
 
 

POLITECNICO DI TORINO 

Master's Degree in Biomedical Engineering 
Biomedical Instrumentation  

 

 
 
 

Master Thesis 
 

Machine learning techniques for microwave brain 
stroke detection and classification  

 

 
Candidate 
Giulia FOLLARI  
s274491 
 
 
 
 
 
 

 
              Supervisor 

Prof. Francesca VIPIANA 
 
Co-Supervisors 
Prof. Mario R. CASU 
PhD Jorge A. TOBON V. 
M. Sc. Valeria MARIANO 
 

 
Academic year 2021/2022



1 
 

 
 

 

 

 

Ai miei genitori 

e                                                              

a chi da lassù, 

 veglia sempre su di me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Acknowledgements 
I  would like to thank my supervisor Francesca Vipiana for giving me the opportunity to 

develop my degree thesis on such an interesting project.  

I also thank the whole research group of the DET of the Politecnico di Torino, for having 

welcomed me in these months: I met some brilliant people, from whom I learned a lot.  

I thank Jorge Alberto Tobon Vasquez,  David Orlando Rodriguez Duarte, and Cristina Origlia 

for their immense availability. 

A special recognition goes to my co-consultant Valeria Mariano who has constantly supported 

me in the work and in the drafting of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Summary 
The innovative microwave brain imaging system (MWI) allows to carry out a pre-diagnosis of 

the stroke in an ambulance and a continuous monitoring of bedridden patients, thanks to a 

non-invasive, easy-to-use, portable and low-cost device. The operating principle of the system 

exploits the dielectric contrast between healthy and pathological tissues at microwaves 

frequencies.  

The combination of artificial intelligence techniques and the proposed imaging method can 

effectively assist the clinician in making decisions about the therapeutic treatment of potential 

stroke patients. 

In this regard, my thesis project consists in the development of algorithms capable of solving 

classification problems. The aim of the work is therefore to identify the presence and the 

location within the head of the cerebral stroke, distinguishing the cases of ischemia from those 

of hemorrhage. Classes are detected via supervised Machine Learning Algorithms (ML) as 

Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and K-Nearest Neighbors (k-

NN).  

The S parameters measured at the antennas ports of the MWI system represent the features 

that are given as input to the ML algorithms. They are provided in the form of amplitude and 

of real and imaginary part.  

Data collection and processing are two key aspects in the learning process: algorithms need 

thousands of known examples to identify patterns useful to build a model that is then able to 

correctly recognize the class of an unknown case. However, carrying out a sufficiently large 

number of measurements requires a great effort in terms of time. For this reason, the first step 

was to create a series of synthetic training data, using the Born approximation and performing 

a linearization of the scattering operator. This method allowed to generate 10000 examples in 

a very short time. The relative permittivity and conductivity values adopted for the creation 

of the synthetic training set refer to the dielectric characteristics of the brain tissues at the 

considered frequencies. Ad hoc mixtures that mimic the dielectric characteristics of both 

ischemic and hemorrhagic stroke and healthy brain tissue, intended as a homogeneous 

medium, were created. At this point the tuning of the hyper-parameters, the model 

construction and the training of ML algorithms were performed.  

The second part of the work involved the creation of a testing-set used to evaluate the 

performance of the previously trained algorithms. It consists of examples much more similar 

to reality, obtained through full-wave Finite Element Method (FEM) simulations. It came out 

that all the classifiers can identify the presence or not of the stroke and among the algorithms 

used, the MLP proved to be the most performing. From the results achieved it is evident that 

the linearization of the scattering operator is a reasonable approximation.  

Future developments will consist in testing ML algorithms on a series of experimental 

measurements performed with the MWI system and the 3D human head phantom.  
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Chapter 1 

1.  Introduction 

1.1  Brain stroke  

Brain stroke is a pathology affecting the cerebrovascular system. It is the third 

leading cause of death in industrialized countries after tumors and cardiovascular 

diseases, and the first leading cause of long-term disability [1].  

The World Health Organization (WHO) has defined stroke as "a syndrome 

characterized by the sudden and rapid development of symptoms and signs referable to focal 

and/or global deficit of brain functions, which persist for more than 24 hours or lead to 

death, not attributable to any other apparent cause than the vascular one "[2]. 

There are different types of stroke (Fig.1.1):  

 

- Ischemic stroke: occurs when an artery supplying the brain is blocked by the 

formation of an atherosclerotic plaque (thrombotic stroke), or by a blood clot 

coming from the heart or other vascular area (thrombo-embolic stroke). About 

80% of all strokes are ischemic [3]. 

During the ischemic event, cellular energy (adenosine triphosphate) is lost due 

to a reduction in glucose and oxygen.  

The functionality of the Na+/K+ ATPase pumps is compromised: the 

accumulation of potassium ions outside the cell causes a depolarization of the 

plasma membrane of neurons. At this point, calcium ions enter the cell through 

the membrane channels, stimulating the release of glutamate into the 

extracellular space and promoting excitotoxicity. The cell activates the calcium 

dependent enzyme to extract excess calcium. The metabolic products damage 

the membrane wall and the cytoskeleton of the neuron, leading the cell itself 

to apoptosis [4].  

Ischemia can be prolonged or transient, complete, or incomplete. When the 

ischemia is transient and incomplete (<15 min.), the brain tissue does not suffer 

any permanent damage. The transient ischemic attack (TIA) differs from 

ischemic stroke for the shorter duration of symptoms (less than 24 hours) [5]. 

 

- Hemorrhagic stroke: occurs when an artery located in the brain ruptures, thus 

causing non-traumatic intracerebral hemorrhage (this form represents 15-20% 

of all strokes) or in the sub-arachnoid space (this form accounts for 

approximately 3-5% of all strokes). This can be caused by high blood pressure 

and weak arteries [3].  
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Figure 1.1. Distinction between ischemic and hemorrhagic stroke: the first occurs when a brain vessel is 

clogged; the second happens when there is a bleeding. 

 

A stroke causes the death of nerve cells and consequently the neurological 

functions controlled by the affected area are compromised. 

It has been estimated that about 1.9 million neurons and 14 billion synapses are 

lost every minute since stroke onset. For this reason, the expression "time is brain" 

is often used. In most hemispheric strokes due to atherothromboembolism of the 

great vessels, the damage is completed in about 10 hours. It is believed that, except 

for exceptional cases, there is no more salvage brain tissue after about 8 hours. The 

table 1.1 below shows some estimates that correlate time with associated damage 

[6]. 

 

 
Table 1.1 Estimated pace of neural circuitry loss in typical large vessel due acute ischemic stroke [6]. 

Unfortunately, stroke is a very common condition. The American Heart 

Association, in collaboration with the National Institutes of Health, annually 

reports the most updated statistics relating to diseases affecting the cardiovascular 

system. It is estimated that 15 million people suffer from strokes every year 

worldwide: 1/3 of them die, while the 50% who survive will need long-term care 

[6]. 

According to reports from the Ministry of Health in Italy, 196,000 stroke cases 

would occur every year, of which 80% are new episodes and the remaining 20% 

relapses. 20-30% of people affected by stroke die within one month of the event 

and 40-50% within the first year. Only 25% of stroke survivors recover completely, 

while 75% survive with some form of disability. 50% of them completely lose self-
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sufficiency [7]. Because of its high incidence, stroke is a welfare, social and 

economic problem. The cases of stroke are in fact constantly increasing due to the 

aging of the population. Improving the effectiveness of preventive, therapeutic 

and care measures can significantly reduce the incidence and mortality of 

cerebrovascular events [8]. 

 

1.2  Risk factors and symptoms 

Ischemic and hemorrhagic stroke share several risk factors: hypertension and atrial 

fibrillation are the most common. It was estimated that the first affects the 

development of stroke for 30-40%, while the second for 5% [9]. 

The probability increases for men, especially if they have first-degree relatives also 

suffering from a stroke, or TIA, or with other vascular problems. Age is also an 

important risk factor to be considered: elderly people are more prone to 

developing a stroke than young people, because of their medical conditions. 95% 

of stroke cases involves people aged 45 or over, while 2/3 are over 65 years old [10]. 

The use of contraceptives for women and sickle cell anemia for young patients 

(under the age of 20) are also risk factors. Among the most common diseases, 

diabetes mellitus can lead to stroke, considering the associated high cholesterol 

levels and obesity. Cigarette smoke irreversibly damages the walls of blood 

vessels, promoting the formation of atherosclerotic plaques and favoring the 

aggregation of platelets. Alcohol also has negative effects on the cardiovascular 

system by decreasing the level of vitamin B1, the deficiency of which can cause 

damage to both the cardiovascular and nervous systems. Finally, sedentary 

lifestyle, stress, and lack of physical activity related to incorrect nutrition can 

negatively affect the patient's general clinical conditions, favoring the onset of 

stroke [8]. 

For hemorrhagic stroke risk factors include vascular malformations such as 

aneurysms, angioma, and thrombophilic disorders. [11].  

The symptomatology of the stroke patient varies according to the damaged area. 

While for the ischemic stroke, whether thrombotic and/or embolic, it produces a 

focal type symptom, the hemorrhagic stroke produces a wider and more severe 

effects, due to the expansion of the blood content in other areas of the brain 

through the subarachnoid pathway. 

A stroke patient often experiences motor aphasia, personality problems,  

numbness of the contralateral leg and paresis or facial paralysis, with asymmetry 

of the mouth. Strokes can cause sudden loss of coordination of movements and a 

sudden and severe headache. Visual disturbances in one or both eyes and partial 

or total reduction of the visual field may occur. In the most serious cases there may 
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be an alteration of the state of consciousness [9]. It is important to note the time of 

onset of the first symptoms, because some treatments can only be done within a 

certain time frame. 

 

 

1.3  Therapeutic treatment 

The patient who manifests the symptoms of stroke is rushed to centers that, 

presumably, have adequate equipment and highly specialized personnel (Unit 

stroke). There is a standardized procedure that involves stabilization of the 

airways, breathing and circulation (ABC). Thereafter, anamnesis and a 

neurological evaluation are made to first assess the patient's level of consciousness. 

Assessment is usually done with the so-called National Institutes of Health stroke 

scale (NIHSS) [12]. A score ranging from 0 to 4 is assigned for each of the stroke-

related symptoms: the higher the score, the more severe the situation. To check for 

dysarthria and ataxia, for example, the patient is asked to smile, to touch the tip of 

the nose, to raise a limb. The scale is also used in the monitoring phase to keep 

track of any improvements or worsening. 

Following the physical examination, blood tests and instrumental tests are 

performed in order to trace the causes, classify the type of stroke.   

Imaging techniques allow to identify the core  and the tissue in penumbra: the first 

is the area irreversibly affected by the injury, the second is the area damaged 

reversibly, and therefore potentially savable [13].  

Stroke treatment differs depending on whether it is ischemic and hemorrhagic 

stroke. 

In the case of ischemic stroke, perfusion to the brain tissues must be re-established 

by removing the clot that causes the obstruction and preventing it from spreading. 

This can happen in two ways. The first is called fibrinolysis and consists in 

removing the clot by administering antiplatelet and anticoagulant drugs. 

The administration of the drug, called tissue plasminogen activator rTPA, is a 

possible option only if no more than 4.5-6 hours have elapsed from the onset of 

symptoms. After this time window, it is not possible to receive the rTPA because 

the risks outweigh the benefits. 

The rtPA is prepared during the imaging phase and, once the absence of bleeding 

is ascertained, it is injected by intravenous (IV) administration. 

The second - the most innovative technique - involves the surgical removal of the 

thrombus, through an operation called thrombectomy. The minimally invasive 

surgery consists of inserting a catheter into the femoral artery that reaches the area 

of the brain where the obstruction is present. 
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The treatment of hemorrhagic stroke consists in stopping the bleeding by 

administering drugs with a coagulating action. Blood loss should be limited and 

controlled to reduce pressure which can damage the brain tissues surrounding the 

ruptured area of the vessel. If the bleeding is small, it can spontaneously reabsorb 

within a certain time, otherwise if the blood loss has been significant, the leaking 

blood must be surgically removed [14]. 

Hemorrhagic stroke may require surgery such as classic craniotomy, aneurysm 

clipping and removal of the arteriovenous malformation. 

Once the therapeutic treatment has been carried out, the patient must be kept 

under observation. After 24 hours, the NIHSS exam is repeated, and it would be 

advisable to repeat the instrumental tests to verify that the core area has not 

extended and that the treatments begin to give the desired results. 

Physical and psychological rehabilitation for a stroke patient is a fundamental and 

obligatory step. The rehabilitation process can allow the recovery of some motor, 

coordination, and language faculties. 

It is desirable that the prognosis of these patients not only depends on the timing 

of the intervention, but also on the brain area or areas involved in the vascular 

event, the age of the patient and the general condition of the patient himself before 

the stroke [15]. 
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1.4  Thesis focus 

In recent years, more and more devices, both in the medical and non-medical 

fields, incorporate features that have to do with artificial intelligence (AI). Machine 

Learning (ML) techniques, for example, have been used for diagnostic systems 

aiming to recognize early breast tumors, or to detect the presence of contaminants 

within food [16-17]. 

The Wavision Research Group of the Department of Electronics and 

Telecommunications (DET) at the Politecnico di Torino has developed an 

innovative microwave imaging system (MWI) for stroke diagnosis and 

monitoring. Thanks to a helmet of 24 receiving and transmitting antennas, it is 

possible to reconstruct the images of the head and identify the injured portion of 

the brain, exploiting the dielectric inhomogeneities of the tissues at microwave 

frequencies [18]. The first task is to recreate in the laboratory a mixture that mimics 

the dielectric characteristics of the healthy brain and that fills the 3D head 

anthropomorphic phantom, used for the measurements.  

The goal of the thesis project is to combine AI with the new MWI, in view of its 

future use on patient, reducing the intervention time significantly. 

To be more specific, ML algorithms should be able to identify the region affected 

by ischemia or bleeding, simply by "looking" at the parameters recorded by the 

measurement imaging system, (Fig.1.2).  

 

  
Figure 1.2 Brain stroke classification problem whit Machine Learning technique. 

 

However, ML algorithms need a very large training dataset to learn patterns useful 

for classifying and detecting stroke. Clinical data, laboratory measurements with 

anthropomorphic phantoms or electromagnetic (EM) simulations do not represent 

a feasible solution because they require great efforts in terms of time.   

Therefore, a method for rapidly generating the training set will be validated. 
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1.5  Thesis outline 

The thesis is organized as follows.  

Chapter 2 describes the traditional imaging technologies used to diagnose stroke: 

Computed Tomography  and Magnetic Resonance Imaging. It highlights pros and 

cons and briefly explains their principles of operation. 

Chapter 3 focus on Microwave brain Imaging system. In the first part it describes 

the basis of electromagnetism and then it discusses each element of the entire 

prototyping tool and illustrates the image reconstruction algorithm. 

Chapter 4 is about the 3D head anthropomorphic phantom. It describes the process 

that led to the creation of the mixtures that mimics the dielectric characteristics of 

the healthy brain tissue. 

Chapter 5 is an introduction to the world of Machine Learning. It briefly describes 

the three models used as classifiers in this project: Support Vector Machine (SVM), 

Multi-Layer Perceptron (MLP) and K-Nearest Neighbors (K-NN). Finally, it 

illustrates the problem of overfitting and performance evaluation metrics.  

Chapter 6 details the steps of the implemented method to generate the training set. 

Chapter 7 schematically shows the flowchart of the code used for the training set 

creation.  

Chapter 8 deals with the steps followed for the generation of the synthetic testing 

set via Full-Wave Finite Element Method simulations.  

Chapter 9 is about the implementation of the three ML algorithms in Python, on 

the Google Colab platform. It illustrates the steps taken to solve the classification 

problem: feature scaling, tuning, training, and test phases.   

Chapter 10 shows the results obtained by the classifiers. 

Finally, Chapter 11 summarizes the thesis, discusses the relevant results, and 

anticipates the possible future developments. 

Chapter 12 contains bibliographic references and sitography. 
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Chapter 2 

2.  Traditional Imaging Techniques 

The traditional biomedical imaging techniques, used in case of a suspected stroke, 

are computed tomography (CT) and magnetic resonance imaging (MRI). CT and 

MRI base their operating principle on the interaction that occurs between the type 

of electromagnetic wave and the irradiated tissue: in the first case an X-ray source 

is adopted, while in the second are used magnetic fields and radio waves.  

The high cost and large size are two aspects shared by both imaging 

methodologies. CT exposes the patient to ionizing radiation while MRI is 

harmless. Due to its design, however, the MR device is not suitable for all patients 

as it can be claustrophobic. CT is able to perform much faster scan and it is more 

readily available in the hospital. Both techniques may involve the use of contrast 

media, which can cause potential kidney toxicity or allergies [19]. Table 2.1 

summarizes the strengths and weaknesses of CT and MRI techniques. 

 

 
Table 2.1. Comparison of CT and MRI: pros (✓) and cons (✗). 

 

The diagnostic images obtained by CT or MRI allow clinicians to: 

1. Distinguish the ischemic case from the hemorrhagic one: understand, therefore 

if the patient is a candidate for the tissue plasminogen activator (rtPA); 

2. Know the position of the stroke within the brain; 

3. Identify stroke etiology; 

4. Estimate the relative volume of penumbral regions that can be saved with timely 

reperfusion therapy [15]. 

The dynamic nature of the stroke requires continuous monitoring. In the case of 

ischemic stroke, if left untreated in time, occlusion of the vessel, due to the pressure 

exerted by the blood, can cause its rupture causing severe bleeding. Neuroimaging 

also makes it possible to predict outcomes, plan rehabilitation and prevent early 

secondary stroke. 
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2.1  Computed Tomography (CT) 

 

 

Figure 2.1. Computed Tomography (CT) device [20] 

 

Nowadays Computed tomography (CT) is recognized as the first-instance 

neuroradiological method, because it allows to discriminate the ischemic event 

from the hemorrhagic one in a short time.  
CT is a diagnostic tool that bases its operating principle on the Lambert-Beer law. 

The following equation (2.1) shows the relationship between the intensity of the 

monochromatic incident radiation (I0), and the (attenuated) intensity of the 

outgoing radiation (I) [21]:  

 

                                                         𝐼 = 𝐼0  ∙ 𝑒
−𝜇𝑥                                              (2.1) 

                                                 

where x is the thickness of the medium and μ the attenuation coefficient (Fig.2.2). 

 

         
Figures 2.2. Schematic representation of the Lambert-Beer law. 

 

An x-ray source rotates around the subject's head emitting a beam or more beams 

that pass through the tissues and collimate on sensors located on the opposite side 

(Fig.2.1). There are at least two acquisition modes: stop & shut and spiral CT. The 

latter mode is feasible only if the CT device is equipped with slip-ring technology. 
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X-ray detectors collect photons that are not absorbed by the tissues and obtain the 

attenuation coefficient in each point of the head with sufficient precision. Water is 

regarded as a reference material.  

In computed tomography a normalized version of the attenuation coefficient 

called the Hounsfield Unit (HU) is represented (2.2): 

 

𝜇 (𝐻𝑈) = 1000 
𝜇−𝜇𝐻2𝑂

𝜇𝐻2𝑂
                           (2.2) 

 

The equivalent HU of a tissue that has a linear attenuation coefficient µ, is equal to 

the product between 1000 and the difference between µ of that tissue and µ of 

water, divided by the attenuation coefficient of water. 

All tissues that have a HU lower than water are materials in which there is a 

significant percentage of fat, or which have a predominant gas content. 

The following Table 2.2. shows the ranges of attenuation coefficients in HU for 

some materials of interest. 

 

 
Table 2.2  Range of the attenuation coefficient expressed in HU for some materials of interest [22]. 

 

The coding of the images in HU allows to have a superior contrast between tissues 

that also have similar µ. The numerical output is an image that associates the gray 

tones with HU units. The filtered rear projection algorithm allows to reconstruct 

the 3D volume of the head by superimposing all the slices. 

CT has good specificity ranging from 56% to 100% and low sensitivity ranging 

from 20% to 75% in detecting early ischemic changes. In complete neurological 

deficits, the radiological signs become evident after a few hours and depend on the 

nature and severity of the vascular obstruction. The first signs of ischemic 

infarction cause low densitometric attenuation values due to cytotoxic edema [23]. 
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The Alberta Stroke Program Early CT Score (ASPECTS) allows clinicians to 

quantify ischemic changes in the anterior circulation. This approach consists of 

dividing the middle cerebral artery (MCA) into 10 regions: if the area has ischemic 

signs, such as focal swelling or parenchymal hypoattenuation, one point is 

subtracted. If the score is equal to 10 the CT is normal, if it is equal to 0 it indicates 

diffuse ischemic [15]. 

According to the American Heart Association guidelines on the management of 

acute stroke, endovascular therapy is recommended in patients with ASPECT 

greater than 6 [24]. 

In the case of a hemorrhagic stroke, extravasated blood appears as a clear 

hyperdensity with a HU value of around 50, interpreted as the effect of the 

hemoglobin concentration [22]. 

Although CT allows for rapid acquisitions, it exposes the patient to ionizing 

radiation, and therefore it is not a particularly suitable technique for continuous 

monitoring. Figure 2.3. shows, by way of example, two images obtained with CT 

of a patient with ischemic stroke (left) and hemorrhagic stroke (right) [25,26]. 

 

 
Figure 2.3. Example of CT images: acute ischemic infarction on the left and hemorrhagic stroke on the right 

[25,26]. 
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2.2  Magnetic Resonance Imaging (MRI) 

 

 
Figure 2.4. Magnetic Resonance Imaging (MRI) device [27] 

 
The magnetic resonance (MR) device (Fig.2.4) bases its operating principle on the 

use of an intense, homogeneous, and static magnetic field produced by a large 

magnet (0.2 - 7 T). The addition of a second radiofrequency (RF) magnetic field, 

variable in time and space, modifies the orientation of the hydrogen atoms present 

in the single cells of the anatomical of the anatomical area under examination. 

Once the modification has taken place, the gradient fields are deactivated. The 

hydrogen atoms begin to move to restore the original arrangement: during this 

phase the protons release their excess energy at different times, depending on the 

type of tissues in which they are immersed. Therefore, the (proton) density of a 

tissue will be proportional to the percentage of aqueous content. The released 

energy is captured by special detectors and the signals are processed to reconstruct 

a volume[28]. 

MRI produces very high-resolution images and has a high sensitivity and 

specificity in the diagnosis of acute ischemic infarction in the first hours after onset 

[29].  When combined in various sequences such as Diffusion Weighted Imaging 

(DWI) Fluid Attenuated Inversion Recovery (FLAIR) and Gradient echo (GRE), 

MRI allows clinicians to acquire a large amount of information about stroke.  

Based on the images acquired in DWI it is possible to obtain the so-called ADC, 

which is the apparent diffusion coefficient of water. The ADC value (opposite to 

that of DWI) reflects the diffusivity of the tissue: the values are high if the 

diffusivity is high (water/liquor), while they are low when physical obstacles 

prevent water from moving freely (white/gray matter) [30]. 

In the healthy brain, the white and gray matter ADC is similar, but that of the latter 

is slightly higher. During an ischemia, the cell undergoes a swelling which causes 

a reduction in volume and an increase in the tortuosity of the extracellular space, 

which hinders the diffusivity of the water molecules. In DWI images a 

hyperintense zone followed by a reduced ADC map represents irreversible 
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ischemia [15].  FLAIR and T2-weighted images show a hyperintense lesion in the 

case of ischemic infarction. Usually, these sequences can show the lesion if imaging 

occurs within 3-8 hours of the start of the stroke (Fig.2.6) [28]. 

Finally, the mismatch between DWI and FLAIR can provide an estimate of the time 

to onset of stroke. Lesions visible on a DWI image, but not evident on the FLAIR 

scan, indicate that the onset of the stroke was less than 4.5 hours ago [30,31]. 

Although MRI allows for very detailed images to be acquired, it is extremely slow 

and not always available in the hospital.  

Figure 2.5. shows, by way of example, two images obtained with MRI of a patient 

with ischemic stroke (left) and hemorrhagic stroke (right) [32]. 
 

  
Figure 2.5. Example of MR images: ischemic infarction on the left and hemorrhagic stroke on the right [32]. 

 

 

Figure 2.6. Examples of images obtained through different sequences combined with MR: DWI, ADC and 

FLAIR. The clearest area in DWI and FLAIR images highlights the core of the ischemic stroke [31].  
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Chapter 3 

3.  Microwave brain imaging system 

The previous chapter highlighted the pros and cons of traditional imaging 

techniques. As seen, CT and MRI can effectively identify the location and type of 

stroke, but they are not suitable to be used for continuous monitoring and they do 

not allow to carry out a pre-diagnosis directly in the ambulance or at the accident 

site.  

The innovative Microwave Brain Imaging System (MWI) prototype, developed at 

the DET of the Politecnico di Torino, aims to overcome these limits [18]. 

In this perspective, microwave technology offers completely new possibilities for 

optimizing the treatment of stroke patients. 

A pre-hospital stroke diagnosis reduces the time from injury to therapy and it 

helps to predict which patients need acute intervention and which patients might 

be safely transported to a non-specialized center. 

The device (Fig.3.1) is non-invasive, easy to use, portable, low-cost and it is 

proposed as a complementary tool to existing imaging techniques. 

 

 
Figure 3.1 A Prototype Microwave System for 3D Brain Stroke Imaging developed at the DET of the 

Politecnico di Torino: the photo shows the helmet of antennas surrounding the 3D human head phantom and 

the switching matrix. 
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MWI system consists of a helmet made of plastic material where 24 antennas are 

hosted. The antennas can work as both transmitters (TX) and receivers (RX) of 

electromagnetic (EM) waves at a frequency of 1GHz. The switching matrix has the 

task of selecting an antenna as a transmitter, leaving the other 23 as receivers. The 

Vector Network Analyzer (VNA) derives the scattering parameters (S parameters) 

in the form of complex numbers with a real part and an imaginary part. The 

attenuation and phase shift of the wave passing through the head, are obtained 

from the ratio between the transmitted and received signals [33]. 

The measured scattering parameters due to a full scan are the starting point of the 

image reconstruction algorithm. The mechanism is based on transmission through 

the tissues and it exploits the variation in dielectric properties due to the presence 

of stroke. 

The main components of the microwave imaging system are shown in Figure 3.2. 

 

 
Figure 3.2. Block diagram of the main components of the MWI system [34]. 

 

Before going into the details of each individual component of the MWI system, a 

brief review of the theory of electromagnetism is made [35,36]. 
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3.1  Electromagnetism overview 

Electromagnetism is branch of physics which studies the interactions between 

electric and magnetic fields [35]. 
The properties of the electromagnetic (EM) fields are described by physical 

quantities which have the nature of vector fields. These time-variant/frequency-

dependent quantities are listed below: 

 

𝐸⃗    is the electric field measured in (
𝑉

𝑚
) 

𝐻⃗⃗   is the magnetic field measured in (
𝐴

𝑚
) 

𝐷⃗⃗   is the electrical induction or electrical displacement, measured in (
𝐶

𝑚2) 

𝐵⃗   is the magnetic induction or magnetic displacement, measured in (
𝑊𝑏

𝑚2) 

𝐽    is the density of electric current, measured in(
𝐴

𝑚2) 

𝜌   is the electric charge density, measured in (
𝐶

𝑚3) 

 

The electromagnetic problem can be described through the Maxwell equations, 

reported below in differential form (3.3-3.6): 

 

∇ ∙ 𝐷⃗⃗                                                          (3.3) 

∇ ∙ 𝐵⃗ = 0                                                              (3.4) 

∇ × 𝐸⃗ =  − 
𝜕𝐵⃗ 

𝜕𝑡
                                                      (3.5) 

∇ × 𝐻⃗⃗ = 𝐽  + 
𝜕𝐷⃗⃗ 

𝜕𝑡
                                                   (3.6) 

 

These four equations show that electric field and magnetic field are closely related. 

In fact, a variable magnetic field induces a variable electric field and vice versa, 

and these variable fields propagate as an EM wave through space, mutually 

perpendicular to each other. An electromagnetic wave is characterized by 

frequency, wavelength, speed, and a direction of propagation [35,36]. 

The electromagnetic spectrum shown in Figure 3.3. represents the set of all 

possible frequencies of electromagnetic radiation. 

The whole spectrum is conventionally divided into bands: the microwave one is 

in the frequency range between 10 10 Hz and 10 12 Hz (300 MHz – 300 GHz). 



23 
 

 
Figure 3.3. Electromagnetic spectrum [37]. 

 

Materials are conventionally divided into conductors and dielectrics. The 

subdivision is based on the behavior that the materials have when they are 

exposed to an EM field. The response to an external excitation is determined by 

the atomic structure of an element: the arrangement of free external electrons for 

the electric field and the atomic moments for the magnetic one. In the conductors 

the charges are free to move, while in the dielectrics they encounter a certain 

resistance. 

Dielectric properties of a material in a vacuum space are described by (3.7-3.9): 

 

ε0 =  8.854187 ∙ 10
−12 =

10−9

36𝜋
     (

𝐹

𝑚
)                                                                             (3.7) 

𝜇0 =  4𝜋 ∙ 10
−7       (

H

m
)                                                                                                           (3.8) 

 

c0 = 
1

√ε0𝜇0
≈  3 ・108   (

𝑚

𝑠
)                                                                                                (3.9) 

 

The electrical permittivity ε0 defines the capacitance of a material exposed to an 

electrical field to store electrical energy. The magnetic permeability 𝜇0 expresses 

the ability of the material to become magnetized in the presence of a magnetic field.  

c0 is the light speed. 

Dielectric properties of a material vary as a function of the frequency of the EM 

field applied.  They are usually expressed as ε̃ or σ̃: the first is the relative complex 

permittivity (3.10) and the second is the complex conductivity (3.11):  

 

ε̃  =  ε +
σ

 jω
 =  ε′ −  j ε′′                                               (3.10) 
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σ ̃  =  σ  + j ω ε =  σ′ −  j σ′′                                          (3.11) 

where  

𝜀 ′ = 𝜀𝑟𝑅    (ε̃  real part: dielectric constant); 

ε′′ = 𝜀𝑟𝐼  (ε̃  imaginary part: loss factor); 

ω = 2πf    

ω is the angular frequency (
𝑟𝑎𝑑

𝑠
). The imaginary part of ε̃ (ε′′ = 𝜀𝑟𝐼) is an 

equivalent conductivity, and thus data are usually reported as (3.12):  

𝜀𝑟 =
ε′

𝜀0
                                                      (3.12) 

Sometimes the loss-tangent 
ε′′

 ε′
 is also considered. For the sake of clarity, the 

previous expressions can be written as (3.13-3.14): 

 

ε =  𝜀0𝜀𝑟  = 𝜀0(𝜀𝑟𝑅 − j𝜀𝑟𝐼)                                           (3.13) 

 

σ𝑒𝑞 = σ′ =  σ −  ω Im(ε)  =  σ + ω 𝜀0𝜀𝑟𝐼      (S/m)                    (3.14) 

 

To the Maxwell equations mentioned previously (3.3-3.6), the following 

constitutive relations of the materials are added (3.15-3.17):  

𝐷⃗⃗ =  ε𝐸⃗                                                        (3.15) 

𝐵⃗ =  𝜇𝐻⃗⃗                                                       (3.16)  

𝐽 =  σ𝐸⃗                                                        (3.17) 

The table below summarizes the values of relative dielectric permittivity and 

conductivity at the frequency of 1 GHz for each tissue in the human head [38] 

 

  
 

 Table 3.1. Dielectric properties of all the head tissues at 1 GHz [38]. 

 

 



25 
 

 

Figure 3.4. Snell representation. Wave reflection and transmission [39] 

Figure 3.4. schematically shows the behavior of an EM wave that propagates from 

a medium 1 to a medium 2 with different dielectric properties. The incident wave 

that hits the surface of a medium 2 is partly reflected and partly absorbed. The 

angle of reflection and the angle of incidence are the same (3.18): 

𝜃r = 𝜃i                                                          (3.18) 

Snell's law relates the transmission 𝜃t  and reflection  𝜃i angles (measured from the 

normal of the boundary N) to the refractive indices and properties of the materials 

(3.19): 

sin 𝜃t = sin 𝜃i 
n1
n2
= sin 𝜃i  

c2
c1
= sin𝜃i

√ε2 𝜇2

√ε1 𝜇1
                       (3.19) 

where c is the speed of the wave in the medium and n the refractive index of 

materials. The so-called reflection coefficient Γ and transmission coefficient T are 

also defined:  

Γ =
Ir
Ii
 =  

(n1  −  n2)
2

(n1 +  n2)
2
                                             (3.20) 

 

|T| = 1 − |Γ|2 =
It
Ii
                                             (3.21) 

Where Ii is the incident field, Ir is the reflected field and It the transmitted one.  
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3.2  Antennas’ System 

The MWI system is characterized by a very simple and compact hardware, 

consisting of a system of monopolar antennas mounted on a support that adapts 

to the patient's head [18]. 

Antennas are electrical devices capable of transmitting and/or receiving 

electromagnetic waves and in the case in exam, are immersed in a dielectric 

matching medium to address the signal, reducing losses. A monopolar antenna 

consists of a perfect electrical conductor (PEC), mounted perpendicular to a type 

of conductive surface called ground plane (GND) (Fig.3.5a-b). On PEC faces the 

only necessary boundary condition (BC) is the vanishing of the tangential electric 

field. The constitutive relationships, to be considered together with Maxwell's 

equations(3.3-3.6), are listed below (3.22-3.25):  

 

𝑛̂ 𝑥 𝐻1⃗⃗ ⃗⃗   |Σ  =  𝐽𝑠⃗⃗           (3.22) 

 

𝑛̂ 𝑥 𝐻2⃗⃗ ⃗⃗   |Σ  =  0         (3.23) 

 

𝑛̂  ∙  𝐷1⃗⃗ ⃗⃗  |Σ  =  𝜌𝑠          (3.24) 

 

𝜌𝑠  = −
1

 jω
 ∇𝑠  ∙ 𝐽          (3.25) 

 

where 1 is the external PEC face and 2 is the internal face [35]. 

One side of the antenna feed line is attached to the lower end of the monopole and 

the other side is attached to the GND [34]. Each antenna is manufactured with 

printed circuit technology, ensuring low cost and high repeatability. Monopolar 

antennas are printed on a standard FR4 slab, an insulating plastic laminate made 

with a fiberglass fabric and an epoxy resin matrix. The FR4 laminate has a 

rectangular extension (48x30 mm) and a thickness of 1.55 mm. The relative 

permittivity is equal to 4.4 and the conductivity value is 0.012 S/m (Fig.3.5c-

Fig.3.6c) [40].  

 

 
 

Figure  3.5. Schematic representation of the monopolar antenna used for the MWI system [40][48]. 

a)     b)     c) 
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Figure 3.6. Example of MWI system antenna: (a) front, b) back, and c) lateral view); on the left the photos and 

on the right the 3D CAD models. 

 

The antenna design includes a triangular-shaped radiating element, a trimmed 

back-placed GND plane, and a line, with two stubs, fed by a rigid coaxial cable on 

the back [40]. The characteristic impedance of the antennas used has been 

measured and it is equal to 47.3 Ω. 

The operating frequency, the coupling medium, the antenna number, and their 

configuration are the result of a study aimed at respecting the following 

specifications: 

● maximize the spatial resolution; 

● maximize the power of the incident radiation field (𝐸𝑖𝑛𝑐) in the head, in order to 

maximize the retro-scattered signal used for the image reconstruction. 

The spatial resolution depends on the EM wavelength used (and therefore the 

frequency): it must have dimensions such as to be comparable with those of the 

object under test. According to this, it would seem convenient to choose a small 

wavelength and therefore a very high frequency. However, by increasing the 

frequency an increase in the conductivity of the tissue is obtained which results in 

greater losses within the brain. For this reason, it is necessary to find a compromise. 

A frequency range of 0.5 to 4 GHz was considered as a starting point. 

 
Figure 3.7. The planar layered model of the human head [41]. 

a)                 b)                                       a)                                b) 

c)                                   c) 
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A layered planar model simulates the interaction that occurs between the incident 

wave and the tissues present within the head (skin, fat, bone, Cerebrospinal fluid 

(CSF) and brain) (Fig.3.7). The layered model was then considered as an equivalent 

transmission line (Fig.3.8). 

 

Figure 3.8 Equivalent transmission lines of the multilayer planar model. 

The values of the length of the layers and the associated impedance were obtained 

from the literature. To take into account the frequency dispersive behavior of 

biological tissues, the calculated impedances were evaluated according to the 

Cole-Cole model [41]. 

              

Figure  3.9. Transmittance as a function of the frequency and the permittivity of the matching medium [41]. 

The graph shows the transmission coefficient as a function of the frequency and 

relative permittivity of the coupling medium. 

The red areas highlighted in Figure 3.9. indicate the frequency ranges for which 

the transmission is maximum: one is around 1 GHz and the other one, on the right, 

exceeds 4 GHz. Based on these results, a working frequency of 1GHz and a 

coupling medium with relative permittivity of about 20 were chosen [18]. 

The dielectric material was made with a semi-flexible mixture composed of 65% 

urethane rubber and 35% graphite powder [40]. The compound initially has a 

liquid appearance, as it cools it tends to solidify (Fig.3.10). 
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The final material has a relative permittivity of 18,425 and a conductivity of 0.204 

S/m [40]. 

 

 
Figure 3.10 Coupling material for the antennas. 

 

The optimal number of antennas that allows to have good quality images is 

twenty-four. To obtain this result, several full wave simulations have been made. 

The antennas are distributed over the entire upper surface of the helmet to provide 

uniform irradiation to the patient's head (Fig.3.11) [33]. The position of the 

antennas was chosen after having carried out an analysis of the spectral properties 

of the scattering operator [18]. 

 
 

  
Figure 3.11. Conformal distribution of the antenna array around the head: on the left the developed prototype, 

in the middle and on the right the CAD model. 
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3.3  Scattering parameters matrix 

 
Figure 3.12. Example of a 2- ports microwave circuit and S parameters.  

The scattering matrix is a mathematical construct that quantifies the way in which 

the energy transmitted by the electromagnetic wave (EM) propagates through a 

multi-ports network [36]. 

The S matrix accurately describes the properties of even very complex circuits: the 

device under test (DUT) is considered as a "black box" (Fig.3.12).  

For a circuit with N input ports, the matrix contains N2 coefficients called S 

parameters. If a circuit is composed of linear elements, it can be described with a 

set of linear equations. The matrix algebraic representation of the 2-port S 

parameters is as follows [42] (3.26): 
 

(
b1
b2
) = (

𝑆11 𝑆12
𝑆21 𝑆22

) × (
a1
a2
)                                        (3.26) 

which in linear form can be written with these two equations (3.27-3.28):  

b1 = 𝑆11a1 + 𝑆12a2                                                   (3.27) 

b2 = 𝑆21a1 + 𝑆22a2                                                   (3.28) 

Variable a1 represents a wave incident at port i and variable b𝑗 represents a wave 

reflected from port j. The magnitude of ai and bj variables can be considered as 

voltage, normalized using a specified reference impedance [43]. 

As seen in paragraph 3.1, an incident EM wave that hits a port is partly reflected 

outwards, and partly dispersed inside the network. The port from which the wave 

is irradiated, measures the reflected signal, the other ports instead measure the 

scattered signal within the network. Amplitude and phase of the incident signal 

are respectively attenuated and distorted. Each parameter represents a possible 

input-output path. 

The parameters 𝑆ij are complex numbers with real and imaginary parts and are 

defined for a given frequency and impedance Z 0 of the system. 

The first number in the subscript (i) refers to the receiving port, while the second 

number (j) refers to the transmitting port. Therefore 𝑆12 indicates the response to 

port 1 due to a signal sent from port 2. 
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The parameters along the diagonal of the S matrix are called reflection coefficients, 

while those outside the diagonal are called transmission coefficients [42]. The four 

S-parameters of a 2-door system are defined as (3.29-3.32): 

 

                                        

𝑆11 is the reflected signal measured at port 1 , when port 1 works as a transmitter: 

no signals are sent from port 2, so a2 = 0 (3.29). To quantify 𝑆21, a signal is injected 

at port 1 and the resultant signal power at port 2 is measured (a2 = 0)(3.30).  

For 𝑆12 calculation  must be considered that port 2 acts as a transmitter and port 1 

works as a receiver (a1 = 0) (3.31) and finally, for 𝑆22 a signal is injected to port 2 

and its reflected signal is measured (a1 = 0) (3.32) [43].  

The S matrix is by construction symmetric (Fig.3.13), and the S parameter can be 

expressed either as a linear quantity or in logarithmic decibel (dB) by applying the 

following formula (3.33): 

𝑆ij (dB) = 20 log10(𝑆ij )                                (3.33) 

 

                             
Figure.3.13 Example of a 24x24 scattering matrix in dB.  

. 

Furthermore, the S parameters can be obtained from the reflection and 

transmission coefficients with these two equations (3.34-3.35): 
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𝑆11 =
Γ(1−𝑇2)

1−Γ2𝑇2
                                                      (3.34) 

 

𝑆21 =
T(1−Γ2)

1−Γ2𝑇2
                                                      (3.35) 

 

 

3.4  Vector Network Analyzer (VNA) 
 
The Vector Network Analyzer (VNA) is the device that allows to measure the 

scattering parameters. The latter, as explained in the previous paragraph, describe the 

relationship between magnitude and phase of incident and reflected waves at antennas 

ports and represent the input of the image reconstruction algorithm.  

Since the VNA has two ports (one for transmitting and one for receiving), a controller 

configures the switching matrix in such a way that only one transmitter and one 

receiver can be simultaneously active and connected to the device [33]. 
The VNA disposable in the LACE laboratory at Politecnico di Torino is P9375A 

Keysight Streamline USB Vector Network Analyzer (Fig.3.14) [45].  

 

  

Figure 3.14 P9375A Keysight Streamline USB Vector Network Analyzer: a photo of the device on the left and 

the block diagram on the right [45]. 

Its key features are:  

- compactness, portability, and easy connections;  
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- wide frequencies range from 300 kHz up to 26.5 GHz; 

- support of Electronic Calibration Modules (Fig.3.16); 

- dynamic range up to 115 dB; 

- stability; 

-  fast in making measurements.  

The VNA is packaged in a compact chassis and controlled by an external laptop. 

The visualization of the signals is carried out directly on the computer, thanks to 

a dedicated software (PNA Network Analyzer)[45]. 

 

  
Figure 3.15 P9375A Keysight Vector Network Analyzer Guided User Interface.  

 

The measurement parameters are set directly from the Guided User Interface 

(GUI) (Fig.3.15). 

Below are the most important ones, adopted for the real measurements used to 

test the image reconstruction algorithm: 

• Frequency range: 0.5 - 2.5 GHz 

• Sweep: 201 points 

• Power: 0 or -5dB 

• Filter: 100 Hz 
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It is also possible to apply the averaging technique: the VNA performs the 

measurement on several points (for example 5) and returns the mean value 

between them. The higher the power, the more accurate the measurement. The 

narrower filter bandwidth, the less noise, the slower the measurement and the 

better the quality of the reconstructed image.  

Before taking the measurements, it is necessary to calibrate the VNA: connect ports 

1 and 2 of the VNA to ports A and B of the electronic calibration module (Fig.3.16). 

From the GUI select: Cal → Other Cal → ECal. 

 

 

 

Figure 3.16 Electronic Calibration Modules of the P9375A Keysight Streamline USB Vector Network 

Analyzer. 

 

The calibration phase is essential because it corrects systematic errors. 

Once the measurement has been performed, the scattering parameters are 

provided in the form of a list in a file with the “.s2p” or “.s1p” extension. 
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3.5  Switching matrix 

 

 
Figure 3.17. Switching matrix [46]. 

It has been seen that the VNA has only two ports, so it is possible to connect 

together only two antennas out of twenty-four. The switching matrix (Fig.3.17) 

manages this limit, selecting two antennas at a time: one is used as a source and 

the other is used for reception. Considering all pairs of antennas there are 576 

combinations. 

The switching matrix is realized with different high-quality electromechanical 

coaxial switches and two electronic control boards (Fig.3.19) [34]. 

The switching matrix combines two single-pole-four-throw (SP4T) (Keysight 

8762B Coaxial Switches), eight single-pole-six-throw (SP6T) (Keysight 87206B 

Multiport Coaxial Switches)(Fig.3.18) and twenty-four single-pole-double-throw 

(SPDT) [46]. The main characteristics of these electromechanical switches are: 

• small package size and portability; 

• insertion loss less than 0.5 dB @ 10 GHz; 

• isolation between ports greater than 90 dB @ 10 GHz; 

• maximum switching speed of 30 ms for model 8762B and 15 ms for model 87206B 
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Figure 3.18. Single-pole-six-throw (SP6T) Keysight 87206B Multiport Coaxial Switches. a) front and b)bottom 

view. 

 

To create the proper connections between the antennas and the VNA, all the 

switches are connected to an electronic control board. The Ethernet connectivity 

enables the connection to the network [46]. 

 

 
Figure 3.19. Electronic boards (powered 24V DC) that manage the switching of the switches. 

 

The 24 antennas positioned on the helmet are not directly connected to the VNA 

but are connected via flexible coaxial cables to the switching matrix [34]. 

Connections between switches were made with semi-rigid coaxial cables with a 

black plastic coating (Fig.3.20) to maximize the isolation and minimize the 

insertion losses [18]. 

 

a)    b)      
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Figure 3.20. Semi-rigid coaxial cables connected to the switching matrix and flexible coaxial cables connected 

to the antennas. 

 

There are 24 paths from VNA port 1 to the corresponding 24 antennas and 24 paths 

back to VNA port 2: all the paths were designed to have the same length [18]. 

The switches are controlled through the VISA/TCPIP(VXI-11) protocol by using 

standard scripting languages Matlab [46]. 

The instrument control session comprises:  

1. Instrument Connection 

2. Instrument Configuration and Control 

3. Disconnect and Clean Up 
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3.6  Image reconstruction algorithm 

The MWI system exploits the dielectric contrast ∆χ between healthy and 

pathological tissues, at microwave frequencies. However, the output from the 

measurement system is not the dielectric contrast but the scattering parameters 

[34]. Differential dielectric contrast and differential scattering matrix ∆S are related 

to each other by the following non-linear equation (3.36): 

 

∆𝑆 (𝑟𝑝̅, 𝑟𝑞̅) =  
− 𝑗𝜔𝜀𝑏

4
∫ 𝐸𝑏(𝑟𝑝̅, 𝑟̅) ∙𝐷𝑂𝐼

𝐸(𝑟̅, 𝑟𝑞̅)∆𝜒(𝑟̅) 𝑑𝑟                    (3.36 )  

where: 

- DOI is the domain of interest, that is the volume of the object under test (the 

head); 

- 𝑟𝑝̅, 𝑟𝑞̅ are the positions of the transmitting and receiving p and q antennas, 

respectively; 

- 𝐸𝑏(𝑟𝑝̅, 𝑟̅) is the "background" electric field radiated in each point r of the DOI by 

the antenna in position 𝑟𝑝, when the volume has no target; 

- 𝐸(𝑟̅, 𝑟𝑞̅) is the total field measured by antenna q given by the sum of the incident 

field and the scattered field;  

- 𝜀𝑏 is the "background" dielectric constant (the brain without stroke); 

- 𝜔 is the angular frequency used by the antennas;  

- ∙  is a dot product.  

The image reconstruction algorithm programmed ad hoc and implemented on 

Matlab, allows to obtain images starting from the measured scattering parameters 

(Fig.3.21). 

 

 
Figure 3.21 Block diagram: operating principle of the algorithm implemented for image reconstruction [34]. 
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The software section manages highly computational steps which consist of the 

resolution of an inverse scattering problem, not linear and wrongly posed. 

The resulting image is obtained from the difference between two images. 

To diagnose the presence of stroke, the reference image is a background scenario 

without target. To monitor the evolution of the stroke at instant t, the reference 

image relates to the same scenario but at instant t-1. 

The difference between the two scenarios is in a portion of the head and it should 

be very small: this allows to linearize the model and use the Born approximation 

[46]. 

The parameters are collected within a 24 x 24 matrix in two different instants. It is 

assumed that the only change between the two scenarios is due to a dielectric 

contrast variation. The difference is then calculated by obtaining the so-called 

differential scattering matrix (∆𝑆).  

The variations and therefore ∆𝑆 are only related to the unknown variation of the 

contrast through a linear operator, defined by the following Kernel (3.37) [46]: 

 
− 𝑗𝜔𝜀𝑏

4
∗ 𝐸𝑏(𝑟𝑝, 𝑟𝑚) ∙ 𝐸𝑏(𝑟𝑚, 𝑟𝑞)                                       (3.37)  

The relationship between differential dielectric contrast and differential scattering 

matrix can therefore be linearized as follows (3.38): 

∆𝑆 (rp, rq)  =  ℒ(∆𝜒)                                              (3.38) 

The linear operator is computed off-line for all combination of antennas p and q 

and for all the positions inside the DOI with Finite Element Method (FEM) 

simulations [48].  

The decomposition of the singular value (SVD) of the scattering operator relates 

the data of the problem to the unknown contrast function. The decomposition of 

the singular value (SVD) is applied to the known linear operator (3.39): 

 

ℒ = 𝑈𝑆𝑉                                                            (3.39) 

SVD is a particular factorization of a matrix based on the use of eigenvalues and 

eigenvectors: U is a unitary matrix (right singular vectors), S a diagonal matrix 

(singular values) and V the conjugate transpose [46]. 

At this point it is possible to obtain the unknown variation of the contrast with a 

simple linear combination of the right singular vector of the operator's SVD (3.40):  

 

∆𝜒 =  ∑
1

𝜎n

Lt
n=1 ⟨∆S, [𝑢𝑛]⟩[𝑣𝑛]                                       (3.40)  

Where:  

𝜎n : singular values of the discretized scattering operator 

𝑢𝑛 :  left singular of vector the discretized scattering operator 
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𝑣𝑛 :  right singular of vector the discretized scattering operator 

Lt  : truncation factor. 

The truncation factor works as a regularization parameter, and it defines the level 

of information to retain after the TSVD. It can be considered the threshold and its 

choice is a trade-off between the stability against the noise affecting the measured 

scattering parameters and the accuracy of the reconstructed image [47,48]. 

To obtain the reconstructed image, ∆𝜒 (r) is simply plot in three-dimensional. The 

operation, once the S parameters have been obtained, is quite fast. Below is an 

example with ischemic ictus related to a measurement carried out on a phantom 

in laboratory (Fig.3.22).  

 

 
Figure 3.22 Example of a tomographic image obtained via MWI system: the stroke in the back of the head is 

visible. 
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Chapter 4 

4.  Anthropomorphic Head Phantom 

4.1  3D model 

Before moving on to clinical trials, the operation of the MWI system was tested 

using head models that reproduce the dielectric properties of the tissues. The 

different characteristics of the materials have been obtained from mixtures suitably 

studied.  

A phantom is a physical model that simulates the behavior of different tissues 

exposed to electromagnetic waves. They should have high durability over time, 

easy availability, reproducibility, and low production costs. 

The 3D anthropomorphic head phantom used to validate the MWI system was 

made from polyester casting resin. The 3D model was created with a computer-

aided design (CAD) software by editing a stereolithography (STL) file derived 

from an MRI scan of the head of a healthy subject [18]. The different blocks of the 

phantom were made through 3D printing, and then they were fixed together with 

a sticky material. In the realized model, there are also the housings for the 

antennas. It has an ellipsoidal section with a minor axis of 20 cm and a major axis 

of about 26 cm, and a wall thickness of 3 mm. 

The phantom is hollow: in the upper part of the head there is a slot, which is then 

sealed once the liquid has been added.  

This head model represents the background scenario for the image reconstruction 

algorithm and the condition without target (healthy case). 

 

  
 

Figure 4.1. Human head phantom: a) CAD model, b)3D anthropomorphic phantom filled with a mixture 

created ad hoc that mimics the dielectric characteristics of the healthy brain. 

a)                           b) 
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4.2  Dielectric properties 

The human head is made up, starting from the outside inwards, from different 

types of tissue: skin, fat, bone, cerebrospinal fluid (CSF), gray matter, white matter, 

and cerebellum. 
However, for practical reasons, an ad hoc mixture was created that mimics the 

dielectric characteristics of the brain intended as a homogeneous medium. 
A homogeneous material is an object with a single constituent. The constitutive 

parameters that characterize it, are the same in the entire volume. Since white 

matter and gray matter make up a good percentage of the brain, the recreated 

mixture has a permittivity and dielectric conductivity values, equal to the mean of 

the permittivity and conductivity values of these two tissues (Tab.3.1). 
The first liquid blend created was composed of 38% Triton X-100, 62% water and 

salt. [18]. The graph below represents the dielectric characteristics in the frequency 

range from 0.5 to 1.5 GHz (Fig.4.2). 

 

 
 

Figure 4.2. Brain mixture liquid dielectric characteristics in the frequency range from 0.5 to 1.5 GHz [18]. 

 

The relative permittivity (4.1) and conductivity (4.2) values at the 1 GHz working 

frequency were: 

𝜀𝑟 =  45.37                                                                    (4.1) 
σ =  0.7729  S/m                            (4.2) 
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It has been seen that the gelatinous substance changes its properties. Decreasing 

the temperature, the compound tends to solidify, making it difficult to move and 

place the balloon that mimics the stroke inside the phantom. 

For these reasons, it was decided to use another "recipe" that is simpler and 

cheaper to make. At first the ingredients were: demineralized water, isopropyl 

alcohol, and table salt (NaCl). 

Measurements were carried out daily to verify that the evaporation of the alcohol 

did not significantly change the dielectric properties of the mixture. 

It was therefore decided to replace isopropyl alcohol with ethyl alcohol, and it has 

seen that the properties remain almost stable over time. The final mixture is made 

up of 32.53% demineralized water (1816.3 g), 67.18% ethyl alcohol (3751 g) and 

0.29% salt (15.75g).  

Before carrying out any measurements, it is however advisable to take a sample of 

liquid to measure its dielectric properties and, if necessary, correct the mixture by 

adding small quantities of alcohol. 

The graph below represents the dielectric characteristics of the so-called average 

brain, in the frequency range from 0.5 to 2.5 GHz (Fig.4.3). 

 

 
Figure 4.3. Average brain dielectric characteristics in the frequency range from 0.5 to 2.5 GHz. 

 

The relative permittivity (4.3) and conductivity (4.4) values at the 1 GHz working 

frequency are: 

𝜀𝑟 =  42.58                                                        (4.3) 

σ = 0.7874 S/m                                                    (4.4) 
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These values are taken as a reference for the creation of the model of the healthy 

case, used as a background scenario for the image reconstruction algorithm. The 

same process was followed to create the blends that mimic the condition of 

ischemic and hemorrhagic stroke. The stroke is simulated in the laboratory with 

balloons anchored to wooden sticks and filled with ad hoc liquids. 

A dye was added to the ischemic stroke mixture to differentiate it from the 

hemorrhagic one. The relative permittivity (4.5) and conductivity (4.6) values at 

the working frequency of 1 GHz are, for the hemorrhagic blood: 

 

𝜀𝑟 = 63.41                                                        (4.5) 

σ = 1.576 S/m                                                   (4.6) 

 

and for ischemic blood (4.7)(4.8): 

𝜀𝑟 = 36.00                                                      (4.7) 

σ = 0.7200 S/m                                                 (4.8) 

 

The following paragraph briefly illustrates the method used to measure the 

dielectric properties of the mixtures.  
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4.3  Coaxial probe method 

The dielectric properties of the materials depend on the working frequency and on 

their internal molecular structure. The liquids that fill the phantom were 

electromagnetically characterized thanks to an open coaxial cable probe.  
The coaxial probe method (Fig.4.4) consists in putting the terminal region of the 

probe in contact with the sample whose properties are to be known. This technique 

is simple, convenient, non-destructive and it is very well suited for liquid and 

semi-solid materials.  

The probe transmits an electromagnetic field in the liquid and determines the 

scattering parameter 𝑆11 from which the value of the complex dielectric constant 

is obtained. 

A typical measurement system therefore consists of a network analyzer (VNA), 

the coaxial probe and an ad hoc software for real time calculation of the dielectric 

parameters [49]. 

 
Figure 4.4. Open-ended coaxial-probe method [50]. 

 

The probe used in the laboratory is the 85070E dielectric probe from Keysight 

Technologies (Fig.4.5). 

It offers high performance: it can work in a very wide range of frequencies (from 

200 MHz to 50 GHz) and temperature (from -40ºC to + 200ºC). At one end there is 

a 2.4 mm male connector [49]. 
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Figure 4.5. Keysight 85070E Dielectric Probe Kit 200 MHz to 50 GH [49] 

 

The probe must be calibrated to avoid errors due to the different impedances and 

to reduce the ripple on the signal (Fig.4.6). 

 

 

Figure 4.6. Example of measurement of dielectric properties: a) with  calibration and b) without calibration.  

 

Three measurements are performed under known conditions to calibrate the 

probe:  

- open circuit measurement (air)  

- short circuit measurement (the probe is closed with a very high impedance resistance 

(Γ= -1)) 

-  polar liquid (water) measurement  

 

This calibration is transferred to the ECal module and is performed automatically before 

each measurement [49]. The prepared liquids were mixed thoroughly inside a normal 

plastic cup. To measure the dielectric properties of the prepared liquid it is sufficient to 

put it in contact with the calibrated probe (Fig.4.7-Fig.4.8).  
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Figure 4.7. Coaxial probe calibration: a) short measurement, b) water measurement. 

 

Figure 4.8. Coaxial probe method for measuring dielectric properties: a) balloon filled with liquid that simulates  the 

hemorrhagic stroke, b) average brain. 

 

 

a)             b)

    

a)             b)
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Chapter 5 

5.  Machine Learning Theory 
The use of Machine Learning (ML) techniques combined to the new Microwave 

Brain Imaging system (MWI) represents a very promising approach for stroke 

detection. ML can be an interesting alternative to deterministic imaging 

algorithms, reducing data processing time.  

The aim is to train algorithms that can define the region affected by ischemia or 

hemorrhage, simply by "looking" at the S parameters measured by the MWI 

system. 

This chapter aims to illustrate the theory which is behind the ML algorithms used 

in this thesis project, to solve the classification problem (Support Vector Machine 

(SVM), Multi-Layer Perceptron (MLP) and K-Nearest Neighbors (K-NN)) [47,52]. 

 

5.1 Basic Concepts 

Machine learning (ML) is a subfield of the artificial intelligence (AI) that has 

become quite relevant since the 1980s.  
ML can be understood as the science capable of extracting knowledge from data. 

It essentially uses statistical methods to improve its performance on identifying 

patterns. The data that describe an element belonging to a given class are called 

features (or instances), and they are the input of the ML algorithms. The class is the 

target (or label).  Each model has a very precise structure and operating logic: these 

characteristics can be set by the user simply by defining some hyper-parameters. 

Generally, in classification problems there are two types of data: those whose class 

is known a priori and those for which the class is not known, but which must be 

predicted. The first is the training set and the latter is called test set. Some elements 

of the training set are used to evaluate the performance of the trained algorithm 

and to fine-tune the hyperparameters. These elements are part of the so-called 

validation set. 

In the literature, the terms “test” and “validation” are often interchangeable. 

There are three types of learning on which ML techniques are based: 

 

- Supervised learning: the features given as input to the algorithm are labeled. In 

this way the algorithm builds a model based on the knowledge of the class. 

- Unsupervised learning:  the inputs provided have neither a defined structure 

nor associated outputs. The algorithms analyzes and cluster unlabeled 

datasets, discovering hidden patterns or data groupings independently.  
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- Reinforcement learning: it is based on feedback or rewards that the algorithm 

receives from the external environment.  [53] 

The algorithms used in this work are all part of the first category.  

 

5.3 Support Vector Machine (SVM) 

Support Vector Machines (SVM) are binary classifiers that can identify elements 

belonging to two classes. These models were introduced by Cortes and Vapnik in 

1995 [54]. A SVM is based on the concept of decisional boundary. The first step 

taken by the algorithm is to map the training data in a higher dimensional space 

which is called feature space. In this new space, the elements belonging to the two 

classes are linearly separable by a hyperplane  (Fig.5.1) [55]. 

 
Figure 5.1 The elements of the two classes are linearly separable in the feature space by a hyperplane [56]. 

 
 

                   
Figure 5.2 An example of optimal separating hyperplane with maximum margin in the Euclidian space 

[57] 
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The support vectors (SV) are the elements belonging to the two classes, closest to 

the decision boundary (the optimal separation hyperplane in the feature space).  

Referring to Figure 5.2, the solid black line is the decision boundary, and the 

elements present on the two parallel dashed lines are the SVs. Of course, the latter 

are the most critical to be classified as they are easily confused. Training the SVM 

algorithm translates into identifying, by means of an optimization method, the 

hyperplane that has the greatest margin from the SVMs. The decision margin is 

defined as the smallest distance between the decision boundary and any of the 

samples. The hyperplane H0 can be defined with the following equation (5.1): 

 

𝑤𝑇 x +  b =  0                                                     (5.1) 

 

where 𝑤 is the weight vector, normal to the optimal hyperplane, x is the input 

vector and b is the bias. 

If the space is two dimensions (like the one in Fig.5.2.), the hyperplane equation 

is reduced to the equation of a line. H1 and H2 are the two hyperplanes parallel 

to H0 and passing through the SVMs (one per class). 

All points above the H0  hyperplane belong to H1 and satisfy the following 

equation (5.2):  

𝑤𝑇 x +  b >  0                                                             (5.2) 

 

while the points below the H0  hyperplane belong to H2 and satisfy the following 

equation (5.3): 

𝑤𝑇 x +  b <  0                                                            (5.3) 

 

It is possible to calculate the margins (the distance between H0 and H1, and the 

distance between H0 and H) with this formula (5.4):  

 

𝑤𝑇 x +  b

||𝑤||
=

1

||𝑤||
                                                        (5.4) 

 

The total distance between H1 and H2 is (5.5):  

 

2

||𝑤||
                                                                   (5.5) 

 

This function must be maximized by the algorithm to maximize the distance of 

the SVs from the decision boundary. Very often, maximization problems can be 

reformulated in terms of minimization, as a quadratic optimization problem 

subject to linear constraints. The maximization of the equation (5.5) is rewritten 

as follows (5.6): 
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1

2
𝑤𝑇𝑤      →         

1

2
||𝑤||2                                             (5.6) 

 

Minimizing the equation allows to maximize the margins, to find the optimal 

hyperplane, and SVs.  

In real cases, where it is not possible to make a linear separation between 

elements, there are two options: to map the original problem in a new space or 

to admit a certain number of errors in the classification (relaxation of the 

margins). 

In the second case, the so-called slack variables (ξ> 0) are added to the model.  

𝑀(𝑤) is the new function to be minimized (5.7): 

 

(𝑤) =
1

2
 𝑤𝑇𝑤 + 𝑐∑𝜉𝑖                                                  (5.7) 

 

The SVM algorithm must identify the hyperplane that maximizes the margins 

and minimizes the errors on the training set, at the same time.  

𝜉𝑛 depends on the position and distance of each sample with respect to the 

decision boundary: 

• 𝜉𝑛= 0: the sample is classified correctly, that means it is on the correct side of 

the decision boundary and it is outside the margin; 

• 0 < 𝜉𝑛≤ 1: the sample is inside the margin, even though it is on the correct side 

of the decision boundary; 

• 𝜉𝑛> 1: the sample is misclassified because it is on the wrong side of the decision 

boundary [ 47]. 

 

Hyperparameter c is a penalty term. It balances the compromise between 

maximizing margins and minimizing error:  small c means large margins and 

high number of mistakes, while large c means narrow margins and low number 

of mistakes.  

The original input space can always be mapped to some higher-dimensional 

feature space where the training set is separable. The dimensionality of the 

mapped space can be arbitrarily chosen. 

The kernel function transforms the data from the original space to the feature 

space. There are several types of kernel functions (5.8 -5.11): 

 

• Linear:    Φ(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗                                                                                   (5.8) 

• Polinomial: Φ(𝑥𝑖, 𝑥𝑗) = (1 +  𝑥𝑖
𝑇𝑥𝑗)

𝑝      (5.9) 

• Sigmoidal: Φ(𝑥𝑖 , 𝑥𝑗) = tanh(𝛽0𝑥𝑖
𝑇𝑥𝑗 + 𝛽1)     (5.10) 

• Gaussian Radial Basis Function (RBF): Φ(𝑥𝑖, 𝑥𝑗) = 𝑒
−
||𝑥𝑖 – 𝑥𝑗||

2

2𝜎2   (5.11) 
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Once the kernel function (𝜙) to be used has been chosen, the algorithm 

determines the optimal decision boundary through an optimization process, 

guided by the variables c and 𝜉𝑛. At the end of the training phase, the weights of 

the hyperplane (𝑤𝑠), the bias and the SVs (𝑥𝑠) are known.  

When a new element 𝑥𝑛𝑒𝑤 is provided as input to the algorithm, the classifier 

applies the following formula to obtain the output function 𝑦 (5.12):  

 

𝑦 = ∑ 𝜙(𝑥𝑛𝑒𝑤

𝑠∈𝑆𝑉

, 𝑥𝑠) + 𝑏𝑖𝑎𝑠                                             (5.12) 

 

The unknown element is mapped into the feature space. At this point, if the value 

of 𝑦 is greater than zero, the element will be above the hyperplane, otherwise it 

will be below it. The class will be associated according to the chosen convention 

[58].  

As mentioned at the beginning, SVM is a binary classifier, however most 

classification problems require distinction for more than two categories. In this 

work, as will be seen better later, the classes to be identified are nine. 

The multi-class problem is broken down into multiple binary classification 

problems. For the choice of the label, the winner takes all or the majority voting 

principles are used [59]. 

One-vs-rest rest (one against all) approach consists of building k separate binary 

classifiers for k classes. For each binary classifier, one class is positive, and the 

rest are negative (Fig.5.3.). The classifier with the highest output function y 

assigns the class (winner takes all strategy) [60]. 

 

 
Figure 5.3. One vs rest approach: the number of classifiers is equal to the number of classes (k=3, in this 

example). For each binary classifier one class is positive and the rest are negative [60]. 

 

If all classes are made up of the same number of training examples,  the ratio of 

positive to negative examples would be 1: (k 1).  In this case, the symmetry of the 

original problem is lost. To overcome this limit the Pairwise (one-vs-one) 

approach is adopted.  

It evaluates all possible pairwise classifiers and thus it uses  
𝑘(𝑘−1)

2
 individual 

binary classifiers.  For each binary classifier, one class is positive, another is 

negative, and the rest are ignored (Fig.5.4.). The class with the maximum number 

of votes is the winner (majority voting strategy).   
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Figure 5.4. Pairwise approach: number of classifiers equal to 
𝑘(𝑘−1)

2
, where k is the number of classes (6 in 

this example). For each binary classifier, one class is positive, one is negative, and the rest are ignored.  

 

The size of classifiers created by the one versus one approach is much larger than 

that of the one versus rest approach [61].  

 

 

5.4 K-Nearest Neighbors (K-NN) 

The K-Nearest Neighbors (K-NN) is a very simple method that classifies 

unlabeled cases based on their similarity to known ones in the training set [62].  

K-NN does not require any learning phase, it simply calculates the distance 

between the test element and those of the training  set. The training set samples 

are sorted according to the distance they have with the test element, from the 

closest to the furthest. The most represented class among the first k nearest 

examples of the training set is assigned to the test element.  

 

                     

 

Figure 5.5. K-NN algorithm for binary classification, considering k = 3 (solid line) and k = 5 (dashed line). 

[63] 

 

Figure 5.5. shows an example of classification problem solved with k-NN 

algorithm. The training set instances belong to two classes: that of blue squares 

and that of red triangles. The circular green element (query point) is the test 

element, which must be classified.   
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If k = 3, the neighbors are two red and one blue: by majority, the element is 

classified as red triangle. But if k = 5, the neighbors are three blue and two red 

and, in this case, the green circle is classified as blue square.  

The only two hyperparameters that must be set are k, that is the number of 

neighboring training elements to be considered, and the metric to be used for the 

distance calculation. To operate correctly, the elements must have the same scale 

of values and must therefore be normalized in the preprocessing phase. 

K is usually an integer, greater than one, odd to eliminate the probability of an 

exactly even vote. 

Low values can make the classifier susceptible to overfitting and sensitive to 

noise. High values, on the other hand, can lead the classifier to erroneously 

predict a label because it considers points that are very distant as neighbors. This 

risk can be reduced by weighing the contribution of neighbors by distance. 

The distance (𝑑(𝑥, 𝑦)) that defines the similarity between elements of the training 

(vector 𝑥) and elements of the test (vector 𝑦) can be calculated with the following 

metrics (5.13-5.14) (Fig.5.6.): 

 

- Euclidean distance:  

 𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦|| = √(𝑥 − 𝑦)𝑇(𝑥 − 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑘

𝑖=1          (5.13) 

 

- Manhattan distance (L1 norm): 
 

𝑑(𝑥, 𝑦) = ||𝑥 − 𝑦|| = |(𝑥 − 𝑦)| = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑘
𝑖=1                    (5.13) 

 

- Chebyshev distance (L∞ norm):    

𝑑(𝑥, 𝑦) = 𝑚𝑎𝑥𝑘|𝑥𝑖 − 𝑦𝑖|                                              (5.14) 

 

              
Figure 5.6. Graphical representation of the metrics used for distance calculation [63]. 

 

The k-NN algorithm uses local information and lends itself very easily to parallel 

implementations. However, it has very high memory requirements (it must 

memorize the entire training set and all the distances between elements). 
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5.5 Multi-Layer Perceptron (MLP) 

Multi-Layer Perceptron (MLP) algorithm is a feed forward artificial neural 

network (NN), inspired by the functioning of the human nervous system [64]. 

Biological neurons are connected to each other via so-called dendrites and 

depending on the incoming signals, they can be activated. The branching that 

transmits the information is called axon and each axon can be connected to one 

or more dendrites at intersections called synapses.  

The basic element of the MLP is the “neuron” also called “node”. The perceptron 

is the simplest model of artificial NN (Fig.5.7). 

 

 
Figures 5.7. Diagram of a perceptron [64] 

 

A weighted sum of the inputs is performed. The neuron determines its output 

value 𝑦 by analyzing the result of the linear combination of the inputs, through a 

special activation function 𝜃.  

The input is represented by the N features (x1, x2, x3, …. , xn).  

The behavior of a perceptron can be briefly described with this formula (5.15): 

 

𝑦 = 𝜃 (∑(𝑤𝑖𝑥𝑖 + 𝑏𝑗)

𝑁

𝑖=1

)                                       (5.15) 

 

Where wi are the weights and 𝑏𝑗 are the bias.  

During the training phase, the weights, based on the data, are repeatedly 

adjusted, until the system returns the expected output. Many neural networks 

can hold hundreds of billions of weights, which requires high computing power.  

Multi-Layer Perceptron (MLP) is a modified and complex version of the 

perceptron: it presents between the input and output layers, different layers of 

neurons, called hidden layers (Fig.5.8).  
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Each neuron of a layer is connected to each neuron of the next layer (feed forward 

NN). 

 

 
Figures 5.8. Diagram of a multi-Layer Perceptron (MLP) [65].  

 

The output of an intermediate layer is unknown, and it does not coincide with 

the desired output. Therefore, it is difficult to calculate the error rate. To solve 

the problem, a technique called back-propagation is applied. The error 𝛿𝑘(𝑝) at the 

output of neuron 𝑘, at iteration 𝑝𝑡ℎ, is defined by this formula (5.16): 

 

𝛿𝑘(𝑝) = 𝑦𝑑,𝑘(𝑝) − 𝑦𝑘(𝑝)                                           (5.16) 

 

Based on this difference, the algorithm updates the network weights, in an 

attempt to gradually converge the output results with those expected. The 

variation in the value of the weights can be calculated with the following 

equation (5.17): 

 

∆𝑤𝑗𝑘(𝑝) = 𝜂𝛿𝑘𝑥𝑗𝑘 − α∆𝑤𝑗𝑘(𝑝 − 1)                              (5.17)    

 

where ∆𝑤𝑗𝑘(𝑝) is the weight update performed during the 𝑝𝑡ℎ iteration, α is the 

regularization term, 𝛿𝑘 is the error and 𝜂 is the learning rate. 

In this way, the weights in the next iteration will be (5.18): 

 

𝑤𝑗𝑘(𝑝 + 1) = 𝑤𝑗𝑘(𝑝)+∆𝑤𝑗𝑘(𝑝)                                     (5.18) 

 

The activation functions are mathematical equations that determine the output 

of a neural network. Generally, artificial neural networks replicate the behavior 

of biological ones, using continuous, non-linear, and differentiable functions [67]. 

The most common activation functions are (Fig.5.9)(5.19-5.23): 

 

Step function:  𝑓(𝑥) = {
0,          𝑥 < 0
1,          𝑥 ≥ 0

                                                                               (5.19) 
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Linear function:  𝑓(𝑥) = 𝑘 ∙ 𝑥                                                                                              (5.20) 

 

Sigmoid (Standard Logistic) function:  𝑓(𝑥) =
1

(1+𝑒−𝑥)
                                                 (5.21) 

 

Hyperbolic tangent function: 𝑓(𝑥) = tanh(x) =
𝑒2𝑥−1

𝑒2𝑥+1
                                                (5.22) 

 

Rectified Linear Unit (ReLU) function:  𝑓(𝑥) = max(0, x)                                          (5.23) 

 

The step function is based on the existence of an activation threshold value, if the 

weighted sum of the input values is greater than this threshold, then the neuron 

is activated and transmits the same signal to the next layer. The linear function 

generates output values proportional to the inputs. The ReLu function is usually 

used when the input data cause a particular slowness in reaching the optimal 

solution of the model.  

Figure 5.9. The most common activation functions [67]. 
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5.5 Overfitting problem 

The accuracy of a prediction learned through machine learning can be very 

different in the training data and in the separate test data. This phenomenon is 

called overfitting [69].  

Overfitting a training set means that the classifier memorizes training patterns 

and consequently loses the ability to generalize. This means that the algorithm 

may perfectly fit past data and may not actually work with future test data.  

Machine learning methods are particularly prone to overfitting as they can try 

out a huge number of different "rules" until they find one that fits all training 

data perfectly. This happens especially for those particularly flexible models.  

Considering SVMs, overfitting occurs when c is too large, that is, when the 

penalty hyperparameter narrows the margins and minimizes the number of 

prediction errors for the training set elements.  

For k-NN method, overfitting occurs for very small values of k. 

In neural networks, overfitting occurs when architecture is too large, for instance 

the NN has too many weights.  

A validation set, obtained from the training set, is usually used to get an idea of  

the level of generalization achieved during the training phase [68]. 

 

 

5.6 Performance evaluation Metrics 

The metrics that will be illustrated in this section, allow a quantitative and 

standardized evaluation of the performance of the models. These metrics are 

useful for comparing the results obtained by different classifiers.  

A binary classifier problem involves the distinction of elements into two 

categories: positive (1) or negative (0). The predictions can be correct (true) or 

wrong (false). 

An element can be defined in 4 different ways, based on its true label, and based 

on the classifier’s prediction (Fig.5.10) [52].  

In particular: 

• A true positive (TP) occurs when the model correctly classifies the positive 

element (the predicted class is positive and the true label is positive). 

• True negative (TN) occurs when the model correctly classifies the negative 

element (the predicted class is negative and the true label is negative). 

• A false positive (FP) occurs when the model incorrectly classifies the 

element as positive when the latter is negative (the predicted class is 

positive and the true label is negative). 
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•  A false positive (FN) occurs when the model incorrectly classifies the 

element as negative when the latter is positive (the predicted class is 

negative and the true label is positive).  

 

 
Figure 5.10. Schematic representation of TP, TN, FP, FN. 

 

Starting from these definitions it is possible to formulate the so-called accuracy, 

that is the ratio between the exact predictions on the total number of predictions 

made by the classifier  (5.24): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
=

𝑇𝑂𝑇 𝑟𝑖𝑔ℎ𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑂𝑇𝑝𝑟𝑒𝑑𝑖𝑡𝑖𝑜𝑛𝑠
                    (5.24) 

 

In case of an unbalanced class data set, where the number of positives is 

significantly higher or lower than the number of negatives or vice versa, the 

number of FN or FP would not be evaluated correctly. To take into account the 

proportion between the number of elements of one class and another, within the 

dataset, two other metrics have been introduced: precision and recall.  

 

Precision (or Positive Predicted Value (PPV)) suggests how good the model is at 

classifying true positives: it indicates how many times the classifier predicted the 

correct class whenever the element to be classified belonged to the positive 

category (5.25). The higher the precision, the lower the FP rate.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑃𝑉) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                           (5.25) 

 

The recall (or sensitivity or True Positive Rate (TPR)) expresses how many times 

the classifier has predicted the correct class every time the element to be classified 

belonged to the negative category (5.26). The higher the recall, the lower the FN 

rate.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                             (5.26) 
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Other metrics (5.27-5.32), combining the relative ratios between TN, TP, FN, FP, 

can be calculated [52]: 

 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                  (5.27) 

 

𝑇𝑁𝑅 (𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                      (5.28) 

 

𝑁𝑃𝑉 (Negative Predicted Value) =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                              (5.29) 

 

𝐹𝑃𝑅 (False Positive Rate Fall out) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                           (5.30) 

 

𝐹𝑁𝑅 (False Negative Rate) =
𝐹𝑁

𝑇𝑃+𝐹𝑁
                                (5.31) 

 

𝐹𝐷𝑅 (False Discovery Rate) =
𝐹𝑃

𝑇𝑃+𝐹𝑃
                              (5.32) 

 

An intuitive and effective method to represent the performance of a model is 

through a confusion matrix, in which the four possible outcomes are reported 

(Fig.5.11) [70]. 

In the main diagonal there are the correct predictions TP and TN, while off the 

diagonal there are the wrong predictions FP and FN. 

 

 
Figure 5.11. Confusion matrix for a binary classifier [56].  



61 
 

 

Figure 5.12. Example of a non-normalized multi-class (nine) confusion matrix. 

 

Considering a multi-class problem, the confusion matrix appears as in Figure 5.12. 

The true labels are present along the rows, while the predicted labels are read on 

the columns. In a multiclass problem only exact predictions (true (T)) and wrong 

predictions (false (F)) are considered: FP and FN lose their meaning, as there are no 

positive and negative categories.  

Referring to the confusion matrix in the Figure 5.12, the ML algorithm incorrectly 

classifies five I_BR elements and three N elements as I_BL.  

The user who supervises the model can manipulate the input data or modify the 

hyper-parameters based on the number and type of errors. 

For example, a solution could be to provide more training examples for those 

categories that the algorithm fails to classify. 

The matrix shown in Figure 5.12 is not normalized: to get a more accurate view of 

the model’s performance, it is useful to report the number of correct or incorrect 

predictions relative to the total number of instances per class. 
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Chapter 6  

6.  Training Set – creation of synthetic 

data  

In this thesis project, Machine Learning classifiers are used to recognize the 

position and type of stroke. However, to solve the classification problem, the ML 

algorithms need to be trained on a very large dataset.  
A training set of the scattering parameters can be obtained through clinical trials, 

laboratory measurements with the anthropomorphic phantom or with 

electromagnetic (EM) simulations. Unfortunately, all these options are not feasible 

as they require a great effort in terms of time. 
To overcome this limit, an algorithm based on the Born approximation and 

linearization of the scattering operator, has been implemented on MatlabR2021b. 

The method considers two scenarios (healthy and pathological) and allows to 

derive the S parameters starting from the dielectric contrast. 

In about 16 hours it creates a large dataset made up of 10000 different examples.  

The Matlab code was executed on the micenea server of the Politecnico di Torino, 

Intel (R) Xeon (R) CPU E5-2670 @ 2.60 GHz with a memory of 256 GB and 24 cores. 

An accurate description of the steps followed is given below [71]. 

 

 

6.1  Reference model: background scenario 

To create the training set, it is necessary to have a reference model, a background 

scenario, which can be modified to generate different stroke conditions. 

A 3D model that reproduces the head, the brain (considered as a homogeneous 

medium) without target and the MWI system, has been recreated using GiD CAD 

software [48]. 

A discretization of this volume with a mesh, created 19221164 tetrahedra. At this 

point the discretized model has been subjected to a full-wave FEM simulation. This 

operation will be detailed in paragraph 8.1. 

The FEM returns in output two type of files associated to the background scenario: 

- “.VTK” : it contains the EM field inside the entire simulated system. 

- “.txt”: it is a list of the real and imaginary part of the S parameters for each antenna 

pair.  
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Both files are read using Matlab scripts. First, the domain of interest (DOI) is 

defined: it consists of 794502 tetrahedra of which 459277 are related to the brain 

and the remaining 335225 to the head.  

For each tetrahedron, the spatial coordinates x, y, z of the barycenter and of the 

vertices that constitute it, are always known. 

Among the EM fields in the .VTK file, only those relating to the defined DOI are 

considered. 

The scattering parameters are arranged inside an m x n matrix called S.inc, where 

n and m are respectively the transmitting and receiving antenna ports (n = m = 24). 

The 3D model of the head and brain without target, the electric fields and the S 

parameters associated with each tetrahedron of the DOI, are used for the creation 

of the scattering operator that will be described in paragraph 6.3. 

 

 
Figure 6.1. GiD model of the head, brain, and MWI system: background scenario. 
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6.2  Dielectric contrast 

Dielectric contrast is what allows MWI system to distinguish healthy tissue from 

pathological tissue. In particular, at the working frequency of 1 GHz, the dielectric 

permittivity of ischemic stroke and hemorrhagic stroke is respectively lower and 

greater, than the permittivity of the surrounding brain tissue [33]. In the Table 6.1. 

the dielectric characteristics of healthy, ischemic, and hemorrhagic cases, are 

reported. The permittivity and conductivity values refer to measurements obtained 

from the phantom mixtures, that have been recreated in the laboratory (section 4.2). 

The healthy case, called also average brain, represents the homogeneous compound 

whose dielectric properties have been obtained as the average of those of the gray 

and white matter.  

 
Table 6.1. Dielectric properties of healthy, ischemic, and hemorrhagic cases, at 1 GHz. The healthy case which 

represents the background scenario, refers to a homogeneous medium called “average brain” (Paragraph 4.2). 

 

To generate new cases with strokes, a certain number of tetrahedra inside the 

healthy head is selected: the properties of those tetrahedra are modified, with 

respect to the homogeneous background. 

It is possible to define the dielectric contrast as the relative difference between the 

permittivity value related to a background scenario without a target (healthy case), 

and the permittivity value associated with a pathological scenario (ischemic or 

hemorrhagic case). It can be calculated with the following formula (6.1):  

∆𝜒(𝑟̅) ≜
𝜀𝑠(𝑟̅) − 𝜀𝑏(𝑟̅)

𝜀𝑏(𝑟̅)
 =

𝜀𝑠(𝑟̅)

𝜀𝑏(𝑟̅)
− 1                                   (6.1) 

 

Where 𝑟̅ is a generic point in the DoI,  𝜀𝑠(𝑟̅) and 𝜀𝑏(𝑟̅) are the complex permittivity, 

located in r, of the corresponding average brain and of the (ischemic or 

hemorrhagic) stroke, respectively. The dielectric contrast for the three possible 

cases, at 1 GHz, is shown in the Table 6.2.  

 

 
Table 6.2.  Dielectric contrast associated to healthy, ischemic, and hemorrhagic cases, at 1 GHz. 

 

Note that the contrast can also be defined considering the same scenario with 

stroke, but in two different instants of time [71].  
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6.3  Linearized Integral Operator 

Now consider a scenario with target. The differential scattering matrix can be 

defined with the following expression (6.2): 

 

 ∆𝑆𝑝,𝑞  =  𝑆𝑝,𝑞
𝑡 − 𝑆𝑝,𝑞

𝑏                                                     (6.2) 

 

where ∆𝑆𝑝,𝑞 is the differential scattering matrix for each p, q antenna pair (p = q = 

1,…, 24), obtained as a value-by-value subtraction, between the elements that make 

up the S matrix related to the case with target (𝑆𝑝,𝑞
𝑡 ), and those of the S matrix 

related to the background scenario (𝑆𝑝,𝑞
𝑏 ).  𝑆𝑝,𝑞

𝑡  is the unknown factor of the problem.  

∆𝑆𝑝,𝑞  is due to the contrast variation ∆𝜒, introduced by the presence of the target 

in the reference scenario. Differential scattering matrix and dielectric contrast 

variation are related to each other through the following non-linear equation (6.3) 

[72,73]: 

∆𝑆𝑝,𝑞 = 
− 𝑗𝜔𝜀𝑏
2 𝑎𝑝𝑎𝑞

∫ 𝐸𝑝
 𝑏
(𝑟) ∙

𝐷𝑂𝐼

𝐸𝑞
 𝑡
(𝑟)∆𝜒(𝑟) 𝑑3𝑟                                ( 6.3) 

 

where: 

- 𝑗 is the imaginary unit; 

- 𝜔 is the angular frequency of the antennas (2𝜋𝑓, with 𝑓 = 1𝐺𝐻𝑧); 

- 𝜀𝑏 is the complex "background" dielectric permittivity (average brain); 

- 𝑎𝑝𝑎𝑞 are the power waves at the p,q antennas ports, respectively; 

- DOI is the domain of interest: the brain and the head; 

- 𝑟 is the position vector: it indicates the distance between a point r in the DOI 

and the positions of the p, q transmitting and receiving antennas; 

-  ∙  is a dot product; 

- 𝐸𝑝
 𝑏

 is the electric field radiated in each point r of the DOI by the antenna p in 

the background scenario; 

- 𝐸𝑞
 𝑡

 is the electric field radiated in each point r of the DOI by the antenna q, 

when in the DOI there is a target (test scenario) [52]. 

 

If it is assumed that the difference between the test scenario and the background 

one is negligible, and this assumption is valid only if the stroke has a limited extent, 

the Born approximation can be applied.  

The latter is valid for "weak" scattering phenomena, for which 𝜒 ≪ 1 and 𝑑 ≪ 𝜆, 

where 𝜒 is the contrast, 𝑑 is the size of the target, and λ is the wavelength of the 

field EM within the area occupied by the stroke.  
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The electric field radiated by the antenna p in a background scenario is 

approximated to the electric field radiated by the antenna q in the case of a test 

scenario (6.4): 

𝐸𝑞
 𝑡
( 𝑟) ≅ 𝐸𝑝

 𝑏
( 𝑟)                                                         (6.4) 

 

Then the equation (6.3) that links the differential scattering matrix to the variation 

of the dielectric contrast, depends only on the electric field radiated by the 

antennas p and q in a background scenario, and can be written as (6.5): 

 

∆𝑆𝑝,𝑞  ≅  𝒮 { ∆𝜒( 𝑟 )}                                                    (6.5) 

 

Where 𝒮 is the linearized integral operator, which  maps the relationship between 

the contrast and the scattered field.  

If this procedure is applied to the discretized 3D model, the equation (6.5) can be 

written as (6.6):  

[ ∆𝑆 ] ≅ [𝒮] [∆𝜒]                                                     (6.6) 

 

Where [𝒮] is now the discretized linear scattering operator, which can be 

calculated with the following equation (6.7) [18]: 

 

[𝒮]𝑚,𝑛 =
− 𝑗2𝜋𝑓𝜀𝑏 

2 𝑎𝑝𝑎𝑞
 𝐸𝑝
 𝑏
( 𝑟𝑛 ) ∙ 𝐸𝑞

 𝑏
( 𝑟𝑛 ) ∆𝑉𝑛 = − 𝑗𝜋𝑓𝜀𝑏𝑍𝑟 𝐸𝑝

 𝑏
( 𝑟𝑛 ) ∙ 𝐸𝑞

 𝑏
( 𝑟𝑛 )∆𝑉𝑛        (6.7) 

 

where 𝑍𝑟 is the impedance of the monopolar antenna used for the MWI system, 

𝑟𝑛and  ∆𝑉𝑛 are the coordinates (x,y,z) of the barycenters and the volume of each n 

tetrahedra (794502) that make up the DOI. The discretized linear scattering 

operator will therefore have dimensions m x n (576 x 794502): m is the number of 

each p and q antenna pair, that make up the MWI system.  

The truncated singular value decomposition (TSVD), a particular factorization of 

a matrix based on the use of eigenvalues and eigenvectors, is applied to the 

scattering operator (6.8): 

[𝒮]𝑚,𝑛 = 𝑈𝑚,𝑛 𝑆𝑛,𝑛 𝑉𝑚,𝑚
∗ =  ∑𝑢i 𝜎i

𝑛

i=1

𝑣𝑖
∗                                 (6.8) 

Where:  

- U is the unitary matrix with dimensions m x n (794502 x 24): the 𝑢i elements of 

this matrix consist of orthonormal vector columns, called left singular vectors 

of 𝒮.  

- S is the diagonal matrix with dimensions n x n (794502 x 794502): the diagonal 

elements of S are called single values of 𝒮. 



67 
 

- V* is the conjugate transpose of V, unitary matrix with dimensions m x m (24 x 

24): the 𝑣i elements of this matrix consist of orthonormal vector columns, called 

right singular vectors of 𝒮.  

 

The discretized and linearized scattering operator [𝒮]𝑚,𝑛 depends only on the 

incident electric field related to the background scenario, and therefore must be 

calculated only once. 

At this point, equation (6.6) can be rewritten as follows (6.9) [76]: 
 

[ ∆𝑆 ] = ∑ 𝜎nn∈DOI ⟨∆𝜒, [𝑣i 
𝑇]⟩[𝑢𝑛]                                     (6.9)  

Multiplying the S, V, D vectors of the discretized linear scattering operator, by ∆χ 

(the vector that contains the contrast variation for each tetrahedron of the brain), 

the differential scattering matrix due to the presence of the target is calculated. 

Finally, from equation (6.2) the scattering matrix related to the scenarios with the 

target is obtained (6.10): 

𝑆𝑝,𝑞
𝑡 = ∆𝑆𝑝,𝑞 + 𝑆𝑝,𝑞

𝑏                                                     (6.10) 

The S parameters of the case without target (𝑆𝑝,𝑞
𝑏 ) are computed, like the TSVD of 

the discretized linear scattering operator, only once. 

Summing up: from the FEM simulations performed on the reference scenario, the 

indices related to the 3D model of the head and brain without target, the electric 

fields associated with each point in the DOI, and the S parameters are imported.  

The S matrix related to the test scenario is obtained as the sum of 𝑆𝑝,𝑞
𝑏  and ∆𝑆𝑝,𝑞. 

This latter is calculated by multiplying the contrast ∆𝜒  by the linear discretized 

scattering operator. Generating different scenarios basically consists of generating 

different ∆𝑆𝑝,𝑞 with the procedure just explained [71].  
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6.4  Division into classes 

 

ML algorithms must be able to recognize the type and position of stroke. In this 

regard, a subdivision of the head on the sagittal and frontal planes is considered . 

In this way there are four regions of the head that identify 4 different positions: 

front-left (FL), front-right (FR), back-left (BL), and back-right (BR) (Fig.6.2) [71].  

 

Figure 6.2. Division of the head into 4 regions: front-left (FL), front-right (FR), back-left (BL), back-right 

(BR). 

 

The classification problem therefore considers nine classes (Tab.6.3). Class 0 

corresponds to the healthy case, the one without target (N). The classes 1,2,3,4 

correspond to the case of ischemic stroke (I) extended to the areas FL, FR, BL, and 

BR, respectively. The classes 5,6,7,8 correspond to the case of hemorrhagic  

stroke(H) extended to the areas FL, FR, BL, and BR respectively. 

The position of the stroke that determines the class, is chosen randomly by the 

algorithm. The class is assigned based on the position that the center of the stroke 

occupies with respect to the head. The center of the head is the origin of the axes of 

the Cartesian x,y,z plane.  

 

 
 

Table 6.3. The nine classes that the ML algorithm should be able to classify. 

 



69 
 

6.5  Stroke size 

 

The stroke is obtained by selecting a set of tetrahedra that make up the model of 

the healthy brain and modifying their dielectric properties, making them different 

from the surrounding homogeneous tissue. 
The stroke generated has a spherical shape and the center is randomly chosen 

among the barycenters of the tetrahedra within the brain. 

A clinical study has shown that 54 𝑐𝑚3 can be a reasonable estimate of the mean 

final volume of an ischemic stroke, with a variability ranging from 19 𝑐𝑚3 to 100 

𝑐𝑚3. The high variability is due to the influence of several factors such as the type 

of scanner and the imaging sequences used. For example, computed tomography 

(CT) scans tend to underestimate the size of the infarcted area, while T2-weighted 

MRI images tend to overestimate [74,75]. 

Furthermore, the instant in time in which the image is acquired has a significant 

impact. In the first days, ischemic stroke has a greater volume due to tissue 

swelling, while starting from the second week the volume tends to decrease [6]. 

In this perspective, five possible rays were considered in the Matlab code, from 1 

to 3 cm, with a step of 0.5 cm, which correspond to a volume between 4.2 𝑐𝑚3 and 

113.1 𝑐𝑚3 (Fig.6.3). 

The lower limit of the stroke radius corresponds to the maximum resolution of the 

MWI system, while the upper limit makes the approximation of Born still valid 

[71]. 

If some of the selected tetrahedra are outside the brain they are discarded, while if 

more than half of the selected tetrahedra fall outside the brain, that stroke case is 

discarded. 

 

 
Figure 6.3. Examples of spherical strokes generated with volume equal to: a) 4.2 𝑐𝑚3(𝑟𝑎𝑑𝑖𝑢𝑠 =

1 𝑐𝑚), 𝑏) 10.7 𝑐𝑚3(𝑟𝑎𝑑𝑖𝑢𝑠 = 2 𝑐𝑚) and 𝑐) 113.1 𝑐𝑚3(𝑟𝑎𝑑𝑖𝑢𝑠 = 113.1 𝑐𝑚) [71].  

 

 

 

         a)         b)    c) 
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6.6  Noise thresholds 

Four noise thresholds have been added to the dielectric contrast in order to obtain 

four corresponding noise levels on scattering parameters equal to: -110 dB, -105 dB, 

-95 dB and -90 dB . 
The four noise thresholds applied to the dielectric contrast are shown in the table 

in the first two columns (Tab.6.4). 

 

 

Table 6.4. Noise levels in the dielectric contrast space and in the scattering parameters space.  

 

The first and second columns contain the values to be added or subtracted from the 

real and imaginary part of the dielectric contrast for each of the N tetrahedra, to 

obtain the four corresponding noise thresholds reported in the third column. 

The passage from one space (dielectric contrast) to another (S parameters) is made 

possible by the discretized linear scattering operator [𝒮] (see equation 6.8), with the 

following formula  (6.11):  

 

[𝛿𝑆] ≅ [𝒮][𝛿𝜒]                                                         (6.11) 

 

where [𝛿𝜒] is an N x 1 array collecting the random noise associated to each 

tetrahedron in the dielectric contrast space, while [𝛿𝑆] is an M x 1 array that collects 

the corresponding noise in the scattering parameters space.  

The minimum chosen noise level (-110 dB)  is comparable with the noise floor of a 

medium-quality vector network analyzer [45] like that used in the laboratory, and 

the maximum noise level (-90dB) is up to 20 dB higher than the noise floor.  

The addition of the noise is performed randomly, each time choosing a variation of 

the dielectric contrast. 

The addition of the noise allows to have, starting from an example that reproduces 

a type of stroke in a specific position, five cases of the same class but slightly 

different, to be given as input to the ML algorithm during training [71].  

 

 

 

 

Re(δχ) Im(δχ)

0.001583333 0.00033

0.000863636 0.00018

0.000513514 0.000107027

0.000283582 5.91045E-05 -110 dB

Noise levels in the dielectric 

contrast space
Noise levels in the scattering 

parameters space

-90 dB

-95 dB

-105 dB
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6.7  Dataset size 

The generated dataset counts 10000 examples. Of these, 1000 are without target, 

4500 are ischemic, and 4500 are hemorrhagic. Except for class 0 which contains 1000 

elements, the remaining classes (1,2,3,4,5,6,7,8) consist of 1125 examples of ictus 

with different sizes and noise thresholds applied. 

 

6.8  Feature extraction: Amplitude and Complex 

dataset  

Usually before the implementation a machine learning model, the dataset is 

analyzed and manipulated to extract meaningful properties from those already 

available. This process is called feature extraction.  
The implemented method returns a dataset consisting of 10000 differential 

scattering matrices 24x24, containing the S parameters in the form of complex 

numbers. Since the S matrix is symmetric, the elements above the diagonal and 

those below it, are equal. The use of data that does not add new information, would 

only slow down the processing time by the ML algorithms. For this reason, only 

the elements belonging to the upper triangular matrix are considered for each of 

the 10000 examples.  

The features of an element are arranged in a single line, following the order shown 

in Figure 6.4. The resulting array contains 300 input features for the ML algorithms. 

However, the machine learning does not work with complex number.  

For this reason, the dataset is split into its real and imaginary parts, thus obtaining 

a row of 600 elements. The 601st column is occupied by the labels. The training 

dataset is called complex dataset. The amplitude dataset instead contains the module 

of the complex number associated with the scattering parameter. In this way, for 

each of the 10000 cases produced, a line of 300 features is obtained, to which the 

label column is added. The 10000x601 and 10000x301 matrices are finally converted 

into two “.csv” file. 
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Figure 6.4 S parameters belonging to the upper triangular scattering matrix are arranged in a single row. 

Organization of the features (x1, x2, x3, …. , xn ) that make up the Amplitude dataset (a) and the Complex 

dataset (b).  

 

 

 

 

 

 

 

 

 

 

a) 

 

b) 
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Chapter 7 

7.  Flowchart of the implemented 

algorithm  
 

The next paragraphs show schematically the steps that have been carried out for 

the creation of the synthetic training dataset. For a more complete explanation, 

the reader is referred to the previous Chapter 6. 

The Matlab code sequentially performs the following steps: 

- creation of the linear discretized scattering operator 

- creation of the dataset made up of healthy cases 

- creation of the dataset composed of pathological cases. The procedure used to 

create the ischemic stroke is identical to that used to create the hemorrhagic case, 

so they are reported only once. What changes is the associated dielectric contrast 

value with respect to the background scenario which is the average brain. Radius, 

position, and noise floor are randomly chosen within a fixed range. 

- features extraction: creation of the amplitude dataset and the complex dataset.  
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7.1  Linearized Integral Operator 

 

 

 
Figure 7.1. Flowchart: creation of discretized linear Scattering Operator.  
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7.2  Healthy cases 
 

 

 
 

 

 

 

 

 

 

 

 

Figure 7.2. Flowchart generation of healthy cases.  
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7.3  Cases with stroke  
 

 
 

Figure 7.3. Flowchart: generation of cases with stroke. 
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7.4  Features extraction 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Flowchart: features extraction. 
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Chapter 8 

8.  Testing Set – creation of synthetic data 

via Full-Wave FEM simulations  
 

The full-wave Finite Element Method (FEM) simulations are adopted to produce 

a testing set that will be used to evaluate the performance of the trained ML 

algorithms. Based on the performance achieved, it will also be possible to establish 

whether the method implemented for generating the training set data, is effective 

or not. 

The scattering parameters of the test set were obtained by combining the use of a 

processing software for numerical simulations (GiD), a programming and 

numerical calculation platform (Matlab2021b) and an internal Full-Wave software, 

based on the finite elements method (FEM) [18]. 

The figure below briefly shows the steps followed (Fig.8.1).  

 

 

Figure 8.1. Flowchart related to the steps followed for the creation of test set.  

 

8.1  Preprocessing (CAD model without target) 

The CAD model developed on GiD software includes the volume of the head and 

the antennas of the MWI system. The brain is intended as a homogeneous material 

having the dielectric characteristics of the average brain (paragraph 4.2). 

The model refers to a healthy-background scenario, so it is without target. 

After building the geometry, the dielectric properties of the materials, the 

boundary conditions and the signal sources are defined. 

At this point it is possible to perform a discretization of the model. This step 

consists in dividing the entire volume into many tetrahedra. The greater the 

number of tetrahedra, the faster the problem will converge towards a solution. In 

case the mesh is not precise enough, it is likely that some elements of the model 
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will be ignored. A fine mesh size will provide more accurate solutions, but it will 

take longer to compute [48, 77].  

 

8.2  Stroke model 

The head and brain model, and the mesh processed on GiD, are imported in “.stl” 

format on Matlab2021b. 

The implemented function selects a spherical or ellipsoidal volume, consisting of 

a certain number of tetrahedra, close to each other, that will have different 

dielectric properties with respect to the background. The volume is within the 

range used for the training set (from 4.2 𝑐𝑚3 to 113.1 𝑐𝑚3).  

First, the x, y and z coordinates of the point that will act as the center of the 

hemorrhage or the infarcted area, must be set. Then, the radius of the sphere or the 

length of the semiaxis of the ellipsoid are defined.  

Figure 8.2. shows four examples of generated strokes, relating to the four different 

areas (BR, BL, FR, FL), with different shapes and sizes. The central point of the 

head that separates the four zones, has coordinates (0,0,0). 

 

Figure 8.2. Examples of generated stroke models, related to the four areas of the brain (BR, BL, FR, FL), with 

different shape and size. 

In total, 29 different cases were created: for some of them, the stroke falls in a 

specific portion of the head, while for others the stroke center is located near the 

border that divides the BL, BR, FL, FR areas. Their position is indistinguishable 

with the naked eye (Fig.8.3).  
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Figure 8.3. Examples of generated stroke models, with the center of the sphere near the border that divides the 

brain into the four areas. The position of the stroke is indistinguishable to the naked eye. 

After verifying, through a plot, that the stroke is confined to the brain area only, a 

.DAT file is drawn up. 

This text file essentially describes the generated example, and it will be one of the 

FEM solver inputs. It is composed by several sections:  

- Coordinates section includes the number and Cartesian coordinates of the 

vertices of each point in the DOI 

- Element section returns the number of faces of tetrahedra, vertexes coordinates 

and barycenter. Each face is associated with a number that identifies the related 

material. 

- PEC section includes perfect electric conductor faces and information about the 

input/output ports. 

- Output definition section indicates what the simulation output parameters 

should be. 

Thanks to this file, FEM simulator can assign materials and conditions at each 

element of the mesh [78]. 

For the drafting of the new .DAT file, the .DAT file related to the no-stroke case 

exported by GiD, is taken as a reference, and modified according to the radius and 

position choices made previously. 

Since only the scattering parameters are required for the ML algorithm, the output 

definition within the .dat file is set to 0. 

In this way, the output will return the parameter file s directly, leaving out the 

fields and saving a lot of memory space, making the simulation faster. 

Until now, the type of stroke has not yet been defined. The only thing known is 

that some tetrahedra of the brain model have different dielectric characteristics 

than the average brain, as they have been assigned another material. To characterize 

the latter, it is necessary to act through the “material.dat” file: add a unit to the 

number of materials and write 𝜀𝑟 and σ values at the end of the file itself. Again, 

the dielectric properties refer to the values obtained experimentally in the 

laboratory (Paragraph 4.2, Paragraph 6.2-Tab.6.1). The.dat file is renamed and at 

this point the model is subjected to a simulation with the finite element method 
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(FEM). Figure 8.4. summarizes the steps needed to add the stroke to the 

background scenario. 

 

 

 

Figures 8.4. Steps performed to create a test example with stroke.  

 

8.3  Finite Element Method (FEM) simulations  

The simulation represents the intermediate level between an ideal and a realistic 

situation.  

Finite Element Method (FEM) is a numerical algorithm which aim is to convert 

partial differential equations into a set of linear algebraic equations, used to obtain 

approximate solutions to mathematical problems [79].  

It can manage complex geometries and accurately calculate the radiated and 

reflected fields. Each tetrahedron is a sub-domain, that composes the model, and 

represents a finite element, where the method finds the approximated solution.  

A full-wave analysis consists in solving the complete set of Maxwells equations 

without any simplifying assumptions. The “full wave” connotation associated 

with the type of simulation, indicates that all the components of the fields are 

considered: Ex, Ey, Ez, Hx, Hy, Hz.  

Before starting the FEM simulation with the in-house software, the inputs must be 

properly arranged. 

Five elements coexist within the same folder: the executive file, two libraries, the 

file name, the .DAT file and the material file. 

The file name tells the program which is the .DAT file containing all the 

information useful for the simulation. The material file reports the number of 

points in frequency, number of materials, the values of the frequencies to be 

considered (in this case one, equal to 1 GHz) and finally the relative permittivity 

and conductivity of each material. 
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The executable is opened directly from the shell and the simulation takes about an 

hour to perform the calculations. 

In output from the simulation a text file is obtained containing for each pair of 

antenna ports (m x n), the real part and imaginary part of the S parameters, at the 

considered working frequency. 

The file is read by a Matlab script, whose output return a matrix n x m (24x24). 

Since the FEM solver does not implement the equation for the case m = n, the -1 of 

the formula (see equation (8.1)) is corrected later for the elements of the diagonal 

of the S matrix [48]. 

𝑆𝑚𝑛 =

{
 
 

 
 
∬ 𝐸𝑚∙𝐸𝑛

𝑖𝑛𝑐 𝑑𝑆
𝑆𝑝

∬ |𝐸𝑛
𝑖𝑛𝑐|2 𝑑𝑆

𝑆𝑝

                  𝑖𝑓 𝑚 ≠ 𝑛

∬ 𝐸𝑚∙𝐸𝑛
𝑖𝑛𝑐 𝑑𝑆

𝑆𝑝

∬ |𝐸𝑛
𝑖𝑛𝑐|2 𝑑𝑆

𝑆𝑝

 − 1           𝑖𝑓 𝑚 = 𝑛

   (8.1) 

 

Where 𝑆𝑝 is the port section, 𝐸𝑛
𝑖𝑛𝑐 is the electric field transmitted by port n and 𝐸𝑚 

is the electric field evaluated at the port m.  

The same procedure was applied to all twenty-nine examples of generated strokes.  

 

8.4  Addition of noise 

The generated S matrices (𝑆𝑓𝑢𝑙𝑙−𝑤𝑎𝑣𝑒) are contaminated with white noise. This 

allows to have data variety also in the case without target and to have a certain 

specularity with the training set.  

Four levels of dielectric contrast noise are chosen, in order to have four 

corresponding noise levels on  S parameters equal to: -110 dB, -105 dB, -95 dB and 

-90 dB. 

The procedure applied is identical to that adopted for the training examples 

(Paragraph 6.6), with the difference that, having no dielectric contrast ∆χ in output 

from the FEM simulations, the variation of the dielectric contrast δχ is calculated 

based on an initial dielectric contrast equal to zero.  

As a result, the dielectric variation δχ is equal to the set noise only.  

By applying the linear scattering operator (𝒮), calculated for the construction of 

the training set (see equation 6.8), to the values of the matrix δχ, for each noise 

threshold considered, the corresponding δS matrix (8.2) is obtained: 

 

δ𝑆 (rp, rq) =  𝒮(δ𝜒)                                                 (8.2) 

This noise has been added to the S matrix of each test example generated (8.3): 

[𝑆𝑤𝑖𝑡ℎ 𝑛𝑜𝑖𝑠𝑒] = [𝑆𝑓𝑢𝑙𝑙−𝑤𝑎𝑣𝑒] + [δ𝑆]                                        (8.3) 
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The scattering matrices and the values obtained were always compared, to verify 

the correctness of the steps (Fig.8.5). 

 

Figure 8.5. The four 𝛿𝑆 matrices (24x24) added to the noise-free S matrices (24x24) generated via full-wave 

FEM simulations. 

With the addition of the four noise thresholds, the number of cases goes from 29 

to 145.  

As regards the training set, the dataset was further elaborated to obtain a testing 

set whose features are constituted by the amplitude (Amplitude Dataset) and by the 

real and imaginary part (Complex Dataset), of the scattering parameters. Finally, 

these two datasets were converted to .csv file.  

The Table 8.1. summarizes the characteristics of the generated test set.  

Table 8.1. Characteristics of the generated test set.  
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Chapter 9 

9.  Application of Machine Learning  
 

This section will briefly describe the steps that were followed to apply the ML 

algorithms to the previously prepared datasets. The training set is the one 

generated by the method based on the Born approximation, considering a linear 

scattering operator (Chapter 6), while the test set is generated through full-wave 

FEM simulations (Chapter 8). Each row of the datasets contains the S parameters 

of the scattering matrices, organized as explained in Paragraph 6.8. The 

algorithms, written in Python 3.7 language, have been implemented, trained, and 

tested on a platform called Google Colaboratory. 

 

9.1   Libraries for Machine Learning  

Python is the most widely used programming language in the ML community due 

to its versatility: it is a high-level, object-oriented, powerful, easy-to-use, dynamic 

and flexible multi-paradigm language. It has an essential syntax that allows to 

execute many commands while writing very few lines of code [80]. 

For the purpose of this project, it was decided to use Python on Google Colaboratory 

(Colab), a free platform that allows to write, run and share Python code on an 

interactive environment, through the simple use of a browser. 

With Google Colab no special downloads or configurations are required: the 

Python code runs on Google's cloud servers, thus exploiting the power of Google 

hardware, including GPU and TPU.  

Programs written on Colab are called Notebooks and are made up of cells that can 

contain one or more lines of Python code that will run together. Each cell can be 

renamed, and this facilitates the reading of the program. Colab allows to run the 

cells that make up the entire program in sequence or in random order: this feature 

allows users to modify small pieces of code and see the effects directly, without 

having to relaunch the whole program. The only precaution that must be taken 

into account, is that the variables are overwritten each time. Notebooks and 

input/output data are automatically saved in a Google Drive folder [81]. 

Colab takes full advantage of the power of Python libraries to analyze, process and 

visualize data. A brief description of the libraries used (Fig.9.1) will be provided 

below.  
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Figure 9.1. Common open-source library for ML application.  

- NumPy (np): is a numerical computing tool. It allows users to work with large 

matrices and multidimensional arrays. It offers a large collection of 

mathematical functions [82]. 

- pandas (pd): is a fast, powerful, versatile, and easy to use open-source data 

analysis tool. This library is used to read excel files in .csv format and create 

complex data structures, organized in easy to manipulate numerical tables [83]. 

- matplotlib (plt): is a library that processes data in many formats to create static, 

animated, and interactive visualizations. In the script used, it is adopted to 

present the performance of the models through the confusion matrices [84]. 

- TensorFlow (tf): is an open platform specific for ML which collects a series of 

models already developed and optimized. It represents the starting point for 

many applications [85]. 

- Scikit-learn: is an open-source ML library that supports supervised and 

unsupervised learning. It also provides different tools for model fitting, data 

preprocessing, model selection and model evaluation [86].  

 

 

9.2   Loading and splitting the Dataset 

The training set counts 10000 samples, while the test set has 145 records: both 

consist of a .csv file. The input features to the ML algorithms are provided in the 

form of amplitude (Amplitude Dataset) and real and imaginary part (Complex 

Dataset). In the first case they are 300, in the second 600.  

First of all, the dataset is manipulated to separate the features array from the array 

which contains the labels.  

At this point, the train_test_split function,  which is part of the model_selection 

of the scikit-learn library, is imported.  

The dataset is split randomly: 80% of the elements are actually used to train the 

models, while the remaining 20% is used to test the performance of the trained 

algorithm. The proportion of target is preserved as in original dataset, in the 

training and validation set as well. 

This technique tries to avoid the phenomenon of overfitting and allows to have an 

idea of the generalization level of the algorithm. Before making the division, the 

elements of the dataset are further mixed [86].  
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9.3   Features scaling and standardization 

Feature scaling  consists in transforming the input features in such a way that they 

have a similar scale of values. This operation is used to ensure that the ML 

algorithms put all the features on the same level without “having preferences”. 

This could happen when there are some features that have greater numeric range 

than others. If a model is trained with this kind of data, parts of its calculations 

could have numerical problems.  

To apply effectively feature scaling, the same scaling method needs to be adopted 

for both training and test data [86]. There are several ways to scale features. The 

one used, is called standardization method.  

The model StandardScaler() imported from scikit-learn calculate mean 

(µ) and standard deviation (σ) from the training set, and perform 

a standardization by centering and scaling all the features with the following 

formula (9.1): 

𝑥𝑖,𝑛𝑒𝑤 =
𝑥𝑖 − 𝜇

𝜎
                                                    (9.1) 

 

Where  𝑥𝑖,𝑛𝑒𝑤 is the new value of the feature 𝑥𝑖. 

 

9.4   Hyperparameters and Grid Search Method  

Hyperparameters are parameters that define a ML algorithm and characterize its 

behavior and performance. They always depend on the dataset to be classified, for 

this reason there are no default settings suitable for all kinds of classification 

problems. The construction of the model is performed by setting and modifying 

the parameters from time to time, and evaluating the results obtained after several 

attempts. The procedure is not easy because the parameters are many, and the 

performance of a classifier often depends on their combination. The 

hyperparameter modification phase is called tuning. Manually, it can be a long and 

cumbersome process. There are automatic estimator methods that allow to 

maximize performance and save time and resources. The optimization method 

used in this project, is called Grid Search method [86]. 

A grid of values, to be tested, for each hyperparameters, is defined by the user.  

The GridSearchCV function, imported from scikit-learn, performs every possible 

hyperparameter combination and records, and compares performances, based on 

accuracy score [87]:  

 
grid = GridSearchCV(model (), hyperparameters, scoring='accuracy') 

 

grid.fit(X_train. y_train).  

 

Processing time is quite long:  a couple of hours for the SVM and k-NN, while the 

MLP requires about ten and a half hours. 
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9.5   Construction of models  

The hyperparameters used for SVM, K-NN, MLP classifiers, obtained following 

the application of the Grid Search method on the training set and a subsequent 

manual fine-tuning phase on the validation set, are listed below. For a more 

detailed explanation of the meaning of the hyperparameters, the reader is referred 

to Chapter 5. 

 

SVM  

- kernel='rbf': the function that performs the transformation from the input data 

space to the feature space, is the Gaussian radial basis function. 

-  C=300: the penalty term that adjusts the slack variables (ξ) and serves to balance 

the trade-off between maximizing margins and minimizing errors, is set to 300.  

- decision_function_shape='ovo': the one-versus-one (ovo) approach is adopted 

to solve the multiclass problem, creating 
𝑘(𝑘−1)

2
 different binary classifiers (k = 9), 

for each class pair. The class with the maximum number of votes is the winner 

(majority voting strategy). 

- class_weight='balanced' : in unbalanced problems, it allows to give an 

appropriate importance even to the less represented class [88]. 

 

K-NN 

- metric='manhattan': it defines the type of metric for the distance calculation. 

- n_neighbors=3: it indicates the size of the neighborhood. The 3 closest elements 

are evaluated, and the class most represented, corresponds to the prediction of the 

model. 

- weights='distance': it means that closer neighbors of a query point will have a 

greater influence than neighbors which are further away [89]. 

 

MLP 

- activation='tanh': the hyperbolic tangent function is used as the activation 

function of each neuron in the hidden layer. 

-   alpha= 0.0001: the term of penalty is set to 0.0001. 

- hidden_layer_sizes=[1000, 500, 250, 100, 50] means that there are 5 hidden 

layers in the model: the first consists of 1000 neurons, the second of 500, the third 

of 250, the fourth of 100, and the last of 50. 

- solver='sgd': indicates that for weight adjustment, Stochastic Gradient Descent 

is used as optimization method.  

- learning_rate='adaptive'‘:  the learning rate η controls the step-size in 

updating the weights. If η is small, the weight adjustments are accordingly small. 

The initial value is set by default equal to 0.001. If the performance of the model 

tends to improve by two consecutive epochs, the current learning rate is divided 

by 5. It means that the algorithm is starting to converge towards a local optimum. 

[90]. 
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9.6   Training, prediction, and accuracy  

In Python the training phase is as delicate as it is simple to perform [86]. Once 

the hyperparameters of the model have been set, just a few commands are 

enough: the set of features (X_train) and the correct labels (y_train) are given as 

input to the ML model.  

 
model.fit(X_train, y_train) 

 

The algorithm will look for patterns within the features that will lead it to 

understand the existing link with the assigned class.  

To classify a dataset whose class is unknown (X_test), the predict function is 

used: 
 

model.predict(X_test) 

 

Finally, to evaluate the performance of the ML algorithm, the accuracy_score 

metric is imported from scikit-learn. This function receives the correct labels 

(y_test) and the predicted ones (p_test) as input, and automatically calculates 

the accuracy: 

 
accuracy=accuracy_score(y_test_p_test)  

 

 

 

9.7   Elapsed time for training 

The time required to train the algorithms depends on the number of features 

provided as input. The training set consists of 8000 examples, but the features 

associated with each record in the complex dataset are twice that of the amplitude 

dataset. However, what significantly affects the elapsed time for training is the 

type and architecture of the algorithm used to classify the data. 

The SVM and the K-NN take approximately 13 s and 10 s to train the amplitude 

dataset, and 15 s and 48 s for the elements of the complex dataset, respectively.  

The MLP is the slowest: 11 minutes for the amplitude dataset and 13 minutes for 

the complex dataset. The reason is related to the fact that the structure of the 

neural network is quite articulated and there are many neurons within the 

hidden layers. The adjustment of the weights via back propagation, through this 

dense network, requires a considerable computational time. 
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Chapter 10 

10.  Numerical Results 
 

This section reports the results obtained during the training, validation and testing 

phase of the ML algorithms used: SVM, K-NN and MLP.  

For each classifier, the features have been given in input as amplitude (amplitude 

dataset) or in the form of real and imaginary part (complex dataset). 

The training dataset was split in two sub-set (Paragraph 9.3) thus obtaining the 

training set and validation set. 

The first contains 80% of the data (8000 cases) and was actually used to train the 

ML algorithms, while the remaining 20% (2000 cases) was used for the tuning of 

the hyperparameters and to evaluate the degree of generalization achieved.  

The test set is instead made up of 145 examples generated through full-wave FEM 

simulations. 

The accuracy values obtained are summarized in Table.10.1, and in the graphs 

below (Fig.10.1-Fig.10.2). For the class labels, see Table 6.3. 

 

   

 

 

Table 10.1. Accuracy values expressed as a percentage, reached by the three ML algorithms (SVM, K-NN, 

MLP), for training, validation and test set. On the left the results for the amplitude dataset and on the right 

those for the complex dataset. 
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Figure 10.1. Bar diagrams showing the accuracy value in percentage, reached by the three algorithms (SVM, 

K-NN, MLP), for training, validation, and test set. On the left the results for the amplitude dataset and on 

the right those for the complex dataset. 

 

Note how the performance trend of the classifiers decreases on the three types of 

datasets: it is maximum for the training set, and gradually decreases for the 

validation, and the test set. The MLP is among the algorithms the one that has 

obtained the best results, followed by the SVM, and the K-NN which instead 

shows some limitations. All three classifiers achieved higher accuracy values when 

tested on the amplitude dataset.  

In general, all algorithms have always succeeded in correctly classifying healthy 

cases in training, validation, and testing phases, whether it was the complex 

dataset or the amplitude dataset. Most misclassification are attributable to 

positional errors. Clearly, for the purposes of therapeutic treatment, it is much 

more serious to confuse the type of stroke, rather than its location inside the head. 

Furthermore, many times the stroke does not occupy a precise position among the 

four areas: in this case the example in question becomes difficult to classify.  

The following paragraphs contain the normalized and non-normalized confusion 

matrices for each type of dataset (see Fig.10.2. – Fig.10.19). 
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10.1  SVM classifier (Amplitude Dataset) 

 

TRAINING SET: accuracy score 99.85% 

 

Figure 10.2. Confusion matrices showing the results obtained by the SVM classifier on the training set 

(amplitude dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

 

VALIDATION SET: accuracy score 95.50% 

    

Figure 10.3. Confusion matrices reporting the results obtained by the SVM classifier on the validation set 

(amplitude dataset). On the left the normalized matrix, on the right the non-normalized matrix. 
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TEST SET: accuracy score 93.10% 

 
Figure 10.4. Confusion matrices reporting the results obtained by the SVM classifier on the test set 

(amplitude dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

The SVM classifier manages to correctly identify all healthy cases in the training 

set. It does not recognize only 1 hemorrhagic element belongs to H_B class, which 

is identified as a healthy case. Among the 3600 ischemic examples in the training 

set, 11 are misclassified: for the most part they are labelled as cases without target. 

The accuracy achieved on the training set is very high and it is equal to 99.85%. 

As regard the validation set, as expected, the performance drops slightly. Despite 

this, all healthy cases are recognized in the right way. The SVM classifier correctly 

identifies between 93% and 97% of cases belonging to other classes. 12 elements of 

the H_FR class are labelled as H_FL, and 4 I_BR cases are classified as healthy 

records (N). 

For what concerns the test set, the SVM classifier correctly recognizes all healthy 

cases and hemorrhagic cases. The only mistakes made, concern errors on the 

position: 10 I_BL elements are classified as I_FR or as I_BR. The accuracy score 

achieved is 93.10%. 
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10.2  SVM classifier (Complex Dataset) 

 

TRAINING SET: accuracy score 99.89% 

 

Figure 10.5. Confusion matrices reporting the results obtained by the SVM classifier on the training set 

(complex dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

 

VALIDATION SET: accuracy score 96.05% 

 

Figure 10.6. Confusion matrices reporting the results obtained by the SVM classifier on the validation set 

(complex dataset). On the left the normalized matrix, on the right the non-normalized matrix. 
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TEST SET: accuracy score 84.83% 

 

Figure 10.7. Confusion matrices reporting the results obtained by the SVM classifier on the test set (complex 

dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

The SVM classifier manages to correctly identify all healthy cases in the training 

set. As for the amplitude dataset, it does not recognize only 1 hemorrhagic element 

belongs to H_BR class, which is identified as a healthy case. Of the 3600 ischemic 

examples in the training set, 10 are misclassified: most are labelled as cases without 

target and 2 are location errors. The accuracy achieved on the training set is very 

high and it is equal to 99.89%. 

As regard the validation set, all healthy cases are recognized in the right way. The 

SVM classifier correctly recognizes between 93% and 97% of cases belonging to 

other classes. 13 elements of the H_FR class are labelled as H_FL and 4 I_BR cases 

are classified as healthy (N). 

There are 4 errors affecting the distinction between macro classes: 1 H_BR record 

is classified as I_BL, 1 I_BR element is identified as H_FL, 2 I_BL cases are 

incorrectly classified, 1 as H_FR and, 1 as H_BR. 

For what concerns the test set, the SVM classifier correctly recognizes all healthy 

cases. The errors for the ischemic macro class concern the position: 10 elements of 

the I_BL category are classified as I_BR. As for hemorrhagic cases, 7 H_FL 

examples are misrecognized: 2 as H_FR and 5 times as H_BR. The accuracy score 

achieved is 84.83%. 

 

Ultimately, the best results for the SVM classifier, on the test set, were obtained 

when the features were given as input in the form of amplitude. 
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10.3  K-NN classifier (Amplitude Dataset) 

 

TRAINING SET: accuracy score 100% 

 

Figure 10.8. Confusion matrices reporting the results obtained by the K-NN classifier on the training set 

(amplitude dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

 

VALIDATION SET: accuracy score 92.20% 

 

Figure 10.9. Confusion matrices reporting the results obtained by the K-NN classifier on the validation set 

(amplitude dataset). On the left the normalized matrix, on the right the non-normalized matrix. 
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TEST SET: accuracy score 86.21% 

 
Figure 10.10. Confusion matrices reporting the results obtained by the K-NN classifier on the test set 

(amplitude dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

 

The K-NN classifier is able to correctly identify all the examples of the training set. 

The performance drops considerably for the validation set: an accuracy value of 

92.20% is reached.  

Nevertheless, all 200 healthy cases are recognized in the right way. The classifier 

has difficulty recognizing the I_BR and the H_BR examples, for which the 

maximum accuracy achieved is 88%. 

The I_BR class is labelled as N wrongly 14 times out 225. Sixteen out of 225, the 

class H_BR is misclassified as H_FR (eight times), and as H_BL. As regard the test 

set, the K-NN classifier correctly recognizes all healthy cases. The errors for the 

ischemic macro class concern the position: five elements of the I_BL are 

misclassified as I_BR, while others five elements of I_BL are labelled as healthy 

cases. Finally, five H_BL examples are misrecognized as H_BR. The accuracy score 

achieved is 86.21%. 
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10.4  K-NN classifier (Complex Dataset) 

 

TRAINING SET: accuracy score 100% 

 

Figure 10.11. Confusion matrices reporting the results obtained by the K-NN classifier on the training set 

(complex dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

 

VALIDATION SET: accuracy score 92.35% 

 

Figure 10.12. Confusion matrices reporting the results obtained by the K-NN classifier on the validation set 

(complex dataset). On the left the normalized matrix, on the right the non-normalized matrix. 
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TEST SET: accuracy score 85.52% 

 
Figure 10.13. Confusion matrices reporting the results obtained by the K-NN classifier on the test set 

(complex dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

The K-NN classifier is able to correctly identify all the examples in the training set. 

The performance drops considerably for the validation set: an accuracy value of 

92.35% is reached.  

Nevertheless, all 200 healthy cases are recognized in the right way. The classifier 

has difficulty in recognizing H_BR class: out of 225, 7 times the K-NN assigns the 

N class, 3 times the I_BR class, 7 times the H_FR class, and 9 times the H_BL class.  

The I_BR class is labelled as N wrongly 13 times out 225. Ischemic cases are never 

labeled as hemorrhagic, while 5 hemorrhagic examples are confused as ischemic 

cases. As regard the test set, the K-NN classifier correctly recognizes all healthy 

cases. The errors for the ischemic macro class concern the position: 10 elements of 

the I_BL are misclassified as I_BR (5 times) and as N (5 times).  6 H_FL examples 

are wrongly labelled as healthy cases. Finally, 5 H_BL records are misrecognized 

as H_BR. The accuracy score achieved is 85.52%. 

 

Ultimately, the best results for the K-NN classifier, on the test set, were obtained 

when the features were given as input in the form of amplitude. 
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10.5  MLP classifier (Amplitude Dataset) 

 

TRAINING SET: accuracy score 99.86% 

 

Figure 10.14. Confusion matrices reporting the results obtained by the MLP classifier on the training set 

(amplitude dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

 

VALIDATION SET: accuracy score 97.35% 

 

Figure 10.15. Confusion matrices reporting the results obtained by the MLP classifier on the validation set 

(amplitude dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

 

 

 



100 
 

TEST SET: accuracy score 97.93% 

 
Figure 10.6. Confusion matrices reporting the results obtained by the MLP classifier on the test set 

(amplitude dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

The MLP classifier is able to correctly identify all the healthy cases of the training 

set, with 11 total errors out of 7200 examples for the other remaining classes. There 

are 2 position errors: an I_FL is confused with an I_BL, while an H_BL is labelled 

as H_BR. The classifier misidentifies 2 elements of the N class, 2 as hemorrhagic 

cases and 7 times as ischemic cases. 

As regard the validation set, MLP correctly identifies all 200 healthy records.  

The lowest performances, with accuracy values equal to 95%, are recorded for the 

H_BR class, where 6 elements are recognized as H_BL. Ischemic cases are never 

confused as hemorrhagic, while 3 hemorrhagic examples are misclassified as 

ischemic records.  As regard the test set, the MLP classifier correctly recognizes all 

healthy and hemorrhagic cases. The errors for the ischemic macro class concern 

the position: 3 elements of the I_FL are classified as I_FR. The accuracy score 

achieved is high and it is equal to 97.93%. 
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10.6  MLP classifier (Complex Dataset) 

 

TRAINING SET: accuracy score 99.95% 

 

Figure 10.17. Confusion matrices reporting the results obtained by the MLP classifier on the training set 

(complex dataset). On the left the normalized matrix, on the right the non-normalized matrix. 

 

 

VALIDATION SET: accuracy score 97.70% 

 

Figure 10.18. Confusion matrices reporting the results obtained by the MLP classifier on the validation set 

(complex dataset). On the left the normalized matrix, on the right the non-normalized matrix  
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TEST SET: accuracy score 93.10% 

 
Figure 10.19. Confusion matrices reporting the results obtained by the MLP classifier on the test set 

(complex dataset). On the left the normalized matrix, on the right the non-normalized matrix.  

 

The MLP classifier always correctly identifies the macro classes, making only four 

errors out of 8000 total predictions. In particular, it incorrectly assigns the N class, 

2 to I_BL class and 1 to I_BR and H_BR classes.  

As regard the validation set, the MLP correctly identifies all 200 healthy cases. 

The highest performance, with accuracy values of 98%, is recorded for the H_BR 

class, with only 4 total errors out of 225. Ischemic cases are never confused as 

hemorrhagic, while an ischemic H_BR case is mistakenly recognized as I_FL. 4 

times the classifier MLP incorrectly assigns the N class: 3 are ischemic cases (two 

I_BL and one I_BL) and 1 is hemorrhagic (H_FR). 7 H_FR records are misclassified 

as H_FL. As regard the test set, the MLP classifier correctly recognizes all healthy 

cases. The errors concern only the position and not the type of stroke: 5 elements 

of the I_BL are classified as I_BR, while 5 H_BL examples are labelled as H_BR. 

The accuracy score achieved is equal to 93.10%. 

 

Ultimately, the best results for the MLP classifier, on the test set, were obtained 

when the features were given as input in the form of amplitude. 
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Chapter 11 

11. Conclusion and future development 
 

Brain stroke is one of the most common cardiovascular diseases worldwide. If it is 

not recognized and treated in time, hemorrhage or ischemia cause irreparable 

damage that can lead to severe disability or death. The new Microwave Imaging 

(MWI) system, portable, non-invasive and low-cost, is proposed as a 

complementary tool to the already available CT and MRI imaging techniques, 

allowing early diagnosis and continuous monitoring. The MWI system measures 

the scattering parameters at the ports of 24 receiving and transmitting antennas, 

placed on a helmet that covers the upper part of the patient's head. The image 

reconstruction algorithm exploits the dielectric contrast between healthy and 

pathological tissues at the microwave frequencies.  

In this thesis project, the potential of the MWI system has been combined with 

those of artificial intelligence (AI).  

Supervised Machine Learning (ML) algorithms such as Support Vector Machine 

(SVM), K-Nearest Neighbour (K-NN) and Multi-Layer Perceptron (MLP) has been 

used to solve the stroke classification problem. The implemented models have 

been trained to identify the region, among the four areas of the head, affected by 

ischemia or bleeding having as input the scattering parameters, in the form of 

amplitude (amplitude dataset) or of real and imaginary part (complex dataset). 

Clinical data, laboratory measurements or full-wave simulations require a great 

effort in terms of time and therefore they are not a feasible option for building large 

dataset, indispensable for the training phase of the ML algorithms. 

A method based on the Born approximation and on the Linearized Integral 

Operator has been used to create the training set.  The implemented algorithm 

proved to be fast and effective: it was able to generate 10000 cases with stroke in 

different conditions, in about 16 hours. 

The hyperparameters of each ML model have been defined following the 

application of an optimization method called Grid Search. After implementing and 

training the algorithms, to evaluate their performances, a test set consisting of 145 

examples, created via full-wave Finite Element Method simulations, has been 

used.  

The relative permittivity and conductivity values of the healthy brain and of 

ischemic, and hemorrhagic stroke, used both for the creation of the training and 

test set, are those obtained from the measurements on the mixtures created in the 

laboratory.  

All the algorithms, in the training and testing phase have always been able to 

correctly recognize records without target, both for the amplitude dataset and for 
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the complex dataset, and most importantly they always manage to distinguish the 

macro classes (healthy, ischemic, and hemorrhagic). Most of the classification 

errors concern the position.  

Among the algorithms used, the MLP, with an accuracy score of 97.93% for the 

amplitude dataset and 93.10% for the complex dataset, proved to be the most 

performing, followed by SVM and k-NN. The latter is particularly sensitive to 

noise, and it is prone to the problem of overfitting: the accuracy score for the test 

set does not exceed 87%. The performance for the amplitude dataset, during the 

test phase, are slightly higher than those obtained for the complex dataset. It 

suggests that even if the number of input features is halved, the information 

necessary to identify the correct class is preserved. This can be an interesting aspect 

to consider because, with comparable or even better performance, both tuning and 

training times can be reduced. It would also allow the development of even 

simpler and cheaper MWI systems because they could be made with less 

sophisticated instruments capable of measuring only the amplitude of the signals. 

From the results obtained, it is evident that the method based on the born 

approximation and, on the linear scattering operator, can be a valid solution to 

generate large amounts of data for the ML training phase. The levels of accuracy 

achieved on the test set are proof that the synthetic S parameters of the training set 

are comparable with those obtained through simulations. 

In order to have further confirmation of the validity of the implemented method 

and to consider the application of AI as a valuable resource for the diagnosis of 

stroke, it is necessary to test the ML trained algorithms, on measurements 

performed on the 3D human head phantom.  

As regards the method implemented for the training set creation, the 

improvements to be made to obtain a variable set of examples more similar to 

reality, could consist in adding complex and irregular shapes of stroke, and in 

combining more noise thresholds together. The classification problem can be 

extended to a multi-tissue model and solved by training other types of ML 

algorithms. 

In view of a possible clinical application, a heterogeneous training set built 

considering different head models as reference, can certainly increase the 

performance of the ML algorithms. The use of artificial intelligence combined with 

the MWI system, can allow the diagnostic examination to be carried out in a very 

short time, directly in the ambulance. An early diagnosis makes it possible to limit 

the damage caused by stroke injuries and save lives. 
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