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Abstract

Hypertension is one of the main risk factors for cardiovascular diseases
(CVDs), leading cause of death all over the world. The continuous blood
pressure (BP) monitoring can offer a valid tool for patient care, and using it
together with other parameters, such as heart rate, breath frequency, phys-
ical activity, etc, could strongly improve prevention of CVDs.
Nowadays, invasive methods are the only reliable methods for BP continu-
ous monitoring, despite they may cause several damage and discomfort to
the patient. Instead non-invasive techniques are able to return BP values
every few minutes, thus today they are not considered as optimal methods
to continuously monitor BP trend.
In this thesis work, the cuff-less estimation of continuous BP through the
pulse transit time (PTT) and the heart rate (HR) using regression tech-
niques is investigated. This method achieves the non-invasive estimation
of the BP with an acceptable low error, according to the AAMI/ISO/ESH
guidelines and taking into account the accuracy of the control device, which
returns the reference BP values.
Several novelties are introduced in this work. First of all, the use of elec-
trocardiographic (ECG) and photopletismographic (PPG) signals acquired
from healthy subjects with wearable devices: the SHIMMER (Sensing Health
with Intelligence, Modularity, Mobility and Experimental Reusability). In lit-
erature, similar methods have been implemented but they exploited physio-
logical signals extracted mostly from online databases (e.g. MIMIC database).
Another novelty is represented by the implementation of preprocessing of the
ECG and PPG signals, and by the research and processing of the features
related to them in order to continuously monitor BP in a non-invasive way,
exploiting linear regression techniques. In fact, recent studies have been
demonstrated that HR and PTT can be linearly combined to obtain BP
values. So, the manipulation of these two parameters is the key point to
non-invasively estimate reliable BP values.
Definitely, the work described here aims to give an input to the research
of a method which allows the continuously monitoring of the BP in a non-
invasive way that is equally dependable with respect to the current methods
and that is easy for the patient to carry out. The comfort in use results in
measuring the BP at different times of the day without causing discomfort
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to the patient, and wherever he/she is without necessarily being in a clinical
setting.
Therefore, the proposed method is also intended for the integration of this
type of algorithm on wearable devices, in particular on those developed for
the European SINTEC project.
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Achronimous table

ACHRONIMOUS MEANING

ABP Arterial Blood Pressure

AC Alternating Current

AM Ante Meridiem

BMI Body Mass Index

BP Blood Pressure

CVDs Cardiovascular Diseases

DBP Diastolic Blood Pressure

DC Direct Current

ECG Electrocardiography/Electrocardiographic

HR Heart Rate

IBC Intra-Body Communication

IoT Internet of Things

LED Light Emitting Diode

MAE Mean Absolute Error

MLR Multivariate Linear Regression

PCB Printed Circuit Board

PM Post Meridiem

PPG Photoplethysmography/Photoplethysmographic

PTT Pulse Transit Time

RFR Random Forest Regression

RR Ridge Regression

SBP Systolic Blood Pressure

SD Standard Deviation

SHIMMER Sensing Health with Intelligence, Modularity,
Mobility and Experimental Reusability

SINTEC Soft Intelligence Epidermal Communication platform

SVR Support Vector Regression
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Chapter 1

Introduction

The thesis work is based on improving the performance of the SINTEC
medical device algorithm exploiting physiological signals recorded with the
reference devices. SINTEC-Soft intelligence epidermal communication plat-
form is an European project which is born in June 2019 and aims to develop
an innovative technology capable of monitoring the health of the wearer [1];
in particular, the final device should be able to return the subject’s heart
rate, systolic (SBP) and diastolic blood pressure (DBP) during a periodic
monitoring. The entire work has been carried out at the LINKS Foundation,
which has been operating for about 20 years on a national and international
level and it aims to promote, lead and enhance innovation processes through
research projects with a strong innovative potential and which can create
an impact on the production and the public sector, comparing themselves
with an international context [2].
The main idea of the project is based on the use of a new technology with
water-repellent features and dynamic with permeable and extensible en-
capsulation (e.g., intelligent patches) able to resist a vigorous action on it,
sweating and water, making it ideal for an active life [3]. Its unique features
allow the realization of an innovative intra-body communication (IBC) tech-
nology which offers secure broadband and low power transmission. [4].
SINTEC wants to provide to the need of developing new interconnection
technologies, non-invasive and which do not interfere with the life of people
who wear them. In fact, smartphones and smartwatches will give way to
what is called bodyNET, a term which refers to a network of sensors and
intelligent devices embedded in clothing, worn on our skin or implanted in
our body [5].
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1.1 Non-invasive smart technologies in clinical field

Smart wearables are the next step in the evolution of Internet of Things
(IoT). SINTEC project’s first goal aims to demonstrate the advantages of
this new technology in the clinical and sportive fields [6]. This work goes
deep just with the first one.
To do this, a PCB technology with an extensible substrate and liquid alloy
is being tested with the integration of complex embedded systems within
the substrate in order to apply it in different complex situations of the daily
life [7]. Furthermore, in the communication between sensors and hub, a new
Fat-IBC data transfer system is being developed, which aims to overcome
Bluetooth communication issues [8]. The unique features of this technology
will enable a revolution in IBC that will ensure secure communications with
high bandwidth and low power [9]. This system will make it possible to
acquire inputs with many nodes, corresponding to the sensors distributed
on the body, using the adipose layer of the integument as a vehicle for the
signal [10].
The first part of the work is focused on evaluating the performance of the
reference devices: the explored sensors will be electrodes for electrophysio-
logical signals (bioimpedance) for ECG and optical sensors (LED and pho-
todiode) for PPG [11][12]. The results of these analyses will drive the ar-
chitecture of the final system which is constantly updated. The algorithm
for the extraction of physiological parameters, such as HR, PTT, SBP and
DBP has been integrated and tested. The results obtained from the valida-
tion will provide feedback for the optimization of the final device. LINKS
Foundation main focus for the SINTEC project is its applicability in a clin-
ical and hospital environment. Nowadays, just invasive methods are reliable
for continuous BP monitoring; they consist in the intrusion of invasive ar-
terial catheters (Fig. 1.1) which presents potential risks for patients, such
as infection and several vascular damage [13]. The possibility of having a
continuous and reliable non-invasive BP monitoring represents a great ad-
vantage in terms of prevention and reduction of the risk associated with
CVDs for which hypertension represents the main risk factor [14].
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Figure 1.1: Comparison between invasive arterial blood pressure (ABP) and
non-invasive PPG.

1.2 Hypertension and associated monitoring
methods

Hypertension is called the “silent killer” because of the difficulty of diagnosis
before the symptoms are evident and have already caused irreversible dam-
ages [15]. Previous studies suggested that hypertension accounts for nearly
13% of annual cardiovascular disease death; the raised blood pressure may
cause a severe damage to the vascular system, including the damage to ar-
terial wall, and may even damage the target organs like kidney and brain
[16].
The early detection of hypertension has a significant meaning in the pre-
vention of CVD death but it is critical for blood pressure monitoring de-
vices to be accurate. Particular variability in the accuracy of BP devices
compared with intra-arterial BP has been demonstrated in the cuff blood
pressure range from prehypertension to grade I hypertension (SBP 120–159
to DBP 80–99 mmHg) [17]. The mercury sphygmomanometer is the main
measuring cuff BP devices and remains largely unchanged, but there are
some evidences underlining that cuff BP may not be a good representa-
tion of the true intra-arterial BP values [18]. While cuff blood pressure is
measured at a peripheral artery, the aim is to estimate the pressure experi-
enced by the central organs supplied by the aorta as the best marker of risk
from hypertension [17]. Other BP measurement methods are represented by
ambulatory BP monitoring [19], which has a high sensitivity for predicting
cardiovascular clinical outcomes, or automated in-clinic (unobserved) blood
pressure [20]. However, if the devices in the hands of doctors are substan-
tially inaccurate, the risk in prediction of the clinical outcome is always
present. Ultimately, there is the necessity of more accurate ways to measure
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blood pressure, which must lead to greater agreement between international
hypertension guidelines, improved diagnostic confidence, improved clinical
decisions, and better patient clinical outcomes [17].
In order to achieve the early diagnosis and decrease the mortality of hyper-
tension, it is important to find a non-invasive monitoring method which is
safe and equally reliable as the invasive one. Developing a device with these
features could provide a valid contribution to the prevention and monitoring
of cardiovascular diseases.
With these assumptions, SINTEC aims to have a revolutionary impact on
the patients’ lives with CVDs. It is hoped that the number of people who
track their blood pressure will increase by providing them a convenient and
reliable means of monitoring [21]. This could prevent the onset or degener-
ation of CVDs which nowadays are still the leading cause of mortality all
over the world.

1.3 Progress beyond the reference technology

Demonstrations in clinical performance applications will show several advan-
tages over current reference devices. The main ones should be in comfort
and in the not much movement of the sensor over the skin surface [22]. Its
major impact will not be in replacing other wearable devices but rather in
providing new capabilities: wearables are considered to give an huge impact
on society with a new intelligent support which aims to improve life, e.g.,
nomadic healthcare and telemedical technology [23].
The major potential impacts are:

• PCB manufacturability: the SINTEC project will inspire those elec-
tronics production companies to the necessary investments in tech-
nology for both stretchable insulator materials, as well as for liquid
conductive materials [24];

• Healthcare: aging and/or poor health people increase the demand
for constant monitoring, and limited existing medical resources and
expensive conventional medical treatments are unable to satisfy these
requirements [25]. Therefore, it will become necessary to replace the
conventional healthcare system with a new, efficient and economic one.
Wearable medical sensor technology will give a significant contribution
in tackling these challenges [26].

1.4 ECG and PPG for BP monitoring

As previously said, the final device should return DBP and SBP values. The
first (also called minimum pressure) is the value of the blood pressure when
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the heart of an individual relaxes; in other words, it is the value that BP
assumes when the heart rests between an heartbeat and the next one [27].
On the other hand, SBP (or maximum pressure) is the BP value when an
individual’s heart contracts, therefore the BP value at each heartbeat [27].
In order to measure the physiological parameters of interest in a non-invasive
way, it is necessary to record ECG and PPG signals: this allows the extrac-
tion of the two features (PTT and HR) to be included in the regression
equations shown in Eq. (1.1), and finally obtain the SBP and DBP values.(

SBP = α0 + αPTT + βHR

DBP = β0 + γPTT + δHR
(1.1)

1.4.1 ECG

The ECG signal is obtained in a non-invasive way, and visually represents
electrical and chemical cardiac muscle fibres activity during the cardiac cy-
cle. An important role is played by QRS complex, a series of intense upward
and downward deflections due to ventricular depolarization and it consists
of three waves, namely Q, R and S (Fig. 1.2)[28]; in particular, once the
time interval ∆t between two consecutive R-peaks (reflecting left ventricle
depolarization activity) is found, it is possible to calculate the HR (Fig. 1.3),
which formula is the following:

HR =
1

∆t
(1.2)

Figure 1.2: ECG waveform.
Figure 1.3: Time interval between
two consecutive R-peaks.
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1.4.2 PPG

PPG instead is a simple and low-cost optical technique used to detect blood
volume changes in the microvascular bed of tissue at the skin surface level
[29]. PPG waveform comprises a pulsatile (‘AC’) physiological waveform
attributed to cardiac synchronous changes in the blood volume with each
heartbeat, and is superimposed on a slowly varying (‘DC’) baseline with
various lower frequency components attributed to respiration, sympathetic
nervous system activity and thermoregulation (Fig. 1.4)[29]. Thanks to this
waveform, it is possible to calculate PTT as the time interval between an
ECG R-peak and the nearest S-peak of the PPG signal (Fig. 1.5).

Figure 1.4: PPG waveform.
Figure 1.5: Time interval between
R-peak and S-peak.

Both ECG and PPG signals have been applied in many different clini-
cal settings, including clinical physiological monitoring (e.g., PPG in blood
oxygen saturation and respiration, ECG in cardiac output, etc). Blood pres-
sure is a very important clinical parameter to measure and in this work it is
explained how to calculate it through manipulating these two physiological
signals.

12



Chapter 2

Materials and methods

A database has been created. It includes 50 ECG and PPG recordings from
six different healthy subjects, two men and four women, acquired with wear-
able sensors. All the subjects are between the ages of 20 and 30 and they
are of normal weight. For more detailed information about the population,
refer to the column relating to each subject in the tables in Appendix E.
Although the number of the population may seem small, the validity of this
work finds strength in the large number of measurements also taken from
the same subject, since blood pressure values of the same individual are
affected by variability during the day [30]. For this reason, ECG and PPG
recordings of the same subject were acquired at different times of the day.
Before proceeding with the acquisition of the recordings, each subject signed
the appropriate informed consent with the attached information note relat-
ing to the SINTEC project (see Appendix A).

2.1 Devices, sensors and software

In order to record physiological signals, SHIMMER devices have been used
(see Fig. 2.1). SHIMMER is a highly extensible wireless sensor platform
which can be used for biomedical research applications, and its wireless and
lightweight nature would be suited for applications of physiological sensing
under ambulatory or home monitoring conditions [31].
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Figure 2.1: Shimmer modules by which physiological signals were recorded.

2.1.1 ECG device and sensors

ECG signals have been recorded with Shimmer3 EXG Unit SR47-4-0 mod-
ule (Fig. 2.2) and Covidien ECG electrodes were used, which consist in
disposable, round shape, Ag/AgCl electrodes with solid hydrogel, adhesive
patches, button connection and foam support (Fig. 2.3). These ECG snap-
on electrodes feature a patented pre-gelled adhesive side with non-irritating
gel, especially developed to prevent allergic reactions; the foam electrode is
latex free and therefore suitable for every skin type [32].
The associated block diagram in Fig. 2.4 shows a defibrillation protection,
an Electromagnetic Interference (EMI) filter, a Right-Leg Drive (RLD) am-
plifier to counteract common-mode interference, three Programmable Gain
Amplifiers (PGA) increasing the amplitude of the input signal, and an Ana-
log to Digital Converter (ADC) to convert the input analogue signal to a
digital representation using a 24-bit signed integer value for each sample.

Figure 2.2: Shimmer3 EXG
Unit SR47-4-0 for ECG
recordings.

Figure 2.3: Covidien ECG
electrode and Shimmer snap
lead.
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Figure 2.4: Shimmer3 EXG Unit SR47-4-0 block diagram [33].

2.1.2 PPG device and sensor

PPG signals have been acquired with Shimmer3 GSR+ Unit SR48-3-0 mod-
ule (Fig. 2.5). The GSR+ (Galvanic Skin Response) unit provides connec-
tions and preamplification for one channel of Galvanic Skin Response data
acquisition and it is suitable for measuring the electrical characteristics or
conductance of the skin, as well as capturing a PPG signal and converting
to estimate HR, using the Shimmer clip (Fig. 2.6) [34]. The optical pulse
circuitry includes an on-board amplifier and filter circuit for initial condi-
tioning of the signal [35]. Moreover, the clip embeds a green light LED and
a detector side by side, thus the operating configuration is the reflection
(”adjacent”) mode [29].

Figure 2.5: Shimmer3 GSR+ Unit SR48-3-0 for PPG recordings.
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Figure 2.6: Shimmer PPG optical pulse clip to derive PPG-to-HR from the
Shimmer3 GSR.

2.1.3 Software

To configure the Shimmer devices and export their data, the software Con-
sensysPRO v1.6.0 – 64bit was used. Before writing the configuration via
their board (Fig. 2.7), in Shimmer3 GSR+ only the PPG sensor was turned
on (Fig. 2.8), instead with Shimmer3 EXG only the LA-RA derivation was
recorded and only the ECG sensor was enabled (Fig. 2.9). The EXG mod-
ule was set as master and the sampling frequency was set to 504.12 Hz (Fig.
2.10), since the ECG requires a minimum sampling frequency of 500 Hz [36]
and the software allows to selection of predefined frequency values. Instead,
the PPG requires a minimum sampling frequency of 100 Hz [37].

Figure 2.7: Consensys Base 6U to set the Shimmer devices and to export
data from Shimmers to the calculator.
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Figure 2.8: In Shimmer3 GSR+ only PPG sensor has been turned on for
PPG recordings.

Figure 2.9: In Shimmer3 EXG only the option ”LA-RA derivation” has been
turned on for ECG recordings.

Figure 2.10: The sampling frequency has been set to 504.12 Hz and Shim-
mer3 EXG has been set as the master device.

To record signals, both Shimmers have to be undocked from the board
and the opposite action must be performed in order to stop the recordings.
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When the Shimmers are undocked, they start to record the signals syn-
chronously thanks to the Bluetooth connection (Fig. 2.11).

Figure 2.11: The Shimmers start to record the physiological signals when
both the devices are undocked from the board; while recording, the Shim-
mers are synchronized through via Bluetooth.

To export data, once the Shimmers are docked to the board after record-
ing the physiological signals, all data are transferred to the calculator as .mat
files.

2.2 Protocols

Each subject from whom physiological signals were recorded was sit and
relaxed. As said before, the recordings were acquired in different moments
of the day and each one lasts about 20 minutes.

2.2.1 ECG recording

The ECG sensors configuration is shown in Fig. 2.12: the electrodes in the
white and black pin were placed on the subject’s chest (on the right and on
the left respectively), instead the electrode in the green pin was placed on
the right leg as reference.
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Figure 2.12: ECG electrodes positioning for LA-RA derivation in ECG
recordings.

2.2.2 PPG recording

The PPG Shimmer clip was clamped to the left index of the subject and
covered with a thick black tie in order to make a better adhesion of the
clip to the finger’s skin, and to avoid possible external environment light
interference (Fig. 2.13).

Figure 2.13: PPG optical pulse clip on the left index covered by a thick,
black tie.
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2.2.3 OMRON HeartGuide

The OMRON HeartGuide (Fig. 2.14) is a punctual pressure detector which
returns the SBP and DBP values which are necessary to train the algorithm
(Fig. 2.15). The device is worn like a watch and during pressure measure-
ment, the arm must be positioned as in Fig. 2.16. This blood pressure
monitor uses the oscillometric method for BP measurement: when the band
inflates, the monitor senses the pressure pulsations of the artery underneath
the band [38]. Moreover, the device returns SBP and DBP values approx-
imately in a minute, since the cuff detects the last Korotkov noise (instant
in which the pressure of the cuff is equal to the DBP) one minute after
detecting the first one (instant in which instead the pressure of the cuff cor-
responds to the SBP) [39].
The OMRON’s values are written into an Excel sheet which is turned into
a .csv file after converting time values into timestamp units. Then, the file
is passed to the algorithm.
Fig. 2.17 shows one of the subjects with all the attached sensors.

Figure 2.14: OMRON HeartGuide
as the control device.

Figure 2.15: OMRON HeartGuide
display with SBP and DBP control
values [40].

Figure 2.16: Arm position while measurements are carried out with OMRON
HeartGuide [40].
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Figure 2.17: Subject 3 with all the attached sensors: Shimmer ECG module
with Covidien electrodes, Shimmer PPG module with Shimmer clip and
OMRON HeartGuide.
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Chapter 3

The algorithm

The developed algorithm is written in Python, an interpreted high-level
general-purpose programming language [41] and it is divided into seven sec-
tions, each one focused on a phase of the process leading to the predicted
SBP and DBP values. The seven steps are signal preparing, signal filtering,
peaks detection, feature extraction, OMRON data preparing, feature reduc-
tion and regression analysis.
The complete code is shown in Appendix F, while the high-level structure
the algorithm is shown in Fig. 3.1.

Figure 3.1: Algorithm structure, from data reading to regression process.
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3.1 Preparation of signals

Figure 3.2: Preparation of ECG and PPG flowchart.

For each subject, first the 20-minutes ECG and PPG recordings together
with the reference SBP and DBP values were acquired, then they are pro-
cessed by the algorithm.
One of the fundamental requirements for the algorithm to work correctly
is that the ECG and PPG signals are synchronized with each other (see
Fig. 3.2). Firstly, the first sample of both signals is considered in order to
make the signals start at the same time (Fig. 3.3). Then, the first samples
(20 seconds) are removed because they could be affected by noise due to
the undocking from the board (Fig. 3.4), and signals are cut at the same
length. After that, signals are aligned through the synchronization of their
timestamp arrays (Fig. 3.5): asynchrony between Shimmer devices could
happen during recording because of Bluetooth connection, which could be
discontinuous [42].
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Figure 3.3: Signals before and after alignment.

Figure 3.4: Removal of the first noisy samples (20 seconds).

Figure 3.5: Timestamp arrays before and after the synchronization process.
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3.2 Signal filtering

Figure 3.6: Signal filtering flowchart, relating to the baseline removal and
to the PPG filtering.

Both ECG and PPG signals are affected by 50 Hz noise and by the power
variation with respect to the zero (baseline), so some processing is needed
(Fig. 3.6). In the case of ECG the 50 Hz noise is not a problem for the
purpose of the work, because the R-peaks are clearly visible and easily de-
tectable; thus, it is necessary only to remove the baseline through the calcu-
lation of the signal lower envelope curve and subtracting it from the signal
itself (Fig. 3.7).

Figure 3.7: ECG baseline removal through subtracting the signal’s lower
envelope curve.

For PPG instead, 50 Hz noise makes the peaks detection more difficult,
so a 7-order low-pass Butterworth filter (Fig. 3.8) is implemented in order
to make the signal smoother (Fig. 3.9). After that, the baseline is removed
at the same way as the ECG signal (Fig. 3.10).
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Figure 3.8: Magnitude and phase of the 7-order low-pass Butterworth filter.
The choice of the order of the filter is due to the fact that 8 is the minimum
coefficients number which is sufficient to obtain the required noise attenua-
tion.

Figure 3.9: PPG before and after filtering with Butterworth filter.
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Figure 3.10: PPG baseline removal through subtracting the signal’s lower
envelope curve.

3.3 Peaks detection

Figure 3.11: R-peaks and S-peaks detection flowchart, focusing on the pa-
rameters to reduce as much as possible any misdetection.

This part of the algorithm (Fig. 3.11) is focused on ECG and PPG peaks
detection in order to calculate the features which will be discussed in the
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next section.
Thanks to the findpeaks.py function, the algorithm scrolls the arrays con-
taining ECG and PPG values and detects all the peaks crossing a given
threshold, which is defined every time both for ECG and PPG signals (Figs.
3.12, 3.13). These thresholds change among different subjects but remain
constant for measurements taken from the same individual. The thresholds
are shown in the Table 5.1 in the Appendix B.
As an additional check, it is verified that no more than one peak is detected
within a 0.5 seconds time window. Detected peaks are saved in two different
zero arrays of the length of the reference timestamp array.
A more detailed flowchart of this part of the algorithm is reported in Fig.
3.14.

Figure 3.12: R-peaks detection.

Figure 3.13: S-peaks detection.
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Figure 3.14: Detailed R-peaks and S-peaks detection flowchart.
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3.4 Feature extraction

Figure 3.15: Feature extraction flowchart, from the calculation to the clean-
ing and the interpolation.

For what concerns the extraction of the features of interest (Fig. 3.15), PTT
and HR, the basic idea consists in sliding the array in which detected R-
peaks were saved at the step before, and finding the first R-peak. Starting
from that time instant, the algorithm slides both R-peaks and S-peaks ar-
rays (Fig. 3.16): if another R-peak is found before an S-peak, the previous
R-peak is discarded and the new one is taken as reference; viceversa, the
reference time instant is saved, pulse transit time and heart rate are calcu-
lated and saved in two arrays with the correspondent reference time instant.
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Figure 3.16: PTT and HR calculation.

After that, HR and PTT arrays are cleaned in order to avoid errors in
the final SBP and DBP predictions: all those PTT and HR values which
are out of range of mean ± SD related to their respective array are elimi-
nated. These higher peaks (mainly present in the PTT array as the PPG is
a more variable signal than the ECG, from which the heart rate is derived)
are due to the loss of some samples caused by the momentary disconnection
between Shimmer devices during the recordings (Fig. 3.17). In this case, in
the feature extraction step, abnormal PTT or HR values giving rise to these
peaks are calculated, and they are deleted immediately after their detection
(Fig. 3.18).
In the end, PTT and HR values are interpolated along the whole signals’
timestamp array, ready for the feature reduction process (Fig. 3.19).
Also for this algorithm section, a more detailed flowchart is reported (Fig.
3.20).

Figure 3.17: A sudden increase of the timestamp values (steps) suggests the
loss of some samples of the physiological signal.
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Figure 3.18: HR and PTT before and after cleaning.

Figure 3.19: HR and PTT interpolation along the whole timestamp array.
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Figure 3.20: Detailed feature extraction flowchart.
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3.5 OMRON HeartGuide data preparation

Figure 3.21: OMRON data preparing flowchart, relating to control SBP,
DBP and detection time.

As previously said in section 2.2.3, OMRON device returns SBP and DBP
values in about one minute after pushing the start button. For this reason,
60 seconds are subtracted from the OMRON’s timestamp values, since the
algorithm calculates the features starting from the instant in which the peak
is detected, that is one minute before the OMRON returns the results (Fig.
3.21).
Furthermore, as said before, the OMRON device returns punctual blood
pressure values, so it is necessary to interpolate them in order to distribute
them along the whole signals’ timestamp array (Fig. 3.22).

Figure 3.22: Interpolated SBP and DBP values along the whole timestamp
array.
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3.6 Feature reduction

Figure 3.23: Feature reduction flowchart, from the time-window averaging
to the resampling.

The algorithm performs the step described in Fig. 3.23 in order to avoid
serious errors due to the imperfect synchronization of the Shimmer devices.
In particular, the previously interpolated SBP and DBP values provided by
the OMRON HeartGuide, together with pulse transit time and heart rate
values acquired from the Shimmers are averaged within a 10 seconds time
window (for robustness against any artifact and misdetections [43]), and the
result of each interval is written in correspondence of each timestamp value
of the same window (Fig. 3.24). After discussing with the sensors’ manufac-
turers, it was determined that this was a possible solution to optimize the
algorithm’s decision-making process, while a moving average would have en-
tailed a considerable computational complexity, in addition the algorithm’s
ability to predict sudden changes in blood pressure would decrease.
Moreover, HR, PTT, SBP and DBP values are resampled with a shorter
timestamp array in order to reduce the computational time of the algorithm
during the regression phase, which will be discussed in the next section.
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Figure 3.24: SBP and DBP values before and after the feature reduction.

3.7 Regression analisys

Linear regression has been around for a long time and it is still a useful and
widely used statistical learning method [44]. It is a very straightforward
simple linear approach for predicting a quantitative response Y on the basis
of a single or more predictor variables X, and it assumes that there is ap-
proximately a linear relationship between X and Y [45]. For this work, there
are two predictors, which are PTT and HR; so, it is necessary the use of
a multivariate regression model that could be represented by the regression
line in Eq. (3.1), where β0 is the intercept, while the other β coefficients are
interpreted each one as the average effect on y of a one unit increase in its
respective predictor x, holding the other predictors fixed.

y = β0 + β1x1 + β2x2 (3.1)

For the purpose of the work, the algorithm implements four different regres-
sion processes, each one with two different dataset divisions:

• Without any time interval: the dataset is divided into training set (the
first 70% of the samples) and test set (the last 30% of the samples);

• With a 10-seconds time interval: the dataset division is realized through
a 10-seconds window which slides across the first 70% of the samples
to build the training set, which will be a matrix with many columns
as predictors; the test set is built with the same time window sliding
through the last 30% of the dataset samples.

The four different implemented regression processes are the following:

• Multivariate Linear Regression (MLR): instead of fitting a separate
simple linear regression model for each predictor, a better approach
is to extend the simple linear regression model so that it can directly
accommodate multiple predictors; this can be done by giving each
predictor a separate slope coefficient in a single model, as in the Eq.
(3.1).

• Random Forest Regression (RFR): so called because the base con-
stituents of the ensemble are tree-structured predictors and each of
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these is constructed using an injection of randomness; a random forest
is a collection of tree predictors h(x;θk), where x represents the ob-
served input (covariate) vector with associated random vector X, and
the θk are independent and identically distributed random vectors [46].
For regression, the random forest prediction is the unweighted average
over the collection.

y(x) =
1

K

KX
k=1

h(x; θk) (3.2)

In the algorithm, the implemented RandomForestRegressor().py func-
tion requires as inputs three parameters. The first one is the n estimators,
representing the number of trees in the forest and which value is set
to 100, as the default one. The second parameter is the random state,
which controls both the randomness of the trees creation and the sam-
pling of the features to consider when looking for the best split at
each node [47]. The last parameter is the error criterion and the mean
absolute error (MAE) has been chosen.

• Ridge Regression (RR): it is a form of Bayesian estimation. Estimators
such as ridge are the methods of choice when the a priori information
is less precise [48]. The a priori assumptions are that the regression
coefficients are zero except the constant term, and that the variances
of the coefficients are equal [48]. The model line is the same as MLR
(Eq. (3.1)).
The Ridge().py function requires as input the hyperparameter α, which
minimizes the mean square error of the model [49]. It is fixed to 0.01
for any subject, since a few recordings were used to find the optimal
α value which could be suitable for a generic individual. These mea-
surements are not included in the database.

• Suppor Vector Regression (SVR): as a supervised-learning approach,
this method trains using a symmetrical loss function, which equally
penalizes high and low misestimates; one of the main advantages of
SVR is that its computational complexity does not depend on the
dimensionality of the input space and it has excellent generalization
capability, with high prediction accuracy [50]. For multidimensional
data, x is increased by one and b is included in the w vector to simplify
the mathematical notation to obtain the multivariate regression in Eq.
3.3.

y(x) = wTx+ b (3.3)

The SVR().py function requires as inputs the meta-parameters C and
ϵ. The first one, is the regularization parameter and determines the
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compromise between the model complexity and the degree to which
deviations larger than ϵ are tolerated [51]. The bigger C, the stronger
the regularization, and after several trials it has been set to 50 [52].
The second parameter controls the width of the insensitive zone used
to fit the training data [52]. The bigger ϵ, the fewer support vectors
are selected, but it returns more ”flat” predictions [51].

3.7.1 Regression without time interval dataset division

For this method, the dataset is divided as shown in Fig. 3.25.

Figure 3.25: Dataset division without time interval.

For each type of regression process, the algorithm returns two models,
one for SBP and the other one for DBP estimation.
Each regression function takes as input a matrix which has as many columns
as predictors (PTT and HR in this case) and the array with real SBP or
DBP values. After the training phase, the function returns the intercept
and the coefficients for the two predictors, since the equations of the MLR,
RR and SVR models are those reported in Eq. 1.1.

3.7.2 Regression with time interval dataset division

Unlike the previous method, this one makes the dataset division as shown in
Fig. 3.26. This time, each regression function takes as input a matrix which
has as many columns as the number of samples in a 10 seconds time interval,
and the array with real SBP or DBP values. This is done to ensure that
the trend of the predicted values follows that of the real ones and, trying to
increase the range of the time interval, substantial improvements were not
achieved.
As a consequence, each model returns the intercept and as many coefficients
as the number of samples in the time interval, since the new equations are(

SBP (n) = α0 +
PN

i=1 αiPTTi +
PN

i=1 βiHRi

DBP (n) = β0 +
PN

i=1 γiPTTi +
PN

i=1 δiHRi

(3.4)
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where:

• n refers to the sample;

• N refers to the total number of the 10-seconds windows in the test
phase;

• all the i-th coefficients and i-th features are the values referred to the
i-th window in the test phase.

The test set is divided at the same way of the training set, and then SBP
and DBP values are calculated (Fig. 3.27).

Figure 3.26: Regression coefficients calculation with time interval training
set division.

Figure 3.27: SBP and DBP prediction with the time interval test set division.
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Chapter 4

Results

The algorithm has been tested for all the measurements in the database and
the results are shown in the tables in the Appendix C.

4.1 Algorithm test

To understand how many measurements are to be considered as valid, it
is necessary to refer to the AAMI/ESH/ISO guidelines. According to their
protocol, the following pass/fail criterion is applicable in general population
samples (at least 85 measurements) but also in population with a smaller
sample size (at least 35 measurements): mean difference of test versus ref-
erence blood pressure measurements less or equal to 5 mmHg with an SD
less or equal to 8 mmHg, both for SBP and DBP values [53]. Moreover, the
reference BP values are obtained by the OMRON HeartGuide device, whose
accuracy is equal to ± 3 mmHg. Thus, according to the error propagation
theory [54], the conditions for considering the predicted BP values as valid
are the following: (

MAE ≤ 2 mmHg

SD ≤ 8 mmHg
(4.1)

The number of validated measurements for each regression method is shown
in the Tab. 4.1, calculated considering the occurrences below the conditions
in Eq. (4.1).
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Table 4.1: Number of validated measurements with respect of the total ones.

The larger number of measurements meeting the conditions in Eq. (4.1),
are obtained with the multivariate linear regression and Ridge regression
methods. From a first analysis, it can also be seen that the results relating
to the time interval dataset division are unusable.
Instead, to conduct a more detailed analysis it is necessary to refer to the
Tab. 4.2.

Table 4.2: Average MAE and SD related to all the regression methods.

Tabs. 4.1 and 4.2 show that multivariate linear regression and Ridge
regression without any interval dataset division are equally valid regression
methods for the purpose of this work, because they return the same MAE
and SD values for each prediction, as well as for all the reasons previously
described in the section 3.7. If a choice must be taken between the two
regression methods, MLR could be chosen because it is characterized by a
shorter computational time than the RR. In fact, the latter could be consid-
ered a regularization of the MLR method, as it introduces the α hyperpa-
rameter which keeps the learning weights of the function as low as possible;
thus, the decision time of the algorithm increases. An example of predicted
SBP and DBP values is shown in the Fig. 4.1.
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Figure 4.1: Comparison between real and predicted SBP and DBP values
obtained with MLR method. MAESBP = 1.84± 3.28 mmHg, MAEDBP =
1.58± 2.71 mmHg. These values belong to subject 1.

At a first glance, the signals may seem not smooth and, at some points,
they seem not to follow the trend of the real signals very well. This hap-
pens because, as previously mentioned, the OMRON device does not return
continuous signals, but punctual blood pressure values. Thus, after interpo-
lating these reference values, the real BP signals may seem ”edgy”. Despite
this, the MAEs and SDs values are acceptable.
The Random Forest regression presents the highest SD values (Fig. 4.2),
while the support vector regression shows the lowest SD values but the pre-
dicted trend does not follow the real one very well (Fig. 4.3).

Figure 4.2: Comparison between real and predicted SBP and DBP values
obtained with RFR method. MAESBP = 2.16± 3.95 mmHg, MAEDBP =
1.52± 2.62 mmHg. These values belong to subject 1.
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Figure 4.3: Comparison between real and predicted SBP and DBP values
obtained with SVR method. MAESBP = 2.84± 1.62 mmHg, MAEDBP =
1.55± 1.70 mmHg. These values belong to subject 1.

From Tab. 4.2, it is evident that in general the highest MAE and SD
values belong to SBP predictions, because it is intrinsically affected by more
variability than the DBP. It is due to the subject’s age, genre, BMI and
sympathetic nervous system activity [55].
Furthermore, the regression analysis using the time interval dataset division
has been implemented because it has already been used in literature, but in
this case it returns higher MAE and SD values because this dataset is made
up of interpolated punctual BP values. In literature, this method has been
used with arterial blood pressure (ABP) values, which constitute continuous
signals taken from the MIMIC III database [56].
Finally, Tab. 4.1 shows the number of validated measurements according to
the AAMI/ESH/ISO guidelines referring to a reduced population (at least
35 measurements). If the population were larger (a general population size
of at least 85 measurements), the error tolerance would also increase. In
this case, the guidelines suggest a tolerance less or equal to 10 mmHg for
the MAE, while the accepted SD values are the same [53]. Including also
the accuracy of the control device (± 3 mmHg), the new conditions for
considering the predictions to be validated are the following:(

MAE ≤ 7 mmHg

SD ≤ 8 mmHg
(4.2)

With these new tolerance values, almost all the measurements of the database
created for this thesis work can be considered as valid.

4.2 Error resolution strategies

There are several causes to be attributed to the higher errors of predicted
blood pressure values.
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• PPG and ECG intersubject variability. It is due to subject’s phys-
iology [57]. In particular for PPG, which recording is influenced by
the subject’s skin conductance, sometimes the peaks are so low that
it is difficult to establish a threshold value to detect them as well as
possible [58]. The Morfea3 sensor has been especially developed by
SINTEC to improve the detection of the S-peaks and also to avoid
errors due to the malposition of the Shimmer clip and to the light
interference thanks to the black adhesive patch (Figs. 4.4, 4.5).

Figure 4.4: Morfea3 module. Figure 4.5: Morfea3 position.

• Instrumental error. The guide of the EXG module does not report
any error range because this device allows to record the ECG without
visibly affecting it by noise. Thus, the instrumental error related to
the EXG is negligible. The PPG instead, due to both its own nature
and the sampling method, it is affected by noise also caused by the
instrumental error, which is a tabulated average across the measure-
ments range [59]. The bias voltage is 0.5 V and, at a typical ”low”
body resistance (120 kΩ or 8 µS), the bias current is approximately
5 µA; that current will decrease as the conductance increases [59].
The SINTEC sensors (Figs. 4.6, 4.7) would be able to decrease the
instrumental error, both for ECG and PPG signals.

Figure 4.6: Morfea3 module for
PPG.

Figure 4.7: HI active patch for
ECG.

• OMRON HearthGuide size, tolerance and procedure. The control de-
vice is currently available for wrists with a circumference of 160-190
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mm [40]. Furthermore, the OMRON HeartGuide can return BP val-
ues each minute, but the device’s guide suggests to wait 2-3 minutes
between measurements in order to allow the arteries to decompress
and return to their pre-measurements state [38]. Finally, the device’s
accuracy in BP measurements is equal to ±3 mmHg [38]. The solu-
tion to this problem could be to use a device with a cuff that can be
adapted to all wrist circumferences, or that can use cuffs of different
sizes. Moreover, it could be able to return BP values every minute at
least.

• SBP variability. As previously said, SBP is affected by a major vari-
ability than DBP because of the subject’s physiology [55]. This prob-
lem has been partially avoided because the physiological signals are
recorded while the subject is seated and resting, but it could be fur-
ther avoided by adding other features to better show SBP variability,
such as the hour of the recording and if there were changes in the
subject’s activity.

• HR and PTT array cleaning. Values that are out of range mean ± SD
are deleted and this leads to an improvement of BP predictions. This
is done because of the reasons previously discussed in section 3.4. The
disadvantage of the cleaning phase is the loss of information for the
BP predictions, and although several solutions have been implemented
to solve the problem, none of these leads to an improvement of the
BP predicted values. Fat-IBC technology, as one of the goal of the
SINTEC project, would be able to solve this problem because it uses
a direct connection between sensors and the interior of the body, which
is represented by the skin’s fat [60].

4.3 Algorithm calibration time

Wearable technologies aim to be as more comfortable as possible. One of
the aspect which could threaten the patient’s comfort is about waiting too
long for the device calibration. For this reason, the algorithm returns for
each subject the minimum calibration time in order to make the individual
wear the control device only for the necessary period for the algorithm to
train satisfactorily.
Therefore, for each measurement the calibration time is reported in Tab.
5.6 in Appendix D, and it is defined as the minimum time for the algorithm
to return the blood pressure values with an acceptable error, as reported in
Eq. (4.1).
The average calibration time for each subject has been calculated in Tab.
4.3 only for BP values predicted without any time interval dataset division
because, as the Tab. 4.1 has shown, the results in the second row are
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unusable.

SUBJECT AVERAGE CALIBRATION TIME (min)

1 8.39

2 8.60

3 11.71

4 5

5 10.5

6 8

Table 4.3: Average calibration time for all subjects.

As previously said, these values are calculated considering the errors
defined in the AAMI/ESH/ISO guidelines and considering the OMRON
HeartGuide accuracy. Instead, they do not take into account the goodness
of the trend of the predicted BP values compared to the real ones. In this
case, the minimum calibration time would be larger for all subjects.

4.3.1 Regression coefficients statistical analysis

The statistical analysis of the regression coefficients was carried out to see if
their values related to the same subject remain more or less constant. This
was done by calculating for the four regression coefficients of each subject
(two for the SBP and two for the DBP) two statistical variables:

• Arithmetic mean (µ): it synthetically describes the average value as-
sumed by a given regression coefficient [61]. It is generally defined
as:

µX =
1

N

NX
i=1

xi (4.3)

• Variance (σ2): it provides a measure of how much the values assumed
by a given regression coefficient deviate quadratically from their arith-
metic mean [62]. It is generally defined as:

σ2
X =

1

N − 1

NX
i=1

(xi − µX)2 (4.4)

In order for the statistical analysis to be consistent, it was carried out
on the regression coefficients of the subject from whom the greatest number
of recordings was acquired. This is a 23-year-old woman, whose coefficients
are shown in Tab. 5.7 in Appendix E, and whose statistical variables are
shown in Tabs. 4.4 and 4.5.
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Table 4.4: Regression coefficients’
mean related to the subject 1.

Table 4.5: Regression coefficients’
variance related to the subject 1.

From Eq. (1.1), it is recalled that α and γ are the coefficients associated
with the PTT, which is the feature extracted from the PPG signal, that
has a larger variability than ECG (as previously said in section 3.4). For
this reason, from Tab. 4.5 it is noted that the variance of the α and γ
coefficients is much higher than that of the β and δ coefficients which, on
the other hand, are associated with the heart rate (feature extracted from
the ECG) and is extremely low.
Now, trying to divide the regression coefficients related to the ante meridiem
(AM) measurements by those related to the post meridiem (PM) ones, the
variance was calculated again to see if there was any change. The results
are shown in Tab. 4.6.

Table 4.6: Regression coefficients’ variance related to the AM and PM
recordings of subject 1.

As we can see, the AM coefficients present a much lower variability than
that calculated considering all the values of a single coefficient. On the
other hand, the variability related to the regression coefficients of the PM
recordings are higher than the total one, and this happens because in the
PM hour range there are the main daily meals, lunch and dinner. There
are some studies in the literature which demonstrate that one of the factors
which influence blood pressure variability is the proximity of the measure-
ment to the mealtime [63].
This kind of BP variability also occurs in subject 3, whose regression coeffi-
cients and their mean and variance are respectively listed in the Tabs. 5.13,
5.14 and 5.15 in Appendix E. After collecting a sufficient number of record-
ings from the subject 3, the same considerations were made with respect to
subject 1 (see Tab. 4.7).
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Table 4.7: Regression coefficients’ variance related to the AM and PM
recordings of subject 3.
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Chapter 5

Conclusions

The thesis work aimed to find a method capable of monitoring blood pres-
sure values in a non-invasive way through wearable sensors. The goal has
been achieved through the ECG and PPG preprocessing and using regres-
sion techniques with the features related to them, which are heart rate and
pulse transit time.
From the study, it was found that the algorithm using the MLR method re-
turns BP values with a low acceptable error, according to the AAMI/ISO/ESH
guidelines (see Eq. (4.1)), with a large number of measurements taken with
SHIMMER devices.
Previous studies have shown that a similar processing of ECG, PPG and
arterial blood pressure signals extracted from the MIMIC III database [64]
returns estimated BP values with an error less than 5 mmHg, according to
the same guidelines. But as previously said, ABP is acquired in an inva-
sive way which may cause discomfort and several vascular damage to the
patients, not to mention that the subject must be in hospital or any other
clinical setting for the procedure.
Instead, the proposed approach can be considered as the first step towards
continuous cuff-less BP monitoring in a non-invasive way, and with the algo-
rithm uploaded on the wearable sensors developed by SINTEC, BP values
could be measured at any time in any place, whatever activity the subject
is carrying out.
The final device intended by SINTEC project is shown in Fig. 5.1. The
main idea is based on the use of a new technology consisting of a strain gauge
able to resist to mechanical solicitations (it is flexible and stretchable), cov-
ered by a transparent patch to realize the adhesion to the skin and to make
the device water-repellent. The design is imperceptible in appearance and
size and ideal for an active life.
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Figure 5.1: Final intended SINTEC device for a non-invasive continuous
BP monitoring.

5.1 Future developments

Although the algorithm works quite satisfactorily, there are many aspects
that can definitely be improved.
Firstly, since the algorithm uses different regression methods, it could be
tried to modify the input parameters of Random Forest regression, Ridge
regression and support vector regression methods to see if the algorithm
could return blood pressure values with a lower error, so a larger number
of measurements could be considered as valid. This can be useful also in
order to obtain a shorter calibration time and, as a consequence, to make
the recording period more comfortable.
After that, the dimension (number of measurements) and the heterogeneity
of the population must be increasing in order to verify that the regression
coefficients of the same subject do not deviate too much from their mean,
and to prove that the coefficients related to subjects with the same physio-
logical features are similar. Also, as previously said in section 4.1, a larger
population allows the inclusion of more measurements, accepting a higher
error tolerance.
According to the previous point, when the SINTEC devices will be used in
experimental and/or clinical environment, patients and volunteers will be
asked about some information as selection conditions for the experimenta-
tion, such as age, gender, BMI, anamnesis, medicament and if they follow
any therapy which could affect the BP variability. Also, if the OMRON
HeartGuide will continue to be used as a control device, it will be asked a
wrist circumference between 160 and 190 mm.
Furthermore, having a larger and more heterogeneous database available, it
can be verified that the predicted BP values related to the same subject do
not vary over the time if the ECG and PPG signals are recorded under the
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same physiological conditions. This aspect translates into the calculation
of the time range within a new calibration of the SINTEC devices must be
carried out.
For what concerns the signals sampling instead, ECG and PPG should be
upsampled using higher frequency rates because for SINTEC design, as
wearable devices, it was chosen to save the battery life in the face of a lower
sample frequency.
Finally, it would be useful if the device is calibrated on the ECG and PPG
thresholds of the subject it is intended for before using it. The algorithm
has been developed also taking into account this aspect.
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Appendix A

This appendix shows the informed consent which each subject signed before
proceeding with the recording of the physiological signals. The information
note relating to the SINTEC project is also shown below.

CONSENSO INFORMATO

Titolo della ricerca: Implementazione di un algoritmo per il moni-
toraggio della pressione arteriosa in modo non invasivo partendo
dai segnali elettrocardiografici (ECG) e fotopletismografici (PPG).

Sperimentatore: Dott.ssa Sofia Galici

Tesista magistrale del Politecnico di Torino

Tesi svolta presso LINKS Foundation

Torino (TO), Italy

Io sottoscritto/a , nato/a a ,
il , indirizzo ,
telefono ,

Dichiaro

• Di partecipare volontariamente allo studio Implementazione di un
algoritmo per il monitoraggio della pressione arteriosa in
modo non invasivo partendo dai segnali elettrocardiografici
(ECG) e fotopletismografici (PPG) avente lo scopo di Testare
l’accuratezza dell’algoritmo per la stima della pressione sanguigna in
modo non invasivo nell’ambito del progetto europeo SINTEC;
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• Di aver ricevuto dalla Dott.ssa Sofia Galici esaurienti spiegazioni in
merito alla richiesta di partecipazione alla ricerca, in particolare sulle
finalità e procedure:

• Di aver avuto la possibilità di porre domande e di aver avuto risposte
soddisfacenti su tutta la sperimentazione;

• Di essere stato informato sui possibili rischi o disagi ragionevolmente
prevedibili;

• Di essere consapevole che la partecipazione è volontaria;

• Di essere stato assicurato:

– che potrò ritirarmi dalla sperimentazione già iniziata in qualsiasi
momento senza l’obbligo da parte mia di motivarne la decisione;

– che i dati saranno utilizzati con le finalità indicate nello studio;

– che è mio diritto avere accesso alla documentazione che mi riguarda;

– che una copia del consenso informato e della documentazione di
cui ho preso visione rimarrà in mio possesso;

– che per ogni problema o per eventuali ulteriori informazioni potrò
rivolgermi alla Dott.ssa Sofia Galici.

Pertanto, confermo di aver avuto risposte esaurienti a tutti i
miei quesiti e, preso atto della situazione illustrata,

ACCONSENTO

LIBERAMENTE, SPONTANEAMENTE E IN PIENA COSCIENZA ALLA
SPERIMENTAZIONE PROPOSTAMI. Dichiaro inoltre di essere a conoscenza
della possibilità di revocare il presente consenso in qualsiasi momento prima,
durante e dopo l’avvio della sperimentazione.
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Data registrazione Ora inizio Ora fine Firma del partecipante

Eventuali testimoni presenti (nome, cognome, firma):

Firma del partecipante: Firma dello sperimentatore:

OPPURE

NON ACCONSENTO

LIBERAMENTE, SPONTANEAMENTE E IN PIENA COSCIENZA ALLA
SPERIMENTAZIONE PROPOSTAMI.

Data:

Eventuali testimoni presenti (nome, cognome, firma):

Firma del partecipante: Firma dello sperimentatore:
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NOTA INFORMATIVA

Il progetto SINTEC-Soft intelligence epidermal communication plat-
form è un progetto europeo nato a giugno del 2019 che si propone di svilup-
pare una tecnologia innovativa in grado di monitorare la salute di chi la
indossa.
SINTEC è supportato da un’ampia varietà di organizzazioni con esperti in
tutti i settori d’interesse come l’ingegneria, lo studio dei materiali, l’elettronica,
la medicina, lo sport, l’economia e la divulgazione. Gran parte delle attività
vengono svolte utilizzando un approccio interdisciplinare. Il progetto vuole
rispondere alla necessità di sviluppare nuove tecnologie di interconnessione,
non invasive e che non interferiscano con la vita del soggetto che le indossa.
I dispositivi indossabili smart sono il passo successivo nell’evoluzione dei
dispositivi indossabili di Internet of Things (IoT). Il primo obiettivo che
il progetto SINTEC si propone di raggiungere è dimostrare i vantaggi di
questa nuova tecnologia nell’ambiente clinico.
Per far ciò si sta sperimentando una tecnologia PCB con substrato estensibile
e lega liquida con l’integrazione di sistemi embedded complessi all’interno
del substrato al fine di applicarla in differenti situazioni complesse della vita
di tutti i giorni.
Il contributo di LINKS foundation è orientato all’analisi ed elaborazione dei
segnali fisiologici registrati, nello specifico del segnale elettrocardiografico
(ECG) e fotopletismografico (PPG). La prima parte del lavoro è focalizzata
sulla valutazione delle prestazioni di sensori e antenne tramite confronto
con i dispositivi allo stato dell’arte presenti nei laboratori. I sensori esplo-
rati saranno elettrodi per segnali elettrofisiologici (bioimpedenza) per ECG
e sensori ottici (LED e fotodiodo) per PPG. Il risultato di queste analisi
ha orientato ed orienterà l’architettura del sistema finale che è in continuo
aggiornamento. Verranno inoltre integrati e testati firmware e algoritmi per
l’estrazione dei parametri fisiologici (es. Frequenza cardiaca, Pressione san-
guigna ecc.). I risultati ottenuti dalla validazione forniranno feedback per
l’ottimizzazione del dispositivo.

Ulteriori informazioni sul Progetto SINTEC sono disponibili qui:
https://www.sintec-project.eu/
Firmando il modulo di consenso ivi allegato, si accetta di partecipare allo
studio Implementazione di un algoritmo per il monitoraggio della
pressione arteriosa in modo non invasivo partendo dai segnali elet-
trocardiografici (ECG) e Fotopletismografici (PPG).

Qual è lo scopo della sperimentazione?
Lo studio ha lo scopo di testare l’accuratezza dell’algoritmo per la stima
della pressione sanguigna in modo non invasivo partendo dai segnali ECG e
PPG registrati con dispositivi wearable (Shimmer3 ECG e GRS+).
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Sono obbligato a partecipare?
No. La decisione di partecipare alla sperimentazione dipende solo da Lei. È
completamente volontaria.

Come si svolgerà la sperimentazione?
Ai volontari sarà richiesto di indossare i dispositivi Shimmer e il dispositivo
di riferimento Omron Heartguide. Dovranno restare in posizione rilassata
per 20 minuti durante i quali verranno registrati i segnali ECG e PPG in
maniera continuativa ed i valori di pressione sistolica e diastolica ogni min-
uto.

Quanto dura la sperimentazione?
La Sua partecipazione alla sperimentazione durerà fino alla fine della regis-
trazione dei segnali, i volontari che lo desidereranno potranno partecipare
più volte alla registrazione.

Dovrò sostenere spese?
No. La Sua partecipazione alla sperimentazione sarà completamente gra-
tuita.

Cosa dovrò fare se decido di partecipare alla sperimentazione?
Le sarà consegnata questa nota informativa, da leggere e conservare. Le
sarà chiesto di firmare il modulo di consenso, ivi allegato. Le sarà richiesto
di dedicarci il tempo necessario per la registrazione dei segnali.

Potrò cambiare idea dopo aver accettato di partecipare?
S̀ı. Lei potrà decidere di ritirare il consenso e interrompere la parteci-
pazione alla sperimentazione, in qualsiasi momento, anche a studio avvi-
ato, senza dover fornire giustificazioni. Qualora decidesse di ritirare il con-
senso, Le chiediamo di inviare una comunicazione al seguente recapito:
sofia.galici@studenti.polito.it

Come saranno usati i miei dati personali?
I Suoi dati personali saranno resi anonimi, nessuna informazione che La iden-
tifichi o La renda identificabile, direttamente o indirettamente, o che possa
fornire informazioni sulle Sue caratteristiche, le Sue abitudini, il Suo stile
di vita, le Sue relazioni personali, la Sua situazione economica, verrà con-
servata. I segnali registrati verranno elaborati per la stima della pressione
sanguigna e i risultati ottenuti non potranno in alcun modo ricondurre a Lei.

Per quanto tempo saranno conservati i miei dati personali?
I Suoi dati personali saranno resi anonimi, nessuna informazione che La
identifichi o La renda identificabile, direttamente o indirettamente, o che
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possa fornire informazioni sulle Sue caratteristiche, le Sue abitudini, il Suo
stile di vita, le Sue relazioni personali, la Sua situazione economica, verrà
conservata. I segnali da Lei registrati saranno utilizzati esclusivamente per
il lavoro di tesi della dott.ssa Sofia Galici che terminerà a Marzo 2022.

I miei dati saranno sfruttati commercialmente?
I Suoi dati non saranno in alcun modo sfruttati commercialmente.

Con chi verranno condivisi i miei dati personali?
I Suoi dati personali saranno resi anonimi e solo i risultati da essi ottenuti
saranno condivisi con il consorzio SINTEC.

Chi devo contattare nel caso in cui abbia delle domande o
reclami da sottoporre?
Nel caso in cui avesse domande o reclami relativi alla sperimentazione, può
contattare: sofia.galici@studenti.polito.it

Quali benefici potrò avere partecipando alla sperimentazione?
Lei parteciperà ad uno studio che punta ad avere un impatto rivoluzionario
sulla vita dei pazienti per le patologie cardiovascolari. Si spera che fornendo
un mezzo di monitoraggio conveniente e affidabile, aumenti il numero di per-
sone che rilevano sistematicamente la propria pressione sanguigna. In questo
modo si potrebbe prevenire l’insorgenza o la degenerazione di malattie car-
diovascolari che sono ancora oggi la prima causa di mortalità nel mondo.

Cosa accadrà ai risultati della sperimentazione?
I risultati della sperimentazione saranno resi anonimi, quindi Lei non sarà
identificabile. I risultati anonimizzati saranno utilizzati ai fini del Progetto
SINTEC, condivisi con il consorzio SINTEC, in conferenze nazionali e in-
ternazionali, e pubblicati su riviste scientifiche.

Verranno effettuate riprese fotografiche o videografiche durante
la mia partecipazione alla sperimentazione?
Durante la Sua partecipazione alla sperimentazione, non saranno scattate
fotografie e non saranno effettuati filmati delle sessioni di test.

Quali potrebbero essere i rischi?
Il prelievo dei segnali avviene in modo non invasivo ed indolore, si percepirà
solo una pressione al polso su cui verrà posizionato il dispositivo Omron
HeartGuide (smartwatch con cuffia che restituisce i valori pressori gonfian-
dosi e sgonfiandosi). I rischi relativi alla fase di prelievo sono quelli legati
all’eventuale mal posizionamento dei sensori con conseguente registrazione
di segnali non utilizzabili. In ogni caso il soggetto potrà scegliere in totale
libertà di sottoporsi nuovamente alla sperimentazione o meno.
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Appendix B

This appendix shows the table containing the peaks detection thresholds,
both for ECG and PPG signals, related to all measurements.

THRESHOLDS (mV)

Measurements ECG PPG

1 1.25 30

2 1.25 30

3 1.25 25

4 1.25 9

5 1.25 9

6 1.25 7

7 1.25 4

8 0.5 15

9 1.25 30

10 1.25 30

11 1.25 10

12 0.5 10

13 1.25 30

14 1.25 10

15 1.25 30

16 1.25 30

17 1.25 30

18 1.25 10

19 1.25 10

20 1.25 5

20 1.25 5

21 1.25 8

22 1.25 10

23 1.25 30

24 1.25 20

25 1.25 25

26 1.25 8

27 1.25 5
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THRESHOLDS (mV)

Measurement ECG PPG

28 1.25 5

29 1.25 20

30 1.25 3

31 1.25 2

32 1.25 20

33 1.25 10

34 1.25 30

35 0.5 8

36 0.5 20

37 0.5 30

38 0.5 30

39 0.5 5

40 0.5 30

41 0.5 9

42 0.5 25

43 0.5 7

44 0.5 10

45 0.5 30

46 0.5 20

47 0.5 20

48 0.5 20

49 0.5 25

50 0.5 4

Table 5.1: ECG and PPG thresholds for all measurements.
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Appendix C

This appendix shows the tables with the MAEs and the SDs related to all
measurements for each regression method.

MEA (mmHg) ± SD (mmHg)

NUMBER OF MEASUREMENTS MLR

SBP DBP

1 Without time interval dataset division 0.96±0.66 0.77±0.17

With time interval dataset division 1.48±0.94 0.63±0.49

2 Without time interval dataset division 1.23±1.49 1.69±2.32

With time interval dataset division 2.10±1.78 2.26±2.51

3 Without time interval dataset division 1.87±4.17 1.58±2.78

With time interval dataset division 4.59±3.25 4.05±2.70

4 Without time interval dataset division 0.76±0.48 0.79±0.39

With time interval dataset division 0.81±0.36 1.63±0.51

5 Without time interval dataset division 1.64±4.17 1.40±2.78

With time interval dataset division 7.78±3.25 2.23±2.70

6 Without time interval dataset division 0.40±1.43 0.70±1.02

With time interval dataset division 0.44±1.37 0.67±0.80

7 Without time interval dataset division 6.49±2.07 3.02±0.86

With time interval dataset division 2.97±2.19 1.10±0.97

8 Without time interval dataset division 1.21±1.36 1.95±3.44

With time interval dataset division 3.62±3.90 4.25±7.13

9 Without time interval dataset division 1.82±3.10 0.95±0.80

With time interval dataset division 2.68±2.41 0.91±0.60
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10 Without time interval dataset division 1.57±3.23 1.65±2.26

With time interval dataset division 2.70±3.30 2.31±1.89

11 Without time interval dataset division 1.99±1.26 1.05±0.25

With time interval dataset division 4.45±2.37 1.55±0.73

12 Without time interval dataset division 1.66±2.57 1.87±0.99

With time interval dataset division 24.53±2.10 1.10±0.67

13 Without time interval dataset division 0.73±1.34 1.76±2.68

With time interval dataset division 0.96±1.28 2.74±2.70

14 Without time interval dataset division 2.03±1.25 2.54±0.51

With time interval dataset division 1.16±0.80 1.90±2.58

15 Without time interval dataset division 1.33±0.98 1.47±0.83

With time interval dataset division 2.58±1.24 1.95±0.67

16 Without time interval dataset division 0.52±0.47 0.97±0.85

With time interval dataset division 0.77±0.81 0.66±0.60

17 Without time interval dataset division 1.25±0.43 2.00±5.44

With time interval dataset division 2.64±2.07 8.96±6.55

18 Without time interval dataset division 1.99±1.69 1.77±1.20

With time interval dataset division 1.87±1.39 1.07±1.02

19 Without time interval dataset division 1.36±1.29 1.90±2.55

With time interval dataset division 2.10±1.64 3.80±0.95

20 Without time interval dataset division 2.75±7.02 4.45±7.58

With time interval dataset division 9.14±10.91 9.80±8.28

21 Without time interval dataset division 1.44±1.91 1.32±1.24

With time interval dataset division 5.51±2.83 2.45±1.63

22 Without time interval dataset division 2.00±3.86 1.68±1.83

With time interval dataset division 4.47±1.79 3.67±2.80

23 Without time interval dataset division 0.88±2.09 1.95±3.01

With time interval dataset division 2.62±2.02 7.32±3.69

24 Without time interval dataset division 1.46±1.33 1.31±1.26

With time interval dataset division 1.99±1.45 2.90±0.93
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25 Without time interval dataset division 0.95±0.59 1.86±0.25

With time interval dataset division 0.84±0.24 1.60±0.38

26 Without time interval dataset division 1.58±1.49 1.38±3.71

With time interval dataset division 2.63±1.73 2.66±2.59

27 Without time interval dataset division 0.66±0.22 0.78±0.55

With time interval dataset division 0.76±0.12 1.02±1.07

28 Without time interval dataset division 0.71±0.77 1.15±0.02

With time interval dataset division 1.61±1.39 0.90±0.63

29 Without time interval dataset division 1.87±0.94 1.85±0.67

With time interval dataset division 1.21±0.52 1.97±0.76

30 Without time interval dataset division 4.48±0.93 2.05±0.27

With time interval dataset division 3.82±2.32 2.08±0.64

31 Without time interval dataset division 3.79±1.06 4.34±1.72

With time interval dataset division 3.31±2.21 4.20±0.32

32 Without time interval dataset division 1.14±0.72 0.98±0.78

With time interval dataset division 4.16±0.68 3.22±0.63

33 Without time interval dataset division 0.60±0.66 0.98±1.14

With time interval dataset division 1.12±1.01 1.59±0.63

34 Without time interval dataset division 1.36±1.29 1.32±1.39

With time interval dataset division 20.33±23.60 19.16±21.58

35 Without time interval dataset division 3.62±0.71 4.05±0.87

With time interval dataset division 6.63±5.56 4.60±3.68

36 Without time interval dataset division 2.00±2.72 1.99±3.04

With time interval dataset division 2.74±2.68 2.77±2.97

37 Without time interval dataset division 0.87±0.59 0.55±0.39

With time interval dataset division 3.64±2.54 4.48±3.32

38 Without time interval dataset division 1.81±1.40 1.88±2.64

With time interval dataset division 3.23±1.43 5.55±0.60

39 Without time interval dataset division 4.23±2.56 3.31±1.79

With time interval dataset division 36.78±17.71 17.89±10.39

40 Without time interval dataset division 0.82±0.59 0.66±0.69

With time interval dataset division 5.74±5.14 2.21±1.26
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41 Without time interval dataset division 1.43±0.78 1.47±1.53

With time interval dataset division 1.55±1.72 2.08±1.47

42 Without time interval dataset division 0.86±0.92 1.55±2.37

With time interval dataset division 3.57±0.86 5.12±0.18

43 Without time interval dataset division 0.55±0.21 0.84±0.77

With time interval dataset division 0.93±0.50 1.78±0.69

44 Without time interval dataset division 1.83±0.79 2.00±3.33

With time interval dataset division 3.50±2.29 5.01±1.38

45 Without time interval dataset division 0.71±0.45 2.74±2.88

With time interval dataset division 7.84±7.01 4.28±0.93

46 Without time interval dataset division 1.00±0.63 0.91±0.32

With time interval dataset division 1.83±1.93 1.32±1.03

47 Without time interval dataset division 1.94±2.98 1.32±1.25

With time interval dataset division 4.73±3.80 4.70±0.85

48 Without time interval dataset division 6.72±2.84 4.93±0.12

With time interval dataset division 12.17±4.51 5.29±1.65

49 Without time interval dataset division 1.92±6.99 1.92±6.20

With time interval dataset division 8.52±5.49 7.89±6.02

50 Without time interval dataset division 1.04±0.21 0.53±0.22

With time interval dataset division 0.79±0.60 1.83±0.52

Table 5.2: All measurements’ MAE and SD referred to the MLR method.
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MEA (mmHg) ± SD (mmHg)

NUMBER OF MEASUREMENTS RFR

SBP DBP

1 Without time interval dataset division 1.19±1.08 0.67±0.77

With time interval dataset division 2.14±0.53 0.72±0.78

2 Without time interval dataset division 2.38±3.06 3.58±3.87

With time interval dataset division 1.79±1.34 4.91±3.91

3 Without time interval dataset division 1.97±3.58 1.42±1.96

With time interval dataset division 4.21±2.15 4.07±2.83

4 Without time interval dataset division 1.35±1.63 1.49±0.98

With time interval dataset division 1.34±1.55 1.69±0.42

5 Without time interval dataset division 2.19±3.58 2.87±1.96

With time interval dataset division 5.60±2.15 3.52±2.83

6 Without time interval dataset division 0.95±2.64 1.14±1.45

With time interval dataset division 0.79±2.55 1.42±1.47

7 Without time interval dataset division 8.24±5.69 3.82±2.97

With time interval dataset division 8.12±4.03 3.98±1.98

8 Without time interval dataset division 1.80±2.20 2.51±3.46

With time interval dataset division 3.96±6.30 6.30±9.77

9 Without time interval dataset division 1.82±3.31 0.95±2.97

With time interval dataset division 2.68±2.94 0.91±2.70

10 Without time interval dataset division 5.11±5.54 1.99±1.20

With time interval dataset division 6.83±3.50 2.10±1.09

11 Without time interval dataset division 1.90±6.91 1.63±1.98

With time interval dataset division 2.96±6.10 1.25±1.29

12 Without time interval dataset division 5.49±5.35 1.87±0.85

With time interval dataset division 19.87±2.63 1.10±2.53

13 Without time interval dataset division 1.66±2.10 5.36±5.44

With time interval dataset division 1.46±0.44 5.66±1.32

14 Without time interval dataset division 2.30±1.87 3.67±2.34

With time interval dataset division 2.27±1.85 2.22±1.34
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15 Without time interval dataset division 1.79±1.38 1.93±1.30

With time interval dataset division 4.25±2.63 2.61±1.27

16 Without time interval dataset division 1.14±0.73 0.64±0.82

With time interval dataset division 5.25±1.40 0.60±0.24

17 Without time interval dataset division 1.30±1.19 3.34±5.08

With time interval dataset division 1.75±0.89 5.24±1.81

18 Without time interval dataset division 2.00±1.77 2.79±2.73

With time interval dataset division 2.48±1.91 2.97±2.94

19 Without time interval dataset division 2.66±6.67 2.60±4.01

With time interval dataset division 3.37±5.08 7.34±6.83

20 Without time interval dataset division 3.79±7.75 5.67±7.13

With time interval dataset division 5.36±4.47 8.74±5.04

21 Without time interval dataset division 2.38±3.94 1.75±2.29

With time interval dataset division 5.36±2.85 1.13±1.72

22 Without time interval dataset division 1.95±2.15 1.96±1.96

With time interval dataset division 4.45±1.18 3.37±1.90

23 Without time interval dataset division 3.13±1.99 2.13±2.18

With time interval dataset division 2.47±1.10 3.17±2.87

24 Without time interval dataset division 2.70±7.39 2.62±3.75

With time interval dataset division 3.70±2.79 4.43±1.48

25 Without time interval dataset division 1.43±1.78 1.66±1.52

With time interval dataset division 0.98±0.64 1.39±1.36

26 Without time interval dataset division 2.91±3.43 2.00±2.06

With time interval dataset division 3.70±2.71 3.04±4.58

27 Without time interval dataset division 0.56±0.46 2.84±3.05

With time interval dataset division 0.79±0.32 3.98±2.70

28 Without time interval dataset division 1.68±1.10 1.40±1.15

With time interval dataset division 1.79±1.51 1.50±1.10

29 Without time interval dataset division 2.14±1.01 2.82±1.35

With time interval dataset division 1.75±1.03 2.46±1.02

30 Without time interval dataset division 4.06±1.79 2.10±1.07

With time interval dataset division 3.13±2.44 1.96±0.54
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31 Without time interval dataset division 4.30±2.94 4.15±3.23

With time interval dataset division 3.19±1.47 3.98±1.38

32 Without time interval dataset division 2.20±1.86 3.48±3.41

With time interval dataset division 4.24±1.72 3.24±2.12

33 Without time interval dataset division 1.11±2.12 1.05±1.85

With time interval dataset division 1.99±1.35 1.68±0.86

34 Without time interval dataset division 3.47±4.02 1.89±2.50

With time interval dataset division 3.24±0.82 6.64±1.90

35 Without time interval dataset division 3.93±2.30 2.01±1.57

With time interval dataset division 5.84±0.93 6.07±1.46

36 Without time interval dataset division 4.57±3.20 3.86±3.37

With time interval dataset division 3.49±2.61 3.50±3.07

37 Without time interval dataset division 3.27±2.41 2.31±2.03

With time interval dataset division 3.65±2.23 1.58±1.65

38 Without time interval dataset division 2.58±2.48 2.01±2.42

With time interval dataset division 3.40±0.23 5.45±1.31

39 Without time interval dataset division 7.93±6.36 5.22±4.04

With time interval dataset division 4.41±2.13 1.86±1.39

40 Without time interval dataset division 1.33±1.47 1.29±1.40

With time interval dataset division 1.69±1.81 1.11±1.61

41 Without time interval dataset division 2.10±2.30 2.22±2.20

With time interval dataset division 2.91±3.53 2.05±1.76

42 Without time interval dataset division 2.46±2.59 1.70±3.20

With time interval dataset division 2.85±2.76 4.09±3.72

43 Without time interval dataset division 1.04±1.09 1.56±1.97

With time interval dataset division 2.26±2.14 2.54±1.18

44 Without time interval dataset division 3.75±3.78 5.43±5.96

With time interval dataset division 3.75±3.56 5.55±5.89

45 Without time interval dataset division 9.42±11.35 2.57±2.52

With time interval dataset division 7.89±3.78 3.59±2.04
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46 Without time interval dataset division 2.49±2.56 2.03±2.34

With time interval dataset division 1.51±1.20 1.68±1.64

47 Without time interval dataset division 4.37±4.52 1.20±1.23

With time interval dataset division 4.03±4.52 4.99±1.34

48 Without time interval dataset division 8.18±8.26 4.71±2.18

With time interval dataset division 7.87±6.43 5.06±1.85

49 Without time interval dataset division 5.22±2.56 3.49±3.95

With time interval dataset division 6.18±2.39 5.08±3.01

50 Without time interval dataset division 1.06±1.86 1.42±1.51

With time interval dataset division 1.15±0.66 0.74±0.41

Table 5.3: All measurements’ MAE and SD referred to the RFR method.
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MEA (mmHg) ± SD (mmHg)

NUMBER OF MEASUREMENTS RR

SBP DBP

1 Without time interval dataset division 0.96±0.66 0.77±0.17

With time interval dataset division 1.48±0.94 0.63±0.49

2 Without time interval dataset division 1.23±1.49 1.69±2.32

With time interval dataset division 2.10±1.78 2.26±2.51

3 Without time interval dataset division 1.87±4.17 1.58±2.78

With time interval dataset division 4.59±3.25 4.05±2.70

4 Without time interval dataset division 0.76±0.48 0.79±0.39

With time interval dataset division 0.81±0.36 1.63±0.51

5 Without time interval dataset division 1.64±4.17 1.40±2.78

With time interval dataset division 7.78±3.25 2.23±2.70

6 Without time interval dataset division 0.40±1.43 0.70±1.02

With time interval dataset division 0.44±1.37 0.67±0.80

7 Without time interval dataset division 6.49±2.07 3.02±0.86

With time interval dataset division 2.97±2.19 1.10±0.97

8 Without time interval dataset division 1.21±1.36 1.95±3.44

With time interval dataset division 3.62±3.90 4.25±7.13

9 Without time interval dataset division 1.82±3.10 0.95±0.80

With time interval dataset division 2.68±2.41 0.91±0.60

10 Without time interval dataset division 1.57±3.23 1.65±2.26

With time interval dataset division 2.70±3.30 2.31±1.89

11 Without time interval dataset division 1.99±1.26 1.05±0.25

With time interval dataset division 4.45±2.37 1.55±0.73

12 Without time interval dataset division 1.66±2.57 1.87±0.99

With time interval dataset division 24.53±2.10 1.10±0.67

13 Without time interval dataset division 0.73±1.34 1.76±2.68

With time interval dataset division 0.96±1.28 2.74±2.70

14 Without time interval dataset division 2.03±1.25 2.54±0.51

With time interval dataset division 1.16±0.80 1.90±2.58
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15 Without time interval dataset division 1.33±0.98 1.47±0.83

With time interval dataset division 2.58±1.24 1.95±0.67

16 Without time interval dataset division 0.52±0.47 0.97±0.85

With time interval dataset division 0.77±0.81 0.66±0.60

17 Without time interval dataset division 1.25±0.43 2.00±5.44

With time interval dataset division 2.64±2.07 8.96±6.55

18 Without time interval dataset division 1.99±1.69 1.77±1.20

With time interval dataset division 1.87±1.39 1.07±1.02

19 Without time interval dataset division 1.36±1.29 1.90±2.55

With time interval dataset division 2.10±1.64 3.80±0.95

20 Without time interval dataset division 2.75±7.02 4.45±7.58

With time interval dataset division 9.14±10.91 9.80±8.28

21 Without time interval dataset division 1.44±1.91 1.32±1.24

With time interval dataset division 5.51±2.83 2.45±1.63

22 Without time interval dataset division 2.00±3.86 1.68±1.83

With time interval dataset division 4.47±1.79 3.67±2.80

23 Without time interval dataset division 0.88±2.09 1.95±3.01

With time interval dataset division 2.62±2.02 7.32±3.69

24 Without time interval dataset division 1.46±1.33 1.31±1.26

With time interval dataset division 1.99±1.45 2.90±0.93

25 Without time interval dataset division 0.95±0.59 1.86±0.25

With time interval dataset division 0.84±0.24 1.60±0.38

26 Without time interval dataset division 1.58±1.49 1.38±3.71

With time interval dataset division 2.63±1.73 2.66±2.59

27 Without time interval dataset division 0.66±0.22 0.78±0.55

With time interval dataset division 0.76±0.12 1.02±1.07

28 Without time interval dataset division 0.71±0.77 1.15±0.02

With time interval dataset division 1.61±1.39 0.90±0.63

29 Without time interval dataset division 1.87±0.94 1.85±0.67

With time interval dataset division 1.21±0.52 1.97±0.76

30 Without time interval dataset division 4.48±0.93 2.05±0.27

With time interval dataset division 3.82±2.32 2.08±0.64
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31 Without time interval dataset division 3.79±1.06 4.34±1.72

With time interval dataset division 3.31±2.21 4.20±0.32

32 Without time interval dataset division 1.14±0.72 0.98±0.78

With time interval dataset division 4.16±0.68 3.22±0.63

33 Without time interval dataset division 0.60±0.66 0.98±1.14

With time interval dataset division 1.12±1.01 1.59±0.63

34 Without time interval dataset division 1.36±1.29 1.32±1.39

With time interval dataset division 20.33±23.60 19.16±21.58

35 Without time interval dataset division 3.62±0.71 4.05±0.87

With time interval dataset division 6.63±5.56 4.60±3.68

36 Without time interval dataset division 2.00±2.72 1.99±3.04

With time interval dataset division 2.74±2.68 2.77±2.97

37 Without time interval dataset division 0.87±0.59 0.55±0.39

With time interval dataset division 3.64±2.54 4.48±3.32

38 Without time interval dataset division 1.81±1.40 1.88±2.64

With time interval dataset division 3.23±1.43 5.55±0.60

39 Without time interval dataset division 4.23±2.56 3.31±1.79

With time interval dataset division 36.78±17.71 17.89±10.39

40 Without time interval dataset division 0.82±0.59 0.66±0.69

With time interval dataset division 5.74±5.14 2.21±1.26

41 Without time interval dataset division 1.43±0.78 1.47±1.53

With time interval dataset division 1.55±1.72 2.08±1.47

42 Without time interval dataset division 0.86±0.92 1.55±2.37

With time interval dataset division 3.57±0.86 5.12±0.18

43 Without time interval dataset division 0.55±0.21 0.84±0.77

With time interval dataset division 0.93±0.50 1.78±0.69

44 Without time interval dataset division 1.83±0.79 2.00±3.33

With time interval dataset division 3.50±2.29 5.01±1.38

45 Without time interval dataset division 0.71±0.45 2.74±2.88

With time interval dataset division 7.84±7.01 4.28±0.93
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46 Without time interval dataset division 1.00±0.63 0.91±0.32

With time interval dataset division 1.83±1.93 1.32±1.03

47 Without time interval dataset division 1.94±2.98 1.32±1.25

With time interval dataset division 4.73±3.80 4.70±0.85

48 Without time interval dataset division 6.72±2.84 4.93±0.12

With time interval dataset division 12.17±4.51 5.29±1.65

49 Without time interval dataset division 1.92±6.99 1.92±6.20

With time interval dataset division 8.52±5.49 7.89±6.02

50 Without time interval dataset division 1.04±0.21 0.53±0.22

With time interval dataset division 0.79±0.60 1.83±0.52

Table 5.4: All measurements’ MAE and SD referred to the RR method.
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MEA (mmHg) ± SD (mmHg)

NUMBER OF MEASUREMENTS SVR

SBP DBP

1 Without time interval dataset division 1.12±0.81 0.80±0.47

With time interval dataset division 1.05±1.04 0.90±0.77

2 Without time interval dataset division 1.48±0.43 2.22±0.56

With time interval dataset division 1.97±1.59 2.29±2.61

3 Without time interval dataset division 3.11±2.29 1.44±1.63

With time interval dataset division 4.13±1.70 1.92±0.89

4 Without time interval dataset division 1.37±0.78 0.93±0.55

With time interval dataset division 2.01±0.41 0.79±0.19

5 Without time interval dataset division 9.22±2.29 3.96±1.63

With time interval dataset division 9.82±1.70 4.50±0.89

6 Without time interval dataset division 0.52±0.34 1.48±0.01

With time interval dataset division 0.42±63 1.45±0.05

7 Without time interval dataset division 2.79±0.60 2.04±0.28

With time interval dataset division 4.09±0.96 2.84±0.52

8 Without time interval dataset division 1.65±0.79 2.18±0.57

With time interval dataset division 1.35±0.28 2.15±0.11

9 Without time interval dataset division 1.82±0.66 0.95±0.32

With time interval dataset division 2.68±1.12 0.91±0.10

10 Without time interval dataset division 5.08±2.28 1.89±1.78

With time interval dataset division 2.85±3.17 2.20±0.56

11 Without time interval dataset division 4.19±0.40 1.12±0.66

With time interval dataset division 4.34±0.13 1.12±0.70

12 Without time interval dataset division 7.66±0.62 1.87±0.61

With time interval dataset division 10.26±1.71 1.10±0.28

13 Without time interval dataset division 0.89±0.89 2.85±0.05

With time interval dataset division 0.93±1.57 2.68±0.70

14 Without time interval dataset division 1.52±0.21 2.44±0.19

With time interval dataset division 1.38±0.80 2.71±2.57
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15 Without time interval dataset division 1.49±0.87 2.54±0.53

With time interval dataset division 1.64±0.86 2.69±0.68

16 Without time interval dataset division 0.42±0.25 0.92±0.68

With time interval dataset division 0.34±0.28 0.64±0.57

17 Without time interval dataset division 1.51±1.24 5.57±0.71

With time interval dataset division 1.28±1.38 5.81±1.00

18 Without time interval dataset division 1.12±0.63 1.95±1.58

With time interval dataset division 1.65±1.24 1.27±1.36

19 Without time interval dataset division 1.30±2.08 3.00±4.93

With time interval dataset division 1.95±2.02 3.37±0.15

20 Without time interval dataset division 6.19±0.24 9.22±0.26

With time interval dataset division 6.35±0.69 9.58±1.15

21 Without time interval dataset division 1.50±1.54 0.68±0.24

With time interval dataset division 4.72±2.14 2.20±1.41

22 Without time interval dataset division 2.55±0.15 1.62±0.59

With time interval dataset division 3.00±0.58 1.37±0.82

23 Without time interval dataset division 1.68±0.35 3.88±1.55

With time interval dataset division 1.81±0.06 3.40±0.94

24 Without time interval dataset division 1.38±0.17 1.99±0.88

With time interval dataset division 1.52±0.48 3.92±0.26

25 Without time interval dataset division 0.64±0.07 1.75±0.16

With time interval dataset division 0.74±0.11 1.82±0.05

26 Without time interval dataset division 1.47±2.02 1.94±0.98

With time interval dataset division 2.40±1.86 2.14±0.31

27 Without time interval dataset division 0.82±0.16 0.69±0.19

With time interval dataset division 0.81±0.15 0.84±0.37

28 Without time interval dataset division 0.92±0.17 1.26±0.07

With time interval dataset division 1.42±0.24 0.83±0.52

29 Without time interval dataset division 0.65±0.53 1.65±1.22

With time interval dataset division 1.27±0.93 1.52±0.90

30 Without time interval dataset division 5.64±0.65 1.89±0.34

With time interval dataset division 6.38±1.07 1.90±0.31

73



31 Without time interval dataset division 3.29±0.21 3.80±1.02

With time interval dataset division 3.32±0.28 4.45±0.27

32 Without time interval dataset division 2.19±0.57 2.94±0.74

With time interval dataset division 3.65±0.73 3.88±0.09

33 Without time interval dataset division 1.37±1.55 1.38±1.62

With time interval dataset division 1.24±1.30 1.66±1.00

34 Without time interval dataset division 1.63±1.89 0.49±0.05

With time interval dataset division 1.89±1.64 0.77±0.74

35 Without time interval dataset division 5.28±0.75 2.79±1.19

With time interval dataset division 5.96±0.20 3.90±0.84

36 Without time interval dataset division 3.71±2.37 3.79±2.85

With time interval dataset division 5.82±2.56 6.14±2.81

37 Without time interval dataset division 3.08±0.29 0.87±0.62

With time interval dataset division 3.93±0.24 1.02±0.56

38 Without time interval dataset division 2.81±0.52 4.76±0.50

With time interval dataset division 2.93±0.67 4.86±1.15

39 Without time interval dataset division 4.05±1.13 4.15±2.94

With time interval dataset division 3.06±0.60 2.70±0.97

40 Without time interval dataset division 1.45±0.37 1.82±0.16

With time interval dataset division 1.57±0.35 2.03±0.42

41 Without time interval dataset division 1.46±0.71 1.41±0.29

With time interval dataset division 1.76±0.42 1.64±0.97

42 Without time interval dataset division 1.38±0.74 4.48±0.92

With time interval dataset division 1.35±0.37 4.24±1.69

43 Without time interval dataset division 0.59±0.79 0.92±0.75

With time interval dataset division 0.69±0.55 1.78±0.57

44 Without time interval dataset division 1.96±0.84 5.35±1.29

With time interval dataset division 2.45±1.43 6.12±0.57

45 Without time interval dataset division 6.20±0.90 3.77±1.44

With time interval dataset division 6.40±2.99 3.57±2.86
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46 Without time interval dataset division 0.81±0.32 0.80±0.32

With time interval dataset division 0.90±0.21 0.97±0.88

47 Without time interval dataset division 3.80±2.27 2.05±0.19

With time interval dataset division 4.82±4.11 2.13±0.21

48 Without time interval dataset division 5.86±1.92 5.19±0.26

With time interval dataset division 6.38±0.02 5.33±0.21

49 Without time interval dataset division 6.49±0.57 5.41±0.13

With time interval dataset division 6.32±1.20 5.47±0.10

50 Without time interval dataset division 1.79±0.09 0.68±0.41

With time interval dataset division 1.46±0.26 0.76±0.24

Table 5.5: All measurements’ MAE and SD referred to the SVR method.
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Appendix D

This appendix shows the table with the minimum calibration time of the
algorithm related to all measurements both within and without the time
interval dataset division.

MINIMUM CALIBRATION TIME (min)

Measurement Without time interval dataset division With time interval dataset division

1 6 9

2 13 /

3 5 /

4 5 5

5 7 /

6 5 5

7 / /

8 7 /

9 5 /

10 8 /

11 6 /

12 17 /

13 8 /

14 / 5

15 8 /

16 7 7

17 7 /

18 8 5

19 14 /

20 / /

21 16 /

22 16 /

23 11 /

24 10 /

25 5 5

26 8 /

27 6 5
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MINIMUM CALIBRATION TIME (min)

Measurement Without time interval dataset division With time interval dataset division

28 5 9

29 7 5

30 / /

31 / /

32 12 /

33 5 9

34 15 15

35 / /

36 5 /

37 13 /

38 11 /

39 / /

40 10 /

41 6 10

42 15 /

43 13 13

44 17 /

45 / /

46 15 15

47 15 /

48 / /

49 15 /

50 5 5

Table 5.6: Algorithm calibration time for all measurements.
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Appendix E

This appendix shows the tables with the values of the four regression coeffi-
cients related to all subjects from whom more than two measurement were
recorded. There are also the tables that show the mean and variance values
of the coefficients themselves.

Table 5.7: Regression coefficients related to subject 1.

78



Table 5.8: Regression coefficients’ mean related to subject 1.

Table 5.9: Regression coefficients’ variance related to subject 1.

Table 5.10: Regression coefficients related to subject 2.

Table 5.11: Regression coefficients’ mean related to subject 2.

Table 5.12: Regression coefficients’ variance related to subject 2.
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Table 5.13: Regression coefficients related to subject 3.

Table 5.14: Regression coefficients’ mean related to subject 3.

Table 5.15: Regression coefficients’ variance related to subject 3.
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Appendix F

This appendix shows the implemented Python code related to the entire
algorithm.

@author So f i a Ga l i c i
import csv
import operator
import numpy as np
import s c ipy
import matp lo t l i b . pyplot as p l t
import s c ipy . s i g n a l
import s c ipy . i o
from sc ipy . s i g n a l import butter , f i nd peak s
from sk l ea rn import l i n ea r mode l
from sk l ea rn . ensemble import RandomForestRegressor
from sk l ea rn . l i n ea r mode l import Ridge
from sk l ea rn . svm import SVR
from sk l ea rn . met r i c s import mean abso lu t e e r ro r

# DEFINITION OF ENVELOPE FUNCTION
def h l e nv e l o p e s i d x ( s , dmin=1, dmax=1, s p l i t=Fal se ) :

# Loca l s max
lmax = (np . d i f f (np . s i gn (np . d i f f ( s ) ) ) <0) . nonzero ( ) [ 0 ]+1

i f s p l i t :
# s mid i s ze ro i f s cente red around x−ax i s
or more g en e r a l l y mean o f s i g n a l
s mid = np .mean( s )
# Pre−s o r t i n g o f l o c a l max based on
r e l a t i v e p o s i t i o n with r e sp e c t to s mid
lmax = lmax [ s [ lmax]> s mid ]

# Global min o f dmin−chunks o f l o c a l s min
lmax = lmax [ [ i+np . argmax ( s [ lmax [ i : i+dmax ] ] ) f o r i in
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range (0 , l en ( lmax ) ,dmax ) ] ]

s f i l t=np . z e ro s ( l en ( s ) )
n=0
f o r i in range ( l en ( s ) ) :

i f i==lmax [ n ] :
s f i l t [ i ]= s [ i ]− s [ lmax [ n ] ]
i f n<l en ( lmax)−1:

n=n+1
e l s e :

s f i l t [ i ]= s [ i ]− s [ lmax [ n ] ]

r e turn s f i l t

# PEAKS DETECTION FUNCTION
def peak s de t e c t i on ( s f i l t , ts , time , th ) :

pks=f ind peak s ( s f i l t , he ight=th )
ind pks=pks [ 0 ]
t s pk s=np . z e r o s ( l en ( t s ) )
vec t pks=np . z e r o s ( l en ( t s ) )
vec t pks [ ind pks ]= s f i l t [ ind pks ]
t s pk s [ ind pks ]= t s [ ind pks ]

# Local maximus d e l e t i o n
i n t t=round ( 0 . 5 / ( time [−1]/ l en ( time ) ) )
f o r i in range ( l en ( vec t pks ) ) :

i f i>l en ( vec t pks )− i n t t :
break

i f vec t pks [ i ]>0:
f o r j in range (1 , i n t t ) :

i f vec t pks [ i+j ]>0:
vec t pks [ i+j ]=0
t s pk s [ i+j ]=0

return vect pks , t s pk s

# FEATURE REDUCTION FUNCTION
def f e a t r e du c t i o n ( f ea t , t f i t t e d ) :

row=np . z e r o s ( l en ( t f i t t e d ) )
T=0
f o r i in range ( l en ( t f i t t e d )−1):

i f i>=T:
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f o r j in range ( i +1, l en ( t f i t t e d ) ) :
# Time window o f 10 seconds
i f t f i t t e d [ j ]− t f i t t e d [ i ]>=10:

ind1=np . arange ( i , j )

# Feature averag ing
v e c t f e a t=f e a t [ ind1 ]
v a l f e a t=np .mean( v e c t f e a t )
row [ ind1 ]= v a l f e a t
T=j
break

# I f the l a s t window i s sma l l e r than 10 s , the l a s t
va lue s are averaged and f i t t e d in a 10 s time window
f o r i in range ( l en ( row ) ) :

i f row [ i ]==0:
ind1=np . arange ( i , l en ( row ) )

# Feature averag ing
v a l f e a t=np .mean( f e a t [ ind1 ] )
row [ ind1 ]= v a l f e a t
break

return row

# REGRESSION PROCESS FUNCTION
def r e g r e s s i o n p r o c e s s (model , matr tra in , matr test , i t r a i n ,
i t e s t , sbp , dbp ) :

# SBP
# Model t r a i n i n g
modelf it SBP = model . f i t ( matr tra in , sbp [ i t r a i n ] )
sbp pred=modelf it SBP . p r ed i c t ( mat r t e s t )

# Model t e s t i n g
mae sbp=mean abso lu t e e r ro r ( sbp [ i t e s t ] , sbp pred )

# SBP MEA (mmHg)
dev sbp=np . std ( sbp pred )

# SBP dev std (mmHg)
e r r sbp=abs ( sbp pred−sbp [ i t e s t ] )
n=np . array (np . where ( er r sbp >5))
num sbp=len (np . t ranspose (n ) )

# DBP
# Model t r a i n i n g
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modelfit DBP = model . f i t ( matr tra in , dbp [ i t r a i n ] )
dbp pred=modelfit DBP . p r ed i c t ( mat r t e s t )

# Model t e s t i n g
mae dbp=mean abso lu t e e r ro r (dbp [ i t e s t ] , dbp pred )

# DBP MEA (mmHg)
dev dbp=np . std ( dbp pred )

# SBP dev std (mmHg)
err dbp=abs ( dbp pred−dbp [ i t e s t ] )
n=np . array (np . where ( err dbp >5))
num dbp=len (np . t ranspose (n ) )

re turn sbp pred , dbp pred , mae sbp , mae dbp , dev sbp ,
dev dbp , num sbp , num dbp

# CALIBRATION TIME WITHOUT TIME INTERVAL DATASET DIVISION
FUNCTION
def c a l i b r a t i o n t ime ( t min , t t ab l e , mae sbp , mae dbp , dev sbp ,
dev dbp , sbp , dbp , model ) :

N=0
whi le (mae sbp>5 or mae dbp>5 or dev sbp>8 or dev dbp >8):

t min=t min+60

f o r i in range ( l en ( t t a b l e ) ) :
i f t t a b l e [ i ]− t t a b l e [0]>=t min : # Time ( s )

i n d t r a i n=np . arange (0 , i )
i n d t e s t=np . arange ( i , l en ( t t a b l e ) )
break

trainData PTT=ptt [ i n d t r a i n ]
testData PTT = ptt [ i n d t e s t ]
trainData HR=hr [ i n d t r a i n ]
testData HR = hr [ i n d t e s t ]
X tra in=np . t ranspose (np . array ( [ trainData PTT ,
trainData HR ] ) )
X tes t=np . t ranspose (np . array ( [ testData PTT ,
testData HR ] ) )

# Regres s ion proce s s
SBP pred , DBP pred , mae sbp , mae dbp , dev sbp , dev dbp ,
num SBP ,
num DBP=r e g r e s s i o n p r o c e s s (model , X train , X test ,
i nd t r a i n , i nd t e s t , sbp , dbp )
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N=N+1
i f N>11

t min=0
break

return t min

# CALIBRATION TIME WITHIN TIME INTERVAL DATASET DIVISION
FUNCTION
def ca l ib ra t i on t ime window ( t min , t t ab l e , mae sbp , mae dbp ,
dev sbp , dev dbp , sbp , dbp , model , ptt , hr , index ) :

N=0
whi le (mae sbp>5 or mae dbp>5 or dev sbp>8 or dev dbp >8):

t min=t min+60

f o r i in range ( l en ( t t a b l e ) ) :
i f t t a b l e [ i ]− t t a b l e [0]>=t min :

# Time ( s )
i n d t r a i n=np . arange (0 , i )
i n d t e s t=np . arange ( i , l en ( t t a b l e ) )
break

trainData PTT=ptt [ i n d t r a i n ]
testData PTT = ptt [ i n d t e s t ]
trainData HR=hr [ i n d t r a i n ]
testData HR = hr [ i n d t e s t ]
X tra in=np . array ( [ trainData PTT , trainData HR ] )
X tes t=np . array ( [ testData PTT , testData HR ] )

# Windows concatenat ion in a s i n g l e t r a i n i n g matrix
PTT temp=trainData PTT
HR temp=trainData HR
PTT regr=np . z e ro s ( ( l en ( i n d t r a i n ) ,
np . dtype ( ’ int64 ’ ) . type ( index ) ) )
HR regr=np . z e ro s ( ( l en ( i n d t r a i n ) ,
np . dtype ( ’ int64 ’ ) . type ( index ) ) )
ind temp=np . arange ( index )

f o r i in range ( l en ( trainData PTT ) ) :
PTT regr [ i , : ]=PTT temp [ ind temp ]
PTT temp=np . r o l l (PTT temp , 1 )
HR regr [ i , : ]=HR temp [ ind temp ]
HR temp=np . r o l l (HR temp , 1 )

85



X tra in=np . concatenate ( ( PTT regr , HR regr ) , ax i s=1)

# Windows concatenat ion in a s i n g l e t e s t matrix
PTT temp=testData PTT
HR temp=testData HR
PTT regr=np . z e ro s ( ( l en ( i n d t e s t ) ,
np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
HR regr=np . z e ro s ( ( l en ( i n d t e s t ) ,
np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
ind temp=np . arange ( ind )

f o r i in range ( l en ( testData PTT ) ) :
PTT regr [ i , : ]=PTT temp [ ind temp ]
PTT temp=np . r o l l (PTT temp , 1 )
HR regr [ i , : ]=HR temp [ ind temp ]
HR temp=np . r o l l (HR temp , 1 )

X tes t=np . concatenate ( ( PTT regr , HR regr ) , ax i s=1)

# Regres s ion proce s s
SBP pred , DBP pred , mae sbp , mae dbp , dev sbp , dev dbp ,
num SBP ,num DBP=r e g r e s s i o n p r o c e s s (model , X train ,
X test , i nd t r a i n , i nd t e s t , sbp , dbp )

N=N+1
i f N>11

t min=0
break

return t min

# START
#==============
# FILES LOADING
#==============
ecg mat=sc ipy . i o . loadmat ( ’ Test1 Session1 Shimmer 6C0E
Cal ibrated SD .mat ’ )
ecg=ecg mat [ ’ Shimmer 6C0E ECG LA RA 24BIT CAL ’ ]
t s e cg=ecg mat [ ’ Shimmer 6C0E TimestampSync Unix CAL ’ ]
ppg mat=sc ipy . i o . loadmat ( ’ Test1 Sess ion1 Shimmer 9404
Cal ibrated SD .mat ’ )
ppg=ppg mat [ ’ Shimmer 9404 PPG A13 CAL ’ ]
tsppg=ppg mat [ ’ Shimmer 9404 TimestampSync Unix CAL ’ ]
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# Creat ion o f numpy arrays
ecg head=np . z e r o s ( l en ( ecg ) )
t s e c g=np . z e ro s ( l en ( ecg ) )
ppg head=np . z e ro s ( l en ( ppg ) )
t s ppg=np . z e r o s ( l en ( ppg ) )
f o r i in range ( l en ( ecg ) ) :

ecg head [ i ]= ecg [ i ]
t s e c g [ i ]= t s e cg [ i ]/1000

f o r i in range ( l en ( ppg ) ) :
ppg head [ i ]=ppg [ i ]
t s ppg [ i ]= tsppg [ i ]/1000

f s =504.12 # Sampling f requency (Hz)
rec t ime mins ppg = ( ( l en ( ppg head )−1)/ f s )/60
t ppg = np . arange (0 , l en ( ppg head ) )/ f s
r e c t ime mins e cg = ( ( l en ( ecg head )−1)/ f s )/60
t e c g = np . arange (0 , l en ( ecg head ) )/ f s

#=================
# SIGNAL PREPARING
#=================
# Cut o f the f i r s t no i sy samples ( f i r s t 20 seconds )
c u t i n t=round (20/( t ppg [−1]/ l en ( t ppg ) ) )
ind=np . arange (0 , c u t i n t )
ppg head=np . d e l e t e ( ppg head , ind )
ts ppg=np . d e l e t e ( ts ppg , ind )
t ppg=np . d e l e t e ( t ppg , ind )
c u t i n t=round (20/( t e c g [−1]/ l en ( t e c g ) ) )
ind=np . arange (0 , c u t i n t )
ecg head=np . d e l e t e ( ecg head , ind )
t s e c g=np . d e l e t e ( t s e cg , ind )
t e c g=np . d e l e t e ( t ecg , ind )

# S igna l synchron i za t i on
i f t s e c g [0]< t s ppg [ 0 ] :

f o r i in range ( l en ( t s e c g ) ) :
i f t s e c g [ i ]> t s ppg [ 0 ] :

ind=np . arange (0 , i −1)
ecg head=np . d e l e t e ( ecg head , ind )
t s e c g=np . d e l e t e ( t s e cg , ind )
t e c g=np . d e l e t e ( t ecg , ind )
break
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e l s e :
f o r i in range ( l en ( t s ppg ) ) :

i f t s ppg [ i ]> t s e c g [ 0 ] :
ind=np . arange (0 , i −1)
ppg head=np . d e l e t e ( ppg head , ind )
ts ppg=np . d e l e t e ( ts ppg , ind )
t ppg=np . d e l e t e ( t ppg , ind )
break

# S i gna l s cut at the same length
i f l en ( t s e c g )> l en ( ts ppg ) :

t=t ppg
ind=np . arange (0 , l en ( t s ppg ) )
ecg head=ecg head [ ind ]
t s e c g=t s e c g [ ind ]

e l s e :
t=t e c g
ind=np . arange (0 , l en ( t s e c g ) )
ppg head=ppg head [ ind ]
t s ppg=ts ppg [ ind ]

# S i gna l s al ignment
i n t t=ts ppg [0]− t s e c g [ 0 ]
f o r i in range ( l en ( t s e c g ) ) :

i f abs ( t s ppg [ i ]− t s e c g [ i ])> i n t t :
t s ppg [ i ]= t s e c g [ i ]− i n t t

#=================
# SIGNAL FILTERING
#=================
# ECG
e c g f i l t = h l e nv e l o p e s i d x ( ecg head ) # Base l i n e removal

# PPG
fNy = f s /2 # Nyquist f requency (Hz)
f t = 50 # Cut o f f f requency (Hz) ( exper imenta l )
ws=0.1 # Passaband r i p p l e (dB) ( exper imenta l )
wp=15 # Stopband at tenuat ion (dB) ( exper imenta l )
f a=30 # Attenuation f requenzy (Hz) ( exper imenta l )
n ,wn=sc ipy . s i g n a l . buttord ( f t /fNy , f a /fNy , ws ,wp)
# 7−o r e r low−pass Butterworth f i l t e r
b , a=sc ipy . s i g n a l . but te r (n+1,wn)
p p g f i l t 1=sc ipy . s i g n a l . f i l t f i l t (b , a , ppg head )
# Base l i n e removal
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p p g f i l t = h l e nv e l o p e s i d x ( p p g f i l t 1 )

#================
# PEAKS DETECTION
#================
# ECG
th ecg =1.25 # Change the th r e sho ld even tua l l y
vect R , ts R=peak s de t e c t i on ( e c g f i l t , t s e cg , t , th ecg )

p l t . p l o t ( t , e c g f i l t )
p l t . p l o t ( t , vect R , ’ o ’ )

# PPG
th ppg=25 # Change the th r e sho ld even tua l l y
vect P , ts P=peak s de t e c t i on ( pp g f i l t , ts ppg , t , th ppg )

p l t . p l o t ( t , p p g f i l t )
p l t . p l o t ( t , vect P , ’ o ’ )

#===================
# FEATURE EXTRACTION
#===================
n=0
T=0
found=0
ptt=np . z e ro s ( l en ( e c g f i l t ) ) # PTT array
hr=np . z e r o s ( l en ( e c g f i l t ) ) # HR array
t imetab l e=np . z e ro s ( l en ( e c g f i l t ) ) # Timestamp array
f o r i in range ( l en ( vect R ) ) :

i f i>=T:
i f vect R [ i ]>0:

found=0
f o r j in range ( i +1, l en ( vect R ) ) :

i f found==1:
break

i f vect R [ j ]>0:
break

e l s e :
i f vect P [ j ]>0:

ptt [ n]= ts P [ j ]− ts R [ i ]
f o r k in range ( i +1, l en ( vect R ) ) :

i f vect R [ k ]>0:
hr [ n ]=60/( ts R [ k]− ts R [ i ] )
t imetab l e [ n]= ts R [ i ]
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n=n+1
T=k
found=1
break

# Zero e lements d e l e t i o n and ar rays cut at the same length
ind=np . array (np . where ( ptt==0))
ptt=np . d e l e t e ( ptt , ind )
ind=np . array (np . where ( hr==0))
hr=np . d e l e t e ( hr , ind )
ind=np . array (np . where ( t imetab l e==0))
t imetab l e=np . d e l e t e ( t imetable , ind )

i f l en ( ptt )> l en ( hr ) :
ind=np . arange (0 , l en ( hr ) )
ptt=ptt [ ind ]
t imetab l e=t imetab l e [ ind ]

e l s e :
ind=np . arange (0 , l en ( ptt ) )
hr=hr [ ind ]
t imetab l e=t imetab l e [ ind ]

# Arrays c l e an ing
mean PTT=np .mean( ptt )
dev PTT=np . std ( ptt )
mean HR=np .mean( hr )
dev HR=np . std ( hr )

f o r i in range ( l en ( t imetab l e ) ) :
i f ptt [ i ]>mean PTT+dev PTT or ptt [ i ]<mean PTT−dev PTT or
hr [ i ]>mean HR+dev HR or hr [ i ]<mean HR−dev HR :

ptt [ i ]=0
hr [ i ]=0
t imetab l e [ i ]=0

ind=np . array (np . where ( ptt==0))
ptt=np . d e l e t e ( ptt , ind )
ind=np . array (np . where ( hr==0))
hr=np . d e l e t e ( hr , ind )
ind=np . array (np . where ( t imetab l e==0))
t imetab l e=np . d e l e t e ( t imetable , ind )

#==============================
# OMRON HeartGuide DATA LOADING
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#==============================
with open (” Test1 . csv ”) as f i l e c s v :

r eader=csv . r eader ( f i l e c s v , d e l im i t e r =”;”)
ts omron=np . array ( l i s t (map( f l o a t , [ ( l i n e [ 0 ] ) f o r l i n e
in reader ] ) ) )

with open (” Test1 . csv ”) as f i l e c s v :
r eader=csv . r eader ( f i l e c s v , d e l im i t e r =”;”)
sbp=np . array ( l i s t (map( f l o a t , [ ( l i n e [ 1 ] ) f o r l i n e in
reader ] ) ) )

with open (” Test1 . csv ”) as f i l e c s v :
r eader=csv . r eader ( f i l e c s v , d e l im i t e r =”;”)
dbp=np . array ( l i s t (map( f l o a t , [ ( l i n e [ 2 ] ) f o r l i n e in
reader ] ) ) )

# Omron ’ s time va lue s correspond to the time in which
the dev i c e r e tu rn s the p r e s su r e va lue s
ts omron=ts omron−60∗np . ones ( l en ( ts omron ) )

# Creat ion o f the i n t e r p o l a t i n g time array
n=np . array (np . where ( t s e c g==t imetab l e [ 0 ] ) )
m=np . array (np . where ( t s e c g==t imetab l e [ −1 ] ) )
ind=np . arange (n ,m)
t f i t=t s e c g [ ind ]

# In t e r p o l a t i o n o f the Omron ’ s data
SBP f i t=np . i n t e rp ( t f i t , ts omron , sbp )
DBP fit=np . i n t e rp ( t f i t , ts omron , dbp )

# In t e r p o l a t i o n o f PTT and HR va lue s
HR fit=np . i n t e rp ( t f i t , t imetable , hr )
PTT fit=np . i n t e rp ( t f i t , t imetable , ptt )

#==================
# FEATURE REDUCTION
#==================
row1=f e a t r e du c t i o n ( PTT fit , t f i t ) # PTT
row2=f e a t r e du c t i o n ( HR fit , t f i t ) # HR
row3=f e a t r e du c t i o n ( SBP fit , t f i t ) # SBP
row4=f e a t r e du c t i o n ( DBP fit , t f i t ) # DBP

# Arrays resampl ing
row1=np . i n t e rp ( t imetable , t f i t , row1 )
row2=np . i n t e rp ( t imetable , t f i t , row2 )
row3=np . t ranspose (np . i n t e rp ( t imetable , t f i t , row3 ) )

91



row4=np . t ranspose (np . i n t e rp ( t imetable , t f i t , row4 ) )

#===================
# REGRESSION METHODS
#===================
# Prepar ing data
# Training s e t conta in s the 70% of the whole dataset , the
t e s t s e t the remaining 30%
s z t r a i n=round (0 . 7∗ l en ( row1 ) )
i n d t r a i n=np . arange (0 , s z t r a i n )
i n d t e s t=np . arange ( s z t r a i n , l en ( row1 ) )
trainData PTT=row1 [ i n d t r a i n ]
testData PTT = row1 [ i n d t e s t ]
trainData HR=row2 [ i n d t r a i n ]
testData HR = row2 [ i n d t e s t ]
X tra in=np . t ranspose (np . array ( [ trainData PTT , trainData HR ] ) )
X tes t=np . t ranspose (np . array ( [ testData PTT , testData HR ] ) )
perc=round (0 . 2∗ l en ( i n d t e s t ) )

# MULTIVARIATE LINEAR REGRESSION
reg r = l in ea r mode l . L inearRegre s s i on ( ) # Parameters d e f i n i t i o n
MLR SBP pred ,MLR DBP pred ,MLR mae SBP ,MLR mae DBP,MLR dev SBP ,
MLR dev DBP , num SBP ,num DBP=r e g r e s s i o n p r o c e s s ( regr , X train ,
X test , i nd t r a i n , i nd t e s t , row3 , row4 )

# Do the f o l l ow i n g p l o t s f o r the other r e g r e s s i o n methods too
# SBP p lo t
p l t . p l o t (np . arange (0 , l en ( i n d t e s t ) ) ,MLR SBP pred , ’ r ’ ,
l a b e l=”Pred ic ted SBP”)
p l t . p l o t (np . arange (0 , l en ( i n d t e s t ) ) , row3 [ i n d t e s t ] , ’ b ’ ,
l a b e l=”Real SBP”)
p l t . x l ab e l ( ’ Samples ’ )
p l t . y l ab e l ( ’ Amplitude (mmHg) ’ )
p l t . l egend ( )

# DBP p lo t
p l t . p l o t (np . arange (0 , l en ( i n d t e s t ) ) ,MLR DBP pred , ’ r ’ ,
l a b e l=”Pred ic ted DBP”)
p l t . p l o t (np . arange (0 , l en ( i n d t e s t ) ) , row4 [ i n d t e s t ] , ’ b ’ ,
l a b e l=”Real DBP”)
p l t . x l ab e l ( ’ Samples ’ )
p l t . y l ab e l ( ’ Amplitude (mmHg) ’ )
p l t . l egend ( )

92



# RANDOM FOREST REGRESSION
reg r = RandomForestRegressor ( n e s t imato r s =100 , random state=7,
c r i t e r i o n =’mae ’ ) # Parameters d e f i n i t i o n
RFR SBP pred , RFR DBP pred ,RFR mae SBP ,RFR mae DBP, RFR dev SBP ,
RFR dev DBP , num SBP ,num DBP=r e g r e s s i o n p r o c e s s ( regr , X train ,
X test , i nd t r a i n , i nd t e s t , row3 , row4 )

# RIDGE REGRESSION
reg r = Ridge ( alpha =.01)
RR SBP pred , RR DBP pred ,RR mae SBP ,RR mae DBP, RR dev SBP ,
RR dev DBP , num SBP ,num DBP=r e g r e s s i o n p r o c e s s ( regr , X train ,
X test , i nd t r a i n , i nd t e s t , row3 , row4 )

# SUPPORT VECTOR REGRESSION
reg r = SVR(C=50, e p s i l o n =0.2)
SVR SBP pred , SVR DBP pred , SVR mae SBP , SVR mae DBP , SVR dev SBP ,
SVR dev DBP ,num SBP ,num DBP=r e g r e s s i o n p r o c e s s ( regr , X train ,
X test , i nd t r a i n , i nd t e s t , row3 , row4 )

#=======================================
# REGRESSION METHODS WITHIN A 10 s WINDOW
#=======================================
# Prepar ing data
# De f i n i t i o n o f a 10 seconds window
f o r i in range (1 , l en ( row1 ) ) :

i f abs ( t imetab l e [ i ]− t imetab l e [0])>=10:
ind=i # Samples
break

# Windows concatenat ion in a s i n g l e t r a i n i n g matrix
PTT temp=trainData PTT
HR temp=trainData HR
PTT regr=np . z e ro s ( ( l en ( i n d t r a i n ) , np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
HR regr=np . z e ro s ( ( l en ( i n d t r a i n ) , np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
ind temp=np . arange ( ind )
f o r i in range ( l en ( trainData PTT ) ) :

PTT regr [ i , : ]=PTT temp [ ind temp ]
PTT temp=np . r o l l (PTT temp , 1 )
HR regr [ i , : ]=HR temp [ ind temp ]
HR temp=np . r o l l (HR temp , 1 )

X tra in=np . concatenate ( ( PTT regr , HR regr ) , ax i s=1)

# Windows concatenat ion in a s i n g l e t e s t matrix
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PTT temp=testData PTT
HR temp=testData HR
PTT regr=np . z e ro s ( ( l en ( i n d t e s t ) , np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
HR regr=np . z e ro s ( ( l en ( i n d t e s t ) , np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
ind temp=np . arange ( ind )
f o r i in range ( l en ( testData PTT ) ) :

PTT regr [ i , : ]=PTT temp [ ind temp ]
PTT temp=np . r o l l (PTT temp , 1 )
HR regr [ i , : ]=HR temp [ ind temp ]
HR temp=np . r o l l (HR temp , 1 )

X tes t=np . concatenate ( ( PTT regr , HR regr ) , ax i s=1)

# MULTIVARIATE LINEAR REGRESSION
reg r = l in ea r mode l . L inearRegre s s i on ( ) # Parameters d e f i n i t i o n
MLR SBP pred ,MLR DBP pred ,MLR mae SBP ,MLR mae DBP,MLR dev SBP ,
MLR dev DBP , num SBP ,num DBP=r e g r e s s i o n p r o c e s s ( regr , X train ,
X test , i nd t r a i n , i nd t e s t , row3 , row4 )

# RANDOM FOREST REGRESSION
reg r = RandomForestRegressor ( n e s t imato r s =100 , random state=7,
c r i t e r i o n =’mae ’ ) # Parameters d e f i n i t i o n
RFR SBP pred , RFR DBP pred ,RFR mae SBP ,RFR mae DBP, RFR dev SBP ,
RFR dev DBP , num SBP ,num DBP=r e g r e s s i o n p r o c e s s ( regr , X train ,
X test , i nd t r a i n , i nd t e s t , row3 , row4 )

# RIDGE REGRESSION
reg r = Ridge ( alpha =.01)
RR SBP pred , RR DBP pred ,RR mae SBP ,RR mae DBP, RR dev SBP ,
RR dev DBP , num SBP ,num DBP=r e g r e s s i o n p r o c e s s ( regr , X train ,
X test , i nd t r a i n , i nd t e s t , row3 , row4 )

# SUPPORT VECTOR REGRESSION
reg r = SVR(C=50, e p s i l o n =0.2)
SVR SBP pred , SVR DBP pred , SVR mae SBP , SVR mae DBP , SVR dev SBP ,
SVR dev DBP ,num SBP ,num DBP=r e g r e s s i o n p r o c e s s ( regr , X train ,
X test , i nd t r a i n , i nd t e s t , row3 , row4 )

#==========================
# MINIMUM CALIBRATION TIME
#==========================
# Without time i n t e r v a l datase t d i v i s i o n
m in c a l i b t=300
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f o r i in range ( l en ( t imetab l e ) ) :
i f t imetab l e [ i ]− t imetab l e [0]>=min ca l i b t :

# Time ( s )
i n d t r a i n=np . arange (0 , i )
i n d t e s t=np . arange ( i , l en ( t imetab l e ) )
break

trainData PTT=ptt [ i n d t r a i n ]
testData PTT = ptt [ i n d t e s t ]
trainData HR=hr [ i n d t r a i n ]
testData HR = hr [ i n d t e s t ]
X tra in=np . t ranspose (np . array ( [ trainData PTT , trainData HR ] ) )
X tes t=np . t ranspose (np . array ( [ testData PTT , testData HR ] ) )

r eg r=l in ea r mode l . L inearRegre s s i on ( ) # Change even tua l l y
SBP pred , DBP pred ,mae SBP ,mae DBP, dev SBP , dev DBP , num SBP ,
num DBP=r e g r e s s i o n p r o c e s s ( regr , X train , X test , i nd t r a i n ,
i nd t e s t , row3 , row4 )
c a l i b t ime=ca l i b r a t i o n t ime ( min ca l i b t , t imetable ,mae SBP ,
mae DBP, dev SBP , dev DBP , row3 , row4 , r eg r )

# Within time i n t e r v a l datase t d i v i s i o n
min ca l i b w ind t=300

f o r i in range ( l en ( t imetab l e ) ) :
i f t imetab l e [ i ]− t imetab l e [0]>=min ca l i b w ind t :

# Time ( s )
i n d t r a i n=np . arange (0 , i )
i n d t e s t=np . arange ( i , l en ( t imetab l e ) )
break

trainData PTT=row1 [ i n d t r a i n ]
testData PTT = row1 [ i n d t e s t ]
trainData HR=row2 [ i n d t r a i n ]
testData HR = row2 [ i n d t e s t ]
X tra in=np . array ( [ trainData PTT , trainData HR ] )
X tes t=np . array ( [ testData PTT , testData HR ] )
perc=round (0 . 2∗ l en ( i n d t e s t ) )

# Windows concatenat ion in a s i n g l e t r a i n i n g matrix
PTT temp=trainData PTT
HR temp=trainData HR
PTT regr=np . z e ro s ( ( l en ( i n d t r a i n ) , np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
HR regr=np . z e ro s ( ( l en ( i n d t r a i n ) , np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
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ind temp=np . arange ( ind )
f o r i in range ( l en ( trainData PTT ) ) :

PTT regr [ i , : ]=PTT temp [ ind temp ]
PTT temp=np . r o l l (PTT temp , 1 )
HR regr [ i , : ]=HR temp [ ind temp ]
HR temp=np . r o l l (HR temp , 1 )

X tra in=np . concatenate ( ( PTT regr , HR regr ) , ax i s=1)

# Windows concatenat ion in a s i n g l e t e s t matrix
PTT temp=testData PTT
HR temp=testData HR
PTT regr=np . z e ro s ( ( l en ( i n d t e s t ) , np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
HR regr=np . z e ro s ( ( l en ( i n d t e s t ) , np . dtype ( ’ int64 ’ ) . type ( ind ) ) )
ind temp=np . arange ( ind )
f o r i in range ( l en ( testData PTT ) ) :

PTT regr [ i , : ]=PTT temp [ ind temp ]
PTT temp=np . r o l l (PTT temp , 1 )
HR regr [ i , : ]=HR temp [ ind temp ]
HR temp=np . r o l l (HR temp , 1 )

X tes t=np . concatenate ( ( PTT regr , HR regr ) , ax i s=1)

r eg r=l in ea r mode l . L inearRegre s s i on ( ) # Change even tua l l y
SBP pred , DBP pred ,mae SBP ,mae DBP, dev SBP , dev DBP , num SBP ,
num DBP=r e g r e s s i o n p r o c e s s ( regr , X train , X test , i nd t r a i n ,
i nd t e s t , row3 , row4 )
ca l i b t ime w ind=ca l ib ra t i on t ime window ( min ca l ib wind t ,
t imetable ,mae SBP ,mae DBP, dev SBP , dev DBP , row3 , row4 , regr , row1 ,
row2 , ind )
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[9] Ivana Čuljak et al. “Wireless Body Sensor Communication Systems
Based on UWB and IBC Technologies: State-of-the-Art and Open
Challenges”. In: Sensors 20.12 (2020), p. 3587.

[10] Rocco Calzone et al. “Innovations in biomedicine: Measuring physi-
ological parameters becomes as simple as applying a plaster on the
body”. In: 2019 International Conference on Electromagnetics in Ad-
vanced Applications (ICEAA). IEEE. 2019, pp. 1443–1446.

[11] Stephen Lee and John Kruse. “Biopotential electrode sensors in ECG/
EEG/EMG systems”. In: Analog Devices 200 (2008), pp. 1–2.

97
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