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Abstract

Osteoporosis is a systematic skeletal disorder characterized by low bone mass and microar-
chitectural deterioration of bone tissue, with a consequent increase in bone fragility and
susceptibility to fracture, affecting about 30% of post-menopausal women.
Nowadays, the main operational criterion to establish the presence of osteoporosis is based
on the measurement of the areal Bone Mineral Density (aBMD) through Dual energy X-
ray Absorptiometry (DXA). However, different studies have shown that nearly half of the
subjects experiencing a low trauma hip fracture were classified as "low risk" according to
the aBMD value.
To overcome this problem and improve fracture prediction, different studies have been
conducted, ranging from the analysis of the parameters of Hip Structural Analysis (HSA)
and Trabecular Bone Score (TBS), up to the use of QCT images for the creation of Fi-
nite Element (FE) models to predict the bone load to failure or for the development of
three-dimensional statistical shape models, in order to identify fracture-prone features.
Nonetheless, the main problem with the aforementioned analyses is that QCT is not rou-
tinely performed in a clinical environment.
In order to overcome this problem, in this work the possibility to build statistical models
of DXA-derived proximal femur shapes is investigated, aiming at the hip fracture risk pre-
diction in a post-menopausal Caucasian cohort. Fifty post-menopausal women, aged 55-90
years who had sustained a hip fracture were recruited as fractured cases, and for each case
a post-menopausal woman matched with age, weight and height, was enrolled as control.
The patient-specific geometry of the proximal femur was extracted by performing a semi-
automatic segmentation of the DXA images in which the femoral head was simplified as a
circle and the lesser trochanter was not considered because not present in all DXA images.
Subsequently, the patient-specific 2D femur shapes were given as inputs to Deformetrica,
who allowed the extraction of the template, i.e. the mean anatomical shape, and of the so
called moment vectors, which gather the patient-specific anatomical features. Then, the
moment vectors were used to build Statistical Shape Models (SSMs).
Principal Component Analysis (PCA) and Partial Least Square (PLS) were adopted, lead-
ing to two distinct SSMs. While PCA maximized the variance found in the femurs anatom-
ical features, PLS identified the modes maximizing the covariance between femurs anatom-
ical features and the known patient-specific fracture status. Later, the identified modes
were used for the implementation of logistic regression models for the prediction of the
patients’ fracture status, which were tested using a 10-fold cross-validation procedure.
The first five PCA modes and PLS modes were selected, which could explain at least 90%
of the total shape variance. The predictive model with the first two, three, four and five
PCA components used as predictors resulted in AUC values all settled between 0.59 and
0.62; instead, for the PLS components provided AUC values between 0.62 and 0.63. An
AUC value of 0.73 was obtained using the gold standard aBMD.
In conclusion, the use of purely SSM does not seem to outperform the current gold stan-
dard for hip fracture risk prediction. The inclusion of Statistical Intensity Models (SIMs),
built starting from the local BMD values of DXA images, might allow an enhanced fracture
risk assessment.
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1. Introduction

1.1 Skeletal system

The skeletal system [1] includes a set of bones, connected by joints, and different tissues,
such as cartilage and ligaments. The most important features of this system and its
components are:

• construct the framework of the body;
• protect vital structures;
• offer regions of anchorage to muscles and ligaments;
• participate in the formation of blood, through the bone marrow;
• participate in controlling the calcium and phosphorus content within the body.

The external surface of the bone, with the exception of joint surface covered by cartilage,
is surrounded by a membrane of connective tissue, rich in blood vessels and nerve fibers:
Periosteum [1]. It consists of an external fibrous layer and an internal osteogenic layer 1

and includes numerous blood vessels and lymphatics vessels, as well as nerves, which are
responsible for the painful sensations after bones trauma.

After a macroscopic examination is feasible to take a look at two different tissues:
cortical bone tissue and cancellous bone tissue. Cortical bone is a material with a density
of 2 kg/dm3; while the spongious bone has a density that varies among 0.15 and 1 kg/dm3,
it is also called trabecular because it is made up of bone tissue organized to form many
girders, intertwined in various random ways. These trabeculae are particularly oriented
according to the directions of transmission of the stresses to which the bone is submitted.
Thanks to this complicated architecture, the spongy bone makes the bone more elastic
and much less fragile: in osteoporosis, the growth in fragility isn’t always because of the
thinning of the cortical bone, as for the loss and the rarefaction of spongy trabeculae,
which "empties" the bone making it structurally weaker [2].

The principal structural components of bone tissue [3, 4] as an entire are the Extra-
Cellular Matrix (ECM) and the bone cells. A bone matrix is made up, in dry weight, of
about 35% of collagen and proteoglycans, while the remaining 65% of hydroxyapatite (a
calcium phosphate crystal). These are responsible for the principal functional character-
istics of the bone: collagen provides deformability to the bone matrix, while the mineral
components give the matrix resistance to compression.
Bone cells such as osteoblast, osteoclast and osteocytes are responsible for the metabolic
activity of the bone. In fact, bone [3] is a metabolically active structure and it is subjected
to a process called bone turnover (explained in figure 1.1), which allows a daily turnover of
its ECM in order to guarantee the structural integrity of the skeleton and the blood calcium
homeostasis. This latter is carried out by osteoclasts responsible for the degradation of
dysfunctional bone, osteoblasts carry out the biosynthesis of the new bone to be replaced
and the osteocytes that form a three-dimensional network interconnected throughout the
bone tissue by acting as a mechanosensor that monitors mechanical stress within bone
tissues and reacts to changes in the amount and direction of load applied to the bones.
This process is fundamental because it allows to regulate plasma levels of calcium and

1The osteogenic layer is made from osteoblast cells (responsible for bone formation), osteoclasts (re-
sponsible for bone resorption) and osteochondral progenitor cells.
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phosphorus, strengthen bone tissue in response to appropriate stimuli and restore stress
microfractures.

Under optimal physiological conditions, bone resorption occurs in about 10 days and
bone formation takes about 3 months. Up to 20% of the skeleton can be replaced by
remodeling it every year. In conditions of metabolic equilibrium, the amount of reabsorbed
bone and new bone is equal, but when the amount of absorbed bone is greater than the
newly formed one, first a condition of osteopenia is established, and when the amount of
minerals falls below a certain threshold, a condition called osteoporosis.

Figure 1.1: Trabecular bone surfaces are protected by lining cells or osteoblasts (A). Firstly,
osteoclasts are interested in a quiescent bone surface and burrow a resorption cavity (B,
C). Mononuclear cells clean off the resorption cavity (D), which is the following site of the
attraction of osteoblasts, which synthesize an osteoid matrix (E). Continuous new matrix
synthesis (F) is followed by calcification (G) of newly formed bone. In the end, lining cells
overlap the trabecular surface (H). [5]
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1.2 Osteoporosis

Osteoporosis [6] is a skeletal disorder characterized by a compromised bone strength, which
causes an increased risk of fracture, particularly of vertebrae, femur and wrist even because
of minimal trauma. In general, osteoporosis manifests with advancing age, influences
about 30% of post-menopausal women. Different studies exhibit that the fracture risk, in
osteoporotic subjects, can be decrease by 70% with a protective bone therapy 2, which has
a low rate of adherence for the high cost [8]. Other studies report that the intervention
through physical activity may be a better alternative treatment. The aim of this type of
therapy is to improve the bone’s ability to withstand a significant degree of load, including
weight lifting, plyometrics and other high-impact activities. It has also been assessed that
swimming, even if it is considered a low-load sport, can affect the density of the lumbar
vertebrae of pre-menopausal swimmers. This can also be a good strategy for the clinical
prevention and treatment of osteoporosis [9].

Figure 1.2: Representation of different stages of osteoporosis

According to [10], bone mass is the major measurable factor for determining the risk of
osteoporotic fractures, but it is necessary to combine it with independent risk factors like
ethnicity, age, low body mass index or sex. In fact, in [11, 12] it is stated that women are
twice as likely to fracture as men. For example, women have approximately a five times
bigger risk of maintaining a forearm fracture than men but much less than two times of the
risk sustaining a backbone fracture. The principal reason is the lost bone density, which
is determined by menopause and by its change of hormonal concentration. In addition,
the prospect of women’s life is longer than men and so they have an extended period of
reduced bone density. On the contrary, men have a higher assessment of fracture-related
mortality than females, perhaps linked to more elevated rates of comorbidity.

The most common osteoporotic fractures comprise vertebral fractures, fractures of the
forearm, hip fractures, and proximal humerus fractures. Hip fractures induce acute pain
and lack of function, and nearly always result in hospitalization where recovery is gradually
and rehabilitation is often undone. Vertebral fractures might also additionally cause acute
pain and lack of function but may also take place without critical symptoms; this type of
fracture frequently recur and the resulting disability increases with the number of fractures.
Distal radial fractures also guide to acute pain and lack of function, but active recovery is
usually adequate or superior [13].

2Protective bone therapy is a treatment that uses Bisphosphonates [7], which are a category of drugs that
control the loss of bone density. Evidence shows that they decrease the risk of fracture in postmenopausal
women with osteoporosis.
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1.2.1 Etiopathogenesis

According to its etiology, osteoporosis is distinguished in primary and secondary osteo-
porosis [6, 14].

Primary osteoporosis is characterized by the absence of other clinical conditions capa-
ble of determining the quantitative and qualitative skeletal damage which, in turn, is at
the origin of reduced bone resistance and increased susceptibility to fractures [15]. This
includes: postmenopausal osteoporosis (Type I), involutive (senile) osteoporosis (Type II),
and idiopathic osteoporosis, which have some distinctive features regarding the age of on-
set, severity and reversibility of bone damage, and prevailing fracture locations.
Osteoporosis type I (post-menopausal osteoporosis) affects women within twenty years
since menopause, recognizes estrogen deficiency as a fundamental pathogenetic mechanism
and is characterized by fractures in skeletal sites that are rich in trabecular bone tissue,
such as the vertebrae and the distal radius. One of the hypotheses about how estrogen
acts on bone density is the capacity of this hormone to preserve bone from Oxidative
Stress (OS)3. Practical studies have shown that OS is a salient factor in bone remodel-
ing [14]. The results were further demonstrated by case-control studies, in which OS was
represented by a high level of F2-isoprostanes in the urine and a low grade of antioxidant
enzymes in the blood, along with decreased bone mineral density and improved risk of
osteoporosis. In addition to this factor, there are others that can increase the risk, such
as: smoking, excessive thinness, a sedentary lifestyle or even an excess of protein, sodium
and caffeine.
On the contrary, osteoporosis type II (senile osteoporosis) affects both sexes with in-
creasing age and reflects hormonal changes in the bone tissue. In this case, fractures
typically involve sites composed of both cortical and trabecular bone tissue, such as the
femur, humerus, tibia and pelvis.

Secondary osteoporosis is caused by various types of diseases that can, directly or indi-
rectly, lead to a reduction in skeletal resistance. The recognition of the forms of secondary
osteoporosis is of extreme importance since, if properly diagnosed and treated, it is, in
most cases, reversible. If osteoporosis therapy is prescribed to a patient who has not been
diagnosed with a secondary form of osteoporosis, it may lead to a failure to respond to the
therapy or even damage in terms of bone mass loss and increased risk of fracture.

3OS is developed as a consequence of the inadequate activity of the endogenous antioxidant protection
system against Reactive Oxygen Species (ROS) [14]

4



1.2.2 Epidemiology of osteoporosis and fragility fractures

In the world, there are 75 million people affected by osteoporosis, mainly in Europe, U.S.A.
and Japan [16]. The Surgeon General report on bone health and osteoporosis [17] an-
nounced that in 2004 osteoporosis has affected more than 8 million females and 2 million
males in the United States, in addition to 34 million individuals with low bone mass. In
2000, nearly 4 million osteoporosis fractures were recorded in Europe, of which almost 1
million were at the hip. This kind of fracture occurs more frequently in the elderly after a
fall [18], a result of decreased bone strength integrated with age and an improved chance
of falling. Among the osteoporosis fractures, this is classified among the most severe, with
an increase in mortality of 10-20% in the year following the fracture [19]. Similarly, frac-
tures of the proximal femur are considered particularly devastating due to the numerous
aftermath they generate in terms of persistent discomfort and limited physical mobility
[20].

Osteoporotic fractures also guide to a considerable decrease in the level of independence
due to disability and, therefore, to a greater need for long-term care. From this point of
view, the costs of osteoporosis, together with pharmacological interventions, were docu-
mented to be equal to 37 billion euros in 2010 [13], provided for 66% is for the treatment
of incident fractures, 5% for pharmacological interventions and 29% for long-term fracture
care. While 54% of total costs represent only the hip fractures[12].

In Italy, the capacity of incidence of osteoporosis and osteopenia was examined through
the Epidemiological Study On the Prevalence of Osteoporosis (ESOPO) study [6]; which
showed that among women the incidence of the first and second pathology was respectively
equivalent to 44.7% and 18.5%, while in the male sex the corresponding rates were 36%
and 10%. Looking at the Italian incidence of fractures in men and women (Table 1.1), an
exponential increase in the incidence can be observed, with much higher rates in women
than in men.

Table 1.1: Prevalence of osteopenia e osteoporosis

Normal Osteopenia Osteoporosis

Women
40-49 age 55.7% 39.9% 4.4%
50-59 age 41.9% 46.4% 11.7%
60-69 age 24.4% 47.6% 28.0%
70-79 age 15.0% 43.1% 41.9%

Man
60-69 age 55.2% 36.3% 8.5%
70-79 age 50.9% 35.8% 13.3%

We can therefore observe that osteoporosis incidence grows with aging and, due to the
raised longevity of the population, it is expected to grow dramatically [6].
In Europe, the percentage of the elderly over the entire population will increase by 33%
over the following 25 years [11] and in Italy, where it is approximate that 3.5 million
females and 1 million males suffer from osteoporosis, the percentage of people over the age
of 65 should increase by 25% over the next 20 years, reasonably leading to a proportional
increase in the incidence of osteoporosis [10]. In 2017, a total of 560,000 fractures were
registered in Italy, with a cost related to the health system of 9.4 billion euros. 20% of
these, being characterized by hip fractures, involved a cost of about 6 billion euros [13].
These numbers are expected to steadily increase over time: in this light, early diagnosis,
prevention and treatment of osteoporosis turn out to be extremely important [21].
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1.3 Methods of diagnosis

Nowadays densitometric techniques are able to diagnose the early phases of osteoporotic
deterioration, differentiate patterns of bone alteration, predict the risk of fractures, which
define a strong factor related to morbidity and also mortality of these patients, and address
both therapy and follow-up [22]. These techniques are the safest and most useful for the
estimation of mineral content and bone mass. Several techniques are proposed to carry
out this density quantification [6, 16, 23, 24].

• Quantitative bone UltraSonography (QUS):The QUS is a moderately simple,
cheap method, easy to implement, transportable, that does not use ionizing radiation
and makes it well tolerated by patients. This type of examination provides two
parameters (velocity and attenuation) which are indirect measures of bone mass and
structural integrity and is measured predominantly at two sites, the phalanges of the
hand and the heel. The combined use of ultrasonographic parameters and risk factors
improves the prediction of fracture risk. In addition, recent studies have shown that
by ultrasonographic measurement it is possible to obtain other complementary details
such as the allocation of the mineralized matrix within the bone (connectivity or the
thickness of the trabeculae), the different resistance to the load of the bone tissue as
a function of the trabecular orientation.

• Traditional radiography: The main task of the traditional radiological study is
to make an early diagnosis of osteoporosis fractures in the influenced sites. In par-
ticular, the radiologist’s task is to detect the features of bone resorption and to try
to quantify the loss of bone by estimating the thickness of the bone cortical, the
decline of trabecular beams and, in the case of the spine, the majority of vertical
trabecular systems in answer to the modified biomechanical stimulus with the stri-
ated appearance of vertebral bodies. Moreover, traditional radiological methods have
high inter-operative variability, which restricts their clinical applications in different
centers. For this reason, it is used in conjunction with other different bone densitom-
etry techniques (e.g DXA, QCT) that permit obtaining a more objective quantitative
measurement of the mineral bone present in a given district, for screening and follow-
up of osteopenic patients.

• Magnetic Resonance (MR): MR is a non-invasive investigative device that pro-
vides information on how water is distributed to biological tissues. Two parame-
ters can be obtained: the Apparent Diffusion Coefficient (ADC) and the Fractional
Anisotropy (FA) that permit analyzing the microscopic system of the tissues within
the water diffuses. At the ends of the long bones, the bone consists of trabecular
bone formed by a solid matrix with many interconnected pores, which are filled with
bone marrow consisting mostly of fat and water. By calculating the parameters ADC
and FA it is possible to obtain information about the microstructural state of the
bone tissue. In fact, with the development of osteoporosis, there is an addition of
the fat in the bone marrow, which reduces the space in the pores within which the
water spreads, reducing its diffusion coefficient, and degradation of the bone matrix,
with an increase in the average diameter of the pores, which results in an increase in
water diffusion coefficient due to an increase in the interstitial area between the fat
and the wall of the bone matrix.
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• Quantitative Computed Tomography (QCT): QCT is a non-invasive technique
that estimates the actual density of bone tissue in a given volume, in mg/cm3. It is
an imaging method that, in addition to bone density, can provide information on the
structure of the skeletal segment examined. There is a high-resolution QCT, with a
spatial resolution below 1 mm, that denotes the starting point of structural analysis
analyses, allowing to quantify the changes in the microstructure of the trabecular
bone and its mechanical strength. In particular, the approach makes possible to
analyze the contiguity of the trabeculae, the thickening, the distance, the spatial dis-
position and the structure of the trabeculae (understood as a measure of anisotropy).

• DXA: the DXA is the current gold standard that permits an accurate measure of the
bone mass and, in particular, the bone mineral density in g/cm2 of the projected bone
surface. For the World Health Organization (WHO), the densitometric diagnosis of
osteoporosis is established on the DXA evaluation of the bone mineral density defined
by T-score, that is a Standard Deviation (SD) compared to the average of healthy
adults of the identical sex. This technique is discussed in detail in the next section.

1.3.1 DXA, Dual X-ray Absorptiometry

The DXA, also called densitometry or dual energy X-ray absorptiometry, represents the
current gold standard for the diagnosis of osteoporosis and, therefore, the risk of fracture.
This is a radiological technique that estimates the total bone mass index, called Bone
Mineral Density (BMD) [25]. In particular, the presence of osteoporosis is estimated using
the T-score [18], which represents the distinction, in terms of standard deviation (SD),
between the bone density of a given subject and that of a young standard population of
the same sex (Eq. 1.1).

Tscore =
BMDpatient−BMDaverageoftheadultpopulation

standarddeviationoftheadultpopulation
(1.1)

Based on the WHO’s criteria, a patient with a T-score of −2.5 to the hip or spine is sup-
posed to be suffering from osteoporosis [26] (Tab. 1.2).
Another significant value represented by DXA is the Z-score, which varies from the T-score
only because in this case the patient’s BMD is compared with a population of peers of the
subject (Eq. 1.2).

Zscore =
BMDpatient−BMDaverageofthepopulationofthesameage

standarddeviationofthepopulationofthesameage
(1.2)

A Z-score of less than or equal to −2.0 is defined as "low bone mineral density by chrono-
logical age" or "below the expected age threshold"; for values above −2.0, "values within
expected age limits" [16] (Tab. 1.3).

Table 1.2: WHO’s diagnostic thresholds for BMD at the spine, hip or distal forearm

Category T-score-based definition

Normal +2.5 > T-score > -1
Osteopenia -1 > T-score > -2.5
Osteoporosis T-score < -2.5

Severe osteoporosis T-score < -2.5 with one or more brittle fractures.
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Table 1.3: Thresholds for the diagnosis of osteoporosis in case of early menopause or men
under the age of 50.

State Z-score

Normal -2 < Z-score
Osteoporosis -2 > Z-score

The statement of densitometry was to quantify the bone contrast and to calibrate it
in terms of the bone mineral that produces the contrast. The DXA method simplifies the
issue by using the principle of differential attenuation at two X-ray energies to provide
an image in which only inorganic mineral [27, 28], is present. Depending on the tools
used, those photons may be obtained by the use of two mechanisms. In some cases, the
generator emits alternating radiation of high (140 kV p) and low (70−100 kV p) kilovoltage
as it moves through the surface of the body to be examined. In others, the generator emits
a continued beam while a filter separates high energy (70 KeV ) from low energy photons
(40 KeV ) [29].

The effect of this attenuation is visible in Figure 1.3 where a conventional DXA image
is plotted as a topographic surface rather than a gray-scale picture. Pixels in the DXA
image are calibrated in terms of inorganic bone minerals represented in units of g/cm2.
Organic collagen, which binds the mineral together and is essential for the strength of the
material, is removed. A pixel value of 1 g/cm2, for example, is equal in thickness to a
layer of 1 g of hydroxyapatite distributed over an area of 1 cm2. The values characterize
[27] the thickness of the mineral counted along the path to a point, and the units are a
consequence of the attenuation physics. In fact, a DXA image does not tell us anything
about how the mineral is distributed along the projection path; therefore, it cannot be
used to conclude tissue mineralization or porosity [30]. The contemporary DXA software
effectively implements the original mineral contrast idea by evaluating the average contrast
(thickness) in a region comparable to a box placed on a reproducible skeletal place (figures
1.4). After excluding values below a certain threshold, pixels within the region are averaged
to obtain BMD, the average thickness of a mineral layer after removing all other materials
[27, 30].
Although DXA provides an accurate planar representation of BMD, it is limited by its
two-dimensionality and does not represent the spatial shape or distribution of the bone
mass [25].
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Figure 1.3: A traditional DXA scan of the hip was plotted as a topographic map displaying
the removal of all soft tissues within and across the bone mineral. The corresponding
profiles from single lines of pixels are shown to the right [27].

Figure 1.4: An example of geometric model of the proximal femur built on a DXA scan.
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1.4 Assessment of fracture risk

Due to growing global life expectancy, the incidence of hip fractures is expected to grow 3.5
times by 2050, growing to a total of 6.26 million [31] osteoporotic subjects; this underlines
the urgent need for a precise indicator of fracture risk.

Currently, the gold standard for the classification of a patient is the T-score deriv-
ing from the DXA. The accuracy of BMD measures using DXA to predict osteoporotic
fractures is similar to using blood pressure measurements for predicting stroke [32]. The
performance of BMD is moderate [33, 34], with about half of the people affected by fracture
having non-osteoporotic T-score ranks [35]. It can therefore be said that the predictive
interpretation of BMD is not sufficient to evaluate the risk of fracture [33].

Therefore, in order to identify clinically possible geometric features of the femur, many
authors focused on improving fracture prediction.
On the one hand, efforts were put into identifying geometric characteristics to the predis-
position to fracture of the proximal femur [27, 36–38]. Commonly evaluated considering
the parameters of Hip Structural Analysis (HSA) and Trabecular Bone Score (TBS).
The first one (HSA) are geometric variables [27] that describe the precise geometry of the
proximal femur and are extracted from the images DXA routine, which could be easily
incorporated into clinical decision-making to sustain fracture risk based on T-score [39]. In
addition, in different investigations [4, 40, 41] it was observed that the central HSA param-
eters involved in the optimal regression models as predictors of the Risk Factor Index (RFI)
and Femoral Strength (FS) were the Buckling Ration (BR) at the narrow neck and Shaft,
together with the Neck Shaft Angle (NSA). However, the improvement in HSA-based risk
prediction over T-score is hampered by the fact that parameters derived from HSA [18] (1)
define discrete measures incapable to describe the femur shape as a whole, (2) are highly
related and (3) are connected to BMD.
While TBS [42, 43] give additional information about the trabecular micro-architecture
quality through one parameter obtainable from a vertebral DXA image, processed by an-
alyzing the pixel intensity variations throughout it.
On the other hand, the use of Finite Element (FE) evaluation has been proposed as a
powerful and dependable calculation tool capable of fully estimating the risk of fracture
[44–46]. 3D models of computed tomography (QCT) based on finite elements (FE) would
enable the patient’s specific three-dimensional geometry and material properties to be re-
liably and comprehensively reproduced, as well as the load distribution [18]. However,
QCT is not routinely performed for osteoporosis diagnosis purposes, as it uses high doses
of radiation.
This is why the role of 2D FE models developed from DXA images has also been investi-
gated. The results of the model [39] have been shown to potentially improve the estimation
of fracture risk, bringing additional information regardless of the BMD.

A further idea is to use the Fracture Risk Assessment Tool (FRAX) [5, 47, 48] which
computes the 10-year probability of a major osteoporotic fracture combining together the
BMD measurement at the femoral neck with the clinical risk factors in order to identify
the patients at greater risk and assist treatment decisions. Yet, a considerable part of the
patients facing a hip fracture is not considered at high risk even when BMD information
is combined with epidemiological models such as FRAX, which would suggest the need to
find more accurate practices to estimate fracture risk [4].

10



Statistical models have been introduced in recent decades to further improve the pre-
diction of fracture risk; in particular Statistical Shape Model (SSM), Statistical Intensity
Model (SIM) and Statistical Shape and Intensity Model (SSIM).
The first model (SSM) was introduced to examine the associations between the overall
morphometric variations of the femoral form of an input cohort and the incidence of frac-
tures [18, 49]. Basically, given a set of training images, the statistical modeling of the form
allows the development of a linear model able to describe any new shape as the sum of
an average and a weighted linear combination of independent modes of variation identified
within the population [4]. As stated by Golland et al. [50], there are two essential features
of the form descriptors that can greatly influence the quality of statistical models. One
factor is related to the sensitivity of the model to image noise and the other concerns its
ability to align all shapes in a common coordinate system [51], which largely determines the
final performance of previous models of learned form. Despite providing information on the
shape, the SSM approach does not take into account the density distribution within bones,
the other crucial determinant of bone resistance. For this reason, another type of model
was introduced, called statistical models of intensity (SIM), which are able to describe the
intensity of pixels of the image of any new image according to the same scheme [4, 18].
It has been shown, [52] that the combined use of these two models represents a powerful
tool for reconstruction and classification. These models (SSIM) are similar to SSM models
but also include intensity information, which allows additional clinical benefits, such as
estimating potential risk factors for individuals with osteoporosis [18] and helping in the
task of distinguishing bone deformities from bone fractures.
Generally, however, the construction of SSIM requires longer calculation times and larger
computer memory requirements [53], as it is necessary to establish the correspondence not
only on the surface of the shape but also within the volume.

1.5 Aim of the Thesis project

This thesis will focus on the construction of statistical models of the femur shape, built
starting from the DXA images of a population of 100 post-menopausal Caucasian women,
with the aim of investigating the potential of such models in improving the prediction of
the risk of fracture of the femur.

11



2. Materials and methods

2.1 Study population

This study was conducted on a cohort of 100 Caucasian female subjects aged between 55
and 90 years and in menopause for at least 5 years, treated at the University of Sheffield,
England. The group consisted of 50 female subjects in whose 90 days prior to the test
they had suffered a hip fracture, due to low-energy trauma, and 50 non-fractured subjects
matched in term of age, height and weight were recruited as control group. Details of the
cohort are extensively reported elsewhere [54]. Due to incomplete data, 4 subjects were
not considered from the analysis, so 48 fracture patients and 48 controls patients were left.

For each subject constituting the cohort, a proximal femur DXA image was available
(acquired with a system Discovery DXA, Hologic, Waltham, MA, USA). For patients who
suffered a fracture, the contralateral femur was considered for analysis, assuming that
the two femurs showed similar characteristics in terms of pathological form or subject to
fracture and density (no patients had pathologies such as bone tumors or dysplasia).

2.2 DXA-derived data pre-processing

The whole methodological pipeline here presented will be base on DXA images. The aim
was to investigate the potential of statistical models derived from the standard imaging
technique used in osteoporosis in improving the prediction of the risk of fracture of the
femur.

First, the external profile of the proximal femur was extracted from the DXA images.
The extraction was based on the use of a semi-automatic interactive segmentation, through
the software Matlab (Matlab R2019b, The Mathworks, Massachusetts, U.); in which the
change of level of gray of the DXA image was evaluated. For convenience, the head was
assumed as a circle and the lesser trochanter was excluded as it was not visible in many
images (figure 2.1(a)).

Then, an optimization of the edge of the femur was made, the steps were: (1) con-
tour smoothing to remove roughness, (2) scaling, (3) contour translation and (4) rotation
resulting in alignment to their shaft axis. Images are now ready to be used as input for
Deformetrica (figure 2.1(b)).
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(a)

(b)

Figure 2.1: (a) Example of two femur external profile. (b) Patient-specific two-dimensional
profiles given as input to Deformetrica after the alignment procedure.

2.3 Deformetrica

The starting point to carry out the statistical analysis of the shape, was based on the use
of an open-source code called Deformetrica (http://www.deformetrica.org/), developed by
Durrleman and his collaborators [55, 56]. This code was based on a specific instance
of Large Deformation Diffeomorphic Metric Mapping (LDDMM) based on the control
point and to represent and describe shapes it didn’t need landmarking using mathematical
currents.
The main idea of current was to probe shapes by vector fields, w ∈ W across a surface S
(or curve L); where W is a vector space created by a Gaussian kernel Kw with width λw1:

Kw(x, y) = exp
(
− |x− y|

2

λ2w

)
(2.1)

1This width is a critical hyperparameter of any deformetrica run
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For each point of the surface (or curve) it was possible to define a Dirac delta current
(δa

i
k
xk), oriented through the normal (or tangent), and the surface could be approximated

by a finite sum (Eq. 2.2), since the surfaces (or curves) can be represented with discrete
meshes.

Si =
∑
k

δ
aik
xk (2.2)

After modelling the input forms with currents, the forward approach [57] was used to
calculate the model T̄ , which represented the average anatomical shape, and the transfor-
mation functions φi, which maps every ith patient-specific form [58]. Then each shape was
describable as the sum of the model T̄ and some residual εi (figure 2.2):

T i = φiT̄ + εi (2.3)

The function φi was explain using the LDDMM method [56], and it was parameterized by
a time-varying velocity field only identifies by an initial vector speed vi0:

vi0(x) =
∑
k

Kv(xk, x)βixk (2.4)

Deformetrica takes as input the femur shapes and kernel widths (λW and λV ), while
outputting the template shape, the reconstructed input forms, the control point coordinates
and relative moment vectors.

Figure 2.2: Example of how the template was deform to derive a random external profile.
The red line identifies the original external boundary, the black one identifies the template
boundary and the blue line identifies the contour obtained by applying the moments to the
template
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2.4 Sensitivity Analysis

The Sensitivity Analysis (SA) allows to evaluate different parameters and determine which
are the influencing factors and not influential. Thus, the values of the input factors of the
model are perturbed (individually, in groups or at the same time) within a fixed range of
variation in order to identify the sensitivity for each factor of the model [59, 60]. In this
thesis, sensitivity analysis has been used to derive the input parameters of Deformetrica
that allow us to obtain a more accurate reconstruction of femur external profile. The
parameters studied are described below [49, 55, 61, 62].

• Optimization method: Each Deformetrica model use those deformation and at-
tachment mechanics to define a specific cost function, that will then be optimized
either by steepest gradient descent (GradientAscent) or with the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (ScipyLBFG).
Both methods are used to minimize the function, for the GradientAscent the mini-
mization is performed following the maximum descent determined by the opposite of
the gradient of a point; while ScipyLBFG method uses the derivatives of the function
to identify the steepest descent from which to derive the Hessian matrix that will
guide the minimization.
A further difference is that in certain situations the Gradient method is more robust
than the Scipy one, which however converges more quickly and has limited memory
consumption.

• Kernel type: The deformation mechanics heavily rely on convolution operations,
Keops uses linear convolutions for calculating 2D array reductions, while Torch uses
quadratic convolutions.
The main difference is in the computation speed and memory used. In addition, it is
advisable to use the Keops kernel when there are many points, to avoid that during
a simulation deformation goes out of memory.

• Kernel width: The Kernel width is a numeric value that defines the size of the kernel
used. There are two kernels: λW defines the resolution of the deformetric output,
value that are too small tend to make the shape orthogonal, while too large values
tend to make all shape alike and therefore alter matching accuracy, and λV defines
the stiffness of the deformation, so increasing this parameter increases the stiffness
of the deformation, with smaller values the model consider more independent local
variations and the information in larger anatomical regions is not well integrated,
while with larger values the model is based on almost rigid deformations.
The sensitivity analysis of these parameters is performed following the article of Bruse
and collaborators [63], which consisted in running Deformetrica many times altering
λW and λV values in order to achieve an optimal reconstruction of the input shapes.
Two starting values for λW and λV were calculated as a percentage of the femur that
had the shortest area. Thus, a starting template was calculated from these values
and each ith patient-specific shape was reconstructed from the output transformation
function. Then, λW and λV were decreased with a 1 mm step and the reconstruction
error (Eq. 2.5) was calculated.

εs =

√√√√ 1

N

N∑
i=1

||xsi − xri ||2 (2.5)

where N is the number of point, xsi is the ith node of the original profile and xri is
the ith node of the reconstructed profile.
This step was performed until the reconstruction error was reduced by ≥ 80%.
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• Attchment type: The attachment-type is the type of distance used between ob-
jects, it depends on the size of the Gaussian kernel (λW ) and allows to assess whether
the reconstruction is close to the original.
There are three parameters to edit: Varifold, Current and Landmark. The main
difference between these parameters is the calculation of the distance between two
meshes and the orientation of the normal. Varifold does not take into account the
orientation as opposed to current; while the Landmark parameter requires a corre-
spondence between points, in this case there was no correlation between points so
this method was discarded.

• Noise-std: Finally, Noise-std parameter controls the adaptability of the recon-
structed profile to the original ones, it only controls the compromise between data
attachment and regularization.

In addition, with the aim of assessing whether the final form of the template had not been
heavily modified by one shape, which was included or discarded, an outlier search has been
carried out following the article by Bruse and collaborators [63], in which they performs
k-fold cross-validation. The entire dataset was split into k=50 random subsets: thus, the
template was calculated k times, each time discarding a different subset (consisting of 2
subjects) until all subjects were discarded once. 50 different templates were obtained and
the distances between them were calculated, in particular considering the larger distance
values, the medium ones and the Hausdorff distance. From the obtained values, shown in
the figure 2.3, the highest value was 0.6076mm, 0.2733mm and 0.6076mm for the largest,
the average and Hausdorff distance respectively, which were evaluated satisfactory to say
that no shape did affect the template building.

Figure 2.3: Obtained value of the largest, average and Hausdorff distance to estimate that
no subject affects the template construction.
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2.5 Statistical Shape Model

Statistical Shape Models (SSM) are geometric models that represent a collection of match-
ing objects in a very compact way. In general, SSMs denote an average shape of many
objects as well as their variation in shape [18, 64]. The SSMs were created using the Nx2k
moment vectors matrix Xβ as input, with N being the total number of patients and k
dependent on the number of control points.
Herein, two separate methods were utilized to create SSMs: PCA and PLS. While PCA
maximized the variance found in the femurs anatomical features, PLS identified the modes
maximizing the covariance between femurs anatomical features and the patient-specific
fracture status, which was known. By projecting the original data matrix on the recognize
modes, the PCA (bi) and PLS (ti) shape components for each ith mode (i = 1, ..., N − 1)
could be computed [18].
A schematic of the workflow is presented in Figure 2.4.

Figure 2.4: Statistical Shape Analysis pipeline, where Xβ was the moment vectors matrix,
while bi and ti were the shape components for each ith mode.

2.5.1 Principal Component Analysis

PCA is a statistical approach that allows extracting the main shape features observable in
an input population. Basically, it is based on the idea [65] of decreasing the dimensionality
of a dataset by going to preserve as much "variability" as possible (i.e. statistical infor-
mation, max|q|=1var(Xq) where q being the searched basis and X the input variable). It
performs this reduction by identifying the directions, called modes, along which the varia-
tion in the data is maximum [66]. In essence, it is reduced to the resolution of an eigenvalue
problem (Sq = λq), in which the eigenvectors (q), represent the main modes of variation,
that is, the orthogonal paths along which the variance is maximized, and eigenvalues (λ),
indicate the fragment of the total variance reported by each mode [4].

After recognizing the modes, that maximize the variance of the initial variables, the
components are found projecting the initial variables on the modes [18, 67]. Here, each
component reveals the mode’s contribution to the specific femur shape of the subject. The
modes taken into consideration will be those defined as more influential, i.e. that explain
a specific π% of the entire variance, discarding the others and thus producing a minimized
representation of the original dataset.
Having only the information on the proximal shape of the femur of our population, pro-
duced by Defometrica, the PCA was applied on the shape.
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PCA-based Statistical Shape Model: A PCA-based Statistical Shape Model
was created upon patient-specific moment vectors β (a Deformetrica’s output), containing
the proximal femur anatomical details of the ith subject referred to the template [4, 18].
The starting point of the SSMs construction, was the building of a moment vectors matrix
(Xβ = [β̃1; ...; β̃N ], where β̃i = βi − β̄ the centered moment vectors), on which PCA was
performed. Subsequently, from this matrix was obtained the covariance matrix (Eq. 2.6).

S =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T (2.6)

where N is the number of subjects, xi the ith moment and x̄ = 1
N

∑N
i=1 xi.

PCA was conducted to determine the principal geometrical attributes observed in the co-
hort and allowed the extraction of the deformation modes concurrently with their respec-
tive variance and related shape principal components; so principal components describe
the deformation that the template experiences along the ith direction to correspond each
subject’s shape [4, 18]. The principal components give therefore a quantitative illustration
of the subject-specific shape attributes contained in each mode [18].
To see the effect of each mth specific deformation mode on the template, the equivalent set
of moment vector βm, parametrizing the related template transformation only along the
mth mode can be determined.

βm = β̄ ± l
√
λmqm (2.7)

Substituting βm of Equation 2.7 in Equation 2.4, is possible to determine the initial velocity
used to deform the template along the mode of interest [4].

2.5.2 Partial Least Square

However, PCA alone is able to extract only the directions (or modes) of greater variability,
without taking into account an external variable of interest [4]; for this reason, PLS is
generally used, taking a matrix of predictors and a matrix of response variables in input,
identify the main characteristics of the predictor matrix that are also relevant for the re-
sponse variable.
This method identifies new bases, also relevant to an external response variable, within the
predictor space; then it calculates the space that maximizes the covariance between the Xc

predictor matrix and an array of Yc response variables. Mathematically, PLS calculates
the weights vectors r and s which fulfill:

max|r||s|=1cov(Xcr, Ycs) = max|r||s|=1var(Xcr)corr(Xcr, Ycs)
2var(Ycs) (2.8)

as the contrary of PCA, which solves max|r|=1var(Xcr).
The algorithm follows an iterative process, summarize in figure 2.5. This loops stop when
all PLS modes are extracted; furthermore, at each step, the variance explained by r and s
is removed.
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Figure 2.5: PLS space decomposition (PLS1 algorithm)

The goal was the extraction of the dominant shape features considerable correlated to the
risk of proximal femur fracture [4].

PLS-based Statistical Shape Model: A PLS-based Statistical Shape Model
has the aim to study the main shape features most relevant to the risk of fracture. Here,
PLS was applied to the moment vectors matrix Xβ , taking the centered fracture status
vectors as the response variable. With the PLS1 algorithm, the shape modes were identified
automatically ordered by reducing variance and covariance for the response variable[4, 18].
Therefore, the first c PLS components were selected, explaining contemporary πXβ% of
the variance in Xβ and πFS% of the total fracture status variance.
The visualization of the nth PLS deformation mode is achieved warping the template using
the moment vectors determined as:

βn = β̄ ± l
√
λnpn (2.9)

Finally, like PCA-based SSM, substituting the Equation 2.9 in Equation 2.4, the initial
velocity to be used to deform the template along the mode of interest can be chosen[4].
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2.6 Prediction of fracture risk

The identified, PCA and PLS, modes were used for the implementation of logistic regression
models for the prediction of the patients’ fracture status, which were tested using a 10-fold
cross-validation procedure [68].

More in detail, the first two, three, four and five PCA and PLS components of SSM
were considered here as separate predictors, leading to eight distinct predictive models (four
for PCA and four for PLS). The prediction ability of these logistic regression models was
compared with that of a different regression model using aBMD as an independent variable
and the fractured status as a binary dependent variable. A test set would be required for
the predictive performance of the method to be assessed, a k-fold cross-validation technique
was adopted according to the steps shown in the following figure 2.6 [68].

Figure 2.6: k-fold cross-validation step

Particularly, here was applied a 10-fold cross-validation. The whole cohort was separated
into 10 groups in a random way and each group was forced, as far as possible, to have the
same number of fractured subjects and controls one, to ensure training sets are properly
balanced [68].

PCA and PLS were executed and the logistic regression models were trained and tested
10 separate times, predicting the fracture risk for the subjects contained in the test group.
Then, the respective Receiver Operating Characteristic (ROC) curves were plotted and the
Area Under Curve (AUC) was calculated for each ROC curve, with the aim to compare
the value of the different logistic regression models.
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3. Results

3.1 Sensitivity Analysis

The sensitivity analysis was executed to examine the effect of different parameters on
the Deformatrica’s output in order to derive the optimal inputs to obtain an accurate
reconstruction of the external profile of the femur. The results of this analysis are described
below.

• Optimization method: Deformetrica runs two times, one with the GradientAscent
method and the other with the ScipyLBFGS method. In Table 3.1 and the graph in
figure 3.1 the differences between the two methods are shown, so is possible to say
that the ScipyLBFGS method shows a better reconstruction than GradientAscent
one, because it has smaller residuals and Hausdorff distances. Aiming to evaluate if
the two methods modify the Deformetrica’s template output, the Hausdorff distance
between them was computed, obtaining a value of 0.768mm.

Table 3.1: Comparison between GradientAscent optimization method and ScipyLBFGS
optimization method

λW = 15

λV = 20
GradientAscent ScipyLBFGS Percentage difference

Residual
comparison

Max=100.057
Mean=25.867
Min=3.318

Max=92.584
Mean=24.445
Min=2.816

Max=7.47%
Mean=5.50%
Min=15.13%

Hausdorff distance
comparison

Max=4.344
Mean=2.107
Min=1.015

Max=4.064
Mean=2.008
Min=0.892

Max=6.45%
Mean=4.72%
Min=12.06%
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Figure 3.1: Difference between the residual of GradientAscent method and ScipyLBFGS
method. Each bar corresponds to a subject, the positive bars identify how much the
GradientAscent residue is greater than the ScipyLBFGS.
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• Kernel type: Also in this case the kernel type used did not affect the construction
of the template, the Hausdorff distance obtained is 0.054mm. The percentage dif-
ferences observed in table 3.2 and the comparison of residues (fig. 3.2), allow to say
that the kernel Torch has a greater influence on the reconstruction of the femoral
profiles.

Table 3.2: Comparison between Keops and torch kernel type

λW = 15

λV = 20
Keops Torch Percentage difference

Residual
comparison

Max=92.584
Mean=24.445
Min=2.816

Max=89.393
Mean=23.907
Min=2.787

Max=3.45%
Mean=2.20%
Min=1.04%

Hausdorff distance
comparison

Max=4.064
Mean=2.008
Min=0.892

Max=4.019
Mean=1.999
Min=0.900

Max=1.11%
Mean=0.46%
Min=-0.79%

• Kernel width: Two starting values for λW and λV were calculated as a percentage
of the smallest proximal femur area (Eq. 3.1) [63], which generated an initial λW of
30mm and a λV of 40mm.

λW =
√
pw% ∗Amin

λV =
√
pv% ∗Amin

(3.1)

Where Amin is the shortest proximal femur area (subject 30), while pw% and pv%
was chosen equal to 20% and 40% respectively. Therefore, an initial template was
calculated from those values and each ith patient-specific shape was reconstructed.
Then, the two kernels were gradually changed while evaluating the overall recon-
struction error (RMSE), which was calculated by comparing the input shapes with
the reconstructed ones. Eventually, this procedure produced the optimal λW and λV
values of 15 and 33 mm respectively. Table 3.3 shows the used λW and λV values,
with the corresponding RMS errors of the smallest subject.
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Figure 3.2: Difference between the residual of Keops and Torch method. Each bar corre-
sponds to a subject, the positive bars identify how much the Keops residue is greater than
the Torch.
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Table 3.3: RMSE corresponding to the different λW ,λv pairs explorer. The colored cell is
the pairs used.
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• Attachment type: Deformetrica run with the Current attachment type and with
Varifold, the landmark one was discarded because we did not have a correspondence
between points. Current attachment was the best one according to figure 3.3 and
table 3.4; while the template Hausdorff distance was 0.909mm.

Table 3.4: Comparison between Current and Varifold attachment type

λW = 15

λV = 33
Current Varifold Percentage difference

Residual
comparison

Max=110.411
Mean=35.801
Min=8.141

Max=149.580
Mean=41.716
Min=10.330

Max=-35.48%
Mean=-16.52%
Min=-26.90%

Hausdorff distance
comparison

Max=3.885
Mean=2.251
Min=1.131

Max=4.293
Mean=1.949
Min=1.040

Max=-10.50%
Mean=13.40%
Min=8.05%

• Noise-std: With a visual inspection of the table 3.5 a noise value equal to 0.1 was
choose, which have the lowest residual and Hausdorff distance, also visible in figure
3.4.

Table 3.5: Comparison between four noise-std

λW = 15
λV = 33

Noise-std=0.01 Noise-std=0.1 Noise-std=1 Noise-std=10

Residual
comparison

Max=88.357
Mean=26.598
Min=4.472

Max=88.288
Mean=26.565
Min=4.497

Max=110.411
Mean=35.801
Min=8.141

Max=2472.773
Mean=688.95
Min=63.928

Hausdorff distance
comparison

Max=3.982
Mean=2.064
Min=1.062

Max=3.977
Mean=2.061
Min=1.064

Max=3.835
Mean=2.222
Min=1.184

Max=13.228
Mean=6.936
Min=2.399
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Figure 3.3: Difference between the residual of Current and Varifold method. Each bar
corresponds to a subject, the positive bars identify how much the Current residues is greater
than the Varifold.
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Figure 3.4: Difference between the residual of noise-std equal to 0.01 and 0.1. Each bar
corresponds to a subject, the positive bars identify how much the noise-std equal to 0.01
residues is greater than the 0.1 residues.
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3.2 Statistical Shape Model

Deformetrica was run once more using the combination of input parameters as obtained
by the previously presented sensitivity analysis. The outputs obtained (template, control
point coordinates and patient-specific moments) were used for the creation of the statistical
model based on the shape.
Using λV equal to 33, 24 vectors moment (x,y pairs) per patient were obtained. So the
moment matrix Xβ had a size of 96X24.

PCA: The first method performed is PCA conducted on the Xβ matrix (96X24).
The first 5 PCA modes were assigned, able to explain 96.54% of the total shape variance
(Figure 3.5(a)).

(a)

(b)

Figure 3.5: (a) Cumulative percentage of variance described by the PCA shape modes.
The first 5 components demonstrated 96% of the total variance shape and the first three
modes explained 83% of the total variance shape. (b) Representation of the first 5 PCA
deformation modes.
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The selected modes can be visualized in the figure 3.5(b), in which the deviations of ±c
√
λ,

with c = 3, were shown. By a first visual inspection, size, inclination and length of the
neck represent the main shape features. It is also possible to observe a correlation between
the different modes and the HSA parameters (Fig. 3.6) obtained in a previous 3D study
[68]. In particular mode 1 and 3 was correlated with Hip Axial Length (HAL) (mode 1:
R = 0.27, p = 0.0085, mode 3: R = 0.34, p = 0.00069); while mode 1 and 2 with NSA
(mode 1: R = −0.43, p = 0.0000076, mode 2: R = 0.43, p = 0.000014); this suggests
that HAL and NSA are highly variable features. It is interesting to observe that all modes
do not have a correlation with aBMD, which suggests that the only use of shape is not
sufficient to assess fracture risk.

Figure 3.6: Correlation Matrix Plot of PCA mode and HSA parameters
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PLS: A total of 5 PLS modes managed to describe 95.14% of the shape variance (figure
3.7(a)). In this case, only one outward variable was included within PLS, the PLS modes
were ordered with the condition to have reducing variance in the shape as well as reducing
covariance between shape and FS. The irregular decrease in the disclosed shape and FS
variability by the PLS shape modes, therefore, appears to support a limited function of
the femur shape in describing the variations observed in the FS.

(a)

(b)

Figure 3.7: (a) Cumulative percentage of variance described by the PLS shape modes. The
first 5 components demonstrated 95% of the total variance shape and the first three modes
explained 79% of the total variance shape. (b) Representation of the first 5 PLS deformation
modes.
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Figure 3.7(b) illustrates the first 5 modes take into account. Like PCA, the first three
modes describe the most shape variability (size, inclination and length of the neck). In
particular, in table 3.8 is observable that the HAL parameters has more correlation in mode
3 and 4 than in the other three (mode 3: R = 0.39, p = 0.000079, mode 4: R = −0.37,
p = 0.000198), while NSA is correlated with 4 modes (mode 1: R = 0.21, p = 0.044, mode
2: R = 0.38, p = 0.00014, mode 3: R = −0.53, p = 0.000000034, mode 4: R = 0.28,
p = 0.0056).

Figure 3.8: Correlation Matrix Plot of PLS mode and HSA parameters
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The capability of PCA and PLS components to determine hip fracture status is brought
out in figure 3.9, where the components are presented in the space represented by the first
two and three modes for shape. By a visual inspection emerge that the capability of PLS
in differentiating fracture subjects and non-fracture one is more marked than that of PCA
components.

(a) PCA 2D scatter plot (b) PLS 2D scatter plot

(c) PCA 3D scatter plot (d) PLS 3D scatter plot

Figure 3.9: Scatter plots of the PCA and PLS components corresponding to the first two
(a-b) and three (c-d) modes for the SSM. The PCA and PLS components of the fractured
and non-fractured subjects are shown in red and green in order. The plot refers to the
statistical shape models built on the full cohort.
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3.3 Prediction model

After a random division of the dataset into 10 distinct groups, a logistic regression model
was executed on the first two, three, four and five components of both PCA and PLS. A
first visual analysis of the ROC curves (figure 3.10) shows that PLS has more sensitivity
than PCA; in particular the AUC for the PLS are settled between 0.62 and 0.63, while
those for the PCA are set between 0.59 and 0.62. An additional measure is the aBMD, the
current gold standard for assessing the risk of hip fracture, whose AUC is 0.73. This means
that PLS has a better diagnostic capability than PCA but does not exceed the current
gold standard.
The confusion matrices associated to the 10-fold cross-validation procedure for patient
classification are provided in figure 3.11.

(a) Two components of PCA and PLS (b) Three components of PCA and PLS

(c) Four components of PCA and PLS (d) Five components of PCA and PLS

Figure 3.10: ROC curve and their relative AUC for the first (a) two components, (b) three
components, (c) four components and (d) five components
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(a) Two components SSM-based model (b) Three components SSM-based model

(c) Four components SSM-based model (d) Five components SSM-based model

(e) BMD-based model

Figure 3.11: Confusion matrix related to the classification of the patient as fractured (F)
or non-fractured (NF) for the SSM and BMD-based regression models.
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4. Conclusions
Due to the constant increase in life expectancy, the relative rise in the incidence of hip
fractures, and the limited sensitivity of the T-score in assessing the risk of fracture, many
authors have put their attention to the search for an improved method for its prediction
[5, 27, 36, 37, 42, 48].

In this study the use of statistical shape models, derived from DXA imges, was assessed,
that allowed a better prediction of the fracture than the current gold standard.
Two methodologies, PCA and PLS, were used to create such SSMs. The main difference
found is that PCA delivered more significant features in terms of geometry and features
that reveal most of the variability in the intake population than PLS, consistent with the
fact that PCA derives the characteristics that are optimal for representing the information;
while PLS allows deriving the main shape features more subject to fracture, as it also takes
into account the state of fracture. The use of two information allowed PLS to have better
discriminating power.
The discriminating power of the two methods has been tested using logistic regression
models. Through the analysis of ROC curves, it was observed that the discriminating
power of PCA-based SSM was lower than PLS-based SSM and the latter was lower than the
current gold standard based on aBMD. Therefore, the use of only the shape characteristics
does not allow to predict adequately the risk of fracture, presenting a lower AUC than the
aBMD.

It is also important to note that several limitations may have influenced the work
presented here, such as the inaccuracy of the DXA technique and the possible inaccuracy
of the positioning of the leg (If the leg is not in the proper position, the DXA image may
have incorrect geometry information). Moreover, since DXA is a projective technique, the
head region had a high density, this did not allow to have the precise shape of the head but
it was simplified as a circle. In addition to this, the patient’s history has not been taken
into account and therefore factors such as alcohol, tobacco or medication consumption,
which lead to bone variation, have not been considered.

In conclusion, the results of this study demonstrate the dominance of PLS to PCA dur-
ing classification but do not explain an improvement in prediction compared to the current
gold standard. The inclusion of Statistical Intensity Models (SIMs), built starting from
the local BMD values of DXA images, might allow an enhanced fracture risk assessment.

36



Bibliography

[1] G. Anastasi et al. Trattato di anatomia umana sistematica e funzionale - volume 1.
Milano: Edi.Ermes s.r.l., 2020.

[2] Musumeci C. Analisi a elementi finiti 2D del femore prossimale: verifica dell’attendibilità
del rischio di frattura osteoporotica tramite confronto con modelli 3D. 2018.

[3] Seeley; Stephens; Tate. Anatomia - 2th edizione. Idelson-Gnocchi.

[4] Aldieri A. Fracture Risk of the Proximal Femur in Osteoporosis: a Closer Look at the
Role of Geometry. 2020.

[5] WHO Study Group. “Assessment of fracture risk and its application to screening for
postmenopausal osteoporosis”. In: WHO Technical Report Series (1994).

[6] M. L. Brandi; G. Guglielmi; S. Masala; S. Minisola; F. Oleari; S. Ortolani; F. Palumbo;
P. Pisanti; G. Simonetti; U. Tarantino; R. Ugenti. “Appropriatezza diagnostica e ter-
apeutica nella prevenzione delle fratture da fragilità da osteoporosi”. In: Quaderni
del Ministero della Salute (2010). url: http://www.quadernidellasalute.it.

[7] Eastell R; Walsh JS; Watts NB; Siris E. “Bisphosphonates for postmenopausal os-
teoporosis”. In: Bone (2011). doi: 10.1016/j.bone.2011.02.011.

[8] Lia Mara Montagner Rossi; Rafaela Martinez Copes; Leo Canterle Dal Osto; Clovis
Flores; Fábio Vasconcellos Comim; Melissa Orlandin Premaor. “Factors related with
osteoporosis treatment in post-menopausal women”. In: Medicine (2018). doi: http:
//dx.doi.org/10.1097/MD.0000000000011524.

[9] Yanlin Su; Zhe Chen; and Wei Xie. “Swimming as Treatment for Osteoporosis: A
Systematic Review and Meta-analysis”. In: BioMed Research International (2020).
doi: https://doi.org/10.1155/2020/6210201.

[10] Rossini M; Adami S; Bertoldo F; Diacinti D; Gatti D; Giannini S; Giusti A; Malavolta
N; Minisola S; Osella G; Pedrazzoni M; Sinigaglia L; Viapiana O; Isaia GC. “Guide-
lines for the diagnosis, prevention and management of osteoporosis”. In: Reumatismo.
(2016). doi: 10.4081/reumatismo.2016.870.

[11] Ström O; Borgström F; Kanis JA; Compston J; Cooper C; McCloskey EV; Jönsson
B. “Osteoporosis: burden, health care provision and opportunities in the EU”. In:
Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. (2011). doi: 10.
1007/s11657-011-0060-1.

[12] Hernlund E; Svedbom A; Ivergård M; Compston J; Cooper C; Stenmark J; Mc-
Closkey EV; Jönsson B; Kanis JA. “Osteoporosis in the European Union: medical
management, epidemiology and economic burden”. In: Arch Osteoporos. (2013). doi:
10.1007/s11657-013-0136-1.

[13] J.A. Kanis; C. Cooper; R. Rizzoli; J.-Y. Reginster. “European guidance for the diag-
nosis and management of osteoporosis in postmenopausal women”. In: Osteoporosis
international (2020). doi: https://doi.org/10.1007/s00198-018-4704-5.

37

http://www.quadernidellasalute.it
https://doi.org/10.1016/j.bone.2011.02.011
https://doi.org/http://dx.doi.org/10.1097/MD.0000000000011524
https://doi.org/http://dx.doi.org/10.1097/MD.0000000000011524
https://doi.org/https://doi.org/10.1155/2020/6210201
https://doi.org/10.4081/reumatismo.2016.870
https://doi.org/10.1007/s11657-011-0060-1
https://doi.org/10.1007/s11657-011-0060-1
https://doi.org/10.1007/s11657-013-0136-1
https://doi.org/https://doi.org/10.1007/s00198-018-4704-5


[14] Qiaozhen Zhou; Li Zhu; Dafeng Zhang; Ning Li; Qiao Li; Panpan Dai; YixinMao;
Xumin Li; Jianfeng Ma; and Shengbin Huang. “Oxidative Stress-Related Biomark-
ers in Postmenopausal Osteoporosis: A Systematic Review and Meta-Analyses”. In:
Hindawi Publishing Corporation (2016). doi: http://dx.doi.org/10.1155/2016/
7067984.

[15] Osteoporosi. url: https://art.torvergata.it/retrieve/handle/2108/993/
5516/tesi.pdf.

[16] Brandi M. L.; Di Medio L. “Osteoporosi. Update diagnosi, follow-up e terapia”. In:
Fondazione onda (2019).

[17] Iwamoto J; Sato Y; Takeda T; Matsumoto H. “Whole body vibration exercise im-
proves body balance and walking velocity in postmenopausal osteoporotic women
treated with alendronate: Galileo and Alendronate Intervention Trail (GAIT)”. In: J
Musculoskelet Neuronal Interact. (2012).

[18] Aldieri A; Terzini M; Audenino A L; Bignardi C; Morbiducci U. “Combining shape
and intensity dxa-based statistical approaches for osteoporotic HIP fracture risk as-
sessment”. In: Computers in Biology and Medicine (2020). doi: https://doi.org/
10.1016/j.compbiomed.2020.104093.

[19] Larson DR. Melton LJ 3rd Therneau TM. “Long-term trends in hip fracture preva-
lence: the influence of hip fracture incidence and survival.” In: Osteoporos Int. (1998).
doi: 10.1007/s001980050050..

[20] Roche JJ; Wenn RT; Sahota O; Moran CG. “Effect of comorbidities and postop-
erative complications on mortality after hip fracture in elderly people: prospective
observational cohort study.” In: BMJ (2005). doi: 10.1136/bmj.38643.663843.55.

[21] Diab DL; Watts NB. “Postmenopausal osteoporosis”. In: Curr Opin Endocrinol Di-
abetes Obes (2013). doi: 10.1097/01.med.0000436194.10599.94..

[22] Mineralometria ossea computerizzata e densitometria ossea. url: https://www.
bonehealth.it/mineralometria-ossea-computerizzata-e-densitometria/.

[23] “Individuazione dei criteri di Accesso alla Densitometria Ossea”. In: Ministero della
salute (2005). url: https://www.salute.gov.it/imgs/C_17_pubblicazioni_
1171_allegato.pdf.

[24] Capuani S; Manenti G; Iundusi R; Tarantino U. “Il ruolo della risonanza magnetica
nella diagnosi di osteoporosi”. In: BioMed Res Int (2015). doi: http://dx.doi.org/
10.1155/2015/948610.

[25] Tristan Whitmarsh; Ludovic Humbert; Mathieu De Craene; Luis M. del Río Bar-
quero; Karl Fritscher; Rainer Schubert; Felix Eckstein; Thomas Link; and Alejandro
F. Frangi. “3D bone mineral density distribution and shape reconstruction of the
proximal femur from a single simulated DXA image: an in vitro study”. In: Medical
Imaging (2010). doi: https://doi.org/10.1117/12.844110.

[26] F. Jazinizadeh; J.D. Adachi; C.E. Quenneville. “Advanced 2D image processing tech-
nique to predict hip fracture risk in an older population based on single DXA scans”.
In: Osteoporosis International (2020). doi: https://doi.org/10.1007/s00198-
020-05444-7.

[27] Beck TJ. “Extending DXA Beyond Bone Mineral Density: Understanding Hip Struc-
ture Analysis”. In: Curr Osteoporos Rep (2007). doi: 10.1007/s11914-007-0002-4.

[28] C J Gibson. “Medical radiation dose issues associated with dual-energy X-ray ab-
sorptiometry (DXA) scans for sports performance assessments and other non-medical
practices”. In: COMARE) (2019).

[29] R.M. Lorente Ramos; J. Azpeitia Armán; N. Arévalo Galeano; A. Mu~noz Hernán-
dez; J.M. García Gómez; J. Gredilla Molinero. “Dual energy X-ray absorptimetry:
Fundamentals, methodology, and clinical applications”. In: Radiologìa (2011).

38

https://doi.org/http://dx.doi.org/10.1155/2016/7067984
https://doi.org/http://dx.doi.org/10.1155/2016/7067984
https://art.torvergata.it/retrieve/handle/2108/993/5516/tesi.pdf
https://art.torvergata.it/retrieve/handle/2108/993/5516/tesi.pdf
https://doi.org/https://doi.org/10.1016/j.compbiomed.2020.104093
https://doi.org/https://doi.org/10.1016/j.compbiomed.2020.104093
https://doi.org/10.1007/s001980050050.
https://doi.org/10.1136/bmj.38643.663843.55
https://doi.org/10.1097/01.med.0000436194.10599.94.
https://www.bonehealth.it/mineralometria-ossea-computerizzata-e-densitometria/
https://www.bonehealth.it/mineralometria-ossea-computerizzata-e-densitometria/
https://www.salute.gov.it/imgs/C_17_pubblicazioni_1171_allegato.pdf
https://www.salute.gov.it/imgs/C_17_pubblicazioni_1171_allegato.pdf
https://doi.org/http://dx.doi.org/10.1155/2015/948610
https://doi.org/http://dx.doi.org/10.1155/2015/948610
https://doi.org/https://doi.org/10.1117/12.844110
https://doi.org/https://doi.org/10.1007/s00198-020-05444-7
https://doi.org/https://doi.org/10.1007/s00198-020-05444-7
https://doi.org/10.1007/s11914-007-0002-4


[30] Morris et al. “High-Spatial-Resolution Bone Densitometry with Dual-Energy X-ray
Absorptiometric Region-free Analysis”. In: Radiology (2015). doi: 10.1148/radiol.
14140636.

[31] Harvey N; Dennison E; Cooper C. “Osteoporosis: impact on health and economics”.
In: Nat Rev Rheumatol (2010). doi: https://doi.org/10.1038/nrrheum.2009.260.

[32] Sanford Baim. “Assessment of Fracture Risk”. In: Rheum Dis Clin (2011). doi: 10.
1016/j.rdc.2011.07.001.

[33] Stacey A. Wainwright; Lynn M. Marshall; Kristine E. Ensrud; Jane A. Cauley; Den-
nis M. Black; Teresa A. Hillier; Marc C. Hochberg; Molly T. Vogt; Eric S. Orwoll. “Hip
Fracture in Women without Osteoporosis”. In: The Journal of Clinical Endocrinology
and Metabolism (2005). doi: https://doi.org/10.1210/jc.2004-1568.

[34] Kanis J; McCloskey E; Johansson H et al. “Approaches to the targeting of treatment
for osteoporosis”. In: Nat Rev Rheumatol (2009). doi: https://doi.org/10.1038/
nrrheum.2009.139.

[35] Sanford Baim; William D. Leslie. “Assessment of Fracture Risk”. In: Curr Osteoporos
Rep (2012). doi: 10.1007/s11914-011-0093-9.

[36] Cooper C; Atkinson EJ; Jacobsen SJ; O’Fallon WM; Melton LJ 3rd. “Population-
based study of survival after osteoporotic fractures”. In: Am J Epidemiol (1993). doi:
10.1093/oxfordjournals.aje.a116756.

[37] Gregory JS; Aspden RM. “Femoral geometry as a risk factor for osteoporotic hip
fracture in men and women”. In: Med Eng Phys (2008). doi: 10.1016/j.medengphy.
2008.09.002.

[38] Beck TJ; Broy SB. “Measurement of Hip Geometry-Technical Background”. In: J
Clin Densitom (2015). doi: 10.1016/j.jocd.2015.06.006.

[39] Terzini M; Aldieri A; Rinaudo L; Osella G; Audenino AL; Bignardi C. “Improving
the Hip Fracture Risk Prediction Through 2D Finite Element Models From DXA
Images: Validation Against 3D Models”. In: Front Bioeng Biotechnol (2019). doi:
10.3389/fbioe.2019.00220.

[40] S Gnudi; E Sitta; E Pignotti. “Prediction of incident hip fracture by femoral neck bone
mineral density and neck–shaft angle: a 5-year longitudinal study in post-menopausal
females”. In: The British journal of radiology (2012). doi: 10.1259/bjr/57130600.

[41] Stephen Kaptoge; Thomas J Beck; Jonathan Reeve; Katie L Stone; Teresa A Hillier;
Jane A Cauley; Steven R Cummings. “Prediction of incident hip fracture risk by
femur geometry variables measured by hip structural analysis in the study of osteo-
porotic fractures”. In: Journal of Bone and Mineral Research (2008). doi: 10.1359/
jbmr.080802.

[42] M Di Stefano; GC Isaia; D Cussa; GL Panattoni. “Preliminary results on trabecular
bone score (TBS) in lumbar vertebrae with experimental altered microarchitecture”.
In: J. Biol. Res (2013). doi: https://doi.org/10.4081/jbr.2013.3667.

[43] Casabella A; Seriolo C; Botticella G; Molfetta L. “Trabecular bone score (TBS):
innovativo parametro di valutazione ossea nelle patologie reumatiche”. In: Giornale
Italiano di Ortopedia e Traumatologia (2016).

[44] Schileo E; Taddei F; Cristofolini L; Viceconti M. “Subject-specific finite element mod-
els implementing a maximum principal strain criterion are able to estimate failure
risk and fracture location on human femurs tested in vitro”. In: J Biomech (2008).
doi: 10.1016/j.jbiomech.2007.09.009.

[45] Bhattacharya P; Altai Z; Qasim M; Viceconti M. “A multiscale model to predict cur-
rent absolute risk of femoral fracture in a postmenopausal population”. In: Biomech
Model Mechanobiol (2019). doi: 10.1007/s10237-018-1081-0.

39

https://doi.org/10.1148/radiol.14140636
https://doi.org/10.1148/radiol.14140636
https://doi.org/https://doi.org/10.1038/nrrheum.2009.260
https://doi.org/10.1016/j.rdc.2011.07.001
https://doi.org/10.1016/j.rdc.2011.07.001
https://doi.org/https://doi.org/10.1210/jc.2004-1568
https://doi.org/https://doi.org/10.1038/nrrheum.2009.139
https://doi.org/https://doi.org/10.1038/nrrheum.2009.139
https://doi.org/10.1007/s11914-011-0093-9
https://doi.org/10.1093/oxfordjournals.aje.a116756
https://doi.org/10.1016/j.medengphy.2008.09.002
https://doi.org/10.1016/j.medengphy.2008.09.002
https://doi.org/10.1016/j.jocd.2015.06.006
https://doi.org/10.3389/fbioe.2019.00220
https://doi.org/10.1259/bjr/57130600
https://doi.org/10.1359/jbmr.080802
https://doi.org/10.1359/jbmr.080802
https://doi.org/https://doi.org/10.4081/jbr.2013.3667
https://doi.org/10.1016/j.jbiomech.2007.09.009
https://doi.org/10.1007/s10237-018-1081-0


[46] Luo Y; Ferdous Z; Leslie WD. “A preliminary dual-energy X-ray absorptiometry-
based finite element model for assessing osteoporotic hip fracture risk”. In: Proc Inst
Mech Eng H (2011). doi: 10.1177/0954411911424975.

[47] Masoud Nasiri Sarvi; Yunhua Luo. “A Two-Level Subject-Specific Biomechanical
Model for Improving Prediction of Hip Fracture Risk”. In: Clinical Biomechanics
(2015). doi: 10.1016/j.clinbiomech.2015.05.013.

[48] Schuler B; Fritscher KD; Kuhn V; Eckstein F; Link TM; Schubert R. “Assessment
of the individual fracture risk of the proximal femur by using statistical appearance
models”. In: Med Phys (2010). doi: 10.1118/1.3425791.

[49] Zhang J; Besier TF. “Accuracy of femur reconstruction from sparse geometric data
using a statistical shape model”. In: Comput Methods Biomech Biomed Engin (2017).
doi: 10.1080/10255842.2016.1263301.

[50] Sarkalkan N; Weinans H; Zadpoor AA. “Statistical shape and appearance models of
bones”. In: Bone (2014). doi: 10.1016/j.bone.2013.12.006.

[51] Wang J; Shi C. “Automatic construction of statistical shape models using deformable
simplex meshes with vector field convolution energy”. In: BioMed Eng OnLine (2017).
doi: https://doi.org/10.1186/s12938-017-0340-0.

[52] Isaac Castro-Mateos; Jose M Pozo; Timothy F Cootes; J Mark Wilkinson; Richard
Eastell; Alejandro F Frangi. “Statistical shape and appearance models in osteoporo-
sis”. In: Current osteoporosis reports (2014). doi: 10.1007/s11914-014-0206-3.

[53] Reyneke Cornelius; Thusini Xolisile; Douglas Tania; Vetter Thomas; Mutsvangwa
Tinashe. “Construction and validation of image-based statistical shape and inten-
sity models of bone”. In: 2018 3rd Biennial South African Biomedical Engineering
Conference (SAIBMEC) (2018). doi: 10.1109/SAIBMEC.2018.8363176.

[54] Yang L; Udall WJ; McCloskey EV; Eastell R. “Distribution of bone density and
cortical thickness in the proximal femur and their association with hip fracture in
postmenopausal women: a quantitative computed tomography study”. In: Osteoporos
Int. (2014). doi: 10.1007/s00198-013-2401-y.

[55] Stanley Durrleman; Marcel Prastawa; Nicolas Charon; Julie R. Korenberg; Sarang
Joshi; Guido Gerig; Alain Trouvé. “Morphometry of anatomical shape complexes
with dense deformations and sparse parameters”. In: NeuroImage (2014). doi: http:
//dx.doi.org/10.1016/j.neuroimage.2014.06.043.

[56] Durrleman S. “Statistical models of currents for measuring the variability of anatom-
ical curves, surfaces and their evolution”. In: Phd Thesis ().

[57] Durrleman S; Pennec X; Trouvé A; Thompson P; Ayache N. “Inferring brain variabil-
ity from diffeomorphic deformations of currents: an integrative approach”. In: Med
Image Anal. (2008). doi: 10.1016/j.media.2008.06.010.

[58] Durrleman S; Pennec X; Trouvé A; Ayache N. “Statistical models of sets of curves
and surfaces based on currents”. In: Med Image Anal. (2009). doi: 10.1016/j.
media.2009.07.007.

[59] Analisi di sensitività, sensitività, calibrazione. url: https://studylibit.com/doc/
748582/analisi-di-sensitivit%C3%A0--sensitivit%C3%A0--calibrazione-
calibra....

[60] Analisi della sensibilità per ciò che funziona, come farlo ed esempio. url: https://
it.thpanorama.com/blog/administracion-y-finanzas/anlisis-de-sensibilidad-
para-qu-sirve-cmo-hacerlo-y-ejemplo.html.

[61] Deformetrica’s documentation. url: https://gitlab.com/icm-institute/aramislab/
deformetrica/-/wikis/home.

40

https://doi.org/10.1177/0954411911424975
https://doi.org/10.1016/j.clinbiomech.2015.05.013
https://doi.org/10.1118/1.3425791
https://doi.org/10.1080/10255842.2016.1263301
https://doi.org/10.1016/j.bone.2013.12.006
https://doi.org/https://doi.org/10.1186/s12938-017-0340-0
https://doi.org/10.1007/s11914-014-0206-3
https://doi.org/10.1109/SAIBMEC.2018.8363176
https://doi.org/10.1007/s00198-013-2401-y
https://doi.org/http://dx.doi.org/10.1016/j.neuroimage.2014.06.043
https://doi.org/http://dx.doi.org/10.1016/j.neuroimage.2014.06.043
https://doi.org/10.1016/j.media.2008.06.010
https://doi.org/10.1016/j.media.2009.07.007
https://doi.org/10.1016/j.media.2009.07.007
https://studylibit.com/doc/748582/analisi-di-sensitivit%C3%A0--sensitivit%C3%A0--calibrazione-calibra...
https://studylibit.com/doc/748582/analisi-di-sensitivit%C3%A0--sensitivit%C3%A0--calibrazione-calibra...
https://studylibit.com/doc/748582/analisi-di-sensitivit%C3%A0--sensitivit%C3%A0--calibrazione-calibra...
https://it.thpanorama.com/blog/administracion-y-finanzas/anlisis-de-sensibilidad-para-qu-sirve-cmo-hacerlo-y-ejemplo.html
https://it.thpanorama.com/blog/administracion-y-finanzas/anlisis-de-sensibilidad-para-qu-sirve-cmo-hacerlo-y-ejemplo.html
https://it.thpanorama.com/blog/administracion-y-finanzas/anlisis-de-sensibilidad-para-qu-sirve-cmo-hacerlo-y-ejemplo.html
https://gitlab.com/icm-institute/aramislab/deformetrica/-/wikis/home
https://gitlab.com/icm-institute/aramislab/deformetrica/-/wikis/home
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