

7 ¥
v <
‘. J::uil(lln

Yy

TR
Y
N\ 1859 ¢
S\

Master’s Degree Thesis

Master’s Degree course in Energy Engineering

Modelling of photosynthetic membranes
for solar fuel production

Supervisor Candidate
Prof. Eliodoro Chiavazzo Riccardo Ronco
Co-supervisor

Gabriele Falciani

AA. 2021

Abstract

Photoelectrochemical reactions have been studied since the beginning of the 1970
for their promising ability of converting C'Oy to fuels and chemicals. The state of
the art is focused on developing these reactions on solid electrodes which bring with
them the issues linked to scarcity, instability and high cost. The European SoFiA
project aims at using the unique self-assembling property of surfactants, and proton
transport properties in soap films. The main goal is realizing an economical artificial
photosynthetic membrane in form of stable soap film with engineered photocatalytic
surfaces in order to produce a syngas, namely a mixture of carbon monoxide and
oxygen. In this thesis a 1D COMSOL simulation of a surfactant monolayer, where
the carbon dioxide half reaction occurs, has been carried out with a view on showing
the feasibility of the project by simulating the behaviour of the main parameters
over an 8-hour period. Furthermore a second 0D model was developed to study the
oxygen evolution half reaction and validate against experimental data from litera-
ture.

Acknowledgements

A mio padre Sergio,
mia madre Cinzia e mia sorella
Chiara.

Contents

1 Introduction
1.1 Solar fuels
1.1.1 Natural photosynthesis
1.1.2 Basicconcepts.
1.1.2.1 Photon absorption
1.1.2.2 Water splitting

1.1.2.3 Carbon dioxide reduction
1.1.2.4 Semiconductor materials

1.2 Artificial photosynthesis . .

1.2.1 Non-molecular processes

1.2.2 Molecular processes .
1.2.3 Lab-scale devices . .
1.3 Continuum modeling
1.4 SoFiA project

1.4.1 Soap films and surfactant monolayers

1.5 Theory

1.5.1 Fick’s laws of diffusion
1.5.2 Thermodynamics of interfaces
1.5.3 Langmuir adsorption model

1.5.4 Chemical equilibrium
1.5.5 Henry'slaw

2 Case study: description
2.1 Electron relays

2.2 Surfactant used in the SoFiA project

3 Case study: simulations

3.1 Buffer model and carbon dioxide dissociation

3.1.1 Buffer model

3.1.2 Carbon dioxide dissociation model
3.1.3 Carbon dioxide dissociation model with the buffer

3.2 Validation of the 0D model .

3.2.1 Microkinetic model for homogeneous photocatalytic water ox-

idation

3.2.2 0D COMSOL model 50

3.2.3 Validationresults 52

3.3 1D model of a surfactant monolayer 55
3.3.1 Model description L 55

3.3.2 Initial values 57

3.3.3 Time and space distributions 61

3.3.4 Forward reaction rate tuningo 64

3.3.5 Adsorption phenomenons parameters 66

3.3.6 Experimental data fitting 72
Conclusions 76

Python codes 77

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21

1.22
1.23

2.1
2.2
2.3
24
2.5
2.6

World Energy Outlook 1
Pathwsys for solar fuels 2
Principle reaction in artificial photosynthesis to make a solar fuel . . 3
Natural photosynthesis 4
Excitation of electrons by light 5
Schematic representation of HOMO and LUMO 5
Scheme of conventional water electrolyzers 6
Valence and conduction band of semiconductors 8
Band gaps of various popular semiconductor photocatalysts. 8
Energy diagrams and PEC systems for photocatalytic water splitting 9
Photocatalytic C'Oy reduction with cocatalysts 10
Schematic representation of a molecular light-driven hydrogen pro-

duction mechanism L 11
Examples of Ruthenium-type photosensitizers 12
First artificial leaf scheme 13
PEC wired and wireless systems 14
Two general designs for (a) a Type 1 reactor and (b) a Type 2 reactor 14
Schematic representation of a finite element method (FEM) model . . 16
Soap film scheme oo 17
Schematic set-up to define the surface tension 18
Surface tension variation of a typical aqueous surfactant solution . . . 18
Graphical presentation of a bubble, a soap film with the surfactant

monolayer 19
Adsorption definitionso 23
Langmuir isotherm oo 24
Graphical representations of the element researched for the case study 28
Ascorbic acid half reaction of reduction 29
Structures of catechol, resorcinol, hydroquinone and benzoquinone . 29
Cyclic voltammograms in buffered and unbuffered solutions 30
Dye-Sensitized solar cell based on Hydroquinone/Benzoquinone . . . 31

Schematic of the adsorption mechanism of phenol, hydroquinone and
the phenol-hydroquinone mixture on the PV Am—GO—(o—MWCNT's)—
Fe304 nanocomposite surface 34

2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

3.24
3.25
3.26
3.27
3.28
3.29
3.30

3.31

Equilibrium adsorption isotherms for bagasse fly ash 36

Schematic representation of CioFg 40
Phosphate buffer involved species 42
Phosphoric acid speciation, 43
pH values vs COy partial pressure without a buffer 43
Carbonate speciation 44
pH values vs C'O, partial pressure with a buffer 45
Water oxidation kinetic overview L. 47
Scheme oxygen evolution setup 48
Oy evolution 49
Rump function associated to kpg rate 52
pH trend in the validation model 53
O, concentration evolution: paper and model. 54
Concept of the soap film 55
Sorption of benzoic acid and hydroquinone 59
1D model mesh representation 61
Species concentration space distribution after 8 hours 61
Species surface concentration at the interface over time 62
COs line average and surface concentration vs ky 64
CO line average and surface concentration vs ky 65
Hy@ and HQ line average and surface concentration vs ky 66
Heatmaps for COy and CO when KS©2 is fixed 67
Heatmaps for Ho() and H(Q) when K e% O2isfixed 67
Heatmaps for COy and CO when K, f%Q isfixed, 68
Heatmaps for HyQ and HQ when K/?9is fixed 68
Heatmaps for CO, and CO when k59 is fixed 69
Heatmaps for Hs() and H() when l{:C(;2 isfixed 69
Heatmaps for CO; and CO when k; 2@ isfixed 70
Heatmaps for Hy() and H() when kf:iQ isfixed 71
Forward reaction rate fitting experimental data without the surfactant 72
Forward reaction rate fitting experimental data with the surfactant . 73
Equilibrium adsorption constant of H,() fitting experimental data

without the surfactant 74
Equilibrium adsorption constant of H,() fitting experimental data

with the surfactant 75

List of Tables

1.1
1.2

2.1

2.2

2.3

24

2.5

2.6

2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9

Equation 1.28 constants for pure water. 26
Henry’s law constants at 293.15 [K] for pure water. 26
Surface area from BET and parameter values of the Langmuir models

for the monohidroxilated phenols adsorption on the CAG, CAR, CAO

at pH 7. . . o 32
Surface area from BET and isotherm parameters for the adsorption
of phenol and hydroquinone onto the nanocomposite. 34
Surface area from BET and maximum adsorption capacity for the
different adsorbent/adsorbate couples. 35
Surface area from BET and isotherm parameters for the adsorption
of phenol onto the fly ash and activated carbon. 36
[sotherm parameters for the adsorption of catechol and resorcinol onto
theresin. 37
Langmuir isotherm model parameters of hydroquinone adsorption on
HDTMA-B and ODTMA-B. 37
Summary of Langmuir isotherm model parameters of adsorption of
phenolic compounds on different adsorbents. 38
Phosphate buffer equilibrium. 42
Diffusion and concentration input values for COMSOL model. 45
Initial input values for the validation 0D COMSOL model. 51
Output rates from the COMSOL model. 53
Molecular diameters of the species. 56
Input concentration values and Henry’s constants. 57
Interfacial tension parameters as function of pressure for pure water
with various gases at 25°C. 58
Input Langmuir parameters. 59

Input values for species transport. 60

List of symbols

IFEA: Internation Energy Agency

PV Photovoltaic

NZFE: Net Zero emissions

APS: Announced Pledges Scenario

STEPS: Stated Policies Scenario

SDS: Sustainable Development Scenario
OFEC: Oxygen evolving complex

NADUP: Nicotinamide adenine dinucleotide phosphate
NADPH: Dihydronicotinamide-adenine dinucleotide phosphate
AT P: Adenosine Triphosphate

AD P:Adenosine diphosphate

HOMO: Highest occupied molecular orbital
LUMO: Lowest unoccupied molecular orbital
HFER: Hydrogen evolution reaction

OFR: Oxygen evolution reaction

N HE: Normal hydrogen electrode

PEC": Photoelectrochemical cells

ED: Electron donor

PS': Photosensitizer

TON: Turnover number

TOF: Turnover frequency

STF: Solar-to-fuel efficiency

FEM: Finite element method

SoF1A: Soap Film based Artificial Photosynthesis
CMC:": Critical micelle concentration
GAC: Granular activated carbon

C AO: Oxidized activated carbon

C'AR: Reduced activated carbon

CNT': Carbon nanotube

SWCNT: Single-walled carbon nanotube
MWCNT: Multi-walled carbon nanotube
C AT Catechol

RES: Resorcinol

HY D: Hydroquinone

BF A: Bagasse fly ash

ACC": Commercial grade activated carbon
ACL: Laboratory grade activated carbon
BET: Brunauer-Emmett-Teller

N RW:: Null reflecting water

GC: Gas chromatography

Chapter 1

Introduction

In this introductory chapter it is stated the importance of finding alternatives to
fossil fuels furthermore some theoretical background for understanding the next
chapters. Fossil fuels are the main energy source for both developed and developing
countries. Now the risk related to the over-use of fuels with a strong environmental
impact is well known and have been addressed by many studies under environmental,
social and health points of view, but it is hard to shift from a fossil fuel based
economy to a new one[l]. As stated in IEA (International Energy Agency) World
Energy Outlook the world is trying to react to the problem, there are proofs that
the future will be more electrified, interconnected and clean. Solar PV or wind
now represents the cheapest available source of new electricity generation in most
international markets, because of the increase of new investment in clean energy
technologies. The cited report is divided into four different scenarios: the Net
Zero Emissions by 2050 Scenario (NZE), the Announced Pledges Scenario (APS),
the Stated Policies Scenario (STEPS), and the Sustainable Development Scenario
(SDS), In Figure 1.1 the total global primary energy supply is shown by scenarios.
Still in 2050 the world energy demand is strongly dependent on fossil fuels, even the
APS Scenario foresees that more of the half of the energy needs will be covered by
coil, oil and natural gas [2].

STEPS APS NZE

i Q

o

600 30¥
400 20
200 10

2010 2030 2050 2010 2030 2050 2010 2030 2050
M Coal mOQil m Natural gas = Nuclear ' Traditional use of biomass = Renewables = Other
CO; emissions (right axis)

Figure 1.1: Total primary energy supply in different scenarios [2].

1.1 Solar fuels

Since there are many difficulties to react quickly and effectively to the environmental
issues caused by the excessive use of energy sources of fossil origin and the change
needs to take action now, an identified solution could be a wider usage of solar fuels
which may reduce the high response times required to switch from a society and a
global economy based on carbon fuels. A solar fuel is essentially the same of a carbon
fossil which has not been mined from the ground but it is produced by chemical or
physical process mainly starting from water or carbon dioxide. In Figure 1.2 it is

H.O SUN ENERGY CO,

Natural Artificial
Photosynthesis Photosynthesis

vy ¥ l' '

Thermoconversion Electroconversion Bioconversion Photoconversion

Concentration Transformation

H, CO CHOH SOLAR FUELS CHO, CH...

Figure 1.2: Scheme of possible pathways for solar fuels production.

possible to see the possible pathways to produce solar fuels. The first category deals
with thermoconversion, solar light can be concentrated to generate high temperature
heat in order to producuce solar fuels through thermal processes , it is reported that
after a gas-water shift C'Oy can be reduced to produce a syngas which is a mixture
of CO and H,, subsequently the syngas can be utilized in a reactor to produce
methanol [3]. Moreover the high temperature can be utilized to produce electricity,
as it can be seen from the arrow in the scheme, then the electroconversion process
can be utilized. This second category contains a wide range of applications, not
only solar photovoltaics can be used but also technologies such as geothermal, wind
and hydro power. The most famous process is electrolysis, basically it consists of
a process where chemical reactions take place through the use of electricity. Water

2 H,0

0, +D D JT’*T’-C

Figure 1.3: Principle reaction in artificial photosynthesis to make a solar fuel [8].

can be split via electrolysis to produce hydrogen which eventually can fed a fuel cell
or it can be utilized as a energy storage of solar energy [4]. Moreover it is reported
the possibility of realizing co-electrolys where Hy and C'O, are converted together
into a syngas using reversible solid oxide cells [5]. The third category gathers all the
natural photosynthesis pathways which includes algae, plants and trees that harvest
solar energy to produce biomasss or biofuels, furthermore biological material may
be utilized in a more direct way, indeed some micro-organisms can be genetically
modified in such a way that they produce desired compounds by means of natural
photosynthesis [6]. Eventually the last category that it is possible to see in Figure 1.2
deal with artificial photosynthesis which is a direct process that aims to mimic
the natural photosynthesis to produce chemical compounds, namely solar fuels [7].
In Figure 1.3 a principle reaction in artificial photosynthesis to make a solar fuel
(hydrogen) is depicted, P represents the molecule or the object which is in charge
of absorbing the energy of the photon, A is the proton reducing catalyst while D
is water oxidizing catalyst. These three steps: light absorption, molecules splitting
(or reduction) and fuel generation are the basis of the photosynthesis, both natural
and artificial [8].

1.1.1 Natural photosynthesis

Natural photosynthesis is a biological process where energy from sunlight is ab-
sorbed and stored to convert the pure energy of light into the free energy needed to
power life. This process represents the basis of life on planet Earth, and it is respon-
sible for most of our energy resources. The natural photosynthesis takes place in
pigment-containing cells, in eukaryotic photosynthetic cells the process is located in
subcellular structures known as chloroplasts, it contains chlorophyll pigments and
in most of the organisms is the place where occurs the main phases of photosyn-
thesis [9]. The process can be divided into four main stages as it is represented in
Figure 1.4:

e Light harvesting: absorption of light by the antenna molecules (chlorophylls,
Chl), that lead to electron-hole pairs(excitons) generations.

3

< Y
08 p= ‘-’—-h‘!’_ \(\ \
(cnl g E‘E\; P
% e, (NADP
z
™
NADPH

V)
1
4
»

. | |3
o, Z -
0.4 f= T2 @.(:'h]
é P700

2H,0 Mn
LO = (OEC) 7,

r Tyr Chl
1.2 b 2 “ P6so

Figure 1.4: A simplified depiction of the molecular processes (light reactions) takes place
in the biological photosynthesis [10].

e Charge separation: the charge separation of excitons and subsequent mi-
gration to appropriate reaction sites via various redox-active cofactors located
in the photosystems II and I.

e Water splitting: the holes are used to split water in the OEC (Oxygen-
evolving complex). Thanks to holes coming from P680, an enzyme with
manganese-calcium core oxidizes two molecules of water releasing oxygen. Neg-
ative charges are passed to photosystem I, where sunlight is used to increase
the energy of the electrons in order to drive the C'O, fixation reactions.

e Fuel Production: electrons are then used in a chemical reaction to reduce
NADP to NADPH that ultimately, with ATP and ADP produces carbohy-
drates such as glucose [10].

Natural photosynthesis process is particularly complex. Under ideal conditions:
considering the absorption of all solar photons with A < 700 nm, 8 protons for each
CO5 molecule fixed and assuming as the principal product the d-glucose it has been
calculated a theoretical efficiency of 13.0% [11]. In practical for crop plants in both
temperate and tropical zones efficiency typically does not exceed 1%. Higher 3%
annual yields are reported for micro-algae grown in bioreactors [12].

1.1.2 Basic concepts
1.1.2.1 Photon absorption

Photon absorption is a process in which the photon loses its entire energy to an
atomic electron which is in turn liberated from the atom or get promoted [14]. This
process requires the incident photon to have an energy greater than the binding
energy of an orbital electron, the energy of a photon is strongly dependent on its

4

Photon

Electron

\‘Q' Nucleus ™

,/.-/.-.—-,,. . ,',ll\\ o~

f i | f 1

| \

 ®)|~ ®)

\ L AN \

LY \ S '
S i g @
Ground Absorption Excited
state of photon state

Figure 1.5: Excitation of electrons by photons [13].

wave length and directly proportional to the Planck’s constant h which is equal to
6.626 x 10734 Js:
Epp, = hv (1.1)

As a result of this phenomenon the electron may both leave the atom or it can
be promoted to a more energetic orbital, in the second case after a certain period
of time, determined by the relaxation process, the atom comes back to its initial
energy level emitting energy (another photon). When atom have all its electrons
in the lowest possible energy level, closest to the nucleus it is referred to be in the
ground state while all the others are excited states. In Figure 1.5 it is possible

Energy
High .

. Unoccupied

7 molecular

. orbitals g

LU MO excited energy

excitation
by light : T

HOMO@_@'E ()
—@—@— Occupied @—@

molecular

@@_ orbitals —@—@—

ol B @& © 6
/v/ing'round state

electrons

in excited state

Figure 1.6: Schematic representation of HOMO and LUMO.

to see a representation of the process of excitation of an atom by a photon. As
for the atom the same happen for the molecular structures, in fact they can not
change their energy levels in a continuous way but only according to discrete energy
levels called molecular orbitals. The highest occupied molecular orbital is defined

as HOMO,while lowest unoccupied molecular orbital as LUMO. It is possible for
one or more electrons to pass from HOMO to LUMO thanks to photons which they
have to hold enough energy to overcome the orbitals energy barriers. In Figure 1.6
it is possible to observe a schematic representation of the passage from less energetic
orbital to another [13, 15].

1.1.2.2 Water splitting

The concept of water splitting together with carbon dioxide reduction, is the basis
for solar fuel processes. It is a reaction which requires energy to split water in its
constituents. There are several ways to obtain the water splitting, the conventional
method is a water electrolyzer where the following reactions take place, the first one
at the oxygen evolution catalysts with a redox potential of 0V vs NHE.

2H,0 — Oy +4HT +4e” (1.2)
and the hydrogen evolution reaction:
4HY +4e” — 2H, (1.3)

at its catalyst with a potential of 1.23V vs NHE; where NHE stands for "normal
reference eletcrode” which is basically an electrode made of platinum in 1 M acid
solution. In Figure 1.7 a scheme of a traditional water electrolyzer is depicted
together with the reaction in acidic and alkaline solution, the two electrodes are
divided by a proton exchange membrane in acidic condition or for the alkaline case
by a diaphragm which are avoiding the contact between the two products in order
to avoid an explosions [16].

a - .
In acidic solution:
2H,0 —> (0, +4H" + 4e E®=-1.23V
H2 02 4H" + 4 —» 2H, E®= 0.00V
2H,0 —»20,+2H, E®=-1.23V
o] . ,
P Py In alkaline solution:
®
S 40H — 0, + 2H,0 + de’ E®=-0.40V
4H,0 + 4e—» 2H, + 40H" E®=-0.83V
HER OER o
catalysts catalysts| 2H:0 —*2H,+20; E®=-1.23V

Figure 1.7: (a) Scheme of conventional water electrolyzers. (b) Water splitting reactions
under acidic and alkaline conditions [16].

1.1.2.3 Carbon dioxide reduction

Carbon dioxide is a really stable molecule, this is why it requires high energy for bond
breaking. Indeed the monoelectronic reduction of COs occurs at a potential of about
2V, for this reason it would be advantageous for artificial photosynthesis to perform
directly polyelectronic transformations delineated in the following equations:

COy +e «— COy~ [V=19V] (1.4)
CO, +2H" +2¢~ +— HCOOH [V =0.61V] (1.5)
COy +2H' + 2 +— CO + H,0O [V=051V] (1.6)

COy +4H" +4e” <— HCHO + H,O [V =0.48V] (1.7)
COy +6H" +6¢~ «— CH30H +H,O [V =0.38V] (1.8)
COy +8HT + 8¢ «— CH; + H,O [V =0.24V] (1.9)

Recent studies are striving to reproduce a multiple electron transfer in one step
while according to the experimental results it is reported that the process on semi-
conductors start with one electron only which excites the C'O, making the first step
the bottleneck of the whole reaction [17, 10].

1.1.2.4 Semiconductor materials

All the solid state materials can be grouped according to their conductive prop-
erties in three big categories: insulators, semiconductors and conductors. These
subdivision comes from their difference in two energy bands called valence band
and conduction band. The valence band is the highest range of electron energies in
which electrons are normally present, while the conduction band is the lowest range
of vacant electronic states [18], in Figure 1.8 it is possible to see the differences
between these bands together with the concept of LUMO and HOMO. Insulators
show a big band gap this is why they are not good materials to conduct electricity,
in conductors this energy gap can be mixed and sometimes there is not a clear di-
vision between the two, their values are overlapping, while semiconductors display
a band difference but it is not as much as big like insulating materials, the band
gap of silicon which is a ”"famous” semiconductor is 1.12 eV while the diamond,
that is an insulator, reports a value of 5.5 eV. In particular semiconductors are of
interest because they have a suitable band gap for the solar fuel applications, indeed
photons can effectively move electrons from the valence band to the conduction one
leaving holes. This duet called electron-hole pair is the basis of the working prin-
ciple of semiconductive materials and it is a reversible process, after an electron
is excited across the band gap (carrier generation) eventually the conduction band
electron goes back to occupy the energy state of an electron hole in the valence bad,
this process is known as charge recombination [19]. Moreover the conduction can
be subdivided depending on the presence of impurities: the p-type materials and
the n-type materials. Indeed the semiconductors valence electrons can be doped

7

Energy

LUMO

o Conduction band

HOMO @@’/,,, Valence band

Molecular structure Crystalline structure

Figure 1.8: Valence and conduction band of semiconductors.

to produce an imbalanced number electrons or holes, in the case a semiconductor
presents an excess number of hole it is called a p-type, on the other hand a n-type is
characterised by a larger number or free electrons [20]. Eventually in Figure 1.9 it
is possible to see the band structure of the most employed semiconductors for water
splitting and carbon dioxide reduction regarding solar fuels reactions.

+= CO;/CO4(-1.90 V)
,CO/CO(-051 V)

|/ H,O/H,(~0.41 V)

= CH;0H/CO,(-038 V)
CH,/CO,(-0.24 V)

1 0,H,0(082V)

Figure 1.9: Band gaps, positions of Econduction and Evalence of various popular semi-
conductor photocatalysts, and the potentials of the redox couples participating in fuel
generation reactions [10].

1.2 Artificial photosynthesis

Photosynthesis is the formation of new compounds thanks to photon driven reac-
tions, the basis of photosynthesis is photoinduced electron transfer, in this process
light is absorbed by a chromophore to produce an excited state. Artificial photosyn-
thesis systems, mimicking the natural one, use organic or metal-organic materials
to harvest sunlight and convert it to electrochemical potential with a view to fuel
production in a more efficient and comparted way [21]. In the field of artificial
photosynthesis it may be useful to distinguish the different technologies between
molecular and non-molecular processes.

1.2.1 Non-molecular processes

O
=
CA
g

)
(‘) h
g x
s 4 = & HM
T T) W T HUM, &
e 0 8L - ——— =
. Band gap H, w OV cal e |] e
T (E.) z € Ox/Red \\N
z_+1.0— ______ 9_______ hv s Ox/Red . N,
E 0,/ H,0 S hv \F:‘—l
+2.0 — = 0,/H.0 h*
= O.+4n & OO e
£, 2 S (1.23v) H, evolution
s *3.0 3 - photocatalyst
& +Y = = 2H,0 * (+)
0, evolution
Photocatalyst photocatalyst
(c) - (d) - (e) -
— — —
CB CB CB
e f e
<« e H'H, - T\\ H*MH, cB HYH)
B [N R e
b hy 1.23Vv Lk |
hv c v .
> -_-|_-.__94H_=gh L A
| 0,/H;0 » 0,/H,0
A — e / VB
h* j h* j
VB vB | VB
Photoanode Counter Photocathode Counter Photoanode Photocathode
electrode electrode

Figure 1.10: Energy diagrams of photocatalytic water splitting based on (a) one-step
excitation and (b) two-step excitation; and PEC water splitting using (c) a photoanode,
(d) photocathode, and (e) photoanode and photocathode in tandem configuration. The
band gaps are depicted smaller in (b) and (e) to emphasize that semiconductors with a
narrow band gap can be employed. [22].

Non-molecular systems are based on light driven catalyst and materials for pho-
ton capture which are not molecules, the photocatalytic processes take place on
metal surface, matal-oxide, semiconductors, nano-structured or carbon based mate-
rials. The photoabsorber should have a fitting band-gap in order to be able to utilize

the widest possible amount of solar flux, moreover it has to be made from non-toxic
and abundant materials [8, 23]. One of the most known technological solutions be-
tween non-molecules processes are photoelectrochemical cells (PEC), in Figure 1.10
an example for PEC photocatalytic water splitting is given for semiconductors ma-
terial. The reaction can take place through a one step excitation process as shown
or in two steps as shown in the energy diagrams in fig 1.10a, fig 1.10b, respectively.
In the first case a n-type semiconductors is employed, it is important to notice that
the top level of the valence band has to be larger than the than the oxygen evolution
potential to allow a photoanode to generate oxygen Fig 1.10c. On the other hand,
a p-type semiconductor works as a photocathode for hydrogen evolution when the
conduction band edge is more negative than the hydrogen evolution potential as
shown in Fig 1.10d. Eventually another possible option is to connect in tandem a
photoanode and a photocathode with a two-step excitation [22, 24].

Another example involving semiconductors is the photocatalytic reduction of
carbon dioxide on a semiconductor. The process is shown in Figure 1.11 in this case
reduction and oxidation cocatalyst are utilized, using additional catalyst help the
system which are useful because they are able to lower the activation potential for
C'Os reduction which is as said relatively high, furthermore they can improve the
stability of semiconductor photocatalyst by consuming the photoexcited electrons
and the holes and they can increase the selectivity of C'O, reduction toward specific
molecules [25].

Reduction cocatalyst

A \ Co,
-15 :
L0 CB o o Solar fuels
— HCOOH/CO, -0.61V
=] B | ST
w4 MY 0000 B csesssssssssee. =U.
L 00 D kccnaonlcé, -0.38V
; H,/CO, -0.24V
2 05
f_U --------------‘—-"Hzoloz +0.82V
2 10 VB
= y
3 15 ‘U ‘02
: 1
20
H,0
25
Oxidation cocatalyst
(PH=7)

Figure 1.11: Schematic illustration of photocatalytic C'Os reduction on a semiconductor

photocatalyst coloaded with reduction and oxidation cocatalysts for solar fuel production
[25].

10

1.2.2 Molecular processes

On the other hand in molecular processed the essential element is that the catalysts
are molecules, this is why these systems are often referred as homogeneous. In Fig-
ure 1.12 a schematic representation of light-driven hydrogen production mechanism
thanks to a molecular process, the same principles described in the non-molecular
processes are the basis of this mechanism: the photon absorption leads to a sepa-
ration of electron-hole pairs which initiate the photocatalytic process. The photons
excites a molecule ([PS] in the figure) which provides electrons to the [2Fe2S] cat-
alyst that is responsible for driving proton reduction. An electron donor ED is
present, it is important that these compounds are easily oxidizable in order to en-
sure rapid recovery of the PS before charge recombination takes place. In particular
in this case the process should be repeated twice in order to accumulate two elec-
trons in the catalyst and effectively reduce two proton to produce a Hs molecule.
The light absorber element referred as [PS] in the described example of a molecular
photocatalytic hydrogen production is a photosensitizer the catalyst were made of
Fe but they can be produced using many different materials such as cobalt, iron,
manganese or nickel for molecular applications [26]. A photosensitizer absorb elec-

~
=T @

oC 8 2H*

P

m
—
—
---m—‘
" ull'.II{U)llnlllL.___

Figure 1.12: Schematic representation of a molecular light-driven hydrogen production
mechanism. ED: electron donor, PS: photosensitizer and [2Fe2S] [26].

tromagnetic radiation consisting of infrared radiation, visible light radiation, and
ultraviolet radiation and transfer absorbed energy into neighboring molecules. It
is a material which has to be able to absorb light to give an excited state, this
state must be able to oxidize or reduce the neighbouring molecules. Practically a
light absorption sensitizer is a chemical species that ensure the accomplishment of
photochemical reactions which can not take place if the reactants are not able to
absorb light [27]. Many photosensitizers are organic or organo-metallic compounds,
one the most known and studied is the metal-based [Ru(bpy)s]**- type complexes
(Figure 1.13). They are appreciated because their excited state is relatively long,
allowing them to participate both in a single-electron reduction or oxidation avoid-
ing charge recombination, they show a good stability respect to another sensitizers

11

and they are compatible with a wide range of pH. Moreover they display a broad
absorption of visible light and their photophysical properties can be modified in or-
der to extend their absorption capabilities from the infrared to the UV region [28].

—2e : 20

CO,Et
[Ru(bpy)s]** (1) [Ru(bpy),(deeb)]** (2) [Ru(bpy)(deeb),]** (3)
Ei = 1.26 V vs. NHE Ey = 1.40 V vs. NHE Eq =154V vs. NHE

Figure 1.13: Examples of [Ru(bpy)s]**-type photosensitizers [28].

The advantages of molecular systems compared to non-molecular ones is that it
is easier to study the mechanism of the reaction involved and the catalyst can be
made from inexpensive and abundant materials. On the other hand there are more
studies available on non-molecular processes and they are more stable and more
robust against degradation. A parameter which may be useful to compare different
photocatalytic system is the Turnover number (TON) which can be calculated is
the molecules produced per molecule of catalys divided by the catalyst’s lifetime.
Another parameter is the turnover frequency (TOF) which is a measure of the
efficiency of a catalyst, calculated as the derivative of the number of turnovers of
the catalytic cycle with respect of the time per active site [8, 10, 29].

1.2.3 Lab-scale devices
The typical lab-scale devices for artificial photosynthesis are:
e Photoelectrochemical cells (PEC);
e Particle-based devices;
e Homogeneous catalysis;
e Self-assembled membranes.

The first example of PEC which was producing a fuel thanks to photochemical split-
ting of water was reported by Fujishima and Honda who built the first artificial leaf
in 1972. As shown in Figure 1.14 the system is composed of two electrodes, one

12

Figure 1.14: Electrochemical cell in which the T70O5 electrode is connected with a plat-
inum electrode. The surface area of the platinum black electrone used was approximately
30cm? [30].

made of titanium (1), the other of platinum(2), the leaf is separated by a proton
conducting membrane(3), in aqueous electrolyte, and connected by an external cir-
cuit(4). When the 77O, electrode is irradiated the electron flows to the Pt electrode,
the negative charge movement defines the T7Oy as anode where oxygen evolution
occurs while at the cathode the reduction (hydrogen evolution). Even though the
STF (solar-to-fuel efficiency) is very low since only few photons have enough energy
to move the electrons [30]. The problem is that materials such as platinum which
shows a good band gap,generally are not cheap elements so there are difficulties to
make the project commercially feasible. Over the years the research tried to de-
velop PEC using available and inexpensive materials. In 2011, Reece and coworkers
developed a solar water splitting system made of a commercial triple junction amor-
phous silicon while the catalysts were made from an alloy of earth-abundant metals
and a cobalt catalyst. The PEC was configured in two ways how it is displayed in
Figure 1.15, wired and wireless, in the wired cell the alloy which is the H, catalyst,
was deposited on an almost transparent Ni mesh substrate which was wired to triple
junction while in the wireless one the alloy was deposited directly on the opposing
of the junction. The wired configuration displayed an higher solar-to-fuel efficiency
(4.7%) but after 1 hour it showed a rapid decline in activity while the wireless con-
figuration demonstrated a fewer efficiency (2.5%) but the cell remained stable for
10 hours and its performance gradually declined to 80% of its initial value after 24
hours [31].

More recently in 2018 Cheng and coworkers reached an efficiency of 19.3% and
18.5% in acidic and neutral electrolytes, respectively. In this case they used a
sandwich of different materials with a tailored multifunctional crystalline titania
interphase layer who was preventing from corrosion and facilitating the electron
transfer [32].

For what concern particle-based artificial photosynthesis, as the others photo-

13

A wired PEC cell B wireless cell

Co-OEC stainless
catalyst ITO layer steel

3jn-a-Si 3jn—a—SV

ITO layer .
NiMoZn C-0EC \ 1 NiMoZn
catalyst stainless catalyst catalyst
steel \ /

Ni mesh

N

4H" + oz<> Csz
i 2H,0 4H

SEEREEE

att v(;\Hzo

2H,: O,

0
'
2 1
'
'

&
- 4H*

Figure 1.15: PEC wired and wireless systems [31].

catalytic processes, also particle-based devices one can ben subdivided in four parts
with the difference that it takes places on particles level. Some kinds of reactors
utilize particle suspensions where the particles are free to move, and they are not
incorporated as part of membrane to separate the redox reaction. In this way both
oxidation and reduction occur on each light absorber particle. Fabian and coworkers
described two kinds of reactors, the type 1 evolves Hy and O, in the same compart-
ment while the type 2 in separate vessels as depicted in Figure 1.16 [33]. The next

2H

dH wde M,

(a)
nMm = pm
f’ H,0 + b
Particle L O HAH Vessels
Suspension % ’ Transparent
s . o / Film
e —— Driveway \}_-) e —r
a— s LTy T S R Chemr T
e IS 00" g N Uy D i e ° * 01m
12.2m
(b) AhvedH +4A g 2H +4A Shv+2HO+4A __ , O, +4H'+ 4R
Perforated e @
Fipes Separator Y Particle) . Transparent
\ ; Suspensions 1 Film
Driveway = \T\
o @0 e ® o'e oel,) r.U.;IDlm
1
b i
0, Vessels H, Vessels

Figure 1.16: Two general designs for (a) a Type 1 reactor and (b) a Type 2 reactor [33].

on the list is homogeneous photosynthesis which is typically an aqueous solution
containing a electron donor, a photosensitizer or a dye to collect photons, the cat-

14

alysts to lower the activation energy and a buffer. The research is at the moment
focused on developing stable materials capable to last in time and lowering the effect
of decompositions in the materials, this is why it not given a specific solar-to-fuel
effiency. Recently it is reported that in 2019 Zhang and coworkers demonstrated
that heteroleptic copper(I) displayed a promising performance as a water-soluble
and earth-abundant photosensitizer for the COy to CO photoconversion [34].

In the end self-assembled membranes are the one who recalls more the natural
photosynthesis, Stikacane and coworkers developed a biomimicking system because
the organic membranes result really efficient in the charge separation process, in this
study electron transfer across the lipid bilayer is ensured via the transmembrane
protein complex MtrCAB but there is still no fuel production [35].

15

1.3 Continuum modeling

This thesis work is linked to the EU funded FET OPEN H2020 SoFiA project
“Soap Film Based Artificial Photosynthesis” which will be better described in the
next section. The aim of this thesis work is to develop a computer simulation which
is able to reproduce real phenomena using a commercial software called COMSOL
Multiphysics . The cited software exploits the theory of continuum modeling and,
in particular, the finite element method to give solutions to those problems which
can not be solved analytically. Generally speaking all the finite element methods
can be subdivided in steps, the first one is the finite element discretization where
the considered domain is divided in a finite number n of subdomains (or elements).
The elements are connected to each other at points called nodes. The second step is
to define the set of equations that rule the elements, afterwards is to find a way to
assembly the element equations, this part is often taken care of by numerical models.
Eventually it is important to estimate the errors associated to the method checking
if the final solution tend to converge to the problem solution [36, 37]. In Figure 1.17
a representation of the nodes and elements for a biological tissue is given.

Boundaries Nodes

—/

Tissue 1

Figure 1.17: Schematic representation of a finite element method (FEM) model [38].

16

1.4 SoFiA project

Since all solid state devices suffer from wear and decomposition issues, moreover
the bubbles on metal electrodes can slow the reactions and molecular processes
bring the problem of instability, the idea is to perform artificial photosynthesis on
liquid membranes. The project proposes an innovative approach to the solar fuel
production thorough the utilization of surfactants and proton transport properties
in soap films like the one depicted in Figure 1.18. SoFiA aims to reproduce an
artificial photosynthesis device in form of stable soap film which is affordable and
can incorporate state of the art catalysts. The project starts with the goal of C'O,
reduction thanks to sunlight, but it can be modified to produce H, in the future
[39].

i
n e
1t TTTTRTTIOTION

Figure 1.18: Soap film scheme and surfactant representation [39].

1.4.1 Soap films and surfactant monolayers

As hinted the main goal is to realize a photocatalytic system in a soap film which
is the basic structural unit of foams and act as cell walls encapsulating the gas
with a thickness of around 1 um. Before describing what soap films and surfactant
monolayers are same concepts are needed. Dealing with liquid surfaces one of the
most relevant parameter is the surface tension, the concept is shown in Figure 1.19,
the amount of work needed to increase the surface is proportional to the increase
itself, the proportional constant is equal to the surface tension which is calculated in
N/m. From a molecular point of view is energetically favourable to be surrounded by
other molecules thus the molecules attract each other making an opposition respect
to the surface modification with a result that the surface tension tends to minimize
the area. The surface tension is an interfacial property and it can be reduced by
surfactants, molecules which present an amphiphilic behavior, in fact they consist of
two parts an hydrophilic hydroxyl group (the head) and an hydrophobic hydrocarbon
assembly. It is common to classify surfactants in aqueous media according to the

17

dW =y -dA

where v is the surface tension.
ax

>

Liquid film !

I
|

dA = 2bdx

Figure 1.19: Schematic set-up to define the surface tension.

nature of their hydrophilic functional groups:
e Anionic surfactants;
e Cationic surfactants;
e Nonionic surfactants;

e Amphoteric and Zwitterionic surfactants.

60 [~

(mN/m)

40 -

20 -

Surface Tension,

0 | | | |
107° 107 107 1072

Concentration of Surfactant, C(M)

Figure 1.20: Surface tension variation of a typical aqueous surfactant solution.

Anionic ones have a negative charge while cationic surfactants a positive one, on the
other hand nonionic are not charged and amphoteric and zwitterionic carry both a
positive and a negative charge with the result that the net charge is zero. In aqueous
solutions surfactants aggregate forming structures called micelles, in Figure 1.20 it is
possible to see the surface tension variation of a typical aqueous surfactant solution,

18

Surfactant monolayer

Soap bubble

Figure 1.21: Graphical presentation of a bubble, a soap film with the surfactant mono-
layer.

at a certain point it is possible to spot a plateau corresponding to a concentration
value called critical micelle concentration (CMC).

In chemistry a dispersion of particles in a continuous medium where the particles
are gas bubbles and the medium is a liquid, which forms a collection of thin liquid
films is called foam. Liquid foam are instable but they may last longer thanks to
stabilizers such as soaps, detergents and proteins. In the case it is stabilized by
surfactants it may be referred as soap film, indeed the surfactant not only reduces
the surface tension but also causes a repulsive force between two parallel gas-liquid
interfaces which is an interaction that stabilizes the film reducing the disjoining
effect [40]. In the case the amphiphiles molecules does not dissolve in the liquid
the formation of a compact monolayer film occur known as surfactant monolayer.
In Figure 1.21 the different definitions of soap film and surfactant monolayer is
depicted, simplifying it may be said that a surfactant monolayer is basically half of
a soap film [41, 42, 43].

The process of monolayer film formation at the air-water interface has been
studied for a long time. Langmuir in the early 1917 found that the films can be

19

spread on solid surfaces. The monolayer films recall the assemblies of biological
membranes and many reactions may be realized within. Yet in 1979 there were
researches reporting electron and donors acceptors embedding redox processes in the
presence of [Ru(bpy)s]*" showing that thanks to the special properties of molecular
organization and packing of soap films the reactivity was way higher compared to
micelles and microemulsions [44]. The perk of deploying soap films lays on the fact
that they can be continuously regenerated and there are proof that they are easily
tunable, indeed it is not complicated to realize thin layers of water in the form
of soap film, furthermore their nature and their thickness can be varied [45]. For
example in the research of Mamane and coworkers a liquid thin film is stabilized by
a cation photosurfactant which is able to switch the hydrophobic tail from a trans
to a cis conformation through different value of illumination causing a modification
in the soap film [46].

20

1.5 Theory

In this part an overview over physics and solved equations by COMSOL is reported.
The topic covered are diffusion according to the Fick’s law, the thermodynamics of
interfaces, looking for appropriate formulas for gas-liquid surfaces and their adsorp-
tion properties. Moreover it is useful to understand how the software deals with
the chemical equilibrium and eventually the Henry’s law is outlined to understand
which input data is given to the simulations

1.5.1 Fick’s laws of diffusion

The theoretical model to describe diffusion is the Fick’s one, the diffusion can both
take place across the surfactant monolayer and in the atmosphere, at the same
time both gas and liquid molecules are diffusing in the region individuated by the
monolayer. Fick’s law of diffusion describes how particles under random thermal
motion tend to spread from a region of higher concentration to a region of lower
concentration [47]. The first Fick’s law for diffusion is:

J=-DVc (1.10)

where Ve is the concentration spacial gradient, the above formula can be simplified
for 1D geometries considering the x direction only:
dc

J = D@ (1.11)
Where J is the flux and represents the number of moles that are flowing through
a unit area in the time unit, D is the diffusion coefficient or diffusivity, and c is
the concentration of the species considered. The negative sign indicates that the
concentration gradient is negative. Intuitively it means that the particles tend to
move from a more concentrated domain to a less one. This first law can be utilized
to study steady phenomena because it does not take into account the concept of
time, for this purpose it can be useful to explicit the second Fick’s law of diffusion
that comes from the first one:

dc d*c

dt T da?
where the derivative respect to time is the rate of change in a certain control area
while the second degree space derivative represents the changes that the change in
concentration can take [48].

(1.12)

1.5.2 Thermodynamics of interfaces

The surfactant modify the liquid surface positioning itself at the gas-liquid interface.
One of the ruling parameters in the thermodynamics of interfaces is the surface

21

excess which defines something like a surface concentration as:
Ir=— (1.13)

where A is the interfacial area and N the number of moles another important pa-
rameter is the Gibbs free energy of interface which is equal to the following equation
assuming the the interface is flat (planar):

dG = —SdT +VdP + Y p;dN; + 7dA (1.14)

The given equation comes from the first and second principle of thermodynamic
with the chemical potential energy of the species and the amount of energy linked
with the surface tension. Its value is possible to be derived with Gibbs free energy

as: 5C
E‘T,P,N =7 (1-15)

Indeed the surface tension is the increase in the Gibbs free energy per increase in
surface area at constant pressure, temperature and amount of molecules involved.
The concept of Gibbs free energy is not only useful when talking about the sur-
face tension but it can also be employed to describe thorugh the Gibbs adsorption
isotherm, the change of the interfacial properties when molecules like surfactant are
present at the surface. The isotherm function is derived from the interfacial energy,
for the purposes of this thesis it is enough to know that at constant it follows:

dy=—) Tdu (1.16)

In particular for a system of a two components it gives:
d’}/ = —Fldul — ng,uz (117)

with an appropriate decision of the interface it comes that I'y = 0, subsequently it
is possible to develop the chemical potential as:

Qo

;@:RTm(i) (1.18)

Where a is the activity and ag the standard activity (1 mol/L) differentiating this

last equation a substituting into the previous one it comes:
a o0y

[h=——— 1.19

2 RT éa ()

[49]. This is an important result because it directly tells that the surface tension

decreases when the solution concentration increases. In particular it is useful to

derive it in the case where gases are adsorbing to liquid surfaces, in this situation

22

the activity is directly proportional to the partial pressure of the adsorbing gas thus
the equation can be written as:
1 dy
~ RTdlP

(1.20)

1.5.3 Langmuir adsorption model

Gas molecules adsorb on the surfactant monolayer, after that the C'Oy reduction
takes place thanks to the electron supplied by the electron-relays. Here it is given a
brief description of the adsorption phenomena and the Langmuir model is outlined.
The adsorption is the accumulation of a substance at an interface, in the studied

[=]
o Adsorpt >0
o o o
Adsorbat °o o
o 8 Q % 2 0 C§ [#]
Adsurbent\\

Figure 1.22: Definitions of adsorbent,adsorpt, and adsorbate [50].

case the adsorption occurs at the liquid-gas interface thanks to intermolecular forces.
The molecule can desorb from the surface, the rates of adsorption and desorption
define the amount on the surface at equilibrium. By definition what is found at
the adsorbed state is called adsorbate, the material to be adsorbed is defined as
adsorpt or adsorptive while the substance where adsorption takes place is called ad-
sorbent. In figure 1.22 a graphical representation is given. The amount of adsorbate
is generally depending on the pression and temperature [50].

Experimentally graphs called adsorption isotherms can be outlined, on the y axis
there is the amount of material adsorbed while the abscissa is the partial pressure or,
for adsorption from solution, the concentration is used. Langmuir model presents
some assumptions, first of all adsorption does not takes place everywhere but only
in localized sites, each site can accommodate only one atom or molecule, there are
no phase transitions, the surface is energetically homogeneous without interactions
between neighbouring adsorbed molecules and the process is reversible [51]. Further-
more, Langmuir assumes that at equilibrium adsorption and desorption are equal
at equilibrium:

koCe(1 —0) = k40 (1.21)

where:

23

e [, is the adsorption rate;
e k, is the desorption rate;

e (is the number of occupied sites divided the maximum number of sites, it
represents the coverage percentage;

e (. is the equilibrium concentration of adsorbate in the bulk region.

Making 6 explicit, which is the most common form of this equation:

ka
ka
= —kd— (1.22)
1+ 35Ce
Moreover 6 can also be written in this form [52].

c
== 1.23
2 (123

Where c; is the species surface concentrations and Iy is the surface excess at satu-
rated coverage. The surface excess may also be used in adsorption isotherms and it

1.50

S 1.00 - e—— @
u - -
3 ™M e A
= . .-""'..
. _'_.-"
(=3 r
= 0.7%
: o
o
g s
2 0.50 f’f
£ A
ol ."':

025 - .

0.00 $—r - — —

0 2 4 6 g 10

NH, activity (molality units)

Figure 1.23: Ammonia surface excess at 298 K as a function of ammonia solution activity.
The line shows a fit of the data to a Langmuir adsorption isotherm [53].

can be linked using Gibbs energy, in Figure 1.23 an example of Langmuir isotherm

24

fit to experimental data is given for a temperature of 298 K. In the Donaldson’s
work ammonia and other relevant atmospheric gases are studied when they adsorb
at the air-water interface. The solid line represents the Langmuir isotherm while
the points are experimental data, on the x axis there is the ammonia activity which
can be exchanged with concentration for ideal solutions [53].

1.5.4 Chemical equilibrium

A chemical equilibrium is a state where reactants and products find their balance
in a chemical reaction with the result that there is no observable change in the
properties of the system. The equilibrium is stable, but the chemical species are
in a continuum movement, the natural of chemical equilibriums is dynamic. This
balance is not passive but active, in the presence of a perturbation the reactions
system is able to react in a way to try to relieve the perturbation [54].

The modelling reactions of COMSOL is based on the mass action law. The law’s
concept is that two particles must collide to enter into the reaction, the probability
of the collision is proportional to the product of their concentrations so the reaction
rate must be proportional to the product of concentration of reacting substances
[55]. Considering a general reaction:

f
aA+bB+...{%ﬁxX+yY+... (1.24)

For this reaction the reaction rate can be described by the mass action law:

;= kjf H i Ci_Vij - k]T H i Civij (125)

Here k; and £, denotes the forward and reverse rate constants. The concentration of
species 7 is defined as ¢;. v;; indicates the stoichiometric coefficients. The quotient
of the forward and the backward reaction rates is known as equilibrium constant
and it is evaluated as follows:

[A]*[B]"
[(X][Y]v

where the square brackets indicate the concentration values.

K= (1.26)

1.5.5 Henry’s law

The Henry’s law may be useful to define the concentration of gas species in the aque-
ous solution. It states that at constant temperature, the equilibrium concentration

25

Table 1.1: Equation 1.28 constants for pure water.

Gas A B C T min. T max.
- - - - K K

O, -161.6 8160 22.390 273 348
cO -178 8750 24.875 278 323
COy, -145.1 8350 19.960 273 353

¢, of a gas species in a given volume of liquid depends on the partial pressure p of
the gas itself as follows:

C
H="=" 1.27
) (1.27)

For CO,, CO and O, the Henry’s constant depends on temperature folowing the
following Arrhenius type equation:

exp (A N czog(T)> (1.28)

H =
101.325 T

The values of A,B and C together with the temperature range of validity are reported
in Table 1.1. The unit of measurement of H is m@;ja. This value may be useful to
be utilized with different unit measures, in particular in Table 1.2 the Henry’s law
costant are given for a temperature of 293.15 K for using the following conversion:

The values are taken D2.1 Database of transport coefficients in Matlab environment.

Table 1.2: Henry’s law constants at 293.15 [K] for pure water.

Gas H H H
- mol/m*Pa M/atm -

O, 137x107° 1.40x 1073 3.36 x 1072
CO 1.05x107° 1.07x1073 2.56 x 1072
CO, 3.90x107* 3.96x 1072 9.52x 1071

Grant agreement ID: 828838 [56].

26

Chapter 2

Case study: description

The aim is to develop a multiscale and multiphysics model that will accurately de-
scribe and predict the performance of the new photosynthetic membranes to reduce
carbon dioxide, as mentioned the model is built with a software called COMSOL
Multiphysics which is a platform for finite element analysis that allows the user
to solve various equations. The software packages include different physics phe-
nomenon which can be applied on the model which can range from 0 dimension to
a 3D geometry. In particular in this thesis work the Transport of diluted species
and the chemistry modules are widely employed [57] In this case study only 0D and
1D models are implemented where the physics equation are applied in the finite
elements of the geometry to connect each node thanks to a process called meshing
which gives an idea on how the selected geometry has been subdivided, this is an
important concept because the method is considered reliable when the error is linked
to the element size, if element size is bigger the error should be bigger within the
limits of calculations and calculator [58].

In Figure 2.1 a graphical representation of the element researched for the case
study is given, most of the elements shown at the gas-liquid interface has already
been hinted in the introductory part of this thesis work, the green elements char-
acterized with a tail and a head are the surfactants which how has been reported
they disposes at the surface according to their amphiphilic behavior In Figure 2.1
free electrons are represented meaning that at the interface there must elements
which work as charge transfers ensuring the electrons needed for the carbon dioxide
reduction, in the end the concept of photoactive molecules is depicted with those
yellow shining drawings, for sure a photoactive molecule has to be present in order
to produce an artificial photosynthesis process but in this work the decision of this
element has not been faced because the level of the simulation did not reach an
enough high level of accuracy, the inclusion of a photosensitizer in the simulations
wil be something that must be studied once the other player of the simulation will
be well-described. In the gas bulk there are moles of C'Oy which is the reagent
together with moles of C'O which is the product of carbon dioxide reduction, while
in the liquid bulk is mainly a aqueous region where the gas phases are present ac-
cording to the Henry’s law together with the electron transfers inside and possibly

27

the photoactive molecules.

Photoactive non-ionic Electron

Surfactants
e

molecules relays

Gas bulk Liquid bulk

Gas-Liquid Interface

Figure 2.1: Graphical representations of the element researched for the case study.

In the next section the compounds utilized in this case study are analyzed.

2.1 Electron relays

Initially the compounds taken into account for the electron transfer mechanism were
mainly two: the quinones, the sodium ascorbate. These chemicals share the charac-
teristic of being water-soluble and also have suitable redox potentials for achieving
carbon dioxide reduction, moreover the availability of experimental adsorption data
is focal because the COMSOL models requires as an input the set of Langmuir
parameters in order to reproduce the adsorption physics. Unluckily it is not com-
mon to find numerical results for the adsorption at the gas-liquid interface with the
presence of surfactants monolayer. For what concern the sodium ascorbate is a salt
produced from the ascorbic acdid (AscHs), it is of interest because it is used as an
anti-oxidant which means that it is a reducing agent The ascorbic acid half reaction,

28

written as a reduction, is shown below:
CGHGOG + 2 H* +2e C@HgOG (21)

And depicted in Figure 2.2

H o H o
o zlC" o, =l
A —H . OH
DGHE + IHt+ 2p— — CHy~
O HO |
0 9]
CeHs D¢, dehydroascorbic acid C:H:0¢, ascorbic acid

Figure 2.2: Ascorbic acid half reaction of reduction.

The redox potential for the sodium ascorbate is reported to be equal to 100mV
with a concentration of 0.01M and a pH of 8 [59, 60]. the potential which is equal
to 0.1V seems not high enough to realize carbon dioxide reduction, moreover it is
hard to find examples of adsorption phenomana including surfactants, this is why the
researched has been more focused on quinones which reports higher redox potentials
with the same conditions and they show a larger number of studies in literature.

The quinones are a class of organic compounds which derive from aromatic
compounds, in particular the redox reactions involving the hydroquinones, a type
of quinones, are of interest. In Figure 2.3 it is possible to observe four differ-
ent quinones; cathecol, resorcinol and hydroquinone are isomers. Hydroquinone
is widely used as industrial solvent, it can often be a raw material from chemistry
industry thus they are extensively found in its effluents [61]. Physically Hydro-

OH OH OH)
i OH Cj\
OH
O

OH

Hydroguinone Benzoquinone

Catechol Resorcinol

Figure 2.3: Structures of catechol, resorcinol, hydroquinone and benzoquinone [62].

quinone appears as light coloured crystals or solutions mildly toxic by ingestion or
skin absorption, it is odorless and shows a slightly bitter taste in aqueous solutions
with a solubility of 6.72 g/L at 20 C° [63]. Furthermore because of its simplicity and
short response time, quinone/hydroquinone is one of the most studied organic redox

29

27.0 30
20 -
15.0 1
10 -
3.0 A
) o
-9.0 10 -
-21.0 -20 -
-33.0 . T . =30 ' ' '

E/V ve. SCE E/NV vs. SCE

Figure 2.4: LEFT: Cyclic voltammograms of 1 mM (a) @, (b) H2Q and (¢) QH in
buffered solutions of pH 7.0 at a glassy carbon electrode. Scan rate = 100 mVs~! and
t=25 +1°C. RIGHT: Cyclic voltammograms of 1 mM (a) @, (b) H2Q and (c) QH in
aqueous unbuffered KCI 0.15 M solution at a glassy carbon electrode. Scan rate=100 mV
s~ and t=25 £1°C [64].

couples, at constant temperature and well-buffered solution its potential is a linear
function of pH with a slope of 59 mV, which means that one elctron is involved.
In Figure 2.4 LEFT and Figure 2.4 RIGHT the work by Rafiee and Nematollahi is
depicted [64], it shows the cyclic voltammetry, a potentiodynamic electrochemical
measurement, recorded in buffered solutions and in unbuffered solutions. The two
opposite peaks show that the process is reversible, after the first reduction (first
peak) the reduced species start to be re-oxidized giving as a result a current with
opposite polarity respect to the beginning. Hence, CV data can provide information
about redox potentials and electrochemical reaction rates [65]. In Figure 2.4 LEFT
the buffered case, the anodic peak is due to oxidation of Hy() to () and the cathodic
peak is due to the reduction of the produced) to Ho(). The oxidation half reaction
can be written as [66]:

HoQ — Q+2H" 4+ 2e” (2.2)

on the other hand in the unbuffered case in both negative and positive going shows
two anodic and cathodic peaks. The behavior can be descrived by the following

equations:
+2 e~ Generation of peak C2

Q + H,0 » HQ™ + OH™ (2.3)

—2e~ Generation of peak Ag

Q + H30+ <+2e* Generation of peak C1> HQ_ + HQO (24>

—2e~ Generation of peak A1

In the first reaction water acts as a proton donor in the reduction of) but in
the other case water acts as an acceptor of the proton, which is generated in the
oxidation of HQ~. In this second case the difference between oxidation potential
peaks is about 0.41 V. The two graphics present a trend for QH too, its name is

30

FTO TiO2 Pt
Figure 2.5: Dye-Sensitized Solar Cells Based on Hydroquinone/Benzoquinone as a Bioin-

spired Redox Couple using a hybrid electrolyte involving tetramethylammonium (TMA)
hydroquinone/benzoquinone couple. FTO = fluorine-doped tin oxide [67].

quinhydrone, some studies support the idea of an intermediate step in hydroquinone
oxidation through the formation of quinhydrone.

In this thesis hydroquinones are of interest because quinones are small, have
a tuneable redox potential, they are readily prepared and in photosynthesis pro-
cesses they can be used as electron acceptors or donors. The first examples in which
quinones were used are reported in 1978 and 1979 by Kong and Tabushi, respectively
[68, 69]. In the work of Tabushi and coworkers a donor-acceptor duet were reported
using porphyrins, synthetic molecules closely related to natural chlorins and bacte-
riochlorins such as the chlorophylls in the sense that they have an absorption band
in the visible spectrum hence they can absorb light. In the cited work the couple
porphyrins/hydroquinone showed that the rate of electron transfer is proportional
with hydroquinone concentration and foresaw that the donor-acceptor combination
seems to be a mechanism that can be applied to a wider range of electron transfer
systems. Porphoryn-quinone duets show charge recombination issues, it can be more
rapid than charge separations, they suffer from a very low charge separation life-
times, typically in the order of 100ps which is not enough for practical applications.
Although this dyad has limitations as reaction centres, their study by a multitude
of researchers has provided a great deal of useful information concerning the effects
of structure and environment on electron transfer rates [21, 70].

Over the years studies has been developed for application involving solution-
based Q/H,Q couples in batteries, Dye Sensitized Photoelectrochemical Cells (DSPEC),
or related applications [71]. Nawar and coworkers developed an organic molecule-

31

based flow battery using quinones which are a good alternative because they offer
low toxicity, low cost and high reversibility in electrochemical reactions. In the work
they developed a battery in low pH aqueous solutions using quinone/hydroquinone
on the positive electrode and Hy/H™ on the negative electrode, in the future the
quinones solubility could be modified to increase the current density, furthermore it
is possible to develop quinones with redox potential for use at the negative electrode
in more to make an all Q/H,Q flow battery [72].

In Figure 2.5 a dye-sensitized solar cells, which can be an economical method
to convert solar light to electricity. In this case it is utilized a hybrid electrolyte
involving the tetramethylammonium hydroquinone (HQ)/benzoquinone (BQ) redox
couple . HQ and BQ form the charge transfer complex called quinhydrone. The
results showed that when HQ/BQ is applied to a hybrid electrolyte using a N719 as
photosensitizer the efficiency outperform the efficiency of 8.0 % a system employing
the better known pure iodine-based electrolyte thanks to the higher gap differences
between TiO, and the redox couple [67].

Because of its wide applications in charge transfer processes and water solubil-
ity the hydroquinone has been utilized in this thesis work as an electron donor to
reduce carbon dioxide. Since it is not trivial to find researches in the bibliography

Table 2.1: Surface area from BET and parameter values of the Langmuir models for the
monohidroxilated phenols adsorption on the CAG, CAR, CAO at pH 7.

Adsorbate Simple Surface area BET Q42 K R’L. R?F.
- - m?/g mg/g Ljmg - -

Catechol CAG 1140 238.10 4.2x10™® 0.90 0.96

/ CAR 1171 181.82 5.7x 1072 0.97 0.87

/ CAO 1181 178.57 3.9x107% 0.97 0.96

Resorcinol CAG 1140 17857 6.0x 1072 094 0.95

/ CAR 1171 23256 5.5x107* 0.97 0.89

/ CAO 1181 163.93 4.8x10~% 1.00 0.97

Hydroquinone CAG 1140 169.49 1.3x107% 0.99 0.84

/ CAR 1171 23256 83x1073 097 084

/ CAO 1181 232.56 3.2x107% 0.80 0.87

with experimental results linked to hydroquinones or generally phenolic compounds
adsorption at the gas-liquid interface, it has been made the decision to go deeper
into the analysis of the scientific papers where H>() or its analogues adsorb at a
solid-liquid interface. According to the results found in literature granular activated
carbon (GAC) shows the best adsorption capacity for removing phenolic compounds
this is why it was often utilized in waste water treatments. Nevertheless GAC is

32

expensive and it loses adsorption efficiency after regeneration causing a limitation
in its use, this has favoured the development of less costly adsorbents such as ac-
tivated carbon cloth, waste Fe(III)/Cr(III) hydroxide, hypercrosslinked resin, 7O
surface, organoclays, bagasse fly ash and activated cashew nut shell [73]. Since its
use against pollutants there are many studies for what concerns the activated car-
bon, its surface is typically divided in three main zones: the carbon basal planes, the
oxygen-containing groups and inorganic ash, the studies on mechanism of adsorption
of phenolic compounds report that the number of available sites increase with the
amount of oxygen content of carbon. This is true until the adsorbate concentration
does not get high enough so that the phenols molecules get packed more tightly on
the surface, in this case it is reported that the influence of oxygen sites is lower.
Moreover the aromatic rings can interact through a donor-acceptor interaction with
the basal planes of AC in a not effective way [74]. An article which has been taken
into consideration is the paper of Blanco-Martinez and coworkers [61] because of its
availability of data on the different isotherms. The work studies the adsorption of
different monohydroxylated phenols on granular activated carbon (GAC), oxidized
activated carbon (CAO) and reduced activated carbon (CAR). CAO and CAR are
obtained via chemical modifications, namely oxidation and reduction on the sur-
face. The adsorption isotherms data are obtained by putting 0.500-0.250 g of the
carbonaceous samples in contact with a 50mL volume of monohydroxylated phenols
solutions, the effect of pH on the yield of adsorption is analyzed, showing that the
amount of the phenols adsorbed diminishes as the pH solution increases. In Ta-
ble 2.1 it is possible to see the Langmuir isotherm parameters for the phenols taken
into account at a neutral pH. R? represents the coefficient of determination which
is a statistical measurement that examines how differences in one variable can be
explained by the difference in a second variable, when predicting the outcome of a
given event, namely it shows how well a regression is fitting the data, in this case it
is a measure of accuracy of the model compared to experimental outcomes both for
a the Langmuir adsorption isotherm and the Freundlich adsorption model. Another
material that possesses a large specific surface area are carbon nanotubes (CNT),
they consist of sheets of carbon atoms covalently bonded in hexagonal arrays that
are seamlessly rolled into a hollow cylindrical shape which can be arranged in a sin-
gle rolled-up graphite sheet (SWCNT) structure or in several graphite layers called
MWCNT. Of interest for this thesis work is a study conducted by Felipe Augusto
Gorla and coworkers which develops an electrochemical study for the simultaneous
determinantion of phenolic compounds like hydroquinone, catechol, 4-nitrophenol
and acetaminophen, using an electroanalytical sensing system based on a multi-
walled carbon nanotubes paste electrode in the presence of surfactant. The work
shows that the surface concentrations for all phenolic compounds in the presence of
the surfactant is higher compared to the a glassy carbon electrode, affirming that
the presence of surfactant improves the detectability of phenolic compounds, the
surface concentration value reported for the hydroquinone species is equal to 4.43 x
10~9mol /em? with the presence of surfactant at neutral pH and 1.16 x 10~2mol /cm?

33

> electrostatic interactions
< hydrogen bonding

<— electrostatic repulsion

< m—nr interactions

Figure 2.6: Schematic of the adsorption mechanism of phenol, hydroquinone and the
phenol-hydroquinone mixture on the PVAm — GO — (o— MWCNTs) — FezO4 nanocom-
posite surface [75]

in its absence [76]. This work is interesting because it contains insights about the
hydroquinones interaction with a surfactant but no information is provided about
the adsorption isotherm model nor the equilibrium constants, this is why it has been
analyzed a case where a nanohybrid multi-walled carbon nanotubes is employed in
a batch experiment to study the removals property of the material toward the hy-
droquinones. This study is a good candidate because it describes a situation where
30 mg of magnetic nanocomposite powder is added to a 20 mL of various initial
concentrations of phenol (100, 200, 300 mg/L), then the mixture is thermostati-
cally shaked. In Figure 2.6 it can be seen the adsorption mechanism of phenols
on the nanocomposite material together with the electric and bounds interaction
that outline this interaction while in Table 2.2 the isotherm parameters are given.
Once again, the table contains the value of the Freundlich isotherm coefficient of
determination R?F., Both the models show that they can fit well the experimental
results [75]. Batch experiments are of interest because the phenolic compounds and

Table 2.2: Surface area from BET and isotherm parameters for the adsorption of phenol
and hydroquinone onto the nanocomposite.

Adsorbate Surface area BET Qax K, R’L. R?F.

- m?/g mg/g Ljmg - -
Phenol 341.8 224.21 0.0816 0.9989 0.9860
Hydroquinone 341.8 293.25 0.1916 0.9994 0.9846

34

the adsorbents are in contact inside an aqueous media which is the same situation
that the soap film experience in the simulation that will be described in the next
sections. The next work analyzed it deals again with batch experiments, in this
instance the hydroquinones adsorb at the matal surface, in the study Abugazleh
and coworkers the adsorption of catechol and hydroquinone on the surface of 790,
(anatase) and FeoO3 (hematite) is investigated. The experiment is conducted in a
neutral pH solution in the presence of a buffer where the oxides are added. It is
reported that the maximum amount of adsorption of phenolic compounds is reached
around a pH of 7 for the anatase and 8 for the hematite. According to this study
the catechol is better fit by a Langmuir type isotherm while for the adsorption of
the hydroquinone the Freundlich model suits better its behavior. This is the first
case where the Langmuir theory is not the best method to describe the process of
adsorption of hydroquinones at different surfaces. In Table the values of the max-
imum adsorption capacity of CAT and HYD for the different adsorbent/adsorbate
couples are given. It is possible to notice that higher adsorption values of HYD
are observed on 70Oy than on FeyO3, while for CAT, adsorption values are seen to
be higher in FesO3 than in 790, [77]. This article is on contradiction with what

Table 2.3: Surface area from BET and maximum adsorption capacity for the different
adsorbent /adsorbate couples.

Adsorbent Adsorbate Surface area BET Q00

- - m?/g mg/g

Ti0q Catechol 4.91 108.87
FesOq Catechol 13.04 361.1
T104 Hydroquinone 4.91 63.52
Fey03 Hydroquinone 13.04 58.49

encountered in previous ones, at the beginning hydroquinones and catechols were
meant to be similar for what concern the adsorption behaviors while this article
display a difference not only in numerical fitting but also in the general trend with
respect to different surfaces. This means that a further study on different articles
is needed to better understand the adsorption mechanism of phenolic compounds.
The next papers analyzed deal with cheaper materials like ashes and resins still with
an immersion methodology.

Phenolic compounds are reported to adsorb on carbon rich bagasse fly ash (BFA),
a waste material from the sugarcane, in particular in the research of Srivastava
and coworkers the results are given through a batch study where the influence of
pH, concentration and temperature is studied, not only for the ashes but also on
commercial and laboratory grade activated carbon, ACC and ACL, respectively. As
it can be expected the adsorption of phenol increases with increase in adsorbent
dosage, the effect of pH is the one already spotted for almost all the researches
that were pursuing this result, namely as the pH increase the amount of adsorbed

35

Table 2.4: Surface area from BET and isotherm parameters for the adsorption of phenol
onto the fly ash and activated carbon.

Adsorbate Surface area BET Q00 Ky R?L. R2F.

- m?/g mg/g L/mg - -

BFA 168.39 93.832 0.0884 0.98970 0.99450
ACC 336.60 30.2187 0.0291 0.99160 0.97740
ACL 492.00 24.6458 0.2391 0.95430 0.99451

species decrease. While the effect of temperature is shown in Figure 2.7 in the
different isotherms, with the increase in temperature the adsorptivity of phenol
increases, since the adsorption is a exothermic process this is not expected as a
result but it means merely that the adsorption process is controlled by diffusion
which benefits from a temperature rise [78]. The research fits the model with six
different isotherms, in Table 2.4 the Langmuir parameters together with the R? of
the Freundlich isotherm which is the ”competing” model with the case studied in
this thesis work. The values are given for the three adsorbents at 30 °C.

27 ¢
21t » 2 A
o0 - = o
o 18 |
E E = - ——298 K
& IS5 - -5-303K
12 F - - —— 308 K
a z
" —=—313K
9F ”,
F [/ A2 —+—3I18 K
6-1.111 | T TN RN N S I N ' T N N MM S S [N N N T Y [TN TN N N I IS I S I
0 10 20 30 40 50 60 70 8O

C, (mg/h)

Figure 2.7: Equilibrium adsorption isotherms at different temperature for phenol-BFA
system. initial pH: 6.5; BFA dosage: 10 g/1 [78].

The model is able to fit well the adsorption behavior of phenols on the dif-
ferent adsorbents for both isotherms type [78]. For what concerns the resins an
hypercrosslinked resin HJ-1 was developed for adsorbing catechol and resorcinol in
aqueous solution by Jianhan Huang and coworkers. In this case it is clear that the
adsorption capacity decreases with increase of the temperature. Unfortunately there

36

Table 2.5: Isotherm parameters for the adsorption of catechol and resorcinol onto the
resin.

Adsorbate Temperature Qa0 Ky R’L.

- K mg/g L/mg -
Catechol 293 133.33 0.0039 0.9876
Catechol 303 126.58 0.0033 0.9892
Catechol 313 125.00 0.0026 0.9924

Resorcinol 293 128.21 0.0033 0.9884
Resorcinol 303 129.87 0.0026 0.9777
Resorcinol 313 128.21 0.0022 0.9902

are no available results for hydroquinones. In Table 2.5 the Langmuir parameters
are available at different temperatures [79]. In this study the value of the surface
area according to BET theory is not available, it is found in literature equal to
around 730 m?/g [80].

Eventually it matters to talk about the adsorption of phenolic compounds on
organoclays. In the years they showed up as a cheap way to remove organic pollu-
tants, the main material is bentonite thanks to its abundance and the low cost of the
mineral, moreover their surface properties can be modified by exchange reactions.
Again for these materials a scientific article which involve batch experiments is se-
lected because the aqueous solution is considered a good environment to reproduce
the soap film which is enclosed by surfactant molecules, this is why, when possible,
researches which include surfactant molecules are analyzed. This is the case where
a bentonite is modified on the surface with different organic cations. The work of
Yildiz and coworkers showed the result of experiments carried out between hydro-
quinones and organically modified clays [81]. In Table 2.6 it is possible to see the
experimental data at 298 K at neutral pH. After this review about the adsorption

Table 2.6: Langmuir isotherm model parameters of hydroquinone adsorption on
HDTMA-B and ODTMA-B.

Adsorbent Surface area BET Q42 Ky, R?

- m?/g mg/g L/mg -
HYD/HDTMA 35.68 16.6389 0.0073 0.9570
HYD/ODTMA 98.92 12.0482 0.0090 0.9885

on different adsorbents where the research has been focused on finding the one that
can best fit the idea of the soap film the author decided to use the surface area of
the pores according to the BET theory for the article selection. This decision comes
from the assumption that there is less availability of adsorption sites at the gas-liquid
interface compared to the solid-liquid surfaces. Briefly, the Brunauer-Emmett-Teller

37

Table 2.7: Summary of Langmuir isotherm model parameters of adsorption of phenolic
compounds on different adsorbents.

Adsorbate Adsorbent Surface area BET Q,,.. Reference
- - m*/g mg/g -

Hydroquinone CAG 1140 169.49 [61]
Hydroquinone CAR 1171 232.56 [61]
Hydroquinone CAR 1181 232.56 [61]
Hydroquinone Nanocomposite 341.8 293.25 [75]
Hydroquinone Ti0, 4.91 63.52 [77]
Hydroquinone Fey03 13.04 58.49 [77]
Phenool Bagasse fly ash 168.39 23.832 (78]
Catechol Resin 730 133.33 [79]
Resorcinol Resin 730 128.21 [79]
Hydroquinone HDTMA 36.68 16.6389 [81]
Hydroquinone ODTMA 28.92 12.0482 [81]

theory is used to explain the adsorption mechanisms between gas molecules and solid
surfaces, moreover it is a basis for the measurement of the surface area of materials,
it is focal to understand that it is not an absolute measure because the value of
the specific areas of pores may depend on the adsorbate too [82, 83]. The specific
surface area is an important measurement and almost all the articles taken into
account contain this interaction information between adsorbent and adsorbate, to
better define the problem in Table 2.7 the results from bibliography are grouped
with their reference.

It is possible to notice that different materials (adsorbents) range from a wide
numbers of surface area according to BET calculations. As stated the activated
carbon and carbon nanotubes display a really good affinity for the phenolic com-
pounds and this is why they are often employed in waste water treatments but from
this thesis work point of view they have a too large availability of adsorption sites
to reproduce the phenomena, this is reason why the author discarded them, even
though there are reported results involving surfactants. The titanium and iron ox-
ides have brought the issue that from an adsorption point of view, not necessary the
isomers of hydroquinones have the same properties. Unfortunately no batch exper-
iments or experiments related to solutions immersion have been analyzed with the
hydroquinones as adsorbate but only with similar molecules and isomers, moreover
given the large surface area of pores, the resins and the ashes have not been taken
into account to integrate their data with the surfactant monolayer. The adsorbents
which shows the smaller capacity of adsorption are the bentonites, while the BET
surface area is bigger compared to the oxides. Eventually the bentonites have been

38

preferred respect to the titanium and iron surfaces because in the analyzed article
there is a case where exactly hydroquinones are adsorbing on surfactant layers which
is considered by the author the overall best fit, considered the environment of the
experiment, the small uptake of hydroquinones, as it can be seen from @), value
and the low surface area of pores.

39

2.2 Surfactant used in the SoFiA project

In the next chapter the simulation result are compared with experimental results
which employ C2Fg as a surfactnat. (5 FEg is a non-ionic surfactant having cova-
lently bonded oxygen-containing hydrophilic groups, which are bonded to hydropho-
bic parent structures. In Figure 2.8 it is possible to see a schematic representation.
It is formed by the ethoxylation of dodecanol (lauryl alcohol) to give a material with
six repeat units of ethylene glycol. Thomas and coworkers described the behavior
of this category of surfactants at the gas-liquid interface using neutral reflection, a
technology which dissolves the surfactant in NRW (null reflecting water), a mixture
of DyO and H,0O in a composition in order to make its neutron scattering length
equals to zero, to determine the surface coverage [84]. The results reported on sur-
factants with different numbers of ethylene oxide groups, showing that the extent of
overlap between the alkyl chain and ethylene group increases with the number of n
(CnEy). Studies of Chanda and Bandyopadhya who simulated complete monolayers
of CoE6 at the gas water interface to study their dynamical properties, reported
that the long polar headgroups are more tilted toward the aqueous layer which is
what this thesis wants to simulate [85, 86].

go1 B}
c1 1z oH’
Figure 2.8: Schematic representation of Cijo9FEg. C1 represents the 1st alkyl group in
the tail, C12 is the 12th alkyl group in tail,LEO1 is the oxygen in the 1st ethylene glycol

group,E1 is the ethylene in the 1st ethylene glycol group, and OH is the terminal OH
group [86].

40

Chapter 3

Case study: simulations

The case study simulations are divided in three main sections:
e 1D model of a buffer with carbon dioxide dissociation;
e Validation of a 0D model,;
e 1D COMSOL model of a surfactant monolayer with chemical reactions.

A validated buffer model is developed in the first section together with a model for
C'O, dissociation in aqueous solution. In the validation part the COMSOL solutions
are compared to experimental results in order to prove that the models are capable
of consistently reproduce physical phenomena to a specified confidence level. In
the last part, half of a soap film is reproduced with a 1D model, in this section the
monolayer is described and the parameters tuning is carried out to better understand
how the different factors are influencing the global reaction.

3.1 Buffer model and carbon dioxide dissociation

3.1.1 Buffer model

It is useful to validate a buffer model in order to utilize it in the next simulation
in those cases where there is a need to keep the process at neutral pH. Basically a
buffer consists in a solution which can react to pH change upon the addition of an
acidic or a base. In fact it is able to neutralize the pH modifications keeping the
overall solution pH relatively stable [87]. The buffer implemented is the phosphate
buffer which is composed of the four species shown in Figure 3.1. The equilibrium
reactions which participates int the phosphate buffer are listed below [89]:

Kphl

H3P04 S H + HQPO4— (31)
H,PO,~ <22 H* + HPO,2 (3.2)

41

I I BB

— 2_ 3_
H3PO, [HyPO,4] [HPO,] [PO,]
Phosphoric Dihydrogen Hydrogen Phosphate
acid phosphate phosphate

Figure 3.1: Phosphate buffer involved species [88].

HPO,2 2% HT 4 PO, (3.3)

In Table 3.1 values of pk and equilibrium constants are given, K and pk are linked
by the next relation:
K =10""K (3.4)

Table 3.1: Phosphate buffer equilibrium.

Equilibrium pK Equilibrium constant
- - mol /L
H3P04 < = > H2P04_ + Ht 2.14 7.5x 1073
H,PO; < — > HPOY + H* 17.20 6.2 x 1078
HPO? < —> PO} + H* 1237 2.14x 1071

Moreover the water dissociation is included in the model where the water is
indicated as a solvent:

H,0 <%2% OH~ + H* (3.5)

With a initial concentration of H,O equals to 1 mol/m? and an equilibrium constant
1x10°8.

These equations are implemented in COMSOL in a 1D model, the simulation
exploits a geometry consisting of a line 0.01 m long, the diffusion coefficients of the
species are set at 1 x 107°. The model implemented is time dependent with the time
ranging from 0 to 900 seconds with a time-step of 1s.

The result is depicted in Figure 3.2 where the phosphoric acid speciation is
presented, the dotted lines represent the experimental data [90] for the four species
while the points are the results from the COMSOL simulation, the dots are obtained
by varying the initial concentrations. It is possible to notice that the model is able to
reproduce experimental values with a difference for the most extreme values which
are not realistic, indeed a pH of 15 is reported.

42

Species:

100-... @ e e s

PO4

H3PO4 COMSOL
H2PO4 COMSOL
HPO4 COMSOL
PO4 COMSOL

(=2
[a=]
oo ee

% of phosphate
U
o
®
(&)
(o]

Figure 3.2: Phosphoric acid speciation.

3.1.2 Carbon dioxide dissociation model

The carbon dioxide dissociate in aqueous solutions giving a acidic pH which depends
on the CO; aqueous concentration. The phenomenon is described by the following
two equations:

CO,™ + H,0 £ HY + HCO; (3.6)
HCO;™ &2 HY 4+ €032 (3.7)

The values of the equilibrium constant and the pK comes from the research of Singh

Ph vs CO2 partial pressure

w
wn e}

Solution pH [-]

35

S S S S S S S S
$ $ $ $ $ $ $ $ $
$ $ S $ $ $ $ $ $
F &£ L & & & & & S

CO2 Partial pressure [Pa]

Figure 3.3: pH values vs CO5 partiale pressure without a buffer.

and coworkers [91] which are equals to K. = 4.26 x 107 and K. = 5.60 x 1075.

43

Species:
----- o2

) ¢ L HCO3
E T e 3
3 ® C0200MSOL
5 01 ¢ SR u ¢ & HCO3COMS0L
o g R ' B C03COMSOL
[
[}
V) A s N ‘\
%001 " & EA B o . ¢
2 ‘r l-‘
T
[:4
0.001 n 0

4 5) 7 8 9 10 11 12

PHE

Figure 3.4: Carbonate speciation.

Moreover the diffusion coefficients are given for the different species in Table 3.2
listed in the next subsection.

For what concern the initial concentration values the water is again indicated as
a solvent with a starting value of 1 mol/m?® and the for the carbon dioxide the input
is dependent on the outer partial pressure of C'Oy through the Henry’s law with the
constant set equals to 3.9 x 10™* mol/m3Pa [56].

In Figure 3.3 the result of the COMSOL simulation is depicted where the pH is
analyzed versus the partial pressure of the C'O; in an hypothetical surrounding en-
vironment. The figure shows what expected: with the increase in the concentration
value of the carbon dioxide the solution becomes acidic which is a result reported
by many studies linked to seawater pH trend [92].

Furthermore in Figure 3.4 the carbonate speciation in seawater and from the
COMSOL model are given. The dotted lines come from experimental data using
seawater as a solution while the dots, the rhombus and the squares represent the
result of the simulation for CO2, HCO3 and C’Og_, respectively. The model is able
to reproduce the trend but it is possible to notice a "translation” in the numerical
values towards more basic pH values, this is reported to be connected to the seawater
effect [92] while in the simulation the pure water has been taken into account.

3.1.3 Carbon dioxide dissociation model with the buffer

Eventually the two models are combined to check if the buffer solution is able to
stabilize a solution where the C'O, dissociation is taking place. The model is still
time-dependent with the time ranging from 0 to 900s with a time-step of 1 second,
the geometry is also the same of the previous two simulations.

44

Table 3.2: Diffusion and concentration input values for COMSOL model.

Species Concentration Diffusion coeff.
- mol /m3 m?/s

Hydrogen (HT) 1x10™* 9.311 x 107
Hydroxide (OH™) 1x10™* 5.273 x 107°
Water (H20) 1 2x107°
Phosphate buffer (H3POy) 0 1x107°
Phosphate buffer (HoPO,) 50 1x107°
Phosphate buffer (HPO3") 50 1x107°
Phosphate buffer (PO}") 0 1x107°
Hydrogencarbonate (HCOj) 0 1.185 x 107
Carbon trioxide (CO32™) 0 0923x107°
Carbon dioxide (CO,) Pco, * Heo, 1.91 x 107°

The reactions implemented are the same too, including the water dissociation,
in Table 3.2 the initial concentration values and the diffusion coefficents are listed,
the diffusivity parameters are taken from the supplementary information of this
reference [91].

Ph vs CO2 partial pressure

7.2

7.1
—
—
I 7
[
c
o 6.9
)
=
o 6.8
)
6.7
6.6
Q O N O N O N O N N N $H
™ N O O O O O O O O O Q
SIS LS L I ST LK LS S S S
S S S T MR S S S
R:

CO2 Partial pressure [Pa]

Figure 3.5: pH values vs CO5 partial pressure with a buffer.

As shown in the table the initial value of for the carbon dioxide inside the liquid
1D line is not given because it is free to move according to the gaseous C'O, partial
pressure. The input values for the buffer are taken randomly in a way that the
starting pH was already 7 as shown in Figure 3.2. The result of this simulation is

45

depicted in Figure 3.5, it is possible to notice that the buffer implemented is able to
keep the solution pH almost neutral even when the partial pressure of C'Os is equal
to 101,325 Pascal (1 atm).

This simulation is useful because it provide a working model of a buffer, moreover
the carbon dioxide dissociation may be implemented in further simulations.

46

3.2 Validation of the 0D model

The chosen paper deals with photocatalytic water oxidation in a homogeneous reac-
tor, the aim of validation is to reproduce the oxygen evolution measured experimen-
tally respect to time. Since it is homogeneous it possible to simulate it thorough a
0D model which is for sure easier to implement.

3.2.1 Microkinetic model for homogeneous photocatalytic
water oxidation

The examined paper’s name is “Rate and Stability of Photocatalytic Water Ouwi-
dation using [Ru(bpy)s]** as Photosensitizer” by Limburg and coworkers [93]. The
research on water oxidation has been becoming of focal importance recently, in thirty
years the turnover frequencies (TOF) of catalysts has been reported to be increased
from 2 x 1072 57! to more than 300 s~!, together with their stability, reflected by
turnover numbers (TONs) which increased over 3 orders of magnitude [94]. In this
case a photocatalytic process is used and many parameters are introduced like those
linked to the oxidative quenching of the photosensitizer (PS), its concententration
and the light intensity. Furthermore the type of buffer, the pH solution value and
the the catalyst concentration must be optimized because everyone can play a role
in the stability and rate production of the system. The aim of this scientific article
is to understand what the bottleneck of photocatalytic water oxidation is. In Fig-

precat

PS*
, K PS
S,08" PS cat 0, +4H’
light | r, ax i r,
S0, +50,” ps* cat’ 2H,0
photosensitizer | HO l" _
decomposition § I’y “
catalyst
PS-OH decomposition
8,0,° PS*
. (e cat S0,” PS
+ 2- +
PS cat SO, PS

ox

Figure 3.6: A global kinetic overview of the photocatalytic water oxidation process, the
three intermediate steps are written as rq, ro and r3, 41 and rgo are the rates of photosen-
sitizer decomposition and catalyst decomposition, respectively. The initial photosensitizer
decomposition products can be further decomposed with rates 74,1 and o2 [93].

47

Blue: Load / Standby
Red: Inject loop

—3 water out

4~ Visible

<~ Irradiation

Thermostated, Stirred Reactor

water in—)

Figure 3.7: Oxygen evolution setup (scheme) [95].

ure 3.6 the three steps of the overall oxidation process are depicted, the first step is
formation of PS™ (standard molecules which lost an electron) via light absorption
of PS (standard molecule) state of the photosensitizer and oxidative quenching of
PS* (excited molecule) by S,O2~, the peroxydisulfate is the electron acceptor. The
second step depicted by the rate ry is the electron transfer from the catalyst to
PS*, the third step is Oy production at the water oxidation catalyst. Besides it
is possible to notice that both the catalyst and the photosensitizer can suffer from
decomposition and SO, can oxidize both. At the top right there is a precatalyst
reaction which is needed to create active species for some kind of water-oxidizing
catalysts. In the experiments [Ru(bpy)s]*™ is utilized as photosensitizer and three
different water catalysts were employed, based on Ruthenium, Cobalt and Iridium.
In all cases the solvent was a phosphate buffer at pH 7.0.

In Figure 3.7 it is shown a scheme of the oxygen evolution setup, the reactor is
magnetically stirred and thermostated by a constant flow of water kept at 298K, from
the side visible light is performed by a blue LED. It is important that the reaction
is stirred so that there are not issues linked to diffusion limited reactions. The
samples are taken by switching the gas chromatography valve from load position to
inject position, the GC is enclosed in a helium-purged housing to prevent air leaking.
Silicon septa is used as a connection, it is possible to deaerate by opening the helium
inlet on the reactor and loosening one of the septa, while having the pump running.
Before each measurement the system was deaerated for 15 minutes, after that a
datapoint was collected every 5 seconds from the probe after tightening by screwing

48

1.2

*
& * & »
. * * .l
.*
- l
,--.,0'8 ™ ",
—] -.
=] o o
£ '-.
= i
g »
| =]

Irradiation time (min)

Figure 3.8: Photocatalytic dioxygen evolution as measured in solution by a fluorescence
probe (solid curves) and in the headspace by GC (data points) [93].

on the loose septum and closing the helium inlet. Even so the air leakage could not
be prevented probably because of the silicon septa moreover for every measurement
by GC, 0.5 mL were consumed and replaced with the same amount of helium. Hence
the the actual amount of oxygen produced is higher than the one measured [95]. The
aim of validation is to reproduce the amount of dioxygen with the following reactor
features: 5 uM of catalyst, 50 uM of photosensitizer and 2.5 mM of NayS;0s5 in a
volume of 5 mL of phosphate buffer (10 mM, pH = 7.0). In Figure 3.8 the outcome
of the probe detection is shown, the solid curves represents the Oy for the three
catalysts, the red one is the homogeneous one while the data points are the values
detected in the headspace by GC. The gas cromatography results are affected by
the air leaking from the outside environment which is atmospheric ais then made of
0o and Ny Moreover the dips manifested in the signal are dued to GC measurement
equilibium, the pump is turned on to fast equilibrate the dissolved Os and the
headspace. The paper is further describing the process discovering that the electron
transfer is the bottleneck of the reaction. Eventually the decomposition of PS™ is
taken into account, the values reports that the concentration of PS™ reaches its

49

maximum after 100 seconds, subsequently it starts to decrease. [93, 95].

3.2.2 0D COMSOL model

As stated, the reactor is stirred thus the model has been studied with a 0D formu-
lation, it means that all the points are equal without the presence of boundaries.
Mainly in this section the three steps depicted in Figure 3.7 are simulated and then
a parametric sweep is adopted to find the best fit for the experimental curves shown
in Figure 3.8. The study is time dependent, with the time ranging from 0s to 900s
(15 minutes), to simulate the decomposition and the different timing of the processes
different ramp functions were implemented to be multiplied with the reactions rate.

The first step which is the oxidative quenching of PS* by the electron acceptor
(step 1, rate r1) is simulated with the following reaction:

2PS* + 2H' + Q =% 2PST 4+ H,Q (3.8)

Where PS is the photosensitizer, the couple formed by) and H,() represent the
hydroquinone which, for the purpose of this simulation, represents the electron ac-
ceptor to keep the balance of electrical charges.

The second step, the electron transfer from the catalyst to the excited photosen-
sitizer (step 2, rate ry) is represent by the following reaction:

2PSt 4+ C 25 2PS + O (3.9)

Where C' is the catalyst and C** is oxidized.
The third step is the catalytic oxidation of water (step 3, rate r3) which is
represented by the following reaction:

2% 4+ 2H,0 ~25 0, + 4H' +2C (3.10)

Besides other reactions were introduced to simulate the excited photosensitizer de-
composition which is reported to be the rate limiting step of the process, and the
oxygen exhausted. The decomposed photosensitizer species is referred to as PS,,
and takes part in the following reaction:

PS* X5, pS (3.11)
In the same way the Oy leakage is delineated:

O, o2, Oaleak (3.12)
Furthermore two chemical equilibria were added to the model to reproduce the

water dissociation and the phosphate buffer. Water has an amphoteric behaviour; it
means that it can act both as an acid or a base in a solution. The water dissociation

20

Table 3.3: Initial input values for the validation 0D COMSOL model.

Species Concentration
- mol /m?

Photosensitizer (PS) 50 x 1073
Photosensitizer (PS™) 0
Catalyst (C) 5x 1073
Catalyst (C*T) 0
Electron relay (Q) 2.5
Electron relay (H2Q) 0
Dioxygen (O2) 0
Hydrogen (HT) 1x10™*
Hydroxide (OH™) 1x10™*
Water (H20) 55.5
Phosphate buffer (H3POy) 10
Phosphate buffer (H,PO;) 75 x 10*
Phosphate buffer (HPO3") 46.5 x 10*
Phosphate buffer (PO}™) 1.116
Decomposed Photosensitizer (PS.s,) 0
Oxygen dump (Osear) 0

takes place in pure water or in aqueous solutions when a molecule of H,O becomes
hydroxide OH~. The equilibrium can be merely written as:

Ku

H,O 2% OH™ + H* (3.13)

The water is a really weak electrolyte which means it does not completely dissociate
in aqueous solutions, this is proven by the equilibrium constant that in diluted
solutions can be written as:

(OH][H]

0] (3.14)

Ku,0 =

The constant is equal to 1.8 x 107'® when the concentrations are taken in mol/L,
in this case for the thesis applications it will be written in mol/m?, it means that
Ko = 1.8 x 10713, Given the low value of the equilibrium constant the reaction
does not have a significant impact on the solutions.

For what concerns the buffer, the phosphate buffer is simulated as an equilibrium
between the following reactions:

Kphl

H3PO4 L HY + HQPO4_ (315)
H,PO,~ 22 H+ 1+ HPO,2" (3.16)

51

Rump Function

100 150 200 250 300
Time [s]

Figure 3.9: Rump function: located at time step 100 with a slope of 1/200 and cutoff
equals to 1.

HPO,2~ 2% [t 4 PO, (3.17)

The main role of the buffer is to keep the pH of the solution stable over the time.
The values for the equilibrium constants are taken from the previous simulation.

Over the simulation different parametric sweeps have been carried out to find
the values of ki, ks and k3 in addition to the decomposition rates. For the last
couple there are the difficulties to match the timing because the decomposition is
not active since the beginning, in order to reproduce the phenomena two different
rump functions were employed, in Figure 3.9 the rump function for the decomposed
photosensitizer specie is shown. The reaction starts after 100 seconds (referred to
the time given in the subsection 3.2.1) and reach its maximum after 300 seconds.
While for the O, the reaction starts after 200 seconds and reach it maximum after
500 seconds, the cutoff in this case is equal to 2 to cope the oxygen measurements.
Regarding the other rates of the model a wide range of parameters have been tried
with a step of 10 going from 1 x 1073 to 1 x 1010,

3.2.3 Validation results

In this subsection the results of the simulations are displayed: switching the pa-
rameters the model shows that the rate k3 is not the rate determining step, in fact

52

Table 3.4: Output rates from the COMSOL model.

Rate constant Value

k1 1x 107
ko 1x 104
ks 0.1
kps 1x 1072
koo 1x 1072

keeping the other parameters fixed the oxygen production is not affected through
all the magnitude changes, the only difference reported is a subtle discrepancy in
the catalyst behavior which can undergo rapid changes because of calculation errors.
On the other hand, k; and ks are more difficult to be identified since only few results
are acceptable, after many simulations ko has been selected as the main constant it
means that the second step rate is the one which is determining the order of magni-
tude of oxygen production. While k; can increase or decrease the oxygen yield but if
too high can give instability issues to the photosensitizer which tends be consumed
instantly, with the values that can fluctuate below the zero, which is obviously not
realistic. In table 3.4 the final reaction constants are summarized. Moreover the

pH vs time

pH [-]

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

Figure 3.10: pH trend in the validation model versus time.

23

007

004

= = =
= = =
bsd = bl

02 concentration [mol/m~3]

=
=

001

0 200 40 600 800 1000
Time [s]

Figure 3.11: O, concentration evolution respct to time, blue solid line: paper, red solid
line: COMSOL.

graphic results show that the simulated phosphate buffer is reproducing the results
in a good manner, in Figure 3.10 the pH values respect to time is plotted with the
abscissa on a log scale. From the graphic it is possible to notice that the H+ molar
concentration display a strong stability with little fluctuation around 100 seconds
which are not even spotted in the figure, they could be negligible variation dued to
the response of the decomposition PS™ process.

Eventually in Figure 3.11 the concentration of oxygen in mol/m? vs the time
expressed in seconds is displayed. The paper’s values (blue line) are given in terms
of moles therefore they have been divided by the reactor volume. On the other
hand the red line comes from COMSOL simulation, there are differences in the
maximum level between the two lines, this is due to the experimental procedures
which, as stated, depict dips because of GC measurement and there is no interest in
reproducing that response. Altogether the simulation manage to represent well the
dioxygen evolution over time with a difference on the peak and with a subtle lag,
the shown curve is the best fit that has been found keeping into account all the the
parameters at stake.

o4

3.3 1D model of a surfactant monolayer

In the following paragraphs the model of a surfactant monolayer will be discussed.
The post processing of the results was performed with COMSOL itself or Seaborn,
a Python data visualization library based on matplotlib. In this section it is given
most of the importance to the parametric search to understand how the constants
influence the model especially in those case where there is a lack of experimental
data.

3.3.1 Model description

In Figure 3.12 the concept of the soap film is depicted: the elements with a green
head and a yellow tail are the surfactant molecules, with the head which dispose
at the border of the film coloured in light blue, together with the particles that
take part in the simulation carried out in this thesis. The model which has been

Region 1
Interface -

Region 2

Figure 3.12: Conceptual representation of the soap film with the species involved.

implemented is illustrated with the red dotted line on the left, the 1D line simulated
in COMSOL can be divided in 2 different regions: Region 1 which is a gaseous region
while Region 2 is a liquid domain, the species can adsorb at the interface between the
gas and the liquid phase. On the top right the main reaction is shown, the reaction
is mainly between adsorbed species, so it takes place at the interface. In Table 3.5 it
is possible to the sizes of the species involved displayed with the molecular diameters

95

Table 3.5: Molecular diameters of the species.

Species Molecular diameter Reference
; nm ,
COs 0.334 [96]
cO 0.319 [97]
Electron relays 0.750 (98]
H>O 0.275 [99]
Tail C12E6 0.975 [100, 101]
Head C12E6 0.950 (100, 101]

value with their reference, for what concerns the electron relays it has been taken the
diameter linked to the phenol molecule which is quite similar to the hydroquinone,
the surfactant is subdivided in head and tail, in this case it may be more appropriate
to talk about thickness instead of diameter. The model is simplified respect to the
actual reactions which actually take place, but it can be a good starting point to
gain knowledge and to understand the order of magnitude of the different players.
By hypothesis gaseous species can permeate the membrane while what is in solution
inside the monolayer can not go in the gas region. All the species take part to
reactions at the interface. The main reactions simulated are basically of two kinds,
an overall reaction which is responsible for the production of the carbon monoxide
through carbon dioxide reduction, and adsorption and desorption equilibria. The
reduction process is represented by the following reaction:

CO™ + 2 H,Q —L5 CO™ + 2HQ + H,0 (3.18)

The reaction is irreversible, and it is regulated by the forward reaction rate indicated
as ky. The value of the rate it is unknown and it is a important value because it
gives an idea of the overall velocity of the process. The adsorption reaction can be
generally defined as:

Species <11:“—d> Species*® (3.19)
des
specifically the reactions implemented are:

kadsCOQ

COq
kdesCO2

COy™s (3.20)

CO =2, O™ (3.21)

kadsH2Q

HoQ +———

kdesH2Q

kadsHQ

HQ +———

kdesHQ

H,Qs (3.22)

HQs (3.23)

For the carbon dioxide reduction simulated the hydroquinone is an electron donor.

26

3.3.2 Initial values

Since a innovative subject is treated, the initial values assigned to the variables
become very important to reach satisfactory results. They have not always been
found values that start exactly from the same assumptions of the simulated model,
in this case it has been taken in consideration the data in the more similar situation.
At first it is relevant to define the initial concentrations for the species in the different
domains. The initial values for the C'O, is calculated assuming that the outer
atmosphere of the monolayer is equivalent to 1 atmosphere of carbon dioxide only,

thus it is evaluated with:
regl P

6. = 7y
With T equals to 293.15 K, P corresponding to latm and R = 8.206 x 10~° %.F@r
what concerns the CO it was taken a deliberately low chosen value of 1 x 10710,

To determine the initial concentration values of CO; and C'O the Henry’s law is
utilized:

(3.24)

reg2 __ regl

Cco, = Cco, * Hoo, (3.25)
reg2 __ regl

cco = Cco *Heoo (3.26)

The initial concentrations of the Ho() and H() is defined by the author as 100
mol/m? and 1 x 1071°, respectively. In Table 3.6 the concentration input values are
summarized.

Table 3.6: Input concentration values and Henry’s constants.

Species H credt creg?

CO, 0.952 41.571 39.575

CcoO 256x 1072 1x107'9 256x 10712
H,0] ~ 1000

HQ - - 1x10°%
H>0 - - 55595

Among the values that the model requires in input there are the Langmuir pa-
rameters, mainly the surface excess at saturated coverage I'y and K., which is the
equilibrium constant, the ratio between the adsorption k.4, and desorption kg5 con-
stants. The input Langmuirian values for what concerns C'O,, CO, Oy and H, are
taken from the paper of Massoudi and King [102]. This work reports many results
obtained in measuring interfacial tension as a function of pressure for a wide va-
riety of gas-water systems at 25°C. the isotherms are derived beginning from the
interfacial tension which follows, at constant temperature the following polynomial:

Y =19+ BP+ CP?+ DP® (3.27)

o7

Table 3.7: Interfacial tension parameters as function of pressure for pure water with
various gases at 25°C.

Species B C D
_ dyn dyn dyn

cm atm cm atm? cm atm3
CO, -0.7789 +0.00543 -0.000042
CcO -0.1041 +40.000239 -

Where g is equal to 71.98 dyn/cm. In Table 3.7 the paper coefficients are reported.

The surface excess for the various gases is calculated according to the convention
which pones the Gibbs plane in order that the surface excess of water is equal to zero
using the following equation which is the same equation described in equation 1.20

with R written as R = Zk:
07y ZkT
(E)T _r <_P) (3.28)

Where there is the partial derivative of interfacial tension respect to pressure with
fixed temperature equals to the surface excess multplied to Z which is the com-
pressibility factor, k that defines the Boltzmann constant and T designates the
temperature, divided by the pressure.

The experimental environment seems to be similar to the one intended to be
simulated, gas adsorbing at a liquid aqueous interface, so the results obtained, given
in Table 3.8, are considered reliable. Regarding the electron transfers the values
reported in Table 3.8 come from the article by Yildiz and coworkers [81], the reason
why this paper is taken as a reference are outilend in the previous chapter (Chapter
2). As stated The aim of the paper is to find cost-effective and efficient ways to
adsorb hydroquinones and benzoic acid from aqueous solutions, the study utilizes
natural clay bentonites which usually form from weathering of volcanic ash in sea-
water [103]. The particularity is that ion-exchange can deeply modify the surface
properties. When organic cations (cationic surfactants) are applied superficially,
they tend to occupy the sites of bentonite clay making the surface switch from
hydrophilic to hydrophobic. Experimentally in the cited study, organobentonites
containing different organic cations (octadecyltrimethyle ammonium, ODTMA, hex-
adecyltrimethylammonium, HDTMA) were synthesized. The adsorbed amount of
benzoic acid and hydroquinone were calculated as the difference between the added
value compared to what remains at different temperatures and pH values in order
to plot adsorption isotherms. The results showed that decreasing uptake with in-
creasing pH while an increasing uptake with increasing temperatures as shown in
Figure 3.13. The considered values are those referred to a temperature of 25 °C in
neutral pH for ODTMA, numerically the surface excess is equal to 12.0482 mg/g
and the equilibrium adsorption constant equivalent to 0.0090 L /mg. The values are

o8

40

301

Adsorbed, mg/g
3

0 298 KHDTMA-B
g 0 313 KHDTMA-B
P ® 298 KODTMA-B
® 313 KODTMA-B

T T T T
0 50 100 150 200 250 300
C, mg/L

Figure 3.13: Sorption of benzoic acid and hydroquinone by ODTMA-B and HDTMA-B
at various temperatures (line; benzoic acid, dotted; hydroquinone) [81].

converted into the desired units of measurement through the bentonite BET 28.92
m?/g and the hydroquinone molecular mass 1.10 x 10° mg/mol.

Table 3.8: Input Langmuir parameters.

Species K, I
_ m3 mol
mol m?2

CO, 1.26 x 107* 524 x 1075
cO 1.60 x 107* 6.59 x 1076
HyQ) 0.991 3.78 x 10°°
HQ 0.991 3.78 x 107°

With the Langmuirian parameters and the initial concentrations the surface re-
action physics is able to work. Nevertheless some other parameters are needed as a
input to simulate the transport of diluted species in the liquid and solid domains,
the diffusion process is modeled using the Fick’s law while the flux at the interface
that can permeate the membrane is implemented using the surfactant monolayer

mol

permeability. The flux calculated in 72, coming from the gaseous region to the
liquid region is modeled as:

CregZ
gas—>lig __ 7 perm regl spectes
Jspecies - kspecies * cspecies - (329)

Hspecies

29

Table 3.9: Input values for species transport.

Species Diff. coeff. in gas Diff. coeff. in liquid Surf. monolayer perm.

- m?/s m?/s m/s
COq 1.35 x 107° 1.67x107% 0.164
co 1.90 x 107° 2.03 x 107 0.593
HyQ ; 1x 10710 -
HQ ; 1x 10710 -
H,O - 2x 1079 -

On the other hand the flux coming from the liquid domain to the gaseous one follows
the next equation:

lig—>gas __ 7.perm reg2 regl
J =k x (c — Hipecies * Corories) (3.30)

species species species species

In Table 3.9 it is possible to see the input values regarding the transport of diluted
species with the diffusion coefficiente both in the gas and liquid domain. The values
in Table 3.9 and the Henry’s constant in Table 3.6 are taken from this reference [56].

Eventually the value of the reaction rate k; represented in equation 3.18 is set
equal to 1 x 1012

60

3.3.3 Time and space distributions

Given an overview of the model and the input values provided to the COMSOL
model, this subsection deals with the first simulation carried out, a time-dependent

study with the time ranging from 0 to 28,800 seconds (8 hours) with a time-step of
100 seconds.

Region 1 Region 2
o —
l gas l liquid J'
X =-0.005 X=0 X=+0.005

Figure 3.14: 1D model mesh graphical representation.

The 1D model mesh is shown in Figure 3.14, it is utilized for this simulation
and it will be always the same from now on. The line length is 0.01 m with the
origin of the axes located at the interface between the liquid and gaseous domain.
The mesh is predefined, it is extremely fine with a maximum element size equals
to 6.75 x 107° and a maximum element growth rate of 1.05. This study is useful
to understand how to system behaves through the time, the results reported in

Study 1:Time dependent solution : gas concentration distribution at t =28,800 s

coz con awrms H2Q _

Cansentraton (molm')

Concentration melm’)

T
o

o
x-<oordinate fm)

Concentration [molim’)

Consentratisn (malim)

H20

o
x-coordinate (m)

Concestration Imolr’)

25 o
coardinats (m)

Figure 3.15: Species concentration space distribution after 8 hours.

Figure 3.15 shows the space distribution at the last time-step (after 8 hours). The

61

Study 1:Time dependent solution: gas surface concentration vs time

0000 15000 20000 25000 o 000 10000 15000 20000

10000 15000 20000 25000 100 200 so0 1000 2000 soo0 10000 20000

Figure 3.16: Species interfacial surface concentration evolution in time.

CO, concentration in the gaseous domain is constant with a value of 31.5 mol/m?
which corresponds to latm pressure, in the liquid the space distribution ranges
from around 30 mol/m? close to the interface to increase until 31.3 mol/m?, it
is a reasonable trend because the carbon dioxide is reduced at the interface to
produce carbon monoxide. The C'O displays a constant value in the gaseous region
of around 18 mol/m?, in the liquid region the concentration amount is lower because
it is linked to the Henry’s law, the different behaviors in the gas and liquid phase
is a result of the different values of the diffusion coefficient. The hydroquinone
concentration is shown only in Region 2, the Hy(Q is almost equals to zero at the
interface with a maximum value of around 95 mol/m? at the endpoint, logically
the H(@) concentration is behaving in the opposite way, displaying maximum at the
interface of approximately mol/m? and a minimum of 5 mol/m?. This first output
presented the electron transfer concentration attaining the value of zero, different
simulations have been carried out to better describe the trend, it came out that the
value approaches significantly to zero after 52 minutes and 30 seconds not due to a
lack of it but limited by diffusion instead (the python codes to develop an animated
simulation with the hydroquinone concentration can be found in Appendix A). It is
clear from Figure 3.15 that the concentration at the endpoint is still similar to the
initial value even after 8 hours. Moreover, in Figure 3.16 the surface concentration,
measured in mol/m?, is represented at the interface respect to time, the reagent
CO, and Hy(Q) decrease over time while the products, CO and H(Q) increase their
concentration at liquid-gas interface. The carbon dioxide ranges from 2.8 x 1077 to
2 x 1077, the H,Q starts from a value of 6.4 x 107% to reach 2.8 x 1075, The model
reported the total surface concentration in the two regions follow the interface trend

62

for the four species. For what concerns the products, numerically the CO surface
interfacial concentration goes from 0 to around 20 107, while the H(Q ranges from
0 to 6.6 1075. The species interface surface concentration values show an expected
behaviour with the two couples, CO,/CO and HyQ)/H(Q moving accordingly. In all
the simulations the principle of mass has been checked and respected, the difference
between the values calculated at the time equals to zero compared to all the other
time steps were monitored, this difference was never reported to be higher than 5 x
10~ which is considered within the calculation errors.

63

3.3.4 Forward reaction rate tuning

The forward reaction rate is one of the most relevant parameters because it gives
an idea on the carbon monoxide production. If the reagents are present, the value
of the general reaction has the task of regulating the speed of generation, therefore
the yield of the process. As already mentioned in the previous sections the starting
value is 1 x 10'2, despite most of the other parameters, this number is taken as a
guessing value without a supporting article or a reference, it was a number that was
considered acceptable before the very first simulation because capable of producing
a change. After this first guess the parameters underwent a parametric sweep where
the value is tested by modifying the order of magnitude, over the simulation the
number varies from 1 x 10% to 1 x 10'. The aim of the simulation is having a
deeper understanding on how the value is affecting the number of moles of the
different species in the two domains and at the interface, the result considered is a
line average calculated in mol/m? for the gaseous and the liquid region in order to
compare the numbers with the superficial concentration calculated for x equals zero.
The graphs reported hereinafter are taken in the half of simulation, it means after
14,400 seconds (4 hours), this decision about time-step is simply an author decision.
The chosen color are: green for the gaseous region, blue for the liquid region and
red for the concentration at the interface. The y axis is in linear scale while the

CO2 concentration in the gas region vs kf_CO2 CO2 concentration in the liquid region vs kf_CO2
* * 4 t=14400s * o 4 t=14400s
0205 0.195
0.200 *
= * = 0.190
< <
E 0195 E
K=} ©°
E 0190 £ 0185
g 8
2 0185 £ 0.180
3] 3]
0.180
© © 0175
0175
0.170
0170 x * * o b * +r #r
w0 10” 1w 10® 10® w" 1" w0 10° 1w 1® 1”1”1
Forward Reaction Rate Forward Reaction Rate

1e-7 CO2 concentration at the surface vs kf_CO2

* =
57 - 4 t=14400s
= 26 *
g
£
©
E 25
w
@
g
~ 24
o
[&]
23
g e +* e
° 10° 10" 10® 10® 1w* 1"

Forward Reaction Rate

Figure 3.17: C'O, line average and surface concentration vs k.

64

CO concentration in the gas region vs kf_CO2 CO concentration in the liquid region vs kf_CO2

4 t=14400s " * * * 0.0014 * t=14400s * +* “ +*
0.06
0.0012
& 008 & 00010
£ 0.04 £
s 0 3
g g 0.0008
w w
& 003 2 (0006
£ £
o o
g 002 1 8 00004
*
0.01 0.0002
000 H * 0.0000 H *
w0’ 1w 1" w0® 1w® 1™ 1w® w0 10 10" 1% 0" 1" 1w0®
Forward Reaction Rate Forward Reaction Rate

1e—8 CO concentration at the surface vs kf_CO2

14 - 4 1=14400s = * * *
12
10
E
g o8
F
- 06
E
Q
o 04 *
02
00 * *
1 1w0° 10" w® w® " 1w®

Forward Reaction Rate

Figure 3.18: CO line average and surface concentration vs ky.

x axis is in logarithmic scale. In Figure 3.17 the three charts for C'Oy are given,
as could be expected the main trend is generally downwards, the carbon dioxide
concentration is decreasing as the number of the forward reaction rate is increasing.
It is possible to spot a ”switching value”, in fact from 1 x 10;9 to 1 x 102 the
concentration of CO, undergoes a relative reduction of 15% while before and after
1 x 10! the values seem to be stable, especially for higher reaction rate numerical
values. The concentration of C'O behaves accordingly, as the C'O, is decreasing the
CO is increasing, in Figure 3.18 the concentration of carbon monoxide is depicted.
Still in this case the value of 1 x 10! is a switching value but numerically the yield
is greater of six times in the gas region and it reaches higher relative differences
in the liquid region and at the surface interface. This graph shows once again the
importance of the forward reaction rate, the amount of CO produced is changing its
order of magnitude changing the rate of the reaction. Eventually in Figure 3.19 it
is possible to see the concentration of Ho() and H() in the liquid region and at the
interface. The same dualism reported before for the couple COy/CO exists for the
hydroquinone and its product of the redox reaction, still the the trend represented
in Figure 3.17 and Figure 3.18 is respected with the subtle difference that the HQ
interfacial concentration corresponding to the x value of 1 x 10'* has already reached
the "stable” part of the graphic. After this graphical results a simulation has been

65

carried out which shows that hourly the concentration values smaller than 1 x 10!
does not change over time, they are similar after the first hour while the larger values
are continuously decreasing.

H2Q concentration in the liquid region vs kf_CO2 1e-6 H2Q concentration at the surface vs kf_CO2
050 * * 1=14400s * * * 4 t=14.400s
6
048
— * — 5
046 oy
E E
=] o 4
E 044 E
] 83 *
[=] [=]
£ 042 e
& S 2
T 040 T
0.38 1 *
® *
036 * * * 0 r
10° 10" 10" 1w® 10" 10" 10" 10° 10" 10" 10" 10" 10" 10"
Forward Reaction Rate Forward Reaction Rate
HQ concentration in the liquid region vs kf_CO2 1e-6 HQ concentration at the surface vs kf_CO2
0.14
H t=14.400s % * * * * ® * * *
0.12 6
= 010 =—
o o
5
E E *
© 0.08 °
E E
@ n 4
2 0.06 @
[=] [=]
E £
2 o004 g3
= * T
0.02
2
000 * +* 4 t=14400s
10° 10" 1" w¥ 10" 10" 10" 10 10 10" 10" 1w 1" 10"
Forward Reaction Rate Forward Reaction Rate

Figure 3.19: H>(Q and HQ line average and surface concentration vs ky.

3.3.5 Adsorption phenomenons parameters

Together with the forward reaction rate the adsorption equilibrium constants are
the factors that regulate the whole production of carbon monoxide. Over these
simulation again a parametric sweep has been applied but in this case on two pa-
rameters: the surface excess and the rate of adsorption or desorption. Generally the
simulations are of two kinds, in the first case the equilibium adsorption constant
of the different species is kept fixed with the values of k.45 and kg.s free to move
accordingly. In the second case the desorption constant is set while the adsorption
constant is changing and consequently the K.,. All species have been taken into
account except water for the computation. The results are given with the shape of
heatmaps with the surface excess I'y on the x-axis and the adsorption reaction rate
on the y-axis, the values can be read as a matrix with coordinates (I's,kqqs). The
values considered are the sum of concentrations in the liquid and gaseous domains

66

ption_CO2 [m*3/mol/s]
0126 126 126 1260 12600

k_adsor
000126 0.0126

1.26 126 126.0 12600

ption_CO2 [m"3/mol/s]

k_adsor
0.126

0.00126 00126

CO2 number of moles with Keq_CO2 = COST CO number of moles with Keq_CO2 = COST

o . R m u

0.41 0.4

#CO mol / m*2 time = 28,800 s

o
(=]
&
- 0.08
0.41 0.4 Eq 0.00033 0.0033 n 0
i 38
038§ E (]
041 04 % £ o 000033 00033
| E o 0.06
o E
E o
041 04 %7 8¢ 000033 00033 ﬂ
‘E I
= § 004
041 04 € B 000032 00032 0094 [00 096 | 0.
0'348 8 S
g B
0.41 04 xlg 0.00023 0.0023 M 0.02
5
0.32 °
041 041 ' @ 64e-05 000064 0.0063
2
524e-08 524e-07 524e-06 5.24e-05 0.000524 000524 00524 g 524e-08 524e-07 524e-06 524e-05 0.000524 000524 00524
Gamma_CO2 [mol/mA2] Gamma_CO2 [mol/m*2]
Figure 3.20: Heatmaps for COy and C'O when K 8102 is fixed.
(line average) with the superficial concentration at the interface at the last time
step, 28,800 s (8 hours). In Figure 3.20 the first couple of heatmaps is depicted,
in this case the equilibrium constant of C'O, is fixed, and it is possible to see the
concentration values for C'Oy on the left and C'O on the right. The tile in the middle
of the square matrix is the actual value coming from the input values discussed in
the other sections while the surrounding numbers represents all the possible combi-
nations. For both cases it is possible to see that for the K 5102 fixed the number of
H2Q number of moles with Keq_CO2 = COST HQ number of moles with Keq_C02 = COST
0.31 0.31 0.31 0.31 o 0.00067 00067 0063 0175
=]
0475 8
031 031 031 031 @ o 000067 00067 0063 0450
04505 O & »
2 E7 &
031 031 031 031 & € © 000067 00067 0063 0125
-0.425 1 Ed i
g 8 0.100+ E
0.31 0.31 0.31 0.31 04008 Ulg 0.00067 0.0066 = 0.063 i ;
= c " E
3 g —0,075%
031 031 031 031 _0375E B 000064 00064 | 0061 g
g 85 g
% 3 -0.050%
05 0.45 0.31 0.31 0.31 0.31 -0.350 _{Ig 0.00047 0.0047 0045 9
= -0.025
038 031 031 031 -0325 g 000013 00013 0013 u.
5
5.24e-08 524e-07 524e-06 524e-05 0.000524 0.00524 0.0524 = 5.24e-08 524e-07 524e-06 524e-05 0.000524 0.00524 00524
Gamma_CO2 [mol/m*2] Gamma_CO2 [mol/m*2]

Figure 3.21: Heatmaps for Ho() and H(Q when K 6(1;02 is fixed.

67

ption_H2Q [m"3/mol/s]

k_adsor

ption_H2Q [m"3/mol/s]

k_adsor

€02 number of moles with Keq_H2Q = COST

99100000 031

991000.0 031
991000 031
9100 031
910 031
91 031

991 031

0.31

0.31

0.31

0.31

0.31

0.31

0.31

0.31

0.31

0.31

0.31

0.31

0.31

031

031

031

0.31

031

0.31

0.18

0.18

=
@

0.18

018

o
=)

o
w

3.78e-09 3.78e-08 3.78e-07 3.78e-06 3.78e-05 0.000378 0.00378

Gamma_H2Q [mol/m*2]

-0.30

-0.28

o =3
B 3
#CO2 mol / m"2 time = 28,800 s

o
]
bS]

=]
~
(=]

0.18

ption_H2Q [m"3/mol/s]

k_adsor

9910000.0

991000.0

99100.0

9910.0

991.0

991

9.91

CO number of moles with Keq_H2Q = COST

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.094

0.

[
w

023

023

0.095

3.78e-09 3.78e-08 3.78e-07 3.78e-06 3.78e-05 0.000378 0.00378

Gamma_H2Q [mol/m*2]

Figure 3.22: Heatmaps for CO2 and CO when KgQQ is fixed.

active sites is more influential than the speed of adsorption, the numerical outputs

are changing across the columns but not on the rows.

In Figure 3.21 the other

two maps for the electron transfer are displayed, the trend is similar to the one of
carbon compounds, the parameter which is mainly affecting the calculation is €92,
nevertheless there is a limit, for the largest number of active sites there are not
changes in the concentration values. In Figure 3.22 and in Figure 3.23 the next
simulation is depicted, this time the species which undergoes the parametrics weep

H2Q number of moles with Keq_H2Q = COST

3.78e-09 3.76e-08 3.78e-07 3.78e-06 3.78e-05 0.000378 0.00378

Gamma_H2Q [mol/m*2]

-0.30

0.25

=
)
o

#H2Q mol / m*2 time

-015

-0.10

-005

28,800 s

ption_H2Q [m"3/mol/s]

k_adsor

9910000.0

991000.0

99100.0

9910.0

8

@8

9.91

HQ number of moles with Keq_H2Q = COST

018

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.18

0.19

0.19

0.18

0.19

0.19

019

0.19

0.19

019

0.19

019

0.19

0.19

0.19

019

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.19

0.46

0.46

0.19

378e-09 378e-08 378e-07 378e-06 378e-05 0.000378 0.00378
Gamma_H2Q [mol/m*2]

Figure 3.23: Heatmaps for HoQ) and HQ when K£2Q is fixed.

68

022

0.20

0.18

1<) o
= >
#CO mol / m*2 time = 28,800 s

- 012

-0.10

045

o o
w B
@ =3

i
=
w
(=]
#HQ mol / m"2 time

-025

-0.20

28,800 s

CO2 number of moles with k_desorption_CO2 = COST

CO number of moles with k_desorption_C02 = COST

. 0.096 | 0.096 | 0096 | 0.096 | 0.096

0.35

ption_C0O2 [m*3/mol/s]

k_adsor

= b=
g g
& & 008
2 @0
& > o8& w
° 2 ET g
o 1 £ o 0'06?.‘
: 5 :
E g £
& ¥ OF o
- E - E
= 5 0045
Q —_ 5
8 E 249 E
= o [*
(=] e} [=] Q
B 2
lo g 3306 33e05 000033 00033 LM 002
S S
o o
© «© 33e07 33e-06 33¢-05 0.00033 00033 M
]]
S 524e-08 524e-07 524e-06 5.24e-05 0.000524 0.00524 0.0524 S 524e-08 524e-07 524e-06 5.24e-05 0.000524 0.00524 0.0524
Gamma_CO2 [mol/m”2] Gamma_CO2 [mol/m*2]
Figure 3.24: Heatmaps for COy and C'O when kge?? is fixed.
is the hydroquinone. In this case variations are spotted for the highest value of
2@ only which is likely unrealistic. In Figure 3.24 the heatmap belonging to the
second type of simulations is depicted, in this case the desorption constant is fixed
thus the uptake is faster. Despite the previous simulation the velocity of adsorption
of the specie at the interface become more important, producing a change over the
rows. Both for COy, CO and H.Q), H(Q in Figure 3.25 it is possible to identify
H2Q number of moles with k_desorption_CO2 = COST 0500 HQ number of moles with k_desorption_CO2 = COST
g 04 0.31 0.31 0.31 0.31 0.31 0.31 g 0.19 0.19 0175
@ 0475 “‘g
@ o -0150
o8 04502 © & »
E” g £ 8
2. g 2, 9 -0126
E o 04251 E o]
E o E "
o £ 3B -0100E
0,8 Loany O 8 0.00067 0.0066 0.063 0.19 ”
c " E c " £
g 5 _.% -0.0?5%
S _0375E B 67e-05 000067 0.0067 0063 WORE 2
o= le] o=
n o & n o <]
: F e Bl
lo -0.350 leo 67e-06 67e-05 000067 00067 0063 019
> N &
S S
S o -0.025
@ -0325 @ 67607 67e-06 67e-05 0.00067 0.0067 ~0.063
2 2
S 524e-08 524e-07 524e-06 524e-05 0.000524 0.00524 00524 S 524e-08 524e-07 524e-06 524e-05 0.000524 0.00524 00524
Gamma_CO2 [mol/m”2] Gamma_CO2 [mol/m”2]

Figure 3.25: Heatmaps for Ho() and H() when kge% is fixed.

69

ption_H2Q [m"3/mol/s]

k_adsor

two regions inside the maps divided by a diagonal which points out the importance
of both I'“92 and k2122~ At the top corner of the carbon dioxide heatmap some
unexpected values can be found, there is no physical explanation for these numbers
so the value can be attributed to a computational error due to the high rate of C'O,
adsorption, further simulations can be useful to better understand this behaviour.
Generally from these results it can be said that a wide combination of parameters is
actually giving the same final output. In Figure 3.26 and Figure 3.27 the heatmaps

CO2 number of moles with k_desorption_H2Q = COST CO number of moles with k_desorption_H2Q = COST
-040
B e .
. n b
o [=]
=1 E
s @
1]
&
030 C
9100 PO e ANl 0.094 | 0094 | 0.094 | 0.094 | 0094
<
E £
> 8
032 | 032 | 032 | 032 | 032 | 032 E B 0085 | 0085 ! 0085 | 0,086 | 0.087
025y O
g 3
911 N 0,041 0.041
0z gg1 00026 00026 00026 00026 00026 00026 0.0027
378609 378¢-08 3786-07 378e-06 3.78¢-05 0.000378 0.00378 378609 378¢-08 3786-07 3786-06 3.78¢-05 0.000378 0.00378
Gamma_H2Q [mol/m"2] Gamma_H2Q [mol/m"2]
Figure 3.26: Heatmaps for CO2 and CO when k; 62SQ is fixed.

with the fixed value of the desorption constant of Hy(@) are displayed. In all four
graphs there is no variation on the columns but only through the rows with a dif-
ference in the concentration values corresponding to the highest numbers of number
of adsorption sites, as already hinted probably this values are not physical thus the
author decided not to dig deeper into the matter. The parametric sweeps carried
out for CO and H() are not reported here because with these two species all the
maps were showing the same values of the central square tile of the other heatmaps.
Nevertheless this is a result for the reason that these parameters does not affect the
global process making further studies easier since two parameters may be excluded
in deeper researches. The concentration values were taken at the last time step in
order to generally understand more or less the order of magnitude of the amount of
moles present inside the surfactant monolayer. With a few exceptions the numeri-
cal output seem reasonable: with a meaning in the production of reaction product
and a sense in the consumption of reagents, the COMSOL model is then able to
reproduce the phenomenon. The aim of these simulation in particular were to un-
derstand the influence of the langmuirian parameters to have an outlook on carbon
monoxide production, this subsection together with subsection 2.2.4 not only gives
the idea of the yield of carbon monoxide but also shows how the model can respond

70

e
-
o

28,800 s

2
-y
o

#CO mol / m*2 time

[=3
(=3
a

[m*3/mol/s]

n_H2Q

ptio

k_adsor,

H2Q number of moles with k_desorption_H2Q = COST

9910000.0 [EEE

991000.0 [RUEN
99100.0 VY]
9910.0

991.0
911

378e-09 378e-08 378-07 3.78¢-06 378¢-05 0.000378 0.00378
Gamma_H2Q [mol/m*2]

o
o
@

o
=
o

0.35

o=
@
t=1

#H2Q mol / m"2 time

-0.20

28,800s

[m”3/mol/s]

n_H2Q

ptio

k_adsor

HQ number of moles with k_desorption_H2Q = COST

99100000 = 019 019 019 019 019 019
04

991000.0

99100.0

9910.0

991.0

0.19

0.19

0.19

0.082

0.0053

0.19

0.19

0.19

0.082

0.19

019

0.19

0.082

0.19

019

0.19

017

0.082

0.19

0.19

0.19

017

0.082

@

o

8

n

]

E

019 [EOZE =
™

<

02E

5

017 017 =
o

I

H

0082 0083 Y

00053 00053 00053 00053 00053 00053

3.78e-09 3.78e-08 3.78e-07 3.78e-06 3.78e-05 0.000378 0.00378

Gamma_H2Q [mol/m”2]

Figure 3.27: Heatmaps for HoQ and H(Q when ki@Q is fixed.

to parameters shifting.

71

3.3.6 Experimental data fitting

The parametric sweeps are useful to understand the model and how the parameters
are affecting the simulation. In the previous subsections all the calculation has been
focused on describing the software part with no matches with real results. In this
part of the work the most uncertain input values like the forward reaction rate and
the electron transfer equilibrium adsorption coefficient are modified in order to fit
the experimental data. These values are received from the researchers collaborating
in the SoFiA project and they are representing the concentration of CO over the
time, the experimental results come from a case where no surfactant is applied at the
surface and in the case where C}2Eg (Dodecyl hexaethylene glycol) is present on the
surface at the gas-liquid interface. As mentioned one of the first parameters which
is modified in order to fit the experimental data is the forward reaction rate. In

1a-5 CD concentration: Model and Experimental
A Comsol Model kf_COZ2 = 5.e+07 a4
1.0 & Expenmental wio C12E6G A
A Comsol Model kf_CO2 = 7.e+07
A Comsol Model kf_CO2 = 6 e+07 o
E"‘ 08 F._?a-"‘__ -
E R 1 -
3 T -
2 06 Pl ~K
I-E : ."-.__.-‘-. &
=] - ik
2 04 e
= o - -
= T
o P
o A
0.2 4
00 | &
0 24465 7274 10776 13196
Time [s]

Figure 3.28: Forward reaction rate fitting experimental data without the surfactant.

Figure 3.28 the first grpahical result is depicted, the figure shows the experimental
findings without the surfactant. The experimental data have been fitted by a line
because of the scarcity of a larger number of data point which could have made
the fitting more accurate, this is probably due to the difficulty in collecting data.

72

14 1a-5 C 0 concentration: Model and Experimental
A Comsol Model kf_CO2 = 1.e+08 i
A Expenmental w C12EG
1.2 A Comsol Model kf_CO2 = 3.e+08
A Comsol Model kf_CO2 = 2 e+08
E"" 1.0
E
E‘,. Jj;.i
=08 A
[+ 5] d-_-
=3 P
E g
B 06 55
lu-? i) e
=) L
] el 4
= L =
= 04 P e
o o anm
02 AT
00 | &%
0 173 3596

Tirme [s]

Figure 3.29: Forward reaction rate fitting experimental data with the presence of sur-
factant at the interface.

The time step considered are 2446, 7274, 10776 and 13196 seconds, the green line
correspond to the experimental values while the blue, yellow and red lines come from
the COMSOL model at different k¢ values. The output which seems to be able of
reproducing better the experimental curve is 7 x 107 which is lower than what was
utilized in the previous simulations. In Figure 3.29 the same simulation is displayed,
in this case the surfactant C'5Fg is present at the interface, compared to the result
without the surfactant, the data point are even less, in fact only two concentration
values are available corresponding to 1731 and 3896 seconds, which can be attributed
to the instability issued linked to the measuremnt process. Compared to the another
case, in this simulation a larger value of ky is needed to fit the experimental data, the
numerber whihc is equal to 2 x 10® correspond to the red line. The second parameter
shown together with the experimental data in this subsection is the equilibrium
adsorption constant of Hs(), in these simulations the values of the forward reaction
rate is kept equal to the starting input value. The results shown in Figure 3.30 and
Figure 3.31 display fitting values for the constant which are way lower compared to

73

1e-5 CO concentration; Model and Experimental

A Comsol Model KH_H2Q = 8.91e-6 A
1.4 A Experimental wio C12E6 ol
A Comsol Model KH H2CQ = 9.91e-5
1.2 &
=
o
£ 10 A
[=] Lt
IE. ---J
8
< 08 &
E - =
=] L=
3086
E =" A
[J.___.-
o .
S 04 L
._.-'i.-__,.r"'—--
02 7 e
_-‘.'F’”q'
00 | &=--------- iy’ el it A
0 2446 T274 10776 13196
Time [s]

Figure 3.30: Equilibrium adsorption constant of Ho() fitting experimental data without
the surfactant.

the input values taken from the paper where the hydroquinones were adsorbing on
chemically modified bentonites. The outputs equal to 1 x 107° in the case without
surfactant and 1 x 1072 with the presence of O3 Fg are demonstrating that further
studies are needed to gain a deeper knowledge on the initial values but also on the
experimental data that are available in a too small number to determine a priori
whether the values found in the bibliography can be used in modelling the examined
monolayer or not.

4

1e-6 CO concentration: Model and Experimental

A Comsol Model KH_H2Q =991e-4 -
8 A Experimental wio C12E6 e A
& -~
L -
% 6
E Y -
% A
E 4 -) __-"FF
E =
=] o e
= - L=
8 ‘.-.-J- d.;‘-'___-
2 e
0| &7
0 173 3896
Time [3]

Figure 3.31: Equilibrium adsorption constant of Ho() fitting experimental data with the
presence of surfactant at the interface.

All the Python codes written for the data handling and the production of the
majority of the listed figures are given in Appendix A.

5

Conclusions

This study is focused on the importance of fuels to meet the global energy demand.
At the beginning the concept a photosynthetic membranes for solar fuels produc-
tion has been analyzed and described under a theoretical standpoint. A literature
research of the possible electron relays has been conducted in order to find the
parameter needed to carry out a COMSOL simulation. At first a validate model
of a buffer has been implemented and employed to describe the carbon dioxide
dissociation in aqueous solution, subsequently a 0D COMSOL model validated a
microkinetic model for homogeneous photocatalytic water oxidation with a view on
proving the reliability of the utilized software modules to reproduce the physical
phenomena. Subsequently a 1D COMSOL simulation of a surfactant monolayer,
where the carbon dioxide is reduced, has been carried out to analyze the main pa-
rameters that are affecting the yield of the process, particular attention has been
paid to the reduction forward reaction rate and on the Langmuir isotherm param-
eters of the electron relays chosen and in the end the model parameter has been
put into comparison with experimental data. There is still much work to do to find
experimental numerical input values for the model at the gas-liquid interface and
future studies may be addressed to the insertion of photoactive molecules inside the
COMSOL model of the 1D surfactant monolayer.

76

Python codes

Mass Conservation

1 #!/usr/bin/env python
2 # coding: utf-8

3

4 # In[1:

import pandas as pd

import numpy as np

import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns

sns.set (font_scale = 1.3)

7

Inl J:

data = pd.read_fwf(’data_comsol_mol.txt’)
data

In[]:

data.columns

C02

Inl J:

Cc02_sum = []

for i in range (0,data.shape[0]):

C02_sum.append(datal[’C02_conc_gas’][i] + data[’C02_conc_liq’][i] + datal[’C02_surf_conc’][il)

data[’C02_sum’]=C02_sum

In[J:

plt.figure(figsize = (12,8))
sns.set_style(’whitegrid’)

a = sns.lineplot(x = ’Time’, y = ’C02_sum’, data = data, palette = ’rainbow’, linewidth = 3)
sns.lineplot(x = ’Time’, y = ’C02_conc_gas’, data = data, linewidth = 2)

sns.lineplot(x = ’Time’, y = ’C02_conc_liq’, data = data, linewidth = 2)

sns.lineplot(x = ’Time’, y = ’C02_surf_conc’, data = data, linewidth = 2)

a.set(yscale = ’log’)

plt.xlabel(’Time [s]’, size = 15)

plt.ylabel(’C02 concentration [mol/m~2]’, size = 15)
plt.title(’C02 moles sum ’, fontweight = "bold", size = 15)
plt.legend ([’C02_sum’,’C02_gas’, ’C02_liquid’, ’CO02_surf’])
plt.x1im(-0.001,30000)

#plt.savefig(’C02_mc.PNG’,bbox_inches = "tight")
plt.savefig(’C02log_mc.PNG’,bbox_inches = "tight")
CO

Inl J:

CO_sum = []
for i in range (0,data.shape[0]):
CO_sum.append(data[’CO_conc_gas’][i] + data[’CO_conc_liq’][i] + data[’CO_surf_conc’][il)

data[’CO_sum’]=CO_sum

In[J:

plt.figure(figsize = (12,8))
sns.set_style(’whitegrid’)

a = sns.lineplot(x = ’Time’, y = ’CO_sum’, data = data, palette = ’rainbow’, linewidth = 3)
sns.lineplot(x = ’Time’, y = ’CO_conc_gas’, data = data, linewidth = 2)

sns.lineplot(x = ’Time’, y = ’CO_conc_liq’, data = data, linewidth = 2)

sns.lineplot(x = ’Time’, y = ’CO_surf_conc’, data = data, linewidth = 2)

a.set(yscale = ’log’)

plt.xlabel(’Time [s]’, size = 15)

7

85 plt.ylabel(’CO concentration [mol/m~2]’, size = 15)

86 plt.title(’CO moles sum ’, fontweight = "bold", size = 15)
87 plt.legend([’CO_sum’,’CO_gas’, ’CO0_liquid’, ’CO_surf’])
88 plt.x1im(-0.001,30000)
89
90 #plt.savefig(’CO_mc.PNG’,bbox_inches = "tight")
plt.savefig(’C0log_mc.PNG’,bbox_inches = "tight")
H2Q
In[]:

H2Q_sum = []
for i in range (0,data.shape[0]):
H2Q_sum.append(data[’H2Q_conc_1liq’]1[i] + data[’H2Q_surf_conc’]1[il)

data[’H2Q_sum’]=H2Q_sum

Inl J:

plt.figure(figsize = (12,8))
sns.set_style(’whitegrid’)

a = sns.lineplot(x = ’Time’, y = ’H2Q_sum’, data = data, palette = ’rainbow’, linewidth = 3)
sns.lineplot(x = ’Time’, y = ’H2Q_conc_liq’, data = data, linewidth = 2)

sns.lineplot(x = ’Time’, y = ’H2Q_surf_conc’, data = data, linewidth = 2)

a.set(yscale = ’log’)

plt.xlabel(’Time [s]’, size = 15)
plt.ylabel (’H2Q concentration [mol/m~2]’, size = 15)

plt.title(’H2Q moles sum ’, fontweight = "bold", size = 15)
plt.legend ([’H2Q_sum’, ’H2Q_liquid’, ’H2Q_surf’])
plt.x1im(-0.001,30000)
#plt.savefig(’H2Q_mc.PNG’,bbox_inches = "tight")
plt.savefig(’H2Qlog_mc.PNG’,bbox_inches = "tight")

HQ

In[J:

HQ_sum = []

for i in range (0,data.shape[0]):
HQ_sum.append(data[’HQ_conc_liq’]1[i] + datal[’HQ_surf_conc’][il)

data[’HQ_sum’]=HQ_sum

Inl J:

plt.figure(figsize = (12,8))
sns.set_style(’whitegrid’)

a = sns.lineplot(x = ’Time’, y = ’HQ_sum’, data = data, palette = ’rainbow’, linewidth = 3)
sns.lineplot(x = ’Time’, y = ’HQ_conc_liq’, data = data, linewidth = 2)
sns.lineplot(x = ’Time’, y = ’HQ_surf_conc’, data = data, linewidth = 2)

a.set(yscale = ’log’)
plt.xlabel(’Time [s]’, size = 15)
plt.ylabel (’HQ concentration [mol/m~2]’, size = 15)

plt.title(’HQ moles sum ’, fontweight = "bold", size = 15)
plt.legend ([’HQ_sum’, ’HQ_liquid’, ’HQ_surf’])
plt.x1im(-0.001,30000)
#plt.savefig(’HQ_mc.PNG’,bbox_inches = "tight")
plt.savefig(’HQlog_mc.PNG’,bbox_inches = "tight")

H20

In[J:

plt.figure(figsize = (12,8))
sns.set_style(’whitegrid’)

sns.lineplot(x = ’Time’, y = ’H20_conc_liq’, data = data, linewidth = 2)

a.set(yscale = ’log’)

plt.xlabel(’Time [s]’, size = 15)

plt.ylabel (’H20 concentration [mol/m~2]°’, size = 15)
plt.title(’H20 moles sum ’, fontweight = "bold", size = 15)
plt.legend ([>H20_liquid’])

plt.x1im(-0.001,30000)

#plt.savefig(’H20_mc.PNG’,bbox_inches = "tight")
plt.savefig(’H20log_mc.PNG’,bbox_inches = "tight")
In[1:

pd.options.display.max_rows = None

data

78

190
(91
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Inl J:

col = [’C02_mass [g/m~2]’, ’CO_mass [g/m~2]°, ’H2Q_mass [g/m~2]°, ’HQ_mass [g/m~2]°’,
mass = pd.DataFrame(columns = col, index = list(range (0, data.shape[0])))
PM = {’PM_C02’:44, °PM_C0’:28, ’PM_H2Q’:110, ’PM_HQ’:109, ’PM_H20’:18}
for i in range (0, mass.shape[0]):
mass [col [0]][i] = data[’C02_sum’][i] = PM[’PM_C02°]
mass [col[1]][i] = data[’CO_sum’][i] * PM[’PM_CO0’]
mass [col[2]]1[i] = data[’H2Q_sum’][i] * PM[’PM_H2Q’]
mass [col [3]]1[i] = datal’HQ_sum’][i] * PM[’PM_HQ’]
mass [col [4]1[i] = data[’H20_conc_liq’][i] * PM[’PM_H20’]

Inl 1:

mass[’SUM [g/m~2]’] = mass.sum(axis = 1)

mass = pd.concat([data[’Time’],mass], axis = 1)
In[]:
delta = []

for i in range(0,mass.shape[0]):
delta.append (mass[’SUM [g/m~2]°]1[il-mass[’SUM [g/m~2]°]1[0])

Inl 1:

mass[’delta [g/m~2]°] = delta

Inl J:
mass.set_index ([’Time’], drop = True, inplace = True)
mass

Animation H2Q each hour

#!/usr/bin/env python
coding: utf-8

In[J:

from matplotlib import animation

from IPython.display import HTML

import numpy as np

from matplotlib import pyplot

get_ipython() .run_line_magic (’matplotlib’, ’inline’)
import pandas as pd

Inl J:

start_data = pd.read_fwf (’H2Q_space_hour.txt’)
start_data

In[]:

x = start_data[’X’]
col = start_data.columns
y_0 = start_datalcol[1]]

Inl J:

fig = pyplot.figure(figsize=(8.0, 6.0))
pyplot.xlabel(’X - coordinate [m]’, size = 12)
pyplot.ylabel (’H2Q conc [mol/m~2]’, size = 12)
pyplot.title(’h H2Q spatial distribution’, size = 12, loc = ’right’)
pyplot.grid ()
pyplot.ylim (0.0, 105.0)
pyplot.x1im(0.0,0.005)
line = pyplot.plot(x, y_0, color=’tab:blue’,linewidth = 4)[0]
#line = pyplot.semilogx(x, y_ih,
#color="C0’, linestyle=’dotted’, linewidth=2) [0]

fig.tight_layout ()
Inl 1:

ts = len(col)-1
ts

In[J:

y_hist = []
y = y_0.copy ()
for i in range(0,ts):

79

’H20_mass

[g/m~2]"1]

61 y = start_datalcoll[i+1]]
62 y_hist.append(y)

65 # In[J:

68 def update_plot(m, y_hist):
69 W

70 Update the line y-data of the Matplotlib figure.
71

72 Parameters

73 B

74 n : integer

75 The time-step index.

76 y_hist : list of numpy.ndarray objects

77 The history of the numerical solution.

78 W

79 fig.suptitle(’Time step {:0>2}’.format(mn))

80 line.set_ydata(y_hist[n])

81

82

83 # In[]:

84

85

86 anim = animation.FuncAnimation(fig, update_plot,

87 frames=ts, fargs=(y_hist,),
88 interval=1000)

89 # Display the video.
90 HTML (anim.to_html5_video ())

93 # Inl[1:

96 anim.save(’H2Q_eachH.MP4’)

Animation H2Q until 1 hour

#!/usr/bin/env python
coding: utf-8

N =

U W

Inl J:

from matplotlib import animation

8 from IPython.display import HTML

9 import numpy as np

10 from matplotlib import pyplot

11 get_ipython().run_line_magic(’matplotlib’, ’inline’)
12 import pandas as pd

15 # In[1

start_data = pd.read_fwf (’H2Q_space_firsthour.txt’)
start_data

Inl J:

x = start_datal[’X’]
col = start_data.columns
y_0 = start_datal[col[1]]

In[J:

fig = pyplot.figure(figsize=(8.0, 6.0))

pyplot.xlabel (’X - coordinate [m]’, size = 12)

pyplot.ylabel (’H2Q conc [mol/m~2]’, size = 12)

pyplot.title(’H2Q spatial distribution until 1 hour’, size = 12, loc = ’right’)
pyplot.grid ()

pyplot.ylim (0.0, 105.0)
pyplot.x1im(0.0,0.005)
line = pyplot.plot(x, y_0, color=’tab:blue’,linewidth = 4)[0]
#line = pyplot.semilogx(x, y_1ih,
#color="C0’, linestyle=’dotted’, linewidth=2) [0]

fig.tight_layout ()

In[]:

51 ts = len(col)-1
52 y_hist = []
53 y = y_0.copy ()
for i in range(0,ts):
y = start_datalcol[i+1]]
6 y_hist.append(y)

59 # In[J:

62 def update_plot(n, y_hist):

64 Update the line y-data of the Matplotlib figure.

Parameters

80

68 n : integer

69 The time-step index.

70 y_hist : list of numpy.ndarray objects

7] The history of the numerical solution.
W

fig.suptitle(’Time step {:0>2}’.format(n))

line.set_ydata(y_hist[n])

Y UL W N

B I BN ENEN RN RS I
3 N

7 # Inl[1:

8

9

80 anim = animation.FuncAnimation(fig, update_plot,

81 frames=ts, fargs=(y_hist,),
82 interval=200)

83 # Display the video.
84 HTML(anim.to_html5_video ())

87 # Inl[1:

90 anim.save(’H2Q_untiliH.MP4’)

Forward reaction rate

1 #!/usr/bin/env python
coding: utf-8

In[J:

7 import pandas as pd

import numpy as np

import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns

sns.set (font_scale = 1.3)

Inl J:

data = pd.read_fwf (’kf_each_hour.txt’)

data
CO02
In[J:

markers_on = [0, 1, 2, 4, 5, 6]

Inl J:

sns.set_style(’whitegrid’)
plt.figure(figsize = (6.5,5.5))

plt.semilogx (data[’kf_C02’].unique (), data[’C02_conc_gas’][datal[’Time (s)’] == 14400], ’g+*’, markersize = 15,
markevery=markers_on, label = ’t = 14,400 s’)

plt.plot(datal[’kf_C02’].unique () [8], list(data[’C02_conc_gas’][datal[’Time (s)’] == 14400])[3], ’gX’, markersize = 12)

plt.title(’C02 concentration in the gas region vs kf_C02’, fontweight = "bold", size = 15)

plt.xlabel (’Forward Reaction Rate’, size = 15)

plt.ylabel(’°C02 moles [mol/m~2]°’, size = 15)
plt.legend ()
plt.savefig(’C02_gas_14400.PNG’,bbox_inches = "tight")

Inl 1:

plt.figure(figsize = (6.5,5.5))

plt.semilogx (data[’kf_C02’].unique (), data[’C02_conc_liq’]l[data[’Time (s)’] == 14400],°’b*’, markersize = 15,
markevery=markers_on, label = ’t = 14,400 s’)

plt.plot(datal[’kf_C02’].unique() [3], list(datal[’C02_conc_liq’][datal[’Time (s)’] == 14400])[3], ’bX’, markersize = 12)

plt.title(’C02 concentration in the liquid region vs kf_C02’, fontweight = "bold", size = 15)

53 plt.xlabel(’Forward Reaction Rate’, size = 15)

54 plt.ylabel(’C02 moles [mol/m~2]°’, size = 15)

plt.legend ()
plt.savefig(’C02_liquid_14400.PNG’,bbox_inches = "tight")

59 # In[]

62 plt.figure(figsize = (6.5,5.5))

63 plt.semilogx(datal[’kf_C02’].unique(), data[’C02_surf_conc’][datal’Time (s)’] == 14400],’r*’, markersize = 15,

64 markevery=markers_on, label = ’t = 14,400 s’)

65 plt.plot(datal[’kf_C02’].unique()[3], list(datal[’C02_surf_conc’][datal[’Time (s)’] == 14400])[3], ’rX’, markersize = 12)
66 plt.title(’002 concentration at the surface vs kf_C02’, fontweight = "bold", size = 15, loc=’right’)

67 plt.xlabel(’Forward Reaction Rate’, size = 15)

68 plt.ylabel(’C02 moles [mol/m~2]’, size = 15)

69 plt.legend()

70 plt.savefig(’C02_surface_14400.PNG’,bbox_inches = "tight")

CO

In[J:

0O U W

R B RN N RS I

sns.set_style(’whitegrid’)

81

plt.figure(figsize = (6.5,5.5))

plt.semilogx(data[’kf_C02’].unique (), datal[’CO_conc_gas’][datal[’Time (s)’] == 14400], ’g*’, markersize = 15,
markevery=markers_on, label = ’t = 14,400 s’)
plt.plot(datal[’kf_C02’].unique () [3], list(datal[’CO_conc_gas’][datal[’Time (s)’] 14400]1) [3], ’gX’, markersize = 12)

plt.title(’CO0 concentration in the gas region vs kf_C02’, fontweight = "bold", size = 15)
plt.xlabel (’Forward Reaction Rate’, size = 15)

plt.ylabel(’CO moles [mol/m~2]’, size = 15)

plt.legend ()

plt.savefig(’C0_gas_14400.PNG’,bbox_inches = "tight")

In[]:

plt.figure(figsize = (6.5,5.5))

plt.semilogx(datal[’kf_C02’].unique(), datal[’CO_conc_liq’][datal[’Time (s)’] == 14400],’b*’, markersize = 15,
markevery=markers_on, label = ’t = 14,400 s’)

plt.plot(datal[’kf_C02’].unique () [8], list(datal[’CO_conc_liq’][datal[’Time (s)’] == 14400]) [3], ’bX’, markersize = 12)

plt.title(’CO0 concentration in the liquid region vs kf_C02’, fontweight = "bold", size = 15)

plt.xlabel(’Forward Reaction Rate’, size = 15)
plt.ylabel(’CO moles [mol/m~2]’, size = 15)

plt.legend ()
plt.savefig(’C0_liquid_14400.PNG’,bbox_inches = "tight")

In[J:

plt.figure(figsize = (6.5,5.5))

plt.semilogx(datal[’kf_C02’].unique(), datal[’CO_surf_conc’][datal[’Time (s)’] == 14400],’r*’, markersize = 15,
markevery=markers_on, label = ’t = 14,400 s’)

plt.plot(datal[’kf_C02’].unique() [3], list(datal[’CO_surf_conc’][datal[’Time (s)’] == 14400])[3], ’rX’, markersize = 12)

plt.title(’C0 concentration at the surface vs kf_C02’, fontweight = "bold", size = 15, loc=’right’)

plt.xlabel (’Forward Reaction Rate’, size = 15)
plt.ylabel(’°CO moles [mol/m~2]’, size = 15)

plt.legend ()
plt.savefig(’CO_surface_14400.PNG’,bbox_inches = "tight")
H2Q

Inl J:

plt.figure(figsize = (6.5,5.5))

plt.semilogx(data[’kf_C02’].unique(), datal[’H2Q_conc_liq’][datal[’Time (s)’] == 14400],’b*’, markersize = 15,
markevery=markers_on, label = ’t = 14,400 s’)

plt.plot(datal[’kf_C02’].unique() [3], list(datal[’H2Q_conc_liq’][datal[’Time (s)’] == 14400])[3], ’bX’, markersize = 12)

plt.title(’H2Q concentration in the liquid region vs kf_C02’, fontweight = "bold", size = 15)

plt.xlabel (’Forward Reaction Rate’, size = 15)

plt.ylabel (’H2Q moles [mol/m~2]’, size = 15)

plt.legend ()
plt.savefig(’H2Q_liquid_14400.PNG’,bbox_inches = "tight")

Inl J:

plt.figure(figsize = (6.5,5.5))

plt.semilogx(data[’kf_C02’].unique(), datal[’H2Q_surf_conc’][datal[’Time (s)’] == 14400],°’r*’, markersize = 15,
markevery=markers_on, label = ’t = 14,400 s’)

plt.plot(datal[’kf_C02’].unique () [3], list(data[’H2Q_surf_conc’][datal’Time (s)’] == 14400])[3], ’rX’, markersize = 12)

plt.title (’H2Q concentration at the surface vs kf_C02’, fontweight = "bold", size = 15, loc=’right’)

plt.xlabel (’Forward Reaction Rate’, size = 15)

plt.ylabel (’H2Q moles [mol/m~2]’, size = 15)

plt.legend ()
plt.savefig(’H2Q_surface_14400.PNG’,bbox_inches = "tight")
HQ

Inl J:

plt.figure(figsize = (6.5,5.5))

plt.semilogx (datal[’kf_C02’].unique (), datal[’HQ_conc_liq’]l[datal[’Time (s)’] == 14400],°’b*’, markersize = 15,
markevery=markers_on, label = ’t = 14,400 s’)

plt.plot(datal[’kf_C02’].unique() [3], list(datal[’HQ_conc_liq’][datal[’Time (s)’] == 14400]) [3], ’bX’, markersize = 12)

plt.title(’HQ concentration in the liquid region vs kf_C02’, fontweight = "bold", size = 15)

plt.xlabel (’Forward Reaction Rate’, size = 15)
plt.ylabel (’HQ moles [mol/m~2]’, size = 15)

plt.legend ()
plt.savefig(’HQ_liquid_14400.PNG’,bbox_inches = "tight")

Inl J:

plt.figure(figsize = (6.5,5.5))

plt.semilogx(data[’kf_C02’].unique(), data[’HQ_surf_conc’][datal[’Time (s)’] == 14400],°’r*’, markersize = 15,
markevery=markers_on, label = ’t = 14,400 s’)

plt.plot(datal[’kf_C02’].unique () [3], list(datal[’HQ_surf_conc’][datal[’Time (s)’] == 14400]) [3], ’rX’, markersize = 12)

plt.title(’HQ concentration at the surface vs kf_C02’, fontweight = "bold", size = 15, loc=’right’)

plt.xlabel (’Forward Reaction Rate’, size = 15)

plt.ylabel (’HQ moles [mol/m~2]’, size = 15)
plt.legend ()
plt.savefig(’HQ_surface_14400.PNG’,bbox_inches = "tight")

Forward reaction rate animation through time

#!/usr/bin/env python
coding: utf-8

In[J:

1
2
3
4
5

82

10

from matplotlib import animation

from IPython.display import HTML

import numpy as np

from matplotlib import pyplot

get_ipython() .run_line_magic(’matplotlib’, ’inline’)
import pandas as pd

In[J:

pd.options.display.max_rows = None
pyplot.rcParams[’font.family’] = ’serif’
pyplot.rcParams[’font.size’] = 16

start_data = pd.read_fwf (’ROBBA.txt’)
start_data

In[]:

start_data[’C02_sum’] = start_datal[[’C02_conc_gas’,’C02_conc_1liq’,’C02_surf_conc’]].sum(axis=1)
start_data[’CO_sum’] = start_datal[[’CO_conc_gas’,’CO_conc_1liq’,’CO_surf_conc’]].sum(axis=1)
start_data[’H2Q_sum’] = start_datal[[’H2Q_conc_liq’,’H2Q_surf_conc’]].sum(axis=1)
start_data[’HQ_sum’] = start_datal[[’HQ_conc_liq’,’HQ_surf_conc’]].sum(axis=1)

CO02

Inl 1:

x = start_datal[’kf_C02°].unique ()
y-1h = start_data[’C02_sum’][start_data[’Time (s)’] == 0]

Inl J:

fig = pyplot.figure(figsize=(8.0, 6.0))

pyplot.xlabel (’Forward reaction rate’, size = 12)

pyplot.ylabel (’C02_conc [mol/m~2]’, size = 12)

pyplot.title(’h total # of CO02 moles vs kf_C02’, size = 11, loc = ’right’)
pyplot.grid ()

pyplot.ylim(0.300, 0.410)

line = pyplot.semilogx(x, y_ih,’g*’, color=’tab:orange’, markersize = 15) [0]
#line = pyplot.semilogx(x, y_ih,
#color=’C0’, linestyle=’dotted’, linewidth=2) [0]

fig.tight_layout ()
Inl J:

time_step = start_datal’Time (s)’]. unique()
ts = len(time_step)

y_hist = []

y = y_th.copy (O

for i in range(0,ts):
y = start_data[’C02_sum’][start_datal[’Time (s)’] == time_stepl[i]]
y_hist.append(y)

Inl J:

def update_plot(m, y_hist):

nun

Update the line y-data of the Matplotlib figure.

Parameters
n : integer
The time-step index.
y_hist : list of numpy.ndarray objects

The history of the numerical solution.
W

fig.suptitle(’Time step {:0>2}’.format(n))
line.set_ydata(y_hist[n])

Inl J:

anim = animation.FuncAnimation(fig, update_plot,
frames=ts, fargs=(y_hist,),
interval=1000)

Display the video.

HTML (anim.to_html5_video ())

In[J:
anim.save (’C02_kf .MP4’)

CO

Inl J:

83

13 y_1h = start_datal[’CO_sum’][start_datal[’Time (s)’]

[}
n
=}
=

116 # In[1:

19 fig = pyplot.figure(figsize=(8.0, 6.0))

120 pyplot.xlabel (’Forward reaction rate’, size = 12)

pyplot.ylabel(’CO_conc [mol/m~2]°, size = 12)

pyplot.title(’h total # of CO moles vs kf_C02’, size = 11, loc = ’right’)
pyplot.grid ()

pyplot.ylim(-0.010, 0.100)
line = pyplot.semilogx(x, y_ih,’g*’, color=’tab:purple’, markersize = 15) [0]
#line = pyplot.semilogx(x, y_ih,

#color=’C0’, linestyle=’dotted’, linewidth=2) [0]

fig.tight_layout ()

In[]:

time_step = start_datal[’Time (s)’]. unique()
ts = len(time_step)

y_hist = []

y = y_th.copy (O
for i in range(0,ts):

y = start_datal[’CO_sum’][start_datal[’Time (s)’] == time_stepl[ill

|44 y_hist.append(y)
|45
|46
147 # In[1:
|48
|49
50 def update_plot(n, y_hist):
151 fig.suptitle(’Time step {:0>2}’.format(n))
152 line.set_ydata(y_hist[n])
153
|54
155 # In[1:
156

anim = animation.FuncAnimation(fig, update_plot,

frames=ts, fargs=(y_hist,),
interval=1000)

Display the video.

HTML (anim.to_html5_video ())

Inl J:

anim.save (’CO_kf .MP4’)

H2Q

In[J:

y-1h = start_data[’H2Q_sum’][start_data[’Time (s)’] == 0]

Inl J:

fig = pyplot.figure(figsize=(8.0, 6.0))

pyplot.xlabel (’Forward reaction rate’, size = 12)

pyplot.ylabel (’H2Q_conc [mol/m~2]’, size = 12)

pyplot.title(’h total # of H2Q moles vs kf_C02’, size = 11, loc = ’right’)

pyplot.grid ()
pyplot.ylim(0.300, 0.510)
line = pyplot.semilogx(x, y_1h,’g*’, color=’tab:cyan’, markersize = 15) [0]
#line = pyplot.semilogx(x, y_ih,
#color="C0’, linestyle=’dotted’, linewidth=2) [0]

fig.tight_layout ()

Inl J:

time_step = start_datal[’Time (s)’]. unique()
ts = len(time_step)

y_hist = []

y = y_ih.copy O

for i in range(0,ts):
y = start_datal[’H2Q_sum’][start_datal[’Time (s)’] == time_stepl[il]
y_hist.append (y)

Inl 1:

212

’13 def update_plot(n, y_hist):
214 fig.suptitle(’Time step {:0>2}’.format(n))
215 line.set_ydata(y_hist[n])

84

Inl J:

anim = animation.FuncAnimation(fig, update_plot,
frames=ts, fargs=(y_hist,),
interval=1000)

Display the video.

HTML (anim.to_html6_video ())

In[]:

anim.save (’H2Q_kf .MP4’)

HQ

Inl J:

y_1h = start_data[’HQ_sum’][start_datal[’Time (s)’] == 0]

In[J:

fig = pyplot.figure(figsize=(8.0, 6.0))

pyplot.xlabel (’Forward reaction rate’, size = 12)
pyplot.ylabel (’HQ_conc [mol/m~2]°’, size = 12)
pyplot.title(’h total # of HQ moles vs kf_C02’, size = 11, loc = ’right’)

pyplot.grid ()
pyplot.ylim(-0.010, 0.200)

line = pyplot.semilogx(x, y_1h,’g*’, color=’tab:olive’, markersize = 15) [0]
#line = pyplot.semilogx(x, y_ih,
#color="C0’, linestyle=’dotted’, linewidth=2) [0]

fig.tight_layout ()

In[J:

time_step = start_datal[’Time (s)’]. unique()
ts = len(time_step)

y_hist = []

y = y_1h.copy)

for i in range(0,ts):
y = start_datal[’HQ_sum’][start_data[’Time (s)’] == time_stepl[ill
y_hist.append(y)

Inl J:

def update_plot(n, y_hist):
fig.suptitle(’Time step {:0>2}’.format(n))
line.set_ydata(y_hist[n])

Inl 1:

anim = animation.FuncAnimation(fig, update_plot,
frames=ts, fargs=(y_hist,),
interval=1000)

Display the video.

HTML (anim.to_html5_video ())

Inl J:

anim.save (’HQ_kf .MP4’)

Heatmap CO2 case 1

#!/usr/bin/env python
coding: utf-8

In[J:

1
2
3
1
5
6

-

import pandas as pd

8 import numpy as np

9 import statsmodels.api as sm

10 import matplotlib.pyplot as plt
11 import seaborn as sns

12 sns.set(font_scale = 1.3)

15 # Inl[1:

18 start_data = pd.read_fwf(’all_CO02_KH_Gamma.txt’)
19 start_data

2 # Inl[J:
3

85

C02_sum = []
for i in range (0,start_data.shape[0]):
C02_sum.append (start_datal[’C02_conc_gas’][i] + start_data[’C02_conc_1liq’]1[i] + start_datal[’C02_surf_conc’][il)
start_data[’C02_sum’]=C02_sum
CO_sum = []
for i in range (0,start_data.shapel[0]):
CO_sum.append(start_datal[’CO_conc_gas’][i] + start_datal[’CO_conc_1liq’][i] + start_datal[’CO_surf_conc’][i])
start_data[’CO_sum’]=C0O_sum
H2Q_sum = []
for i in range (0,start_data.shapel[0]):
H2Q_sum.append(start_data[’H2Q_conc_liq’][i] + start_datal[’H2Q_surf_conc’][i])
start_data[’H2Q_sum’]=H2Q_sum
HQ_sum = []
for i in range (0,start_data.shape[0]):

HQ_sum.append(start_data[’HQ_conc_1liq’][i] + start_datal[’HQ_surf_conc’][il)

start_data[’HQ_sum’]=HQ_sum

In[J:

start_data

Inl 1:

datal = start_data[[’Gamma_sC02’,’KH_C02’,’C02_sum’]]

Inl J:

k_des = int (10000)

K_ads = []

for i in range (0,datal.shapel[0]):
K_ads.append(datal [’KH_C02°][i] *k_des)

datal[’K_adsorption’] = pd.Series(K_ads)

Inl 1:

datal.drop([’KH_C02’], axis = 1, inplace = True)

Inl J:

row =[]

n_values = 7

for i in range (0,n_values):
row.append (round (K_ads [i],6))

col = datal[’Gamma_sC02’].unique()
row.reverse ()

91 # In[1:

94 data2 = pd.DataFrame(columns = col, index = row)
95 data2

98 # In[J:

01 start = 0

02 end = n_values

03 for i in range (0,len(col)):
|04 todf = CO02_sum[start:end]
105 todf.reverse ()

06 data2[col[i]] = todf
107 start = start+n_values
108 end = end+n_values

109

110 data2

111

|12

Inl J:

plt.figure(figsize = (10,8))

sns.heatmap(data2, annot = True, cmap = ’viridis’, linewidths=.5, cbar_kws={’label’: ’#C02 mol / m~2 time = 28,800 s’})
plt.title(’C02 number of moles with k_desorption_C02 = COST’, size = 20, fontweight="bold")

plt.xlabel (’Gamma_C02 [mol/m~2]°, size = 20)

plt.ylabel(’k_adsorption_C02 [m~3/mol/s]’, size = 20)

#plt.savefig(’C02_3_heatmap_varC02.PNG’,bbox_inches = "tight")

Inl 1:

data3 = data2.copy ()
start = 0

86

29 end = n_values

30 for i in range (0,len(col)):
|31 todf = CO_sum[start:end]
todf.reverse ()
data3[col[il] = todf

start = start+n_values
end = end+n_values
data3
In[]:

plt.figure(figsize = (10,8))

sns.heatmap(data3, annot = True, cmap = ’crest’, linewidths=.5, cbar_kws={’label’: ’#C0 mol / m~2 time = 28,800 s’})
plt.title(’CU number of moles with k_desorption_C02 = COST’, size = 20, fontweight=“bold")

plt.xlabel(’Gamma_C02 [mol/m~2]°, size = 20)

plt.ylabel(’k_adsorption_C02 [m~3/mol/s]’, size = 20)

#plt.savefig(’C0_3_heatmap_varC02.PNG’,bbox_inches = "tight")

H2Q

Inl J:

56 data4 = data2.copy()

57 start = 0

58 end = n_values

59 for i in range (0,len(col)):
160 todf = H2Q_sum[start:end]
161 todf .reverse ()

(62 data4[col[il] = todf

163 start = start+n_values
164 end = end+n_values

66 data4

69 # In[]:

|71
72 plt.figure(figsize = (10,8))
73 sns.heatmap(data4, annot = True, cmap = ’Blues’, linewidths=.5, cbar_kws={’label’: ’#H2Q mol / m"2 time = 28,800 s’})

|74 plt.title(’H2Q number of moles with k_desorption_C02 = COST’, size = 20, fontweight="bold")
|75 plt.xlabel(’Gamma_C02 [mol/m~2]°, size = 20)

|76 plt.ylabel(’k_adsorption_C02 [m~3/mol/s]’, size = 20)

|77 #plt.savefig(’H2Q_3_heatmap_varC02.PNG’,bbox_inches = "tight")

180 # ## HQ

182 # In[1:

85 data5 = data2.copy()
86 start = 0

|87 end = n_values

8% for i in range (0,len(col)):

| 89 todf = HQ_sum[start:end]

190 todf .reverse ()

191 datab[col[il] = todf
start = start+n_values
end = end+n_values

95 datab

198 # In[1:

201 plt.figure(figsize = (10,8))

202 sns.heatmap(datab, annot = True, cmap = ’Greens’, linewidths=.5, cbar_kws={’label’: ’#HQ mol / m"2 time = 28,800 s’})
203 plt.title(’HQ number of moles with k_desorption_C02 = COST’, size = 20, fontweight="bold")

204 plt.xlabel(’Gamma_C02 [mol/m~2]’, size = 20)

205 plt.ylabel(’k_adsorption_C02 [m~3/mol/s]’, size = 20)

206 #plt.savefig(’HQ_3_heatmap_varC02.PNG’,bbox_inches = "tight")

Heatmap CO case 1

#!/usr/bin/env python
coding: utf-8

In[J:

import pandas as pd

8 import numpy as np

9 import matplotlib.pyplot as plt
10 import seaborn as sns

11 sns.set(font_scale = 1.3)

) N O UL W N =

14 # Inl[1:

17 start_data = pd.read_fwf(’all_CO_KH_Gamma.txt’)
18 start_data

21 # In[J:

C02_sum = []

87

for i in range (0,start_data.shapel[0]):

C02_sum.append (start_datal[’C02_conc_gas’][i] + start_data[’C02_conc_liq’]1[i] + start_datal[’C02_surf_conc’][il)

start_data[’C02_sum’]=C02_sum

CO_sum = []
for i in range (0,start_data.shape[0]):

CO_sum.append(start_data[’CO_conc_gas’]J[i] + start_data[’CO_conc_liq’][i] + start_data[’CO_surf_conc’]J[i])

start_data[’CO_sum’]=C0O_sum

H2Q_sum = []
for i in range (0,start_data.shape[0]):
H2Q_sum.append(start_data[’H2Q_conc_liq’][i] + start_datal[’H2Q_surf_conc’][i])

start_data[’H2Q_sum’]=H2Q_sum

HQ_sum = []
for i in range (0,start_data.shapel[0]):
HQ_sum.append(start_data[’HQ_conc_1iq’]1[i] + start_data[’HQ_surf_conc’][i])

start_data[’HQ_sum’]=HQ_sum

In[]:

k_des = int (10000)
K_ads =

for i in range (0,start_data.shape[0]):
K_ads.append(start_data[’KH_CO0’]1[i] *k_des)

Inl J:

row =[]

n_values = 7

for i in range (0,n_values):
row.append (round (K_ads[i],6))

col = start_data[’Gamma_sC0’].unique ()
col = np.round_(col, decimals = 11)
row.reverse ()

C02

Inl 1:

datal = pd.DataFrame(columns = col, index = row)
datal

Inl J:

start = 0

end = n_values

for i in range (0,len(col)):
todf = CO2_sum[start:end]
todf.reverse ()
datal[col[i]] = todf

start = start+n_values
end = end+n_values
datal
Inl J:

plt.figure(figsize = (10,8))

sns.heatmap(datal, annot = True, cmap = ’viridis’, vmax = max(C02_sum), vmin = max(CO02_sum),

time = 28,800 s’})
plt.title(’C02 number of moles with k_desorption_CO = COST’, size = 20, fontweight
plt.xlabel (’Gamma_CO0 [mol/m~2]°, size = 20)
plt.ylabel (’k_adsorption_CO0 [m~3/mol/s]’, size = 20)
plt.savefig(’C02_3_heatmap_varCO.PNG’,bbox_inches = "tight")

CO

Inl J:

data2 = datal.copy()

start = 0

end = n_values

for i in range (0,len(col)):
todf = CO_sum[start:end]
todf.reverse ()
data2[col[i]] = todf

start = start+n_values
end = end+n_values
data2
Inl 1:

plt.figure(figsize = (10,8))

88

"bold")

linewidths=.5,

cbar_kws={’label’:

’#C02

mol / m~2

29 sns.heatmap(data2, annot = True, cmap = ’crest’, vmax = max(CO_sum), vmin = max(CO_sum), linewidths=.5, cbar_kws={’label’: ’#C0 mol / m"2 time =
28,800 s’})

130 plt.title(’CO number of moles with k_desorption_CO = COST’, size = 20, fontweight = "bold")

131 plt.xlabel(’Gamma_CO0 [mol/m~2]°, size = 20)

132 plt.ylabel(’k_adsorption_CO0 [m~3/mol/s]l’, size = 20)

133 plt.savefig(’C0_3_heatmap_varCO.PNG’,bbox_inches = "tight")
[34

H2Q

In[J:

data3 = datal.copy()

start = 0

end = n_values

for i in range (0,len(col)):
todf = H2Q_sum[start:end]
todf.reverse ()
data3[col[il] = todf

start = start+n_values
end = end+n_values
data3
In[J:

plt.figure(figsize = (10,8))

sns.heatmap(data3, annot = True, cmap = ’Blues’, vmax = max(H2Q_sum), vmin = max(H2Q_sum), linewidths=.5, cbar_kws={’label’: ’#H2Q mol / m"2 time
= 28,800 s’})
|59 plt.title(’H2Q number of moles with k_desorption_CO = COST’, size = 20, fontweight = "bold")

60 plt.xlabel(’Gamma_CO [mol/m~2]’, size = 20)
61 plt.ylabel(’k_adsorption_CO [m~3/mol/s]’, size = 20)
62 plt.savefig(’H2Q_3_heatmap_varCO.PNG’,bbox_inches = "tight")

65 # ## HQ

67 # In[]:

data4 = datal.copy ()

start = 0

end = n_values

for i in range (0,len(col)):
todf = HQ_sum[start:end]
todf.reverse ()
data4[col[il] = todf

start = start+n_values
end = end+n_values
data4

183 # In[1:

(84
|85
86 plt.figure(figsize = (10,8))
|87 sns.heatmap(data4, annot = True, cmap = ’Greens’, vmax = max(HQ_sum), vmin = max(HQ_sum), linewidths=.5, cbar_kws={’label’: ’#HQ mol / m"2 time =
28,800 s’})
plt.title (’HQ number of moles with k_desorption_CO = COST’, size = 20, fontweight = "bold")

plt.xlabel (’Gamma_CO [mol/m~2]°’, size = 20)
plt.ylabel(’k_adsorption_CO0 [m~3/mol/s]’, size = 20)
plt.savefig(’HQ_3_heatmap_varCO.PNG’,bbox_inches = "tight")

Heatmap H2Q) case 1

#!/usr/bin/env python
coding: utf-8

Inl 1:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

sns.set (font_scale = 1.3)

In[J:

start_data = pd.read_fwf(’all_H2Q_KH_Gamma.txt’)
start_data

Inl 1:

C02_sum = []
for i in range (0,start_data.shapel[0]):
C02_sum.append (start_datal[’C02_conc_gas’][i] + start_data[’C02_conc_1liq’]1[i] + start_datal[’C02_surf_conc’][il)

start_data[’C02_sum’]=C02_sum
CO_sum = []

for i in range (0,start_data.shapel[0]):
CO_sum.append(start_datal[’CO_conc_gas’][i] + start_datal[’CO_conc_1liq’][i] + start_datal[’CO_surf_conc’][i])

start_data[’CO_sum’]=C0O_sum

H2Q_sum = []

89

for i in range (0,start_data.shapel[0]):
H2Q_sum.append(start_data[’H2Q_conc_1liq’]1[i] + start_data[’H2Q_surf_conc’][il)

start_data[’H2Q_sum’]=H2Q_sum
HQ_sum = []
for i in range (0,start_data.shape[0]):

HQ_sum.append(start_data[’HQ_conc_liq’][i] + start_datal[’HQ_surf_conc’][il])

start_data[’HQ_sum’]=HQ_sum

In[]:

52 k_des = int (10000)
53 K_ads = []
I for i in range (0,start_data.shape[0]):
55 K_ads.append(start_data[’KH_H2Q’]1[i] *k_des)

Inl J:

row =[]

n_values = 7

for i in range (0,n_values):
row.append (round (K_ads[i],6))

col = start_datal[’Gamma_sH2Q’].unique ()
col = np.round_(col, decimals = 11)
row.reverse ()

Inl J:
datal = pd.DataFrame(columns = col, index = row)

C02

In[]:

start = 0

end = n_values

for i in range (0,len(col)):
todf = CO2_sum[start:end]
todf.reverse ()
datallcol[il] = todf

start = start+n_values
end = end+n_values
datal
Inl J:

plt.figure(figsize = (10,8))

sns.heatmap (datal, annot = True, cmap = ’viridis’, linewidths=.5, cbar_kws={’label’: ’#C02 mol / m"2 time = 28,800 s’})
plt.title(’C02 number of moles with k_desorption_H2Q = COST’, size = 20, fontweight="bold")

plt.xlabel (’Gamma_H2Q [mol/m~2]°’, size = 20)

plt.ylabel(’k_adsorption_H2Q [m~3/mol/s]l’, size = 20)

plt.savefig(’C02_3_heatmap_varH2Q.PNG’,bbox_inches = "tight")

CO

Inl J:

data2 = datal.copy()

start = 0

end = n_values

for i in range (0,len(col)):
todf = CO_sum[start:end]
todf.reverse ()
data2[col[i]] = todf

start = start+n_values
end = end+n_values
data2
In[]:

plt.figure(figsize = (10,8))

sns.heatmap(data2, annot = True, cmap = ’crest’, linewidths=.5, cbar_kws={’label’: ’#C0 mol / m"2 time = 28,800 s’})
plt.title(’CO0 number of moles with k_desorption_H2Q = COST’, size = 20, fontweight="bold")

plt.xlabel (’Gamma_H2Q [mol/m~2]°, size = 20)

plt.ylabel(’k_adsorption_H2Q [m~3/mol/s]’, size = 20)

plt.savefig(’C0_3_heatmap_varH2Q.PNG’,bbox_inches = "tight")

H2Q
Inl 1:
data3 = datal.copy()

start = 0
end = n_values

90

for i in range (0,len(col)):
todf = H2Q_sum[start:end]
todf .reverse ()
data3[col[i]l] = todf

start = start+n_values
end = end+n_values
data3
In[J:

plt.figure(figsize = (10,8))

sns.heatmap(data3, annot = True, cmap = ’Blues’, linewidths=.5, cbar_kws={’label’: ’#H2Q mol / m"2 time = 28,800 s’})
plt.title (’H2Q number of moles with k_desorption_H2Q = COST’, size = 20, fontweight="bold”)

plt.xlabel(’Gamma_H2Q [mol/m~2]’, size = 20)

plt.ylabel(’k_adsorption_H2Q [m~3/mol/s]’, size = 20)

plt.savefig(’H2Q_3_heatmap_varH2Q.PNG’,bbox_inches = "tight")

HQ

Inl J:

data4 = datal.copy ()

start = 0

end = n_values

for i in range (0,len(col)):
todf = HQ_sum[start:end]
todf.reverse ()
data4[col[il] = todf

start = start+n_values
end = end+n_values
data4
Inl J:

plt.figure(figsize = (10,8))

sns.heatmap (data4, annot = True, cmap = ’Greens’, linewidths=.5, cbar_kws={’label’: ’#HQ mol / m"2 time = 28,800 s’})
plt.title (’HQ number of moles with k_desorption_H2Q = COST’, size = 20, fontweight="bold")

plt.xlabel (’Gamma_H2Q [mol/m~2]°, size = 20)

plt.ylabel(’k_adsorption_H2Q [m~3/mol/s]l’, size = 20)

plt.savefig(’HQ_3_heatmap_varH2Q.PNG’,bbox_inches = "tight")

Heatmap HQ case 1

#!/usr/bin/env python
coding: utf-8

Inl 1:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

sns.set (font_scale = 1.3)

Inl J:

start_data = pd.read_fwf(’all_HQ_KH_Gamma.txt’)
start_data

Inl 1:

C02_sum = []
for i in range (0,start_data.shapel[0]):
C02_sum.append (start_datal[’C02_conc_gas’][i] + start_data[’C02_conc_liq’][i] + start_datal[’C02_surf_conc’][il)

start_data[’C02_sum’]=C02_sum
CO_sum = []
for i in range (0,start_data.shape[0]):
CO_sum.append(start_datal[’CO_conc_gas’][i] + start_datal[’CO_conc_1liq’][i] + start_datal[’CO_surf_conc’][i])
start_data[’CO_sum’]=CO_sum
H2Q_sum = []
for i in range (0,start_data.shape[0]):
H2Q_sum.append(start_data[’H2Q_conc_liq’][i] + start_data[’H2Q_surf_conc’][i])
start_data[’H2Q_sum’]=H2Q_sum
HQ_sum = []
for i in range (0,start_data.shapel[0]):

HQ_sum.append(start_data[’HQ_conc_1iq’]1[i] + start_data[’HQ_surf_conc’][i])

start_data[’HQ_sum’]=HQ_sum
In[J:

k_des = int (10000)
K_ads =

for i in range (0,start_data.shape[0]):

91

K_ads.append(start_data[’KH_HQ’]1[i]l *k_des)

Inl J:

row =[]

n_values = 7

for i in range (0,n_values):
row.append (round (K_ads [i],6))

col = start_datal[’Gamma_sHQ’].unique ()
col = np.round_(col, decimals = 11)
row.reverse ()

Inl J:

datal = pd.DataFrame(columns = col, index = row)

CO02

In[]:

start = 0

end = n_values

for i in range (0,len(col)):
todf = CO2_sum[start:end]
todf.reverse ()
datallcol[il] = todf

start = start+n_values
end = end+n_values
datal
Inl J:

plt.figure(figsize = (10,8))

sns.heatmap (datal, annot = True, cmap = ’viridis’, vmax = max(C02_sum), vmin = max(CO02_sum), linewidths=.5, cbar_kws={’label’: ’#C02 mol / m"2
time = 28,800 s’})
99 plt.title(’C02 number of moles with k_desorption_HQ = COST’, size = 20, fontweight = "bold")

100 plt.xlabel(’Gamma_HQ [mol/m~2]°’, size = 20)

01 plt.ylabel(’k_adsorption_HQ [m~3/mol/s]l’, size = 20)

02 plt.savefig(’C02_3_heatmap_varHQ.PNG’,bbox_inches = "tight")
05 # ## CO

07 # In[1:

10 data2 = datal.copy()
11 start = 0

|12 end = n_values

13 for i in range (0,len(col)):

|14 todf = CO_sum[start:end]

(15 todf .reverse ()

116 data2[col[i]] = todf

117 start = start+n_values

118 end = end+n_values

119

20 data2

121

(22

(23 # In[1:

|24

125

126 plt.figure(figsize = (10,8))

|27 sns.heatmap(data2, annot = True, cmap = ’crest’, vmax = max(CO_sum), vmin = max(CO_sum), linewidths=.5, cbar_kws={’label’: ’#C0 mol / m"2 time =
28,800 s’})

plt.title(’CO number of moles with k_desorption_HQ = COST’, size = 20, fontweight = "bold")
plt.xlabel (’Gamma_HQ [mol/m~2]’, size = 20)

plt.ylabel(’k_adsorption_HQ [m~3/mol/s]’, size = 20)
plt.savefig(’C0_3_heatmap_varHQ.PNG’,bbox_inches = "tight")

H2Q

Inl 1:

data3 = datal.copy ()

start = 0

end = n_values

for i in range (0,len(col)):
todf = H2Q_sum[start:end]
todf.reverse ()
data3[col[i]] = todf

start = start+n_values
end = end+n_values
49 data3

152 # In[]:

55 plt.figure(figsize = (10,8))
56 sns.heatmap(data3, annot = True, cmap = ’Blues’, vmax = max(H2Q_sum), vmin = max(H2Q_sum), linewidths=.5, cbar_kws={’label’: ’#H2Q mol / m"2 time
= 28,800 s’})

92

plt.title (’H2Q number of moles with k_desorption_HQ = COST’, size = 20, fontweight = "bold")
plt.xlabel (’Gamma_HQ [mol/m~2]’°, size = 20)

plt.ylabel (’k_adsorption_HQ [m~3/mol/s]l’, size = 20)
plt.savefig(’H2Q_3_heatmap_varHQ.PNG’,bbox_inches = "tight")

HQ

In[J:

datad = datal.copy()

start = 0

end = n_values

for i in range (0,len(col)):
todf = HQ_sum[start:end]
todf.reverse ()
data4[col[il] = todf

start = start+n_values
end = end+n_values
data4
In[]:

plt.figure(figsize = (10,8))

sns.heatmap (data4, annot = True, cmap = ’Greens’, vmax = max(HQ_sum), vmin = max(HQ_sum), linewidths=.5, cbar_kws={’label’: ’#HQ mol / m"2 time =
28,800 s’})
86 plt.title(’HQ number of moles with k_desorption_HQ = COST’, size = 20, fontweight = "bold")

plt.xlabel(’Gamma_HQ [mol/m~2]°, size = 20)
|88 plt.ylabel(’k_adsorption_HQ [m~3/mol/sl’, size = 20)
|89 plt.savefig(’HQ_B_heatmap_varHQ‘PNG’,bbox_inches = "tight")

Heatmap CO2 case 2

1 #!/usr/bin/env python
2 # coding: utf-8

4 # In[J:

import pandas as pd

& import numpy as np

9 import statsmodels.api as sm

10 import matplotlib.pyplot as plt

11 import seaborn as sns
12 sns.set(font_scale = 1.3)

15 # In[]

start_data = pd.read_fwf(’all_C02_Kads_Gamma.txt’)
start_data

Inl J:

Cc02_sum = []
for i in range (0,start_data.shape[0]):
C02_sum.append (start_datal[’C02_conc_gas’][i] + start_data[’C02_conc_1liq’][i] + start_datal[’C02_surf_conc’][il])
start_data[’C02_sum’]=C02_sum
CO_sum = []
for i in range (0,start_data.shape[0]):
CO_sum.append (start_data[’CO_conc_gas’][i] + start_datal[’CO_conc_liq’][i] + start_data[’CO_surf_conc’][i])
start_data[’CO_sum’]=C0O_sum
H2Q_sum = []
for i in range (0,start_data.shapel[0]):
H2Q_sum.append(start_data[’H2Q_conc_liq’]1[i] + start_data[’H2Q_surf_conc’][il])
start_data[’H2Q_sum’]=H2Q_sum
HQ_sum = []
for i in range (0,start_data.shape[0]):

HQ_sum.append(start_data[’HQ_conc_1liq’][i] + start_datal[’HQ_surf_conc’][il])

start_data[’HQ_sum’]=HQ_sum

In[]:

L row =[]
54 n_values = 7
55 for i in range (0,n_values):
5 row.append (round(start_datal[’k_adsC02’]1[i],6))

58 col = start_datal[’Gamma_sC02°’].unique ()
59 row.reverse ()

62 # In[J:

65 data2 = pd.DataFrame(columns = col, index = row)

7 start = 0
68 end = n_values

93

69 for i in range (0,len(col)):
todf = CO2_sum[start:end]
todf .reverse ()
data2[col[il]] = todf

7 start = start+n_values

74 end = end+n_values

o

76 data2

77

78

79 # In[1:

80

81

82 plt.figure(figsize = (10,8))

83 sns.heatmap(data2, annot = True, cmap = ’viridis’, linewidth=.5, cbar_kws={’label’: ’#C02 mol / m~2 time = 28,800 s’})
84 plt.title(’C02 number of moles with Keq_C02 = COST’, size = 20, fontweight = "bold")

85 plt.xlabel(’Gamma_C02 [mol/m~2]’, size = 20)
86 plt.ylabel(’k_adsorption_C02 [m~3/mol/s]l’, size = 20)
87 plt.savefig(’C02_2_heatmap_varC02.PNG’,bbox_inches = "tight")

90 # In[J:

93 data3 = data2.copy ()
94 start = 0

95 end = n_values

96 for i in range (0,len(col)):
97 todf = CO_sum[start:end]
98 todf .reverse ()

99 data3[col[il] = todf

100 start = start+n_values
101 end = end+n_values

102

03 data3

104
105
06 # In[1:
07

108

109 plt.figure(figsize = (10,8))

10 sns.heatmap(data3, annot = True, cmap = ’crest’, linewidth=.5, cbar_kws={’label’: ’#C0 mol / m"2 time = 28,800 s’})
11 plt.title(’CO number of moles with Keq_C02 = COST’, size = 20, fontweight = "bold")

112 plt.xlabel(’Gamma_C02 [mol/m~2]°, size = 20)

113 plt.ylabel(’k_adsorption_C02 [m~3/mol/s]’, size = 20)

|14 plt.savefig(’CO_2_heatmap_varC02.PNG’,bbox_inches = "tight")
|15

116

|17
18

19 # In[1:
120

H2Q

22 data4 = data2.copy()

start = 0

end = n_values

for i in range (0,len(col)):
todf = H2Q_sum[start:end]
todf .reverse ()
data4[col[i]] = todf

start = start+n_values
end = end+n_values
data4
Inl 1:

plt.figure(figsize = (10,8))

sns.heatmap(data4, annot = True, cmap = ’Blues’, linewidth=.5, cbar_kws={’label’: ’#H2Q mol / m~2 time = 28,800 s’})
plt.title (’H2Q number of moles with Keq_C02 = COST’, size = 20, fontweight = "bold")

plt.xlabel (’Gamma_C02 [mol/m~2]°, size = 20)

plt.ylabel(’k_adsorption_C02 [m~3/mol/s]’, size = 20)

plt.savefig(’H2Q_2_heatmap_varC02.PNG’,bbox_inches = "tight")

HQ

In[J:

datab = data2.copy()

start = 0

end = n_values

for i in range (0,len(col)):
todf = HQ_sum[start:end]
todf.reverse ()
datab[col[il] = todf

start = start+n_values
end = end+n_values
datab
In[]:

plt.figure(figsize = (10,8))

sns.heatmap(data5, annot = True, cmap = ’Greens’, linewidth=.5, cbar_kws={’label’: ’#HQ mol / m"2 time = 28,800 s’})
plt.title (’HQ number of moles with Keq_C02 = COST’, size = 20, fontweight = "bold")

plt.xlabel (’Gamma_C02 [mol/m~2]’, size = 20)

plt.ylabel(’k_adsorption_C02 [m~3/mol/s]’, size = 20)

plt.savefig(’HQ_2_heatmap_varCO2.PNG’,bbox_inches = "tight")

94

Heatmap CO case 2

#!/usr/bin/env python
coding: utf-8

Inl J:
import

import
import

pandas as pd

numpy as np
statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns

sns.set (font_scale = 1.3)

In[J:

start_data =
start_data

pd.read_fwf (’all_CO_Kads_Gamma.txt’)

Inl J:

C02_sum = []
for i in range (0,start_data.shape[0]):

C02_sum.append (start_datal[’C02_conc_gas’][i] + start_datal[’C02_conc_1liq’]1[i] + start_datal[’C02_surf_conc’][il)

start_data[’C02_sum’]=C02_sum

CO_sum = []
for i in range (0,start_data.shapel[0]):

CO_sum.append (start_data[’CO_conc_gas’][i] + start_datal[’CO_conc_liq’][i] + start_data[’CO_surf_conc’][i])

start_data[’CO_sum’]=C0O_sum

H2Q_sum = []
for i in range (0,start_data.shapel[0]):

H2Q_sum.append(start_data[’H2Q_conc_liq’]1[i] + start_data[’H2Q_surf_conc’][il])

start_data[’H2Q_sum’]=H2Q_sum

HQ_sum = []
for i in range (0,start_data.shape[0]):
HQ_sum.append(start_data[’HQ_conc_1liq’][i] + start_data[’HQ_surf_conc’][il)

start_data[’HQ_sum’]=HQ_sum

In[J:

row =[]
n_values = 7
for i in range (0,n_values):
row.append (round(start_datal[’k_adsC0’]1[i],6))

col = start_datal[’Gamma_sC0’].unique ()
col = np.round_(col, decimals = 11)
row.reverse ()

C02

In[J:

datal = pd.DataFrame(columns = col, index = row)
start = 0
end = n_values
for i in range (0,len(col)):
todf = CO2_sum[start:end]
todf.reverse ()
datal[col[i]] = todf
start = start+n_values

end = end+n_values

datal

In[J:

plt.figure(figsize = (10,8))
sns.heatmap (datal, annot = True,
time = 28,800 s’})
title(’C02 number of moles with Keq_CO =
xlabel (’Gamma_CO0 [mol/m~2]°’, size = 20)
ylabel (’k_adsorption_CO [m~3/mol/s]’, 20)
savefig(’CO2_2_heatmap_varCD.PNG’,bbox_inches =

cmap = ’viridis’, vmax = max(C02_sum), vmin =
plt.
plt.
plt.

plt.

COST’, size = 20, fontweight =
size =

"tight")

CO

Inl J:

data2 = datal.copy()

start = 0

end = n_values

for i in range (0,len(col)):
todf = CO_sum[start:end]
todf .reverse ()

95

max (CO2_sum) ,

"bold")

linewidths=.5,

cbar_kws={’label’:

’#C02

mol / m~2

104 data2[col[il] = todf

105 start = start+n_values
106 end = end+n_values

107

08 data2

109

110

11 # In[1:

|12

14 plt.figure(figsize = (10,8))

15 sns.heatmap(data2, annot = True, cmap = ’crest’, vmax = max(CO_sum), vmin = max(CO_sum), linewidths=.5, cbar_kws={’label’: ’#C0 mol / m"2 time =
28,800 s’})
16 plt.title(’CO number of moles with Keq_CO = COST’, size = 20, fontweight = "bold")

plt.xlabel(’Gamma_CO [mol/m~2]°’, size = 20)
|18 plt.ylabel(’k_adsorption_CO [m~3/mol/s]’, size = 20)
119 plt.savefig(’CO0_2_heatmap_varCO.PNG’,bbox_inches = "tight")

H2Q

Inl J:

data3 = datal.copy ()

start = 0

end = n_values

for i in range (0,len(col)):
todf = H2Q_sum[start:end]
todf.reverse ()
data3[col[il] = todf

start = start+n_values
end = end+n_values
data3
Inl J:

plt.figure(figsize = (10,8))

sns.heatmap(data3, annot = True, cmap = ’Blues’, vmax = max(H2Q_sum), vmin = max(H2Q_sum), linewidths=.5, cbar_kws={’label’: ’#H2Q mol / m"2 time
= 28,800 s’})
|45 plt.title(’H2Q number of moles with Keq_CO = COST’, size = 20, fontweight = "bold")

146 plt.xlabel(’Gamma_CO0 [mol/m~2]°, size = 20)
147 plt.ylabel(’k_adsorption_CO [m~3/mol/s]’, size = 20)
|48 plt.savefig(’H2Q_2_heatmap_varCO0.PNG’,bbox_inches = "tight")

51 # ## HQ

153 # In[]:

data4 = datal.copy()

start = 0

end = n_values

for i in range (0,len(col)):
todf = HQ_sum[start:end]
todf .reverse ()
data4[col[i]] = todf

start = start+n_values
end = end+n_values
data4
167
168
69 # In[1:

|70
|71

|72 plt.figure(figsize = (10,8))

|73 sns.heatmap(data4, annot = True, cmap = ’Greens’, vmax = max(HQ_sum), vmin = max(HQ_sum), linewidths=.5, cbar_kws={’label’: ’#HQ mol / m"2 time =
28,800 s’})

|74 plt.title (’HQ number of moles with Keq_CO = COST’, size = 20, fontweight = "bold")

|75 plt.xlabel(’Gamma_CO0 [mol/m~2]°, size = 20)

|76 plt.ylabel(’k_adsorption_CO0 [m~3/mol/s]l’, size = 20)

|7

~

plt.savefig(’HQ_2_heatmap_varCO.PNG’,bbox_inches = "tight")

Heatmap H2Q) case 2

1 #!/usr/bin/env python
coding: utf-8

In[J:

import pandas as pd

8 import numpy as np

9 import statsmodels.api as sm

10 import matplotlib.pyplot as plt
11 import seaborn as sns

12 sns.set(font_scale = 1.3)

15 # Inl[1:

18 start_data = pd.read_fwf(’all_H2Q_Kads_Gamma.txt’)
19 start_data

22 # In[J:

C02_sum = []

96

for i in range (0,start_data.shapel[0]):

C02_sum.append (start_datal[’C02_conc_gas’][i] + start_data[’C02_conc_liq’]1[i] + start_datal[’C02_surf_conc’][il)

start_data[’C02_sum’]=C02_sum

CO_sum = []
for i in range (0,start_data.shape[0]):

CO_sum.append(start_datal[’CO_conc_gas’][i] + start_datal[’CO_conc_1liq’][i] + start_datal[’CO_surf_conc’][i])

start_data[’CO_sum’]=C0O_sum

H2Q_sum = []
for i in range (0,start_data.shape[0]):
H2Q_sum.append(start_data[’H2Q_conc_liq’][i] + start_datal[’H2Q_surf_conc’][i])

start_data[’H2Q_sum’]=H2Q_sum

HQ_sum = []
for i in range (0,start_data.shapel[0]):
HQ_sum.append(start_data[’HQ_conc_1iq’]1[i] + start_data[’HQ_surf_conc’][i])

start_data[’HQ_sum’]=HQ_sum

In[]:

row =[]
n_values = 7
for i in range (0,n_values):
row.append (round(start_datal[’k_adsH2Q’]1[i],6))

col = start_datal[’Gamma_sH2Q’].unique ()
col = np.round_(col, decimals = 11)
row.reverse ()

C02

Inl J:

datal = pd.DataFrame(columns = col, index = row)

start = 0

end = n_values

for i in range (0,len(col)):
todf = CO2_sum[start:end]
todf.reverse ()
datallcol[il] = todf

start = start+n_values
end = end+n_values
datal
Inl J:

plt.figure(figsize = (10,8))
sns.heatmap (datal, annot = True, cmap = ’viridis’, linewidth=.5, cbar_kws={’label’:

plt.title(’C02 number of moles with Keq_H2Q = COST’, size = 20, fontweight = "bold")

plt.xlabel (’Gamma_H2Q [mol/m~2]°’, size = 20)
plt.ylabel(’k_adsorption_H2Q [m~3/mol/s]’, size = 20)
plt.savefig(’C02_2_heatmap_varH2Q.PNG’,bbox_inches = "tight")

CO

Inl J:

data2 = datal.copy()

start = 0

end = n_values

for i in range (0,len(col)):
todf = CO_sum[start:end]
todf .reverse ()
data2[col[i]] = todf

start = start+n_values
end = end+n_values
data2
In[]:

plt.figure(figsize = (10,8))

’#C02 mol / m~2

sns.heatmap(data2, annot = True, cmap = ’crest’, linewidth=.5, cbar_kws={’label’: ’#CO mol / m~2

plt.title(’CO0 number of moles with Keq_H2Q = COST’, size = 20, fontweight = "bold")
plt.xlabel (’Gamma_H2Q [mol/m~2]°, size = 20)

plt.ylabel(’k_adsorption_H2Q [m~3/mol/s]’, size = 20)
plt.savefig(’C0_2_heatmap_varH2Q.PNG’,bbox_inches = "tight")

H2Q
In[1:

data3 = datal.copy()
start = 0

end = n_values
for i in range (0,len(col)):

97

time

time

= 28,800 s’})

28,800 s’})

131 todf = H2Q_sum[start:end]

(32 todf.reverse ()
133 data3[col[il] = todf
| 34 start = start+n_values
135 end = end+n_values
136
data3
In[J:

plt.figure(figsize = (10,8))

sns.heatmap(data3, annot = True, cmap = ’Blues’, linewidth=.5, cbar_kws={’label’: ’#H2Q mol / m~2 time = 28,800 s’})
plt.title (’H2Q number of moles with Keq_H2Q = COST’, size = 20, fontweight = "bold")

plt.xlabel (’Gamma_H2Q [mol/m~2]’, size = 20)

plt.ylabel(’k_adsorption_H2Q [m~3/mol/s]l’, size = 20)

plt.savefig(’H2Q_2_heatmap_varH2Q.PNG’,bbox_inches = "tight")

HQ

Inl J:

data4 = datal.copy ()

start = 0

end = n_values

for i in range (0,len(col)):
todf = HQ_sum[start:end]
todf.reverse ()
data4[col[il] = todf
start = start+n_values
end = end+n_values

data4

Inl J:

N~

NN NN

plt.figure(figsize = (10,8))

sns.heatmap(data4, annot = True, cmap = ’Greens’, linewidth=.5, cbar_kws={’label’: ’#HQ mol / m"2 time = 28,800 s’})
plt.title (’HQ number of moles with Keq_H2Q = COST’, size = 20, fontweight = "bold")

plt.xlabel (’Gamma_H2Q [mol/m~2]°, size = 20)

plt.ylabel(’k_adsorption_H2Q [m~3/mol/s]l’, size = 20)

plt.savefig(’HQ_2_heatmap_varH2Q.PNG’,bbox_inches = "tight")

Heatmap HQ case 2

#!/usr/bin/env python
coding: utf-8

DU W N =

R

TR W N =

Inl 1:

import pandas as pd

import numpy as np

import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns

sns.set (font_scale = 1.3)

Inl J:

start_data = pd.read_fwf(’all_HQ_Kads_Gamma.txt’)
start_data

Inl 1:

C02_sum = []
for i in range (0,start_data.shapel[0]):
C02_sum.append (start_datal[’C02_conc_gas’][i] + start_data[’C02_conc_liq’][i] + start_datal[’C02_surf_conc’][il)

start_data[’C02_sum’]=C02_sum
CO_sum = []
for i in range (0,start_data.shape[0]):
CO_sum.append(start_datal[’CO_conc_gas’][i] + start_datal[’CO_conc_1liq’][i] + start_datal[’CO_surf_conc’][i])
start_data[’CO_sum’]=CO_sum
H2Q_sum = []
for i in range (0,start_data.shape[0]):
H2Q_sum.append(start_data[’H2Q_conc_liq’][i] + start_data[’H2Q_surf_conc’][i])
start_data[’H2Q_sum’]=H2Q_sum
HQ_sum = []

for i in range (0,start_data.shapel[0]):
HQ_sum.append(start_data[’HQ_conc_1iq’]1[i] + start_data[’HQ_surf_conc’][i])

47 start_data[’HQ_sum’]=HQ_sum

50 # In[J:

n_values = 7

2
53 row =[]
1
5 for i in range (0,n_values):

98

row.append (round(start_datal[’k_adsHQ’1[i],6))

col = start_data[’Gamma_sHQ’].unique ()
col = np.round_(col, decimals = 11)
row.reverse ()

CO02

In[J:

datal = pd.DataFrame(columns = col, index = row)

start = 0

end = n_values

for i in range (0,len(col)):
todf = CO2_sum[start:end]
todf.reverse ()
datal[col[il] = todf

start = start+n_values
end = end+n_values
datal
In[J:

plt.figure(figsize = (10,8))

sns.heatmap (datal, annot = True, cmap = ’viridis’, vmax = max(C02_sum), vmin = max(CO02_sum), linewidths=.5, cbar_kws={’label’: ’#C02 mol / m~2
time = 28,800 s’})
87 plt.title(’C02 number of moles with Keq_HQ = COST’, size = 20, fontweight = "bold")

88 plt.xlabel(’Gamma_HQ [mol/m~2]’, size = 20)
89 plt.ylabel(’k_adsorption_HQ [m~3/mol/s]l’, size = 20)

90 plt.savefig(’C02_2_heatmap_varHQ.PNG’,bbox_inches = "tight")
91

92

93 # ## CO

94

95 # In[]:

98 data2 = datal.copy()
99 start = 0

00 end = n_values

01 for i in range (0,len(col)):
102 todf = CO_sum[start:end]
103 todf.reverse ()

104 data2[col[il] = todf

105 start = start+n_values
106 end = end+n_values

107

08 data2

111 # In[1:

|12

113

14 plt.figure(figsize = (10,8))

15 sns.heatmap(data2, annot = True, cmap = ’crest’, vmax = max(CO_sum), vmin = max(CO_sum), linewidths=.5, cbar_kws={’label’: ’#C0 mol / m"2 time =
28,800 s’})

16 plt.title(’CO number of moles with Keq_HQ = COST’, size = 20, fontweight = "bold")

117 plt.xlabel(’Gamma_HQ [mol/m~2]°, size = 20)
118 plt.ylabel(’k_adsorption_HQ [m~3/mol/s]l’, size = 20)
119 plt.savefig(’CO_2_heatmap_varHQ.PNG’,bbox_inches = "tight")

|22 # ## H2Q

24 # In[1:

27 data3 = datal.copy()

28 start = 0

29 end = n_values

for i in range (0,len(col)):
todf = H2Q_sum[start:end]
todf.reverse ()
data3[col[i]] = todf

start = start+n_values
end = end+n_values
data3
In[]:

plt.figure(figsize = (10,8))

sns.heatmap(data3, annot = True, cmap = ’Blues’, vmax = max(H2Q_sum), vmin = max(H2Q_sum), linewidths=.5, cbar_kws={’label’: ’#H2Q mol / m"2 time
= 28,800 s’})
plt.title (’H2Q number of moles with Keq_HQ = COST’, size = 20, fontweight = "bold")

plt.xlabel (’Gamma_HQ [mol/m~2]°, size = 20)
plt.ylabel(’k_adsorption_HQ [m~3/mol/s]’, size = 20)
plt.savefig(’H2Q_2_heatmap_varHQ.PNG’,bbox_inches = "tight")

HQ

153 # In[1]

data4 = datal.copy()
57 start = 0

99

O Ul W N

end
for

= n_values

i in range (0,len(col)):
todf = HQ_sum[start:end]
todf.reverse ()
data4[col[il]] = todf

start = start+n_values
end = end+n_values
data4
In[]:

plt.

sns

plt.
plt.
plt.
plt.

figure(figsize = (10,8))

.heatmap(data4, annot = True, cmap = ’Greens’, vmax = max(HQ_sum), vmin = max(HQ_sum),
28,800 s’})

title (’HQ number of moles with Keq_HQ = COST’, size = 20, fontweight = "bold")

xlabel (’Gamma_HQ [mol/m~2]’, size = 20)

ylabel (’k_adsorption_HQ [m~3/mol/s]l’, size = 20)

savefig(’HQ_2_heatmap_varHQ.PNG’,bbox_inches = "tight")

FIT forward reaction rate test number 1

#!/usr/bin/env python

coding:

utf -8

Inl J:

import
import
import
import

pandas as pd

numpy as np
statsmodels.api as sm
matplotlib.pyplot as plt

from scipy.optimize import curve_fit
import seaborn as sns

sns.set (font_scale = 1.3)
sns.set_style("white")

Inl J:

data = pd.read_fwf (’per_fitting.txt’)
Inl J:

data.head (100)

In[]:

data[’kf_C02°].unique ()

Inl J:

data.columns

Inl J:

data0 =
datal = dataldatal’kf_C02°’]
data2 = dataldatal’kf_C02°’]
data3 = dataldatal’kf_C02°’]
data4 = datal[datal[’kf_C02°]
datab5 = datal[datal[’kf_C02’]

data[data[’kf_C02°]

datal[’kf_C02°]
datal[’kf_C02°]
datal[’kf_C02°]
datal[’kf_C02°]
datal[’kf_C02°]
datal[’kf_C02°]

.unique () [0]]
.unique) [1]]
.unique () [2]]
.unique () [3]]
.unique () [4]]
.unique () [5]]

data6 datal[data[’kf_C02’] == datal[’kf_C02’].unique() [6]]

Inl J:

dataO.drop([’CU2_conc_gas’, ’C02_conc_1liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’,
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

datal.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’,
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

data2.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’,
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

data3.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’,
H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)

data4.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’,
H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

datab.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’,
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

dataG‘drop([’CUQ_conc_gas’, ’C02_conc_1liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’,
"H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

In[

data_0 = pd.concat([dataO[dataO[’Time(s)’]

—

== 0] ,data0[data0[’Time(s)’] =
dataO[dataO[’Time(s)’] == 10776],data0[data0[’Time(s)’

] ==

In[J:

100

>’C02_surf_conc
>C02_surf_conc
’C02_surf_conc
’C02_surf_conc
’C02_surf_conc
’C02_surf_conc

’C02_surf_conc

1319517,

linewidths=.5,

2445] ,data0[dataO[’Time(s)’]
axis = 0)

cbar_kws={’label’:

= 7274],

J#HQ

mol / m~2

time

N = O

o Ul W

~

0 1 1 11~

0

pd.concat ([datal[datal[’Time(s)’]

datal[datal[’Time(s)’] =

pd.concat ([data2[data2[’Time (s)’]

data2[data2[’Time(s)’] =

pd.concat ([data3[data3[’Time(s)’]

data3[data3[’Time(s)’] =

concat ([data4 [data4 [’Time(s)’]
data4[datad [’Time(s)’] =

pd.

In[J:

data_5 = pd.concat ([datab[data5[’Time(s)’]
datab[datab[’Time(s)’] =

Inl 1:

data_6 = pd.concat([data6[data6[’Time(s)’]
data6[data6[’Time(s)’] =

In[]:

Value_to_add = [0.00000000, 0.00000261,0.00
data_O[’experimental’] = Value_to_add

In[J:

data_1[’experimental’]
data_2[’experimental’] =
data_3[’experimental’] =
data_4[’experimental’] =
data_5[’experimental’] =
data_6[’experimental’]

Inl J:

CO_sum =
data_0[’CO_sum’]=
CO_sum =
data_1[’CO_sum’]=
CO_sum =
data_2[’CO_sum’]= CO_sum

CO_sum

CO_sum

Value_to_add
Value_to_add
Value_to_add
Value_to_add
Value_to_add
Value_to_add

data_O[[’CO_conc_gas’,’C0_conc_1liq’,’C0_surf_conc’]]
data_1[[’CO_conc_gas’,’C0_conc_1liq’,’C0_surf_conc’]]

data_2[[’CO_conc_gas’,’C0_conc_1liq’,

== 0] ,datal[datal[’Time(s)’] =

= 10776] ,datal [datal[’Time(s)’]

== 0] ,data2[data2[’Time(s)’] =
)

= 10776] ,data2[data2[’Time(s)]

== 0] ,data3[data3[’Time(s)’] =

= 10776] ,data3 [data3[’Time(s)’]

== 0] ,data4[data4[’Time(s)’] =
>

= 10776] ,data4 [datad [’Time(s)’]

== 0] ,datab[data5[’Time(s)’] =
)

= 107761 ,data5[datab[’Time (s)]

== 0] ,data6[data6[’Time(s)’] =
>

= 10776] ,data6 [data6[’Time(s)’]

000507 ,0.00000737,0.0000102]

.sum(axis=1)
.sum(axis=1)

’CO_surf_conc’]].sum(axis=1)

CO_sum = data_3[[’CO_conc_gas”’
data_3[’CO_sum’]= CO_sum
CO_sum = data_4[[’CO_conc_gas’
data_4[’CO_sum’]= CO_sum
CO_sum = data_5[[’CO_conc_gas’

s

’CO_conc_1liq’

’CO_conc_1liq’

’CO_conc_liq”’,

’C0_surf_conc’]]
>C0_surf_conc’]]

>C0_surf_conc’]]

.sum(axis=1)
.sum(axis=1)

.sum(axis=1)

data_5[’CO_sum’]= CO_sum
CO_sum =

data_6[’CO_sum’]= CO_sum
kf_C02 = 1079

In[J:

data_0

Inl 1:

x_values =

y-values =

def objective(x, a, b,
return a * x + b

data_6[[’C0_conc_gas’,’C0_conc_1liq’,’CO_surf_conc’]1]

data_0[’Time(s)’]
data_O[’experimental’]
®)8

popt, _ = curve_fit(objective,

a, b , ¢ = popt

y_new = objective(x_values, a, b, c)
x_exp = x_values

y_exp = y_new

Inl 1:

x_values =

data_O[’Time(s)’]

x_values,

.sum(axis=1)

y_values)

2445] ,datal[datal[’Time(s)’]
== 1319511, axis = 0)

2445] ,data2[data2[’Time(s)’]
== 13195]]1, axis = 0)

2445] ,data3[data3[’Time(s)’]
== 13195]]1, axis = 0)

2445] ,data4 [datad [’Time(s)’]
== 1319511, axis = 0)

2445] ,data5[data5[’Time(s)’]
== 13195]], axis = 0)

2445] ,data6[data6[’Time(s)’]
== 1319511, axis = 0)

101

72741,

72741,

72741,

72741,

727471,

72741,

y_values = data_0[’CO_sum’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com = x_values

y_com = y_new

In[]:

plt.figure(figsize = (10,8))

plt.plot(data_O[’Time(s)’], data_O[’CO_sum’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+09’)
plt.plot(data_O[’Time(s)’], data_O[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y-com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_0[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’CO_w_kf9.PNG’,bbox_inches = "tight")

Inl 1:

kf_C02 = 10710

Inl J:

data_1

In[1:

x_values = data_1[’Time(s)’]
y_values = data_1[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

In[J:

x_values = data_1[’Time(s)’]

y_values = data_1[’CO_sum’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

X_com = x_values

y_com = y_new

In[J:

plt.figure(figsize = (10,8))

plt.plot(data_1[’Time(s)’], data_1[’CO_sum’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+10’)
plt.plot(data_1[’Time(s)’], data_1[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_1[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’CO_w_kf10.PNG’,bbox_inches = "tight")

In[J:

Inl J:

102

Inl J:

kf_C02 = 10711

In[J:

data_2

Inl J:

x_values = data_2[’Time(s)’]
y_values = data_2[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

In[]:

x_values = data_2[’Time(s)’]

y_values = data_2[’CO_sum’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com = x_values

y_com = y_new

Inl 1:

plt.figure(figsize = (10,8))

plt.plot(data_2[’Time(s)’], data_2[’CO_sum’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+11’)
plt.plot(data_2[’Time(s)’], data_2[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_2[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’CO_w_kf11.PNG’,bbox_inches = "tight")

Inl J:

kf_C02 = 10712

Inl J:

data_3

In[1:

x_values = data_3[’Time(s)’]
y_values = data_3[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

In[J:

x_values = data_3[’Time(s)’]

y_values = data_3[’CO_sum’]
def objective(x, a, b, c):
return a * x + b

103

397 popt,

= curve_fit(objective, x_values, y_values)

398 a, b , ¢ = popt

399 y_new = objective(x_values, a, b, c)

100

101 x_com = x_values

102 y_com = y_new

103

104

105 # In[1:

106

107

108 plt.figure(figsize = (10,8))

109 plt.plot(data_3[’Time(s)’], data_3[’CO_sum’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 =
110 plt.plot(data_3[’Time(s)’], data_3[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
111 plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

112 plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

114 ticks = np.array(data_3[’Time(s)’])

115 plt.xticks(ticks)
116 plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
117 plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)
118 plt.xlabel(’ Time [s]’, size = 15)
119 plt.legend()
120 plt.savefig(’CO_w_kf12.PNG’,bbox_inches = "tight")
121
122
123 # ## kf_C02 = 10713
124
Inl J:
data_4
Inl J:
x_values = data_4[’Time(s)’]
y_values = data_4[’experimental’]
def objective(x, a, b, c):

def

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

In[]:

x_values = data_4[’Time(s)’]

y_values = data_4[’CO_sum’]

objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
x_com = x_values
y_com = y_new
Inl 1:
plt.figure(figsize = (10,8))
plt.plot(data_4[’Time(s)’], data_4[’CO_sum’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 =
plt.plot(data_4[’Time(s)’], data_4[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)
plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)
171
72 ticks = np.array(data_4[’Time(s)’])
L73 plt.xticks (ticks)
74 plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
175 plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)
176 plt.xlabel(’ Time [s]’, size = 15)
7 plt.legend()
plt.savefig(’CO_w_kf13.PNG’,bbox_inches = "tight")

kf_C02 = 10714

In[]:

data_5b

In[]:

x_values = data_5[’Time(s)’]
y_values = data_5[’experimental’]
def objective(x, a, b, c):

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

104

1.e+127)

1.e+137)

02 y_exp = y_new

03
04

05 # In[1:

06
07

508 x_values = data_5[’Time(s)’]
09 y_values = data_5[’CO_sum’]

)10 def objective(x, a, b, c):

511 return a * x + b

512

)13 popt, _ = curve_fit(objective, x_values, y_values)

)14 a, b , ¢ = popt

)15 y_new = objective(x_values, a, b, c)

»16

)17 x_com = x_values

)18 y_com = y_new

519

520

> # In[]:
plt.figure(figsize = (10,8))
plt.plot(data_5[’Time(s)’], data_5[’CO_sum’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 =
plt.plot(data_5[’Time(s)’], data_b5[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)
plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

plt

def

plt.
plt.
plt.
plt.
plt.

ticks = np.array(data_5[’Time(s)’])

.xticks (ticks)
title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)

ylabel (’CO number of moles [mol/m~2]’, size = 15)
xlabel (’ Time [s]’, size = 15)

legend ()

savefig(’CO_w_kf14.PNG’,bbox_inches = "tight")

kf_C02 = 10715

Inl J:

data_6

In[J:

x_values = data_6[’Time(s)’]
y_values = data_6[’experimental’]
def objective(x, a, b, c)

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

In[J:

x_values = data_6[’Time(s)’]

y_values = data_6[’CO_sum’]

objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
X_com = x_values
y_com = y_new
In[J:
plt.figure(figsize = (10,8))
plt.plot(data_6[’Time(s)’], data_6[’CO_sum’],’b~’, markersize = 10, label = ’Comsol Model kf_C02 =
plt.plot(data_6[’Time(s)’], data_6[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)
)86 plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

87

)88 ticks = np.array(data_6[’Time(s)’])

89 plt.
590 plt.
91 plt.

plt

plt.
plt.

xticks (ticks)
title (°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)

ylabel(’CO number of moles [mol/m~2]’, size = 15)
.xlabel(’ Time [s]’, size = 15)

legend ()

savefig(’CO_w_kf15.PNG’,bbox_inches = "tight")

SECOND SET OF EXPERIMENTAL DATA

Inl J:

105

1.e+14°)

1.e+157%)

data_00 = pd.concat([dataO[dataO[’Time(s)’] == 0],dataO[dataO[’Time(s)’] == 1732],data0[data0[’Time(s)’] == 3896]],axis

In[]:
data_01 = pd.concat([datal[datal[’Time(s)’] == 0],datal[datal[’Time(s)’] == 1732],datal[datal[’Time(s)’] == 3896]],axis
In[J:
data_02 = pd.concat([data2[data2[’Time(s)’] == 0],data2[data2[’Time(s)’] == 1732] ,data2[data2[’Time(s)’] == 3896]],axis
In[]:
data_03 = pd.concat([data3[data3[’Time(s)’] == 0],data3[data3[’Time(s)’] == 1732],data3[data3[’Time(s)’] == 3896]],axis
In[]:
data_04 = pd.concat([data4[datad4[’Time(s)’] == 0],datad[datad[’Time(s)’] == 1732] ,datad[datad[’Time(s)’] == 3896]],axis
In[J:
data_05 = pd.concat([data5[data5[’Time(s)’] == 0],data5[data5[’Time(s)’] == 1732] ,data5[data5[’Time(s)’] == 3896]],axis
In[]:
data_06 = pd.concat([data6[data6[’Time(s)’] == 0],data6[data6[’Time(s)’] == 1732],data6[data6[’Time(s)’] == 3896]],axis
In[]:

Value_to_add2 = [0.00000000, 0.00000559, 0.00000814]

In[]:

data_00[’experimental’] = Value_to_add2
data_01[’experimental’] = Value_to_add2
data_02[’experimental’] = Value_to_add2
data_03[’experimental’] = Value_to_add2
data_04[’experimental’] = Value_to_add2
data_05[’experimental’] = Value_to_add2
data_06 [’experimental’] = Value_to_add2

Inl J:

CO_sum = data_00[[’CO_conc_gas’,’CO_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_00[’CO_sum’]= CO_sum
CO_sum = data_01[[’CO_conc_gas’,’C0O_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_01[’CO_sum’]= CO_sum
CO_sum = data_02[[’CO_conc_gas’,’C0_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_02[’CO_sum’]= CO_sum
CO_sum = data_03[[’CO_conc_gas’,’C0_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_03[’CO_sum’]= CO_sum
CO_sum = data_04[[’CO_conc_gas’,’CO_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_04[’CO_sum’]= CO_sum
CO_sum = data_05[[’CO_conc_gas’,’C0_conc_liq’,’CO_surf_conc’l].sum(axis=1)
data_05[’CO_sum’]= CO_sum
CO_sum = data_06[[’CO_conc_gas’,’C0_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_06[’CO_sum’]= CO_sum

kf_C02 = 10709

In[J:

data_00

Inl J:

x_values = data_00[’Time(s)’]
y_values = data_0O[’experimental’]
def objective(x, a, b, c):

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

Inl 1:

x_values = data_00[’Time(s)’]

106

y_values = data_00[’CO_sum’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com = x_values

y_com = y_new

In[]:

plt.figure(figsize = (10,8))

plt.plot(data_00[’Time(s)’], data_00[’CO_sum’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+09’)
plt.plot(data_00[’Time(s)’], data_O0O[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_00[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’C0_c12e6_kf9.PNG’,bbox_inches = "tight")

kf_C02 = 10710

Inl 1:

x_values = data_01[’Time(s)’]
y_values = data_Ol[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

Inl 1:

x_values = data_01[’Time(s)’]

y_values = data_01[’CO_sum’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com = x_values

y_com = y_new

In[]:

plt.figure(figsize = (10,8))

plt.plot(data_01[’Time(s)’], data_01[’CO_sum’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+10’)
plt.plot(data_01[’Time(s)’], data_O1l[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_01[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’C0_c12e6_kf10.PNG’,bbox_inches = "tight")

kf_C02 = 10711

Inl 1:

x_values = data_02[’Time(s)’]
y_values = data_02[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

Inl 1:

x_values = data_02[’Time(s)’]
y_values = data_02[’CO_sum’]

107

def objective(x, a, @)s

return a * x + b

b,

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
x_com = x_values
y_com = y_new
In[J:
plt.figure(figsize = (10,8))
plt.plot(data_02[’Time(s)’], data_02[’CO_sum’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 =
plt.plot(data_02[’Time(s)’], data_02[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y-com, ’b--’, label = ’Comsol fit’)
plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)
ticks = np.array(data_02[’Time(s)’])
plt.xticks (ticks)
plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel (’CO number of moles [mol/m~2]’, size = 15)
plt.xlabel(’ Time [s]’, size = 15)
plt.legend ()
plt.savefig(’C0_c12e6_kf11.PNG’,bbox_inches = "tight")
kf_C02 = 10712
Inl 1:
x_values = data_03[’Time(s)’]
y-values = data_03[’experimental’]
def objective(x, a, b, c):
return a * x + b
popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
x_exp = x_values
y_exp = y_new
Inl 1:
x_values = data_03[’Time(s)’]
y_values = data_03[’CO_sum’]
def objective(x, a, b, c):
return a * x + b
popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
x_com = x_values
y_com = y_new
In[J:
plt.figure(figsize = (10,8))
plt.plot(data_03[’Time(s)’], data_03[’CO_sum’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 =
plt.plot(data_03[’Time(s)’], data_03[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y-com, ’b--’, label = ’Comsol fit’)
plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)
ticks = np.array(data_03[’Time(s)’])
plt.xticks (ticks)
plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel (’CO number of moles [mol/m~2]’, size = 15)
plt.xlabel(’ Time [s]’, size = 15)
plt.legend ()
plt.savefig(’C0_c12e6_kf12.PNG’,bbox_inches = "tight")

kf_C02 = 10713

Inl 1:

data_04[’Time(s)’]
y-values = data_04[’experimental’]
def objective(x, a, b, c):

return a * x + b

x_values =

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

Inl 1:

data_04[’Time(s)’]
data_04[’CO_sum’]
a, b, c):

x_values =
y-values =
def objective(x,

108

1.e+11”)

1.e+12”)

)22 return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

X_com = x_values

y_com = y_new

In[J:

plt.figure(figsize = (10,8))

plt.plot(data_04[’Time(s)’], data_04[’CO_sum’],’b"~’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+13’)
plt.plot(data_04[’Time(s)’], data_O4[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_04[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’C0_c12e6_kf13.PNG’,bbox_inches = "tight")

kf_C02 = 10714

Inl 1:

x_values = data_05[’Time(s)’]
y_values = data_05[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

In[]:

x_values = data_05[’Time(s)’]

y_values = data_05[’CO_sum’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

X_com = x_values

y_com = y_new

In[J:

plt.figure(figsize = (10,8))

plt.plot(data_05[’Time(s)’], data_05[’CO_sum’],’b"~’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+14’)
plt.plot(data_05[’Time(s)’], data_O5[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_05[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’C0_c12e6_kf14.PNG’,bbox_inches = "tight")

kf_C02 = 10715

Inl 1:

x_values = data_06[’Time(s)’]
y_values = data_06[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

In[1:

x_values = data_06[’Time(s)’]

y_values = data_06[’CO_sum’]

def objective(x, a, b, c):
return a * x + b

109

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)
X_com = x_values

y_com = y_new

In[J:

plt.figure(figsize = (10,8))

plt.plot(data_06[’Time(s)’], data_06[’CO_sum’],’b"~’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+15’)
plt.plot(data_06[’Time(s)’], data_06[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

5 ticks = np.array(data_06[’Time(s)’])

)46 plt.xticks (ticks)

)47 plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
)48 plt.ylabel(’CO0 number of moles [mol/m~2]’, size = 15)

)49 plt.xlabel(’ Time [s]’, size = 15)

)50 plt.legend ()

)51 plt.savefig(’C0_c12e6_kf15.PNG’,bbox_inches = "tight")

FIT forward reaction rate test number 2

1 #!/usr/bin/env python
coding: utf-8

In[J:

import pandas as pd

import numpy as np

import statsmodels.api as sm

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit
import seaborn as sns

sns.set (font_scale = 1.3)
sns.set_style("white")

In[]:

data = pd.read_fwf(’fitting kf_piccoli.txt’)
Inl J:

data[’kf_C02°].unique ()

In[]:

data0 = dataldata[’kf_C02°’
datal = dataldatal[’kf_C02’

] == datal[’kf_C02’].unique () [0]]

] == datal[’kf_C02’].unique () [1]]
data2 = dataldata[’kf_C02’] == datal[’kf_C02’].unique () [2]]
data3 = datal[data[’kf_C02’] == datal[’kf_C02’].unique () [3]]
data4 = datal[data[’kf_C02’] == data[’kf_C02’].unique () [4]]
datab = datal[data[’kf_C02°’] == data[’kf_C02’].unique () [5]]
data6 = datal[data[’kf_C02’] == data[’kf_C02’].unique () [6]]
data7 = datal[data[’kf_C02’] == datal[’kf_C02’].unique () [7]]

In[]:

data0.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’, ’C02_surf_conc’,

’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
datal‘drop([’CUQ_conc_gas’, ’C02_conc_1liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’, ’C02_surf_conc’,
"H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
data2.drop([’CG2_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’, ’C02_surf_conc’,
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
dataS.drop([’CU2_conc_gas’, ’C02_conc_1liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’, ’C02_surf_conc’,
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
data4.drop([’CU2_conc_gas’, ’C02_conc_1liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’, ’C02_surf_conc’,
’H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)
datab5.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’, ’C02_surf_conc’,
’H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)
data6.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’, ’C02_surf_conc’,
’H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)
data7.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’, ’C02_surf_conc’,
H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)
63 # In[]:
64
65
66 data_0 = pd.concat([dataO[dataO[’Time(s)’] == 0],data0O[dataO[’Time(s)’] == 2446],data0[data0[’Time(s)’] == 72741,
67 dataO[dataO[’Time(s)’] == 10776],data0[data0[’Time(s)’] == 1319611, axis = 0)
68
69
70 # In[J:
71
72
73 data_1 = pd.concat([datal[datal[’Time(s)’] == 0],datall[datall[’Time(s)’] == 2446],datall[datal[’Time(s)’] == 7274],
74 datal[datal[’Time(s)’] == 10776],datal[datal[’Time(s)’] == 1319611, axis = 0)
75
7
7

7 # Inl[1:

110

data_2 = pd.
Inl J:
data_3 = pd.
Inl 1:
data_4 = pd.
Inl J:
data_5 = pd.
In[J:
data_6 = pd.
Inl J:
data_7 = pd.
Inl J:

Value_to_add =

Inl 1:

data_O[’experimental’]
data_1[’experimental’]
data_2[’experimental’]
data_3[’experimental’]
data_4[’experimental’]
data_5[’experimental’]
data_6[’experimental’]
data_7[’experimental’]

In[J:

concat ([data2[data2[’Time(s)’]
data2[data2[’Time (s)’]

concat ([data3 [data3 [’ Time (s)’]
data3[data3[’Time(s)’] ==

concat ([data4 [data4 [’Time(s)’]
data4 [data4 [’ Time(s)’]

concat ([datab[data5[’Time(s)’]
datab[datab[’Time(s)]

concat ([data6 [data6[’Time (s)’]
data6[data6[’Time (s)]

concat ([data7 [data7 [’Time (s)’]
data7[data7 [’ Time (s)’]

[0.00000000,

Value_to_add
Value_to_add
Value_to_add
Value_to_add
Value_to_add
Value_to_add
Value_to_add
Value_to_add

CO_sum =
data_0[’CO_sum’]=
CO_sum =
data_1[’CO_sum’]=
CO_sum =
data_2[’CO_sum’]=

CO_sum = data_3[[’

data_3[’CO_sum’]=
CO_sum =
data_4[’CO_sum’]=
CO_sum =
data_5[’CO_sum’]=
CO_sum =
data_6[’CO_sum’]=
CO_sum =
data_7[’CO_sum’]=

In[J:

kf_C02 =

In[J:

data_0

Inl J:

data_2[[’

data_4[[’

1071

data_O[[’CO_conc_gas

CO_sum

data_1[[’CO_conc_gas

CO_sum
CO_conc_gas
CO_sum
CO_conc_gas
CO_sum
CO_conc_gas
CO_sum

data_5[[’C0_conc_gas

CO_sum

data_6[[’CO_conc_gas

CO_sum

data_7 [[’CO_conc_gas

CO_sum

= data_0[’CO_conc_gas
= data_1[’CO_conc_gas
data_2[’CO_conc_gas
data_3[’CO_conc_gas
data_4[’CO_conc_gas
data_5[’CO_conc_gas
data_6[’CO_conc_gas
data_7[’CO_conc_gas

’CO_conc_1liq’

’CO_conc_1liq’

B

’CO0_conc_1liq’,

’CO_conc_1liq’

’CO_conc_liq’,

’CO_conc_1liq’

’CO_conc_1liq’

B

’C0_conc_1liq’,

0] ,data2[data2[’Time(s)’] =
10776] ,data2 [data2[’Time (s)’

== 0] ,data3[data3[’Time(s)’] =
10776] ,data3 [data3 [’ Time (s)’

== 0] ,data4[datad4[’Time(s)’] =
10776] ,data4 [datad [’ Time(s)’

0] ,datab[data5[’Time(s)’] =
10776] ,data5[data5[’Time(s)’

== 0],data6[data6[’Time(s)’] =
10776] ,data6[data6[’Time(s)’

== 0] ,data7 [data7[’Time(s)’] =
10776] ,data7 [data7 [’ Time (s)’

’C0_surf_conc’]]
>C0_surf_conc’]]
>C0_surf_conc’]]
>C0_surf_conc’]]
>C0_surf_conc’]]
>C0_surf_conc’]]
>C0_surf_conc’]]

’CO_surf_conc’]]

>’]/data_0[’C0O_sum’]
>’]/data_1[’C0_sum’]
>]/data_2[’C0_sum’]
>’]/data_3[’C0_sum’]
>]/data_4[’C0_sum’]
’]1/data_5[’CO_sum’]
’]1/data_6[’CO_sum’]
’]1/data_7[’CO_sum’]

2446] ,data2[data2[’Time(s)’]

] == 13196]1, axis = 0)

= 2446] ,data3 [data3[’Time(s)’]
1 == 1319611, 0)

axis =

= 2446] ,datad [datad[’Time(s)’]
1 == 1319611, 0)

axis =

= 2446] ,datab[data5[’Time(s)’]
1 == 1319611, 0)

axis =

= 2446] ,data6[data6[’Time(s)’]
] == 1319611, 0)

axis =

2446] ,data7 [data7[’Time(s)’]

] == 1319611, axis = 0)

0.00000261,0.00000507,0.00000737,0.0000102]

.sum(axis=1)
.sum(axis=1)
.sum(axis=1)
.sum(axis=1)
.sum(axis=1)
.sum(axis=1)
.sum(axis=1)

.sum(axis=1)

111

72741,

727471,

72741,

727471,

727471,

72741,

183
| 84

x_va
y_va
def

lues = data_O[’Time(s)’]

lues = data_O[’experimental’]
objective(x, a, b, c):

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

Inl 1:

x_values = data_O0[’Time(s)’]

y_values = data_0[’CO_conc_gas’]

def objective(x, a, b, c):

popt, _ = curve_fit(objective, x_values, y_values)

a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com = x_values

y_com = y_new

In[1:

plt.figure(figsize = (10,8))

plt.plot(data_O[’Time(s)’], data_0[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_CO02
plt.plot(data_O[’Time(s)’], data_O[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_0[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

kf_C02 = 1072

Inl 1:

data_1

Inl J:

x_values = data_1[’Time(s)’]

y_va
def

return a * x + b

lues = data_1[’experimental’]
objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

Inl J:

x_values = data_1[’Time(s)’]

y_va
def

popt
a, b
y_ne

X_co
y_co

In

plt.
plt
plt.
plt.
plt.

tick
plt.
plt.
plt.
plt.
plt.

##

lues = data_1[’CO_conc_gas’]
objective(x, a, b, c):
return a * x + b

, - = curve_fit(objective, x_values, y_values)
, ¢ = popt

w = objective(x_values, a, b, c)

m = x_values

m = y_new

[J:

figure(figsize = (10,8))

.plot(data_1[’Time(s)’], data_1[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_CO02
plot(data_1[’Time(s)’], data_1[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

s = np.array(data_1[’Time(s)’])

xticks (ticks)

title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
ylabel(’CO number of moles [mol/m~2]’, size = 15)

xlabel (’ Time [s]’, size = 15)

legend ()

kf_C02 = 1073

112

1.e+01°)

1.e+027)

Inl J:

data_2

Inl J:

x_values = data_2[’Time(s)’]
y_values = data_2[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

Inl J:

x_values = data_2[’Time(s)’]

y_values = data_2[’CO_conc_gas’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com = x_values

y_com = y_new

Inl J:

plt.figure(figsize = (10,8))

plt.plot(data_2[’Time(s)’], data_2[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+03’)
plt.plot(data_2[’Time(s)’], data_2[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_1[’Time(s)’])

plt.xticks (ticks)

plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

kf_C02 = 1074

Inl J:

data_3

In[J:

x_values = data_3[’Time(s)’]
y_values = data_3[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

In[J:

x_values = data_3[’Time(s)’]

y_values = data_3[’CO_conc_gas’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

X_com = x_values

y_com = y_new

In[]:

plt.figure(figsize = (10,8))

plt.plot(data_2[’Time(s)’], data_3[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+04’)
plt.plot(data_2[’Time(s)’], data_3[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_1[’Time(s)’])

113

393 plt.xticks (ticks)

394 plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
395 plt.ylabel(’CO number of moles [mol/m~2]°’, size = 15)
396 plt.xlabel(’ Time [s]’, size = 15)

397 plt.legend ()

398

399

100 # In[1:

101

102

103 ##kf_C02 = 1075

104

105

106 # In[1:

107

108
109 data_4
110
111
112 # In[1:
113
114
115 x_values = data_4[’Time(s)’]
116 y_values = data_4[’experimental’]
117 def objective(x, a, b, c):
118 return a * x + b
119
120 popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
x_exp = x_values
y_exp = y_new
In[]:
x_values = data_4[’Time(s)’]

y_values = data_4[’CO_conc_gas’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com = x_values

y_com = y_new

Inl J:

plt.figure(figsize = (10,8))

plt.plot(data_2[’Time(s)’], data_4[’CO_conc_gas’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+05°’)
plt.plot(data_2[’Time(s)’], data_4[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_1[’Time(s)’])

plt.xticks (ticks)

plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

kf_C02 = 1076

Inl J:

data_b

Inl J:

x_values = data_5[’Time(s)’]
y_values = data_5[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
x_exp = x_values
y_exp = y_new
Inl J:
186
187

188 x_values = data_5[’Time(s)’]
189 y_values = data_5[’CO_conc_gas’]
190 def objective(x, a, b, c):

191 return a * x + b

192

193 popt, _ = curve_fit(objective, x_values, y_values)
194 a, b , ¢ = popt

195 y_new = objective(x_values, a, b, c)

196

197 x_com = x_values

114

198 y_com = y_new
199

500

01 # In[1:

502

503

04 plt.figure(figsize = (10,8))

05 plt.plot(data_2[’Time(s)’], data_5[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+06’)
506 plt.plot(data_2[’Time(s)’], data_5[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)

507 plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

08 plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

509

)10 ticks = np.array(data_1[’Time(s)’])

5 plt.xticks (ticks)

plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

kf_C02 = 1077

Inl J:

data_6

Inl J:

x_values = data_6[’Time(s)’]
y_values = data_6[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

In[J:

x_values = data_6[’Time(s)’]

y_values = data_6[’CO_conc_gas’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

X_com = x_values

y_com = y_new

In[J:

plt.figure(figsize = (10,8))

plt.plot(data_2[’Time(s)’], data_6[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+07’)
plt.plot(data_2[’Time(s)’], data_6[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_1[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

kf_C02 = 1078

In[J:

data_7

Inl J:

x_values = data_7[’Time(s)’]
y_values = data_7[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

Inl 1:

x_values = data_7[’Time(s)’]

115

03
504
505
06
07
08
509
510
311
312

516

y-values

popt, _
a, b, c
y_new =

x_com =
y_com =

In[J:

= data_7[’CO_conc_gas’]
def objective(x, a, b, c):
return a * x + b

= cur
= po
objec

x_val
y_new

ve_fit (objective, x_values, y_values)

pt
tive (x_values, a, b, c)

ues

plt.figure(figsize = (10,8))

plt.plot(data_2[’Time(s)’], data_7[’CO_conc_gas’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 =
plt.plot(data_2[’Time(s)’], data_7[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_1[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)

plt.ylabel (’CO number of moles [mol/m~2]°,

plt.xlab

el (’

plt.legend ()

Inl J:

data_00

In[J:

data_01

Inl 1:

data_02

Inl J:

data_03

In[J:

data_04

Inl J:

data_05

Inl J:

data_06

In[J:

data_07

Inl J:

Value_to

Inl J:

_add2

Time [s]’, size = 15)

.concat ([dataO[dataO[’Time(s)’]

.concat ([datal [datal[’Time(s)’]

.concat ([data2[data2[’Time(s)’]

.concat ([data3[data3[’Time(s)’]

.concat ([data4 [data4 [’ Time (s)’]

.concat ([datab5[data5[’Time(s)’]

.concat ([data6[data6[’Time(s)’]

.concat ([data7 [data7[’Time (s)’]

size

= 15)

0] ,data0O[dataO[’Time(s)’]

0] ,datal[datal[’Time(s)’]

0] ,data2[data2[’Time(s)’]

0] ,data3[data3[’Time(s)’]

0] ,data4 [datad4 [’Time(s)’]

0] ,datab[data5[’Time(s)’]

0] ,data6[data6[’Time(s)’]

0] ,data7 [data7 [’Time(s)’]

= [0.00000000, 0.00000559, 0.00000814]

data_00[’experimental’] = Value_to_add2
data_01[’experimental’] = Value_to_add2
data_02[’experimental’] = Value_to_add2
data_03[’experimental’] = Value_to_add2
data_04[’experimental’] = Value_to_add2
data_05[’experimental’] = Value_to_add2
data_06[’experimental’] = Value_to_add2
data_07[’experimental’] = Value_to_add2

Inl J:

1731] ,data0O[dataO[’Time (s)’]

1731] ,datal [datal [’ Time (s)’]

1731] ,data2[data2[’Time (s) ’]

1731] ,data3 [data3 [’ Time (s)’]

1731] ,datad4 [datad [’ Time (s)’]

1731] ,data5[data5[’Time(s) ’]

1731] ,data6 [data6 [’ Time (s)’]

1731] ,data7 [data7 [’ Time (s) ’]

116

1.e+08°)

389611, axis

389611 , axis

389611, axis

389611, axis

389611 , axis

389611, axis

3896]1 , axis

389611, axis

0)

0)

0)

0)

0)

0)

0)

0)

708

709

710 CO_sum = data_OO[[’CO_conc_gas’,’C0_conc_1liq’,’CO0_surf_conc’]].sum(axis=1)
11 data_00[’CO_sum’]= CO_sum

712 CO_sum = data_O1[[’CO_conc_gas’,’C0_conc_1liq’,’CO0_surf_conc’]].sum(axis=1)
data_01[’CO_sum’]= CO_sum

CO_sum = data_02[[’CO_conc_gas’,’C0_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_02[’C0_sum’]= CO_sum

CO_sum = data_03[[’CO_conc_gas’,’CO_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_03[’CO_sum’]= CO_sum

CO_sum = data_04[[’CO_conc_gas’,’C0_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_04[’CO_sum’]= CO_sum

CO_sum = data_05[[’CO_conc_gas’,’C0_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_05[’CO_sum’]= CO_sum

CO_sum = data_06[[’CO_conc_gas’,’C0_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_06[’CO_sum’]= CO_sum

CO_sum = data_07[[’CO_conc_gas’,’C0_conc_liq’,’CO_surf_conc’]].sum(axis=1)
data_07[’CO_sum’]= CO_sum

728 # In[1:

data_00[’CO_conc_gas’]/data_00[’CO_sum’]
data_01[’CO_conc_gas’]/data_01[’CO_sum’]
data_02[’CO_conc_gas’]/data_02[’CO_sum’]
data_03[’C0_conc_gas’]/data_03[’CO_sum’]
data_04[’CO_conc_gas’]/data_04[’C0O_sum’]
data_05[’CO_conc_gas’]/data_05[’CO_sum’]
data_06[’CO_conc_gas’]/data_06[’CO_sum’]
data_07[’CO_conc_gas’]/data_07[’CO_sum’]

kf_C02 = 1071

In[]:

data_00

In[]:

x_values = data_00[’Time(s)’]
y_values = data_00[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp = x_values

y_exp = y_new

Inl J:

x_values = data_00[’Time(s)’]

y_values = data_00[’CO_conc_gas’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com = x_values

y_com = y_new

Inl J:

plt.figure(figsize = (10,8))

plt.plot(data_00[’Time(s)’], data_00[’CO_conc_gas’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+01’)
plt.plot(data_00[’Time(s)’], data_OO[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_00[’Time(s)’])

plt.xticks (ticks)

plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

kf_C02 = 1072

Inl J:
data_01
In[1:

x_values = data_01[’Time(s)’]
y_values = data_01[’CO_conc_gas’]
def objective(x, a, b, c):

return a * x + b

117

]

=
DU W RO

-3

0 1 1 1

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
X_com = x_values
y_com = y_new
In[J:
plt.figure(figsize = (10,8))
plt.plot(data_00[’Time(s)’], data_01[’CO_conc_gas’],’b”’, markersize = 10, label =
plt.plot(data_00[’Time(s)’], data_O1[’experimental’], ’gv’, markersize = 10, label
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)
plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)
ticks = np.array(data_00[’Time(s)’])
plt.xticks (ticks)
plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size =
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)
plt.xlabel(’ Time [s]’, size = 15)
plt.legend ()
kf_C02 = 1073
In[J:
data_02
Inl J:
x_values = data_02[’Time(s)’]
y_values = data_02[’CO_conc_gas’]
def objective(x, a, b, c):
return a * x + b
popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
x_com = x_values
y_com = y_new
Inl J:
plt.figure(figsize = (10,8))
plt.plot(data_00[’Time(s)’], data_02[’CO_conc_gas’],’b”’, markersize = 10, label =
plt.plot(data_00[’Time(s)’], data_02[’experimental’], ’gv’, markersize = 10, label
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)
plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)
ticks = np.array(data_00[’Time(s)’])
plt.xticks (ticks)
plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size =
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)
plt.xlabel(’ Time [s]’, size = 15)
plt.legend ()
kf_C02 = 1074
Inl J:
data_03
Inl J:
x_values = data_03[’Time(s)’]
y_values = data_03[’CO_conc_gas’]
def objective(x, a, b, c):
return a * x + b
popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)
x_com = x_values
y_com = y_new
Inl J:
plt.figure(figsize = (10,8))
plt.plot(data_00[’Time(s)’], data_03[’CO_conc_gas’],’b”’, markersize = 10, label =
plt.plot(data_00[’Time(s)’], data_03[’experimental’], ’gv’, markersize = 10, label
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)
plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)
ticks = np.array(data_00[’Time(s)’])
plt.xticks (ticks)
plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size =
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)
plt.xlabel(’ Time [s]’, size = 15)

118

’Comsol Model kf_C02

15

>Comsol Model kf_C02

15

’Comsol Model kf_CO02

15

’Experimental’)

’Experimental’)

)

’Experimental’)

)

1.e+027%)

1.e+037)

1.e+047)

)86

plt.legend ()

kf_C02 = 1075

Inl J:

data_04

In[]:

x_values = data_04[’Time(s)’]
y_values =
def objective(x, a,

return a * x + b

By, @)3

= curve_fit(objective
popt
objective (x_values,

popt, _
a, b,
y_new =

c =

x_com =
y_com =

x_values
y_new

In[J:

plt.
plt.
plt.
plt.
plt.

figure(figsize = (10,8))
plot(data_00[’Time(s)’],
plot(data_00[’Time(s)’],
plot(x_com, y_com, ’b--’,
plot(x_exp, y_exp, ’g--’,
ticks =
plt.xticks (ticks)

plt.title (’°CO concentration:
plt.ylabel(’CO number of mole
plt.xlabel(’ Time [s]’,
plt.legend ()

size
kf_C02 = 1076

In[]:

data_05

Inl J:

x_values = data_05[’Time(s)’]
y_values =
def objective(x, a,

return a * x + b

b, c):

curve_fit (objective
popt
objective (x_values,

popt, _ =
a, b, c =
y_new =

x_values
y_new

x_com =
y_com =

Inl

-

plt.
plt.
plt.
plt.
plt.

figure(figsize = (10,8))
plot(data_00[’Time(s)’],
plot(data_00[’Time(s)’],
plot(x_com, y_com, ’b--’,
plot(x_exp, y_exp, ’g--’,

ticks =
plt.
plt.
plt.
plt.
plt.

xticks (ticks)
title (’CO concentration:

xlabel (’
legend ()

Time [s]’, size

kf_C02 = 1077

Inl J:

data_06

Inl J:

x_values = data_06[’Time(s)’]
y_values =
def objective(x, a,

return a * x + b

b, c)

popt, _ = curve_fit(objective
a, b , ¢ = popt
y_new = objective(x_values, a

a,

a,

ylabel (’CO number of moles

data_04[’CO_conc_gas’]

, x_values, y_values)

b, c)

data_04[’CO_conc_gas’],’b”’, markersize = 10, label
data_04[’experimental’], ’gv’, markersize = 10,
label = ’Comsol fit’)

label = ’Experimental fit’)

np.array(data_00[’Time(s)’])

Model and Experimental’, size
s [mol/m~2]’, 15)

= 15)

fontweight = "bold",

size =

data_05[’CO_conc_gas’]

, x_values, y_values)

b, c)

data_05[’CO_conc_gas’],’b”’, markersize =
data_05[’experimental’], ’gv’, markersize =
label = ’Comsol fit’)

label = ’Experimental fit?)

10, label
10,

np.array(data_00[’Time(s)’])

Model and Experimental’, "bold", size
[mol/m~2]7, 15)

= 15)

fontweight =
size =

data_06[’CO_conc_gas’]

, x_values, y_values)

, b, ¢)

119

label

label

’Comsol Model kf_C02

15

’Comsol Model kf_CO02

15

’Experimental’)

’Experimental’)

)

1.e+05%)

1.e+06°)

x_com = x_values
y_com = y_new

Inl J:

plt.figure(figsize = (10,8))

plt.plot(data_00[’Time(s)’], data_06[’CO_conc_gas’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+07’)
plt.plot(data_00[’Time(s)’], data_06[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_00[’Time(s)’])

plt.xticks (ticks)

plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

kf_C02 = 1078

Inl J:

data_07

In[1:

x_values = data_07[’Time(s)’]
y_values = data_07[’CO_conc_gas’]
def objective(x, a, b, c)

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com = x_values

y_com = y_new

In[J:

plt.figure(figsize = (10,8))

plt.plot(data_00[’Time(s)’], data_07[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+08’)
plt.plot(data_00[’Time(s)’], data_07[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com, y_com, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp, y_exp, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_00[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

In[J:

FIT forward reaction rate test number 3

1 #!/usr/bin/env python
2 # coding: utf-8
3
!
5

In[]:

7 import pandas as pd

8 import numpy as np

9 import statsmodels.api as sm

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit
import seaborn as sns

sns.set (font_scale = 1.3)
sns.set_style("white")

In[J:
data = pd.read_fwf(’fitting_kf_preciso.txt’)

Inl 1:

data

~

Inl J:

0 W NN NN
TR W N =)

data[’kf_C02’].unique ()

w

35 # In[J:

36

37

& data0 = datal[datal[’kf_C02’] == data[’kf_C02’].unique () [0]]
39 datal = datal[data[’kf_C02’] == datal[’kf_C02’].unique() [1]]

120

SIS N IS PN e
BN O G

99
100
101
102
103

106

data2 =
data3 =
data4 =
datab =
data6 =
data7 =
data8 =
data9 =

In[

f—

datal.

datal

data2

data3.

data4.

datab.

data6.

data?

data8.

data9.

datal[data[’kf_C02°]
datal[data[’kf_C02°]
data[data[’kf_C02°]
data[data[’kf_C02’] ==
data[data[’kf_C02°]
data[data[’kf_C02°]
datal[datal[’kf_C02°]
data[data[’kf_C02’]

drop ([’C02_conc_gas”’,

pd.

pd.
pd.

pd.

.concat ([datal [datal[’Time(s)’]

.concat ([data2[data2[’Time(s)’]

.concat ([data6 [data6[’Time (s)’]

.concat ([data7 [data7[’Time (s)’]

.concat ([data8[data8[’Time (s)’]

.concat ([data9 [data9[’Time(s)’]

datal[’kf_C02°]
datal[’kf_C02°]
datal[’kf_C02°’]
datal[’kf_C02°’]
datal[’kf_C02°’]
datal[’kf_C02°]
datal[’kf_C02°]
data[’kf_C02°]

.unique) [2]]
.unique () [3]]
.unique () [4]]
.unique () [5]]
.unique () [6]]
.unique) [7]]
.unique () [8]]
.unique () [9]]

’C02_conc_1liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’

H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’
"H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_1liq’, ’HQ_conc_liq’
"H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
drop([’CD2_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_1liq’, ’HQ_conc_liq’
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
drop ([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’
’H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)
drop ([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_1liq’
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
drop ([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’
’H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)
drop ([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)
drop ([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq’
H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

concat ([dataO[dataO[’Time(s)’]

== 0] ,data0[data0[’Time(s)’] =
dataO[dataO[’Time (s)’] ?

10776] ,data0 [dataO[’Time (s)

0] ,datal[datal [’Time(s)’] =
)

datal[datal[’Time(s)’] 10776] ,datal [datal [’ Time (s)

== 0] ,data2[data2[’Time(s)’] =
10776] ,data2[data2[’Time(s)’

data2[data2[’Time (s)’]

concat ([data3 [data3 [’ Time(s)’]

== 0] ,data3[data3[’Time(s)’] =
data3[data3[’Time(s)’] ?

10776] ,data3 [data3 [’ Time (s)

concat ([data4 [data4 [’Time(s)’]

== 0] ,data4[data4[’Time(s)’] =
data4 [data4 [’ Time (s)’] ?

10776] ,datad [datad [’ Time (s)

concat ([datab[datab[’Time(s)’] == 0],datab[datab[’Time(s)’] =
datab[data5[’Time(s)’] == 10776],datab[data5[’Time(s)’

== 0] ,data6[data6[’Time(s)’] =
)

data6[data6[’Time (s)’] 10776] ,data6 [data6 [’ Time (s)

0] ,data7 [data7[’Time(s)’] =
10776] ,data7 [data7 [’ Time (s)’

data7[data7 [’ Time (s)’]

== 0] ,data8[data8[’Time(s)’] =
10776] ,data8 [data8[’Time(s)’

data8[data8[’Time (s)’]

== 0],data9[data9[’Time(s)’] =

data9[data9 [’ Time (s)’] 107761 ,data9 [data9 [’ Time (s)

]

]

1

]

]

]

]

1

]

]

>C02_surf_conc’,

>C02_surf_conc’,

>C02_surf_conc’,

>’C02_surf_conc’,

>C02_surf_conc’,

>C02_surf_conc’,

>C02_surf_conc’,

’C02_surf_conc’,

>C02_surf_conc’,

>C02_surf_conc’,

2446] ,data0[data0[’Time(s)’]

== 13196]], axis = 0)

2446] ,datal[datal[’Time(s)’]

== axis = 0)

1319611,

2446] ,data2[data2[’Time(s)’]

== 1319611, 0)

axis =

2446] ,data3[data3[’Time(s)’]

== 1319611, 0)

axis =

2446] ,datad [datad [’ Time(s)’]

== 1319611, 0)

axis =

2446] ,datab[data5[’Time(s)’]

== 13196]], axis = 0)

2446] ,data6[data6[’Time(s)’]

== 1319611, 0)

axis =

2446] ,data7 [data7[’Time(s)’]

== axis = 0)

1319611,

2446] ,data8[data8[’Time(s)’]

== 1319611, 0)

axis =

2446] ,data9 [data9[’Time(s)’]

== 1319611, 0)

axis =

121

72741,

727471,

72741,

72741,

72741,

72741,

727471,

72741,

72741,

72741,

45 # In[]

|46
|47
48 Value_to_add = [0.00000000, 0.00000261,0.00000507,0.00000737,0.0000102]
|49
150
51 # In[]:
|52
3
4 data_0[’experimental’] = Value_to_add
5 data_1[’experimental’] = Value_to_add
) data_2[’experimental’] = Value_to_add
data_3[’experimental’] = Value_to_add
data_4[’experimental’] = Value_to_add
data_5[’experimental’] = Value_to_add
data_6[’experimental’] = Value_to_add
data_7[’experimental’] = Value_to_add
data_8[’experimental’] = Value_to_add
data_9[’experimental’] = Value_to_add

66 # In[1:

69 data_O[’difference’] = data_O[’CO_conc_gas’]-Value_to_add
|70 data_1[’difference’]= data_1[’CO_conc_gas’]-Value_to_add
|71 data_2[’difference’]= data_2[’CO_conc_gas’]-Value_to_add
|72 data_3[’difference’]= data_3[’CO_conc_gas’]-Value_to_add
73 data_4[’difference’]= data_4[’CO_conc_gas’]-Value_to_add
74 data_5[’difference’]= data_5[’CO_conc_gas’]-Value_to_add
75 data_6[’difference’]= data_6[’CO_conc_gas’]-Value_to_add
|76 data_7[’difference’]= data_7[’CO_conc_gas’]-Value_to_add
|77 data_8[’difference’]= data_8[’CO_conc_gas’]-Value_to_add
|78 data_9[’difference’]= data_9[’CO_conc_gas’]-Value_to_add

|80

|81 # ## scelti data2 e data3

|82
In[]:
x_values = data_2[’Time(s)’]
y_values = data_2[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_expl = x_values

y-expl = y_new

Inl J:

x_values = data_2[’Time(s)’]

y_values = data_2[’C0_conc_gas’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_coml = x_values

y_coml = y_new

Inl J:

plt.figure(figsize = (10,8))

plt.plot(data_2[’Time(s)’], data_2[’CO_conc_gas’],’b"’, markersize = 10, label = ’Comsol Model kf_C02 = 7e+07’)
plt.plot(data_2[’Time(s)’], data_2[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_coml, y_coml, ’b--’, label = ’Comsol fit’)

plt.plot(x_expl, y_expl, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_0[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

Inl J:

x_values = data_3[’Time(s)’]

y_values = data_3[’CO_conc_gas’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com2 = x_values

y_com2 = y_new

In[]:

122

plt.figure(figsize = (10,8))

plt.plot(data_3[’Time(s)’], data_3[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 = 5e+07’)
plt.plot(data_3[’Time(s)’], data_3[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com2, y_com2, ’b--’, label = ’Comsol fit’)

plt.plot(x_expl, y_expl, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_O[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

T W N
#*
H
B
—_
—

> 0 ~J

s R N N R N I

*

In[]:

surfactant

In[]:
data_00 = pd.concat([dataO[dataO[’Time(s)’] == 0],dataO[dataO[’Time(s)’] == 1731],dataO[data0[’Time(s)’] == 3896]],axis
In[J:
data_01 = pd.concat([datal[datal[’Time(s)’] == 0],datall[datal[’Time(s)’] == 1731],datal[datal[’Time(s)’] == 3896]],axis
In[]:
data_02 = pd.concat([data2[data2[’Time(s)’] == 0],data2[data2[’Time(s)’] == 1731],data2[data2[’Time(s)’] == 3896]],axis
In[]:
data_03 = pd.concat([data3[data3[’Time(s)’] == 0],data3[data3[’Time(s)’] == 1731],data3[data3[’Time(s)’] == 3896]],axis
In[J:
data_04 = pd.concat([data4[datad[’Time(s)’] == 0],datad[datad[’Time(s)’] == 1731],datad[datad [’Time(s)’] == 3896]],axis
In[]:
data_05 = pd.concat ([data5[data5[’Time(s)’] == 0],data5[data5[’Time(s)’] == 1731],data5[data5[’Time(s)’] == 3896]],axis
In[]:
data_06 = pd.concat([data6[data6[’Time(s)’] == 0],data6[data6[’Time(s)’] == 1731] ,data6[data6[’Time(s)’] == 3896]],axis
In[J:
data_07 = pd.concat([data7[data7[’Time(s)’] == 0],data7[data7[’Time(s)’] == 1731],data7[data7[’Time(s)’] == 3896]],axis
In[]:

123

data_08 = pd.concat([data8[data8[’Time(s)’] == 0],data8[data8[’Time(s)’] == 1731],data8[data8[’Time(s)’] == 3896]],axis

Inl J:

data_09 = pd.concat([data9[data9[’Time(s)’] == 0],data9[data9[’Time(s)’] == 1731],data9[data9[’Time(s)’] == 3896]],axis

In[J:

Value_to_add2 = [0.00000000, 0.00000559, 0.00000814]

Inl J:

data_00[’experimental’] = Value_to_add2
data_01[’experimental’] = Value_to_add2
data_02[’experimental’] = Value_to_add2
data_03[’experimental’] = Value_to_add2
data_04[’experimental’] = Value_to_add2

data_05[’experimental’] = Value_to_add2
data_06[’experimental’] = Value_to_add2
data_07 [’experimental’] = Value_to_add2

data_08[’experimental’] = Value_to_add2
data_09[’experimental’] = Value_to_add2

Inl 1:

data_00[’difference’] = data_00[’CO_conc_gas’]-Value_to_add2
data_O1[’difference’] = data_01[’CO_conc_gas’]-Value_to_add2
data_02[’difference’] = data_02[’CO_conc_gas’]-Value_to_add2
data_03[’difference’] = data_03[’CO_conc_gas’]-Value_to_add2
data_04[’difference’] = data_04[’CO_conc_gas’]-Value_to_add2
data_O05[’difference’] = data_05[’CO_conc_gas’]-Value_to_add2
data_06[’difference’] = data_06[’CO_conc_gas’]-Value_to_add2
data_07[’difference’] = data_07[’CO_conc_gas’]-Value_to_add2
data_08[’difference’] = data_08[’CO_conc_gas’]-Value_to_add2
data_09[’difference’] = data_09[’CO_conc_gas’]-Value_to_add2

scelti data_05 e data_06

Inl 1:

x_values = data_05[’Time(s)’]
y_values = data_05[’experimental’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_exp01 = x_values

y_exp01l = y_new

In[]:

x_values = data_05[’Time(s)’]
y_values = data_05[’CO_conc_gas’]
def objective(x, a, b, c)

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com01 = x_values

y_com01 = y_new

In[J:

plt.figure(figsize = (10,8))

plt.plot(data_05[’Time(s)’], data_05[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+08’)
plt.plot(data_05[’Time(s)’], data_O5[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com01, y_com01, ’b--’, label = ’Comsol fit’)

plt.plot(x_exp0l, y_expOl, ’g--’, label = ’Experimental fit’)

ticks = np.array(data_00[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

In[J:

155 x_values = data_06[’Time(s)’]

156 y_values = data_06[’experimental’]
157 def objective(x, a, b, c):
158 return a * x + b

124

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt
y_new = objective(x_values, a, b, c)

x_exp01 = x_values
y-expOl = y_new

In[J:

x_values = data_06[’Time(s)’]
y_values = data_06[’CO_conc_gas’]
def objective(x, a, b, c):

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com02 = x_values

y_com02 = y_new

In[]:

plt.figure(figsize = (10,8))

plt.plot(data_06[’Time(s)’], data_06[’CO_conc_gas’],’b”’, markersize = 10, label = ’Comsol Model kf_C02 = 3.e+08’)
plt.plot(data_06[’Time(s)’], data_06[’experimental’], ’gv’, markersize = 10, label = ’Experimental’)
plt.plot(x_com02, y_com02, ’b--’, label = ’Comsol fit’)

191 plt.plot(x_exp0Ol, y_expOl, ’g--’, label = ’Experimental fit’)

192

193 ticks = np.array(data_00[’Time(s)’])

194 plt.xticks (ticks)

195 plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
196 plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)
197 plt.xlabel(’ Time [s]’, size = 15)

198 plt.legend()

199

500

01 # ## NEW_DATA

502

03 # Inl[1:

504

505

)06 new_data = pd.read_fwf (’fitting_kf_piu_preciso.txt’)
507

08

509 # In[]

510

new_data
Inl J:
new_data0 = new_datalnew_datal[’kf_C02’] == new_datal[’kf_C02’].unique () [0]]

In[J:

new_data0

In[]:

new_datal = new_datalnew_data[’kf_C02’] == new_datal[’kf_C02’].unique() [1]]

In[]:

new_data_0 = pd.concat([new_dataO[new_dataO[’Time(s)’] == 0],new_dataO[new_dataO[’Time(s)’] == 2446] ,new_dataO[new_dataO[’Time(s)’] == 7274],
new_dataO[new_dataO[’Time(s)’] == 10776] ,new_dataO[new_dataO[’Time(s)’] == 13196]], axis = 0)

In[J:

new_data_O[’experimental’] = Value_to_add

In[]:

new_data_O[’difference’] = new_data_0[’CO_conc_gas’]-Value_to_add

In[]:

x_values = new_data_0[’Time(s)’]

y_values = new_data_O[’CO_conc_gas’]

def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com_newl = x_values

125

y_com_newl = y_new

Inl J:

plt.figure(figsize = (10,8))

plt.plot(data_O[’Time(s)’], data_2[’CO_conc_gas’],’"’,color="tab:blue’, markersize = 10, label = ’Comsol Model kf_C02 = 5.e+07’)
plt.plot(data_O[’Time(s)’], data_O[’experimental’],’"’,color=’tab:green’, markersize = 10, label = ’Experimental w/o C12E6’)
plt.plot(data_O[’Time(s)’], data_3[’CO_conc_gas’],’"’,color = ’tab:orange’, markersize = 10, label = ’Comsol Model kf_C02 = 7.e+07’)
plt.plot(data_0[’Time(s)’], new_data_O[’CO_conc_gas’],’"’,color = ’tab:red’, markersize = 10, label = ’Comsol Model kf_C02 = 6.e+07’)
plt.plot(x_coml, y_coml, ’--’, color = ’tab:blue’)

plt.plot(x_com2, y_com2, ’ ,color=’tab:orange’)

plt.plot(x_expl, y_expl,’--’, color= ’tab:green’)

plt.plot(x_com_newl,y_com_newl, ’--2_ color =’tab:red’)

ticks = np.array(data_0[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’C0_kf6e7.PNG’,bbox_inches = "tight")

surfactant

In[1:

new_data_00 = pd.concat([new_datal[new_datal[’Time(s)’] == 0],new_datall[new_datal[’Time(s)’] == 1731] ,new_datal[new_datal[’Time(s)’] == 3896]],axis
= 0)

In[]:

new_data_00[’experimental’] = Value_to_add2

In[1:

new_data_00[’difference’] = new_data_00[’CO_conc_gas’]-Value_to_add2

Inl 1:
x_values = new_data_00[’Time(s)’]
y_values = new_data_00[’CO_conc_gas’]

def objective(x, a, b, c):
return a * x + b

popt , = curve_fit (objective, x_values, y_values)

a, b , ¢ = popt

y_new = objective(x_values, a, b, c)
x_com_new0l = x_values

y_com_newOl = y_new

In[]:

plt.figure(figsize = (10,8))

plt.plot(data_00[’Time(s)’], data_05[’CO_conc_gas’],’"’,color=’tab:blue’, markersize = 10, label = ’Comsol Model kf_C02 = 1.e+08’)
plt.plot(new_data_00[’Time(s)’], new_data_00[’experimental’],’"’,color=’tab:green’, markersize = 10, label = ’Experimental \w C12E6°’)
plt.plot(data_00[’Time(s)’], data_06[’CO_conc_gas’],’"’,color = ’tab:orange’, markersize = 10, label = ’Comsol Model kf_C02 = 3.e+08’)
plt.plot(data_00[’Time(s)’], new_data_00[’CO_conc_gas’],’"’,color = ’tab:red’, markersize = 10, label = ’Comsol Model kf_C02 = 2.e+08’)
plt.plot(x_com01, y_com01, ’--’, color = ’tab:blue’)

plt.plot(x_com02, y_com02, ’--’,color=’tab:orange’)

plt.plot(x_expOl, y_exp01l,’--’, color= ’tab:green’)

plt.plot(x_com_newO1l,y_com_newOl, ’--’, color =’tab:red’)

ticks = np.array(data_00[’Time(s)’])

plt.xticks (ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’C0_kf2e8.PNG’,bbox_inches = "tight")

FIT equilibrium adsorption constant H2Q test number 1

1 #!/usr/bin/env python
2 # coding: utf-8

4 # In[1:

import pandas as pd

& import numpy as np

9 import statsmodels.api as sm

10 import matplotlib.pyplot as plt

11 from scipy.optimize import curve_fit
12 import seaborn as sns

13 sns.set(font_scale = 1.3)

14 sns.set_style("white")

126

17

18

Inl

data =

In[

data

Inl[

i

pd.read_fwf (’fitting KHH2Q_e-3e3.txt’)

e

1l 5

data[’KH_H2Q’].unique ()

In[

data0
datal
data2
data3
data4
datab
data6

Inl

data0
datal.
data2
data3.
data4.
data5b.

data6.

= pd.

106
07
108
109
110
111
|12
113
|14
|15
116
17
|18
119
120

Inl[

data_2

In[

data_3

In[

data_4

In[

data_5

In[

data_6

Inl[

Value_to_add

In[

= pd.

];)
];)
];)
];)
B

jE

.concat ([data2[data2[’Time (s)’]

.concat ([data4 [data4 [’ Time (s)’]

.concat ([datab[data5[’Time (s)’]

.concat ([data6 [data6[’Time (s)’]

18

= dataldata[’KH_H2Q’] == data[’KH_H2Q’].unique () [0]]

= dataldata[’KH_H2Q’] == data[’KH_H2Q’].unique () [1]]

= datal[data[’KH_H2Q’] == data[’KH_H2Q’].unique () [2]]

= datal[data[’KH_H2Q’] == data[’KH_H2Q’].unique () [3]]

= datal[data[’KH_H2Q’] == data[’KH_H2Q’].unique () [4]]

= dataldata[’KH_H2Q’] == data[’KH_H2Q’].unique () [5]]

= datal[data[’KH_H2Q’] == datal[’KH_H2Q’].unique () [6]]

1s

.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq
"H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq
"H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

.drop([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liqg
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

drop ([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq
’H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)

drop ([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq
’H2Q_surf_conc’, ’HQ_surf_conc’], axis = 1, inplace = True)

drop ([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq
’H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)

drop ([’C02_conc_gas’, ’C02_conc_liq’, ’H2Q_conc_liq’, ’HQ_conc_liq
H2Q_surf_conc’, ’*HQ_surf_conc’], axis = 1, inplace = True)

concat ([dataO[dataO[’Time(s)’]
dataO[dataO[’Time (s)’]

== 0] ,data0O[data0[’Time(s)’]
10776] ,data0[data0[’Time (s)

concat ([datal [datal[’Time(s)’]
datal[datal[’Time(s)’]

== 0] ,datal[datal[’Time(s)"’]
10776] ,datal [datal [’ Time (s)

== 0] ,data2[data2[’Time(s)’]

data2[data2[’Time(s)’] 10776] ,data2[data2[’Time (s)

concat ([data3[data3[’Time(s)’]
data3[data3[’Time(s)’]

== 0] ,data3[data3[’Time(s)’]
10776] ,data3[data3 [’ Time (s)

== 0] ,data4[datad [’Time(s)’]

data4 [data4 [’ Time (s)’] 10776] ,data4 [datad [’ Time (s)

0] ,data5[data5[’Time(s)’]
10776] ,data5[data5[’Time (s)

datab[data5[’Time (s)’]

== 0] ,data6[data6[’Time(s)’]
10776] ,data6[data6[’Time (s)

data6[data6[’Time (s)’]

= [0.00000000, 0.00000261,0.00000507,0.00000737,0.0000102]

>

)

B

>

B

>

)

>, 2C02_surf_conc’,
>, ’2C02_surf_conc’,
7y PE2_puri_ecene ?
>, 2C02_surf_conc’,
>, 2C02_surf_conc’,
>, 2C02_surf_conc’,

>, 2C02_surf_conc’,

= 2446] ,data0[data0[’Time(s)’]
1 == 1319611, 0)

axis =

= 2446] ,datal[datal[’Time(s)’]
1 == 1319611, 0)

axis =

= 2446] ,data2[data2[’Time(s)’]
1 == 1319611, 0)

axis =

2446] ,data3 [data3 [’Time(s)’]

] == 13196]]1, axis = 0)

= 2446] ,data4 [datad [’Time(s)’]
] == 1319611, 0)

axis =

= 2446] ,data5[data5[’Time(s)’]
1 == 1319611, 0)

axis =

= 2446] ,data6[data6[’Time(s)’]
1 == 1319611, 0)

axis =

127

72741,

72741,

72741,

72741,

727471,

72741,

72741,

|22

data_O[’experimental’] = Value_to_add
data_1[’experimental’] = Value_to_add
data_2[’experimental’] = Value_to_add
data_3[’experimental’] = Value_to_add
data_4[’experimental’] = Value_to_add
data_5[’experimental’] = Value_to_add
data_6[’experimental’] = Value_to_add
In[]:

data_O[’difference’] = data_0[’CO_conc_gas’]-Value_to_add

data_1[’difference’]=
data_2[’difference’]=
data_3[’difference’]=
data_4[’difference’]=
data_5[’difference’]=
data_6[’difference’]=

Inl J:

data_0

In[J:

data_1

Inl J:

data_2

Inl J:

data_3

Inl 1:

data_4

Inl J:

data_b

In[J:

data_6

surfactant

Inl J:

data_00 =

Inl J:

data_01 =

In[J:

data_02 =

Inl J:

data_03 =

Inl J:

data_04 =

In[J:

data_05 =

Inl J:

pd

pd.

pd.

pd.

pd.

pd.

.concat ([dataO[dataO[’Time(s)’]

concat ([datal [datal[’Time(s)’]

concat ([data2[data2[’Time (s)’]

concat ([data3 [data3[’Time(s)’]

concat ([data4 [data4 [’ Time (s)’]

concat ([datab[datab5[’Time(s)’]

data_1[’CO_conc_gas’]-Value_to_add
data_2[’CO_conc_gas’]-Value_to_add
data_3[’CO_conc_gas’]-Value_to_add
data_4[’CO_conc_gas’]-Value_to_add
data_5[’CO_conc_gas’]-Value_to_add
data_6[’C0_conc_gas’]-Value_to_add

0] ,data0[data0[’Time(s)’]

0] ,datal[datal[’Time(s)’]

0] ,data2[data2[’Time(s)’]

0] ,data3[data3[’Time(s)’]

0] ,data4 [datad4 [’Time(s)’]

0] ,data5[data5[’Time(s)’]

1731] ,data0[dataO[’Time(s) ’]

1731] ,datal [datal [’ Time(s)’]

1731] ,data2[data2[’Time (s) ’]

1731] ,data3 [data3 [’ Time (s) ’]

1731] ,datad4 [datad [’ Time (s)’]

1731] ,data5[data5[’Time(s) ’]

128

389611, axis

3896]1 , axis

389611, axis

389611, axis

3896]1] , axis

389611, axis

0)

0)

0)

0)

0)

0)

data_06 = pd.concat([data6[data6[’Time(s)’] == 0],data6[data6[’Time(s)’] == 1731],data6[data6[’Time(s)’] == 3896]]1,axis = 0)
In[]:

Value_to_add2 = [0.00000000, 0.00000559, 0.00000814]

In[J:

data_00[’experimental’] = Value_to_add2
data_01[’experimental’] = Value_to_add2
data_02[’experimental’] = Value_to_add2
data_03[’experimental’] = Value_to_add2
data_04[’experimental’] = Value_to_add2
data_05[’experimental’] = Value_to_add2
data_06[’experimental’] = Value_to_add2

Inl J:

data_00[’difference’] = data_00[’CO_conc_gas’]-Value_to_add2
data_O1[’difference’] = data_01[’CO_conc_gas’]-Value_to_add2
data_02[’difference’] = data_02[’CO_conc_gas’]-Value_to_add2
data_03[’difference’] = data_03[’CO_conc_gas’]-Value_to_add2
data_04[’difference’] = data_04[’CO_conc_gas’]-Value_to_add2
data_O05[’difference’] = data_05[’CO_conc_gas’]-Value_to_add2
data_06[’difference’] = data_06[’CO_conc_gas’]-Value_to_add2

Inl J:
data_00
Inl J:
data_01
In[]:
data_02
Inl J:
data_03
Inl J:
data_04
In[]:
data_05
Inl J:
data_06

#data_00.to_pickle(’dataframe_e-03.csv’)

FIT equilibrium adsorption constant H2Q test number 1

#!/usr/bin/env python
coding: utf-8

In[J:

import pandas as pd

import numpy as np

import statsmodels.api as sm

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit
import seaborn as sns

sns.set (font_scale = 1.3)
sns.set_style("white")

Inl J:
data = pd.read_fwf(’fitting_KHH2Q_e—11e—5.txt’)

In[J:

129

data

Inl J:

data[’KH_H2Q’].unique ()

In[J:

data0 = datal[data[’KH_H2Q’] == datal[’KH_H2Q’]
datal = datal[data[’KH_H2Q’] == datal[’KH_H2Q’]
data2 = datal[datal[’KH_H2Q’] == datal[’KH_H2Q’]
data3 = datal[data[’KH_H2Q’] == datal[’KH_H2Q’]
data4 = datal[data[’KH_H2Q’] == datal[’KH_H2Q’]
datab5 = datal[data[’KH_H2Q’] == datal[’KH_H2Q’]
data6 = dataldata[’KH_H2Q’] == data[’KH_H2Q’]
In[]:

data0.drop([’C02_conc_gas’, ’C02_conc_liq’, ’

>H2Q_surf_conc’,
.drop([’C02_conc_gas’,
>H2Q_surf_conc’,
drop([’C02_conc_gas’,
>H2Q_surf_conc’,
.drop([’C02_conc_gas’,
>H2Q_surf_conc’,
drop([’C02_conc_gas”’,
>H2Q_surf_conc’
drop ([’C02_conc_gas’,
>H2Q_surf_conc’,
.drop([’C02_conc_gas”’,
>H2Q_surf_conc’,

’HQ_surf_conc’],
’C02_conc_liq’, ~’
’HQ_surf_conc’],
’C02_conc_liq’,
’HQ_surf_conc’],
’C02_conc_liq’,
’HQ_surf_conc’],
’C02_conc_liq’,
’HQ_surf_conc’],
’C02_conc_liq’,
’HQ_surf_conc’],
’C02_conc_liq’,
HQ_surf_conc’],

datal

data2.

data3

data4.

data5.

data6

.concat ([dataO[dataO[’Time (s)’]
data0[data0[’Time (s)’]

.concat ([datal [datal[’Time(s)’]
datal[datal[’Time(s)’]

.concat ([data2[data2[’Time(s)’]
data2[data2[’Time (s)’]

.concat ([data3[data3 [’ Time(s)’]
data3[data3[’Time(s)’] ==

.concat ([data4 [data4 [’Time (s)’]
data4 [data4 [’ Time (s)’]

.concat ([datab [datab[’Time (s)]
datab[data5[’Time (s)’]

.concat ([data6 [data6[’Time (s)’]
data6[data6[’Time (s)’]

Inl J:

Value_to_add = [0.00000000,

In[]:

Value_to_add
Value_to_add
Value_to_add
Value_to_add
Value_to_add
Value_to_add
Value_to_add

data_O[’experimental’] =
data_1[’experimental’] =
data_2[’experimental’] =
data_3[’experimental’] =
data_4[’experimental’] =
data_5[’experimental’] =
data_6[’experimental’] =

.unique () [0]]
.unique () [1]]
.unique () [2]]
.unique () [3]]
.unique () [4]]
.unique () [5]]
.unique () [6]]

H2Q_conc_liq’,
axis = 1, inplace =
H2Q_conc_liq’,
axis = 1, inplace =
H2Q_conc_liq’,
axis = 1, inplace =
H2Q_conc_liq’,
axis = 1, inplace =
H2Q_conc_liq’,
1, inplace =
H2Q_conc_liq’,

True)

=

True)
True)
True)

axis = True)

’HQ_conc_1liq’,
’HQ_conc_1liq’,
’HQ_conc_liq’,
’HQ_conc_liq’,
’HQ_conc_liq’,

’HQ_conc_liq’,

axis = 1, inplace = True)
H2Q_conc_liq’, ’HQ_conc_liq’,
axis = 1, inplace = True)

0] ,data0[data0[’Time(s)’]
10776] ,data0[dataO[’Time (s)

== 0] ,datal[datal[’Time(s)’]

10776] ,datal [datal [’ Time (s)

== 0] ,data2[data2[’Time(s)’]

10776] ,data2[data2[’Time (s)

== 0] ,data3[data3[’Time(s)’]

10776] ,data3 [data3 [’ Time (s)

== 0] ,datad4 [datad [’Time(s)’]

10776] ,datad [datad [’ Time (s)

== 0] ,data5[data5[’Time(s)’]

10776] ,data5[data5[’Time (s)

== 0] ,data6[data6[’Time(s)’]

10776] ,data6[data6[’Time (s)

0.00000261,0.00000507,0.00000737,0.0000102]

)

5

)

B

>

)

B

]

]

]

]

]

]

]

>C02_surf_conc’,

’C02_surf_conc’,

>C02_surf_conc?’,

>C02_surf_conc’,

>C02_surf_conc’,

>C02_surf_conc’,

>C02_surf_conc’,

2446] ,data0[data0[’Time(s)’]

13196117,

axis = 0)

2446] ,datal[datal[’Time(s)’]

1319611, axis = 0)

2446] ,data2[data2[’Time(s)’]

axis = 0)

1319611,

2446] ,data3 [data3[’Time(s)’]

1319611, axis = 0)

2446] ,datad [datad [’Time(s)’]

1319611, axis = 0)

2446] ,data5[datab[’Time(s)’]

== axis = 0)

1319611,

2446] ,data6[data6[’Time(s)’]

1319611, axis = 0)

130

72747,

72741,

72747,

727471,

72741,

72747,

72741,

135

| 36

Inl J:

data_O[’difference’] = data_0[’CO_conc_gas’]-Value_to_add
data_1[’difference’]= data_1[’CO_conc_gas’]-Value_to_add
data_2[’difference’]= data_2[’CO_conc_gas’]-Value_to_add
data_3[’difference’]= data_3[’CO_conc_gas’]-Value_to_add
data_4[’difference’]= data_4[’CO_conc_gas’]-Value_to_add
data_5[’difference’]= data_5[’CO_conc_gas’]-Value_to_add
data_6[’difference’]= data_6[’CO_conc_gas’]-Value_to_add

Inl 1:

data_0

Inl J:

data_1

In[J:

data_2

Inl 1:

data_3

Inl J:

data_4

In[J:

data_5

Inl J:

data_6

scelti data_5 e data_6

Inl J:
x_values = data_5[’Time(s)’]
y_values = data_5[’experimental’]

def objective(x, a, b, c)
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_expl = x_values

y-expl = y_new

Inl J:

x_values = data_5[’Time(s)’]
y_values = data_5[’CO_conc_gas’]
def objective(x, a, b, c)

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_coml = x_values

y-coml = y_new

Inl J:

x_values = data_6[’Time(s)’]

y_values = data_6[’CO_conc_gas’]
def objective(x, a, b, c):
return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com2 = x_values

y_com2 = y_new

131

340

Inl J:

plt.figure(figsize = (10,8))

plt.plot(data_O[’Time(s)’], data_5[’CO_conc_gas’],’"’,color="tab:blue’, markersize = 10, label = ’Comsol Model KH_H2Q = 9.91e-6’)
plt.plot(data_O[’Time(s)’], data_O[’experimental’],’"’,color=’tab:green’, markersize = 10, label = ’Experimental w/o C12E6’)
plt.plot(data_O[’Time(s)’], data_6[’CO_conc_gas’],’"’,color = ’tab:orange’, markersize = 10, label = ’Comsol Model KH_H2Q = 9.91e-5’)
plt.plot(x_coml, y_coml, ’--’, color = ’tab:blue’)

plt.plot(x_com2, y_com2, ’--’,color=’tab:orange’)

plt.plot(x_expl, y_expl,’--’, color= ’tab:green’)

ticks = np.array(data_O[’Time(s)’]1)

plt.xticks (ticks)

plt.title (’CO0 concentration: Model and Experimental’, fontweight = "bold", size = 15)

plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’CO_KHH2Qe -5.PNG’ ,bbox_inches = "tight")

Surfactant

In[J:

data_00 = pd.concat([dataO[dataO[’Time(s)’] == 0],dataO[dataO[’Time(s)’] == 1731],dataO[dataO[’Time(s)’] == 3896]],axis 0)
Inl 1:

data_01 = pd.concat([datal[datal[’Time(s)’] == 0],datall[datal[’Time(s)’] == 1731],datall[datal[’Time(s)’] == 389611, axis 0)
In[]:

data_02 = pd.concat([data2[data2[’Time(s)’] == 0],data2[data2[’Time(s)’] == 1731],data2[data2[’Time(s)’] == 389611, axis 0)
In[J:

data_03 = pd.concat([data3[data3[’Time(s)’] == 0],data3 [data3[’Time(s)’] == 1731],data3[data3[’Time(s)’] == 3896]],axis 0)
Inl 1:

data_04 = pd.concat([data4[data4[’Time(s)’] == 0],datad[datad[’Time(s)’] == 1731],datad[datad[’Time(s)’] == 389611, axis 0)
In[]:

data_05 = pd.concat ([data5[data5[’Time(s)’] == 0],data5[data5[’Time(s)’] == 1731],data5[data5[’Time(s)’] == 3896]],axis 0)
In[J:

data_06 = pd.concat([data6[data6[’Time(s)’] == 0],data6[data6[’Time(s)’] == 1731],data6[data6[’Time(s)’] == 3896]], axis 0)
In[]:

Value_to_add2 =
Inl J:

data_00[’experimental’]
data_01[’experimental’]
data_02[’experimental’]
data_03[’experimental’]
data_04[’experimental’]
data_05[’experimental’]
data_06[’experimental’]

Inl J:

data_00[’difference’] =
data_O1[’difference’] =
data_02[’difference’] =
data_03[’difference’] =
data_O4[’difference’] =
data_05[’difference’] =
data_06[’difference’] =

In[J:
data_00

Inl J:

[0.00000000,

0.00000559, 0.00000814]

= Value_to_add2
= Value_to_add2
= Value_to_add2
= Value_to_add2
= Value_to_add2
= Value_to_add2
= Value_to_add2

data_00[’CO_conc_gas’]-Value_to_add2
data_01[’CO_conc_gas’]-Value_to_add2
data_02[’CO0_conc_gas’]-Value_to_add2
data_03[’C0_conc_gas’]-Value_to_add2
data_04[’C0_conc_gas’]-Value_to_add2
data_05[’CO_conc_gas’]-Value_to_add2
data_06[’CO_conc_gas’]-Value_to_add2

132

data_01

Inl J:

data_02

In[J:

data_03

Inl J:

data_04

Inl J:

data_05

In[J:

data_06

scelti data_06 e quello che sarebbe e-03

O U W N =

Inl J:

NSRS RS RN EN R

o

data_07 = pd.read_pickle(’dataframe_e-03.csv’)

In[]:

data_07

Inl 1:

x_values = data_06[’Time(s)’]
y-values = data_06 [’experimental’]
def objective(x, a, b, c):

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_expl = x_values

y_expl = y_new

In[]:

x_values = data_06[’Time(s)’]
y_values = data_06[’CO_conc_gas’]
def objective(x, a, b, c)

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_coml = x_values

y_coml = y_new

In[J:

x_values = data_07[’Time(s)’]
y_values = data_07[’CO_conc_gas’]
def objective(x, a, b, c)

return a * x + b

popt, _ = curve_fit(objective, x_values, y_values)
a, b , ¢ = popt

y_new = objective(x_values, a, b, c)

x_com2 = x_values

y_com2 = y_new

In[J:

plt.figure(figsize = (10,8))

plt.plot(data_00[’Time(s)’], data_06[’CO_conc_gas’],’"’,color=’tab:blue’, markersize = 10, label = ’Comsol Model KH_H2Q = 9.91e-4’)
plt.plot(data_00[’Time(s)’], data_OO[’experimental’],’~’,color=’tab:green’, markersize = 10, label = ’Experimental w/o C12E6’)
plt.plot(data_00[’Time(s)’], data_07[’CO_conc_gas’],’"’,color = ’tab:orange’, markersize = 10, label = ’Comsol Model KH_H2Q = 9.91e-3’)

133

146 plt.plot(x_coml, y-coml, ’--’, color = ’tab:blue’)
147 plt.plot(x_com2, y_com2, ’ ’,color=’tab:orange’)
148 plt.plot(x_expl, y_expl,’--’, color= ’tab:green’)

150 ticks = np.array(data_00[’Time(s)’])

151 plt.xticks(ticks)

plt.title (’°CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’CO_KHH2Qe -4.PNG’,bbox_inches = "tight")

Inl 1:

plt.figure(figsize = (10,8))

plt.plot(data_00[’Time(s)’], data_06[’CO_conc_gas’],’"’,color=’tab:blue’, markersize = 10, label = ’Comsol Model KH_H2Q = 9.91e-4’)
plt.plot(data_00[’Time(s)’], data_0O[’experimental’],’"’,color=’tab:green’, markersize = 10, label = ’Experimental w/o C12E6’)
#plt.plot(data_00[’Time(s)’], data_07[’CO_conc_gas’],’"’,color = ’tab:orange’, markersize = 10, label = ’Comsol Model KH_H2Q = 9.91e-3’)
plt.plot(x_coml, y_coml, ’--’, color = ’tab:blue’)

#plt.plot(x_com2, y_com2, ’--’,color=’tab:orange’)

plt.plot(x_expl, y_expl,’--’, color= ’tab:green’)

ticks = np.array(data_00[’Time(s)’])

plt.xticks (ticks)

plt.title (’CO concentration: Model and Experimental’, fontweight = "bold", size = 15)
plt.ylabel(’CO number of moles [mol/m~2]’, size = 15)

plt.xlabel(’ Time [s]’, size = 15)

plt.legend ()

plt.savefig(’CO_KHH20e—4_take2‘PNG’,bbox_inches = "tight")

134

Bibliography

1]

[10]

Florinda Martins, Carlos Felgueiras, and Miroslava Smitkova. Fossil fuel en-
ergy consumption in european countries. Energy Procedia, 153:107-111, 2018.
5th International Conference on Energy and Environment Research, ICEER
2018, 23-27 July 2018, Prague, Czech Republic.

International Energy Agency IEA. World energy outlook 2021.
https://www.iea.org/reports/world-energy-outlook-2021, 2021.

J Kim. C. a. henao, t. a. johnson, de dedrick, je miller, eb stechel, and ct
maravelias, “methanol production from co2 using solar-thermal energy: process
development and technoeconomic analysis,”. Energy Environ. Sci, 4(9):3122,
2011.

Helmut Tributsch. Photovoltaic hydrogen generation. International Journal
of Hydrogen Energy, 33(21):5911-5930, 2008.

Zhongliang Zhan, Worawarit Kobsiriphat, James R Wilson, Manoj Pillai,
Ilwon Kim, and Scott A Barnett. Syngas production by coelectrolysis of
co2/h2o: the basis for a renewable energy cycle. Energy € Fuels, 23(6):3089—
3096, 2009.

SF Ahmed, N Rafa, M Mofijur, IA Badruddin, A Inayat, MS Ali, O Far-
rok, and TM Yunus Khan. Biohydrogen production from biomass sources:
Metabolic pathways and economic analysis. front. Energy Res, 9:753878, 2021.

RJ Detz, JNH Reek, and BCC Van Der Zwaan. The future of solar fuels:
when could they become competitive? Energy € Environmental Science,
11(7):1653-1669, 2018.

Stenbjorn Styring. Artificial photosynthesis for solar fuels. Faraday discus-
stons, 155:357-376, 2012.

Robert E Blankenship. Molecular mechanisms of photosynthesis. John Wiley
and Sons, 2021.

Yatendra S Chaudhary. SOLAR FUEL GENERATION. 01 2017.

135

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

22]

23]

JAMES R. BOLTON and DAVID O. HALL. The maximum efficiency of
photosynthesis *. Photochemistry and Photobiology, 53(4):545-548, 1991.

Robert Blankenship, David Tiede, James Barber, Gary Brudvig, Gra-
ham Fleming, Maria Ghirardi, Marilyn Gunner, Wolfgang Junge, David
Kramer, Anastasios Melis, Thomas Moore, Christopher Moser, Daniel Nocera,
A. Nozik, Donald Ort, William Parson, Roger Prince, and Richard Sayre.
Comparing photosynthetic and photovoltaic efficiencies and recognizing the
potential for improvement. Science (New York, N.Y.), 332:805-9, 05 2011.

Jackson Streeter, Luis De Taboada, and Uri Oron. Mechanisms of action
of light therapy on acute myocardial infarction and stroke. Mitochondrion,
4:569-76, 10 2004.

Esam M.A. Hussein. Chapter one - mechanisms. In Esam M.A. Hussein,
editor, Radiation Mechanics, pages 1-65. Elsevier Science Ltd, Oxford, 2007.

J. S. Griffith and L. E. Orgel. Ligand-field theory. . Rev. Chem. Soc.,
11:381-393, 1957.

Bo You and Yujie Sun. Innovative strategies for electrocatalytic water split-
ting. Accounts of Chemical Research, 51(7):1571-1580, 2018. PMID: 29537825.

Jean-Marie Lehn and Raymond Ziessel. Photochemical generation of carbon
monoxide and hydrogen by reduction of carbon dioxide and water under visible
light irradiation. Proceedings of the National Academy of Sciences, 79(2):701—
704, 1982.

P A Cox. The electronic structure and chemistry of solids. Clarendon Press,
Oxford, England, June 1987.

Ivan Pelant and Jan Valenta. Luminescence of disordered semiconductors. In
Luminescence Spectroscopy of Semiconductors, pages 242-262. Oxford Univer-
sity Press, February 2012.

[. P-Type, N-Type Semiconductors, jul 6 2021. [Online; accessed 2022-03-05].

D. Gust. Chapter one - an illustrative history of artificial photosynthesis.
In Bruno Robert, editor, Artificial Photosynthesis, volume 79 of Advances in
Botanical Research, pages 1-42. Academic Press, 2016.

Takashi Hisatomi, Jun Kubota, and Kazunari Domen. Recent advances in
semiconductors for photocatalytic and photoelectrochemical water splitting.
Chemical Society Reviews, 43(22):7520-7535, 2014.

Joseph H Montoya, Linsey C Seitz, Pongkarn Chakthranont, Aleksandra Vo-
jvodic, Thomas F Jaramillo, and Jens K Ngrskov. Materials for solar fuels
and chemicals. Nature materials, 16(1):70-81, 2017.

136

[24]

[25]

[26]

32]

[34]

Akihiko Kudo and Yugo Miseki. Heterogeneous photocatalyst materials for
water splitting. Chem. Soc. Rev., 38:253-278, 2009.

Jingrun Ran, Mietek Jaroniec, and Shi-Zhang Qiao. Cocatalysts in
semiconductor-based photocatalytic co2 reduction: Achievements, challenges,
and opportunities. Advanced Materials, 30(7):1704649, 2018.

Juan Amaro-Gahete, Mariia V. Pavliuk, Haining Tian, Dolores Esquivel, Fran-
cisco J. Romero-Salguero, and Sascha Ott. Catalytic systems mimicking the
fefe]-hydrogenase active site for visible-light-driven hydrogen production. Co-
ordination Chemistry Reviews, 448:214172, 2021.

A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. von
Zelewsky. Ru(ii) polypyridine complexes: photophysics, photochemistry,
eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews,
84:85-277, 1988.

Markus Kérkés, Tanja Laine, Eric Johnston, and Bjorn Akermark. Visible
Light-Driven Water Oxidation Catalyzed by Ruthenium Complezes, pages 189—
219. 03 2016.

Sebastian Kozuch and Jan M. L. Martin. “turning over” definitions in catalytic
cycles. ACS Catalysis, 2(12):2787-2794, 2012.

Akira Fujishima and Kenichi Honda. Electrochemical photolysis of water at a
semiconductor electrode. nature, 238(5358):37-38, 1972.

Steven Y Reece, Jonathan A Hamel, Kimberly Sung, Thomas D Jarvi,
Arthur J Esswein, Joep JH Pijpers, and Daniel G Nocera. Wireless solar
water splitting using silicon-based semiconductors and earth-abundant cata-
lysts. science, 334(6056):645-648, 2011.

Wen-Hui Cheng, Matthias H. Richter, Matthias M. May, Jens Ohlmann, David
Lackner, Frank Dimroth, Thomas Hannappel, Harry A. Atwater, and Hans-
Joachim Lewerenz. Monolithic photoelectrochemical device for direct water
splitting with 19% efficiency. ACS Energy Letters, 3(8):1795-1800, 2018.

David M. Fabian, Shu Hu, Nirala Singh, Frances A. Houle, Takashi Hisatomi,
Kazunari Domen, Frank E. Osterloh, and Shane Ardo. Particle suspension

reactors and materials for solar-driven water splitting. Energy Environ. Sci.,
8:2825-2850, 2015.

Xian Zhang, Mihaela Cibian, Arnau Call, Kosei Yamauchi, and Ken Sakai.
Photochemical co2 reduction driven by water-soluble copper(i) photosensitizer

with the catalysis accelerated by multi-electron chargeable cobalt porphyrin.
ACS Catalysis, 9(12):11263-11273, 2019.

137

[35]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

Anna Stikane, Fe Taek Hwang, Emma V. Ainsworth, Samuel E. H. Piper,
Kevin Critchley, Julea N. Butt, Erwin Reisner, and Lars J. C. Jeuken. To-
wards compartmentalized photocatalysis: multihaem proteins as transmem-
brane molecular electron conduits. Faraday Discuss., 215:26—-38, 2019.

Daryl L Logan. A first course in the finite element method. Cengage Learning,
2016.

JN Reddy. An introduction to the finite element method, volume 1221.
McGraw-Hill New York, 2004.

Massimiliano Zanin, Nadim Atiya, José Basilio, Jan Baumach, Arriel Benis,
Chandan Behera, Magda Bucholc, Filippo Castiglione, Ioanna Chouvarda,
Blandine Comte, Tien-Tuan Dao, Xuemei Ding, Estelle Pujos-Guillot, Nenad
Filipovic, David Finn, David Glass, Nissim Harel, Tomas lesmantas, Ilinka
Ivanoska, and Harald Schmidt. An early stage researcher’s primer on systems
medicine terminology. 4:2-50, 11 2020.

Indraneel Sen. Sofia project. //https://sofiaproject.eu/, 2020.

Vance Bergeron. Forces and structure in thin liquid soap films. Journal of
Physics: Condensed Matter, 11(19):R215-R238, jan 1999.

Surfactants, Micelles, Emulsions, and Foams, chapter 12, pages 246-279. John
Wiley Sons, Ltd, 2003.

John C Berg. The role of surfactants. In Teztile Science and Technology,
volume 13, pages 149-198. Elsevier, 2002.

Weizhen Huang, Julian Iseringhausen, Tom Kneiphof, Ziyin Qu, Chenfanfu
Jiang, and Matthias B. Hullin. Chemomechanical simulation of soap film flow
on spherical bubbles. ACM Trans. Graph., 39(4), jul 2020.

David G. Whitten. Photochemical reactions of surfactant molecules in con-
densed monolayer assemblies—environmental control and modification of re-
activity. Angewandte Chemie International Edition in English, 18(6):440-450,
1979.

Gabriele Falciani, Ricardo Franklin, Alain Cagna, Indraneel Sen, Ali Has-
sanali, and Eliodoro Chiavazzo. A multi-scale perspective of gas transport

through soap-film membranes. Mol. Syst. Des. Eng., 5:911-921, 2020.

Alexandre Mamane, Eloise Chevallier, Ludovic Olanier, Francois Lequeux,
and Cécile Monteux. Optical control of surface forces and instabilities in foam
films using photosurfactants. Soft Matter, 13(6):1299-1305, 2017.

138

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

Marc T. Thompson. Chapter 3 - review of diode physics and the ideal (and
later, nonideal) diode. In Marc T. Thompson, editor, Intuitive Analog Circuit
Design (Second Edition), pages 53-86. Newnes, Boston, second edition edition,
2014.

Dr. Adolph Fick. V. on liquid diffusion. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 10(63):30-39, 1855.

Thermodynamics of Interfaces, chapter 3, pages 26-41. John Wiley Sons,
Ltd, 2003.

Adsorption, chapter 9, pages 177-205. John Wiley Sons, Ltd, 2003.

Leszek Czepirski, Mieczyslaw R Balys, and Ewa Komorowska-Czepirska. Some
generalization of langmuir adsorption isotherm. Internet Journal of Chemaistry,
3(14):1099-8292, 2000.

Lingling Liu, Xu-Biao Luo, Lin Ding, and Sheng-Lian Luo. 4 - application
of nanotechnology in the removal of heavy metal from water. In Xubiao Luo
and Fang Deng, editors, Nanomaterials for the Removal of Pollutants and
Resource Reutilization, Micro and Nano Technologies, pages 83-147. Elsevier,
2019.

D. J. Donaldson. Adsorption of atmospheric gases at the airwater interface. i.
nh3. The Journal of Physical Chemistry A, 103(1):62-70, 1999.

Jan H van Driel and Wolfgang Graber. The teaching and learning of chemical
equilibrium. In Chemical education: Towards research-based practice, pages
271-292. Springer, 2002.

E.T. Denisov, O.M. Sarkisov, and G.I. Likhtenshtein. Chapter 1 - general ideas
of chemical kinetics. In E.T. Denisov, O.M. Sarkisov, and G.I. Likhtenshtein,
editors, Chemical Kinetics, pages 1-15. Elsevier Science, Amsterdam, 2003.

Eliodoro Chiavazzo and Gabriele Falciani. Database of transport coefficients
in Matlab environment, June 2019.

Qi Li, Kazumasa Ito, Zhishen Wu, Christopher S. Lowry, and Steven P. Lo-
heide II. Comsol multiphysics: A novel approach to ground water modeling.
Groundwater, 47(4):480-487, 2009.

Klaus-Jiirgen Bathe. Finite Element Method, pages 1-12. John Wiley Sons,
Ltd, 2008.

Juan Du, Joseph J Cullen, and Garry R Buettner. Ascorbic acid: chemistry,
biology and the treatment of cancer. Biochimica et Biophysica Acta (BBA)-
Reviews on Cancer, 1826(2):443-457, 2012.

139

[60]

[61]

[66]

[67]

Md. Samrat Alam, Yang Wu, and Tao Cheng. Silicate minerals as a source of
arsenic contamination in groundwater. Water Air and Soil Pollution, 225, 11
2014.

D.A. Blanco-Martinez, L. Giraldo, and J.C. Moreno-Pirajan. Effect of the ph
in the adsorption and in the immersion enthalpy of monohydroxylated phenols
from aqueous solutions on activated carbons. Journal of Hazardous Materials,
169(1):291-296, 2009.

Emomotimi Bamuza-Pemu and Evans Chirwa. Profile of aromatic intermedi-
ates of titanium dioxide mediated degradation of phenol. volume 35, pages
1333-1338, 01 2013.

https://pubchem.ncbi.nlm.nih.gov/compound /Hydroquinone. Accessed:
2022-1-27.
Mohammad Rafiee and Davood Nematollahi. Voltammetry of electroinactive

species using quinone/hydroquinone redox: A known redox system viewed in
a new perspective. FElectroanalysis, 19(13):1382-1386, 2007.

R. S. Nicholson and Irving. Shain. Theory of stationary electrode polarog-
raphy. single scan and cyclic methods applied to reversible, irreversible, and
kinetic systems. Analytical Chemistry, 36(4):706-723, 1964.

C Aquino-Binag, PJ Pigram, RN Lamb, and PW Alexander. Surface studies
of quinhydrone ph sensors. Analytica chimica acta, 291(1-2):65-73, 1994.

Ming Cheng, Xichuan Yang, Fuguo Zhang, Jianghua Zhao, and Licheng
Sun. Efficient dye-sensitized solar cells based on hydroquinone/benzoquinone
as a bioinspired redox couple. Angewandte Chemie International Edition,
51(39):9896-9899, 2012.

Josephine L.Y. Kong and Paul A. Loach. Covalently-linked porphyrin quinone
complexes as rc models. In P. Leslie Dutton, Jack S. Leigh, and Antonio
Scarpa, editors, Electrons to Tissues, pages 73-82. Academic Press, 1978.

Iwao Tabushi, Noboru Koga, and Mitsuhiro Yanagita. Efficient intramolec-
ular quenching and electron transfer in tetraphenylporphyrin attached with
benzoquinone or hydroquinone as a photosystem model. Tetrahedron Letters,
20(3):257-260, 1979.

D Gust. Intramolecular photoinduced electron-transfer reactions of por-
phyrins. The porphyrin handbook, 8:153-190, 2000.

Prateek Dongare, Ying Wang, Dean M. Bass, and Thomas J. Meyer. Cat-
alytic interconversion of the quinone/hydroquinone couple by a surface-
bound os(iii/ii) polypyridyl couple. The Journal of Physical Chemistry C,
122(28):16189-16194, 2018.

140

[72]

73]

[80]

[81]

Saraf Nawar, Brian Huskinson, and Michael Aziz. Benzoquinone-hydroquinone
couple for flow battery. MRS Proceedings, 1491:mrsf12-1491-c08-09, 2013.

Sundaramurthy Suresh, Vimal Chandra Srivastava, and Indra Mani Mishra.
Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: a re-
view. International Journal of Energy and Environmental Engineering, 3(1):1—
19, 2012.

Marcus Franz, Hassan A Arafat, and Neville G Pinto. Effect of chemical
surface heterogeneity on the adsorption mechanism of dissolved aromatics on
activated carbon. Carbon, 38(13):1807-1819, 2000.

Kai Zhou, Jiufu Zhang, Yao Xiao, Zheng Zhao, Mingming Zhang, Lu Wang,
Xiaohan Zhang, and Chunhua Zhou. High-efficiency adsorption of and compe-
tition between phenol and hydroquinone in aqueous solution on highly cationic
amino-poly (vinylamine)-functionalized go-(o-mwcents) magnetic nanohybrids.
Chemical Engineering Journal, 389:124223, 2020.

Felipe Augusto Gorla, Eduardo Henrique Duarte, Elen Romao Sartori, and
César Ricardo Teixeira Tarley. Electrochemical study for the simultaneous
determination of phenolic compounds and emerging pollutant using an elec-
troanalytical sensing system based on carbon nanotubes/surfactant and mul-
tivariate approach in the optimization. Microchemical Journal, 124:65-75,
2016.

Mohd Kotaiba Abugazleh, Benjamin Rougeau, and Hashim Ali. Adsorption
of catechol and hydroquinone on titanium oxide and iron (iii) oxide. Journal
of Environmental Chemical Engineering, 8(5):104180, 2020.

Vimal C Srivastava, Mahadeva M Swamy, Indra D Mall, Basheswar Prasad,
and Indra M Mishra. Adsorptive removal of phenol by bagasse fly ash and
activated carbon: equilibrium, kinetics and thermodynamics. Colloids and
surfaces a: physicochemical and engineering aspects, 272(1-2):89-104, 2006.

Jianhan Huang, Kelong Huang, and Cheng Yan. Application of an easily
water-compatible hypercrosslinked polymeric adsorbent for efficient removal

of catechol and resorcinol in aqueous solution. Journal of hazardous materials,
167(1-3):69-74, 2009.

Jianhan Huang, Cheng Yan, and Kelong Huang. Removal of p-nitrophenol by
a water-compatible hypercrosslinked resin functionalized with formaldehyde
carbonyl groups and xad-4 in aqueous solution: A comparative study. Journal
of colloid and interface science, 332(1):60-64, 2009.

Nuray Yildiz, Riiya Gontilgen, Hiilya Koyuncu, and Ayla Calimli. Adsorption
of benzoic acid and hydroquinone by organically modified bentonites. Colloids

141

[82]

[83]

[84]

[91]

and Surfaces A: Physicochemical and Engineering Aspects, 260(1-3):87-94,
2005.

Stephen Brunauer, P. H. Emmett, and Edward Teller. Adsorption of gases in
multimolecular layers. Journal of the American Chemical Society, 60(2):309—
319, 1938.

Dorian A. H. Hanaor, Maliheh Ghadiri, Wojciech Chrzanowski, and Yixiang
Gan. Scalable surface area characterization by electrokinetic analysis of com-
plex anion adsorption. Langmuir, 30(50):15143-15152, 2014. PMID: 25495551.

JR Lu, ZX Li, RK Thomas, BP Binks, D Crichton, PDI Fletcher, JR McNab,
and J Penfold. The structure of monododecyl pentaethylene glycol monolayers
with and without added dodecane at the air/solution interface: A neutron
reflection study. The Journal of Physical Chemistry B, 102(30):5785-5793,
1998.

Jnanojjal Chanda and Sanjoy Bandyopadhyay. Molecular dynamics study of a
surfactant monolayer adsorbed at the air/water interface. Journal of Chemical
Theory and Computation, 1(5):963-971, 2005.

Liu Shi, Naga Rajesh Tummala, and Alberto Striolo. C12e6 and sds surfac-
tants simulated at the vacuum-water interface. Langmuir, 26(8):5462-5474,
2010.

Buffers, aug 15 2020. [Online; accessed 2022-03-07].

https://pubchem.ncbi.nlm.nih.gov/compound /Phosphate. Accessed: 2022-3-
11.

Kipton J. Powell, Paul L. Brown, Robert H. Byrne, Tamas Gajda, Glenn
Hefter, Staffan Sjoberg, and Hans Wanner. Chemical speciation of environ-
mentally significant heavy metals with inorganic ligands. part 1: The hg2+4—
cl-, oh—, co32—, s042—, and po43— aqueous systems (iupac technical report).
Pure and Applied Chemistry, 77(4):739-800, 2005.

Hossain Azam, Seemi Alam, Mahmudul Hasan, Djigui Yameogo, Arvind Kan-
nan, Arifur Rahman, and Man Jae Kwon. Phosphorous in the environment:
characteristics with distribution and effects, removal mechanisms, treatment
technologies, and factors affecting recovery as minerals in natural and engi-
neered systems. Enuvironmental Science and Pollution Research, 07 2019.

Meenesh R Singh, Jason D Goodpaster, Adam Z Weber, Martin Head-Gordon,
and Alexis T Bell. Mechanistic insights into electrochemical reduction of co2

over ag using density functional theory and transport models. Proceedings of
the National Academy of Sciences, 114(42):E8812-E8821, 2017.

142

[92]

[93]

[94]

[100]

[101]

[102]

Ole Pedersen, Timothy Colmer, and Kaj Sand-Jensen. Underwater photosyn-
thesis of submerged plants — recent advances and methods. Frontiers in plant
science, 4:140, 05 2013.

B. Limburg, E. Bouwman, and S. Bonnet. Rate and stability of photocat-
alytic water oxidation using [ru(bpy)3]2+ as photosensitizer. ACS Catalysis,
6(8):5273-5284, 2016.

Bart Limburg, Elisabeth Bouwman, and Sylvestre Bonnet. Molecular water
oxidation catalysts based on transition metals and their decomposition path-
ways. Coordination Chemistry Reviews, 256:1451-1467, 08 2012.

B. Limburg, E. Bouwman, and S. Bonnet. Rate and stability of photocatalytic
water oxidation using [ru(bpy)3]2+ as photosensitizer, supporting information.
ACS Catalysis, 6(8):5273-5284, 2016.

H.P.S. Abdul Khalil, Chaturbhuj K. Saurabh, M.I. Syakir, M.R. Nurul Fazita,
Aamir Bhat, A. Banerjee, H.M. Fizree, Samsul Rizal, and Paridah Md. Tahir.
13 - barrier properties of biocomposites/hybrid films. In Mohammad Jawaid,
Mohamed Thariq, and Naheed Saba, editors, Mechanical and Physical Test-
ing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites,
Woodhead Publishing Series in Composites Science and Engineering, pages
241-258. Woodhead Publishing, 2019.

William Betz and M. Keeler. Use of carbon molecular sieves for for chromato-
graphic separations of permanent and other gases. 03 2022.

Ewa Lorenc-Grabowska. Effect of micropore size distribution on phenol ad-
sorption on steam activated carbons. Adsorption, 22(4):599-607, 2016.

JOSEPH S D’Arrigo. Screening of membrane surface charges by divalent
cations: an atomic representation. American Journal of Physiology-Cell Phys-
iology, 235(3):C109-C117, 1978.

JR Lu, ZX Li, RK Thomas, EJ Staples, I Tucker, and J Penfold. Neutron
reflection from a layer of monododecyl hexaethylene glycol adsorbed at the air-

liquid interface: the configuration of the ethylene glycol chain. The Journal
of Physical Chemistry, 97(30):8012-8020, 1993.

JR Lu, TJ Su, ZX Li, RK Thomas, EJ Staples, I Tucker, and J Penfold.
Structure of monolayers of monododecyl dodecaethylene glycol at the air- wa-
ter interface studied by neutron reflection. The Journal of Physical Chemistry
B, 101(49):10332-10339, 1997.

R. Massoudi and A. D. King. Effect of pressure on the surface tension of water.
adsorption of low molecular weight gases on water at 25.deg. The Journal of
Physical Chemistry, 78(22):2262-2266, 1974.

143

[103] William D Nesse. Introduction to mineralogy. Number 549 NES. 2012.

144

