla scala desiderata. In questa fase è necessaria la conoscenza della posizione di alcuni punti di appoggio al suolo.

2.2.3 Le camere da presa

La camera da presa può essere schematizzata come un corpo rigido in cui l'obiettivo si trova in posizione fissa rispetto al sensore su cui si registra l'immagine, in modo che la distanza principale p rimane costante e ritenuta corrispondente alla sua distanza focale (p = f).

Alcune componenti fisiche essenziali della camera sono:

- l'obiettivo, sistema complesso di lenti a fuoco fisso (*f* costante) che consente il passaggio di luce all'interno della fotocamera. E trasmettono l'immagine reale dell'oggetto inquadrato sul piano immagine;
- l'otturatore, dispositivo che permette di fare arrivare luce al sensore;
- il sensore, elemento della fotocamera esposto alla luce, è costituito da una matrice di elementi areali (pixel) ognuno dei quali è sensibile ad un colore primario. Ogni pixel è costituito da un condensatore in grado di registrare la quantità di energia (intensità luminosa) incidente e convertirla in un valore discreto.

Possono poi essere definiti i seguenti elementi geometrici:

- il *centro di presa 0*, coincidente con il secondo punto nodale dell'obiettivo e punto comune della stella dei raggi proiettanti;
- l'asse della camera, coincidente con l'asse del sistema ottico obiettivo;
- il *punto principale P*, intersezione dell'asse della camera con il piano della lastra.
- la distanza principale p, distanza tra il punto principale e il centro di presa.

In relazione alle modalità e alla precisione con cui è nota la geometria interna della camera, che coincide con i parametri di orientamento interno, le camere sono classificate in:

- camere metriche: appositamente costruite per scopi fotogrammetrici, sono dotate di costosi obiettivi in grado di limitare la distorsione radiale e, comunque, di cui deve essere nota la legge di variazione (curva di distorsione); l'orientamento interno è noto e costante nel tempo e la calibrazione avviene su banco ottico e mediante parametri specifici. Le immagini sono quindi sostanzialmente prive di distorsioni;
- camere semimetriche: l'orientamento interno è noto, ma variabile nel tempo. Data la stabilità del sensore, questi parametri dipendono solamente dalla messa a fuoco e nel caso di messa a fuoco costante sono costanti nel tempo. La calibrazione avviene su banco ottico e definiscono sempre le distorsioni radiali e le distorsioni del sensore;
- camere professionali: hanno un orientamento interno incognito e variabile nel tempo. Data la stabilità del sensore, questi parametri dipendono solamente dalla messa a fuoco continua; mediante tecniche analitiche di "autocalibrazione" è possibile stimare i parametri di orientamento interno, che possono considerarsi caratteristici della camera per una definita messa a fuoco. Si hanno le distorsioni radiali, tangenziali e quelle dovute al sensore;
- camere amatoriali: i parametri di orientamento interno sono incogniti e variabili nel tempo, ma vengono calcolati nell'ambito della stessa procedura di "autocalibrazione". Si hanno le distorsioni radiali, tangenziali e dovute al sensore.

2.2.4 Le immagini digitali

In fotogrammetria digitale, il dato primario viene espresso in forma di immagine digitale, in cui il contenuto fotografico (radiometria) è registrato sotto forma di numeri.

Si giunge a tale rappresentazione (raster) suddividendo l'immagine fotografica in elementi elementari di dimensioni finite (pixel, non ulteriormente divisibile) e associando a ognuno di essi i numeri che rappresentano la radiometria della porzione di immagine contenuta. Ogni pixel può essere visto come elemento di una matrice [Figura 2.8] e quindi essere individuato univocamente da due numeri interi che rappresentano la posizione in riga e colonna dell'elemento elementare all'interno della matrice. Il pixel ha una posizione fissata a priori che non può variare nel tempo.

Occorre quindi fissare un sistema di riferimento (χ, η) che consenta di associare a ogni pixel coordinate reali. In tale sistema il pixel assume dimensione finita (D_{χ}, D_{η}) e si considera la posizione del suo baricentro. Si può determinare una corrispondenza biunivoca tra la posizione (i,j) del pixel all'interno della matrice immagine e le sue coordinate cartesiane (x, \eta).

Figura 2.8 Sistema di riferimento che associa ad ogni pixel le coordinate reali.

Riguardo al contenuto radiometrico, se l'immagine digitale deve rappresentare un oggetto formato da due soli colori, la radiometria può essere espressa da due soli numeri interi, ad esempio 0 per il bianco e 1 per il nero. Se deve rappresentare un oggetto in toni di grigio, la radiometria può essere espressa con un numero intero variabile tra 0 (nero) e 255 (bianco) e i valori intermedi a questi due estremi rappresentano le varie gradazioni di grigio. Invece, se si intende rappresentare una immagine a colori si hanno due possibilità principali di rappresentazione:

 RGB (Red Green Blue), in cui ogni colore viene visto come la somma di tre bande corrispondenti ai colori principali (rosso, verde e blu) ed ogni banda viene rappresentata da 256 valori che variano da 0 (assenza di colore) a 255 (saturazione del colore); - *CMYK* (Cyan, Magenta, Yellow e blac*K*) è un metodo di colore a quattro canali, la cui tecnica è di tipo sottrattivo e il colore si ottiene dalla differenza delle luminosità di ogni colore.

Data la quantità di dati numerici da memorizzare nasce l'esigenza di memorizzarli con ordine e secondo una organizzazione che consenta di ricostruire fedelmente l'immagine. L'insieme delle regole che governano la memorizzazione viene denominato formato. Esso deve:

- garantire la minima occupazione di memoria;
- prevedere la possibilità di una compressione;
- essere di pubblico dominio;
- consentire la memorizzazione di tutte le convenzioni radiometriche.

I formati più diffusi in ambito fotogrammetrico sono il TIFF e il JPEG. Mentre il primo consente di memorizzare in un unico file più di una immagine (*immagini piramidali*), il secondo consente una compressione non distruttiva (*LZW*) che su immagini RGB permette di dimezzare l'occupazione di memoria.

2.2.5 L'orientamento dei fotogrammi

Le operazioni di orientamento dei fotogrammi sono una fase fondamentale del processo fotogrammetrico. Dopo aver acquisito tutti i fotogrammi necessari al rilievo, per poter ottenere il prodotto finale del rilievo con la restituzione, è necessario che la stella di raggi proiettanti di ogni fotogramma sia collocata nello spazio nella stessa posizione che aveva all'atto della presa.

La fase di *orientamento interno* è volta a ricavare i parametri che permettono di ricostruire la proiezione centrale della camera ovvero quei parametri che consentono di ricostruire i raggi proiettanti che passano per il centro di presa *0*. Essi sono:

- la posizione del punto principale *P* nel sistema lastra: *x_P* e *y_P*;
- la distanza principale *p*;
- la curva di distorsione dell'obiettivo.

In teoria, l'obiettivo della camera dovrebbe essere realizzato tale che la perpendicolare condotta dal centro di presa *0* al piano della lastra cada

esattamente nell'origine del sistema xy. Tuttavia, questo non si verifica perfettamente e la proiezione P del centro di presa 0 sul piano della lastra può scostarsi di alcuni centesimi di millimetro dall'origine degli assi xy[Figura 2.9]. Quindi, le sue coordinate x_p e y_p devono essere corrette e nel caso di camere non metriche vengono calcolate tramite la "calibrazione della camera".

Figura 2.9 Proiezione del centro di presa P non coincidente con l'origine del sistema xy. Fonte Zanichelli editore S.p.A., Bologna 2012

Dopo aver ricostruito la geometria interna della camera si può passare alle operazioni di *orientamento esterno*, in cui si intende ricollocare idealmente i fotogrammi nella stessa posizione spaziale che avevano nella camera all'atto della presa. Per ciascun fotogramma, si hanno tanti parametri incogniti quanto sono i movimenti che definiscono la posizione di un corpo rigido nello spazio, cioè 6, 3 traslazioni e 3 rotazioni. Questi 6 parametri possono essere:

- le 3 coordinate del centro di proiezione $O(X_0, Y_0, Z_0)$;
- i 3 angoli di rotazione ω, φ, κ di assetto della camera, che nel caso di presa aerea, rappresentano:
 - il rollio, rotazione intorno asse x (direzione di volo);
 - il beccheggio, rotazione intorno asse y;
 - la deriva, rotazione intorno asse z.

Occorre ricordare che per ricostruire l'oggetto rilevato è necessario un certo numero di modelli stereoscopici, ognuno generato dal ricoprimento di due fotogrammi consecutivi e quindi per il loro orientamento esterno occorre

determinare complessivamente 12 parametri incogniti (6+6 per ogni modello) [Figura 2.10].

Figura 2.10 Il modello stereoscopico e i 12 parametri di orientamento esterno. Fonte Zanichelli editore S.p.A., Bologna 2012

Questi parametri vengono determinati nei restitutori in base alle misure della posizione, su entrambi i fotogrammi di alcune immagini di punti omologhi dell'oggetto, e in base a coordinate note di punti di appoggio a terra, anch'essi visibili sui due fotogrammi. Dal punto di vista analitico questa fase richiede la risoluzione di sistemi di equazioni sviluppati dal software di sistema del restitutore.

In maniera operativa l'orientamento esterno può essere eseguito con le seguenti diverse modalità:

- orientamento contemporaneo di due fotogrammi con un'unica operazione;
- orientamento contemporaneo di due fotogrammi in due fasi;
- orientamento indipendente dei due fotogrammi.

L'orientamento contemporaneo di due fotogrammi in due fasi viene utilizzato nell'ambito della restituzione analitica e prevede due fasi temporali distinte, l'orientamento *relativo* e *assoluto*.

Nell'*orientamento relativo* si adotta un sistema di riferimento temporaneo *X'Y'Z*' solidale con il primo fotogramma, la cui configurazione spaziale annulla 7 dei 12 parametri dell'orientamento esterno, lasciandone 5 da

determinare, in quanto non si conosce la posizione spaziale della coppia di fotogrammi all'atto della presa rispetto al sistema di riferimento assoluto *XYZ*.

Si possono avere due diverse tipologie di orientamento relativo:

- l'orientamento asimmetrico [Figura 2.11 a)], in cui si calcolano solo i 5 parametri di orientamento relativo del secondo fotogramma rispetto al primo considerato fermo $\varphi_1, \kappa_1, \omega_2, \varphi_2, \kappa_2$. Il conseguente sistema di riferimento temporaneo X'Y'Z' ha origine in O_1 e piano X'Y' parallelo al piano del fotogramma. Si ha allora che $\omega_1 = 0$, dato che in O_1 l'asse X' è complanare all'asse z del sistema interno.
- l'orientamento simmetrico [Figura 2.11 b)], in cui entrambi i fotogrammi possono subire movimenti per raggiungere il corretto posizionamento relativo. I 5 parametri da determinare sono $b_y, b_z, \omega_2, \varphi_2, \kappa_2$ e la configurazione del sistema di riferimento temporaneo X'Y'Z' ha:
 - origine 0' coincidente con il centro di presa 0₁ del primo fotogramma;
 - asse X' passante per il secondo punto di presa O_2 e complanare all'asse z del sistema di riferimento interno nella posizione O_1 .

Figura 2.11 Rappresentazione grafica dell'orientamento relativo a)asimmetrico b)simmetrico. Fonte Zanichelli editore S.p.A., Bologna 2012

Per determinare analiticamente i 5 parametri dell'orientamento relativo, il software di sistema del restitutore utilizza un sistema di equazioni di collinearità. In teoria, per realizzare l'orientamento relativo (cioè per ottenere i 5 parametri) sarebbero sufficienti le equazioni ricavate considerando 5 coppie di raggi proiettanti relativi a 5 coppie di punti omologhi, ben identificabili e collimabili sul modello stereoscopico. In realtà, per migliorare la qualità della determinazione di questi parametri, si sceglie un numero sovrabbondante di punti omologhi opportunamente distribuiti nella zona di sovrapposizione (ricoprimento longitudinale e traversale solitamente maggiore del 60% e 20%).

Dopo la fase di orientamento relativo, i fotogrammi si trovano in una indeterminata posizione spaziale legata al sistema temporaneo X'Y'Z', e le intersezioni dei raggi proiettanti omologhi danno luogo ad un modello in una posizione generica dello spazio e in una scala arbitraria [Figura 2.12].

Figura 2.12 Modello in scala arbitraria e con una giacitura spaziale generica legata al sistema temporaneo X'Y'Z' adottato. Fonte Zanichelli editore S.p.A., Bologna 2012

Con le operazioni di *orientamento assoluto*, il modello viene convertito alla scala desiderata e imposto lo stesso orientamento dell'oggetto reale. Vengono quindi determinati i 7 parametri incogniti, uno legato alla scala del modello e gli altri sei riguardanti le 3 rotazioni e le 3 traslazioni di un corpo rigido nello spazio. In sintesi questi sono:

- m, il fattore di scala;

- X₀, Y₀, Z₀, le coordinate assolute del centro di presa O del fotogramma scelto per la trasformazione;
- ω, ψ, κ , gli angoli di rotazione del fotogramma scelto.

Per poter determinare le 7 incognite è necessaria la conoscenza della posizione (in coordinate assolute *XYZ*) di un certo numero di punti appartenenti all'oggetto (naturalmente ben identificabili e rintracciabili sui fotogrammi), detti di punti di appoggio. Questi punti possono essere:

- *naturali*, se sono selezionati tra i manufatti preesistenti sul terreno e devono essere ben riconoscibili sui fotogrammi;
- artificiali, se sono realizzati per l'occasione; devono poi essere segnalati in modo opportuno affinché siano visibili dall'alto e siano ben distinguibili sui fotogrammi.

La posizione di questi punti di appoggio [Figura 2.13] a terra dovrà essere determinata con le tradizionali operazioni topografiche, ad esempio rilievo GPS.

Figura 2.13 Esempi da sinistra verso destra di punti di appoggio artificiali, codificati e naturali.

Dopo aver effettuato tutte le operazioni descritte in precedenza, è possibile passare alla fase di *restituzione*, ossia l'insieme delle operazioni che consentono di passare dal modello stereoscopico dell'oggetto fotografato alla rappresentazione grafica, numerica o alla realizzazione di una immagine orto-proiettata.
2.2.6 Le equazioni di collinearità

Come accennato nei paragrafi precedenti, le equazioni di collinearità governano le seguenti tre fasi del processo fotogrammetrico:

- presa: passaggio dalla posizione dei punti oggetto alla posizione dei punti immagine;
- orientamento: calcolo dei relativi parametri di orientamento interno ed esterno;
- *restituzione*: calcolo delle coordinate dei punti oggetto.

Queste relazioni si determinano scrivendo le equazioni di una retta nello spazio che definisca l'allineamento dei tre punti O_1 centro di presa, A_1 punto del terreno e A punto omologo [Figura 2.14 c)] e la trasformazione spaziale (rototraslazione) tra i due seguenti sistemi di riferimento:

- il sistema assoluto XYZ, a cui andranno riferiti i punti dell'oggetto da rilevare [Figura 2.14 c)];
- il sistema interno *xyz* del fotogramma, definito come segue:
 - origine coincidente con il centro di presa 0;
 - asse *z* coincidente con l'asse della camera [Figura 2.14 a)];
 - assi x e y paralleli alle congiungenti delle marche fiduciali del fotogramma [Figura 2.14 b)].

Figura 2.14 A sinistra il sistema di riferimento della camera (a) e il sistema di riferimento con origine nel centro di presa O (b); a destra c) si nota come il centro di proiezione 0_1 , il punto oggetto A e il punto immagine A_1 sul fotogramma sono allineati sullo stesso raggio proiettante r_1 . Fonte Zanichelli editore S.p.A., Bologna 2012.

Allo scopo di scrivere la prima equazione di collinearità relativa al raggio proiettante r_1 riferito al punto immagine A_1 sul fotogramma di sinistra [Figura 2.14 c)], si utilizza la simbologia seguente:

- X_A, Y_A, Z_A: coordinate del generico punto A dell'oggetto nel sistema assoluto XYZ;
- X₀₁, Y₀₁, Z₀₁: coordinate del centro di presa 0₁ nel sistema assoluto XYZ;
- x₁, y₁, z₁: coordinate di A₁, immagine di A sul fotogramma, nel sistema interno xyz;
- X_{A1}, Y_{A1}, Z_{A1}:coordinate dell'immagine A₁ nel sistema assoluto XYZ.

Ora possiamo scrivere l'equazione della retta r_1 passante per i punti A, A_1 e O_1 . Per questo consideriamo le proiezioni r_1^{XZ} e r_1^{YZ} di r_1 sui due piani XZ e YZ del sistema assoluto [Figura 2.14]. Dalla similitudine dei triangoli retti in entrambe le proiezioni si ottengono le seguenti relazioni analitiche:

$$\frac{X_A - X_{O1}}{Z_{O1} - Z_A} = \frac{X_{A1} - X_{O1}}{Z_{O1} - Z_{A1}} \quad ; \quad \frac{Y_A - Y_{O1}}{Z_{O1} - Z_A} = \frac{Y_{A1} - Y_{O1}}{Z_{O1} - Z_{A1}} \quad [1]$$

Allo stesso modo, si ottengono le seguenti relazioni di similitudine che esprimono la collinearità per il raggio proiettante r_2 :

$$\frac{X_A - X_{O2}}{Z_{O2} - Z_A} = \frac{X_{A2} - X_{O2}}{Z_{O2} - Z_{A2}} \quad ; \quad \frac{Y_A - Y_{O2}}{Z_{O2} - Z_A} = \frac{Y_{A2} - Y_{O2}}{Z_{O2} - Z_{A2}} \quad [1']$$

Nelle precedenti quattro relazioni sono presenti le coordinate incognite X_{A1} , Y_{A1} , Z_{A1} e X_{A2} , Y_{A2} , Z_{A2} dei due punti immagine A_1 e A_2 (punti omologhi) di A, rispetto al sistema di riferimento assoluto *XYZ*, mentre non compaiono le coordinate lastra (x_1 ; y_1) e (x_2 ; y_2) degli stessi punti immagine, che invece possono essere note, in quanto misurabili.

Figura 2.15 La proiezione del raggio proiettante r_1 sui due piani XZ e YZ consente di scrivere le relazioni analitiche che condurranno alle equazioni di collinearità. Fonte Zanichelli editore S.p.A., Bologna 2012.

Si esprimono allora le coordinate incognite X_{A1} , Y_{A1} , Z_{A1} e X_{A2} , Y_{A2} , Z_{A2} in funzione delle corrispondenti coordinate lastra $(x_1; y_1)$ e $(x_2; y_2)$ attraverso la rototraslazione nello spazio, tramite la matrice di rotazione R.

I punti riferiti al sistema *X*,*Y*,*Z* possono essere trasformati nel sistema *x*,*y*,*z* nel seguente modo:

$$X = R x$$
 e quindi $x = R^T x$

dove R è

$$R = \begin{pmatrix} a_{11}a_{12}a_{13}\\a_{21}a_{22}a_{23}\\a_{31}a_{32}a_{33} \end{pmatrix} =$$

	$\int \cos\phi\cos\kappa$	$-\cos\phi\sin\kappa$	$\sin\phi$	
=	$\cos \omega \sin \kappa + \sin \omega \sin \phi \cos \kappa$	$\cos\omega\cos\kappa - \sin\omega\sin\phi\sin\kappa$	$-\sin\omega\cos\phi$	
	$\sin \omega \sin \kappa - \cos \omega \sin \phi \cos \kappa$	$\sin\omega\cos\kappa + \cos\omega\sin\phi\sin\kappa$	$\cos\omega\cos\phi$	

con

- $\omega_1, \phi_1, \kappa_1$, assetto angolare degli assi del sistema interno xyz rispetto agli assi del sistema assoluto XYZ nella presa da O_1 ;
- $\omega_2, \phi_2, \kappa_2$, assetto angolare degli assi del sistema interno *xyz* rispetto agli assi del sistema assoluto *XYZ* nella presa da O_2 .

A seguito di una serie di passaggi matematici si ottiene il risultato finale della trasformazione, rispettivamente per il fotogramma di sinistra e di destra:

$$\begin{cases} X_{A1} = X_{01} + a_{11}x_1 + a_{12}y_1 + a_{13}z_1 \\ Y_{A1} = Y_{01} + a_{21}x_1 + a_{22}y_1 + a_{23}z_1 \\ Z_{A1} = Z_{01} + a_{31}x_1 + a_{32}y_1 + a_{33}z_1 \end{cases}; \begin{cases} X_{A2} = X_{02} + a_{11}x_2 + a_{12}y_2 + a_{13}z_2 \\ Y_{A2} = Y_{02} + a_{21}x_2 + a_{22}y_2 + a_{23}z_2 \\ Z_{A2} = Z_{02} + a_{31}x_2 + a_{32}y_2 + a_{33}z_2 \end{cases} [2]$$

Sostituendo i valori delle [2] nelle [1] e [1'], e sapendo che $z_1 = z_2 = -p$, si ottengono le equazioni:

$$\begin{aligned} X_A &= X_{01} + (Z_A - Z_{01}) \cdot \frac{a_{11}x_1 + a_{12}y_1 + a_{13}p}{a_{31}x_1 + a_{32}y_1 + a_{33}p} \\ Y_A &= Y_{01} + (Z_A - Z_{01}) \cdot \frac{a_{21}x_1 + a_{22}y_1 + a_{23}p}{a_{31}x_1 + a_{32}y_1 + a_{33}p} \\ X_A &= X_{02} + (Z_A - Z_{02}) \cdot \frac{b_{11}x_1 + b_{12}y_1 + b_{13}p}{b_{31}x_1 + b_{32}y_1 + b_{33}p} \\ Y_A &= Y_{02} + (Z_A - Z_{02}) \cdot \frac{b_{21}x_1 + b_{22}y_1 + b_{23}p}{b_{31}x_1 + b_{32}y_1 + b_{33}p} \end{aligned}$$

Queste relazioni sono note come equazioni di collinearità; esse possono essere utilizzate nella determinazione delle coordinate assolute incognite (X_A, Y_A, Z_A) di un generico punto A del terreno (restituzione) avendo a disposizione due fotogrammi orientati.

In questo caso, in effetti, saranno noti:

- distanza principale: p (orientamento interno);
- coordinate dei punti di presa: X_{01} , Y_{01} , Z_{01} e X_{02} , Y_{02} , Z_{02} (orientamento esterno);
- assetto angolare delle camere: ω_1 , ϕ_1 , κ_1 e ω_2 , ϕ_2 , κ_2 (orientamento esterno);
- coordinate dei punti immagine $x_1, y_1 \in x_2, y_2$ (misure sui fotogrammi).

Si costituisce quindi un sistema di quattro equazioni nelle tre incognite che quindi determinano una equazione sovrabbondante.

2.3 Unmanned Aerial Vehicle (UAV)

La corretta terminologia da adottare per ciò che comunemente viene chiamato drone è la seguente:

- APR Aeromobile a Pilotaggio Remoto;
- SAPR Sistema Aeromobile a Pilotaggio Remoto;
- UAV Unmanned Aerial Vehicle;
- UAS Unmanned Aerial Sysyems.

Etimologicamente la parola drone, in inglese, significa "fuco", ossia il maschio dell'ape; è quindi possibile associare il tipico ronzio di un drone con quello di un grosso insetto in volo. Inoltre, il fuco non producendo miele, era associato anche al significato di "pigro, sfaticato" e quindi riconducibile ad uno dei primi utilizzi del drone, ossia velivolo utilizzato come bersaglio per esercitazioni militari e quindi sacrificabile rispetto ad un aeromobile con umani a bordo.

2.3.1 Tipologie di UAV

Gli UAV vengono classificati principalmente in funzione del tipo di ala con il quale è equipaggiato. Distinguiamo UAV:

- multirotori;
- ad ala fissa;
- ibridi.

Gli UAV *multirotori* o ad ala rotante [Figura 2.16] attualmente risultano essere i più diffusi in quanto i più versatili in termini di costi, dimensioni e utilizzo. Questi velivoli sono costituti da bracci, che in media variano da tre a otto, disposti a raggiera sui quali vengono montati i rotori.

Figura 2.16 Esempi di UAV tricotteri, quadricotteri, esacotteri e ottacotteri.

Alcuni dei vantaggi sono:

- la possibilità di decollare e atterrare in spazi ristretti;
- l'elevata capacità di carico (playload);
- la capacità di stazionare in volo, modificando l'angolo di ripresa, e la possibilità di effettuare voli in verticale;
- la facilità di guida in modalità manuale.

Alcuni degli svantaggi sono:

- l'autonomia di volo piuttosto bassa (20-30 minuti);
- l'esigenza di una maggiore manutenzione;

I droni *ad ala fissa* [Figura 2.17] sono simili a piccoli aerei e sono caratterizzati da una struttura relativamente semplice e un'aerodinamica, con un'ala più o meno rigida, capace di generare portanza sufficiente per volare. Grazie all'aerodinamicità si hanno numerosi vantaggi:

- maggiore autonomia di volo rispetto ai multirotori, superando anche i 45 minuti;
- maggiori superfici coperte in minor tempo;
- migliore omogeneità e controllo del risultato fotografico;
- elevata capacità di tollerare veti forti, oltre i 45 km/h.

Di contro:

- sono molto più costosi, nonostante non abbiano bisogno di elevata manutenzione;
- non hanno la possibilità di stare in volo stazionario;
- è necessaria una pista di decollo/atterraggio, rendendo questa tipologia meno pratica.

Figura 2.17 Esempi di UAV ad ala fissa.

L'UAV *ibrido* [Figura 2.18], ancora poco diffuso, è un tipo di aeromobile a pilotaggio remoto che utilizza due o più fonti di energia per sostenere il fabbisogno energetico del sistema di propulsione.

Figura 2.18 Esempi di UAV ibridi.

2.3.2 Componenti di un UAV

Le componenti principali di un UAV sono:

1. Telaio

Rappresenta l'ossatura del drone, ossia la sua struttura portante, e varia a seconda del numero di motori. I telai [Figura 2.19] possono essere di diversi materiali, ma generalmente in fibra di carbonio, a garanzia di una buona resistenza e leggerezza; per modelli più piccoli o a uso ludico spesso vengono realizzati in materiale plastico.

Per facilitare la trasportabilità molto spesso i bracci che supportano i motori sono ripiegabili.

Importante nella scelta del tipo di telaio la valutazione quantitativa delle vibrazioni indotte dai motori, che potrebbero inficiare la qualità delle immagini nei rilievi aerofotogrammetrici.

Figura 2.19 Esempi di telaio ripiegabile e in fibra di carbonio.

2. Sistema propulsivo

Il sistema propulsivo [Figura 2.20] è costituito dai motori, ai quali sono attaccate le eliche e dai regolatori elettronici ESC (Electronic Speed Control). Nei droni più performanti i motori sono elettrici di tipo brushless, di elevata efficienza ma maggiore costo, non creano interferenze magnetiche e non producono scintille ad alte rotazioni. I multirotori sono generalmente a 3, 4, 6 o 8 motori; tale numero non solo determina la potenza e il payload degli APR (capacità di carico).

Figura 2.20 . Configurazione del senso di rotazione delle eliche dei multicotteri.

3. Flight controller

È la centralina di bordo [Figura 2.21] che rappresenta il sistema di pilotaggio del drone. Questa concentrazione di microelettronica processa i dati di volo e gestisce automaticamente, attraverso l'unità di misura inerziale IMU ogni parametro. I sensori che compongono l'unità inerziale IMU sono:

- Giroscopio, permette al multirotore di mantenere l'assetto nei tre assi nonostante eventi esterni perturbanti; tale sensore non misurata una accelerazione lineare, bensì una velocità angolare; quindi, percepisce le rotazioni del drone su sé stesso;
- Accelerometro, che consente di misurare l'accelerazione gravitazionale statica e di determinare l'angolo di deviazione dell'oggetto rispetto al piano verticale, percependo gli spostamenti che avvengono lungo le tre direzioni;
- Barometro digitale, sensore che misura le variazioni di pressione applicate, permettendo al Flight Controller di capire se sta cadendo nel vuoto oppure se sta salendo di quota;
- Magnetometro, è la bussola che guida il drone tra le direzioni cardinali, essenziale per la calibrazione;

- GPS, che permette di conoscere in ogni momento la posizione esatta del drone.

Figura 2.21 Esempi di Flight Controller.

Tramite il flight controller è possibile svolgere le seguenti attività:

- eseguire voli programmati in automatico, molto utilizzati ai fini fotogrammetrici;
- controllare la qualità del segnale radio tra drone e radiocomando;
- controllare lo stato delle batterie;
- controllare la qualità del segnale GPS;
- utilizzare la telemetria, la quale a sua volta permette di trasferire in tempo reale alla ground station i dati di assetto, la posizione GPS, il numero di satelliti connessi all'antenna GPS istante per istante, la velocità di crociera, l'altezza di volo, la distanza dalla home.
- 4. Batteria

Le batterie [Figura 2.22] attualmente utilizzate sono Li-Po, accumulatori in polimeri di litio progettate inizialmente per usi militari e poi commercializzate per l'industria elettronica. La caratteristica principale di queste batterie è la durata di molto superiore rispetto alle classiche Ni-Cd (nichel-cadmio) e Ni-MH (nichel-metallo idruro), piuttosto che un peso inferiore, dovuto alla particolare struttura in laminato polimerico, più leggera dei normali contenitori metallici.

Figura 2.22 Esempi di batterie.

5. Radiocomando

Il sistema radio per il controllo di un drone [Figura 2.23] è costituito da dispositivi ricetrasmittenti in grado di fornire, oltre che i comandi impartiti dal pilota verso il velivolo, informazioni come lo stato delle batterie, modalità di guida, qualità del segnale radio. Permette anche di controllare anche altri sistemi montati a bordo, quali ad esempio la fotocamera, il gimbal.

I radiocomandi dei droni a uso professionale operano in genere nella banda 2,4 GHz e assicurano un segnale affidabile entro una distanza di 2 km circa.

Figura 2.23 Esempi di radiocomando.

6. Supporti per sensoristica (gimbal)

Il sensore più comune è il cosiddetto gimbal [Figura 2.24], in italiano giunto cardanico. È di un sistema di giunti a due o tre assi che ha il compito di controbilanciare gli inevitabili movimenti e le vibrazioni indotte dai droni, a garanzia dell'imprescindibile stabilità delle immagini catturate, nonché della fluidità dei video. Spesso in un gimbal, oltre alla funzione di stabilizzazione, sono implementate anche funzioni di controllo remoto, che permettono di ruotare il supporto lungo i tre assi e orientare quindi il sensore a seconda degli specifici utilizzi.

Figura 2.24 Esempi di Gimbal.

7. Sensori adattabili

È possibile equipaggiare i droni con:

- Sensore LiDAR, utilizzati per attività di rilievo tridimensionale del territorio, tramite l'emissione di raggi laser consentono di rilevare centinaia di migliaia di punti al secondo;
- Termocamere a infrarossi, utilizzate in diversi campi di applicazione come in edilizia, impianti elettrici, pannelli fotovoltaici... permettono fare rilievi termografici precisi, rapidi e a costi ridotti;
- Sensori multispettrali, che permettono di restituire immagini multibanda e consentono, attraverso l'analisi della risposta spettrale nelle diverse bande acquisite, di estrarre informazione territoriale e produrre accurate mappe tematiche con l'utilizzo dei classificatori.

Figura 2.25 Esempi di sensori adattabili.

- 8. Ground station e software di gestione
 - I sistemi aeromobili a pilotaggio remoto sono costituiti anche da una stazione di controllo a terra (ground station). Questa può essere semplicemente un notebook, un tablet, uno smartphone o un sistema progettato e costruito appositamente. Le ground station vengono dotate di specifici software per il controllo in tempo reale, attraverso sistemi di telemetria. È possibile far volare autonomamente il drone, pianificando missioni di vario genere, utilizzando i waypoint (punti di coordinate note) programmabili preliminarmente. Inoltre, si ha il totale controllo dei parametri di volo: assetto, velocità di crociera, livello delle batterie, velocità del vento, distanza dal punto di decollo (home), qualità del segnale GPS.

Capitolo 3

Acquisizione dei dati

L'acquisizione dei dati in Val Troncea è stata condotta nei giorni del 25 e 26 ottobre del 2021.

In particolare, nella mattina del 25 ottobre sono state svolte le fasi preparatorie del rilievo, posizionando i marker a terra per il rilievo da drone e rilevando la rete di inquadramento, tramite GPS-GNSS (Global Positioning System-Global Navigation Satellite System) con metodo rapido-statico. Dopo aver elaborato la rete, nella seconda parte della prima giornata è stato possibile effettuare un paio di voli drone nella parte più a valle della zona oggetto di rilievo.

Il giorno successivo, 26 ottobre, mentre si procedeva con i voli drone da valle verso monte, sono stati sia rilevati i marker a terra tramite GPS/GNSS che circa 500 punti acqua e bordo acqua al fine di procedere con la seconda parte del lavoro di tesi, ossia la correzione dell'alveo fluviale tramite un algoritmo che tiene conto della rifrazione in acqua.

3.1 Il progetto di rilievo

In questo paragrafo viene descritto il metodo seguito per l'organizzazione del rilievo, gli strumenti utilizzati e quali accorgimenti sono stati adottati.

Innanzitutto, è stato svolto un accurato studio della zona e pianificazione del rilievo a priori, con l'obiettivo di ottimizzare il lavoro in loco, data l'elevata estensione dell'area di rilievo.

Sono stati utilizzati software come *ArcMap* di Agisoft e *Google Earth*, al fine di individuare l'area, quindi i punti di inizio e fine rilievo, ma anche i punti di particolare importanza da rilevare, come le briglie. L'area è stata suddivisa in cinque aree principali e sono stati scelti cinque punti di stazione GPS-GNSS (1000, 2000, 3000, 4000 e 5000) [Figura 3.1].

Figura 3.1 Individuazione dei punti di principale importanza.

In base alla durata delle fasi di acquisizione e alla precisione che si vuole raggiungere, esistono quattro diverse modalità di rilievo:

- *modalità statica*, in cui i ricevitori restano fissi nei vertici almeno un'ora (ogni 10 Km di baseline) e acquisiscono un elevato numero di dati in modo da garantire la massima precisione possibile; viene utilizzata per le reti d'inquadramento e per il monitoraggio di piccoli movimenti e deformazioni terrestri con precisioni all'ordine di 1 mm al Km;

- *modalità rapido statica*, che differisce da quella statica solo per il tempo di misura; esso è infatti ridotto (20 min circa) facendo diminuire le precisioni fino a 1 cm al Km ed è una modalità generalmente usata per la realizzazione di reti di raffittimento e per le triangolazioni;

- *modalità pseudo statica*, in cui un ricevitore rimane fisso su un vertice, mentre l'altro (rover) viene posizionato per un minuto sugli altri vertici da rilevare, qui le precisioni sono dell'ordine di alcuni cm, perciò, questa tecnica viene utilizzata per il rilievo di dettaglio;

- *modalità cinematica*, che si differenzia da quella pseudo statica in quanto il rover è sempre in movimento come, ad esempio, sugli aerei o le imbarcazioni.

Nel presente caso sono state utilizzate le modalità rapido statica per il calcolo della rete di inquadramento, con un tempo di ricezione varabile tra i 20 minuti e l'ora, e la modalità pseudo statica per la rete di raffittimento. Lo strumento utilizzato è il *LEICA GS18 T*, le cui informazioni tratte dalla scheda tecnica sono riportate in [Tabella 3.1].⁶

⁶ Leica GS18 T Dati tecnici al sito https://leica-geosystems.com

LEICA GS18 T						
Leice						
	TECNOLOGIA GNSS					
GNSS dotato di autoapprendimento	Leica RTKplus Smar (servizio di correzione in tutto il mondo) SmartLink fill (servizio di correzione in tutto il mondo)	Selezione autonoma dei satelliti per adattarsi ad ogni condizione Posizionamento preciso in zone remote (3 cm 2D) ¹ . Da una convergenza iniziale alla precisione totale nell'arco di 20 - 40 min; riconvergenza in meno di 1 min Fino a 10 minuti di copertura delle interruzioni RTK (3 cm 2D) ¹				
Leica SmartCheck	Controllo continuo della soluzione RTK	Affidabilità al 99,99%				
Tracciamento del segnale		GPS (L1, L2, L2C, L5), Glonass (L1, L2, L3 ²), BeiDou (B1, B2, B3 ²), Galileo (E1, E5a, E5b, Alt-BOC, E6 ²), QZSS (L1, L2, L5, LEX ²), NavIC L5 ³ , SBAS (WAAS, EGNOS, MSAS, GAGAN), L-band				
Numero di canali		555 (maggior numero di segnali, acquisizione più veloce, elevata sensibilità)				
Compensazione dell'inclinazione	Aumento della produttività e della tracciabilità delle misure	Senza calibrazione Immune da disturbi magnetici				
PRE	STAZIONI DELLA MISURA E PRI	ECISIONI				
Tempo di inizializzazione		Generalmente 4s				
Real-time cinematico (conforme allo standard ISO17123-8)	Base singola RTK Network	Orizz.: 8 mm + 1 ppm / Vert.: 15 mm + 1 ppm Orizz.: 8 mm + 0,5 ppm / Vert.: 15 mm + 0,5 ppm				
Real-time cinematico compensato con tilt	Punti topografici (non per punti di controllo statici)	Incertezza aggiuntiva componente orizz. punta palina normalmente inferiore a 8 mm + 0,4 mm/º fino a 30º di inclinazione				

Tabella 3.1 Specifiche tecniche del LEICA GS18 T.

Post elaborazione	Statico (fase), lunghe osservazioni Statico e Statico rapido (fase)	Orizz.: 3 mm + 0,1 ppm / Vert.: 3,5 mm + 0,4 ppm Orizz.: 3 mm + 0,5 ppm / Vert.: 5 mm + 0,5 ppm
	DATI GENERALI ⁷	
Controller e software	Software Leica Captivate	Controller Leica CS20, tablet Leica CS35
Accetto estavos	Pulsanti e LED	Pulsante On/Off e funzione, 8 LED di stato
Aspetto esterno	Web server	Informazioni di stato complete e opzioni di configurazione
	Memoria Flash	Scheda SD rimovibile (8 GB)
Registrazione dati	Tipo dati e velocità di registrazione	Dati grezzi GNSS Leica e dati RINEX fino a 20 Hz
Peso e dimensioni	Peso	1,20 kg/3,50 kg configurazione del rover RTK standard con l'utilizzo di palina
	Dimensioni	173 mm x 173 mm x 108 mm
	Temperatura	da −40 a 65°C (Stoccaggio: da -40 a 85°C)
	Caduta	Resistente a ribaltamenti da palina di 2,0 m su superfici dure
Protoziono	Protezione contro acqua, sabbia e polvere	IP66 / IP68 (IEC60529 / MIL STD 810G CHG-1 510.6 I / MIL STD 810G CHG-1 506.6 II / MIL STD 810G CHG-1 512.6 I)
FIOLEZIONE	Vibrazioni	Resiste alle forti vibrazioni (ISO9022-36-08 / MIL STD 810G 514.6 Cat.24)
	Umidità	95% (ISO9022-13-06 / ISO9022- 12-04 / MIL STD 810G CHG-1 507.6 II)
	Shock	40 g / dai 15 ai 23 ms (MIL STD 810G, metodo 516.6 l)
	NOTE	
1 Precisione di misura, accura fattori, tra cui numero di sate	tezza, affidabilità e tempo di liti, tempo di osservazione, co	inizializzazione dipendono da vari ondizioni atmosferiche, percorso

fattori, tra cui numero di satelliti, tempo di osservazione, condizioni atmosferiche, percorso multiplo, ecc. Per i dati presentati si assumono condizioni da normali a favorevoli. Le costellazioni BeiDou e Galileo complete aumenteranno ulteriormente le prestazioni e la precisione delle misure.

2 Ritenuto conforme, ma soggetto alla disponibilità della definizione del servizio commerciale di BeiDou ICD e Galileo. Glonass L3, BeiDou B3, QZSS LEX e Galileo E6 verranno forniti attraverso il prossimo aggiornamento firmware.

3 Il supporto di NavIC L5 è incorporato e verrà fornito con il prossimo aggiornamento firmware.

⁷ Leica GS18 T Dati tecnici al sito https://leica-geosystems.com

3.1.1 La materializzazione e misura dei GCP

Passaggio fondamentale è l'appoggio fotogrammetrico, ovvero la collocazione dei marker o GCP (*Ground Control Point*) sul territorio analizzato, in modo tale da costituire un'adeguata ed efficiente rete topografica, fondamentale per una corretta restituzione del dato finale.

La procedura di materializzazione ha avuto luogo nella prima mezza giornata del rilievo (mattina del 25), mentre la misura dei GPC è avvenuta durante tutta la giornata successiva, mentre venivano effettuati i voli UAV.

Sono stati posizionati:

 Marker fisici: segnali di forma quadrata o rettangolare facilmente identificati da elevate distanze. Sono stati utilizzati dei pannelli 60×60 cm in PVC tessuto ad alta resistenza, caratterizzati da colori ad alto contrasto (Bianco/Giallo e Nero/Giallo) che ne permettono la facile localizzazione ed hanno una ottima visibilità nelle immagini [Figura 3.2];

Figura 3.2 Materializzazione di punti fisici con pannelli 60×60 cm in PVC.

Marker naturali: realizzati con elementi presenti nel territorio, quindi, oggetti fissi ben identificabili presenti stabilmente sul territorio rilevato; nel caso oggetto sono stati identificati angoli o croci al di sopra delle briglie evidenziati attraverso l'uso di bombolette spray di colore rosso o verde fluorescente [Figura 3.3].

Figura 3.3 Esempio di materializzazione di GCP naturali, a sinistra angoli, a destra croci realizzati con bombolette spray.

Sono stati collocati 42 GCP, 32 fisici indicati in giallo e 10 punti naturali, in rosso, come è possibile vedere nella [Figura 3.4].

Figura 3.4 Posizionamento dei GCP fisici e naturali lungo tutta l'area di rilievo.

Nella [Tabella 3.2] sono riportati l'identificativo del CGP, le quote planimetriche x e y nel S.R. WGS 84 / UTM zone 32N e le quote ellissoidiche.

ID	X [m]	Y [m]	Z [m]	ID	X [m]	Y [m]	Z [m]
G01216	338510.919	4979061.758	1833.767	M5017	338255.946	4979557.074	1808.023
G01221	338505.434	4979077.004	1833.163	M5018	338170.799	4979773.462	1795.342
G01297	337856.613	4980158.218	1763.575	M5019	338154.220	4979769.603	1793.782
G01306	337845.248	4980152.838	1764.092	m5074	338029.163	4979886.842	1783.400
G01313	337834.633	4980369.463	1751.136	m5075	338034.250	4979875.353	1784.118
G01321	337825.515	4980366.948	1750.841	m5076	337889.829	4979944.246	1775.095
G01322	337659.589	4980587.261	1736.849	m5300	337139.827	4981386.817	1690.301
G01323	337650.783	4980577.166	1736.887	m5301	337131.940	4981385.236	1690.447
G01342	337526.117	4980765.039	1726.624	m5401	337066.962	4981572.634	1682.010
G01352	337467.995	4980760.707	1723.025	m5402	337041.960	4981564.633	1683.942
G01360	337381.145	4980939.027	1716.299	m5403	336986.055	4981826.015	1672.720
G01370	337371.553	4980922.872	1715.317	m5600	336997.835	4981843.186	1671.096
G01371	337198.029	4981100.556	1706.522	V01281	337884.637	4979938.105	1775.106
G01379	337206.896	4981107.577	1706.621	V5008	338560.887	4978559.440	1885.937
M5001	338707.714	4978015.568	1919.635	V5009	338615.061	4978621.427	1880.406
M5002	338717.658	4978024.477	1919.067	V5010	338599.496	4978626.417	1878.488
M5003	338683.768	4978097.303	1918.202	V5012	338544.488	4978785.649	1861.084
M5007	338576.197	4978466.640	1899.480	V5015	338288.958	4979506.462	1813.221
M5013	338402.998	4979375.752	1819.379	v5073	338093.517	4979857.232	1792.434
M5014	338386.166	4979360.876	1819.041	v5404	336835.396	4981949.063	1669.433
M5016	338261.956	4979565.742	1808.532	v5406	336856.356	4981957.274	1669.318

Tabella 3.2 Identificativo e coordinate	(S.R. WGS 1984 /	UTM32N) con c	quote ellissoidiche.
---	------------------	---------------	----------------------

3.2 La pianificazione del volo

Nella fase preliminare di acquisizione dei dati tramite UAV è stato necessario fare una serie di considerazioni riguardanti l'area da rilevare e gli strumenti a disposizione, la pianificazione del volo e la precisione minima da ottenere in funzione degli obiettivi finali.

Per pianificare adeguatamente l'acquisizione dei dati è fondamentale conoscere le caratteristiche tecniche delle camere utilizzate per essere in grado di determinare la precisione ottenibile dal rilievo.

Nel caso in oggetto sono state utilizzare due camere diverse, in particolare una camera con sensore CMOS 1" da 20 magapixel di risoluzione effettiva e la camera DJI Zenmuse P1, montate rispettivamente sul DJI Phantom 4 Pro RTK e DJI Matrice 300. Nella [Tabella 3.3] vengono mostrate le caratteristiche tecniche degli UAV e delle camere utilizzate:

DJI Phantom 4 PRO			
VELIVOLO			
Peso (con batteria ed eliche)	1388 g		
Diagonale (eliche escluse)	350 mm		
	Modalità S: 6 m/s		
Massima velocita ascensionale	Modalità P: 5 m/s		
	Modalità S: 4 m/s		
Massima velocita al aiscesa	Modalità P: 3 m/s		
	Modalità S: 72 km/h		
Velocità massima	Modalità A: 58 km/h		
	Modalità P: 50 km/h		
Quota massima di tangenza operativa sul livello del mare	6000 m		
Massima resistenza alla velocità del vento	10 m/s		

Tabella 3.3 Specifiche tecniche di DJI Phantom 4 Pro e DJI Matrice 300 e delle camere utilizzate.

Autonomia di volo	Circa 30 minuti
Temperatura operativa	0° – 40° C
Sistemi di posizionamento satellitare	GPS/GLONASS
	Verticale:
	±0,1 m (con posizionamento visivo)
	±0,5 m (con posizionamento GPS)
Accuratezza di stazionamento in volo	Orizzontale:
	±0,3 m (con posizionamento visivo)
	±1,5 m (con posizionamento GPS)
FOTO	CAMERA
	CMOS I"
Sensore	Pixel effettivi: 20 M
Obiettivo	Campo visivo (FOV) 84º 8,8 mm/24 mm (formato 35 mm equivalente) f/2.8 - f/11 messa a fuoco automatica 1 m - ∞
Velocità dell'otturatore meccanico	8 - 1/2000 s
Velocità dell'otturatore elettronico	8 - 1/8000 s
	3:2 rapporto d'aspetto: 5472 × 3648
Dimensione dell'immagine	4:3 rapporto d'aspetto: 4864 × 3648
	16:9 rapporto d'aspetto: 5472 × 3078
Foto	JPEG, DNG (RAW), JPEG + DNG
Video	MP4/MOV (AVC/H.264; HEVC/H.265)
	microSD™
Sabada SD aupportata	Capacità massima: 128GB
schede so supportate	Velocità di scrittura ≥15MB/s, Classe 10 o livello UHS-1
Temperatura operativa	0° – 40° C
SOSPENSIONE CA	ARDANICA (GIMBAL)
Stabilizzazione	3 assi (inclinazione, rollio, panorama)
Intervallo controllabile	Inclinazione: da -90º a +30º
Massima velocità angolare controllabile	Inclinazione: 90°/s
Intervallo di vibrazione angolare	±0.02°

Matrice 300 RTK			
INFORMA	ZIONI GENERALI		
Dimensioni	Aperto, senza eliche, 810×670×430 mm		
	Richiuso, eliche incluse, 430×420×430 mm		
Interasse diagonale	895 mm		
Peso (con carico singolo inferiore)	3,6 kg ca. (senza batterie)		
	6,3 kg ca. (con due batterie TB60)		
Capacità di carico	2,7 kg		
Peso massimo al decollo	9 kg		
	Verticale:		
	±0,1 m (sistema di visione abilitato)		
	±0,5 m (GPS abilitato)		
Accuratezza del volo stazionario (modalità P con GPS)	±0,1 m(RTK abilitato)		
	Orizzontale:		
	±0,3 m (sistema di visione abilitato)		
	±1,5 m (GPS abilitato)		
	±0,1 m (RTK abilitato)		
	Con RTK abilitato e fisso:		
Accuratezza di posizionamento RTK	1 cm + 1 ppm (orizzontale)		
	1,5 cm + 1 ppm (verticale)		
Massima velocità angolare	Beccheggio: 300°/s, imbardata: 100°/s		
Angolo di beccheggio (max.)	30° (modalità P, sistema di visione frontale attivato: 25°)		
Massima velocità in salita	Modalità S: 6 m/s		
	Modalità P: 5 m/s		
Massima velocità di discosa (vortiogla)	Modalità S: 5 m/s		
Massima velocita ai discesa (verticale)	Modalità P: 4 m/s		

Massima velocità di discesa (inclinazione)	Modalità S: 7 m/s
Velocità massima	Modalità S: 23 m/s
	Modalità P: 17 m/s
Quota massima di tangenza sopra il livello del mare	5000 m (con eliche 2110, peso al decollo ≤ 7 kg) / 7000 m (con eliche 2195ì, peso al decollo ≤ 7 kg)
Resistenza al vento (max)	15 m/s
Autonomia di volo	55 min
GNSS	GPS+GLONASS+BeiDou+Galileo
Temperatura operativa	-20 – 50 °C
ZEN	IMUSE P1

INFORMAZIONI GENERALI			
Nome prodotto	ZENMUSE PI		
Dimensioni	198×166×129 mm		
Peso	circa 800 g		
Classificazione IP	IP4X		
Aeromobile supportato	Matrice 300 RTK		
Alimentazione	20 W		
Intervallo temperatura di funzionamento	Tra -20 °C e 50 °C		
Precisione assoluta	Orizzontale: 3 cm, verticale: 5 cm *Accuratezza assoluta misurata con un aeromobile su GSD di 3 cm e velocità di volo 15 m/s, con tasso di sovrapposizione frontale al 75% e laterale al 55%.		

FOTOCAMERA ⁸		
	Dimensioni del sensore (fotografie): 35,9×24 mm (Full-frame)	
Sensore	Dimensioni del sensore (area massima di registrazione video): 34×19 mm	
	Pixel effettivi: 45 MP	
	Dimensione pixel: 4,4 μm	
File di archiviazione	File log dati/immagini di osservazione GNSS Foto/RAW	
Dimensioni foto	3:2 (8192×5460)	
Modalità operative	Foto, Video, Riproduzione	
Intervallo minimo foto	0,7 s	
	Velocità dell'otturatore meccanico: 1/2000 -1 s	
Velocita dell'otturatore	Velocità dell'otturatore elettronico 1/8000-1 s	
Intervallo apertura	f/2.8 - f/16	
	Foto: 100 - 25600	
Intervalio ISO	Video: 100 - 25600	
G	· ·IMBAL	
Sistema stabilizzato	3 assi (inclinazione, rollio, panorama)	
Intervallo di vibrazione angolare	±0,01°	
Supporto	DJI SKYPORT removibile	
Intervallo meccanico	Inclinazione: da -130º a +40º Rollio: da -55º a +55º Panorama: ±320º	

⁸ Phantom 4 RTK - Informazioni sul prodotto dal sito DJIhttps://www.dji.com.

Poiché le immagini devono avere un contenuto metrico rigoroso bisogna conoscere due aspetti fondamentali della camera e delle acquisizioni:

- La geometria della camera e dell'immagine generata, quindi i parametri di orientamento interno, quali distanza principale e distorsioni;
- 2. La posizione delle immagini e l'orientamento nello spazio, quindi i parametri di orientamento esterno, quali le 3 coordinate oggetto del centro di presa e i 3 angoli di assetto che esprimono le rotazioni tra sistema immagine e oggetto.

Per effettuare i voli aerei fotogrammetrici è necessario definire alcuni parametri, funzionali alle esigenze proprie del rilievo e quindi alla successiva restituzione dei dati. Questi parametri si basano sulla conoscenza di elementi come:

-	Altezza di volo rispetto al terreno	Н
-	Ricoprimento longitudinale (di solito superiore al 60%)	η
-	Ricoprimento trasversale (di solito superiore al 20%)	ε
-	Distanza principale della camera	p
-	Velocità di crociera ottimale in m/s	v
-	Scala di restituzione con conseguente precisione e tolleranza	т
-	GSD max (Ground Sample Distance)	GSD

L'altezza di volo *H* è legata al concetto di scala media dell'immagine.

Si definisce scala media (m) dei fotogrammi il rapporto tra la dimensione massima del fotogramma l e la corrispondente dimensione reale Ldell'oggetto contenuto nella fotografia, che nel caso di presa area corrisponde all'altezza di volo H:

$$m = \frac{1}{N} = \frac{l}{L}$$

Non potendo essere nota quest'ultima dimensione, si può comunque ottenere il valore del rapporto tramite un rapporto equivalente ricavato da una considerazione geometrica. Considerando lo schema di una presa [Figura 3.5], si osserva l'uguaglianza tra il rapporto delle parti opposte della sezione di piramide generata dalla stella proiettiva e il rapporto fra la distanza focale dell'obiettivo (uguale alla distanza principale p della camera) e la distanza media dell'oggetto dal centro di presa 0:

$$\frac{l}{L} = \frac{p}{H}$$
 e quindi $m = \frac{1}{N} = \frac{p}{H}$

Essendo la dimensione massima del fotogramma *l* e la distanza principale *p* caratteristiche invariabili della camera, per variare la scala dei fotogrammi occorre variare la distanza *D* della camera dall'oggetto ripreso.

Figura 3.5 Rapporti geometrici per la definizione della scala media del fotogramma. Fonte Zanichelli editore S.p.A., Bologna 2012

Al fine di poter riprodurre correttamente la scala di rappresentazione desiderata, gli elementi dell'oggetto ripreso devono essere ben visibili sul fotogramma. La scala dei fotogrammi non è quindi una scelta arbitraria, ma viene ricavata partendo dalla scala di riproduzione dell'oggetto (scala della carta) tramite un opportuno rapporto. Per ottenere fotogrammi con la scala media così determinata, occorre collocare la camera, per la presa, a una distanza dall'oggetto pari a:

$$H = N \cdot p$$

In funzione della scala di rappresentazione desiderata, si definisce la precisione fotogrammetrica tramite il parametro detto GSD (Ground Sample Distance). Esso rappresenta la distanza tra il centro di due pixel consecutivi espressa in unità di misura territoriale e cioè la quantità di terreno contenuta in un "campione" di immagine, ossia nella più piccola entità che compone l'immagine stessa: un pixel, essendo la misura del pixel espressa in metri [Figura 3.6].

Se si ha quindi un GSD di 10 cm/pix questo significa che ogni pixel dell'immagine rappresenta 10 cm di oggetto reale rilevato. Si noti il rapporto di proporzionalità inversa tra il valore GSD e la definizione di una immagine: quanto più grande è il pixel tanto minore è il suo livello di dettaglio, e maggiore sarà la scala di rappresentazione.

Da un semplice rapporto geometrico si ricava che:

$$m = \frac{GSD}{d_{pix}} = \frac{H}{p}$$

e quindi il GSD è calcolabile tramite la seguente formula⁹:

$$GSD = m \cdot d_{pix} = \frac{H}{p} \cdot d_{pix}$$

dove:

- H è l'altezza di volo;
- p è la distanza principale;
- d_{pix} è la dimensione del pixel.

Figura 3.6 Rappresentazione schematica del GSD Ground Simple Distance.

Tuttavia, l'altezza di volo, ossia la distanza tra il mezzo che effettua le riprese (UAV in questo caso) e il terreno, non può essere definito come un parametro fisso, essendo il terreno irregolare. Quindi affinché i fotogrammi siano correttamente riproducibili, gli strumenti di cui è dotato l'UAV non

⁹ Appunti del corso di Cartografia Numerica e GIS, Lingua, Matrone, Politecnico di Torino, 2020

rilevano l'altezza volo ma la quota ortometrica assoluta Q_V . Questo parametro è ottenibile sommando la quota assoluta media Q_M del terreno all'altezza di volo H:

$$Q_V = Q_M + H$$

Per una corretta rappresentazione è fondamentale che il volo sia condotto tale per cui ogni punto del terreno sia ripreso da almeno due fotogrammi consecutivi [Figura 3.7], ma solitamente il valore di ricoprimento longitudinale supera il 60% in modo da generare i modelli stereoscopici che durante la fase di restituzione permetteranno la rappresentazione dell'oggetto rilevato.

Figura 3.7 Schema di presa per il ricoprimento e per la creazione dei modelli stereoscopici. Fonte Zanichelli editore S.p.A., Bologna 2012

I ricoprimenti longitudinali e trasversali delle strisciate possono essere calcolati analiticamente tramite rapporti che tengono conto rispettivamente della dimensione di:

- Base di presa *B*, ossia la distanza tra i centri di presa di due fotogrammi consecutivi;
- Interasse delle strisciate A, cioè la distanza tra gli assi di due strisciate adiacenti;

quindi il primo si esprime tramite:

$$\eta = \frac{L-B}{L} \cdot 100$$

e il secondo:

$$\epsilon = \frac{L-A}{L} \cdot 100$$

Tuttavia, come già accennato precedentemente, nella fase di pianificazione del volo, il problema è inverso; si fissano i valori di ricoprimento delle strisciate e si estrapolano i valori della base di presa e dell'interasse tra le strisciate:

$$B = L \cdot \left(1 - \frac{\eta}{100}\right)$$
$$A = L \cdot \left(1 - \frac{\epsilon}{100}\right)$$

Un altro parametro importante da verificare è il trascinamento λ [Figura 3.8], problema relativo al movimento della camera durante lo scatto del fotogramma. Questo parametro varia in base al tempo di esposizione, alla velocità dell'UAV e della scala media m:

$$\lambda = \frac{p \cdot v \cdot \Delta \tau}{H}$$

dove:

- p distanza principale;
- v velocità del drone in m/s;
- Δτ tempo di apertura dell'otturatore della camera;
- H altezza di volo.

Figura 3.8 Effetto del trascinamento dell'immagine di un generico punto A sul terreno. Fonte Zanichelli editore S.p.A., Bologna 2012

3.2.1 Esempio di pianificazione del volo

Date le caratteristiche della camera fotografica del DJI Phantom 4 PRO RTK quali:

- Dimensioni del pixel da cui risalire alla dimensione del sensore (l_x, l_y) ;
- La focale (distanza principale *p*);

e la precisione del rilievo:

- Scala di rappresentazione 1:N (1:500);
- La precisione richiesta $\sigma = 0.2 \ mm \cdot n.$

La precisione planimetrica è stata determinata come:

$$\sigma_{XY} = 1,5 \cdot m_b \cdot \sigma_{\xi\eta}.$$

mentre quella altimetrica come:

$$\sigma_z = 2 \cdot m_b \cdot \sigma_{\xi\eta}.$$

seguendo le regole dell'EuroSDR.

Riguardo all'errore di trascinamento è stato considerato un tempo di esposizione pari a 1/350 di secondo ed è stato determinato il trascinamento come:

$$\lambda = \frac{p \cdot v \cdot \Delta \tau}{H} = \frac{v \cdot t}{m_b}$$

Tale valore trasformato in pixel dovrà essere inferiore a 1 pixel.

Impostati il ricoprimento longitudinale all'80%, e trasversale al 60%, si determinano:

-	L'altezza di volo massima	$H_{max} = \sigma_z \cdot \frac{10^4}{3}$
-	Da cui si sceglie l'altezza di progetto	$H_{pro} < H_{max}$
-	La scala media del fotogramma	$m_b = \frac{H_{pro}}{p}$
-	L'abbracciamento al suolo	$L_x = m_b \cdot l_x$ $L_y = m_b \cdot l_y$
-	La base di presa	$B = l_{y} \cdot \left(1 - R_{long.}\right)$
-	L'interasse delle strisciate	$A = l_x \cdot (1 - R_{trasv.})$
-	Numero di fotogrammi	$n^{\circ}_{fot.tot} = n^{\circ}_{strisc} \cdot n^{\circ}_{fot.}$

Per il calcolo del tempo complessivo del volo, dato dalla somma di:

- Tempo di volo per il decollo;
- Tempo di volo dalla home al punto di inizio della prima strisciata;
- Tempo di volo per le strisciate longitudinali;
- Tempo di volo per gli interassi;
- Tempo di volo dall'ultimo punto dell'ultima strisciata alla home;
- Tempo di volo di atterraggio;

sono state considerate le seguenti velocità:

-	Velocità di decollo	$v_{dec} = 3,00 \frac{m}{s}$
-	Velocità di crociera	$v = 5,00 \frac{m}{s}$
-	Velocità di inversione	$v_{inv} = 2,00 \ \frac{m}{s}$
-	Velocità di atterraggio	$v_{att} = 1,00 \ \frac{m}{s}$

Il tempo effettivo è stato calcolato tenendo conto di un incremento pari al 20% del tempo complessivo di volo.

L'area considerata come esempio per la pianificazione è una delle più ampie dell'area di rilievo [Figura 3.10], che ha permesso di volare con strisciate piuttosto regolari, che non seguissero rigorosamente l'andamento del torrente.

Figura 3.9 Area di pianificazione del volo - Fonte Google Earth.

Relativamente alla camera sono stati utilizzati i seguenti dati [Tabella 3.4]:

DATI DEL SENSORE							
Descrizione Simbolo Valore							
Drone utilizzato	/	DJI Phantom 4 Pro					
Sensore	/	5472 x 3648	pixel				
Focale	р	8,8	mm				
Dimensione del sensore	/	13,2 x 8,8	mm				
Dimensione del pixel	d _{pix}	2,4	micron				

Tabella 3.4 Dati del sensore.

I dati relativi dell'area considerata sono [Tabella 3.5]:

Tabella 3.5 Dati geometrici.

DATI GEOMETRICI							
Descrizione	Simbolo	Valore	u.m.				
Dimensioni dell'area	SxQ	300 x 140	m				
Area di volo	Α	42'000	m²				

La pianificazione viene di seguito mostrata in due differenti modi; il primo tramite calcoli manuali svolti attraverso l'utilizzo del software Excel, mentre il secondo tramite l'utilizzo del software Mission Planner.

Vengono di seguito mostrati i *calcoli manuali* [Tabella 3.6-7-8-9-10]:

Tabella 3.6 Calcoli sulla precisione ottenuti tramite Excel.

CALCOLI SULLA PRECISIONE							
Descrizione	Simbolo	Formula	Valore	u.m	Check		
Precisione	σ	$= 0,2 \cdot 500 =$	100	mm			
GSD massimo accettabile	GSD _{max} *	$=\frac{500}{2}=$	50	mm			
	H _{max}	$=500 \cdot \frac{10^4}{3} =$	333333,3	mm			
Altezza massima al volo			333,33	m			
Altezza di volo scelta	H**		60	m	OK		
Fattore di scala	m_b	$=\frac{60\cdot 1000}{8.8}=$	6818,18	mm			
CCD di progotto	CCD	(010.10, 2.4	16363,64	micron			
GSD al progetto	us D _{prog}	$= 0010,18 \cdot 2,4 =$	1,64	cm			

* è stato utilizzato un valore di GSD massimo pari alla metà della scala scelta.

**l'altezza massima di volo scelta è inferiore all'altezza massima per la precisione voluta ma anche inferiore ai limiti imposti da normativa per voli UAV guidati da pilota sprovvisto di patentino (120m)¹⁰.

¹⁰ Regolamento Mezzi Aerei a Pilotaggio Remoto, ENAC, 2020

CONTROLLI SECONDO EuroSDR							
Descrizione	Simbolo	Formula	Valore	u.m	Check		
		1 F (010 10 ^{2,4}	12272,73 micron				
Precisione planimetrica	σ_{xy}	$= 1,5.6818,18.\frac{1}{2} =$	12,27	mm	*OK		
Draciciana altimatrica	-	$= 2 \cdot 6818, 18 \cdot \frac{2,4}{2} =$	16363,64	micron			
Precisione allimetrica	σ_z		16,36	mm	*OK		

Tabella 3.7 Calcoli EuroSDR ottenuti tramite Excel.

*valori inferiori alla precisione σ richiesta di 100 mm.

Tabella 3.8 Calcolo dell'errore di trascinamento tramite Excel.

CONTROLLO DEL TRASCINAMENTO								
Descrizione	Simbolo	Formula	Valore	u.m	Check			
Tempo di esposizione	T _{esp}	$=\frac{1}{350}=$	0,00286	sec				
Traccinamente	λ	5 · 0,002856	2,1E-06	mm				
Trascinamento		==	2,1	micron				
Trascinamento in pixel	λ in pix	$=\frac{2,1}{2,4}=$	0,87	pixel	*OK			

*il trascinamento è inferiore a 1 pixel.

Tabella 3.9 Calcoli sulla geometria del volo e numero totalie di fotogrammi tramite Excel.

CALCOLI GEOMETRICI							
Descrizione	Simbolo	Formula	Valore	u.m	Check		
Abbracciamento al suolo	1	12.2 (010.10	90000	mm			
lungo x	l_x	$= 13,2 \cdot 6818,18 =$	90	m			
Abbracciamento al suolo	1	0.0 (010.10	60000	mm			
lungo y	l_y	= 8,8 · 6818,18 =	60	m			
Base di presa	В	$= 60 \cdot (1 - 0.8) =$	12	m			
Numero fotogrammi per strisciata	n° _{fot}	$=\frac{140}{12}+2=$	14	-			
Tempo di percorrimento di B	t	$=\frac{12}{5}=$	2,4	sec	*OK		
Interasse tra le strisciate	Α	$= 90 \cdot (1 - 0,6) =$	36	m			
Numero di strisciate	n° _{strisc}	$=\frac{300}{36}+1=$	9,3	-			
		Approssimato a	9				
N. Tot. di fotogrammi	$n^{\circ}_{fot,tot}$	= 14 · 9 =	126				

*superiore a 2 secondi.

CALCOLI SUL TEMPO DI VOLO							
Descrizione	Simbolo	Formula	Valore	u.m	Check		
Tempo di decollo	T _d	$=\frac{60}{3}=$	20	sec			
Tempo di volo per una strisciata longitudinale	T _s	$=\frac{140}{5}=$	28	sec			
Tempo di volo complessivo per le strisciate	T _{cs}	= 28 · 9 =	252	sec			
Tempo di volo per un interasse	T _{is}	$=\frac{36}{2}=$	18	sec			
Tempo di volo complessivo per gli interassi	T _{cis}	$= 18 \cdot (9 - 1) =$	144	sec			
Tempo tra punto finale e home	T _{rit}	$=\frac{300}{5}=$	60	sec			
Tempo di atterraggio	T _a	$=\frac{60}{1}=$	60	sec			
	Т	= 20 + 252 + 144	536	sec			
rempo complessivo	Ι _c	+60 + 60 =	9	minuti			
Tompo offettive	T _e		643	sec			
rempo enerrivo		= 530 · 1, 2 =	11	minuti	*OK		

Tabella 3.10 Calcoli sul tempo di volo complessivo ed effettivo tramite Excel.

*è preferibile avere un tempo di volo complessivo inferiore a 20 minuti, autonomia media di un drone.

Verrà di seguito descritta la procedura utilizzata per la pianificazione del volo tramite l'utilizzo di *Mission Planner*, un software open source di ArduPilot, e commentati i risultati ottenuti, mettendoli a confronto con quelli calcolati manualmente.

Come prima operazione, è stata individuata l'area di riferimento all'interno del software; a tale scopo, tramite Google Maps, sono state individuate le coordinate di un punto all'interno dell'area per poi inserirle alla sezione "Plan", di pianificazione della missione. Dopo aver controllato che il posizionamento fosse avvenuto correttamente, si stabilito il punto da cui far decollare e atterrare il drone (Home), avendo avuto cura di scegliere uno punto abbastanza ampio, con una buona visibilità e senza ostacoli aerei [Figura 3.10].

Figura 3.10 Individuazione dell'area e posizionamento della Home.

Dopo aver individuato l'area di volo e imputata tramite il comando "Drow Polygon", il passo successivo è stato quello settare i dati della camera, il ricoprimento longitudinale e trasversale rispettivamente 80% e 60%, l'altezza di volo a 60 m e la velocità di volo di 5,0 m/s, dalle sezioni "Simple", "Grid Option" e "Camera Configuration", come mostrato nella [Figura 3.11].

Figura 3.11 Settings dei dati fondamentali alla pianificazione.

A questo punto la pianificazione è conclusa e come è possibile vedere nelle immagini successive e analogamente a quanto ottenuto nei calcoli manuali, si hanno 9 strisciate, considerando una base di presa di 12 metri e un interasse tra le strisciate di 36 metri [Figura 3.12].
Per un'area di rilievo di 45'000 m², l'UAV percorre 1,82 km in un tempo di circa 8 minuti avendo impostato una velocità costante di 5 m/s. Tuttavia, riguardo al calcolo del tempo di volo risulta essere più accurato il calcolo manuale in quanto considera differenti velocità per diverse fasi di volo, come decollo, inversione e atterraggio.

Figura 3.12 Traiettoria di volo.

Il software consente anche di visualizzare il numero di fotogrammi da scattare e l'abbracciamento al suolo longitudinale e trasversale di ogni acquisizione in funzione della camera utilizzata e del ricoprimento scelto [Figura 3.13].

Figura 3.13 Traiettoria di volo e abbracciamento al suolo di ogni acquisizione.

3.3 I dati acquisiti

A seguito della fase di pianificazione che ha permesso di stabilire i parametri di volo da rispettare al fine di raggiungere le precisioni richieste dal rilievo, si è optato per effettuare dei voli completamente in manuale; questa scelta è dovuta alla conformazione complessa dell'area di rilievo, con valli in parte molto strette, fitta vegetazione e dislivelli importanti da superare.

Il presente paragrafo ha quindi l'obiettivo di mostrare i voli effettuati nelle due giornate di rilievo, nello specifico tredici voli col DJI Phantom 4 Pro e uno col DJI Matrice 300 per un totale di 2883 acquisizioni e 2 ore e 20 minuti di volo.

Nella seguente [Tabella 3.11] un riassunto contenente informazioni sul numero di immagini acquisite per ogni volo, ora di inizio e fine volo e tempo di volo:

				<u>DJI PHANT</u>	OM 4 PR	<u>O RTK</u>				
Volo	Cartella	da	а	n° images	Check	Ora inizio	Ora fine	Т. с	di volo	
1	105	681	999	319	ОК	12:25	12:38	13	minuti	
2		1	350	350	ОК	12:59	13:13	14	minuti	
3	106	351	569	219	ОК	15:55	16:04	9	minuti	
4	100	801	949	149	ОК	16:17	16:25	8	minuti	
F		950	999	50	ОК	10:45	10:48	17	minuti	
5		1	185	185	ОК	10:51	11:00	12	mmuu	
6		186	233	48	ОК	11:19	11:22	3	minuti	
7		234	342	109	ОК	11:30	11:37	7	minuti	
8	107	343	507	165	ОК	12:40	12:48	8	minuti	
9		508	770	263	ОК	12:52	13:03	11	minuti	
10		771	918	148	ОК	13:35	13:43	8	minuti	
11		919	999	81	ОК	13:49	13:53	_		
11		1	21	21	ОК	13:53	13:54	5	minuti	
12	108	22	358	337	ОК	14:07	14:28	21	minuti	
13		359	594	236	ОК	15:51	16:00	9	minuti	
	2680 128									

Tabella 3.11 Tabella riassuntiva contenente informazioni riguardo al numero di acquisizioni, ora e tempo di volo.

2680

DJI MATRICE 300									
Volo	Cartella	da	а	n° images	Check	Ora inizio	Ora fine	Т. с	di volo
1	DJI_007	1	203	203	ОК	16:27	16:38	11	minuti
				2002				120	

2883

139 minuti = 2h 19'

Al fine di comprendere la posizione spaziale delle camere e le traiettorie dei voli eseguiti sono state riportate le immagini in [Tabella 3.12]:

Tabella 3.12 Posizionamento spaziale delle camere e traiettoria di volo.

Si intende precisare che le traiettorie potrebbero sembrare poco regolari, tuttavia, sono state realizzate seguendo l'andamento del fiume, assicurandosi di avere una adeguata sovrapposizione col volo precedente.

Inoltre, alcune immagini sono abbastanza vicine tra loro; questo è dovuto agli scatti nadirali e obliqui ottenuti durante i voli al fine di ottenere un buon dato anche nei pendii laterali, in alcuni punti abbastanza scoscesi, e ottenere un buon modello digitale di elevazione.

Capitolo 4

Elaborazione dei dati, risultati ed esportazione

In questo paragrafo verranno descritti i passaggi per l'elaborazione dei dati acquisiti e mostrati i risultati ottenuti da due diversi software utilizzati, ponendo particolare attenzione alle accuratezze ottenute e facendone un breve confronto.

L'elaborazione è avvenuta presso il Laboratorio di Fotogrammetria del Dipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture (*DIATI*) del Politecnico di Torino ed è stato utilizzato un elaboratore con *CPU Intel(R) Core (TM) i7-6850K CPU @ 3.60GHz, RAM da 128 GB, GPU NVIDIA Quadro M2000,* e sistema operativo *Windows 10 Pro, 64-bit.*

I due software utilizzati sono:

 Agisoft Metashape: software stand-alone che esegue l'elaborazione fotogrammetrica di immagini digitali e genera dati spaziali 3D, utilizzato per applicazioni GIS, documentazione dei beni culturali, produzione di effetti visivi, nonché per misure indirette di oggetti di varia scala;

- *DJI Terra*: pratico software di mappatura sviluppato dalla DJI per trasformare le immagini reali in risorse digitali in modo da rende semplice la pianificazione degli interventi, l'acquisizione, la mappatura e l'elaborazione dei dati.

Nella pagina seguente [Figura 4.1] verrà mostrato il processo fotogrammetrico generale seguito per l'elaborazione dei dati e la creazione dei prodotti finali.

Nel corso del capitolo verranno anche descritti nel dettaglio i procedimenti per entrambi i software utilizzati.

Figura 4.1 Flow Chart generale del processo fotogrammetrico.

4.1 Agisoft Metashape

4.1.1 Elaborazione dei dati

Il software di Structure from Motion Metashape segue un workflow semplice e lineare, che consente di ottenere ottimi risultati limitando al minimo eventuali errori da parte dell'utente.

Come è possibile vedere nella [Figura 4.2] a sinistra il software disinibisce il procedimento successivo solo dopo aver completato il precedente.

Figura 4.2 A destra, la schermata del Workflow di Metashape, a sinistra quello adattato al caso studio.

4.1.1.1 Caricamento delle immagini

La prima operazione effettuata è stata quella di valutare quali fotogrammi siano effettivamente da inserire all'interno del progetto e quali per vari motivi da scartare.

Il problema principale è che i quattordici voli sono stati effettuati in diverse ore del giorno. Si è notato quindi che nella parte centrale dell'area di rilievo, alcune zone sono risultate in ombra e delle immagini risultano avere una colorazione leggermente bluastra. Questo non intacca in nessun modo il lavoro, in quanto il dato è comunque presente, tuttavia, a causa di una esposizione automatica della camera alcune immagini sono risultate sfuocate, ma a seguito di una attenta analisi manuale esse sono state scartate. Quindi da un totale di 2883 immagini ne sono state caricate 2802 tramite il comando *Workflow>Add Photos*.

Una volta inseriti i fotogrammi, essendo nota la posizione nello spazio dei punti di presa della camera, quindi la coordinata X, Y nel S.R. WGS 84 / UTM zone 32N (EPSG:32632), Z la quota ellissoidica e gli angoli di rotazione Omega, Phi, Kappa, vengono valutate le accuratezze nel posizionamento in X, Y e Z [Figura 4.3].

Reference													
E 🖪 🖼 🗐 1	k () 🔣 🕅	* 18 19 1 1 1											
Cameras	Easting (m)	Northing (m)	Altitude (m	Accuracy (m)	Error (m)	On	nega (°)	Phi (°)	Kappa (°)	Accuracy (°) 🔺	Error (°)	Projecti	Error (pix)
V 📶 M300_0201	337558.373000	4980689.041000	1749.777000	0.01164/0.01518/0.03155	0.007369		67.500	32.800	0.000	10.000	105.782	3313	1.858
V M300_0181	337565.030000	4980706.138000	1751.118000	0.0111/0.01422/0.03031	0.005938		144.500	6.400	0.000	10.000	207.528	3582	1.874
V 🕅 M300_0196	337575.086000	4980657.870000	1749.982000	0.01135/0.01425/0.03041	0.006551		56.400	29.300	0.000	10.000	85.901	3459	1.913
V M300_0183	337569.983000	4980697.261000	1751.182000	0.0107/0.01395/0.02972	0.005071		144.500	6.400	0.000	10.000	207.710	3466	1.972
V M300_0182	337566.302000	4980701.037000	1751.111000	0.01133/0.01565/0.03265	0.004883		144.500	6.400	0.000	10.000	207.524	3369	1.999
V M300_0203	337552.191000	4980704.441000	1749.774000	0.0126/0.01629/0.03322	0.008803		67.500	32.900	0.000	10.000	105.881	3576	2.026
🗸 🔳 106_0889	337754.355000	4980516.791000	1798.642000	0.01599/0.01196/0.02497	0.005588		238.000	31.200	0.000	10.000	166.190	632	2.125
V M300_0191	337583.120000	4980668.089000	1751.030000	0.01085/0.01391/0.02983	0.008695		153.500	6.400	0.000	10.000	220.785	3298	2.221
V M300_0192	337585.915000	4980662.466000	1751.013000	0.01084/0.01392/0.02983	0.009208		153.600	6.400	0.000	10.000	220.859	2901	2.244
V 🕅 M300_0197	337571.167000	4980663.993000	1749.993000	0.01081/0.01433/0.03032	0.006887		56.400	29.300	0.000	10.000	86.081	3093	2.324
Total Error					0.006888								

Figura 4.3 Interfaccia della finestra "Reference".

Dalla posizione delle camere e dalla stima degli errori risulta che [Tabella 4.1]:

Tabella 4.1 Stima degli errori sul posizionamento delle camere.

Figura 4.4 Posizionamento delle camere e stima dell'errore. L'errore in X e Y è rappresentato dalla forma dell'ellisse, quello in Z dal colore.

L'errore planimetrico di 4 mm e altimetrico di 5 mm sono al di sotto dell'accuratezza, quindi il procedimento si ritiene *validato*.

Prima di passare alla fase successiva di allineamento delle immagini e quindi della costruzione del blocco di fotogrammi si ritiene opportuna la conversione della quota da ellissoidica ad ortometrica, in modo da agevolare i passaggi successivi del processo.

Da *Tools>Export Cameras* è stato esportato il file [Figura 4.5] nel SR WGS 84 / UTM zone 32N (EPSG:32632), contenente tutte le informazioni sopracitate nel formato .txt.

# Cameras (2802	2)			
# PhotoID, X, Y	Y, Z, Omega, Phi, Kappa, r	11, r12, r13, r21, r22, r23,	, r31, r32, r33	
DJI_0485	338558.2229949856991880	4978782.0328845670446754	1978.2950520259857967	-0.5882656076366193
DJI_0486	338556.3452590346569195	4978788.3804931854829192	1978.2666868610847359	-0.5603538587094079
DJI_0487	338554.5622666600393131	4978794.4989758804440498	1978.2711414960633647	-0.6560787007119755
DJI_0488	338552.5080533688305877	4978801.5050421394407749	1978.2487516475443954	-0.6203077162691778
DJI_0489	338549.5828705416643061	4978811.5150925172492862	1978.2485212909502934	-0.6612773389106181
DJI_0490	338546.9542258663568646	4978820.5258682202547789	1978.2055565249161191	-0.6461101742628541

Figura 4.5 Estratto del file .txt dell'Export Cameras.

Tramite il software opensource ConveRgo [Figura 4.6] sono state convertite le quote, importando il file contenente il grigliato della zona, nello specifico "171.GK2", ponendo particolare attenzione alle impostazioni di settaggio di file di input e output.

💓 ConveRgo_ge - \	/ersione 2.05					– 🗆 🗙
C-I-S	I S CO	nversioni	di coord	inate per l	le Regio	ni 🌓 🏲
INPUT	(epsg: 6707)					JT (epsg: 6707)
Geografiche	Piane	Seleziona file	Elimina voce	Opzioni	Geografiche	Piane
ETBS89 2	ETBS89	Intera cartella	Svuota lista	Sistema catastale	ETBS89 2	ETBS89
C ETBE2000	• UTM-ETBE2000	File da trattare:			C ETBE2000	UTM-ETBE2000
C ETRF89	C UTM-ETRF89	Trascinare qui i file da	trattare		C ETRF89	C UTM-ETRF89
C ROMA40	C Gauss-Boaga				C ROMA40	C Gauss-Boaga
C ED50	C UTM-ED50				C ED50	C UTM-ED50
SIST. CATASTALE	C (Siena)				SIST. CATASTAL	E 🔿 (Siena)
QUOTA :	Ellissoidica E00 Geoidica Non modificare				QUOTA	 Ellissoidica E00 Geoidica Stessa di input
Fuso proiezione	 32 33 34 Fuso Italia Fuso "12" 				Fuso proiezion	 ✓ 32 ✓ 33 ✓ 34 ✓ Fuso Italia ✓ Fuso ''12''
Origine longitudin	Greenwich C Roma M.M.	Codice EPSG del siste	ma dei file di input: Norri por i filo di cutout	Vedi	Origine longitud	ni 🧟 Greenwich C Roma M.M.
Formato file co	n liste di coordinate	C Altra cartella	 Suffisso al nome 	Imposta	Formato file co	on liste di coordinate
Est	Nord;Quo	Suffisso output: _UI	00-32		Es	t,Nord,Quo
Posiz. grigliati: C:\U	sers\ale\OneDrive\Desk	top\Tesi\Conversioni\				N. grigliati presenti : 1
Info /	File in corso:			Punto sing	golo Converti li:	sta FILE Esci

Figura 4.6 Interfaccia grafica di ConveRgo.

Una volta ottenuto l'output della conversione sono stati reimportate le quote ortometriche all'interno di Metashape (*Import Cameras*).

4.1.1.2 Costruzione del blocco di fotogrammi

Questa fase dell'elaborazione coincide con l'orientamento interno e relativo di ogni fotogramma. Lanciando il processo di orientamento, il programma individua prima in modo automatico i punti di legame per ogni immagine e li ricerca poi nelle immagini successive. Quando i punti vengono individuati in modo omologo il software registra la posizione tridimensionale e il colore calcolando così le coordinate dei punti omologhi che compongono la nuvola di punti sparsa.

			High
Accuracy:	High	-	Medium
Generic preselection			Lowest
Reference preselection	ion Source	Ŧ	
Reset current alignment	ient		
 Advanced 			
Key point limit:	40,	000	
Tie point limit:	4,0	00	
Apply masks to:	Nor	ne	
Exclude stationary ti	ie points		
	ing		
Guided image matchi			

Il comando utilizzato è Workflow>Align Photos [Figura 4.7].

Figura 4.7 Interfaccia e settaggio del comando "Align Photos".

L'opzione *Generic Preselection* è stata spuntata in maniera tale da velocizzare le operazioni in quanto permette di fare una preselezione delle coppie da confrontare utilizzando una risoluzione minore delle immagini.

L'opzione *Reference Preselecion* in *Source*, invece, permette di tener conto delle coordinate dei centri di presa del fotogramma note, come nel caso in esame, in modo tale da creare un modello georeferenziato e correttamente scalato.¹¹

¹¹ Manuale online del software.

Per avere un maggior controllo sul processo, tale fase è stata elaborata in tre diversi livelli di qualità, che specificano il dettaglio e l'accuratezza geometrica risultanti dalla ricostruzione:

- *Low*, con un tempo di elaborazione di circa 40 minuti;
- Medium, con un tempo di elaborazione di circa 1 h e 20 minuti;
- *High*, che considera l'immagine alla sua risoluzione reale senza eseguire nessun sotto campionamento, con un tempo di elaborazione di 4 h e 40 minuti e generando 1,319,102 punti di legame.

e passando al successivo solo dopo aver verificato che il precedente fosse andato a buon fine senza errori.

Vengono mostrati i risultati in [Figura 4.8] e al link in nota¹² è visualizzabile un video mostrante il blocco di fotogrammi e la nuvola di punti sparsa lungo l'intera area di rilievo.

Figura 4.8 Allineamento delle immagini e nuvola di punti densa.

¹² <u>https://www.dropbox.com/s/oxf67z2uloave9p/Allineamento.mp4?dl=0</u>

4.1.1.2.1 Inserimento dei GCP

Al fine di migliorare la precisione del modello ed eliminare gli errori sistematici vengono inserite all'interno di Metashape le coordinate dei GCP [Figura 4.9] e collimati, cioè indentificati con precisione in un numero minimo di tre di immagini.

Di solito la collimazione viene fatta dopo l'allineamento e quindi dopo la generazione della nuvola di punti sparsa perché l'operazione risulta essere più veloce e automatica; in questo modo, essendo già stata creata una correlazione tra le immagini, il CGP verrà posizionato abbastanza correttamente anche negli altri fotogrammi, facilitandone le operazioni4.9.

Markers	Easting (m)	Northing (m)	Altitude (m)	Accuracy	Error (m)	Projections	Error (pix)
🗸 🏲 G01221	338505.434000	4979077.004000	1833.163000	0.005000	0.027861	10	0.923
🗸 🏲 V01281	337884.637000	4979938.105000	1775.106000	0.005000	0.016988	10	0.940
🗸 🏲 G01342	337526.117000	4980765.039000	1726.624000	0.005000	0.023662	10	0.967
🗸 🏲 V5015	338288.958000	4979506.462000	1813.221000	0.005000	0.017425	10	1.049
🗸 🏲 V5009	338615.061000	4978621.427000	1880.406000	0.005000	0.041985	10	1.169
🗸 🏲 М5003	338683.768000	4978097.303000	1918.202000	0.005000	0.023069	10	1.539
🗸 🏲 v5073	338093.517000	4979857.232000	1792.434000	0.005000	0.020816	10	2.090
Total Error							
Control points					0.020193		0.719
Check points					0.047531		0.438

Figura 4.9 Parte dell'elenco dei marker con informazioni riguardo al posizionamento spaziale, l'errore di posizionamento in metri e in pixel e il numero di collimazioni effettuate.

Figura 4.10 Visualizzazione della nuvola di punti sparsa e distribuzione spaziale dei marker.

Tramite il comando *Import Reference* vengono inserite le coordinate dei 42 GCP nel S.R. WGS 84 / UTM zone 32N (EPSG:32632), distribuiti come in [Figura 4.10] e successivamente collimati in un numero di fotogrammi variabili tra 10 e 15; più precisamente [Tabella 4.2]:

ID	n° fot. collimati	ID	n° fot. collimati	ID	n° fot. collimati
G01216	10	M5001	10	m5301	15
G01221	10	M5002	10	m5401	15
G01297	10	M5003	10	m5402	15
G01306	10	M5007	10	m5403	15
G01313	10	M5013	10	m5600	15
G01321	10	M5014	10	V01281	10
G01322	15	M5016	15	V5008	10
G01323	15	M5017	10	V5009	10
G01342	10	M5018	10	V5010	15
G01352	10	M5019	10	V5012	10
G01360	15	m5074	10	V5015	10
G01370	10	m5075	15	v5073	10
G01371	13	m5076	10	v5404	15
G01379	14	m5300	14	v5406	15

Tabella 4.2 GCP e numero di fotogrammi in cui sono stati collimati.

A scopo esemplificativo, viene mostrata in [Figura 4.11] la schermata di collimazione per i marker *v5404* e il *v5406*. Tramite il comando Filter Photos by Markers, nella finestra in basso, vengono mostrate tutte le foto in cui il marker è visibile. A questo punto è possibile collimare semplicemente spostando la bandierina verde nella posizione corretta.

Figura 4.11 Interfaccia grafica della finestra di collimazione dei marker.

Al fine di avere un maggior controllo sulle precisioni ottenute 1/7 dei GCP, ben distribuiti lungo tutta l'area di rilievo, vengono deselezionati e utilizzati come Check Point; quindi 6 dei marker non vengono più direttamente utilizzati nel processo di modellazione ma hanno la funzione di verificare l'accuratezza del modello generato, tramite il confronto delle coordinate del modello con quelle misurate.

In figura [Figura 4.12] la posizione dei GCPs e dei Check point e la stima dell'errore:

Figura 4.12 Posizione dei GCPs e stima dell'errore. L'errore in X e Y è rappresentato dalla forma dell'ellisse, quello in Z dal colore.

	Label	Xerror [cm]	Verror [cm]	Zerror [cm]	Total [cm]	Image [pix]
	G01221	199406	-121273	152169	2 78613	0.923
	G01297	-0.85599	0.714934	0.318798	1.15995	0.464
	G01306	-0,86893	0,526571	1,79866	2,06579	0,606
	G01313	1,07611	-0,7014	-0,1635	, 1,29488	0,529
Sd	G01321	-0,84909	0,686231	0,587507	1,23977	0,446
90	G01322	-0,56343	0,362549	-0,00536	0,67002	0,294
	G01342	-1,02048	0,456651	2,08543	2,36621	0,967
	G01352	0,224935	-0,06816	-1,40634	1,42584	0,559
	G01360	0,998771	-0,53972	1,81806	2,14341	0,742
	G01370	-0,45873	-0,02227	0,518628	0,692753	0,494
	G01379	-0,84047	-1,14324	0,898177	1,67932	0,637

Sono stati ottenuti i risultati in [Tabella 4.3]:

Tabella 4.3 Stima dell'errore dei GCP e dei Check point.

	M5001	-2,53197	-1,03841	0,254152	2,74841	0,572
	M5003	-0,92777	-2,06711	0,43391	2,30694	1,539
	M5007	0,358687	-0,65793	-0,05933	0,7517	0,385
	M5013	-0,21834	1,33256	0,699675	1,52083	0,555
	M5014	-0,22858	0,682313	0,062796	0,722317	0,44
	M5016	-1,85259	0,800417	0,514052	2,08255	0,564
	M5017	-0,52327	1,12369	0,209122	1,25707	0,533
	M5018	-0,71241	2,42086	1,13735	2,76797	0,600
	M5019	-1,20176	0,76453	-0,01123	1,42438	0,545
	m5075	-2,01667	1,94396	0,842572	2,92504	0,497
	m5076	-0,61995	0,556672	1,24752	1,50018	0,675
	m5300	-1,51585	-0,89304	1,34718	2,2159	0,573
	m5301	-1,48356	-1,9481	1,70437	2,98344	0,641
	m5401	0,436235	-1,57602	-0,23905	1,65266	0,471
	m5402	0,612153	-1,83529	0,082481	1,93645	0,446
	m5403	0,759308	-1,31534	0,218154	1,53436	0,450
	m5600	-0,00551	-0,18195	-0,11514	0,215387	0,352
	V01281	0,203179	1,38321	-0,96512	1,69882	0,940
	V5008	-0,55389	-2,18342	0,243422	2,26569	0,478
	V5009	-1,34895	-3,3682	2,11252	4,19847	1,169
	V5010	0,074777	-2,79825	1,40922	3,13396	0,641
	V5012	-1,72834	-1,20658	0,143831	2,11275	0,543
	V5015	-0,01302	1,38552	1,05667	1,74252	1,049
	v5073	-1,58266	0,526181	-1,24552	2,08159	2,09
	v5406	0,936843	0,765084	-0,29108	1,24409	0,456
	Total	1,08602	1,37365	1,00564	2,01932	0,719
	Label	Xerror(cm)	Yerror(cm)	Zerror(cm)	Total(cm)	Image(pix)
	G01216	2,50361	-1,34045	4,19112	5,06265	0,566
oint	G01323	-1,00225	0,717122	4,64575	4,80643	0,311
c pc	G01371	-1,88368	-2,24123	3,9771	4,93849	0,566
eck	M5002	-4,45457	-1,88741	3,51186	5,97818	0,289
сh	m5074	-3,79717	1,68128	3,05706	5,15663	0,441
	v5404	0,287909	-0,01874	0,143445	0,32221	0,401
	Total	2,74364	1,51237	3,57456	4,75314	0,438

	RMSE Root-Mean-Square Error						
Tipologia	X error	Y error	Z error	XY error	Total error		
	[cm]	[cm]	[cm]	[cm]	[cm]		
GCPs	1.08602	1.37365	1.00564	1.75110	2.01932		
Check Points	2.74364	1.51237	3.57456	3.13286	4.75314		

Il controllo sulla precisione durante questa fase è stato quello di assicurare durante la collimazione un errore al di sotto di un mezzo della precisione richiesta per il GCPs, mentre per i Check Point inferiore alla precisione, cioè 10 cm. Ne deriva quindi che l'errore totale dei Check Point è inferiore a 5 cm; si ritiene quindi validato il processo.

4.1.1.2.2 Ottimizzazione dell'allineamento

Nonostante i parametri di orientamento siano già sono stati calcolati, Metashape consente di rielaborarli tramite un processo di ottimizzazione, tenendo conto delle coordinate dei marker e cioè dei GCP inseriti.

Cliccando il tasto *Optimize Camera Alignment* [Figura 4.13] è possibile scegliere quali parametri andare a calcolare nell'orientamento interno. Quelli selezionati sono stati:

- Lunghezza focale *f* (indispensabile);
- Coordinate del punto principale $c_x \in c_y$ (indispensabile);
- Coefficienti di distorsione radiale k_1 , k_2 e k_3 ;
- Coefficienti di distorsione tangenziale $p_1 e p_2$;
- Coefficienti di affinità e non ortogonalità (Skew) $b_1 = b_2$;

Optin	Optimize Camera Alignment X								
Gen	eral								
v	Fit f	🗸 Fit cx, cy							
v	Fit k1	🗸 Fit p1							
v	Fit k2	V Fit p2							
v	Fit k3	V Fit b1							
	Fit k4	V Fit b2							
Adv	anced								
	Adaptive camera mod	el fitting							
	Estimate tie point cova	ariance							
	Fit additional correction	ns							
	OK Cancel								

Figura 4.13 Interfaccia e settaggio del comando "Optimize Camera Alignment".

In questo modo si minimizzano gli scarti sui punti di appoggio e contemporaneamente stimati i parametri della triangolazione aerea e la metricità della camera da presa. Vengono di seguito mostrati i residui di immagine delle camere, i coefficienti di calibrazione e la matrice di correlazione, estratti dal report di Metashape, per:

- La camera del DJI Phantom 4 Pro, FC6310R (8.8mm) [Figura 4.14] e [Tabella 4.4]:

Figura 4.14 Residui di immagine per la camera del DJI Phantom 4 Pro, FC6310R (8.8mm).

Frame	5472 x 3648	8.8 mm	2.41 x 2.41 μm
Type	Resolution	Focal Length	Pixel Size

Tabella 4.4 Coefficienti di calibrazione e matrice di correlazione della camera FC6310R.

	Value	Error	F	Cx	Су	B1	B2	К1	К2	КЗ	P1	P2
F	3628.87	0.0057	1.00	-0.02	-0.38	-0.08	0.01	-0.26	0.26	-0.24	-0.01	-0.09
Сх	-2.47204	0.0053		1.00	0.01	-0.01	0.15	-0.00	-0.00	0.00	0.86	0.00
Су	4.41787	0.0058			1.00	-0.26	0.01	-0.01	-0.01	0.01	-0.01	0.71
B1	0.0197908	0.0017				1.00	0.00	0.01	-0.04	0.04	0.01	-0.06
B2	0.303736	0.0015					1.00	0.00	-0.00	0.00	-0.02	0.01
К1	-0.00220768	5.2e-06						1.00	-0.96	0.90	-0.01	-0.01
К2	-0.0141301	1.6e-05							1.00	-0.98	0.01	-0.02
КЗ	0.0120362	1.4e-05								1.00	-0.01	0.02
P1	-0.00113768	4.3e-07									1.00	-0.00
P2	-0.000707913	3.8e-07										1.00

- La camera ZenmuseP1 (35mm) [Figura 4.15] e [Tabella 4.5]:

Figura 4.15 Residui di immagine per la camera ZenmuseP1 (35mm).

Type Frame			Resoluti 8192 x	on 546	0	:	Focal 35 m	Lengt m	h		Pixel 4.39	Size x 4.	39 µm
1		Value	Error	F	Сх	Су	B1	B2	К1	К2	КЗ	P1	P2
	F	8190.77	0.039	1.00	-0.06	-0.18	-0.05	-0.02	-0.43	0.39	-0.35	-0.02	0.02
	ĊX	-25.8712	0.063		1.00	-0.02	0.02	0.10	-0.02	0.02	-0.02	0.87	-0.01
	Су	24.8744	0.057			1.00	-0.14	0.01	-0.00	-0.01	0.01	-0.02	0.75
	B1	1.23484	0.011				1.00	0.01	0.02	-0.05	0.05	-0.00	0.00
	B2	-0.140795	0.011					1.00	-0.01	0.00	-0.00	0.03	0.01
	K1	-0.0495975	4.6e-05						1.00	-0.97	0.91	-0.02	0.00
	K2	0.0198813	0.0003							1.00	-0.98	0.03	-0.02
	КЗ	-0.101526	0.00056								1.00	-0.04	0.02
	P1	-0.00126043	2.1e-06									1.00	-0.02
	P2	0.000788658	1.9e-06										1.00

Tabella 4.5 Coefficienti di calibrazione e matrice di correlazione della camera ZenmusePI.

4.1.1.3 Generazione della nuvola di punti densa

Dopo aver allineato i fotogrammi e aver ottenuto un modello correttamente scalato e georeferenziato è possibile procedere alla generazione dei modelli digitali. Il primo modello è la nuvola di punti densa, dalla sezione di Metashape *Workflow>Build Dense Cloud* [Figura 4.16].

Build Dense Cloud		×	
- General			Highest
Quality:	High	-	High A
			Low
 Advanced 			 Lowest
Depth filtering:	Mild		
Reuse depth maps			
Calculate point colors			
Calculate point confide	ence		
ок	Cancel		

Figura 4.16 Interfaccia e settaggio del comando "Build Dense Cloud".

Anche in questo caso per avere un controllo sul processo, il modello è stato elaborato in tre livelli di qualità:

- *Low*, con un tempo di elaborazione di circa 4 h;
- *Medium*, con un tempo di elaborazione di circa 17 h;
- High, con un tempo di elaborazione di 1 giorno e 6 h e generando
 1,065,457,798 punti, cioè circa l'80000% in più dei punti di legame della nuvola di punti densa;

e passando al successivo solo dopo aver verificato che il precedente fosse andato a buon fine senza errori.

La modalità di *Depth filtering* permette di lavorare sugli outliers generati in fase di ricostruzione densa e causati da rumore o immagini sfuocate. L'algoritmo scelto è il *Mild*, utilizzabile se vi sono dettagli di piccole dimensioni che è importante riconoscere nella scena ricostruita.

Inoltre, è stato selezionato *Calculate point colors* al fine di ottenere una nuvola densa colorata.

In [Figura 4.17] viene riportata la differenza tra la nuvola sparsa e densa.

Figura 4.17 Differenza tra la nuvola di punti sparsa e densa.

Al link in nota¹³ viene mostrato il video del risultato, mentre in [Figura 4.18] vengono riportati alcuni frame.

Figura 4.18 Frame del video, rappresentate la nuvola di punti densa nella zona di monte.

¹³ <u>https://www.dropbox.com/s/pk58qg59a2ju095/DenseCloud.mp4?dl=0</u>

4.1.1.3.1 Classificazione della nuvola densa

Il software Metashape, dopo aver generato la nuvola di punti densa, permette di classificare i punti all'interno di essa in differenti classi. Sono possibili tre diversi metodi:

1. La classificazione automatica dei punti a terra

Questa classificazione permette di dividere tutti i punti in due classi: *Ground*, punti di terra e *Any*, il resto; è fondamentale per la generazione del modello digitale del terreno DTM, poiché il comando di generazione di tale impone la selezione della classe di punti contenente il terreno.

Il comando è *Tools>Dense Cloud>Classify Ground Point*; la procedura automatica di classificazione si compone di due fasi:

- Nella prima fase la nuvola densa viene divisa in celle di una certa dimensione, rilevato il punto più basso per ogni cella e la triangolazione di questi punti darà una prima approssimazione di modello del terreno.
- Nella seconda fase un nuovo punto sarà aggiunto alla classe di terra, a condizione che soddisfi due condizioni: che la giacenza sia entro una certa distanza dal modello del terreno e che l'angolo tra il modello del terreno e la linea di collegamento di questo nuovo punto con un punto di una classe di terra sia inferiore ad un certo valore d'angolo. Il secondo passo verrà ripetuto fino a quando saranno ancora presenti punti da controllare.

Tre parametri controllano automaticamente le procedure di classificazione dei punti a terra.

• Max Angle [°]

Imposta la limitazione dell'angolo tra il modello del terreno e la linea di collegamento tra il punto in questione e un punto di una classe di terra. Per un terreno quasi pianeggiante, si raccomanda di utilizzare il valore predefinito di 15 gradi come parametro. Risulta ragionevole impostare un valore più alto, se il terreno contiene forti pendenze.

• Max Distance [m]

Imposta il limite per una distanza tra il punto in questione e il modello del terreno.

Cell Size [m]

Determina la dimensione delle celle di punti della nuvola, che devono essere divisi in una successiva fase preparatoria della procedura di classificazione dei punti a terra. Il formato della cella deve essere indicato in relazione alla dimensione della più grande area, all'interno della scena, che non contiene punti a terra, ad esempio un edificio o un bosco nelle vicinanze.

Per la classificazione sono stati impostati i valori in [Tabella 4.6]:

Tabella 4.6 Parametri di controllo della procedura di classificazione

Max Angle [°]	Max Distance [m]	Cell Size [m]
25	0.5	10

Il tempo di elaborazione è stato di 3 ore e 48 minuti; il risultato è mostrato in [Figura 4.19].

Figura 4.19 Risultato della classificazione automatica dei punti a terra.

2. La classificazione automatica multiclasse della nuvola densa

Tale classificazione ha come scopo quello di risolvere il problema dei differenti livelli dei dati della nuvola di punti densa. Utilizzando delle tecniche di apprendimento automatico, Metashape consente la classificazione automatica della nuvola di punti densa nelle seguenti classi: Ground, High – Medium – Low Vegetation, Building, Road, Car, Man-Made, Water.

Dal comando *Tools>Dense Cloud>Classify Points*, è possibile selezionare su quali classi tra le precedenti descritte voler fare l'elaborazione, partendo dalla generica nuvola di punti densa (*Any Class*). Il parametro che controlla la procedura di classificazione è il *Confidance,* compreso nell'intervallo tra 0 e l; un valore più alto significa che il punto a cui la classe non può essere assegnata in modo affidabile resterà non classificato.

Impostato il valore di *Confidance* a 0.5, il tempo di elaborazione è stato di 3 ore e 48 minuti; il risultato è mostrato in [Figura 4.20].

Figura 4.20 Risultato della classificazione automatica multiclasse della nuvola densa.

È possibile affermare che il risultato ottenuto non è quello atteso, non coerente con la realtà, e quindi non utilizzabile.

Si suppone tuttavia, di poter migliorare il risultato con i seguenti accorgimenti:

- Operando su una regione maggiormente ristretta della nuvola di punti;
- Variando il parametro *Confidance* impostato a 0.5, con valori maggiormente crescenti, in modo tale da lasciare il punto a cui la classe non può essere assegnata in modo affidabile non classificato.

Poiché il risultato ottenuto con la *classificazione automatica multiclasse della nuvola densa* non è stato ritenuto accettabile, si è proceduto con il terzo metodo di classificazione della nuvola di punti, ossia la *classificazione manuale dei punti della nuvola densa*.

3. La classificazione manuale dei punti della nuvola densa

La classificazione manuale permette di associare tutti i punti all'interno della nuvola densa in una certa classe standard. Questo dà la possibilità di diversificare l'esportazione dei risultati di elaborazione rispetto ai diversi tipi di oggetti presenti all'interno della scena, ad esempio DTM per i punti a terra (*Ground*), mesh per gli edifici e nuvole di punti per la vegetazione.

Per assegnare una classe a un gruppo di punti bisogna selezionare punti che devono collocati in una certa classe e tramite il comando *Tool>Dense Cloud>Assign Class* scegliere a quale classe assegnarli.

Il risultato è mostrato in [Figura 4.21].

La classificazione della nuvola di punti può essere ripristinata in qualsiasi momento con il comando *Tool>Dense Cloud>Reset Classification*.

Figura 4.21 Risultato della classificazione manuale dei punti della nuvola densa.

4.1.1.4 Generazione della Mesh e della Texture

Dopo aver generato la nuvola di punti densa e averla classificata, il passaggio successivo è la creazione del modello poligonale 3D (mesh) e texturizzarlo, ossia applicare alla mesh un contenuto in colore fotorealistico, ricavato dalle immagini acquisite.

In Metashape, si prosegue dal menu Workflow> Build Mesh [Figura 4.22].

Build Mesh	×
Source data:	Dense doud
Surface type:	Arbitrary (3D)
Quality:	
Face count:	High (213,072,417) 🔻
 Advanced 	
Interpolation:	Extrapolated 🔹
Depth filtering:	
Point classes: All	Select
Calculate vertex colo	rs
Use strict volumetric	masks
Reuse depth maps	
ОК	Cancel

Figura 4.22 Interfaccia e settaggio del comando "Build Mesh".

La Source data (Sorgente dei dati) specifica la provenienza dei dati per la procedura di generazione della mesh. È stata selezionata la *Dense Cloud* che fornisce risultati di alta qualità sulla base della precedente elaborazione, nonostante necessiti di un maggior tempo di elaborazione.

Per la *Surface Type* (Tipi di superficie) è stato impostato *Arbitrary (3D)*, settaggio utilizzabile per la modellazione di qualsiasi tipo di oggetto, in quanto non fa alcuna distinzione sul tipo di oggetto modellato anche se richiede un maggiore utilizzo della memoria.

Il *Face Count* (Numero di poligoni) specifica il numero massimo di poligoni nella mesh finale, impostato in High.

Riguardo al settaggio di *Interpolation* è stato selezionato *Extrapolated*, in quanto il software genera un modello geometrico senza fori in base a interpolazioni di livello più raffinato.

Nella *Point Classes* è stato selezionato *All*, in quanto si vuole creare un modello 3D completo, senza nessuna distinzione di classi.

Infine, è stata selezionata l'impostazione Calulate Vertex Colors.

Il tempo di processamento della mesh è stato di 2 ore e 23 minuti, con la generazione di 92.782.680 facce e 46.472.163 vertici.

Per la costruzione della Texture, da Metashape si prosegue con il comando *Workflow>Build Texture* [Figura 4.23].

Figura 4.23 Interfaccia e settaggio del comando "Build Texture".

Come *Texture type* è stato selezionato *Diffuse map*, in cui la trama di base viene memorizzata sulla base dei colori della superficie del modello.

Riguardo *Source Data* è stato selezionato *Images*: poiché consente di costruire texture a colori basata sulle immagini allineate del modello.

Per il *Mapping mode* l'algoritmo selezionato è il *Generic*, che permette di parametrizzare la texture per arbitraria geometria in quanto non ci sono ipotesi in merito al tipo di scena da trattare e ricostruire; il tentativo del software sarà quello di creare una texture possibilmente uniforme.

Il *Blending Mode* seleziona il modo in cui i valori di colore dei pixel di diverse fotocamere verranno combinati nella trama finale.

È stato selezionato *Mosaic* in quanto combina la componente a bassa frequenza per sovrapporre le immagini per evitare problemi di linea di giunzione mentre la componente ad alta frequenza, che è responsabile dei dettagli dell'immagine, è presa da una singola immagine, quella che presenta una buona risoluzione per l'area di interesse.

È stata selezionata l'impostazione *Enable hole filling,* algoritmo che aiuta nel riempimento di parti che potrebbero presentare buchi.

In [Figura 4.24] il risultato della mesh e texture:

Figura 4.24 Esempio di Mesh e Texture.

4.1.1.5 Generazione del DSM e del DTM

Il DSM (Digital Surface Model) o Modello Digitale della Superficie e il DTM (Digital Terrain Model) Modello Digitale del Terreno sono delle superfici statistiche.

"Una superficie statistica è una rappresentazione della distribuzione dei valori di un determinato fenomeno definito, per ogni coppia di coordinate (X, Y), da un valore di Z, misurato o calcolato"¹⁴.

Per DSM (Digital Surface Model) si intende la superficie terrestre comprensiva degli oggetti che ci stanno sopra, quali edifici, alberi ed altri manufatti.

Il DTM (Digital Terrain Model), invece rappresenta l'andamento della superficie del suolo senza gli elementi antropici e vegetazioni.

La [Figura 4.25] risulta essere esemplificativa:

Figura 4.25 Differenza tra DTM e DSM.

Da Metashape, si procede dal comando Workflow>Build DEM [Figura 4.26].

¹⁴ Robinson et al., 1995; DeMers, 1997

 Projection 					
Type: 🛛 🔍 Ge	ographic	Plana	ar	Cylindr	ical
WGS 84 / UTM zone 32N	I (EPSG::32	2632)			s:
Parameters					
Source data:		Dense d	oud	1	-
		Dense d	ouro		
Quality:					
Interpolation:		Enabled	(de	fault)	-
Point classes: All				Select	
Advanced					
Region					
Setup boundaries:	336204.4	194	-	339681.188	x
Reset	4977072	.239	-	4982724.687	Y
Resolution (m):	0.03072	53			
	113162		x	183981	
Total size (pix):					

Figura 4.26 Interfaccia e settaggio del comando "Build DEM".

Nella sezione *Projection Type* è possibile scegliere il sistema di riferimento con cui voler generare i dati. È stato selezionati il S.R. WGS 84 / UTM zone 32N (EPSG:32632).

Riguardo al *Source Data* è raccomandato dal manuale d'uso calcolare il modello in base ai dati *Dense Cloud*, poiché questa opzione consente di eseguire la classificazione dei punti e la generazione della superficie basata solo su determinate classi.

Per l'*Interpolation* è stata selezionata la modalità *Enabled* (*Default*), cosicché Metashape calcolerà il modello per tutte le aree della scena visibili su almeno un'immagine.

Il *Point Classes* (Classi a punti) è il parametro che consente di selezionare una classe di punti che verrà utilizzata per il calcolo del modello di elevazione.

Per generare il modello digitale del terreno e di superficie, è necessario aver classificato la nuvola di punti densa in almeno due classi: punti del terreno (Ground Points) e il resto (Any). Per la classificazione della nuvola di punti densa si rimanda al sotto capitolo <u>Classificazione della nuvola densa</u>. In definitiva, per la creazione del DSM come parametro *Point Classes* sono state selezionate tutte le classi (*All*), mentre per il DTM sono stati selezionati solo i punti costituenti il terreno (*Ground*).

Un altro parametro da settare è la *Resolution* in metri, impostata in entrambi i casi a 0,03.

Per entrambi il tempo di elaborazione è stato di 55 minuti con la generazione di file di dimensioni di 16.53 GB.

Vengono mostrati i risultati, in visualizzazione 2D da Metashape e 3D da Arcscene in [Figura 4.27] e [Figura 4.28].

Figura 4.27 Differenza tra DSM e DTM; si noti la presenza di fitta vegetazione nel primo.

Figura 4.28 Rappresentazione bidimensionale e tridimensionale del DSM e DTM.

4.1.1.6 Generazione dell'ortomosaico

L'ortomosaico è un'immagine combinata creata dalla fusione senza soluzione di continuità delle immagini originali proiettate sulla superficie dell'oggetto e trasformata nella proiezione selezionata. Un modello poligonale (mesh) o un modello di elevazione digitale può essere selezionato come superficie su cui verranno proiettate le immagini.

Da Metashape, Workflow>Build Orthomosaic [Figura 4.29].

Type: Oeogra	aphic Planar 🤅 🤇	Cylindrical
WGS 84 / UTM zone 32N (EP	SG::32632)	
Parameters		
Surface:	DEM	
Blending mode:	Mosaic (default)	Ŧ
Refine seamlines		
 Enable hole filling 		
Enable ghosting filter		
Enable back-face culling		
Pixel size (m):	0.03	x
Metres	0.03	Y
Max. dimension (pix):	4096	
Region		
Setup boundaries:	-	x
		v
Estimate	-	

Figura 4.29 Interfaccia e settaggio del comando "Build Orthomosaic".

Nella sezione *Projection Type* si imposta il sistema di riferimento con cui voler proiettare Orthomosaico. È stato selezionato il S.R. WGS 84 / UTM zone 32N (EPSG:32632).

Riguardo alla *Surface* è impostato il DEM, in quanto la creazione dell'Orthomosaico sulla base dei dati DEM è particolarmente efficace per l'elaborazione dei dati rivenienti da ricognizione di scenari aerei ciò consente di risparmiare tempo nella fase di generazione della mesh.

Per il parametro *Blending Mode* è stato selezionato *Mosaic (Default)*, poiché attua l'approccio con la divisione dei dati in diversi domini di frequenza che si fondono in modo indipendente.

È stata selezionata l'impostazione *Enable hole filling,* algoritmo che aiuta nel riempimento di parti che potrebbero presentare buchi.

La *Pixel size* è il valore predefinito della dimensione in pixel e si riferisce alla risoluzione di campionamento a terra. È stato impostato anche in questo caso 0,03 m sia per la dimensione lungo X che Y.

Il tempo di elaborazione è stato di un ora con la generazione di un file di dimensioni di 27.63 GB. In [Figura 4.30] i risultati:

Figura 4.30 A sinistra l'Orthomosaico completo, a destra due zone ravvicinate a valle.
4.1.2 Risultati dell'elaborazione

In [Figura 4.31] i risultati dell'elaborazione tramite Metashape:

CLASSIFICAZIONE DELLA NUVOLA SPARSA

MODELLO DIGITALE DEL TERRENO (DTM)

NUVOLA DI PUNTI DENSA

ORTHOMOSAICO

MODELLO DIGITALE DELLA SUPERFICIE(DSM)

Figura 4.31 Risultati dell'elaborazione di Metashape.

4.1.3 Esportazione dei dati

Dopo aver generato tutti i dati e i risultati utili, un passaggio molto importante è l'esportazione dei dati. Questo ha come obiettivo quello di ottenere, per le diverse tipologie di dati, risoluzioni diverse in funzione dell'utilizzo e dimensioni maggiormente gestibili dagli elaboratori.

A tale scopo la *Dense Cloud*, in formato .las, è stata sottocampionata prendendo come file di input l'export di Metashape della nuvola di punti (uno ogni 3 cm); utilizzando CloudCompare, un software open source che nasce per confrontare nuvole di punti, tramite il comando *Edit-Subsample*, la nuvola densa è stata sottocampionata considerando:

- Un punto ogni 5 cm;
- Un punto ogni 10 cm;
- Un punto ogni 20 cm;

Il DSM, DTM e l'Ortofoto (.tif) sono invece stati esportati, partendo dal file di export di Metashape (3cm/pix) in:

- 5 cm/pixel, suddividendo l'intera area in 4 parti [Figura 4.32 a)];
- 10 cm/pixel, suddividendo l'intera area in 2 parti [Figura 4.32 b)];
- 20 cm/pixel, senza suddividere l'area [Figura 4.32 c)].

Figura 4.32 Esempio di suddivisione dell'area al fine di avere file di dimensioni più gestibili.

In [Figura 4.33] viene riportato in forma grafica l'export dei dati dall'elaborazione tramite Metashape, riportando la tipologia di file, il formato, il nome e la dimensione:

Figura 4.33 Raffigurazione in forma grafica dell'export dei dati di Metashape.

4.2 DJI Terra

DJI Terra è un software per PC progettato per gestire al meglio le missioni di voli UAV DJI, pianificando percorsi 2D e 3D, ma anche per fornire funzioni come la ricostruzione di mappe 3D, modelli 3D e molto altro. Ha quattro versioni: Agriculture, Pro, Electricity, and Cluster.

Nel presente elaborato viene utilizzata la versione Pro che include oltre alle funzioni base anche la possibilità di:

- Esportazione e importazione di file KML;
- Esportazione e importazione di dati POS di immagini;
- Ricostruzione della mappa 2D per scene urbane;
- Ricostruzione del ROI;
- Impostazione del sistema di coordinate di output;
- Ricostruzione del modello 3D;
- Gestione dei GCP;
- Ottimizzazione della precisione della nuvola di punti LiDAR.

In [Figura 4.34] a sinistra viene mostrato l'interfaccia del workflow del software, mentre a destra il flusso di lavoro seguito.

Figura 4.34 A destra, la schermata del Workflow di DJI Terra, a sinistra quello adattato al caso studio.

4.2.1 Elaborazione dei dati

4.2.1.1 Importing Image POS Data

Anche in questo caso il primo passaggio è quello di importare le acquisizioni. Un grande vantaggio di questo software è di riconoscere e segnalare eventuali immagini sfuocate. Si procede quindi ad un dettagliato controllo ed eventualmente eliminazione dal processo di ricostruzione di immagini inadatte.

Dopo aver selezionato il sistema di coordinate dei dati POS immagine (WGS 84 / UTM zone 32N) è stato esportato il file .txt contenente le informazioni di posizionamento delle camere per convertire le quote da ellissoidiche a geoidiche, tramite il software ConveRgo come già mostrato al 4.1.1.1 <u>Caricamento delle immagini</u>.

Una volta reimportato il file con le quote corrette, cliccando sul file di anteprima sono visualizzabili i dati configurati, la posizione delle camere, gli angoli di orientamento e l'accuratezza [Figura 4.35].

	Image POS Data							
Photo Name	X/E	Y/N	Z/U	Yaw	Pitch	Roll	Horizontal Accuracy	Vertical Accuracy
D:/Elaborazio	336824.053	4982064.996	1753.263	-20.4	-89.9	0	0.03	0.06
D:/Elaborazio	336825.132	4982061.869	1753.283	-21.2	-89.9	0	0.03	0.06
D:/Elaborazio	336827.786	4982054.059	1753.352	-20.8	-89.9	0		0.06
D:/Elaborazio	336829.3	4982045.164	1753.342	-20.7	-89.9	0	0.03	0.06
D:/Elaborazio	336831.401	4982034.132	1753.322	-20.6	-89.9	0	0.03	0.06

Figura 4.35 Visualizzazione del comando "View POS Data".

Nella [Figura 4.36] in verde la costruzione del blocco fotogrammetrico con la nuvola di punti densa della parte più a monte della zona di rilievo.

Figura 4.36 Costruzione del blocco fotogrammetrico e nuvola di punti sparsa.

4.2.1.2 Output Coordinate System Settings

Al fine di generare ricostruzioni 2D e 3D, dopo aver importato le immagini, è necessario impostare il sistema di coordinate di output [Figura 4.37]. Se le immagini includono informazioni GPS il sistema di coordinate verrà automaticamente impostato e convertito in proiettate; al contrato sarà impostato come "Arbitrary Coordinate System" definito da DJI Terra.

Figura 4.37 Output Coordinate System

4.2.1.3 GCP Management

Il passaggio successivo è l'importazione del file dei GCP, utilizzati per aumentare la robustezza e l'accuratezza della triangolazione aerea.

Tramite la sezione di gestione dei GCP è visualizzabile l'elenco dei punti di controllo a terra, le loro informazioni [Figura 4.38].

GCP Manageme	ent	?	GCP	M5001	Marked:11
		Ŷ	GCP	M5002	Marked:0
GCP Coordinate System		?	GCP	M5003	Marked:8
GCP 😋 🤉	× → + -	?	GCP	M5007	Marked:10
GCP G01216	Marked 10	?	GCP	M5013	Marked:10
Q GCP G01221	Marked:11	9	GCP	G01323	Marked:12
🍳 GCP G01297	Marked:10	9	GCP	G01342	Marked:10
9 GCP G01306	Marked:10	?	GCP	G01352	Marked:10
9 GCP G01313	Marked:10	?	GCP	G01360	Marked:10
9 GCP G01321	Marked:11	9	GCP	G01370	Marked:10

Figura 4.38 Elenco dei GCP e check point.

Una vista della triangolazione aerea permette di visualizzare la posizione dei GCP, mentre tramite la galleria fotografica si ha la possibilità di mostrare solo le immagini in cui il GCP è visibile [Figura 4.39]; selezionando la foto è, infine, possibile inserire il contrassegno per il posizionamento corretto del punto. Ad ogni collimazione il punto verrà riposizionato automaticamente in tutte le altre immagini in cui è presente, con una accuratezza elevata.

Figura 4.39 Interfaccia grafica per la collimazione dei punti.

Dopo aver collimato per un numero minimo di 10 foto ogni GCP, assicurandosi che l'accuratezza del posizionamento sia inferiore 5 cm, si procede con l'aereotriangolazione. In [Tabella 4.7] i risultati sulla precisione:

	GCP						
Name	dx (m)	dy (m)	dz (m)	Name	dx (m)	dy (m)	dz (m)
G01216	0.010529	-0.014821	0.008767	M5017	0.001248	0.005888	0.005922
G01221	-0.002250	-0.003163	0.006417	M5018	-0.002313	0.013519	0.016102
G01297	-0.005951	0.001336	-0.016648	M5019	-0.010724	0.001430	-0.003991
G01306	-0.000353	0.004294	0.020409	m5075	-0.015459	0.009252	0.004838
G01313	0.007448	-0.004587	-0.005076	m5076	-0.014339	-0.003307	0.017252
G01321	-0.002673	0.004341	0.010333	m5300	-0.009434	-0.003531	0.016046
G01322	0.000924	0.005071	-0.035518	m5301	-0.004682	-0.016014	0.004954
G01323	-0.004468	0.002352	0.040179	m5401	0.006510	-0.013326	0.005160
G01342	-0.013597	0.001968	0.017198	m5402	0.017668	-0.012253	0.003799
G01352	-0.002937	0.005265	-0.025387	m5403	-0.001396	-0.004695	-0.002118
G01360	0.012045	-0.011595	0.015593	m5600	-0.001282	-0.000477	0.013202
G01370	-0.003801	0.007329	-0.007318	V01281	0.008308	0.009709	-0.016551
G01371	-0.011622	-0.012465	0.011365	V5008	-0.001293	-0.017055	-0.002042
G01379	0.006184	-0.012569	-0.001856	V5009	-0.017722	-0.025586	0.021464
M5001	-0.010051	-0.007903	0.003778	V5010	0.003355	-0.012168	-0.008542
M5003	0.006462	-0.000228	-0.000614	V5012	-0.007513	0.004452	-0.008914
M5007	-0.008238	-0.006533	-0.005055	V5015	0.000269	0.006798	-0.004346
M5013	0.004410	0.002858	-0.003283	v5073	-0.015017	0.013321	-0.008887
M5014	-0.006931	0.002093	0.008537	v5404	-0.002394	-0.002211	0.012233
M5016 -0.016350 0.00154			0.007360	v5406	0.010830	0.008505	-0.015911
			Control P	oint RMSE			
	dx (m)		dy (m)			dz (m)	
	-0.002415		-0.00	01829		0.00247	1

Tabella 4.7 Risultati delle precisioni di posizionamento tratte dal Report di DJI Terra.

4.2.1.4 3D Model Reconstruction

Per la ricostruzione del modello 3D è fondamentale settare le impostazioni di base [Figura 4.40].

Per prima cosa viene impostata la risoluzione desiderata. *High* si riferisce alla originale, *medium* a ½ della originale e *low* ad 1/3. Per l'elaborazione del modello è stato impostato *High*.

Il secondo passo è l'impostazione dello scenario di mappatura. DJI Terra permette di scegliere tra:

- *Normal*, adatto per la maggior parte degli scenari, incluse le acquisizioni nadirali e oblique.
- *Circle*, adatto per scenari in cui le immagini vengono acquisite a cerchio volando attorno a strutture che si elevano in altezza come torri, centrali elettriche o turbine;
- Electricity, adatta per scenari in cui sono presenti linee elettriche.

È stato scelto lo scenario *Normal*, in quanto il più adatto.

Infine, bisogna abilitare o disabilitare le opzioni per la ricostruzione dei risultati desiderati, tali da essere esportati successivamente.

Il comando *Start Reconstruction* avvia la modellazione e a conclusione è possibile visualizzarlo, ingrandirlo, ruotarlo e visualizzarlo da diverse angolazioni [Figura 4.40].

Figura 4.40 Settaggio del comando "3D Model".

Ai link riportati nelle note¹⁵¹⁶ vengono mostrati due video rappresentanti il modello 3D nella parte più a valle e a monte. In [Figura 4.41] vengono riportati dei frame.

Figura 4.41 Risultato della modellazione tridimensionale.

¹⁵ <u>https://www.dropbox.com/s/qjw0xnzz7p23fd7/3DModel_Valle.mp4?dl=0</u>

¹⁶ <u>https://www.dropbox.com/s/j7prr2eb0nzqs1f/3DModel_Monte.mp4?dl=0</u>

4.2.1.5 2D Map Reconstruction

Anche per la ricostruzione della mappa 2D (ortofoto) è necessario settare le impostazioni di base.

In primo luogo, bisogna impostare la scena di mappatura più opportuna. DJI Terra permette di scegliere tra:

- *Field*, adatto ad aree aperte con oggetti con poca differenza di altezza come terreni agricoli;
- Urban, adatto ad aree urbane con molti edifici;
- *Fruit Tree*, adatto per aree con oggetti di grande dislivello come frutteti.

È stato scelto *Field* in quanto ritenuto più adatto al caso studio.

Così come nella ricostruzione del modello 3D, anche per la mappa 2D è stata impostata la risoluzione originale delle acquisizioni *High*.

Il comando *Start Reconstruction* avvia la ricostruzione e a conclusione il risultato verrà mostrato, con la possibilità di ingrandire o rimpicciolire a differenti livelli [Figura 4.42].

Figura 4.42 Risultato della modellazione 2D.

4.2.2 Risultati dell'elaborazione

In [Figura 4.43] i risultati dell'elaborazione tramite DJI Terra:

Figura 4.43 Risultati dell'elaborazione di DJI Terra.

4.2.3 Esportazione dei dati

DJI Terra permette di esportare i risultati dell'aereotriangolazione in due formati: *Terra* e *XML*.

La nuvola di punti può essere invece esportata in:

- Non-Load Point Cloud nel formato .las, .ply e .pcd;
- Load Point Cloud nel formato .pnts e .s3mb.

Riguardo al modello 3D è possibile esportare:

- 1. La texture in .ply e .obj;
- 2. Il modello LOD in .b3mb, .osgb, .i3s e .s3mb.

In [Figura 4.44] l'output de dati viene riportato in forma grafica:

Figura 4.44 Raffigurazione in forma grafica dell'export dei dati di DJI Terra.

4.3 Agisoft Metashape vs. DJI Terra

L'aver elaborato lo stesso progetto tramite due differenti software ha permesso di valutarne i pro e i contro di entrambi, ma soprattutto di fare un confronto sotto diversi aspetti.

In primis, la chiarezza del *flusso di lavoro* da seguire e l'intuibilità nell'utilizzo. Agisoft Metashape essendo un software di SfM lanciato sul mercato nel 2010, con anni di miglioramenti e differenti versioni alle spalle, ha un workflow semplice e lineare che ne permette l'utilizzo con un margine di errore bassissimo, a differenza di DJI Terra, che lanciato sul mercato solo nel 2020, in alcuni passaggi risulta essere poco intuibile e macchinoso. Grazie a continui aggiornamenti e miglioramenti, potrebbe diventare tra i migliori software di fotogrammetria in commercio.

In secondo luogo, la *precisione* dell'elaborazione. Da quanto si evince nei report di entrambi i software, la precisione dei punti di controllo è di:

- 2,02 cm per Agisoft Metashape;
- 2,4 cm per DJI Terra.

Tali precisioni sono completamente paragonabili e quindi non ne prevale uno.

Riguardo alla *complessità di utilizzo*, non intesa come difficoltà ma possibilità di utilizzo, Metashape è più completo, con possibilità di utilizzo in svariati campi della fotogrammetria, avendone sempre un controllo completo durante tutti i procedimenti.

Riguardo alla *grafica dell'elaborazione* del modello 3D prevale nettamente il sofware DJI. Nonostante siano state utilizzate le stesse immagini, nemmeno nelle parti marginali del modello sono presenti buchi. Un altro vantaggio è la fluidità di visualizzazione dei risultati con una grafica eccezionale. Anche nella *velocità di elaborazione* dei dati DJI supera di gran lunga il software di Agisoft. Tempi parziali e totali di alcuni dei processi di elaborazione a confronto in [Tabella 4.8]:

AGISOFT M	<u>IETASHAPE</u>	<u>DJI TERRA</u>		
Processo	Processo Tempo Pi		Tempo	
Alignment	1 ora e 14 minuti	Alignment	52 minuti	
Dense Cloud	l giorno e 6 ore	Dense Cloud	46 minuti	
3D Model	4 ore 43 minuti	3D Model	1 ora e 28 minuti	
Totale	35 ore e 57 minuti	Totale	3 ore e 3 minuti	

Tabella 4.8 Tem	npi di elaborazione	totali e parziali c	di Metashape e DJI Terra

In conclusione, nonostante la grafica migliore e i tempi di elaborazione ridotti di DJI Terra, Metashape risulta essere molto più sofisticato e completo, nonostante richieda una buona conoscenza della teoria della fotogrammetria.

Offre funzionalità avanzate, tra cui correzioni ottiche avanzate, riconoscimento automatico degli obiettivi a terra, allineamento manuale delle foto, uso delle maschere, classificazione della nuvola di punti, possibilità di moltiplicare blocchi ed eseguire diversi trattamenti e impostazioni. Consente inoltre di lavorare su progetti di grandi dimensioni, elaborando migliaia di scatti anche simultaneamente su più workstation all'interno di un cluster, parallelizzando i calcoli e moltiplicando le CPU.

È anche in grado pianificare video, modificandone velocità e tempi, di estrarre fotogrammi da un'acquisizione video quando il software di pianificazione del volo non ha abbastanza opzioni per scattare foto di qualità.

Capitolo 5

Bathymetric Structure-from-Motion

In questo capitolo ci si occuperà di Bathymetric Structure-from-Motion, in particolare estrazione della batimetria di fiumi poco profondi dalla fotogrammetria multi-vista¹⁷.

La batimetria, ossia la misurazione e rappresentazione della profondità delle acque, nel caso dei corsi d'acqua è una variabile critica in numerose applicazioni delle scienze fluviali. Nei fiumi più grandi, la batimetria può essere misurata con strumenti come sonar, LiDAR batimetrici aerei o doppler acustici. Tuttavia, nei corsi d'acqua più piccoli con profondità inferiori a 2 m, la batimetria è una delle variabili più difficili da mappare ad alta risoluzione.

Le tecniche di telerilevamento ottico offrono diverse potenziali soluzioni per la raccolta della batimetria ad alta risoluzione, ma in questo lavoro si applicano misurazioni fotogrammetriche dirette della batimetria utilizzando la fotogrammetria multi-vista, in particolare Structure-from-Motion (SfM).

Il principale problema con qualsiasi tecnica fotogrammetrica, per una accurata mappatura batimetrica, è la correzione della rifrazione della luce che passa tra i due diversi mezzi (aria e acqua); questo causa delle profondità dell'acqua più basse rispetto a quanto siano in realità.

Viene quindi applicato un algoritmo iterativo che calcola una serie di equazioni di correzione della rifrazione per ogni combinazione punto/fotocamera in una nuvola di punti SfM. Questa metodologia, come molti metodi di telerilevamento fluviale, funziona solo in condizioni ideali (ad esempio acqua limpida), tuttavia fornisce uno strumento aggiuntivo per la raccolta di dati batimetrici ad alta risoluzione per una varietà di sistemi fluviali, costieri ed estuari.

¹⁷ Bathymetric Structure-from-Motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry, James T. Dietrich, John Wiley & Sons, Ltd., 2016

5.1 I principi teorici

La batimetria dei corsi d'acqua è una variabile critica nella geomorfologia fluviale, insieme ad altre variabili come larghezza, pendenza e velocità necessari per caratterizzare l'ampia gamma di parametri fisici e biologici che esistono nei sistemi fluviali. Queste costituiscono la base di molte equazioni idrologiche, teorie geomorfiche e modelli numerici utilizzati per spiegare i comportamenti, mappare la complessità e l'eterogeneità dei sistemi di corsi d'acqua¹⁸.

Nello studio dei sistemi fluviali molto spesso ci si limita ad usare le tradizionali tecniche di rilevamento quali stazione totale o sistema di posizionamento globale cinematico in tempo reale (RTK-GPS), tecniche che richiedono molto tempo per rilievi ad alta risoluzione, spesso comunque in scala spaziale limitata¹⁹.

Il telerilevamento offre quindi un approccio per produrre misurazioni batimetriche ad alta risoluzione su estensioni spaziali più ampie. Il sempre più utilizzo della fotogrammetria Structure-fromMotion (SfM) in geomorfologia e la rapida crescita di piccoli sistemi aerei senza equipaggio (UAS) forniscono un approccio differente per la raccolta di dati batimetrici ad alta risoluzione, grazie al telerilevamento ottico.

Tuttavia, una delle principali limitazioni è che le misurazioni in acqua sono influenzate dalla rifrazione della luce mentre attraversa l'interfaccia acqua/aria. L'effetto fa sì che le misurazioni in acqua appaiano meno profonde, denominate "profondità apparente", rispetto alle profondità effettive.

La [Figura 5.1] mostra un diagramma della trigonometria di rifrazione di una singola combinazione *punto di misurazione-fotocamera*; le definizioni delle variabili sono fornite nella [Tabella 5.1].

¹⁸ Riverine landscape diversity, Ward JV, Tockner K, Arscott DB, Claret C., Freshwater Biology, 2002

¹⁹ A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers, Bangen S.G., Wheaton J.M., Bouwes N., Bouwes B., Jordan C., Geomorphology, 2014.

Figura 5.1 Diagramma della trigonometria di rifrazione di una singola combinazione punto di misurazione-fotocamera.

Tabella 5.1 Descrizioi	ne delle	variabili il	n Figura 5.1	1.
------------------------	----------	--------------	--------------	----

Variabili	Descrizione
X_a, Y_a, Z_a	Coordinate apparenti del punto da SfM
X_p, Y_p, Z_p	Coordinate reali del punto
D	Distanza Euclidea dal punto Sfm alla telecamera
dH	Altezza di volo sopra il punto da SfM
r	Angolo di rifrazione
i	Angolo di incidenza
x	Distanza dal punto SfM al punto di interfaccia aria/acqua
ha	Profondità apparente del punto da SfM
h	Profondità effettiva del punto con coordinate X_p, Y_p, Z_p
<i>n</i> ₁	Indice di rifrazione dell'acqua dolce (1.337)
n ₂	Indice di rifrazione dell'aria (1.0)

L'obiettivo è quindi quello di risolvere un sistema di equazioni per h, profondità effettiva del punto, dato che può essere utilizzato direttamente o sottratto dall'elevazione della superficie dell'acqua (WS_z) per fornire l'elevazione corretta. Alla base vi è la legge di Snell che governa la rifrazione della luce tra due diversi mezzi:

$$n_1 \sin i = n_2 \sin r$$

dove $n_1, n_2, i er$ definiti in [Tabella 5.1].

Nella stereofotogrammetria convenzionale, l'applicazione diretta della legge di Snell è complicata, dato che il punto è visto da due immagini. Poiché le posizioni delle telecamere sono diverse, gli angoli di rifrazione r e di incidenza i sono diversi per ciascuna telecamera; dato che sarebbe richiesta la risoluzione dell'equazione per ogni telecamera, ne risulterebbe che si avrebbero delle profondità effettive (h) leggermente diverse per lo stesso punto considerato.

Nella SfM il processo di correzione della rifrazione si complica ulteriormente, in quanto si hanno più viste (3-50+) per un singolo punto. Ogni camera ha osserva l'alveo del fiume da un angolo diverso, e secondo le leggi della rifrazione dovrebbe avere angoli di angoli di rifrazione r e di incidenza idiversi, producendo diverse profondità apparenti (h_a). Tutti questi valori creerebbero una ampia gamma di elevazioni che porterebbero alla creazione di una nuvola di punti rumorosa.

Woodget et al. (2015)²⁰ hanno proposto un metodo per la correzione della rifrazione, con l'obiettivo di superare alcune delle complicazioni causate dall'uso di più fotocamere. Questo metodo è specifico per le immagini SfM nadirali e proponendo di utilizzare una versione semplificata della legge di Snell che utilizza la sostituzione dell'approssimazione del piccolo angolo.

Con l'approssimazione dei piccoli angoli, per angoli ($\theta = r || i$) inferiori a 10°, il $sin\theta \cong tan \theta$ e

$$\sin i \cong \tan i = \frac{x}{h}$$
 e $\sin r \cong \tan r = \frac{x}{h_a}$

e quindi semplificando l'equazione di Snell:

 $h = 1,337 \cdot h_a$

dove i, r, x, h, h_a sono definiti in [Tabella 5.1].

Questa forma di correzione della rifrazione è interessante grazie alla sua semplicità. Tuttavia, la ricerca attuale sulle strategie di acquisizione di immagini migliori per SfM suggerisce che le immagini off-nadir producono set di dati SfM con meno errori sistematici e migliori calibrazioni della

²⁰ Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry, Woodget AS, Carbonneau PE, Visser F, Maddock IP., Earth Surface Processes and Landforms, 2015

fotocamera e quindi con una migliore accuratezza e precisione ^{21 22}.Gli angoli della telecamera fuori dal nadirale (di solito 10°–30° rispetto alla verticale) precludono quindi l'uso dell'approssimazione dell'angolo piccolo, perché r può variare da nadir (0°) a un limite teorico di 89° e i può variare da 0° a ~ 48° (il limite per la riflessione interna totale).

Questa gamma di possibili angolazioni richiede un approccio alternativo per la fotogrammetria multi-vista off-nadir. Ciò significa risolvere la trigonometria necessaria per ogni combinazione punto/multicamera. L'obiettivo è quindi di testare un algoritmo di correzione della rifrazione multicamera che sia una soluzione completa per la correzione della rifrazione attraverso l'acqua per i set di dati SfM oggetto di studio.

Le equazioni e le loro combinazioni sono state pubblicate in varie forme^{23 24} ²⁵ tuttavia la loro applicazione ai set di dati SfM, i passaggi del software utilizzato per l'elaborazione dei dati e i risultati è ciò che viene descritto inseguito.

5.1.1 Il metodo

Come già anticipato la correzione della rifrazione multicamera utilizzata è iterativa. Per ogni punto nella porzione sommersa della nuvola di punti SfM, il software calcola le equazioni di correzione della rifrazione per ogni telecamera che può vedere quel singolo punto e itera tra tutte le possibili combinazioni punto-fotocamera.

Il primo passo nel processo consiste nel testare la visibilità dei punti da tutte le telecamere utilizzate nella ricostruzione SfM. I dati sono stati elaborati

²¹ Mitigating systematic error in topographic models derived from UAV and groundbased image networks, James MR, Robson S., Earth Surface Processes and Landforms, 2014.

²² Cost-effective non-metric photogrammetry from consumer-grade sUAS: implications for direct georeferencing of Structure from Motion photogrammetry, Carbonneau PE, Dietrich JT., Earth Surface Processes and Landforms, 2016.

²³ Water depths from aerial photographs, Tewinkel GG, Photogrammetric Engineering, 1963.

²⁴ Through-water close range digital photogrammetry in flume and field environments, Butler J, Lane S, Chandler J, Porfiri E., The Photogrammetric Record, 2002

²⁵ A photogrammetric correction procedure for light refraction effects at a twomedium boundary, Murase T, Tanaka M, Tani T et al., Photogrammetric Engineering & Remote Sensing, 2008

utilizzando Agisoft Metashape e le posizioni della fotocamera (x, y, z) con l'orientamento (yaw, pitch e roll) sono stati esportati in un file di testo. Per ciascuna telecamera, vengono calcolate le coordinate approssimative del terreno per gli angoli del campo visivo istantaneo della telecamera (IFOV) in base ai parametri di orientamento esterno (inclinazione, rollio e imbardata) e ai parametri di orientamento interno della camera (lunghezza focale e dimensione del sensore). I punti della nuvola di punti che rientrano nell'IFOV calcolato sono considerati visibili alla telecamera. Per i punti visibili, l'angolo di rifrazione r è calcolato da:

$$r = \tan^{-1} \frac{D}{dH}$$

dove D è la distanza euclidea tra la camera e il punto

$$D = \sqrt{(X_c - X_a)^2 - (Y_c - Y_a)^2}$$

e dHè la differenza di altezza tra la fotocamera e il punto $dH = (Z_c - Z_a)$.

Le elevazioni della superficie dell'acqua $(h_a = WS_z - Z_a)$ sono fondamentali da stabilire per le equazioni di rifrazione. La superficie dell'acqua è stata calcolata utilizzando i dati di elaborazione già ottenuti tramite l'interpolazione Kriging con il DTM di una serie di punti digitalizzati lungo i bordi, visibili dall'Ortofoto.

Avendo a questo punto calcolato $r \in h_a$, la correzione della rifrazione si basa sulle altre variabili incognite, definite in [Tabella 5.1]:

$$i = \sin^{-1} \left(\frac{n_1}{n_2} \cdot \sin r \right)$$
$$x = h_a \cdot \tan r$$
$$h = \frac{x}{\tan i} = \frac{h_a \cdot \tan r}{\tan \left[\sin^{-1} \left(\frac{n_1}{n_2} \cdot \sin r \right) \right]}$$
$$Z_R = WS_T - \tilde{h}$$

Il valore corretto di Z_P viene preso come la media di tutti i valori di h $(\tilde{h})^{26}$, che viene sottratto dalla superficie dell'acqua per ottenere il valore di elevazione corretto.

²⁶ Through-water close range digital photogrammetry in flume and field environments, Butler J, Lane S, Chandler J, Porfiri E.., The Photogrammetric Record, 2002

5.2 Prerequisiti e Workflow

Come già discusso precedentemente, l'obiettivo principale è la correzione del DTM nella zona d'acqua, affetto dal problema della rifrazione della luce passante tra i due mezzi aria e acqua, causante profondità dell'acqua più basse rispetto alla realità, tramite misurazioni fotogrammetriche dirette della batimetria utilizzando la fotogrammetria multi-vista, in particolare Structure-from-Motion (SfM).

In questo sotto capitolo vengono riportati i prerequisiti necessari all' applicazione del metodo e viene esposto, sia in forma descrittiva che grafica, il flusso di lavoro seguito per l'ottenimento di tutti i dati necessari all'applicazione dell'*algoritmo python py_sfm_depth* di correzione del DTM, consultabile al seguente link in nota²⁷.

5.2.1 Prerequisiti necessari all'applicazione

In prima analisi si riportano le condizioni ottimali del sito in esame che devono persistere per una corretta applicazione del metodo:

- 1. L'acqua limpida è la condizione più importate. Un alto livello di sedimenti, e quindi acqua torbida o marrone, inibisce l'utilizzo della SfM per la misura delle profondità.
- 2. Le onde superficiali devono essere minime. Molte onde create dal vento o idrauliche aumentano il "rumore" della nuvola di punti; questo porta ad imprecisioni ed errori nell'output finale.
- 3. Le *condizioni atmosferiche nuvolose* o nebbiose creano nella superficie dell'acqua molti riflessi che inibiranno misurazioni accurate.

Riguardo all'acquisizione delle immagini:

- 1. Le immagini devono essere raccolte ad angoli leggermente obliqui con una adeguata convergenza e sovrapposizione. La raccolta a differenti altitudini può essere inoltre vantaggiosa.
- 2. L'uso di un filtro polarizzante, regolato per ridurre l'abbagliamento, migliora la visualizzazione in acqua.
- 3. È preferibile l'acquisizione in ore del giorno che riducono al minimo le ombre delle sponde o di vegetazione.
- 4. Per quanto possibile, è utile mantenere il sole dietro il sensore.

²⁷ Algoritmo consultabile al link <u>https://github.com/geojames/py_sfm_depth</u>

Oltre ai punti di controllo, fondamentali per qualsiasi raccolta SfM, tramite GPS-GNSS devono essere raccolti:

- 1. Un adeguato numero di punti di convalida in acqua, a varie profondità. Tali punti sono necessari per il controllo e statistiche degli errori della batimetria.
- 2. Un adeguato numero di punti sul bordo d'acqua per studiare l'elevazione della superficie dell'acqua.

5.2.2 Workflow

I file di input per lo script Python sono tre:

1. Dense Cloud File, il file contenente la nuvola di punti da correggere in cui per ogni punto siano note le coordinate (x e y), la quota baltimetrica del punto rilevata tramite SfM (sfm_z) e la quota della superficie dell'acqua (w_surf) .

La riga di intestazione di tale file deve necessariamente essere x, y, sfm_z, w_surf.

 Cameras File, il file di export delle posizioni (x,y,z) nello stesso sistema di riferimento dei punti e gli orientamenti (*pitch, roll, yaw*) delle camere in cui lo 0° sia rispettivamente nadirale, orizzontale, punti il Nord.

La riga di intestazione di tale file deve necessariamente essere x, y, z, pitch, roll, yaw.

I nomi delle acquisizioni possono essere inclusi ma non obbligatori.

 Sensor File, il file contenente la lunghezza focale della camera (focal) che ha scattato le foto in millimetri e le dimensioni fisiche del sensore sempre in millimetri (sensor_x e sensor_y). La riga di intestazione di tale file deve necessariamente essere focal, sensor_x, sensor_y.

Inoltre, tutti i file devono essere file delimitati da virgole *.csv.

Il passaggio più complesso riguarda il *Dense Cloud File*, in quanto il *Camera File* è esportabile da qualsiasi software, nel nostro caso da Metashape tramite il comando *Tools>Export Cameras*, mentre i dati da inserire all'interno del *Sensor File* sono ricavabili in diversi modi, come dal Report di Metashape, da internet oppure tramite le informazioni tecniche fornite dalla casa produttrice della camera. Verranno quindi descritti i passaggi per l'ottenimento del *Dense Cloud File*.

Utilizzando come dati di partenza l'ortofoto e del Digital Terrain Model, in formato *.tif, generati precedentemente tramite una elaborazione Sfm, è necessario:

- 1. Creare uno shapefile poligonale di maschera, che comprenda tutta la zona di interesse su cui voler lavorare, in particolare l'area bagnata e la zona laterale.
- 2. Creare uno shapefile puntuale, sulla base dell'ortofoto, contenente i punti del bordo acqua; questi saranno il punto di partenza per l'interpolazione della superficie dell'acqua. Per il posizionamento si consiglia di attuare le seguenti regole:
 - Posizionarli in corrispondenza di punti il più possibile vicino in termini di quota alla superficie del corso d'acqua;
 - Posizionarli a coppie parallele tra le sponde;
 - Posizionarne un numero maggiore laddove si presentano cambi di pendenza repentini;
 - Posizionarne un numero minore dove la pendenza risulta costante per lunghi tratti.
- 3. Associare allo shapefile puntuale creato al punto 2. le coordinate planimetriche x e y ad ogni punto del bordo acqua.
- 4. Associare allo shapefile puntuale creato al punto 2. la quota, utilizzando come base il DTM.
- 5. Interpolare linearmente tramite il metodo Kriging i punti del bordo d'acqua, utilizzando come maschera quella creata al punto 1. e imputando nel file raster di export le stesse dimensioni delle celle del DTM.
- 6. Creare un nuovo raster dato dalla sottrazione dell'interpolazione Kriging e del DTM; così facendo si ottiene un raster con valori positivi (rappresentanti la profondità dell'acqua in quel determinato punto) dove c'è corrente e valori negativi dove non scorre acqua e quindi si hanno le sponde o massi emergenti. Anche in questo caso si consiglia di imputare le stesse dimensioni delle celle del DTM, in modo da avere una corretta sovrapposizione tra i raster.
- 7. Estrarre solo i punti in cui il valore è positivo, quindi c'è corrente e scorre acqua, dal raster creato al punto 6. Così facendo si ottiene la un raster rappresentante la superficie da correggere.
- 8. Campionare questa superficie, creando uno shapefile puntuale; convertire quindi il file raster in punti a cui associare, oltre alle

coordinate planimetriche x e y, anche le quote batimetriche dal DTM (sfm_z) e la quota della superficie dell'acqua (pelo libero) dal raster al punto 5.

9. Esportare la tabella degli attributi dello shaoefile puntuale al punto precedente in file .csv delimitato da virgole.

In [Figura 5.2] viene riportato in forma grafica quanto descritto precedentemente.

Figura 5.2 Workflow seguito per la correzione del DTM.

5.3 Raccolta dati e analisi preliminare

Come già anticipato al capitolo 5.1.2 <u>Prerequisiti necessari all'applicazione</u>, oltre ai GCP, sono stati rilevati, tramite GPS-GNSS, i punti di convalida in acqua, a varie profondità, necessari per il controllo e per le statistiche degli errori sulla batimetria, ma anche un adeguato numero di punti sul bordo d'acqua per studiare la superficie del pelo libero.

Nello specifico sono stati rilevati 350 punti in acqua con denominazione "A", che sta per Acqua, seguiti da un numero progressivo, e 115 punti di bordo acqua con denominazione "B", che sta per Bordo, seguiti da un numero progressivo [Tabella 5.2]. Nella [Tabella 5.3] un estratto dei punti rilevati.

Descrizione	Denominazione	nº di punti
Punti A cqua	A+ num. progressivo	350
Punti B ordo Acqua	B + num. progressivo	115

Tabella
Tabella

Label	x [m]	y [m]	Quota geoidica [m]	Label	x [m]	y [m]	Quota geoidica [m]
A00002	4979405.06	338403.42	1818.40	B00003	4979405.21	338403.19	1818.39
A00005	4979405.13	338403.28	1818.38	B01001	4978016.26	338710.29	1919.35
A01003	4978017.23	338713.73	1918.54	B01002	4978017.01	338712.60	1918.85
A01004	4978017.63	338714.60	1918.53	B01007	4978017.98	338717.36	1918.93
A01005	4978017.93	338715.17	1918.53	B01008	4978020.25	338721.36	1919.38
A01006	4978017.81	338715.96	1918.59	B01009	4978025.53	338716.33	1918.92
A01011	4978024.67	338713.61	1917.97	B01010	4978025.18	338714.52	1918.62
A01012	4978024.45	338712.82	1917.79	B01016	4978023.53	338709.62	1918.38
A01013	4978024.41	338712.22	1917.64	B01017	4978062.33	338700.20	1916.24
A01014	4978024.11	338711.39	1917.81	B01018	4978062.95	338701.52	1915.70

Tabella 5.3 Coordinate nel nel S.R. WGS 84 / UTM zone 32N (EPSG:32632) e quota geoidica.

Al fine di studiare al meglio i dati ottenuti, questi sono stati suddivisi in quattro blocchi, denominati con A, B, C e D, e sono state studiate 5 sezioni per ogni blocco, 20 in totale, visualizzabili in [Figura 5.3].

Per ogni punto della sezione, sono note le coordinate planimetriche x e y nel S.R. WGS 84 / UTM zone 32N, le quote ortometriche misurate tramite GNSS (Z da GPS) e le quote ortometriche dai dati elaborati con tecniche SfM (Z da SfM). È stata poi calcolata la differenza tra le misurazioni Z da GPS – Z da SfM.

Questi dati sono riportati nelle [Tabelle 5.4-7-10-13] rispettivamente per i blocchi A, B, C e D.

È stata riportata anche una tabella riassuntiva riguardo all'errore massimo e minimo dei dati per ogni sezione [Tabelle 5.5-8-11-14] rispettivamente per i blocchi A, B, C e D.

Sono stati inoltre creati dei profili di sezione sulla base dei dati sopracitati, ponendo in ascissa la coordinata planimetrica x e in ordinata la quota ortometrica, rappresentando le due serie di dati misurati "da GPS" e "da SfM"; come previsto i dati da SfM sottostimano la profondità dell'acqua a causa della rifrazione.

Questi profili sono stati messi a paragone con i profili ottenuti dall'analisi della nuvola di punti, estratti da Metashape dal comando *Measure Shape*, ottenendo risultati abbastanza coerenti.

Questi profili sono riportati nelle [Tabelle 5.6-9-12-15] rispettivamente per i blocchi A, B, C e D.

In [Figura 5.3] la rappresentazione spaziale dei punti rilevati, la suddivisione in blocchi e la numerazione delle sezioni studiate.

Figura 5.3 Rappresentazione della distribuzione spaziale dei punti rilevati e delle sezioni.

	Descrizione	Label	Y	Х	Z da GPS	Z da SfM	Z_GPS-Z_SfM
	Sez_A1	B01420	4981941.18	336848.78	1665.18	1665.19	0.012448
	Sez_A1	A01421	4981940.50	336847.77	1665.00	1665.04	0.036862
	Sez_A1	A01422	4981940.38	336847.07	1664.99	1665.01	0.014181
	Sez_A1	A01423	4981940.24	336846.45	1664.89	1664.94	0.050472
	Sez_A1	A01424	4981940.05	336845.56	1664.83	1665.03	0.203965
	Sez_A1	A01425	4981939.94	336845.12	1664.88	1665.00	0.118663
	Sez_A1	B01426	4981939.63	336844.43	1665.39	1665.35	-0.039917
	Sez_A2	B01419	4981834.45	336980.97	1670.59	1670.56	-0.026368
	Sez_A2	A01418	4981835.13	336981.59	1670.35	1670.36	0.007627
	Sez_A2	A01417	4981835.66	336981.93	1670.36	1670.38	0.016713
	Sez_A2	A01416	4981836.34	336982.21	1670.34	1670.36	0.020848
	Sez_A2	B01415	4981837.31	336982.63	1670.40	1670.39	-0.012983
	Sez_A2	A01414	4981837.54	336983.51	1670.23	1670.29	0.052070
	Sez_A2	A01413	4981838.32	336984.43	1670.18	1670.24	0.059727
	Sez_A2	A01412	4981839.09	336985.51	1670.11	1670.19	0.077748
	Sez_A2	A01411	4981839.70	336986.37	1670.14	1670.21	0.068338
	Sez_A2	A01410	4981840.30	336987.58	1670.15	1670.22	0.062274
	Sez_A2	A01409	4981840.88	336988.59	1670.14	1670.18	0.036466
	Sez_A2	B01408	4981841.09	336989.78	1670.24	1670.24	-0.002005
	Sez_A3	B01407	4981566.51	337048.71	1680.62	1680.66	0.039984
	Sez_A3	A01406	4981566.81	337049.73	1680.26	1680.26	0.004305
	Sez_A3	A01405	4981567.41	337050.18	1679.89	1680.12	0.230790
	Sez_A3	A01404	4981568.45	337050.95	1680.30	1680.32	0.024217
	Sez_A3	A01403	4981569.41	337051.78	1680.18	1680.27	0.083630
	Sez_A3	A01402	4981569.93	337052.66	1680.04	1680.17	0.130448
	Sez_A3	A01401	4981570.35	337053.47	1680.00	1680.12	0.120932
Α	Sez_A3	A01400	4981570.97	337054.48	1680.12	1680.23	0.105302
	Sez_A3	A01399	4981571.35	337055.40	1680.16	1680.23	
	Sez_AS	A01396	4981371.71	227057 42	1690.24	1680.28	0.039379
	Sez_A3	R01397	4981571.87	337057.42	1680.30	1680.32	0.022520
	Sez_A	B01395	4981313.56	337142.88	1693.23	1693.24	0.013273
	Sez A4	A01394	4981314.20	337143.81	1693.00	1693.04	0.040305
	Sez A4	A01393	4981314.81	337144.62	1692.85	1692.96	0.109032
	Sez A4	A01392	4981315.27	337145.36	1692.88	1692.93	0.056774
	Sez A4	A01391	4981316.13	337145.98	1692.79	1692.91	0.117033
	Sez A4	A01389	4981316.49	337146.99	1692.94	1693.05	0.103634
	Sez_A4	A01390	4981316.46	337146.99	1692.97	1693.05	0.085887
	Sez_A4	B01388	4981316.60	337149.59	1693.61	1693.69	0.080281
	Sez_A4	B01387	4981316.71	337151.23	1693.60	1693.67	0.071871
	Sez_A4	A01386	4981317.28	337152.63	1693.44	1693.52	0.083262
	Sez_A4	A01385	4981317.75	337153.20	1693.36	1693.47	0.109685
	Sez_A4	A01384	4981317.98	337153.97	1693.31	1693.43	0.120244
	Sez_A4	A01383	4981318.31	337154.48	1693.45	1693.51	0.060564
	Sez_A4	A01382	4981318.73	337155.28	1693.37	1693.48	0.113468
	Sez_A4	A01381	4981318.97	337155.67	1693.39	1693.50	0.111261
	Sez_A4	B01380	4981319.47	337156.52	1693.99	1694.02	0.028626
	Sez_A5	B01372	4981101.05	337200.67	1705.47	1705.52	0.049997
	Sez_A5	A01373	4981101.87	337201.43	1705.05	1705.24	0.191318
	Sez_A5	A01374	4981102.32	33/202.25	1/04.91	1/05.08	0.165916
	Sez_A5	A01375	4981102.83	33/202.66	1705.02	1705.15	0.405116
	Sez_AS	A01370	4301103.30	227202.00	1705.02	1705.11	
	Sez_AS	R01378	4981104 99	337203.00	1705.00	1705.15	0.152287

Tabella 5.4 Punti e sezioni studiate per il Blocco A.

	Descrizione	Errore Minimo [cm]	Errore Massimo [cm]
	Sezione A_1	1.24	20.40
•	Sezione A_2	0.76	7.77
A	Sezione A_3	0.43	23.08
	Sezione A_4	4.03	12.02
	Sezione A_5	9.58	40.51

Tabella 5.5 Blocco A - Tabella riassuntiva dell'errore massimo e minimo ottenuto.

Tabella 5.6 Blocco A - A sinistra, i profili delle sezioni da dati GPS e SfM. A destra, il profilo da nuvola di punti densa.

SEZIONE A CONFRONTO TRA DATI GPS e SfM

SEZIONE DA NUVOLA DI PUNTI

	Descrizione	Label	Ŷ	X	Z da GPS	Z da SfM	Z_GPS-Z_SfM
	Sez_B1	B01369	4980928.77	337371.71	1715.18	1715.23	0.053502
	Sez_B1	A01368	4980929.96	337372.55	1714.96	1715.06	0.104052
	Sez_B1	A01367	4980930.89	337372.98	1714.91	1715.00	0.086106
	Sez_B1	A01366	4980931.92	337373.37	1714.98	1715.01	0.037529
	Sez_B1	A01365	4980933.27	337373.71	1714.74	1714.94	0.202866
	Sez_B1	A01364	4980934.07	337374.44	1714.80	1714.93	0.128742
	Sez_B1	A01363	4980935.30	337375.42	1714.84	1714.92	0.080390
	Sez_B1	A01362	4980936.28	337376.11	1714.89	1715.00	0.105207
	Sez_B1	B01361	4980937.14	337376.70	1715.00	1715.03	0.031014
	Sez_B2	B01341	4980591.81	337640.20	1733.92	1733.94	0.024242
	Sez_B2	A01340	4980591.69	337641.93	1733.63	1733.76	0.135570
	Sez_B2	A01339	4980592.86	337642.18	1733.62	1733.72	0.100477
	Sez_B2	A01338	4980592.83	337643.05	1733.57	1733.66	0.098163
	Sez_B2	A01337	4980593.70	337643.91	1733.55	1733.62	0.071475
	Sez_B2	A01336	4980594.59	337644.86	1733.69	1733.71	0.017668
	Sez_B2	A01335	4980595.25	337645.83	1733.68	1733.73	0.048662
	Sez_B2	A01334	4980595.71	337646.49	1733.71	1733.77	0.060092
	Sez_B2	B01333	4980596.46	337647.20	1733.94	1733.88	-0.056402
	Sez_B3	B01324	4980575.52	337657.48	1734.50	1734.52	0.014233
	Sez_B3	A01325	4980576.03	337658.48	1734.24	1734.30	0.060706
R	Sez_B3	A01326	4980576.41	337659.18	1734.29	1734.31	0.021351
D	Sez_B3	A01327	4980576.63	337659.66	1734.08	1734.23	0.147428
	Sez_B3	A01328	4980577.01	337660.10	1734.12	1734.26	0.139377
	Sez_B3	A01329	4980577.37	337660.70	1734.16	1734.33	0.167951
	Sez_B3	A01330	4980577.78	337661.38	1734.23	1734.37	0.137667
	Sez_B3	A01331	4980578.12	337662.03	1734.35	1734.43	0.084840
	Sez_B3	B01332	4980578.57	337662.60	1734.60	1734.62	0.016378
	Sez_B4	B01312	4980163.28	337842.48	1762.40	1762.39	-0.010071
	Sez_B4	A01311	4980164.27	337843.01	1762.09	1762.21	0.125386
	Sez_B4	A01310	4980164.58	337843.96	1761.92	1762.03	0.106896
	Sez_B4	A01307	4980164.90	337844.90	1761.55	1761.84	0.286966
	Sez_B4	A01309	4980165.24	337845.73	1761.91	1762.03	0.119056
	Sez_B4	A01308	4980166.06	337846.62	1762.04	1762.12	0.079450
	Sez_B4	B01307	4980166.62	337847.47	1762.23	1762.27	0.038253
	Sez_B5	B01305	4980152.82	337848.32	1762.96	1762.97	0.009761
	Sez_B5	A01304	4980153.40	337849.26	1762.63	1762.72	0.084083
	Sez_B5	A01303	4980153.78	337849.77	1762.72	1762.73	0.016864
	Sez_B5	A01302	4980154.05	337850.08	1762.50	1762.62	0.128862
	Sez_B5	A01301	4980154.46	337850.65	1762.50	1762.63	0.128359
	Sez_B5	A01300	4980154.80	337851.03	1762.74	1762.79	0.043005
	Sez_B5	A01299	4980155.77	337852.15	1762.80	1762.86	0.052923
	Sez_B5	B01298	4980157.26	337854.21	1763.10	1763.10	0.001547

Tabella 5.7 Punti e sezioni studiate per il Blocco B.

В	Descrizione	Errore Minimo [cm]	Errore Massimo [cm]		
	Sezione B_1	3.75	20.29		
	Sezione B_2	1.77	13.56		
	Sezione B_3	2.14	16.80		
	Sezione B_4	7.94	28.70		
	Sezione B_5	1.69	12.89		

Tabella 5.8 Blocco B - Tabella riassuntiva dell'errore massimo e minimo ottenuto.

Tabella 5.9 Blocco B - A sinistra, i profili delle sezioni da dati GPS e SfM. A destra, il profilo da nuvola di punti densa.

	Descrizione	Label	Y	X	Z da GPS	Z da SfM	Z_GPS-Z_SfM
	Sez_C1	B01296	4979989.48	337866.28	1771.14	1771.16	0.011181
	Sez_C1	A01295	4979989.63	337867.15	1770.94	1771.00	0.052855
	Sez_C1	A01294	4979990.05	337868.13	1770.78	1770.89	0.112335
	Sez_C1	A01293	4979990.63	337869.38	1770.71	1770.95	0.234939
	Sez_C1	A01292	4979991.08	337870.24	1770.83	1770.92	0.084619
	Sez_C1	A01291	4979991.45	337871.35	1770.77	1770.94	0.167302
	Sez_C1	A01290	4979991.55	337872.74	1770.50	1770.74	0.240104
	Sez_C1	A01289	4979991.85	337874.28	1770.86	1770.95	0.088333
	Sez_C1	B01288	4979991.67	337875.37	1771.06	1771.08	0.022768
	Sez_C2	B01249	4979443.60	338354.14	1813.62	1813.64	0.017172
	Sez_C2	A01250	4979445.01	338354.97	1813.34	1813.41	0.066152
	Sez_C2	A01251	4979446.11	338355.84	1813.29	1813.35	0.062826
	Sez_C2	A01252	4979447.01	338356.44	1813.13	1813.25	0.116182
	Sez_C2	A01253	4979447.90	338356.86	1813.11	1813.26	0.153872
	Sez_C2	A01254	4979449.03	338357.66	1813.24	1813.33	0.089522
	Sez_C2	B01255	4979449.56	338358.24	1813.45	1813.48	0.036526
	Sez_C3	B01235	4979412.32	338371.53	1814.73	1814.73	-0.003883
С	Sez_C3	A01236	4979413.03	338372.75	1814.61	1814.64	0.030707
	Sez_C3	A01237	4979413.77	338373.90	1814.36	1814.56	0.206659
	Sez_C3	A01238	4979414.33	338375.15	1814.35	1814.49	0.143260
	Sez_C3	A01239	4979415.13	338376.17	1814.48	1814.56	0.074385
	Sez_C3	A01240	4979415.86	338377.45	1814.60	1814.65	0.050478
	Sez_C3	B01241	4979417.59	338378.96	1814.67	1814.70	0.031550
	Sez_C4	B01223	4979076.72	338508.99	1832.64	1832.74	0.092188
	Sez_C4	A01224	4979076.22	338510.03	1832.44	1832.62	0.180615
	Sez_C4	A01225	4979076.17	338510.95	1832.36	1832.63	0.268273
	Sez_C4	A01226	4979076.32	338511.91	1832.42	1832.62	0.201236
	Sez_C4	A01227	4979077.02	338512.76	1832.39	1832.63	0.236312
	Sez_C4	B01228	4979077.90	338513.54	1832.81	1832.87	0.058403
	Sez_C5	A01202	4979027.96	338505.85	1835.90	1836.37	0.465562
	Sez_C5	A01201	4979028.38	338506.94	1835.84	1836.08	0.243003
	Sez_C5	A01200	4979028.80	338507.79	1835.88	1836.08	0.205705
	Sez_C5	A01199	4979029.23	338508.73	1836.20	1836.31	0.105617
	Sez_C5	A01198	4979030.01	338509.71	1836.23	1836.35	0.119688
	Sez_C5	A01197	4979030.68	338511.29	1836.03	1836.21	0.178445

Tabella 5.10 Punti e sezioni studiate per il Blocco C.

С	Descrizione	Errore Minimo [cm]	Errore Massimo [cm]		
	Sezione C_1	8.83	24.01		
	Sezione C_2	1.72	15.39		
	Sezione C_3	3.07	20.67		
	Sezione C_4	18.06	26.28		
	Sezione C_5	10.56	24.30		

Tabella 5.11 Blocco C - Tabella riassuntiva dell'errore massimo e minimo ottenuto.

Tabella 5.12 Blocco C - A sinistra, i profili delle sezioni da dati GPS e SfM. A destra, il profilo da nuvola di punti densa.

SEZIONE A CONFRONTO TRA DATI GPS e SfM

SEZIONE DA NUVOLA DI PUNTI

	Descrizione	Label	Y	X	Z da GPS	Z da SfM	Z_GPS-Z_SfM
	Sez_D1	B01181	4978708.50	338588.76	1865.84	1865.81	-0.026419
	Sez_D1	A01182	4978708.88	338589.75	1865.46	1865.55	0.085082
	Sez_D1	A01183	4978709.78	338591.61	1865.38	1865.75	0.363264
	Sez_D1	B01184	4978710.03	338592.18	1865.95	1866.01	0.066683
	Sez_D1	A01185	4978710.49	338592.48	1865.50	1865.64	0.137229
	Sez_D1	A01186	4978711.32	338593.29	1865.47	1865.64	0.173147
	Sez_D2	B01159	4978624.72	338600.58	1878.57	1878.56	-0.010628
	Sez_D2	B01158	4978623.16	338601.92	1878.78	1878.81	0.034544
	Sez_D2	A01157	4978622.07	338603.32	1878.57	1878.69	0.117635
	Sez_D2	A01156	4978621.43	338603.81	1878.55	1878.63	0.075594
	Sez_D2	A01155	4978620.54	338604.52	1878.59	1878.65	0.054186
	Sez_D2	A01154	4978619.64	338605.02	1878.54	1878.64	0.105686
	Sez_D2	B01153	4978618.69	338605.36	1878.79	1878.84	0.046944
	Sez_D2	B01152	4978618.25	338606.00	1879.20	1879.24	0.031888
	Sez_D3	A01075	4978250.64	338640.50	1904.83	1904.86	0.024408
	Sez_D3	A01074	4978251.12	338641.28	1904.85	1904.88	0.031078
	Sez_D3 A01073		4978251.62	338642.18	1904.86	1904.89	0.027871
D	Sez_D3	A01072	4978252.01	338642.86	1904.80	1904.86	0.058189
	Sez_D3	B01071	4978252.41	338643.68	1904.96	1904.95	-0.018287
	Sez_D3	B01070	4978253.03	338644.80	1905.08	1905.07	-0.003853
	Sez_D4	B01017	4978062.33	338700.20	1916.24	1916.24	0.000796
	Sez_D4	B01018	4978062.95	338701.52	1915.69	1915.73	0.032322
	Sez_D4	A01019	4978063.23	338702.48	1915.16	1915.30	0.134368
	Sez_D4	A01020	4978063.50	338703.24	1915.09	1915.23	0.137090
	Sez_D4	A01021	4978063.82	338703.74	1915.20	1915.27	0.072152
	Sez_D4	A01022	4978064.14	338704.42	1915.26	1915.32	0.064527
	Sez_D4	B01023	4978064.70	338705.75	1915.60	1915.60	-0.000542
	Sez_D5	B01016	4978023.53	338709.62	1918.38	1918.36	-0.014271
	Sez_D5	A01015	4978023.96	338710.85	1918.03	1918.10	0.073661
	Sez_D5	A01014	4978024.11	338711.39	1917.81	1917.98	0.169647
	Sez_D5	A01013	4978024.41	338712.22	1917.64	1917.86	0.217979
	Sez_D5	A01012	4978024.45	338712.82	1917.79	1918.01	0.224219
	Sez_D5	A01011	4978024.67	338713.61	1917.97	1918.09	0.118835
	Sez_D5	B01010	4978025.18	338714.52	1918.62	1918.63	0.014144
	Sez_D5	B01009	4978025.53	338716.33	1918.92	1918.96	0.044337

Tabella 5.13 Punti e sezioni studiate per il Blocco D.

	Descrizione	Errore Minimo [cm]	Errore Massimo [cm]
	Sezione D_1	8.51	36.33
D	Sezione D_2	5.42	11.76
U	Sezione D_3	2.44	5.82
	Sezione D_4	6.45	13.71
ľ	Sezione D_5	7.37	22.42

Tabella 5.14 Blocco D - Tabella riassuntiva dell'errore massimo e minimo ottenuto.

Tabella 5.15 Blocco D - A sinistra, i profili delle sezioni da dati GPS e SfM. A destra, il profilo da nuvola di punti densa.

5.4 Applicazione del metodo

L'obiettivo di questo sotto capitolo è la descrizione in maniera dettagliata di ogni passaggio effettuato per l'applicazione del metodo di correzione del DTM tramite l'*algoritmo python py_sfm_depth,* per un tratto di fiume lungo 220 metri, la cui quota ellissoidica varia tra i 1792 e i 1805 metri.

Il motivo principale per cui è stato scelto di analizzare questo tratto di fiume è l'elevata raccolta di punti acqua sparsi lungo l'alveo rilevati con GPS-GNSS, ma anche dell'acquisizione tre sezioni trasversali (R1, R2 e R3), per un totale di 66 punti, rappresentati in verde in [Figura 5.4]. In questo modo sarà possibile sia ricostruire i profili delle sezioni che fare una stima degli errori tramite una analisi statistica, utilizzando differenti indici statistici.

Figura 5.4 Tratto di fiume in cui verrà applicato l'algoritmo.

In [Figura 5.5] il workflow seguito per l'applicazione e la numerazione dei passaggi:

Figura 5.5 Workflow seguito per l'applicazione dell'algoritmo.

Si puntualizza che i comandi descritti in seguito saranno quelli del software ArcMap versione 10.8 di AgiSoft. Analoghi comandi potranno essere utilizzati per altri software come ArcGis Pro di Agisoft o QGis.

1. Creazione dello shapefile Maschera

Creazione di uno shapefile poligonale di maschera [Figura 5.7] retino rigato in verde, tramite il comando *Create New Shapefile* [Figura 5.6], che comprende tutta la zona interessata, in particolare l'area bagnata e la zona laterale. Tale shapefile, con un'area di 2778,95 m² e un perimetro di 502,15 m, ha la funzione di maschera per i passaggi successivi.

[
Create New Shapefile			×					
Name:	Mask							
Feature Type:	Polygon		~					
Spatial Reference								
Description:								
Projected Coordinate Name: WGS_1984	System: _UTM_Zo	ne_32N	^					
Geographic Coordina	ate System	c						
Name. dc3_wd3	_1304							
			~					
<			>					
Show Details			Edit					
Coordinates will c	ontain M v	alues. Used to store	e route data.					
Coordinates will c	Coordinates will contain Z values. Used to store 3D data.							
		011						
		OK	Cancel					
FID Id Sha	pe *	Area	Perimetro					
0 0 Polygo	on ZM	2778,9527	502,1458					

Figura 5.6 Interfaccia del comando Create New Shapefile e attribute table di "Mask".

Figura 5.7 Rappresentazione grafica di "Mask" e dei 66 punti acqua battuti con GPS.

2. Creazione dello shapefile punti bordo acqua

Creazione di uno shapefile puntuale, *Create New Shapefile* [Figura 5.6], contenente i punti del bordo acqua, secondo le regole descritte al punto 2 del sottocapitolo 4.2.2 Workflow.

Create New Shapefi	le	×					
Name:	point_1						
Feature Type:	Point	~					
Spatial Reference Description:							
Projected Coordinate System: Name: WGS_1984_UTM_Zone_32N Geographic Coordinate System: Name: GCS_WGS_1984							
<		>					
Coordinates will contain M values. Used to store route data.							
	ОК	Cancel					

Figura 5.8 Interfaccia del comando Create New Shapefile.

Sono stati creati 119 punti acqua in giallo in [Figura 5.9], necessari per l'interpolazione Kriging, e quindi per la creazione della superficie del pelo libero.

Figura 5.9 Rappresentazione grafica dei punti bordo acqua "Point_1".

Ad ogni punto occorre assegnare le coordinate planimetrche x e y, tramite il comando *Data Management Tool>Add xy Coordinate* [Figura 5.10].

Add XY Coordinates	_		×
Input Features		•	▲
	OK Cancel Environments	Show He	elp >>

Figura 5.10 Interfaccia del comando Add XY Coordinates.

Da Attribute Table in [Figura 5.11], è possibile vedere il risultato del comando, in cui ad ogni punto sono state assegnate le coordinate x e y nel S.R. WGS 84 / UTM zone 32N (EPSG:32632), come campi POINT_X e POINT_Y.

Tab	le							□ ×	
°	- 1	a - I 🔓 (N D	- ∰ ×					
point_1									
	FID	Shape	ld	POINT X	POINT Y	POINT Z	POINT M	~	
	0	Point ZM	0	338154,788871	4979773,26784	0	<null></null>		
	1	Point ZM	0	338159,511693	4979775,68878	0	<null></null>		
	2	Point ZM	0	338160,173153	4979774,92149	0	<null></null>		
	3	Point ZM	0	338155,595852	4979772,48732	0	<null></null>		
	4	Point ZM	0	338158,400441	4979770,2119	0	<null></null>		
	5	Point ZM	0	338160,980133	4979772,26242	0	<null></null>		
	6	Point ZM	0	338159,220651	4979768,12169	0	<null></null>		
	7	Point ZM	0	338163,16295	4979769,14033	0	<nul></nul>		
	8	Point ZM	0	338165,001808	4979768,02908	0	<null></null>	×	
н	•	1	+) (0	out of 119 Selecte	d)			
ро	int_1								

Figura 5.11 Attribute table dello shp puntuale "Point_1".

Oltre ad assegnare le coordinate planimetrche, è necessario assegnarea anche la coordinata altimetrica sulla base del modello digitale del terreno DTM, utilizzando il comando *Spatial Analyst Tool>Extract Values to Points* [Figura 5.12], che estrae i valori delle celle di un raster sulla base di feature puntuali e registra tali valori nella tabella degli attributi di una feature class di output, POINT_Z in questo caso.

🔨 Extract Values to Points	_		×
Input point features			^
point_1		-	2
Input raster			
DTM_5cm_3di4.tif		•	2
Output point features			
C:\Users\ale\OneDrive\Desktop\pt_sfm_cap5\3\SHP\point_2.shp			2
✓ Interpolate values at the point locations (optional)			
Append all the input raster attributes to the output point features (optional)			
			Ť
OK Cancel Environments		Show H	lelp >>

Figura 5.12 Interfaccia del comando Extract Values to Points.

Viene creato un nuovo Shapefile puntuale [Figura 5.13], nominato "Point_2" con le stesse caratteristiche di "Point_1", in cui è stato integrato anche il dato altimetrico (POINT_Z), visibile dall' Attribute Table [Figura 5.12].

	Tab	le							□ ×	
🖽 🕶 🖶 🏪 🌄 🖾 🐢 🗙										
point_2										
		FID	Shape *	ld	POINT X	POINT Y	POINT Z	POINT M	~	
	•	0	Point ZM	0	338154,788871	4979773,26784	1793,38000	<nul></nul>		
		1	Point ZM	0	338159,511693	4979775,68878	1793,16003	<null></null>		
		2	Point ZM	0	338160,173153	4979774,92149	1793,20996	<null></null>		
		3	Point ZM	0	338155,595852	4979772,48732	1793,21997	<nul></nul>		
		4	Point ZM	0	338158,400441	4979770,2119	1793,35998	<null></null>		
		5	Point ZM	0	338160,980133	4979772,26242	1793,35998	<null></null>		
		6	Point ZM	0	338159,220651	4979768,12169	1793,56005	<nul></nul>		
		7	Point ZM	0	338163,16295	4979769,14033	1793,57995	<nul></nul>		
		8	Point ZM	0	338165,001808	4979768,02908	1793,68994	<null></null>	~	
	н	•	1	F FI	(0 or	ut of 119 Selected	I)			
l	po	int_2	ļ							

Figura 5.13 Attribute table dello shp puntuale "Point_2".

In [Figura5.14] viene mostrata la visualizzazione 3D, dal software Arcscene versione 10.8 di ArcSoft.

Figura 5.14 Visualizzazione 3D dell'ortofoto e dei punti bordo acqua.

3. Interpolazione Kriging – Superficie pelo libero

Questo passaggio consiste nell'interpolare linearmente tramite il metodo Kriging, comando Spatial Analyst>*Interpolation>Kriginig* [Figura 5.15], i punti del bordo d'acqua "Point_2", utilizzando come maschera quella creata al punto 1., shapefile "Mask" e imputando nel file raster di export le stesse dimensioni delle celle del DTM, tramite *Environment Settings* [Figura 5.16].

Figura 5.15 Interfaccia comando Interpolation Kriging.

		×	
Input point reatures	1	\sim	
point_2			
Z value field			
POINT_2	~		
Dugut surrace raster	<u></u>		
p. lose s lateOneonive peskuop pr_sini_caps (s kaster lyoiging, un			
Senivanogram properties			
Kriging method: Ordinary Universal			
Semivariogram model: Spherical V			
Advanced Parameters			
Output cell size (optional)			
F:\Risultati\DTM\DTM_5cm\DTM_5cm_3di4.tif	2		
Search radius (optional)			
Variable 🗸			
Search Radius Settings			
12			
ivumber or points:			
Maximum distance:			
Output variance of prediction raster (optional)		~	
OK Cancel Environments Show	v Help	🛠 Envir	onment Settings
	-	¥ Work	snace
	- •	Y o I	
		Outpu	it coordinates
		* Proce	ssing Extent
	- 1	Extent	
	- 1	Same	as layer Mask
	- 1		Top 4979777 521204
	- 1		Left Right
	- 1		338152,782333 338261,914357
	- 1		Bottom
	- 1		4979571,408611
	- 1	Snap R	aster
	- 1	DTM	5cm_3di4.tif 📃 🖻
		× XY Re	solution and Tolerance
		× м Val	ues
		× z Val	Jes
		× Geod	atabase
		× Geod	atabase Advanced
		× Field	5
		× Rand	om Numbers
		× Carto	graphy
		× Cove	rage
		* Raste	r Analysis
		Cell Siz	e and hung DTM. Even Odd Hif
		same	
			0,049999999993
		Cell Siz	e Projection Method ERT UNITS
		Mask	
		Mask	-
			OK Cancel Show Help >

Figura 5.16 Interfaccia Environment Settings.

È stata quindi ottenuta la superficie rappresentante il pelo libero dell'acqua, necessaria per l'applicazione dell'algoritmo di correzione dell'alveo.

Vengono mostrate nelle immagini successive sia la rappresentazione 3D in [Figura 5.17] che 2D in [Figura 5.18], rispettivamente tramite i software ArcScene e Arcmap del risultato dell'interpolazione.

Figura 5.17 Visualizzazione 3D dei punti bordo acqua e del pelo libero rappresentato dalla superficie interpolata col metodo Kriging, rappresentata in colorazioni dal rosso al verde.

Figura 5.18 Rappresentazione grafica della superficie Kriging.

4. Sottrazione tra raster Kriging e DTM

L'obiettivo di questo passaggio è quello di creare un nuovo file raster che riporti in cella il valore dato dalla sottrazione tra la quota dell'interpolazione Kriging (cioè della superficie del pelo libero) e quella del DTM.

In tal modo si ottiene un raster che riporti valori positivi (rappresentanti la profondità dell'acqua) nei punti in cui c'è corrente e valori negativi in quelli in cui non scorre acqua e quindi si hanno sponde o massi emergenti.

Il comando utilizzato è *Spatial Analyst Tool>Raster Calculator* [Figura 5.19]. Anche in questo caso vengono settate le stesse dimensioni delle celle del DTM, tramite *Environment Settings*.

🔨 Raster Calculator				- 🗆	×				
Map Algebra expression					~				
♦ Kriging.tif ♦ DTM_5cm_3di4.tif	~	7 8 9 4 5 6 1 2 3 0 .	/ == != & * > >= - <	Conditional — Con Pick SetNull Math — Abs Exp Evp 10	*				
* > 0 . + () ~ Even 10 "Kriging.tif"-"DTM_5cm_3di4.tif" . <									

Figura 5.19 Interfaccia comando Raster Calculation.

Il risultato di tale sottrazione in ha dato valori compresi tra un minimo di – 3,27 m e un massimo di +2,05 m. Si deduce quindi che la profondità massima in questo tratto di fiume è di circa 2 metri, valore plausibile in quanto nella parte più a monte è presente una briglia.

Viene mostrato il risultato sia nella rappresentazione 3D in [Figura 5.20] che 2D in [Figura 5.21].

Figura 5.20 Visualizzazione 3D del raster ottenuto tramite il comando Raster Calculator.

Figura 5.21 Rappresentazione grafica della superficie ottenuta dalla sottrazione tra l'interpolazione Kriging e il DTM. In blu le zone più profonde dell'alveo; in verde le sponde.

5. Estrazione dei valori positivi – Superficie dell'alveo sommerso

In questa fase viene creata la superficie rappresentate l'alveo sommerso, quindi quella superficie da correggere tramite l'algoritmo. Per tale fine è necessario estrarre solo quelle celle in cui il valore, dato dalla sottrazione tra la quota dell'interpolazione Kriging (cioè della superficie del pelo libero) e quella del DTM, è positivo.

Il comando utilizzato è Spatial Analyst Tool>Extract by Attributes [Figura 5.22].

N Extract by Attributes	_		>	<
Input raster				~
Kriging_DTM.tif		-	6	
Where dause				
"VALUE" > 0			SQL	
Output raster				
C:\Users\ale\OneDrive\Desktop\pt_sfm_cap5\3\Raster\w_surf.tif			6	\sim
OK Cancel Environments		Show H	lelp >>	

Figura 5.22 Interfaccia grafica del comando Extract by Attributes.

I valori ottenuti sono compresi tra +0,001 e +2,05 metri rappresentanti le profondità dell'alveo; in [Figura 5.23] e [Figura 5.24] sono rappresentate in rosso scuro le profondità maggiori e in rosa quelle minori.

Figura 5.23 Rappresentazione 3D della superficie dell'alveo da correggere.

Figura 5.24 Rappresentazione grafica della superficie ottenuta tramite l'estrazione dei valori positivi, ossia della superficie dell'alveo da correggere tramite l'algoritmo.

6. Da raster a shp puntuale - Superficie dell'alveo sommerso

Una volta ottenuto il raster della superficie dell'alveo da correggere in formato *.tif, occorre convertirlo in uno shp puntuale, in cui il baricentro della cella viene associato ad un punto, che ha come attributo principale la profondità dell'alveo.

Questo passaggio viene svolto tramite il comando *Conversion>Raster to Point* [Figura 5.25].

Raster to Point —		×	<
Input raster w_sup .tif	•	6	\sim
Field (optional) Value		~	
Output point features		-	
C: /users /ale/UneDrive /Desktop /pt_smm_caps /s/phP /Point_s.snp			\sim
OK Cancel Environments	Show H	Help >>	

Figura 5.25 Interfaccia grafica del comando Raster to Point e Attribute Table dello shp Point_3.

Viene quindi creato uno shapefile nominato "Point_3", contenente 460.924 elementi, la cui tabella degli attributi è mostrata in [Figura 5.26].

Table				□ >
:⊒ - ₽	🗄 🕶 🍢 🖗	y 🖸 🖓 🖇	¢	
point_3				>
FID	Shape *	pointid	grid code	^
0	Point	1	0,116577	
1	Point	2	0,092407	
2	Point	3	0,080566	
3	Point	4	0,057861	
4	Point	5	0,048096	
5	Point	6	0,04895	
6	Point	7	0,039307	
7	Point	8	0,007446	
8	Point	9	0,135864	×
14 4	0	ь ы <u> </u>	🔲 (0 out of	460924 Selected)
point_3				

Figura 5.26 Attribute Table dello shp Point_3.

Il fine è di ottenere il *File Dense Cloud*, in cui ogni punto da correggere deve avere informazioni riguardo alle coordinate planimetriche x e y, le quote altimetriche dal DTM e la quota della superficie dell'acqua (pelo libero) ottenuta come visto in precedenza. Tramite il comando *Data Management Tool>Add xy Coordinate* vengono aggiunte le coordinate x e y nel S.R. WGS 84 / UTM zone 32N (EPSG:32632), come campi POINT_X e POINT_Y, come è visibile nella Attribute Table in [Figura 5.27].

Tab	le						
0	- E	b - 🏪 🍢	y 🖸 🖓	<			
роі	int_3						×
	FID	Shape *	pointid	grid code	POINT X	POINT Y	^
	0	Point	1	0,116577	338159,118953	4979775,69796	
	1	Point	2	0,092407	338159,168953	4979775,69796	
	2	Point	3	0,080566	338159,218953	4979775,69796	
Ц	3	Point	4	0,057861	338159,268953	4979775,69796	
	4	Point	5	0,048096	338159,318953	4979775,69796	
Ш	5	Point	6	0,04895	338159,368953	4979775,69796	
Ц	6	Point	7	0,039307	338159,418953	4979775,69796	
Ш	7	Point	8	0,007446	338159,468953	4979775,69796	
	8	Point	9	0,135864	338159,018953	4979775,64796	×
1	•	11	н н 📃	🔲 (0 out of	460924 Selected)		
pc	oint_3						

Figura 5.27 Attribute Table dello shp puntuale "Point_3".

Utilizzando in comando *Spatial Analyst Tool>Extract Values to Points*, in due passaggi, vengono assegnate le quote del DTM e della superficie del pelo libero in una cella nominata RASTERVALUE, rinominate rispettivamente in sfm_z e w_surf, come visibile nella tabella degli attributi in [Figura 5.28].

Ta	ble								□ ×
0	🗉 - 톱 - 🖫 🚱 🖸 💩 🗙								
рс	oint_4								×
	FID	Shape *	pointid	grid code	POINT X	POINT Y	w surf	sfm z	~
	45961	Point	1	0,116577	338159,118953	4979775,69796	1793,1666	1793,05	
	45961	Point	2	0,092407	338159,168953	4979775,69796	1793,1723	1793,08	
	45961	Point	3	0,080566	338159,218953	4979775,69796	1793,1705	1793,09	
	45962	Point	4	0,057861	338159,268953	4979775,69796	1793,1678	1793,11	
	45962	Point	5	0,048096	338159,318953	4979775,69796	1793,1680	1793,12	
	45962	Point	6	0,04895	338159,368953	4979775,69796	1793,1589	1793,11	
	45962	Point	7	0,039307	338159,418953	4979775,69796	1793,1593	1793,12	
	45962	Point	8	0,007446	338159,468953	4979775,69796	1793,1574	1793,15	~
1	• •	0	ь н 📃	(0 out of	460924 Selected)				
[p	oint_4								

Figura 5.28 Attribute Table dello shp puntuale "Point_4".

Il risultato viene mostrato in [Figura 5.29] con rappresentazione tridimensionale. Parti del fiume vengono successivamente ingrandite per comprendere meglio la disposizione spaziale dei punti che compongono l'alveo da correggere.

Figura 5.29 Visualizzazione 3D dello shapefile puntuale "Point_4".

7. Creazione del File Dense Cloud

Una volta creato il file con la nuvola di punti da correggere, contenente le coordinate e le quote per ogni punto, bisogna impostare il file.*csv delimitato da virgole* con la corretta intestazione della prima riga, passaggio fondamentale per la riuscita dell'algoritmo.

Si procede importando il file .dbf di "Point_4" in Excel, eliminando i campi superflui quali "FID", "Shape", "pointd", "grid_code", rinominando "POINT_X" in "x" e "POINT_Y" in "y" e convertendo il file in *.csv delimitato da virgole. Il risultato è visibile in [Figura 5.30].

point_4.dbf - Blocco note di Windows				_		×
File Modifica Formato Visualizza ?						
pointid;grid_code;POINT_X;POIN	IT_Y;w_surf;sfm_z					^
384573;0.00280762000;338246.61	.895300000;4979606.	. 397960	00000;1802.332	76;180	02.3300	
384574;0.00720215000;338246.66	895300000;4979606.	. 397960	00000;1802.327	15;180	02.3199	
384575;0.00866699000;338246.71	.895300000;4979606.	397960	00000;1802.338	62;186	02.3300	
384576;0.01330570000;338246.76	895300000;4979606.	397960	00000;1802.333	25;186	02.3199	
384577;0.02075200000;338246.81	.895300000;4979606.	397960	00000;1802.340	70;180	02.3199	
384578;0.02917480000;338246.86	895300000;4979606.	397960	00000;1802.339	23;180	02.3101	
384579;0.03100590000;338246.91	.895300000;4979606.	397960	00000;1802.341	06;180	02.3101	
384580;0.02575680000;338246.96	895300000;4979606.	397960	00000;1802.345	70;180	02.3199	
384581;0.02709960000;338247.01	.895300000;4979606.	397960	00000;1802.347	05;180	02.3199	~
<						>
	Linea 13, colonna 81	100%	Windows (CRLF)	UTF-8	3 con BOM	

File	Modifica	Formato	Visualizza	?					
x.v.	sfm z.w	surf							
33824	46.6189	5300000,	4979606.	3979600000	9,1802.	330000000	00,1802	.33276	
33824	46.6689	5300000	4979606.	3979600000	ð,1802.	320000000	00,1802	.32715	
33824	46.7189	5300000	4979606.	3979600000	9,1802.	330000000	00,1802	.33862	
33824	46.7689	5300000	4979606.	3979600000	9,1802.	320000000	00,1802	.33325	
33824	46.8189	5300000,	4979606.	3979600000	9,1802.	320000000	00,1802	.34070	
33824	46.8689	5300000,	4979606.	3979600000	9,1802.	310000000	00,1802	.33923	
33824	46.9189	5300000,	4979606.	3979600000	, 1802.	310000000	00,1802	.34106	
33824	46.9689	5300000,	4979606.	3979600000	,1802.	320000000	00,1802	.34570	
33824	47.0189	5300000,	4979606.	3979600000	9,1802.	320000000	00,1802	.34705	
<									

Figura 5.30 Settaggio del file .csv contenente la nuvola di punti da modificare.

8. Creazione del Cameras File

Il *Cameras File* è il file di export delle posizioni (*x,y,z*) nello stesso sistema di riferimento dei punti e degli orientamenti (*yaw, pitch, roll*) delle camere in cui lo 0° sia settato rispettivamente nadirale, orizzontale, verso il Nord.

Tramite il comando *Export Cameras* da Metashape si esporta un file contenente le seguenti informazioni:

- Nome della acquisizione;
- Coordinate della posizione esatta in cui è stata scattata l'immagine;
- Orientamento della camera nel momento in cui stata scattata l'immagine;
- Precisioni stimate.

Sulla base di queste informazioni è stato creato uno shapefile puntuale "All Cameras" contenente le informazioni necessarie per creare il Cameras File.

In [Figura 5.31] la visualizzazione grafica dello shp puntuale e la tabella degli attributi.

Figura 5.31 Rappresentazione grafica e Attribute Table dello shp "All Cameras".

La riga di intestazione di tale file deve necessariamente essere *x, y, z, pitch, roll,* yaw e i nomi delle acquisizioni possono essere inclusi ma non obbligatori.

Lo scopo principale di questo shapefile è quello di facilitare l'esportazione delle acquisizioni che riprendono la zona d'alveo da correggere tramite l'algoritmo. Una volta individuata in planimetria l'area basterà quindi selezionare le camere sovrastanti tramite il comando *Select by Rectangle*.

A questo punto è possibile esportare i dati solo delle camere selezionate tramite il comando *Export Data* [Figura 5.32], creando un nuovo shapefile nominato *"Cameras File"*.

Figura 5.32 Procedimento da seguire per esportare solo le camere necessarie all'algoritmo.

Aprendo il *.dbf in Excel e salvando tale file in *.*csv delimitato da virgole* si ottiene il file di input delle camere da utilizzare per la correzione del DTM [Figura 5.33].

	2_Cameras File - Blocco note di Windows	_		×
File	Modifica Formato Visualizza ?			
Lab	el,x,y,z,yaw,pitch,roll			^
107	_0892.JPG,338260.08400000000,4979515.52300000000,1854.45000000000,307.50000000000,0.300	000000	00,0	
107	_0893.JPG,338262.29500000000,4979521.65200000000,1854.38000000000,336.70000000000,0.300	000000	00,0	
107	_0894.JPG,338266.99100000000,4979524.62800000000,1853.53000000000,155.2000000000,23.60	0000000	000,0	
107	_0895.JPG,338268.7640000000,4979520.53700000000,1853.5400000000,155.8000000000,23.60	000000	000,0	
107	_0924.JPG,338272.02500000000,4979517.85800000000,1846.84000000000,328.20000000000.0.100	000000	00,0	
107	_0925.JPG,338268.82700000000,4979524.31100000000,1846.84000000000,337.8000000000,0.100	0000000	00,0	
107	_0926.JPG,338265.85100000000,4979532.32300000000,1846.8000000000,339.10000000000,0.100	0000000	00,0	
107	_0927.JPG,338262.20000000000,4979542.28600000000,1846.84000000000,339.10000000000,0.100	0000000	00,0	
107	_0928.JPG,338258.98700000000,4979551.51300000000,1846.90100000000,339.20000000000,0.100	0000000	00,0	\sim
<				>
	Linea 1, colonna 1 100% Windows (CRLF)	UTF-8 d	on BON	Λ

Figura 5.33 Settaggio del Cameras File .csv.

9. Creazione del Sensor File

Il Sensor File deve contenere la lunghezza focale della camera (focal) e le dimensioni fisiche del sensore $(sensor_x e sensor_y)$ in millimetri [Figura 5.34]. Questi dati sono stati recuperati dal Report di Metashape al paragrafo Survey Data.

Fig. 1. Camera locations and image overlap.

Number of images:	2,802	Camera stations:	2,802
Flying altitude:	63.1 m	Tie points:	1,319,102
Ground resolution:	1.54 cm/pix	Projections:	9,049,198
Coverage area:	5.35 km ²	Reprojection error:	0.576 pix

Camera Model	Resolution	Focal Length	Pixel Size	Precali	ibrated
FC6310R (8.8mm)	5472 x 3648	8.8 mm	2.41 x 2.41 µm	No	
	Т	able 1. Cameras.			
3_Sensor File	Blocco note	di Windows	_		\times
File Modifica	Formato Vis	ualizza 孝			
focal, sensor	_x,sensor	y 🗸			^
8.8,24.1,24.	1				
					\sim
<					>
Linea 1, colonna 1	100%	Windows (C	CRLF) UTF-	8	

Figura 5.34 Settaggio del Sensor File .csv.

10. Esecuzione dello script Pyton

Per l'esecuzione dello script si utilizza Anaconda, la distribuzione scientifica open source del linguaggio di programmazione Python per il calcolo scientifico.

Dopo aver avviato Spyder (Python 3.9) [Figura 5.35] si procede caricando il file py_sfm_depth_v1-1_py3.py, scaricabile e consultabile al sito il cui link in nota ²⁸.

Figura 5.35 Interfaccia Spyder e caricamento dell'algoritmo.

Eseguendo il codice si aprirà una prima finestra che richiederà il caricamento del file .csv della nuvola di punti da modificare [Figura 5.36 a)]; il secondo file richiesto riguarda il posizionamento e l'orientamento delle camere [Figura 5.36 b)]; il terzo il File Sensor [Figura 5.36 c)]; infine, come rinominare il file .csv su salvare i punti corretti [Figura 5.36 d)].

Si precisa che è molto importante l'ordine in cui questi vengono caricati e che, essendoci pochissimo controllo e gestione degli errori, bisogna assicurarsi della corretta l'intestazione dei file.

²⁸ <u>https://github.com/geojames/py_sfm_depth</u>

Figura 5.36 Ordine di caricamento dei file .csv per l'esecuzione dello script.

In una prima fase vengono processate le camere, successivamente i punti in blocchi da 7500.

Nel caso descritto in precedenza il numero delle camere è di 216 e il tempo di elaborazione di 3,60 minuti, mentre il numero di punti 460.924 con un tempo di elaborazione di circa 0,70 secondi ogni 7500, per un tempo di elaborazione totale di 4,08 minuti.

Si precisa che il tempo di elaborazione dipende comunque dal tipo di calcolatore utilizzato.

Il risultato dello scrtip è un file .csv delimitato da virgole [Figura 5.37], in cui vengono riportate le seguenti informazioni per ogni punto:

- Le coordinate planimetriche (x e y);
- La quota geoidica del punto rilevata tramite SfM da correggere (sfm_z);
- La quota della superficie dell'acqua (w_surf);
- La profondità dell'acqua apparente (h_a) da correggere;
- La profondità dell'acqua (h_{avg}) corretta;
- La quota geoidica del punto corretta tramite l'algoritmo (*corElev_avg*).

Corrected Point - Blocco note di Windows				_		×
File Modifica Formato Visualizza ?						
x,y,sfm_z,w_surf,h_a,h_avg,corElev_avg						^
338246.618953,4979606.39796,1802.33,1802.33276,0.00276000	0000080254,0.004204	4886983716	384,1802.32	285551:	130161	
338246.668953,4979606.39796,1802.32,1802.32715,0.00715000	0000137879,0.010892	2607263696	3188,1802.31	162573	927364	Ļ
338246.718953,4979606.39796,1802.33,1802.33862,0.00862000	0000064465,0.013132	2799778936	458,1802.32	254872	00221	
338246.768953,4979606.39796,1802.32,1802.33325,0.01324999	9999970896,0.02018	5841987832	277,1802.313	306415	8012	
338246.818953,4979606.39796,1802.32,1802.3407,0.020700000	00003347,0.03153582	261970889,	1802.309164	417380	29	
338246.868953,4979606.39796,1802.31,1802.33923,0.02923000	000009779,0.044529	1088767587	,1802.29470	008911	233	~
<						>
	Linea 1, colonna 1	100% Mad	intosh (CR)	UTF-8		

Figura 5.37 File con i punti del DTM corretti tramite l'algoritmo.

Al fine di riportare tali informazioni in ArcMap e osservarne i risultati è stato settato un altro file .csv delimitato da tabulazione contente solo le coordinate planimetriche ($x \in y$) e la quota geoidica del punto corretta tramite l'algoritmo (*corElev_avg*) [Figura 5.38].

*correttiperraster - Blocco note di Windows	_	×
File Modifica Formato Visualizza ?		
x y corElev_avg		^
338246.619 4979606.398 1802.328555		
338246.669 4979606.398 1802.316257		
338246.719 4979606.398 1802.325487		
338246.769 4979606.398 1802.313064		~
<		>
Linea 1, colonna 16 100% Windows (CRLF)	UTF-8	.:

Figura 5.38 File con i punti del DTM corretti da inserire in ArcMap.

Questo è stato caricato come tabella in ArcMap e tramite il comando *Display XY Data*, è stato convertito in shapefile puntuale le cui informazioni riportate sono le coordinate planimetriche e la quota del DTM corretto [Figura 5.39].

Figura 5.39 Procedimento e settaggio per il comando "Display XY Data".

Infine, tramite il comando *Conversion> Point to Raster* [Figura 5.40] è stato convertito in raster formato .tif, visualizzabile [Figura 5.41] e [Figura 5.42].

Noint to Raster	_		×
Input Features			
correttiperraster		-	2
Value field			
z			\sim
Output Raster Dataset			
C:\Users\ale\OneDrive\Desktop\pt_sfm_cap5\3\Raster\punticorretti.tif			2
Cell assignment type (optional)			
MOST_FREQUENT			\sim
Priority field (optional)			
NONE			\sim
Cellsize (optional)			
F:\Risultati\DTM\DTM_5cm\DTM_5cm_3di4.tif			🖆 🕔
OK Cancel Environments	s	Show He	elp >>

Figura 5.40 Interfaccia grafica del comando Point to Raster.

Figura 5.41 Visualizzazione 3D dei punti corretti tramite l'algoritmo.

Figura 5.42 Rappresentazione grafica della superficie dell'alveo corretta.

5.5 Risultati e osservazioni

Dopo aver corretto tramite l'algoritmo la batimetria, il passaggio successivo è valutare i risultati di tale correzione. Per ogni punto dei 66 rilevati in loco con GPS-GNSS sparsi lungo l'alveo, sono note, oltre alle coordinate planimetriche anche:

- *Z_SfM*, la quota baltimetrica del punto rilevata tramite SfM, ossia la quota da correggere tramite l'algoritmo;
- Z_GCP, la quota misurata in loco tramite GPS, quindi la quota reale;
- *Z_Corr*, la quota baltimetrica corretta tramite l'algoritmo.

In [Tabella 5.16] quanto appena descritto.

Tabella 5.16 Coordinate planimetriche e altimetriche ricavate da SfM, GPS e Corrette dei punti di convalida del metodo.

				Z_SfM	Z_GPS	Z_Corr
Nº punto	ID	X	Y	-	z _i	<i>ž</i> i
1	A01257	338250	4979608	1802,133	1801,982	1801,950
2	A01258	338249	4979608	1802,109	1802,009	1801,940
3	A01259	338248	4979608	1802,128	1802,037	1802,000
4	A01260	338247	4979608	1802,256	1802,201	1802,220
5	A01263	338243	4979622	1801,618	1801,578	1801,590
6	A01264	338243	4979622	1801,537	1801,442	1801,470
7	A01265	338244	4979622	1801,519	1801,460	1801,440
8	A01266	338245	4979623	1801,655	1801,631	1801,630
9	A01268	338246	4979623	1801,659	1801,575	1801,630
10	A01271	338232	4979653	1800,439	1800,379	1800,280
11	A01272	338231	4979653	1800,365	1800,228	1800,110
12	A01273	338231	4979652	1800,268	1800,137	1799,920
13	A01274	338230	4979652	1800,334	1800,280	1800,030
14	A01275	338229	4979651	1800,444	1800,374	1800,220
15	A5020	338159	4979773	1793,142	1793,001	1793,070
16	A5021	338162	4979769	1793,449	1793,356	1793,390
17	A5022	338161	4979769	1793,348	1793,116	1793,240
18	A5023	338160	4979766	1793,522	1793,468	1793,470
19	A5024	338163	4979766	1793,351	1793,212	1793,180
20	A5025	338163	4979765	1793,354	1793,220	1793,190
21	A5026	338166	4979761	1793,573	1793,343	1793,450
22	A5027	338169	4979756	1793,922	1793,730	1793,800
23	A5028	338170	4979755	1794,057	1793,944	1793,970
24	A5029	338172	4979751	1794,158	1794,056	1794,080
25	A5030	338176	4979750	1794,133	1794,031	1794,020
26	A5031	338176	4979748	1794,140	1794,005	1794,030

				Z_SfM	Z_GPS	Z_Corr
Nº punto	ID	X	Y	-	Zi	<i>ž</i> i
27	A5032	338176	4979748	1794,156	1794,018	1794,050
28	A5033	338178	4979746	1794,189	1793,997	1794,070
29	A5034	338179	4979747	1794,178	1794,064	1794,070
30	A5035	338182	4979741	1794,434	1794,307	1794,290
31	A5036	338184	4979739	1794,698	1794,465	1794,620
32	A5037	338188	4979737	1795,024	1794,919	1795,010
33	A5038	338189	4979734	1795,095	1795,017	1795,030
34	A5039	338191	4979732	1795,156	1795,050	1795,050
35	A5040	338193	4979730	1795,130	1794,975	1794,960
36	A5041	338193	4979728	1795,361	1795,166	1795,320
37	A5042	338196	4979725	1795,364	1795,236	1795,210
38	A5043	338197	4979720	1795,740	1795,636	1795,680
39	A5044	338198	4979716	1795,702	1795,534	1795,540
40	A5045	338198	4979712	1795,995	1795,674	1795,940
41	A5046	338199	4979709	1796,032	1795,728	1795,890
42	A5047	338199	4979702	1796,276	1796,125	1796,100
43	A5048	338200	4979698	1796,364	1796,217	1796,030
44	A5049	338200	4979692	1796,896	1796,829	1796,670
45	A5050	338201	4979689	1797,150	1797,063	1796,990
46	A5052	338204	4979678	1797,615	1797,455	1797,420
47	A5053	338203	4979675	1797,565	1797,485	1797,160
48	A5054	338203	4979675	1797,567	1797,491	1797,160
49	A5055	338202	4979668	1798,833	1798,693	1798,720
50	A5056	338216	4979660	1799,434	1799,187	1799,150
51	A5057	338223	4979658	1799,601	1799,190	1799,120
52	A5058	338223	4979659	1799,877	1799,723	1799,680
53	A5059	338227	4979655	1800,263	1800,180	1800,130
54	A5060	338237	4979641	1800,590	1800,334	1800,420
55	A5061	338239	4979637	1800,912	1800,713	1800,810
56	A5062	338242	4979633	1801,211	1801,053	1801,150
57	A5063	338244	4979633	1801,349	1801,275	1801,320
58	A5064	338245	4979620	1801,436	1801,223	1801,260
59	A5065	338247	4979603	1802,075	1801,774	1801,910
60	A5066	338247	4979597	1802,385	1802,257	1802,290
61	A5067	338247	4979597	1802,386	1802,260	1802,290
62	A5068	338248	4979593	1802,357	1802,120	1802,160
63	A5069	338248	4979584	1803,698	1803,656	1803,590
64	A5070	338250	4979580	1804,231	1804,156	1804,200
65	A5071	338247	4979575	1804,246	1804,086	1804,190
66	A5072	338246	4979618	1801,559	1801,458	1801,380
Come prima operazione sono stati ricreati i profili delle sezioni *R*1, *R*2 e *R*3 in [Figura 5.4]. In ascissa viene riportata la coordinata x mentre in ordinata la quota, entrambi in metri; l'obiettivo è paragonare i differenti profili ottenuti dai dati ricavati dall'elaborazione SfM (in rosso), dai dati misurati in loco tramite GPS-GNSS (in grigio) e dai dati corretti ottenuti dall'applicazione dell'algoritmo (in verde).

Mentre i dati da SfM, come noto, sottostimano la profondità dell'alveo, i dati corretti la sovrastimano leggermente, a favore di sicurezza.

La sezione R1 [Figura 5.43] è quella che mostra risultati peggiori con un errore massimo di 27 cm per il punto con maggiore profondità, probabilmente a causa di un maggiore rumore nella nuvola di punti; tuttavia, si noti che approssima coerentemente l'andamento del profilo batimetrico.

Figura 5.43 Profilo della sezione R1.

La sezione R2 [Figura 5.44] è mostra invece i risultati migliori con un errore massimo di 5 cm; tutti i punti sono stati corretti quasi perfettamente, tuttavia, nella parte a quota minore per un breve tratto il profilo corretto risulta essere decrescente rispetto a quanto mostrato dall'andamento dei dati GPS, che è crescente. Questo è dovuto ai dati SfM di input ricavati dalla nuvola di punti. Si tratta comunque di errori accettabili nel range di 2-3 cm.

Figura 5.44 Profilo della sezione R2.

Anche nella sezione R3 [Figura 5.45] i risultati sono ottimi sia in termini di errore massimo (7cm) che di andamento batimetrico.

Figura 5.45 Profilo della sezione R3.

La [Figura 5.46] mostra le distribuzioni spaziali dell'errore nei punti di convalida, ricavati come differenza tra i dati misurati e quelli corretti.

Figura 5.46 Distribuzione spaziale dell'errore nei punti di convalida GPS.

Gli errori positivi indicano che l'elevazione Structure-from-Motion corretta è al di sopra dell'elevazione del sistema di posizionamento globale (GPS) quindi con una sottostima della profondità, mentre gli errori negativi indicano che l'elevazione SfM corretta è inferiore all'elevazione GPS, e di conseguenza una previsione eccessiva della profondità.

Dalla [Figura 5.46] non si mostrano errori sistematici su larga scala. Tuttavia, mostrano zone con errori più grandi, correlati alle aree più rumorose.

Oltre a validazioni di tipo grafico sono stati utilizzati anche indici statistici quali:

1. Mean Error o Errore Medio

$$ME = \frac{1}{n} \sum_{i=1}^{n} z_i - \tilde{z}_i$$

2. Mean Squared Error o Errore Quadratico Medio

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (z_i - \tilde{z}_i)^2$$

3. Mean Absolute Error o Errore Quadratico Medio

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |z_i - \tilde{z}_i|$$

4. Root Mean Squared Error o Errore Quadratico Medio della Radice:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} |z_i - \tilde{z}_i|}$$

dove:

- *n* è il numero totale dei punti dati;
- z_i è il valore osservato;
- \tilde{z}_i è il valore predetto.
- 5. Minimum Error o Errore Minimo
- 6. Maximum Error o Errore Massimo
- 7. Relative Accuracy Ratio
- 8. Relative Precision Ratio

I risultati degli indici statistici per il set di dati analizzato è mostrato in [Tabella 5.17].

	Error statistics [m]												
	Root												
	Mean	Mean	Mean			Relative	Relative						
Mean	Square	Absolute	Squared	Minimum	Maximum	Accuracy	Precision						
Error	Error	Error	Error	Error	Error	Ratio	Ratio						
ME	MSE	MAE	RMSE	-	-	RAR	RPR						
0,004	0,011	0,075	0,106	-0,266	0,331	1:5336	1:1260						

Tabella 5.17 Risultati degli indici statistici per il set di dati analizzato.

Considerando una altezza di volo di circa 63 m, i rapporti di precisione, 1:5336 (0,019% dell'altezza di volo) e il rapporto di precisione 1:1260 (0,08%) dimostrano che il metodo fornisce un miglioramento significativo dell'accuratezza e della precisione per il set di dati batimetrico SfM.

Dai grafici a dispersione [Figura 5.47] e [Figura 5.48], dall' istogramma di errore [Figura 4.49], e dagli indici di errori [Tabella 5.17], si possono notare lievi distorsioni sul set di dati.

Figura 5.47 Grafico a dispersione dell'elevazione corretta rispetto all'elevazione del sistema di posizionamento globale (GPS).

Si ha una piccola deviazione positiva nell'errore medio di elevazione, mentre le deviazioni standard suggeriscono che c'è una discreta quantità di variazione nel modo in cui l'algoritmo di correzione si è comportato a differenti profondità. I grafici a dispersione della profondità [Figura 5.46] e dell'elevazione [Figura 5.47] illustrano questa diffusione, tuttavia, le pendenze delle linee di regressione per i dati corretti non suggeriscono che vi siano errori maggiori con profondità crescenti.

Figura 5.48 Grafico a dispersione della profondità corretta rispetto alla profondità effettiva.

Figura 5.49 Istogramma di errore di elevazione.

Capitolo 6

Conclusioni

L'aspetto principale su cui si è voluto porre l'attenzione in questo lavoro di tesi è la possibilità di utilizzare tecnologie UAV e di Structure-from-Motion per la restituzione fotogrammetrica digitale in ambito idraulico.

L'oggetto di studio è un tratto di alveo fluviale di 4,5 km del Torrente Chisone in Val Troncea nel Comune di Pragelato (TO), in cui il Politecnico di Torino, tramite il Dipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture (DIATI), per l'Ente di gestione delle aree protette del parco Alpi Cozie, ha effettuato rilievi mediante droni nelle giornate del 25-26 ottobre 2021, per un'area complessiva di 36 ettari.

Nella prima parte del presente elaborato si è voluta porre l'attenzione sulle basi teoriche del rilievo fluviale con drone, nello specifico i concetti base di geomorfologia fluviale, la fotogrammetria, le tipologie e i componenti degli UAV, argomenti in parte trattati durante gli anni di studio accademico, e in parte approfonditi mediante testi e normative aggiornate.

Si è poi passati al progetto di rilievo e all'acquisizione dei dati, fase a cui ho avuto modo di assistere e partecipare, fondamentale per comprendere l'importanza delle operazioni di organizzazione e coordinamento delle competenze professionali, e non, coinvolte. Sono state acquisite circa 2880 immagini, per un totale di 2 ore e 20 minuti di volo, e rilevati con metodo GNSS-GPS 42 punti di controllo a terra e 465 punti di convalida batimetrica.

Successivamente alla fase di acquisizione, nell'elaborazione dei dati è stato possibile sperimentare un differente approccio al processo per due differenti software commerciali Agisoft Metashape e DJI Terra, osservando che la qualità del dato finale è strettamente correlato alla qualità del dato iniziale fornito come input, ossia i fotogrammi acquisiti.

Sono stati generati la nuvola di punti densa, il modello tridimensionale (mesh e texture), il modello digitale di elevazione del terreno e l'ortofoto, con una precisione centimetrica per entrambi i software. Confrontando diversi aspetti, quali la chiarezza del flusso di lavoro da seguire, l'intuibilità e la versatilità nell'utilizzo, la precisione ottenuta, la grafica dell'elaborazione e la velocità di elaborazione si è arrivati alla conclusione che Metashape risulta essere molto più sofisticato e completo, nonostante richieda una buona conoscenza della teoria della fotogrammetria; tuttavia, grazie alla grafica nettamente migliore e i tempi di elaborazione ridotti, DJI Terra con le prossime versioni aggiornate potrebbe diventare una buona alternativa.

Nel capitolo "Bathymetric Structure-from-Motion", si è invece posta l'attenzione su un problema, ancora in fase di sperimentazione, riguardante dell'ottenimento di un'accurata mappatura batimetrica per torrenti con profondità inferiori a 2 m, tramite tecniche di SfM. L'ostacolo principale è la correzione della rifrazione della luce passante tra aria e acqua, che fa apparire le profondità dell'acqua inferiori rispetto a quelle che sono. In questo lavoro di tesi è stato quindi testato un algoritmo iterativo che calcola una serie di equazioni di correzione della rifrazione per ogni combinazione punto-camera in una nuvola di punti SfM.

Dopo aver approfondito i principi teorici e il metodo, l'algoritmo è stato testato su un tratto del Torrente Chisone lungo 220 metri, con quota ellissoidica compresa tra i 1792 e i 1805 metri; sono stati corretti 460.924 punti e tramite i 66 punti di convalida misurati con GNSS-GPS, sono stati ottenuti i seguenti indici statistici di errore [Tabella 6.1]:

	Error statistics [m]											
	Root											
	Mean	Mean	Mean			Relative	Relative					
Mean	Square	Absolute	Squared	Minimum	Maximum	Accuracy	Precision					
Error	Error	Error	Error	Error	Error	Ratio	Ratio					
ME	MSE	MAE	RMSE	_	-	RAR	RPR					
0,004	0,011	0,075	0,106	-0,266	0,331	1:5336	1:1260					

Tabella 6.1 Risultati degli indici statistici per il set di dati analizzato.

Questi dati dimostrano che il metodo di correzione della rifrazione basato su più camere per set di dati SfM off-nadir produce risultati accurati con errori medi di ~ 0,02% dell'altezza di volo. Tuttavia, si ritiene siano necessarie ulteriori ricerche per comprendere meglio i confini e i limiti di questo metodo, nonostante il livello di accuratezza dimostrato dovrebbe essere sufficiente per molte applicazioni del sistema fluviale, come ad esempio la modellazione del flusso, nonché la mappatura batimetrica in altri sistemi di acque limpide oltre i fiumi e i torrenti, compresi i sistemi costieri ed estuari.

Bibliografia

- Aerofotogrammetria con i droni. Mappatura e modellazione 3D del territorio con tecniche aerofotogrammetriche da SAPR (Sistemi Aeromobili a Pilotaggio Remoto), Massimo Micieli, Dario Flaccovio Editore, Torino, 2019.
- Channel Morphology and Typology in River Flows and Channel Forms,
 M. Church, Chapter; 1996.
- The fluvial system, SA Schumm, New York, Wiley, 1977.
- Manual of Photogrammetry, American Society of Photogrammetry, Brand: Asprs Pubns, 1980.
- Manuale linee guida 113/2014 IDRAIM Sistema di valutazione idromorfologica, analisi e monitoraggio dei corsi d'acqua, ISPRA Istituto Superiore per la Protezione e la ricerca Ambientale, 2014.

ARTICOLI

- A photogrammetric correction procedure for light refraction effects at a two-medium boundary, Murase T, Tanaka M, Tani T et al., Photogrammetric Engineering & Remote Sensing, 2008.
- A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers, Bangen S.G., Wheaton J.M., Bouwes N., Bouwes B., Jordan C., Geomorphology, 2014.
- Bathymetric Structure-from-Motion: extracting shallow stream bathymetry from multi-view stereo photogrammetry, James T. Dietrich, John Wiley & Sons, Ltd., 2016.
- Cost-effective non-metric photogrammetry from consumer-grade sUAS: implications for direct georeferencing of Structure from Motion photogrammetry, Carbonneau PE, Dietrich JT., Earth Surface Processes and Landforms, 2016.
- Mitigating systematic error in topographic models derived from UAV and ground-based image networks, James MR, Robson S., Earth Surface Processes and Landforms, 2014.
- Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry,

Woodget AS, Carbonneau PE, Visser F, Maddock IP., Earth Surface Processes and Landforms, 2015.

- Riverine landscape diversity, Ward JV, Tockner K, Arscott DB, Claret C., Freshwater Biology, 2002.
- Through-water close range digital photogrammetry in flume and field environments, Butler J, Lane S, Chandler J, Porfiri E., The Photogrammetric Record, 2002.
- Water depths from aerial photographs, Tewinkel GG, Photogrammetric Engineering, 1963.

DISPENSE DEI CORSI

- Appunti del corso di Cartografia Numerica e GIS, A. Lingua, F. Matrone, Politecnico di Torino, 2020

MANUALI

- Manuale online CloudCompare <u>www.cloudcompare.org</u>.
- Manuale online DJI Terra https://www.dji.com/it/downloads/products/dji-terra.
- Manuale online Metashape <u>https://www.agisoft.com/pdf/metashape-pro_1_7_en.pdf</u>.
- Manuale online di Mission Planner.

NORMATIVE

- Regolamento Mezzi Aerei a Pilotaggio Remoto, ENAC, 2020

SITOGRAFIA

- www.albertomontanari.it
- www.dji.com
- ww.help.autodesk.com
- www.leica-geosystems.it
- www.wikipedia.com
- www.3dmetrica.it

Elenco delle figure

FIGURA 1.1 GEOLOCALIZZAZIONE DELLA VAL TRONCEA – FONTE GOOGLE MAPS
FIGURA 1.2 FOTO PANORAMICHE DELLA VALLE DA DJI PHANTOM 4, ACQUISITE NELLE GIORNATE DEI RILIEVI4
FIGURA 2.1 SCHEMATIZZAZIONE DELLE TRE ZONE SECONDO LO QUANTO PROPOSTO DA SCHUMM (1977) - FONTE
ADBPO, 2008, MODIFICATO DA KONDOLF, 1994
FIGURA 2.2 GRADO DI CONFINAMENTO E DIMENSIONI DEI CORSI D'ACQUA NELLE DIVERSE ZONE DEL BACINO - FONTE
CHURCH (1992) MODIFICATO DA BRIERLEY & FRYIRS, 20059
FIGURA 2.3 ESEMPI DI BRIGLIE. IN ALTO A SINISTRA IN CEMENTO ARMATO, A DESTRA IN PIETRA. IN BASSO A SINISTRA IN
LEGNO, A DESTRA CON GABBIONI RIEMPITI IN PIETRA11
FIGURA 2.4 POSIZIONAMENTO LONGITUDINALE DELLE BRIGLIE
FIGURA 2.5 SCHEMA DELLA GEOMETRIA DELLA PRESA FOTOGRAFICA. FONTE ZANICHELLI EDITORE S.P.A., BOLOGNA 2012.
FIGURA 2.6 UNA SOLA FOTOGRAFIA (A) NON È SUFFICIENTE PER DEFINIRE LA POSIZIONE DEI PUNTI SUL TERRENO. DUE
FOTOGRAFIE (B), PERMETTONO DI DEFINIRE I SUOI PUNTI UNIVOCAMENTE DALLA INTERSEZIONE DEI RAGGI OMOLOGHI
r1 e $r2$ (configurazione di presa aerea). Fonte Zanichelli editore S.p.A., Bologna 201217
FIGURA 2.7 IL MODELLO DEL TERRENO IN SCALA RIDOTTA UGUALE AL RAPPORTO B : B. FONTE ZANICHELLI EDITORE S.P.A.,
BOLOGNA 2012
FIGURA 2.8 SISTEMA DI RIFERIMENTO CHE ASSOCIA AD OGNI PIXEL LE COORDINATE REALI
FIGURA 2.9 PROIEZIONE DEL CENTRO DI PRESA P NON COINCIDENTE CON L'ORIGINE DEL SISTEMA XY. FONTE ZANICHELLI
EDITORE S.P.A., BOLOGNA 2012
FIGURA 2.10 IL MODELLO STEREOSCOPICO E I 12 PARAMETRI DI ORIENTAMENTO ESTERNO. FONTE ZANICHELLI EDITORE
S.P.A., BOLOGNA 2012
FIGURA 2.11 RAPPRESENTAZIONE GRAFICA DELL'ORIENTAMENTO RELATIVO A)ASIMMETRICO B)SIMMETRICO. FONTE
ZANICHELLI EDITORE S.P.A., BOLOGNA 201226
FIGURA 2.12 MODELLO IN SCALA ARBITRARIA E CON UNA GIACITURA SPAZIALE GENERICA LEGATA AL SISTEMA TEMPORANEO
X'Y'Z' ADOTTATO. FONTE ZANICHELLI EDITORE S.P.A., BOLOGNA 2012
FIGURA 2.13 ESEMPI DA SINISTRA VERSO DESTRA DI PUNTI DI APPOGGIO ARTIFICIALI, CODIFICATI E NATURALI
FIGURA 2.14 A SINISTRA IL SISTEMA DI RIFERIMENTO DELLA CAMERA (A) E IL SISTEMA DI RIFERIMENTO CON ORIGINE NEL
CENTRO DI PRESA O (B); A DESTRA C) SI NOTA COME IL CENTRO DI PROIEZIONE $\mathit{O1}$, il punto oggetto A e il punto
immagine $A1$ sul fotogramma sono allineati sullo stesso raggio proiettante $r1.$ Fonte Zanichelli
EDITORE S.P.A., BOLOGNA 2012
Figura 2.15 La proiezione del raggio proiettante $r1$ sui due piani XZ e YZ consente di scrivere le relazioni
ANALITICHE CHE CONDURRANNO ALLE EQUAZIONI DI COLLINEARITÀ. FONTE ZANICHELLI EDITORE S.P.A., BOLOGNA
2012
FIGURA 2.16 ESEMPI DI UAV TRICOTTERI, QUADRICOTTERI, ESACOTTERI E OTTACOTTERI
FIGURA 2.17 ESEMPI DI UAV AD ALA FISSA
FIGURA 2.18 ESEMPI DI UAV IBRIDI
FIGURA 2.19 ESEMPI DI TELAIO RIPIEGABILE E IN FIBRA DI CARBONIO35
FIGURA 2.20 . CONFIGURAZIONE DEL SENSO DI ROTAZIONE DELLE ELICHE DEI MULTICOTTERI
FIGURA 2.21 ESEMPI DI FLIGHT CONTROLLER
FIGURA 2.22 ESEMPI DI BATTERIE
FIGURA 2.23 ESEMPI DI RADIOCOMANDO
FIGURA 2.24 ESEMPI DI GIMBAL
FIGURA 2.25 ESEMPI DI SENSORI ADATTABILI
FIGURA 3.1 INDIVIDUAZIONE DEI PUNTI DI PRINCIPALE IMPORTANZA42
FIGURA 3.2 MATERIALIZZAZIONE DI PUNTI FISICI CON PANNELLI 60×60 CM IN PVC46

Figura 3.3 Esempio di materializzazione di GCP naturali, a sinistra angoli, a destra croci realizzati	CON
BOMBOLETTE SPRAY	46
FIGURA 3.4 POSIZIONAMENTO DEI GCP FISICI E NATURALI LUNGO TUTTA L'AREA DI RILIEVO.	47
FIGURA 3.5 RAPPORTI GEOMETRICI PER LA DEFINIZIONE DELLA SCALA MEDIA DEL FOTOGRAMMA. FONTE ZANICHELLI EDI	TORE
S.p.A., BOLOGNA 2012	55
FIGURA 3.6 RAPPRESENTAZIONE SCHEMATICA DEL GSD GROUND SIMPLE DISTANCE.	56
FIGURA 3.7 SCHEMA DI PRESA PER IL RICOPRIMENTO E PER LA CREAZIONE DEI MODELLI STEREOSCOPICI. FONTE ZANIC	HELLI
EDITORE S.P.A., BOLOGNA 2012	57
FIGURA 3.8 EFFETTO DEL TRASCINAMENTO DELL'IMMAGINE DI UN GENERICO PUNTO A SUL TERRENO. FONTE ZANIC	HELLI
EDITORE S.P.A., BOLOGNA 2012	
FIGURA 3.9 AREA DI PIANIFICAZIONE DEL VOLO - FONTE GOOGLE EARTH.	60
FIGURA 3.10 INDIVIDUAZIONE DELL'AREA E POSIZIONAMENTO DELLA HOME.	64
FIGURA 3.11 SETTINGS DEI DATI FONDAMENTALI ALLA PIANIFICAZIONE	64
	65
FIGURA 3.13 TRAIETTORIA DI VOLO E ABBRACCIAMENTO AL SUOLO DI OGNI ACQUISIZIONE	65
FIGURA 4.1 FLOW CHART GENERALE DEL PROCESSO FOTOGRAMMETRICO.	72
FIGURA 4.2 A DESTRA, LA SCHERMATA DEL WORKFLOW DI METASHAPE, A SINISTRA QUELLO ADATTATO AL CASO STU	JDIO.
	/3
FIGURA 4.3 INTERFACCIA DELLA FINESTRA REFERENCE	
FIGURA 4.4 POSIZIONAMENTO DELLE CAMERE E STIMA DELL ERRORE. L'ERRORE IN X E Y E RAPPRESENTATO DALLA FO	
DELL'ELLISSE, QUELLO IN Z DAL COLORE.	74
FIGURA 4.5 ESTRATTO DEL FILE .TXT DELL'EXPORT CAMERAS	75
FIGURA 4.6 INTERFACCIA GRAFICA DI CONVEKGO.	75
FIGURA 4.7 INTERFACCIA E SETTAGGIO DEL COMANDO "ALIGN PHOTOS"	76
FIGURA 4.8 ALLINEAMENTO DELLE IMMAGINI E NUVOLA DI PUNTI DENSA.	//
FIGURA 4.9 PARTE DELL'ELENCO DEI MARKER CON INFORMAZIONI RIGUARDO AL POSIZIONAMENTO SPAZIALE, L'ERRO	RE DI
POSIZIONAMENTO IN METRI E IN PIXEL E IL NUMERO DI COLLIMAZIONI EFFETTUATE	78
FIGURA 4.10 VISUALIZZAZIONE DELLA NUVOLA DI PUNTI SPARSA E DISTRIBUZIONE SPAZIALE DEI MARKER.	78
FIGURA 4.11 INTERFACCIA GRAFICA DELLA FINESTRA DI COLLIMAZIONE DEI MARKER.	79
FIGURA 4.12 POSIZIONE DEI GCPS E STIMA DELL'ERRORE. L'ERRORE IN X E Y È RAPPRESENTATO DALLA FORMA DELL'ELI	.ISSE,
QUELLO IN Z DAL COLORE.	80
FIGURA 4.13 INTERFACCIA E SETTAGGIO DEL COMANDO "OPTIMIZE CAMERA ALIGNMENT".	82
FIGURA 4.14 RESIDUI DI IMMAGINE PER LA CAMERA DEL DJI PHANTOM 4 PRO, FC6310R (8.8MM).	83
FIGURA 4.15 RESIDUI DI IMMAGINE PER LA CAMERA ZENMUSEP1 (35MM).	84
FIGURA 4.16 INTERFACCIA E SETTAGGIO DEL COMANDO "BUILD DENSE CLOUD"	85
FIGURA 4.17 DIFFERENZA TRA LA NUVOLA DI PUNTI SPARSA E DENSA.	86
FIGURA 4.18 FRAME DEL VIDEO, RAPPRESENTATE LA NUVOLA DI PUNTI DENSA NELLA ZONA DI MONTE	86
FIGURA 4.19 RISULTATO DELLA CLASSIFICAZIONE AUTOMATICA DEI PUNTI A TERRA.	88
FIGURA 4.20 RISULTATO DELLA CLASSIFICAZIONE AUTOMATICA MULTICLASSE DELLA NUVOLA DENSA.	89
FIGURA 4.21 RISULTATO DELLA CLASSIFICAZIONE MANUALE DEI PUNTI DELLA NUVOLA DENSA.	91
FIGURA 4.22 INTERFACCIA E SETTAGGIO DEL COMANDO "BUILD MESH"	92
FIGURA 4.23 INTERFACCIA E SETTAGGIO DEL COMANDO "BUILD TEXTURE".	93
FIGURA 4.24 ESEMPIO DI MESH E TEXTURE.	94
FIGURA 4.25 DIFFERENZA TRA DTM E DSM	95
FIGURA 4.26 INTERFACCIA E SETTAGGIO DEL COMANDO "BUILD DEM".	96
FIGURA 4.27 DIFFERENZA TRA DSM E DTM; SI NOTI LA PRESENZA DI FITTA VEGETAZIONE NEL PRIMO	97
FIGURA 4.28 RAPPRESENTAZIONE BIDIMENSIONALE E TRIDIMENSIONALE DEL DSM E DTM	98
FIGURA 4.29 INTERFACCIA E SETTAGGIO DEL COMANDO "BUILD ORTHOMOSAIC".	99
FIGURA 4.30 A SINISTRA L'ORTHOMOSAICO COMPLETO, A DESTRA DUE ZONE RAVVICINATE A VALLE.	100
FIGURA 4.31 RISULTATI DELL'ELABORAZIONE DI METASHAPE	101
FIGURA 4.32 ESEMPIO DI SUDDIVISIONE DELL'AREA AL FINE DI AVERE FILE DI DIMENSIONI PIÙ GESTIBILI.	.102

FIGURA 4.33 RAFFIGURAZIONE IN FORMA GRAFICA DELL'EXPORT DEI DATI DI METASHAPE.	103
FIGURA 4.34 A DESTRA, LA SCHERMATA DEL WORKFLOW DI DJI TERRA, A SINISTRA QUELLO ADATTATO AL CASO	STUDIO.
	104
FIGURA 4.35 VISUALIZZAZIONE DEL COMANDO "VIEW POS DATA"	105
FIGURA 4.36 COSTRUZIONE DEL BLOCCO FOTOGRAMMETRICO E NUVOLA DI PUNTI SPARSA	105
FIGURA 4.37 OUTPUT COORDINATE SYSTEM	106
FIGURA 4.38 ELENCO DEI GCP E CHECK POINT.	106
FIGURA 4.39 INTERFACCIA GRAFICA PER LA COLLIMAZIONE DEI PUNTI.	107
FIGURA 4.40 SETTAGGIO DEL COMANDO "3D MODEL".	108
FIGURA 4.41 RISULTATO DELLA MODELLAZIONE TRIDIMENSIONALE.	109
FIGURA 4.42 RISULTATO DELLA MODELLAZIONE 2D.	110
FIGURA 4.43 RISULTATI DELL'ELABORAZIONE DI DJI TERRA.	111
FIGURA 4.44 RAFFIGURAZIONE IN FORMA GRAFICA DELL'EXPORT DEI DATI DI DJI TERRA.	112
FIGURA 5.1 DIAGRAMMA DELLA TRIGONOMETRIA DI RIFRAZIONE DI UNA SINGOLA COMBINAZIONE PUNTO DI MISUF	AZIONE-
FOTOCAMERA.	117
FIGURA 5.2 WORKFLOW SEGUITO PER LA CORREZIONE DEL DTM.	124
FIGURA 5.3 RAPPRESENTAZIONE DELLA DISTRIBUZIONE SPAZIALE DEI PUNTI RILEVATI E DELLE SEZIONI.	127
FIGURA 5.4 TRATTO DI FIUME IN CUI VERRÀ APPLICATO L'ALGORITMO.	140
FIGURA 5.5 WORKFLOW SEGUITO PER L'APPLICAZIONE DELL'ALGORITMO.	141
FIGURA 5.6 INTERFACCIA DEL COMANDO CREATE NEW SHAPEFILE E ATTRIBUTE TABLE DI "MASK"	142
FIGURA 5.7 RAPPRESENTAZIONE GRAFICA DI "MASK" E DEI 66 PUNTI ACQUA BATTUTI CON GPS.	143
FIGURA 5.8 INTERFACCIA DEL COMANDO CREATE NEW SHAPEFILE	144
FIGURA 5.9 RAPPRESENTAZIONE GRAFICA DEI PUNTI BORDO ACQUA "POINT 1"	145
FIGURA 5.10 INTERFACCIA DEL COMANDO ADD XY COORDINATES.	146
FIGURA 5.11 ATTRIBUTE TABLE DELLO SHP PUNTUALE "POINT 1".	146
FIGURA 5.12 INTERFACCIA DEL COMANDO EXTRACT VALUES TO POINTS.	147
FIGURA 5.13 ATTRIBUTE TABLE DELLO SHP PUNTUALE "POINT 2".	147
FIGURA 5.14 VISUALIZZAZIONE 3D DELL'ORTOFOTO E DEI PUNTI BORDO ACQUA.	148
FIGURA 5.15 INTERFACCIA COMANDO INTERPOLATION KRIGING.	149
FIGURA 5.16 INTERFACCIA ENVIRONMENT SETTINGS.	149
FIGURA 5.17 VISUALIZZAZIONE 3D DEI PUNTI BORDO ACQUA E DEL PELO LIBERO RAPPRESENTATO DALLA SU	PERFICIE
INTERPOLATA COL METODO KRIGING, RAPPRESENTATA IN COLORAZIONI DAL ROSSO AL VERDE	150
FIGURA 5.18 RAPPRESENTAZIONE GRAFICA DELLA SUPERFICIE KRIGING.	151
FIGURA 5.19 INTERFACCIA COMANDO RASTER CALCULATION.	152
FIGURA 5.20 VISUALIZZAZIONE 3D DEL RASTER OTTENUTO TRAMITE IL COMANDO RASTER CALCULATOR.	153
FIGURA 5.21 RAPPRESENTAZIONE GRAFICA DELLA SUPERFICIE OTTENUTA DALLA SOTTRAZIONE TRA L'INTERPO	LAZIONE
KRIGING E IL DTM. IN BLU LE ZONE PIÙ PROFONDE DELL'ALVEO; IN VERDE LE SPONDE	154
FIGURA 5.22 INTERFACCIA GRAFICA DEL COMANDO EXTRACT BY ATTRIBUTES.	155
FIGURA 5.23 RAPPRESENTAZIONE 3D DELLA SUPERFICIE DELL'ALVEO DA CORREGGERE.	156
FIGURA 5.24 RAPPRESENTAZIONE GRAFICA DELLA SUPERFICIE OTTENUTA TRAMITE L'ESTRAZIONE DEI VALORI POSITI	VI, OSSIA
DELLA SUPERFICIE DELL'ALVEO DA CORREGGERE TRAMITE L'ALGORITMO	157
FIGURA 5.25 INTERFACCIA GRAFICA DEL COMANDO RASTER TO POINT E ATTRIBUTE TABLE DELLO SHP POINT_3	158
FIGURA 5.26 ATTRIBUTE TABLE DELLO SHP POINT_3.	158
FIGURA 5.27 ATTRIBUTE TABLE DELLO SHP PUNTUALE "POINT_3"	159
FIGURA 5.28 ATTRIBUTE TABLE DELLO SHP PUNTUALE "POINT_4"	159
FIGURA 5.29 VISUALIZZAZIONE 3D DELLO SHAPEFILE PUNTUALE "POINT_4"	160
FIGURA 5.30 SETTAGGIO DEL FILE .CSV CONTENENTE LA NUVOLA DI PUNTI DA MODIFICARE	161
FIGURA 5.31 RAPPRESENTAZIONE GRAFICA E ATTRIBUTE TABLE DELLO SHP "ALL CAMERAS".	162
FIGURA 5.32 PROCEDIMENTO DA SEGUIRE PER ESPORTARE SOLO LE CAMERE NECESSARIE ALL'ALGORITMO.	163
FIGURA 5.33 SETTAGGIO DEL CAMERAS FILE .CSV.	163
FIGURA 5.34 SETTAGGIO DEL SENSOR FILE .CSV.	164

FIGURA 5.35 INTERFACCIA SPYDER E CARICAMENTO DELL'ALGORITMO.	165
FIGURA 5.36 ORDINE DI CARICAMENTO DEI FILE .CSV PER L'ESECUZIONE DELLO SCRIPT.	166
FIGURA 5.37 FILE CON I PUNTI DEL DTM CORRETTI TRAMITE L'ALGORITMO	167
FIGURA 5.38 FILE CON I PUNTI DEL DTM CORRETTI DA INSERIRE IN ARCMAP.	168
FIGURA 5.39 PROCEDIMENTO E SETTAGGIO PER IL COMANDO "DISPLAY XY DATA".	168
FIGURA 5.40 INTERFACCIA GRAFICA DEL COMANDO POINT TO RASTER.	169
FIGURA 5.41 VISUALIZZAZIONE 3D DEI PUNTI CORRETTI TRAMITE L'ALGORITMO	169
FIGURA 5.42 RAPPRESENTAZIONE GRAFICA DELLA SUPERFICIE DELL'ALVEO CORRETTA	170
FIGURA 5.43 PROFILO DELLA SEZIONE R1.	173
FIGURA 5.44 PROFILO DELLA SEZIONE R2.	174
FIGURA 5.45 PROFILO DELLA SEZIONE R3.	174
FIGURA 5.46 DISTRIBUZIONE SPAZIALE DELL'ERRORE NEI PUNTI DI CONVALIDA GPS.	175
FIGURA 5.47 GRAFICO A DISPERSIONE DELL'ELEVAZIONE CORRETTA RISPETTO ALL'ELEVAZIONE DEL S	SISTEMA DI
POSIZIONAMENTO GLOBALE (GPS)	177
FIGURA 5.48 GRAFICO A DISPERSIONE DELLA PROFONDITÀ CORRETTA RISPETTO ALLA PROFONDITÀ EFFETTIVA	178
FIGURA 5.49 ISTOGRAMMA DI ERRORE DI ELEVAZIONE.	178

Elenco delle tabelle

TABELLA 3.1 SPECIFICHE TECNICHE DEL LEICA GS18 T.	44
TABELLA 3.2 IDENTIFICATIVO E COORDINATE (S.R. WGS 1984 / UTM32N) CON QUOTE ELLISSOIDICHE	48
TABELLA 3.3 SPECIFICHE TECNICHE DI DJI PHANTOM 4 PRO E DJI MATRICE 300 E DELLE CAMERE UTILIZZATE.	49
TABELLA 3.4 DATI DEL SENSORE	61
TABELLA 3.5 DATI GEOMETRICI	61
TABELLA 3.6 CALCOLI SULLA PRECISIONE OTTENUTI TRAMITE EXCEL.	61
TABELLA 3.7 CALCOLI EUROSDR OTTENUTI TRAMITE EXCEL.	62
TABELLA 3.8 CALCOLO DELL'ERRORE DI TRASCINAMENTO TRAMITE EXCEL.	62
TABELLA 3.9 CALCOLI SULLA GEOMETRIA DEL VOLO E NUMERO TOTALIE DI FOTOGRAMMI TRAMITE EXCEL	62
TABELLA 3.10 CALCOLI SUL TEMPO DI VOLO COMPLESSIVO ED EFFETTIVO TRAMITE EXCEL.	63
TABELLA 3.11 TABELLA RIASSUNTIVA CONTENENTE INFORMAZIONI RIGUARDO AL NUMERO DI ACQUISIZIONI,	ORA E TEMPO
DI VOLO	66
TABELLA 3.12 POSIZIONAMENTO SPAZIALE DELLE CAMERE E TRAIETTORIA DI VOLO.	67
TABELLA 4.1 STIMA DEGLI ERRORI SUL POSIZIONAMENTO DELLE CAMERE.	74
TABELLA 4.2 GCP E NUMERO DI FOTOGRAMMI IN CUI SONO STATI COLLIMATI.	79
TABELLA 4.3 STIMA DELL'ERRORE DEI GCP E DEI CHECK POINT.	80
TABELLA 4.4 COEFFICIENTI DI CALIBRAZIONE E MATRICE DI CORRELAZIONE DELLA CAMERA FC6310R	83
TABELLA 4.5 COEFFICIENTI DI CALIBRAZIONE E MATRICE DI CORRELAZIONE DELLA CAMERA ZENMUSEP1	84
TABELLA 4.6 PARAMETRI DI CONTROLLO DELLA PROCEDURA DI CLASSIFICAZIONE	88
TABELLA 4.7 RISULTATI DELLE PRECISIONI DI POSIZIONAMENTO TRATTE DAL REPORT DI DJI TERRA	107
TABELLA 4.8 TEMPI DI ELABORAZIONE TOTALI E PARZIALI DI METASHAPE E DJI TERRA	114
TABELLA 5.1 DESCRIZIONE DELLE VARIABILI IN FIGURA 5.1	117
TABELLA 5.2 PUNTI DI CONVALIDA RILEVATI.	125
TABELLA 5.3 COORDINATE NEL NEL S.R. WGS 84 / UTM ZONE 32N (EPSG:32632) E QUOTA GEOIDICA	125
TABELLA 5.4 PUNTI E SEZIONI STUDIATE PER IL BLOCCO A.	128
TABELLA 5.5 BLOCCO A - TABELLA RIASSUNTIVA DELL'ERRORE MASSIMO E MINIMO OTTENUTO	129
TABELLA 5.6 BLOCCO A - A SINISTRA, I PROFILI DELLE SEZIONI DA DATI GPS E SFM. A DESTRA, IL PROFILO D	A NUVOLA DI
PUNTI DENSA	129
TABELLA 5.7 PUNTI E SEZIONI STUDIATE PER IL BLOCCO B.	131
TABELLA 5.8 BLOCCO B - TABELLA RIASSUNTIVA DELL'ERRORE MASSIMO E MINIMO OTTENUTO	132
TABELLA 5.9 BLOCCO B - A SINISTRA, I PROFILI DELLE SEZIONI DA DATI GPS E SFM. A DESTRA, IL PROFILO D	A NUVOLA DI
PUNTI DENSA	132
TABELLA 5.10 PUNTI E SEZIONI STUDIATE PER IL BLOCCO C	134
TABELLA 5.11 BLOCCO C - TABELLA RIASSUNTIVA DELL'ERRORE MASSIMO E MINIMO OTTENUTO	135
TABELLA 5.12 BLOCCO C - A SINISTRA, I PROFILI DELLE SEZIONI DA DATI GPS E SFM. A DESTRA, IL PROFILO D)a nuvola di
PUNTI DENSA	135
TABELLA 5.13 PUNTI E SEZIONI STUDIATE PER IL BLOCCO D.	137
TABELLA 5.14 BLOCCO D - TABELLA RIASSUNTIVA DELL'ERRORE MASSIMO E MINIMO OTTENUTO	138
TABELLA 5.15 BLOCCO D - A SINISTRA, I PROFILI DELLE SEZIONI DA DATI GPS E SFM. A DESTRA, IL PROFILO D	DA NUVOLA DI
PUNTI DENSA	138
TABELLA 5.16 COORDINATE PLANIMETRICHE E ALTIMETRICHE RICAVATE DA SFM, GPS E CORRETTE DEI PUNTI I	DI CONVALIDA
DEL METODO	171
TABELLA 5.17 RISULTATI DEGLI INDICI STATISTICI PER IL SET DI DATI ANALIZZATO.	177
TABELLA 6.1 RISULTATI DEGLI INDICI STATISTICI PER IL SET DI DATI ANALIZZATO	180

Ringraziamenti

Desidero ringraziare il professor Andrea Lingua e il professor Paolo Vezza, il tecnico di laboratorio di Geomatica, Paolo Maschio, Francesca Matrone e tutti i componenti del DIATI per aver contribuito con le loro competenze al raggiungimento di questo obiettivo. Un ringraziamento anche all' Ente di gestione delle aree protette del parco Alpi Cozie per la disponibilità mostrata.

Un pensiero di riconoscenza alla famiglia, ai miei genitori e ai miei fratelli Luca e Carlotta, per il loro immenso e incondizionato amore.

Un ringraziamento speciale ad Orazio, da sempre al mio fianco.

Ringrazio i miei amici Grazia e Luciano per aver condiviso questo percorso universitario; l'avervi conosciuto mi ha arricchito come persona.

Infine, vorrei dedicare questo piccolo traguardo a me stessa, che possa essere l'inizio di qualcosa di più grande.

Allegati

Allegato 1. Report di elaborazione del software Agisoft Metashape.

Allegato 2. Report di elaborazione del software DJI Terra.

Allegato 3. Rappresentazione grafica dell'ortofoto e dettagli della nuvola di punti densa e del DTM (Digital Terrain Model).

ValTroncea_Chunk1_withMesh

Processing Report 06 December 2021

Survey Data

Fig. 1. Camera locations and image overlap.

Number of images:	2,802	Camera stations:	2,802
Flying altitude:	63.1 m	Tie points:	1,319,102
Ground resolution:	1.54 cm/pix	Projections:	9,049,198
Coverage area:	5.35 km²	Reprojection error:	0.576 pix

Camera Model	Resolution	Focal Length	Pixel Size	Precalibrated
FC6310R (8.8mm)	5472 x 3648	8.8 mm	2.41 x 2.41 µm	No
ZenmuseP1 (35mm)	8192 x 5460	35 mm	4.39 x 4.39 µm	No

Table 1. Cameras.

Camera Calibration

Fig. 2. Image residuals for FC6310R (8.8mm).

FC6310R (8.8mm)

2679 images

Type Frame		F	Resolutio 5472 x	solution 72 x 3648			Focal Length 8.8 mm				Pixel Size 2.41 x 2.41 μπ			
		Value	Error	F	Cx	Су	B1	B2	К1	К2	КЗ	P1	P2	
	F	3628.87	0.0057	1.00	-0.02	-0.38	-0.08	0.01	-0.26	0.26	-0.24	-0.01	-0.09	
	Сх	-2.47204	0.0053		1.00	0.01	-0.01	0.15	-0.00	-0.00	0.00	0.86	0.00	

•	5020.07	0.0057	1.00	0.02	0.50	0.00	0.01	0.20	0.20	0.24	0.01	0.05
Сх	-2.47204	0.0053		1.00	0.01	-0.01	0.15	-0.00	-0.00	0.00	0.86	0.00
Су	4.41787	0.0058			1.00	-0.26	0.01	-0.01	-0.01	0.01	-0.01	0.71
B1	0.0197908	0.0017				1.00	0.00	0.01	-0.04	0.04	0.01	-0.06
B2	0.303736	0.0015					1.00	0.00	-0.00	0.00	-0.02	0.01
К1	-0.00220768	5.2e-06						1.00	-0.96	0.90	-0.01	-0.01
К2	-0.0141301	1.6e-05							1.00	-0.98	0.01	-0.02
КЗ	0.0120362	1.4e-05								1.00	-0.01	0.02
P1	-0.00113768	4.3e-07									1.00	-0.00
P2	-0.000707913	3.8e-07										1.00

Table 2. Calibration coefficients and correlation matrix.

Camera Calibration

Fig. 3. Image residuals for ZenmuseP1 (35mm).

ZenmuseP1 (35mm)

123 images

Type Frame			Resoluti 8192 x	on 5 46	0	Focal Length 35 mm					Pixel Size 4.39 x 4.39 μm		
		Value	Error	F	Cx	Су	B1	B2	К1	К2	КЗ	P1	P2
	F	8190.77	0.039	1.00	-0.06	-0.18	-0.05	-0.02	-0.43	0.39	-0.35	-0.02	0.02
	Сх	-25.8712	0.063		1.00	-0.02	0.02	0.10	-0.02	0.02	-0.02	0.87	-0.01
	Су	24.8744	0.057			1.00	-0.14	0.01	-0.00	-0.01	0.01	-0.02	0.75
	B1	1.23484	0.011				1.00	0.01	0.02	-0.05	0.05	-0.00	0.00
	B2	-0.140795	0.011					1.00	-0.01	0.00	-0.00	0.03	0.01
	К1	-0.0495975	4.6e-05						1.00	-0.97	0.91	-0.02	0.00
	К2	0.0198813	0.0003							1.00	-0.98	0.03	-0.02
	КЗ	-0.101526	0.00056								1.00	-0.04	0.02
	P1	-0.00126043	2.1e-06									1.00	-0.02
	P2	0.000788658	1.9e-06										1.00

Table 3. Calibration coefficients and correlation matrix.

Camera Locations

Fig. 4. Camera locations and error estimates. Z error is represented by ellipse color. X,Y errors are represented by ellipse shape. Estimated camera locations are marked with a black dot.

X error (mm)	Y error (mm)	Z error (mm)	XY error (mm)	Total error (mm)
3.35966	3.18334	5.10162	4.62828	6.88822

Table 4. Average camera location error.

X - Easting, Y - Northing, Z - Altitude.

Ground Control Points

Fig. 5. GCP locations and error estimates.

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape. Estimated GCP locations are marked with a dot or crossing.

Count	X error (cm)	Y error (cm)	Z error (cm)	XY error (cm)	Total (cm)
36	1.08602	1.37365	1.00564	1.7511	2.01932

Table 5. Control points RMSE.

X - Easting, Y - Northing, Z - Altitude.

Count	X error (cm)	error (cm) Y error (cm)		XY error (cm)	Total (cm)	
6	2.74364	1.51237	3.57456	3.13286	4.75314	

Table 6. Check points RMSE.

X - Easting, Y - Northing, Z - Altitude.

Label	X error (cm)	Y error (cm)	Z error (cm)	Total (cm)	Image (pix)
G01221	1.99406	-1.21273	1.52169	2.78613	0.923 (10)
G01297	-0.855991	0.714934	0.318798	1.15995	0.464 (10)
G01306	-0.868929	0.526571	1.79866	2.06579	0.606 (10)
G01313	1.07611	-0.701402	-0.163502	1.29488	0.529 (10)
G01321	-0.849093	0.686231	0.587507	1.23977	0.446 (10)
G01322	-0.563433	0.362549	-0.0053567	0.67002	0.294 (15)
G01342	-1.02048	0.456651	2.08543	2.36621	0.967 (10)
G01352	0.224935	-0.0681647	-1.40634	1.42584	0.559 (10)
G01360	0.998771	-0.539716	1.81806	2.14341	0.742 (15)
G01370	-0.458733	-0.0222666	0.518628	0.692753	0.494 (10)
G01379	-0.840465	-1.14324	0.898177	1.67932	0.637 (14)
M5001	-2.53197	-1.03841	0.254152	2.74841	0.572 (10)
M5003	-0.927765	-2.06711	0.43391	2.30694	1.539 (10)
M5007	0.358687	-0.657934	-0.0593292	0.7517	0.385 (10)
M5013	-0.218335	1.33256	0.699674	1.52083	0.555 (10)
M5014	-0.228577	0.682313	0.0627965	0.722317	0.440 (10)
M5016	-1.85259	0.800417	0.514052	2.08255	0.564 (15)
M5017	-0.523273	1.12369	0.209122	1.25707	0.533 (10)
M5018	-0.712406	2.42086	1.13735	2.76797	0.600 (10)
M5019	-1.20176	0.76453	-0.0112348	1.42438	0.545 (10)
m5075	-2.01667	1.94396	0.842573	2.92504	0.497 (15)
m5076	-0.619951	0.556672	1.24752	1.50018	0.675 (10)
m5300	-1.51585	-0.893041	1.34718	2.2159	0.573 (14)
m5301	-1.48356	-1.9481	1.70437	2.98344	0.641 (15)
m5401	0.436235	-1.57602	-0.239054	1.65266	0.471 (15)
m5402	0.612153	-1.83529	0.0824813	1.93645	0.446 (15)
m5403	0.759308	-1.31534	0.218154	1.53436	0.450 (15)
m5600	-0.00550791	-0.181945	-0.115141	0.215387	0.352 (15)
V01281	0.203179	1.38321	-0.965116	1.69882	0.940 (10)
V5008	-0.553892	-2.18342	0.243422	2.26569	0.478 (10)
V5009	-1.34895	-3.3682	2.11252	4.19847	1.169 (10)

Label	X error (cm)	Y error (cm)	Z error (cm)	Total (cm)	Image (pix)
V5010	0.0747772	-2.79825	1.40922	3.13396	0.641 (15)
V5012	-1.72834	-1.20658	0.143831	2.11275	0.543 (10)
V5015	-0.0130153	1.38552	1.05667	1.74252	1.049 (10)
v5073	-1.58266	0.526181	-1.24552	2.08159	2.090 (10)
v5406	0.936843	0.765084	-0.291082	1.24409	0.456 (15)
Total	1.08602	1.37365	1.00564	2.01932	0.719

Table 7. Control points.

X - Easting, Y - Northing, Z - Altitude.

Label	X error (cm)	Y error (cm)	Z error (cm)	Total (cm)	Image (pix)
G01216	2.50361	-1.34045	4.19112	5.06265	0.566 (10)
G01323	-1.00225	0.717122	4.64575	4.80643	0.311 (15)
G01371	-1.88368	-2.24123	3.9771	4.93849	0.566 (13)
M5002	-4.45457	-1.88741	3.51186	5.97818	0.289 (10)
m5074	-3.79717	1.68128	3.05706	5.15663	0.441 (10)
v5404	0.287909	-0.0187416	0.143445	0.32221	0.401 (15)
Total	2.74364	1.51237	3.57456	4.75314	0.438

Table 8. Check points.

X - Easting, Y - Northing, Z - Altitude.

Digital Elevation Model

Fig. 6. Reconstructed digital elevation model.

Resolution: Point density: 3.07 cm/pix 0.106 points/cm²

Processing Parameters

General

Cameras Aligned cameras Markers Coordinate system Rotation angles **Point Cloud** Points RMS reprojection error Max reprojection error Mean key point size Point colors Key points Average tie point multiplicity **Alignment parameters** Accuracy Generic preselection Reference preselection Key point limit Key point limit per Mpx Tie point limit Exclude stationary tie points Guided image matching Adaptive camera model fitting Matching time Matching memory usage Alignment time Alignment memory usage **Optimization parameters** Parameters Adaptive camera model fitting Optimization time Date created Software version File size **Depth Maps** Count Depth maps generation parameters Quality Filtering mode Processing time Memory usage Date created Software version File size **Dense Point Cloud** Points Point colors Depth maps generation parameters Quality

2802 2802 42 WGS 84 / UTM zone 32N (EPSG::32632) Omega, Phi, Kappa 1,319,102 of 1,593,054 0.234266 (0.576457 pix) 0.976657 (61.8753 pix) 2.4106 pix 3 bands, uint8 No 8.02405 High No Source 40,000 1,000 4,000 No No No 4 hours 40 minutes 3.49 GB 1 hours 14 minutes 2.12 GB f, b1, b2, cx, cy, k1-k3, p1, p2 No 1 minutes 3 seconds 2021:11:02 21:11:38 1.7.3.12426 230.16 MB 2802 Hiah Moderate 1 days 6 hours 13.97 GB 2021:11:05 22:16:13 1.7.3.12426 21.08 GB 1,065,457,798 3 bands, uint8 High

Filtering mode Processing time Memory usage Dense cloud generation parameters Processing time Memory usage Date created Software version File size Model Faces Vertices Vertex colors Texture Depth maps generation parameters Quality Filtering mode Processing time Memory usage **Reconstruction parameters** Surface type Source data Interpolation Strict volumetric masks Processing time Memory usage **Texturing parameters** Mapping mode Blending mode Texture size Enable hole filling Enable ghosting filter UV mapping time UV mapping memory usage Blending time Blending memory usage Date created Software version File size DEM Size Coordinate system **Reconstruction parameters** Source data Interpolation Processing time Memory usage Date created Software version File size Orthomosaic Size Coordinate system Colors **Reconstruction parameters** Blending mode

Moderate 1 days 6 hours 13.97 GB 14 hours 1 minutes 19.43 GB 2021:11:06 12:17:23 1.7.3.12426 15.02 GB 92,782,680 46,472,163 3 bands, uint8 4,096 x 4,096, 4 bands, uint8 High Moderate 1 days 6 hours 13.97 GB Arbitrary Dense cloud Enabled No 2 hours 23 minutes 24.38 GB Orthophoto Mosaic 4,096 Yes No 8 minutes 3 seconds 8.35 GB 1 hours 19 minutes 15.44 GB 2021:12:02 07:53:13 1.7.3.12426 3.94 GB 113,162 x 183,981 WGS 84 / UTM zone 32N (EPSG::32632) Dense cloud Enabled 55 minutes 51 seconds 530.38 MB 2021:11:08 10:15:27 1.7.3.12426 16.53 GB 115,882 x 188,402 WGS 84 / UTM zone 32N (EPSG::32632) 3 bands, uint8 Mosaic

Surface Enable hole filling Enable ghosting filter Processing time Memory usage Date created Software version File size

System

Software name Software version OS RAM CPU GPU(s) DEM Yes No 1 hours 3 minutes 6.06 GB 2021:11:08 11:04:26 1.7.3.12426 27.63 GB

Agisoft Metashape Professional 1.7.3 build 12426 Windows 64 bit 127.91 GB Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz Quadro M2000

DJI TERRA QUALITY REPORT FOR AEROTRIANGULATION

Image Information Overview

Item	Value
Number of Images	2670
Image with Camera POS	2669
Calibrated Image	2669
Constrain with Image POS Data	Yes
Georeferencing RMSE	0.024 m
Connected Components	1
Max Components Images	2669
Aerotriangulation Time	46.874min

GCP Information Overview

Control Point

GCP								
Name	dx (m)	dy (m)	dz (m)	Name	dx	(m)	dy (m)	dz (m)
G01216	0.010529	-0.014821	0.008767	M5017	0.00	01248	0.005888	0.005922
G01221	-0.002250	-0.003163	0.006417	M5018	-0.0	02313	0.013519	0.016102
G01297	-0.005951	0.001336	-0.016648	M5019	-0.0	10724	0.001430	-0.003991
G01306	-0.000353	0.004294	0.020409	m5075	-0.0	15459	0.009252	0.004838
G01313	0.007448	-0.004587	-0.005076	m5076	-0.0	14339	-0.003307	0.017252
G01321	-0.002673	0.004341	0.010333	m5300	-0.00	09434	-0.003531	0.016046
G01322	0.000924	0.005071	-0.035518	m5301	-0.00	04682	-0.016014	0.004954
G01323	-0.004468	0.002352	0.040179	m5401	0.00	06510	-0.013326	0.005160
G01342	-0.013597	0.001968	0.017198	m5402	0.01	7668	-0.012253	0.003799
G01352	-0.002937	0.005265	-0.025387	m5403	-0.0	01396	-0.004695	-0.002118
G01360	0.012045	-0.011595	0.015593	m5600	-0.0	01282	-0.000477	0.013202
G01370	-0.003801	0.007329	-0.007318	V01281	0.00	8308	0.009709	-0.016551
G01371	-0.011622	-0.012465	0.011365	V5008	-0.0	01293	-0.017055	-0.002042
G01379	0.006184	-0.012569	-0.001856	V5009	-0.0	17722	-0.025586	0.021464
M5001	-0.010051	-0.007903	0.003778	V5010	0.00	3355	-0.012168	-0.008542
M5003	0.006462	-0.000228	-0.000614	V5012	-0.0	07513	0.004452	-0.008914
M5007	-0.008238	-0.006533	-0.005055	V5015	0.00	0269	0.006798	-0.004346
M5013	0.004410	0.002858	-0.003283	v5073	-0.0	15017	0.013321	-0.008887
M5014	-0.006931	0.002093	0.008537	v5404	-0.002394		-0.002211	0.012233
M5016	-0.016350	0.001541	0.007360	v5406 0.010830 0.008505 -0.015911			-0.015911	
			Control I	Point RMSE				
	dx (m)		dy	(m)			dz (m)	
	-0.002415		-0.001829 0.002471					1

Camera Calibration Information

Camera Model FC6310R

Item	Focal	Сх	Су	K1	К2	К3	P1	P2
	Length							
Initial	3629.94	2732.77	1827.71	-0.00260343	-0.01288879	0.01087339	-0.00072059	-0.00115413

Block0

Item	Focal	Сх	Су	К1	К2	КЗ	P1	P2
	Length							
Optimi zed	3629.80	2732.81	1827.7	-0.00265283	-0.01275113	0.0107548	-0.00071964	-0.00114976

Covariance Matrix

	Error	Focal Length	Cx	Су	K1	K2	К3	P1	P2
Focal Length	0.01523227	1.00000000	0.00542669	-0.48998905	-0.32043534	0.28501938	-0.25396307	-0.12043241	-0.00533707
Cx	0.01425172	0.00906958	1.00000000	-0.01049180	0.00024528	-0.00031772	0.00037318	-0.00227653	0.87314245
Су	0.01593367	-0.19352355	-0.01708761	1.00000000	0.00050289	-0.00025349	0.00023863	0.72107842	-0.01334539
K1	0.00001476	-0.28137543	0.00410552	-0.00360045	1.00000000	-0.96941175	0.91109431	-0.01844750	0.00026422
K2	0.00004386	0.26626817	-0.00559523	-0.02649631	-0.96706388	1.00000000	-0.98219569	-0.02079700	0.00167406
K3	0.00003855	-0.23508705	0.00510881	0.02985476	0.90955504	-0.98291688	1.00000000	0.02325961	-0.00308268
P1	0.00000106	0.10509821	-0.00231296	0.70954122	-0.00882445	0.00427522	-0.00442306	1.00000000	-0.00607849
P2	0.00000120	-0.00011098	0.87161095	-0.00819911	-0.00227862	0.00388877	-0.00473953	-0.00198525	1.00000000

DJI TERRA QUALITY REPORT FOR 2D RECONSTRUCTION

<u>Parameters</u>

Parameters	Value
Mapping Scene	Urban
Resolution	High
Cluster Computation	No

TDOM Preview

Map Information Overview

Item	Value
TDOM GSD	0.012 m
Covered Area	0.404569 km2
Average Flight Altitude	45.002 m

Performance Overview

Stage	Time
Image Distortion	5.200min
Correction and	
Color Correction	
Densification	45.700min
TDOM Generation	1h 28.083min

DSM Preview

Scene Overlapping

DJI TERRA QUALITY REPORT FOR 3D RECONSTRUCTION

<u>Parameters</u>

Parameters	Value
Mapping Scene	Normal
Resolution	High
Cluster Computation	No

<u>Output</u>

Output List
XML File
PLY File
B3DM File
PNTS File
OBJ File
OSGB Fil
LAS File
PLY Point Cloud File
PCD File
S3MB File
S3MB Point Cloud File
I3S File

Performance Overview

Item	Value
MVS Time	3h 44.703min
MVS Block Count	8

ORTOMOSAICO 5cm/pix

Tempo di elaborazione 1 h

NUVOLA DI PUNTI DENSA

Tempo di elaborazione 30 h

DTM (Digital Terrain Model)

Tempo di elaborazione 1 h

