
 

 

 

 

 

 

 

Politecnico di Torino 
 

Master’s of Science in Environmental and Land Engineering 

A.a. 2021/2022 

Graduation Session March 2022 

 

 

 

 

 

The spatio-temporal variability of 

green and blue water footprint of 

maize 
 

 

 

 

 

Supervisor: Candidate: 

Prof. Stefania Tamea 

Co-supervisor: 

                Dr.  Matteo Rolle 

Andrea Borgo 

 

 



1 
 

 

 



2 
 

Acknowledgments 
 

I would like to warmly thank my thesis supervisor, Prof. Stefania Tamea, for giving me the 

possibility to work on such stimulating topic, for her constant support during the thesis 

elaboration and for transmitting me the knowledge and passion about the water footprint 

concept.  

In addition, I would like to express my gratitude to Dr. Matteo Rolle for providing me all the 

needed materials to execute the work and for his continuous effort in solving my doubts. 

Finally, my last appreciation goes to my mother, my father and Lucia, for believing in my 

dreams. Their endless support throughout my academic career, especially during the hardest 

times, allowed me to find the motivation to pursue my targets and achieve the hoped-for 

results. 

  



3 
 

   



4 
 

Abstract 
 

The management of water resources for human purposes is a central theme to the challenge of 

improving food security worldwide. The great majority of freshwater is used for agriculture; 

therefore, it is important to find a way to assess and quantify water consumption for the 

production of agricultural goods. The indicator of unit Water Footprint (uWF) identifies the 

volume of water required to produce a unit of product. This indicator may refer separately to 

green and blue water, which are respectively the rainwater component (green water footprint) 

and the irrigation contribution (blue water footprint). In this study, the spatial and temporal 

variability of green and blue water footprint of maize is investigated, exploring its evolution in 

the years 1970 – 2019 across the world, with the creation of high-resolution global maps (5 x 5 

arc min resolution), and highlighting the spatial heterogeneities of this variable as dependent 

on crop yield and climatic conditions. To reach this result, the global temporal variability of 

harvested areas, irrigated areas and crop yield has been reconstructed, together with the 

hydrological soil water balance through an appropriate model, which joins vegetation growth 

with local soil and hydroclimatic conditions. From the results, it can be noticed that the green 

component is usually greater than the blue one and, in the majority of countries, green and blue 

uWF are progressively reducing through the years, mainly due to technological developments, 

better irrigation strategies and water management which allow to increase the crop yield. In 

fact, the main factor influencing the trend of uWF is crop yield, which along the time-interval 

of the analysis, exhibited significant changes. However, despite the increment of water use 

efficiency, the estimated overall volume of green and blue water shows a mild variation, mostly 

due to the effect of climate change and modification of agricultural and irrigated areas. 
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1 Introduction 
 

From the early stages of civilizations, humans have always relied on water consumption for 

their activities. Water security has always been of primary importance for world’s population, 

especially nowadays, where the great number of people living on Earth, the improved life 

standards, but also the effects of climate change are challenging the management of water 

supplies, therefore requiring an enhancement of its consumption’s efficiency. The global 

population is expected to continuously grow up to 9.6 billion people by 2050 (United Nations, 

2013) and, together with the increasing wealth of people and the changing diets, they are putting 

pressure on the food supply chain, one of the sectors that mostly relies on water usage  (Godfray 

& al., 2010). According to the FAO report of 2011, with an increase of population up to 9.6 

billion by 2050, we will also face an increase of agricultural products’ demand by 70% (FAO, 

2011).  

At a global scale, the great majority of water consumption occurs in the agricultural and 

industrial sectors; in particular, water use for food crops accounts for approximately 80-90 % 

of water use for human needs overall (Falkenmark & Rockstrom, 2004). The great part of total 

human freshwater withdrawals (about 70%) comes from the irrigation of crops (FAO, 2011). 

In the past 50 years, the world’s cultivated area has grown by 12%, removing space to forests, 

wetlands and grasslands, and the global irrigated area has doubled. However, a further 

expansion of land for cultivation is getting increasingly limited, since most the easily accessible 

water resources are already under exploitation (FAO, 2011). Besides, climate change is 

seriously harming this already critical situation by limiting the occurrence of precipitation 

events, which allow the recharging of surface water bodies and groundwater aquifers, 

increasing the evapotranspiration of plants and by causing severe droughts in some parts of the 

worlds, such as the water crisis in Somalia (FGS, 2017). In addition, extreme weather events 

are likely to get increasingly frequent worldwide, thus leading to a general reduction of the crop 

yield (Powell & Reinhard, 2016). 

 

Scientists, politicians, and decision makers are rising awareness that new strategies to ensure 

water security both to humans and to the environment must be developed and this will probably 

constitute one of the greatest challenges of the new millennium (Allamano, et al., 2013). It is 

therefore important to find a linkage between food products and water resources, in order to 

quantify water consumption according to the produced crop. Several indicators for the 

quantification of water consumption already exist, but one of those which gained greater interest 
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by the scientific community is Water Footprint (WF). This indicator expresses the volume of 

freshwater for the production of a specific good along its entire production chain and it looks 

not only at the direct water use of the producer or consumer, but it considers also the indirect 

consumption. Water Footprint is a multidimensional indicator, being the sum of three main 

contributes: 

‐ Green Water Footprint: it refers to the consumption of rainwater, or, in general, the 

water that comes from precipitation 

‐ Blue Water Footprint: this is the contribute provided by blue water resources, that is 

surface and groundwater 

‐ Grey Water Footprint: it refers to the amount of water needed to assimilate the load of 

pollutants given natural background concentrations (Hoekstra et al., 2011). 

 

The possibility of splitting Water Footprint into these components allow us to better understand 

how water consumption is partitioned over the production of a product, separating the green 

contribute from the irrigation inputs (in this thesis, grey WF will be omitted because it provides 

indication about the pollution rather than the effective water consumption). 

 

Several studies have already conducted analysis of the historical evolution of water footprint, 

providing maps of its spatial heterogeneity worldwide. There have been studies dealing with 

water use of food crops accounting at global scale, but also at regional scale, such as at 

continental or country level, with the attempt of assessing water footprint at higher spatial 

resolution (0.5 x 0.5 arc deg resolution and 5 x5 arc min with time scales ranging from 1971 to 

2005). All these studies depend on many assumptions, regarding the input parameters, the data 

sets and the modelling structure, while only few studies have developed a sensitivity analysis 

of the water footprint calculations to define the accuracy of the outcomes, being focused on 

specific regions (river basin scale) (Tuninetti et al., 2015). 

 

In the present study, we focus on both unit Water Footprint (uWF) concept, that is the volume 

of green or blue water necessary to produce a unit of product [m3/ton], and Water Footprint, the 

effective water volume consumed by a country in a given year[m3]. The goal of this work is the 

reconstruction of the historical evolution of water footprint at global scale, separating the green 

from the blue contribute, thus reconstructing the historical world maps of green and blue unit 

water footprint. To this end, we produce 5 x 5 arc min resolution global maps in the years 1970 
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– 2019, relying on historical series of crop yield, precipitation, crop evapotranspiration and soil 

moisture.  

This thesis chooses maize as testing crop for our model. In fact, maize belongs to the group of 

the four most cultivated grains (wheat, rice, maize and soybean) which, together, account for 

over 50% of the global human consumption in terms of caloric content  (wheat: 20%, rice: 16%, 

maize: 13%, and soybean: 8%)  (D’Odorico et al., 2014) and 50% of global crop water footprint 

(Mekonnen & Hoekstra, 2011). Moreover, this crop is rather easy to analyse because each 

growing period remains inside the one-year cycle (i.e., planting date always occur in Spring 

and harvesting in Autumn), while other crops, such as wheat, are generally planted in late 

Autumn and the harvesting day is Spring-Summer of the following year. Moreover, maize has 

a relatively simple way of cultivation, where water inputs only come from rain and/or irrigation 

(in many rice cultures, instead, a complete flooding of the field in some stages of the process is 

required). 
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2 Main concepts and references 
 

First of all, as mentioned in the introduction, the water footprint corresponds to the water 

volume withdrawn for the production of a food crop and the unit Water Footprint is the wf per 

unit mass of produced goods, dimensionally associated to a volume over mass of product 

[m3/ton].  

In our analysis, we focus on the partition of Water Footprint into its green and blue components, 

analysing the spatio-temporal variability of these variables over 5 x 5 arc min resolution global 

maps, corresponding to pixels of about 9 km x 9 km at the equator (Tuninetti et al., 2015). In 

each pixel of such maps, unit Water Footprint is expressed as the ratio between the water 

evapotranspired by maize crop during its growing period, 𝐸𝑇௔,ሺ௜,௝ሻ,௬ [mm/year] and the crop 

yield in that cell 𝑌ሺ௜,௝ሻ,௬ [ton/ha]. In this way, with the following equation 

𝑢𝑊𝐹ሺ௜,௝ሻ,௬ ൌ 10 ∙
𝐸𝑇௔,ሺ௜,௝ሻ,௬

𝑌ሺ௜,௝ሻ,௬
 ቆ

𝑚ଷ

𝑡𝑜𝑛
ቇ 

(2. 1) 

we obtain the cubic meters of water per ton of product which have been used in the cell(i,j) of 

the global grid at year y. The 10 factor is used to convert the millimetres of ETa into a volume 

per unit of surface, [m3/ha,] so that we can simplify ha and obtain [m3/ton]. Since ETa can be 

split into green and blue contribute, we can say that 

 

𝐸𝑇௔ ൌ 𝐸𝑇௚ ൅ 𝐸𝑇௕ 

(2. 2) 

where ETg corresponds to Green Evapotranspiration, which keeps into account the 

evapotranspiration output referred to precipitation, and ETb corresponds to Blue 

Evapotranspiration, that is the contribute which comes from irrigation.  

 

This work comes from the need of expanding an analysis dealing with Water Footprint 

accounting that has been conducted in the past. More specifically, there have already been 

attempts to derive crop water consumption at high spatial resolution, at global or national scale, 

for example the work provided by Mekonnen and Hoekstra (Mekonnen & Hoekstra, 2011), 

such as the one of Hanasaki (Hanasaki et al., 2010) Plus, there have been studies which carried 

on sensitivity analysis of crop Water Footprint to input parameters (Tuninetti et al., 2015) and 

others which looked for data-based and simplified ways to derive time-varying unit water 
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footprint considering the sum of green and blue water (Tuninetti et al., 2015). There are also 

online platforms, such as the Water Footprint Network, which provide updates (by reporting 

papers and books on the topic), interactive tools, data and statistics for assessing Water 

Footprint at national and global scale, but mostly without a temporal variability and/or without 

a separation of the green and blue components. So, before the description of the steps of this 

study, it is necessary to briefly recall and highlight the key concepts of the main research articles 

which provided the basis for this work.  

 

 

 

2.1 Global sensitivity of high-resolution estimates of crop 

water footprint 

 

The study conducted by Tuninetti et al. (2015) investigates the water footprint of the four 

globally mostly produced crops, that are wheat, rice, maize and soybean, by producing 5 x 5 

arc min resolution maps using the most recently available data for agricultural crop yield, 

precipitation, evapotranspiration and soil water content. From these maps, they evaluated the 

spatial heterogeneity of water footprint both at grid-cell and continental scale, to assess the main 

drivers of water footprint and to evaluate the relationship between water footprint and crop 

production. In addition, this study carries on a sensitivity analysis to understand which of the 

parameters directly manageable by farmers and land managers (e.g., planting date duration of 

the growing period, etc.) has a greater weight on the determination of crop Water Footprint. 

Final results come from an average of the input parameters over the time interval 1996 – 2005, 

in order to have input data independent from interannual fluctuations.  

 

The crop evapotranspiration of a single growing season is derived by the sum of the daily 

evapotranspiration [mm/day] over the length of the growing period, becoming then [mm/year]. 

To estimate green and blue evapotranspiration in each cell, instead, they performed a weighted 

mean of the rainfed and irrigated evapotranspiration with the following equations 

 

𝐸𝑇௚,௅ீ௉ ൌ
𝐸𝑇௚,௅ீ௉

ோ ∗ 𝐴ோ ൅ 𝐸𝑇௚,௅ீ௉
ூ ∗ 𝐴ூ

𝐴ோ ൅ 𝐴ூ   

(2. 3) 
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𝐸𝑇௕,௅ீ௉ ൌ
𝐸𝑇௕,௅ீ௉

ூ ∗ 𝐴ூ

𝐴ோ ൅ 𝐴ூ   

(2. 4) 

where 𝐸𝑇௚,௅ீ௉
ோ  and 𝐸𝑇௚,௅ீ௉

ூ  are the green evapotranspiration that respectively occur over the 

rainfed and irrigated areas for all the length of the growing period LGP, 𝐸𝑇௕,௅ீ௉
ூ  is the blue 

evapotranspiration that only occurs in the irrigated areas and 𝐴ோ and 𝐴ூ are respectively the 

harvested rainfed and irrigated area in each pixel.  

To determine crop Actual Yield, they resort to the results of the work provided by Monfreda et 

al. in 2008 and to data from FAOSTAT database, performing a weighted average over the 

period 1996 – 2005 with a combination of the two. 

The sensitivity analysis is performed by the creation of the Sensitivity Index (SIx), from a Taylor 

expansion of the functional dependence of Water Footprint. 

Looking at the spatial heterogeneities of the reconstructed high-resolution maps of Water 

Footprint, it can be observed that this variability is mainly affected by yield pattern, with a 

correlation coefficient of 0.74, while the effect of climate drivers (included into the 

evapotranspiration term) shows a correlation coefficient of only 0.34. Therefore, according to 

this study, the agricultural technological development of a country is expected to be much more 

influent than its climate conditions regarding water consumption. 

 

Regarding the sensitivity analysis, instead, the chosen parameters, that is the Available Water 

Content (AWC), Reference Evapotranspiration ET0, the length of the growing period LGP and 

the Planting Date PD, show different results according to the type of crop. More specifically, it 

has been observed that wheat is the most sensitive crop to the length of the growing period, rice 

instead is the one that is mostly influenced by changes of ET0, while maize and soybean to the 

planting date. The knowledge of these information by agricultural managers allow to refine the 

cultivation strategies to further reduce water requirements in food crops. 

 

 

2.2 Fast track approach 

 

The goal of the work performed by Tuninetti et al. in 2017 aims at finding a simple approach 

for the determination of crop Water Footprint. As we said earlier, Water Footprint is dependent 

from the evapotranspiration and crop yield. However, while the latter is easily available from 
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databases (FAOSTAT in particular, which provides the historical time series of mean national 

yield for each country from years 1961 – 2020), the former is in turn dependent on several 

parameters dealing with local climate and soil conditions (precipitation, reference 

evapotranspiration, soil moisture, etc.), which may not always be easily accessible, thus they 

require a longer time to be acquired. In addition, the calculation of crop evapotranspiration is 

rather complex and requires computationally demanding models. Therefore, this research work 

proposes a quick approach, named Fast Track, that considers the time variability of Water 

Footprint to be only dependent by crop yield patterns, neglecting the contribution of 

evapotranspiration variations, and it estimates the error between this approach and the detailed 

one.  

 

According to the Fast Track (FT) approach, the crop water footprint of country c in year t is 

only influenced by yield variations, while the evapotranspiration is kept constant to an average 

value over a period T, 

 

𝑢𝑊𝐹௖,௧ሺ𝑌ሻ ൌ 10 ∗
𝐸𝑇௖,்തതതതതതത

𝑌௖,௧
 ቆ

𝑚ଷ

𝑡𝑜𝑛
ቇ 

(2. 5) 

As for the previous study, the analysis is carried on by choosing wheat, rice, maize and soybean, 

since, together, they are globally the most impacting in terms of water use.  

The time-averaged CWF can be scaled with yield variations, with the equation 

 

𝑢𝑊𝐹௖,௧ሺ𝑌ሻ ൌ
𝐶𝑊𝐹௖,்തതതതതതതതത ∗ 𝑌௖,்തതതതത

𝑌௖,௧
 ቆ

𝑚ଷ

𝑡𝑜𝑛
ቇ 

(2. 6) 

where T has been selected to be the time interval from years 1996 – 2005, 𝑌௖,்തതതതത is the average 

crop yield over time T, 𝐶𝑊𝐹௖,்തതതതതതതതത is the average crop water footprint over T and 𝑌௖,௧ is the yield 

of a specific year t. 

By using the previous equation, it is possible to reconstruct the historical estimates of crop 

water footprint at country scale for the time interval 1961 – 2013. Indeed, the only input 

parameters are the averaged crop water footprint over T (𝐶𝑊𝐹௖,்തതതതതതതതത), the average yield over T ( 

𝑌௖,்തതതതത) and the historical series of crop yield from 1961 to 2013 (𝑌௖,௧). The first variable is the 

result of the work provided by Tuninetti et al. (2015), where, from a 5 x 5 arc min resolution 
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global gridded map, national values have been obtained from a production-weighted mean of 

the pixel of each country.  𝑌௖,்തതതതത, instead, has been derived by averaging FAOSTAT national 

yield series over T (that is, from 1996 to 2005), while 𝑌௖,௧ are the historical time series of mean 

national yield from 1961 to 2013.  

 

At the same time the study provides an evaluation of the crop water footprint with a detailed 

approach, that is by keeping into account annual variations of both crop yield and 

evapotranspiration. 

The annual crop evapotranspiration, which is the sum of all daily ETs over the crop growing 

period, is derived by the product of reference evapotranspiration ET0 (driven by climate factors) 

and the crop coefficient kc (which keeps into account the characteristics specific for that crop). 

While, for simplicity, crop properties are assumed to be constant over the years, reference 

evapotranspiration, such as precipitation data are taken from the CRU database, which provides 

30 x 30 arc min resolution global maps from 1961 to 2013 on a monthly basis. Historical crop 

yield maps are instead reconstructed from the results provided by Monfreda et al (2008), 

adjusting the maps at 5 x 5 arc min resolution for year 2000 (𝑌௜,௧ୀଶ଴଴଴
ெ଴ ). 

Looking at the results of the study, it is possible to see that the coefficient of determination R2 

of the scatter plots of the national crop water footprint in year t within the period 1961 – 2013, 

comparing FT approach with detailed approach, is 0.977 for wheat, 0.965 for rice, 0.973 for 

maize and 0.914 for soybean. This confirms that crop yield pattern is the main factor influencing 

the temporal variability of crop water footprint. However, even with FT approach, climate 

variations are not neglected since they are incorporated in the yield time series. In fact, 

according to Ray et al. (2015), almost 30% of temporal yield variability is driven by climate 

factors (Ray, Gerber, MacDonald, & West, 2015). 

Therefore, this study demonstrates that the application of the Fast Track approach to estimate 

temporal variability of crop water footprint is feasible, with a very limited error between this 

approach and the detailed one. In fact, by keeping constant the evapotranspiration, they found 

a rather low uncertainty of the water footprint estimates, with a standard deviation of the error 

around 0.1. Therefore, by applying this method, it is possible to acquire CWF estimates with 

an easier and fast applicability tool. 
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2.3 Water Footprint Network 

 

The Water Footprint Network a network of people, researchers and institutions, with a 

corresponding website from which Water Footprint data are taken to validate the results of this 

work. This is a platform that collaborates with companies, organisations and individuals which 

work in water-related businesses or simply interested in water footprint issues to help them in 

finding innovative strategies for a fair a smarter water use.  

In 2002, Arjen Hoekstra proposed the concept of Water Footprint as a metric to measure water 

consumption for the production of goods over their supply chain. Over the years, the interest 

on this theme rapidly raised among the scientific community and in companies, especially those 

working in the field of food and beverages. Therefore in 2008, Hoekstra together with the global 

players from business, civil and academic society founded the Water Footprint Network, a 

network to create cohesion between people who believe in the power of water footprint as tool 

to promote more efficient water use.  

This is a non-profit network which coordinates different activities, such as: 

‐ Network and Exchange 

‐ Awareness Raising 

‐ Capacity Building 

‐ Knowledge and Data Dissemination 

‐ Influencing Policy and Practice 

 

This platform is also a database that contains a set of resources which articulates in an archive 

of water footprint-related publications, interactive tools for the assessment of individual water 

consumption, global maps of water footprint and statistics of green, blue and grey water 

footprint at product and national scale. 

From this database, we collect the values of green and blue water footprint of national 

production and consumption of maize, averaged over the period 1996 – 2005. These data are 

used to validate the results obtained with the method proposed in this study.  

Moreover, from the Water Footprint Network we collect the book “Water Footprint Assessment 

Manual” (Hoekstra et al., 2011), which provide a complete and updated overview of the global 

standards on the assessment of this indicator. 
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3 Data analysis and preparation 
 

 

First of all, we download the global 5 arc minutes resolution map of the yield of maize, 

expressed as a matrix of 2160 x 4320 pixels from GAEZ v4 Data Portal. As reported in the 

GAEZ webpage, this Portal is the result of the cooperation of the Food and Agriculture 

Organization of the United Nations (FAO) and the International Institute for Applied Systems 

Analysis (IIASA), which worked together to implement the Agro-Ecological Zones (AEZ) 

databases. These zones were built from a deep analysis of land evaluation principles to assess 

natural resources and estimate agricultural land use.  

The Agro-Ecological Zones were initially implemented in the 1980s and have been 

continuously improved in time up to the first global AEZ assessment in 2000 (GAEZ v1), 

thanks to the technological development of geo-information systems. Then, other versions of 

the database were released (GAEZ v2 and v3) up to the today’s assessment GAEZ v4, which 

comprises large amounts of agro-ecological indicators.  

Results are represented in a raster format, with a resolution of 5 arc-minute, approximately 9 x 

9 km for a single cell at the equator and provides the global maps of 2000 and 2010. 

 

 

 

3.1 National Yield 

 

 

3.1.1 Italy  

 

The analysis starts from the global maps of yield [ton/ha] and harvested areas [ha] of maize in 

2000, where a first calculation of Italian mean national yield is performed. In order to extract 

only the Italian cells from the global matrix we get helped by a sort of “mask matrix”, the 

map_FAOcodes, a matrix with the same dimensions of the one of GAEZ (2160 x 4320), where 

each cell contains the FAO code corresponding to the country in which it supposed to be part 

of.  

With the find(_) command, choosing only the cells with yield and harvested area greater than 

zero and with the FAO code equal to 106 (code of Italy) we extract the Italian cells where maize 
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is cultivated. These cells are inserted in a 3760 rows array, which reports only the Italian cells 

which contains both positive values of yield and harvested surface.  

The total Italian surface for maize crops is then calculated by summing the values of the vector 

of harvested areas: 

 

𝐴𝑟𝑒𝑎௧௢௧ሾℎ𝑎ሿ ൌ 𝐴ଵ ൅ 𝐴ଶ ൅ 𝐴ଷ ൅ ⋯ ൅ 𝐴௡ 

(3. 1) 

Later, the national maize production is obtained by the product of the yield and area vectors, 

obtaining the total tons of maize for each cell: 

 

𝑃ሾ𝑡𝑜𝑛ሿ ൌ ሺ𝑌ଵ ∗ 𝐴ଵሻ ൅ ሺ𝑌ଶ ∗ 𝐴ଶሻ ൅ ⋯ ൅ ሺ𝑌௡ ∗ 𝐴௡ሻ 

(3. 2) 

At this point it is possible to derive the mean national Italian yield of 2000 by dividing total 

production with total harvested area: 

𝑌ത௜௧௔௟௬ ൤
𝑡𝑜𝑛
ℎ𝑎

൨ ൌ
𝑃

𝐴𝑟𝑒𝑎௧௢௧
 

(3. 3) 

Here the results for Italy: 

Table 3. 1: results for Italy 

Country 
Mean National Yield 

(ton/ha) 

Minimum Yield 

(ton/ha) 

Maximum Yield 

(ton/ha) 

Number of 

cells 

Italy  9.6  1.03  11.7  3760 

 

 

3.1.2 Rest of the world  

 

At this point we can repeat the same procedure to all world’s countries. The goal is to create a 

dataframe, Summary_matrix, with N rows, where N is the total number of countries where 

maize is grown and 10 columns, in which we have: 

Column 1: FAO code,  

Column 2: mean national yield  

Columns 3, 4, 5: Min, Max and total number of cells 

Column 6: total area 
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Columns 7, 8, 9: checking of empty countries 

Column 10: mean national yield according to FAOSTAT 

 

Data in the last column of the matrix refer to the mean national values of yield of world’s 

countries according to FAOSTAT, the principal database of FAO, which contains a large 

amount of agro-food related indicators and rankings of all countries from 1960 to present days. 

By comparing processed data with FAOSTAT data we can understand if there are discrepancies 

between GAEZ and FAOSTAT datasets. The procedure is carried out with a for loop in Matlab, 

repeating the steps done for Italy. However, it must be noted that not all countries contain cells 

of yield and/or area, and there may be countries which actually contain both yields and areas, 

but these cells don’t match each other, therefore columns 7, 8, 9 are dedicated to the check of 

empty countries, using a binary system. Inside the for loop, we insert an additional condition, 

which says that if there is at least one value of yield in the country, column 7 will reports “1”, 

otherwise it will put “0”. The same concept applies for harvested areas in column 8, while 

column 9 reports “1” if there is at least 1 pixel in the country which contains both a positive 

value of yield and area. 

 

Once the matrix is built, we use a 3-dimension scatter plot to compare countries’ mean national 

yields obtained from data processing with FAOSTAT data, checking for possible discrepancies. 

Each dot corresponds to a country (numbers are the FAO codes related to that country) and they 

have different dimensions depending on the number of hectares dedicated to maize crops. The 

plot is repeated also for harvested areas (this time, it is only a 2D scatter plot). 
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Figure 3. 1: scatter plot of yield data comparing between GAEZ and FAOSTAT datasets 

 

 

 

Figure 3. 2: scatter plot of harvested area data comparing between GAEZ and FAOSTAT datasets 

 

At a first glance, the majority of countries are well aligned with the bisector, especially 

countries with vast harvested areas (China, US…), but there are other nations which 

significantly deviate from the bisector, in particular those with low yields and areas. To better 

see the misaligned countries the relative error between processed and FAOSTAT data is 

computed, obtained with the equation 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 ൌ
𝑌ଶ଴଴଴,ீ஺ா௓

ே െ 𝑌ଶ଴଴଴,ி஺ைௌ்஺்
ே

𝑌ଶ଴଴଴,ி஺ைௌ்஺்
ே  

(3. 4) 

where 𝑌ଶ଴଴଴,ி஺ைௌ்஺்
ே  is the mean national yield of country N in year 2000 according to 

FAOSTAT, while 𝑌ଶ଴଴଴,ீ஺ா௓
ே  is the yield obtained from data processing of GAEZ matrix. Then, 

countries with an error greater than 50% are isolated. 

 

Table 3. 2: countries with error greater than 50%, yield 

Country name  FAO code 
National yield 

computed by GAEZ 
(ton/ha) 

FAOSTAT yield 
(ton/ha) 

Error (%) 

Bulgaria  27  2.68  1.72  55.32 

Dominica  55  2.28  1.36  67.93 

Bosnia and 
Herzegovina 

80  3.65  2.27  60.93 

Grenada  86  1.58  1  56.99 

Iraq  103  1.74  0.76  130.37 

Timor‐Leste  176  4.38  1.61  172.64 

Eritrea  178  0.59  0.24  152.07 

Romania  183  2.77  1.71  61.71 

Serbia and 
Montenegro 

186  4.06  2.44  66.52 

Slovakia  199  4.75  3.04  56.32 

Uruguay  234  3.79  1.53  148 

 

Table 3. 3: countries with error greater than 50%, area 

Country name  FAO code 
Harvested Area 

computed by GAEZ  
(ha) 

FAOSTAT area 
(ton/ha) 

Error (%) 

Algeria  4  34.4  430  ‐92 

Bangladesh  16  1939.2  4855  ‐60.06 

Chad  39  143192  85014  68.43 

Congo  46  12517.1  7944  57.57 

Kuwait  118  20  270  ‐92.59 

Lebanon  121  107.4  900  ‐88.06 

Lithuania  126  2.3  5659  ‐99.96 

Mali  133  284500.5  161053  76.65 

Timor‐Leste  176  285207.9  55000  418.56 
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It can be seen that the values reported in Table 3. 2 and Table 3. 3 show very low values of mean 

national yield (they don’t exceed 4.5 ton/ha) and rather low harvested areas. Anyway, most of 

codes in these two tables refer to developing countries in the Middle East, Africa and South 

America, where data collection is rather complex and not always reliable. 

 

 

 

3.2 National yield and area in time 

 

Now we create the global maps of yield and area from 1961 to 2019, to see the evolution of 

world’s maize cultivations in the past 60 years.  

To perform this calculation, it is first necessary to download from FAOSTAT the national yield 

of all countries from 1961 to 2019; these will be required to extend the previous analysis of 

year 2000 to the rest of the time period.  

The procedure is again carried out in a double for loop in Matlab which iterates the calculation 

for every year from 1961 to 2019 and for all countries of the world. Thus, at each iteration, we 

identify the position of the cells corresponding to a certain country (according to its FAO code) 

and which contains positive values of yield and harvested areas, then, with historical mean 

national values for that country for every year we execute the following operation: 

𝑌ሺ௜,௝ሻ,௬௥ ൌ 𝑌ሺ௜,௝ሻ,ଶ଴଴଴ ∗
𝑌ത௖,௬௥

𝑌ത௖,ଶ଴଴଴
 

(3. 5) 

In this equation, the value of yield of the pixel in position ሺ𝑖, 𝑗ሻ at the year yr will be the result 

of the product between the value of yield of the pixel in position ሺ𝑖, 𝑗ሻ in year 2000 and a 

correction factor, that is the ratio between the FAOSTAT national yield of the country in which 

the pixel is located at the i-th year and the national yield of 2000 according to the data 

processing performed in the section National Yield. This correction factor is non-dimensional 

and allows the extension of the year 2000 GAEZ map to the past and future years of the dataset, 

relating FAOSTAT data (the numerator, which incorporates all the history of maize cultivation 

in that country, such as technological developments, crises and famines, political assets etc.) 

with year 2000 GAEZ processed data. 
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We can repeat the same procedure for the creation of the historical global map of harvested 

areas. For every year (1961-2019) and for every country (Albania-Zimbabwe) we find the 

belonging pixels of area which have both yield and area greater than zero, then, using equation 

(3. 6) we multiply these terms with the correction factor, in this case the total area of a country 

in year ሺ𝑘ሻ over the total area of the same country in 2000: 

 

𝐴ሺ௜,௝ሻ ௬௥ ൌ 𝐴ሺ௜,௝ሻଶ଴଴଴ ∗
𝐴௧௢௧,௖,௬௥

𝐴௧௢௧,௖,ଶ଴଴଴
 

(3. 6) 

3.2.1 Country variations in time 
 

Nevertheless, the procedure may result incomplete if we leave it as it is. In fact, if we display 

the historical global maps prior to the 90s, we notice that some nations become blank before a 

particular year. This is simply because those states didn’t exist prior to that year but were 

incorporated inside wider confederations. In particular, this is the case of: 

 Belgium-Luxembourg, disaggregated in 2000 

 Czechoslovakia, disaggregated in 1993 

 Soviet Union (USSR), disaggregated in 1991 

 People's Democratic Republic of Ethiopia (PDRE), disaggregated in 1992 

 Yugoslavia, disaggregated in 1991 

 

Therefore, in order to complete the missing spaces of the historical maps, we need to use the 

mean national yields of the previously listed federations from 1961 to the year in which they 

disaggregated. For example, to display the evolution of the yield of maize in Ukraine from 1961 

to 2019, it is necessary to use in the equation (3. 6) the mean yield of USSR from 1961 to 1991, 

then the mean national yield of Ukraine from 1991 to 2019. Undoubtedly, yields in Ukrainian 

pixels prior to 1991 are supposed to be much less accurate than those subsequent to USSR 

disaggregation. In fact, the mean national yield of Soviet Union takes in account a much wider 

number of states, with countries having completely different cultivation techniques and climate 

(for example, the countries in Central Asia, Siberia, Baltic countries etc.), thus the pixels of 

Ukraine are multiplied by a weighted mean yield which does not correspond only to that 

geographic area. 
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The procedure starts by finding all today’s countries which were part of the listed federations 

and their FAO codes, then they are grouped together therefore forming the ex-unions. In 

particular: 

 Belgium-Luxembourg (FAO code 15), which is the sum of Belgium (FAO code 255) 

and Luxembourg (FAO code 256) 

 Czechoslovakia (FAO code 51), which is the sum of Czechia (FAO code 167) and 

Slovakia (FAO code 199) 

 USSR (FAO code 228), which is the sum of Armenia (FAO code 1), Azerbaijan (FAO 

code 52), Belarus (FAO code 57), Estonia (FAO code 63), Georgia (FAO code 73), 

Kazakhstan (FAO code 108), Kyrgyzstan (FAO code 113), Latvia (FAO code 119), 

Lithuania (FAO code 126), Moldova (FAO code 146), Russian Federation (FAO code 

185), Tajikistan (FAO code 208), Turkmenistan (FAO code 213), Ukraine (FAO code 

230), Uzbekistan (FAO code 235) 

 People's Democratic Republic of Ethiopia (PDRE) (FAO code 62), which is the sum of 

Eritrea (FAO code 178) and Ethiopia (FAO code 238) 

 Yugoslavia (FAO code 248), which is the sum of Bosnia and Herzegovina (FAO code 

80), Croatia (FAO code 98), North Macedonia (FAO code 154), Serbia (FAO code 272), 

Montenegro (FAO code 273), Slovenia (FAO code 198) 

 

From FAOSTAT, the list of historical annual mean yields of disaggregated countries is 

downloaded, converted from .csv format to .mat and imported in Matlab. Then, the matrix 

positions of the today’s cells of previously listed countries are isolated by the use of the find(_) 

command, with the conditions of selecting pixels with positive yield and harvested area and 

FAO code corresponding to the country of interest. Later, these arrays of positions (idx255, 

idx256 …) are grouped in larger vectors, according to the federation which they were part of, 

in turn included in a structure named index:  

 

index.idx15=[idx255; idx256]; 

index.idx51=[idx167; idx199]; 

index.idx62=[idx178; idx238]; 

index.idx228=[idx1; idx52; idx57; idx63; idx73; idx108; idx113; idx63; idx119; idx126; 

idx146; idx185; idx208; idx213; idx230; idx235]; 

index.idx248=[idx186; idx98; idx198; idx154; idx80]; 
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At this point the for loop can start. For every ex-federation and for every year (from 1961 to the 

year of disaggregation) the code identifies the pixels of yield and harvested area of that 

federation, thanks to the new indexes inside the structure, then, from these yields, the national 

yield of 2000 is calculated using the equation   

𝑌ത௙ௗ௥ ൤
𝑡𝑜𝑛
ℎ𝑎

൨ ൌ
𝑃

𝐴𝑟𝑒𝑎௧௢௧
 

(3. 7) 

where 𝐴𝑟𝑒𝑎௧௢௧ is the sum of all harvested areas for that country and 𝑃 is the sum of the products 

of yield and harvested area in positions ሺ𝑖, 𝑗ሻ. Even though these federations didn’t exist in 2000 

anymore, we still need to exploit this expedient to obtain the average yield of such group of 

nations in 2000, which will constitute the denominator of the correction factor that will be used 

later. 

Therefore, we can reproduce the historical maps of yield and area by the use of the correction 

factor:  

𝑌ሺ௜,௝ሻ ௬௥ ൌ 𝑌ሺ௜,௝ሻଶ଴଴଴ ∗
𝑌ത௙ௗ௥ሺ௠ሻ,௬௥

𝑌ത௙ௗ௥ሺ௠ሻ,ଶ଴଴଴
 

(3. 8) 

𝐴ሺ௜,௝ሻ ௬௥ ൌ 𝐴ሺ௜,௝ሻଶ଴଴଴ ∗
𝐴௧௢௧௙ௗ௥ሺ௠ሻ,௬௥

𝐴௧௢௧௙ௗ௥ሺ௠ሻ,ଶ଴଴଴
 

(3. 9) 

Results are then saved in two structures, one for yield and the other for harvested areas, 

containing 59 elements and where each element is a 2160 x 4320 global map of yield or area 

for the year yr. 

 

For the display, we rely on ArcGIS software. The maps of 1961, 1970, 2000 and 2019 are 

chosen for the purpose. Firstly, they need to be converted into a .txt file to be imported on the 

software. In Matlab, a specific function, txt_per_QGIS, converts the matrices from .mat into a 

.txt file that can be read by ArcGIS. The files are then imported on GIS and, after a little 

processing on the Symbology of the Layer Properties tab they can finally be represented. For a 

correct and satisfying display of the features inside the map, we choose the Classified option, 

we select 5 classes, and we use the Manual classification method for the intervals, which allows 

to manually select the break values of the classes.  
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3.3 Yield and area evolution 
 

 

Now we want to understand how yield and harvested area evolved in the past 50 years in some 

specific countries, that is in the United States, Italy, Australia, Nigeria and Viet Nam. The 

choice about these nations is due the fact that we want one representative country per continent, 

with a sufficient number of harvested land hectares and reasonable values of yield. In addition, 

the dimensions of the chosen states, such as their climate, geomorphology, agricultural 

techniques and their relationship with maize crop allow us to have different conditions in the 

patterns of yield and harvested area. Then, in order to better see the evolution of the trend, we 

display the linear regression line, a linear model for the interpolation of the data. 

 

Regarding yield, the yearly national yield for each country from 1961 to 2019 is plotted versus 

time. In Matlab, for the interpolation procedure, with the polyfit function we find the 

coefficients to be used for the linear model, applying the Least Square Method. Then, with 

polyval function, the independent variable (years), is used together with the derived coefficients 

to find the predicted y, that is the linear regression model. 

For harvested areas, we take the sum of all the surfaces for that country for each year and we 

plot the result versus time, then, for the interpolation procedure, we repeat the steps done for 

the yield.  

Here the results for yield and area:  

 

 

Figure 3. 3: time series of mean national yield of Italy, US, Australia, Nigeria and Viet Nam 
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Figure 3. 4: time series of national harvested area of Italy, US, Australia, Nigeria and Viet Nam 

 

 

Looking at the first illustration, it can be clearly observed an increasing trend in all countries. 

They all started in 1961 with mean national values lower than 4 ton/ha, then they gradually 

increased through time, reaching values which are twice or three times as much as their initial 

value in 2019.  

For example, US had a mean national yield of approximately 4 ton/ha in 1961, then it 

continuously raised up to 11 ton/ha in 2019, with a trend that can be approximated as a straight 

line which has the intention to grow also in the future. Different topic for Italy, which generally 

follows similar values in terms of yield compared to US, even better in the years between 1975 

and 2005, however it seems that its trend reached a sort of plateau from 1995, where values 

fluctuate between 7.5 and 10.5 ton/ha, but without a growth of the trendline. Australia, instead, 

follows a very similar pattern to US: a straight line from 2 to 7.5 ton/ha, that means that in 60 

years the national yield of the country tripled. Furthermore, the tendency of Viet Nam shows a 

quadratic pattern, meaning that in the next years it will likely be the one with the highest rates 

of growth compared to all other countries. Nigeria, instead, has always been the nation with the 

lowest yield and with the lowest growth rate: up to the mid ‘80s, its values were comparable 

with those of Viet Nam, nevertheless the values of the former still remained low while those of 
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the latter significantly raised in the following decades. Even though Nigeria’s yield is growing 

(it almost doubled in 60 years), it never exceeded 2 ton/ha. 

 

Regarding harvested areas, it is clear that US is the nation that leads among the others: due to 

its land morphology (vast flatlands in the mid of the country) and to its dimensions (3rd largest 

country in the world), it owns a maize surface that has always exceeded 20 million hectares, 

while all other nations remained below 7 million (Italy, Australia and Viet Nam also below 2 

million hectares). 

Here, Nigeria reveals to be the second greatest country in terms of maize land cover extension: 

in fact, up to the mid ‘80s it showed comparable values to the other nations (US excluded), then 

the curve lifted to 7 million hectares, following a very similar rate to US. Throughout the last 

60 years, Italy and Australia didn’t show evident growth in terms of harvested area, while the 

curve of Viet Nam manifests a very mild increase, but always keeping values well below 5 

million hectares. 

 

 

 

3.4 Distributed yield area and production in time 
 

 

At a first glance on the maps of Figure 3. 5 and Figure 3. 6, it can be noticed that both yield and 

harvested area globally increased; the first factor is mainly driven by the great technological 

improvements that have been put in place, which allow a maximisation of production with 

reduced use of water resources, while the increase of the latter is caused by the rise of food 

demand, determined by a continuously growing population and by a general improvement of 

the quality of life. 

Regarding yield, it can be seen that US and Europe are the owners of the brightest cells, i.e., 

the highest values, followed by countries in the Austral Hemisphere (such as Brazil, Australia 

and New Zealand), while most of other nations don’t show values greater than 8 ton/ha, 

especially in Africa, where also in 2019 many countries have yields which don’t reach 3 ton/ha.  

In the harvested surface’s maps, instead, we can clearly highlight four clusters with very high 

harvested area values: Central US (Nebraska, Minnesota, Wisconsin, Illinois…), Brazil, 

Eastern Europe (Romania, Moldova, Ukraine) and Northern China (around Yellow Sea and in 
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Manchuria). These pixels always had a high amount of harvested area, and, over time, they 

reached values between 1500 and 4000 ha (remembering that the side of each pixel is 

approximately 8.3 km at the equator). Also, Brazil and Nigeria increased their harvested 

surfaces over time, thus entering in the list of the greatest world’s producers, however not 

reaching the same values per pixel of the three clusters. 

 

 

 

 

 

Figure 3. 5: maps of yield of years 1961, 1970, 2000, 2019 
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Figure 3. 6: maps of harvested area of years, 1961,1970, 2000, 2019 

 

 

3.5 Maps of production 

 

Having the maps of yield and harvested surfaces, the global maize production maps can be 

easily created. 

Production is the product between yield ቂ௧௢௡

௛௔
ቃ and area ሾℎ𝑎ሿ, that is the number of tons produced 

in a given cell in a given year.  

In the code, the procedure is carried on by a triple for loop, where for each year “a” the cells of 

yield at the position (i,j) is multiplied with the cells of area (i,j). Inside these three for loops 

there is also an if condition, that says that the multiplication only occurs if both of cells contain 

values greater than zero, otherwise the result will be just -9999 (i.e., non-productive, or water-

covered area). 

Here the equation of the process:  

 

𝑃ሺ௜,௝ሻ௬௘௔௥ሺ௔ሻ ൌ 𝑌ሺ௜,௝ሻ௬௘௔௥ሺ௔ሻ ∗ 𝐴ሺ௜,௝ሻ௬௘௔௥ሺ௔ሻ 

(3. 10) 

As for yield and harvested area, the maps of 1961, 1970, 2000 and 2019 are chosen to be 

displayed. They are exported as a .txt file and imported on ArcGIS, where, after few steps of 

processing on the Layer Properties - Symbology tab, the maps can finally be represented. 
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Figure 3. 7: maps of production of years 1961, 1970, 2000, 2019 

 

Looking at the maps of production, the visibility of the clusters highlighted in the maps of 

harvested area is clearly evident. In fact, we can see that in US, Eastern Europe and China many 

pixels contain values of production that exceed 105 ton. The rest of the world, apart from few 

other areas in Brazil, India and Argentina, which contain little clusters of high production 

pixels, shows values which are lower than 3000-7000 tons per pixel. These results are coherent 

with what can be found in official statistics: Investopedia, such as STATISTA and FAOSTAT, 

says that the three largest maize producers are US, China and Brazil.  

It is also worth to notice how much these clusters increased over time: from a monochromatic 

flat condition in 1961 map, we assisted to a continuous darkening of these areas during the 

time-interval.  
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3.6 Comparison between estimated map of year 2010 and 

GAEZ map of year 2010 

 

 

The time series of yield and harvested area, derived from the data processing described in the 

previous parts, are both based on the GAEZ matrix of year 2000. In fact, all the maps of maize’s 

yield and area from 1961 to 2019 are referred to how they were distributed in 2000, then the 

correction factor, which is based on the national time series of yield and harvested area, 

modifies the values of 2000 to those of the given year. However, even in the past and also in 

the following years, the distribution of pixels in the global maps remains the same as it was in 

2000, the only things that change are the values inside each cell. However, between 2000 and 

2010, it may have happened that, worldwide, new maize cultivations appeared in places which 

never had such crop, plus there may have been crop switches (change type of crop within a 

region), crop migrations (moving maize to more favourable areas) or just some political actions 

that changed the distribution of maize areas. On the global maps, in fact, we would expect not 

only a change in the pixel colour, but also the pop-up and shutdown of different pixels. 

We compare the statistics of matrix Yield_maize_2010 (i.e., the GAEZ matrix of 2000 corrected 

with the correction factor) with the 2010 matrix directly downloaded from GAEZ Data Portal. 

Here the table with the results: 

 

Table 3. 4: data and statistics of reconstructed vs GAEZ 2010, yield 

YIELD 
Reconstructed

 2010 
GAEZ 2010 

Mean 
(ton/ha) 

4.157  4.150 

Min (ton/ha)  0.056  0.088 

Max (ton/ha)  35.113  32.253 

Mode 
(ton/ha) 

2.680  2.592 

Stdv  2.854  2.826 

Variance  8.145  7.987 

Number  
of cells 

769450  764991 
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Table 3. 5: data and statistics of reconstructed vs GAEZ 2010, area 

AREAS 
Reconstructed

 2010 
GAEZ 2010 

Mean (ha)  213.9  215.7 

Min (ha)  0.0  0.0 

Max (ha)  58201.4  8842.3 

Mode  0.1  0.8 

Stdv  424.3  417.0 

Variance  180032.4  173854.5 

Number  
of cells 

769450  764991 

 

 

In the first column of the two tables, we have the results regarding the reconstructed matrix of 

2010, while in the second, the GAEZ map of 2010.  

We notice that, generally, the values of the two matrices are similar: the global mean of yield 

and harvested areas are very similar, especially due to the very high number of cells which 

reduces the influence of potential outliers. Also, the differences between all other indices in the 

yield table are almost negligible, just the maximum differs of more than 2 ton/ha. In the 

harvested areas table, instead, we see that there are evident differences in the maximum, almost 

50000 hectares of difference between the reconstructed 2010 and GAEZ 2010. This probably 

means that, in the global map of harvested areas in year 2000, there were one or more outliers 

that have then been corrected in the later version. 

However, the matrix of the reconstructed 2010 contains more cells than the GAEZ 2010, 

769450 and 764991, respectively, therefore a difference of 4459 cells. This doesn’t mean that 

between 2000 (the reference matrix of the reconstructed 2010) and 2010 4459 cells just 

disappeared; these are the net result of the shutdown and pop-up of many more pixels across 

the map.   

 

 

 

3.7 Temporal variations in GAEZ data (cell switches) 
 

 

It is worth to check which and where are the switched off cells (cells that contain values in the 

GAEZ map of year 2000 and no data in the GAEZ map of year 2010) and switched on cells 

(cells that are empty in the GAEZ map of year 2000 and contain values in the GAEZ map of 
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year 2010) on the maps, to better understand which have been the effective changes between 

2000 and 2010, which are the most affected countries, the geographical areas, the average 

latitudes etc. 

The procedure starts from the creation of two logical matrices, one for Yield_maize_2010 (the 

processed matrix) and one for mze_2010_yld (GAEZ), with the condition of finding the values 

greater than zero. In Matlab, logical is a function that converts numeric values into an array of 

logicals, that is 0 and 1, given a certain condition. As previously said, here the condition consists 

in finding all positive elements of Yield_maize_2010 and mze_2010_yld, so three new files are 

created:  

‐ matrix1: logical array of Yield_maize_2010 

‐ matrix2: logical array of mze_2010_yld 

‐ matrix3: matrix1-matrix2 

 

Thus, the values displayed in the pixels of matrix3 can only be +1, 0, -1, in particular: 

‐ Pixels = +1 correspond to the switched off cells in 2010 (they were on in the GAEZ 

matrix of 2000, but they shut down in GAEZ 2010) 

‐ Pixels = 0 correspond to the cells with no data or to those which contain both values in 

2000 and 2010 

‐ Pixels = -1 correspond to the switched-on cells in 2010 (they were off in the GAEZ 

matrix of 2000, but they pop-up in GAEZ 2010. 
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Figure 3. 8: identification schema of switched off and on cells between GAEZ 2000 and 2010 

 

 

 

In the Matlab code, once created matrix3, we find the position of the cells equal to +1 (positive 

values) and those equal to -1 (negative values) with the find function: 

index3=find(matrix3(:,:)>0) (positions of switched off cells of 2000  

index4=find(matrix3(:,:)<0) (positions of switched on cells of 2010 (GAEZ)) 

Therefore, the switched on and off cells in the original matrices will be: 

 yields_off=Yield_maize.Yield_maize_2010(index3); 

yields_on=mze_2010_yld(index4); 

 

 

 

3.7.1 Distribution in switched on and off cells 

 

We are now able to visually analyse the differences between the reconstructed map of yield 

(Yield_maize_2010) and the GAEZ map (mze_2010_yld). 
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We start creating histograms of the frequency distribution of the pixel values, to compare which 

were the most frequent yields that shutdown and those which appeared, selecting a number of 

bins equal to 50 and bin width to 0.3. 

 

 

Figure 3. 9: frequency distribution of switched on and off cells 

 

Figure  3.  9  shows the frequency distribution of the yields of the switched on and off cells 

together with the one of total world’s pixels (in this case, the distribution of the values of 

Yield_maize_2010). At a first glance, we notice that the switched off and on cells are much less 

than the totality of the cells. The greatest peak is in the switched-on cells, more than 3000 cells 

around 1.5 ton/ha, while the peak of the switched off pixels is less sharp (2200 cells) and slightly 

shifted to the right (around 2-2.5 ton/ha). Since the greatest number of values of the switched-

on cells is attested on low values, 1.5 ton/ha, this means that, according to GAEZ, between 

2000 and 2010 one or more countries with rather low yields appeared in the map; it may be an 

undeveloped country or a nation with a less favourable climate (desertic, very cold etc.). Also, 

it is worth noticing that a considerable number of cells between 5 and 6 ton/ha turned off: this 

is unexpected, since these yields are rather high (greater than the global mean, approximately 

4.1 ton/ha), so this may imply that one or more countries opted for a crop switch between 2000 

and 2010. 
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3.7.2 Switches by country 

 

Once understood the pattern of the frequency distribution of the switched on and switched off 

cells, it is interesting to see their spatial distribution. 

We firstly start by identifying the countries containing switched on/off cells and counting how 

many of these cells each country contains, by using the Matlab commands unique and 

accumarray. The former selects the unique values in the array (i.e., the countries) and the latter 

returns the number of values for that country. 

Then, we create a matrix where, in the first column, there is the list of all the countries which 

contain at least one turned on or off pixel, while in the second the amount of turned off cells 

and in the third the turned-on cells for that country. Since there are too many countries involved 

in the switch off or on of pixels (they are 107), we opt for filtering the dataset and select only 

the countries which contain at least more than 300 turned on or off cells inside their territory. 

Now, the number of countries drops to 22. 

 

 

 

 

Table 3. 6: countries with high number of switched on and off cells 

Country name 
FAO 
code 

Turned 
off cells 

Turned 
on cells 

[‐]  0  0  3143 

Argentina  9  1  454 

Australia  10  313  106 

Bangladesh  16  0  1714 

Bolivia (Plurinational State of)  19  14  3499 

Botswana  20  1  447 

Myanmar  28  769  2 

Central African Republic  37  3415  7 

Denmark  54  0  847 

Guyana  91  448  0 

Iran (Islamic Republic of)  102  610  104 

Kazakhstan  108  1669  4 

Cambodia  115  0  453 

Lao Peoples Democratic 
Republic 

120  0  706 

Lithuania  126  0  1303 
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Malaysia  131  3813  0 

Papua New Guinea  168  1202  1 

Peru  170  2219  3 

United Republic of Tanzania  215  0  3227 

Turkey  223  535  9 

Venezuela (Bolivarian Republic 
of) 

236  1884  3 

China  351  3125  16 

 

 

We are now able to create the bar chart: in the x axis we have the FAO code of the filtered 

countries, while in the y axis the number of switched-on/off cells that each of this country 

contain, plus, at the top of each bar, we add the percentage of these cells with respect to the 

total positive pixels in that country. 

 

 

Figure 3. 10: bar chart of countries with high number of switched off and on cells 

 

 

In some states, such as Bolivia (FAO code: 19) and Tanzania (FAO code: 215), a great number 

of pixels switched-on (more than 3000), however they remain a low portion with respect to the 

totality of the cells in these nations. They both own low mean national yields (2-2.5 ton/ha), so 

this demonstrates that many of the cells which switched on show low values (in Tanzania almost 

all new cells are below 1.5 ton/ha, while in Bolivia are between 0.7 and 6). Other nations, such 

as Bangladesh (FAO code: 16), Denmark (FAO code: 54), Lithuania (FAO code: 126) don’t 

contain great numbers of switched-on cells (they are all below 1700), nevertheless these pixels 
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represent 100% of the cells in these countries: this means that, while in 2000 these nations 

didn’t contain any cell, in GAEZ 2010 they entirely switched on, having rather high mean 

national yields (around 5.5 ton/ha).  

In addition, it can be seen that, between 2000 and 2010, 3143 cells with FAO code equal to zero 

turned-on. Actually, FAO code 0 does not correspond to a country. These cells refer to the water 

bodies (seas, lakes, water streams), so all the pixels in the world which can’t be considered land 

surface, thus which are not assigned to a specific FAO code. In fact, these pixels are usually 

located on the coastline or along the largest world’s rivers (Amazon River, Nile, Volga…): 

according to the map_FAOcode matrix, these cells are supposed to be covered by water, but 

actually mze_2010_yld map indicates that they own maize production. There were cells with 

FAO code 0 containing values of yield also in 2000 (they were 3054) and in 2010 they became 

3153, however the bar chart illustrates that they switched-on only in 2010. The reason is found 

on the fact that, during the processing of Yield_maize_2010, the cells with FAO code equal to 

zero have been excluded and they were assigned the value -9999 (no data), while in the data 

processing of mze_2010_yld these cells have been taken into consideration.  

 

Regarding switched off cells, the countries which contain most of them are Malaysia (code 

131), China (code 351) and Central African Republic (code 37). In the first, the switched off 

pixels are 100% of the totality for that country, so from 2000 to 2010 the nation opted to stop 

maize production. Yield distribution of switched off cells is very narrow and sharp, with rather 

high values with respect to China and Central African Republic yields (83% of values are 

between 5 and 6 ton/ha). According to FFTC Agricultural Policy Platform, maize is for 

Malaysia one of the most important commodities for livestock, however government has never 

supported local production, giving instead space to imports, believing that it’s cheaper than 

self-production. In fact, almost 100% of grain corn is imported in Malaysia and importation 

growth is directly proportional to the increase of population. However, more than 95% of 

Malaysian maize’s surface is dedicated to sweet corn harvesting, more convenient since it has 

lower costs of production and a higher consumers’ demand. 

In China, instead, despite being a large number (more than 3000), switched off pixels represent 

only 4% of the totality of national cells dedicated to maize crop. Here, most of switched off 

cells show values between 2 and 3 ton/ha, with a second peak between 3.8 – 4.2 ton/ha and, 

generally, a greater variance with respect to the other two countries.  

Central African Republic’s values show, instead, two evident and very sharp peaks between 1.5 

and 2 ton/ha and between 2.3 and 2.6 ton/ha. However, most of switched off cells, particularly 
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those in the second peak, contain yields which are greater than the mean national yield of the 

country, around 2 ton/ha, so probably some kind of government strategies for a crop switch 

may have been also in this nation. 

 

 

Figure 3. 11: frequency distribution of yield in countries with most of switched off cells 

 

 

Figure 3. 12: switched on and off cells in Europe 
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Figure 3. 13: switched on and off cells in South‐East Asia 

 

 

Figure 3. 14: switched on and off cells in US 

 

The first two images represent a zoom of the map of the switched on and off cells in Europe 

and in Southeast Asia. In these maps it’s evident the switch on and off of entire countries 

between 2000 and 2010, for example the switch on of Denmark, Lithuania in Europe, 

Bangladesh in Asia, and the switch off of Malaysia. The third map, instead, illustrates the 

distribution of switched off and on cells in North America; differently from the first two 

pictures, here the distribution of cells is more homogeneous, without the formation of big 

clusters, so in this case it’s possible to calculate the mean latitude of the switched on and off 

cells. To do that, we firstly find the rows of the global map at which each cell is located, then 

we calculate the mean of these rows, and, in all the pixels of that row, we insert the number -1 

for switched on cells and +1 for switched off. It is possible to see that the mean latitude of 

switched-on cells is higher than those which switched off. In this case, it could be due to the 
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effect of crop migration, that is the northward movement of crops as a response to a changing 

climate.  

 

 

 

3.7.3 Empirical Cumulative Distribution Function (ECDF) of switches 

 

It is worth also comparing the Empirical Cumulative Distribution Function (ECDF) of the 

switched off and on cells, to see how the probability of these values is distributed according to 

the yield.  

To build the ECDF, we first need to sort all yield’s values of the arrays of switched off and on 

cells in ascending order. Then we need to find the probability of each term i, that is the ratio 

between 1 and N-1, where N is the total number of elements in each array. We divide with N-1 

because, theoretically, an empirical distribution is supposed to never reach 100% of probability: 

 

𝑝 ൌ
1

𝑁 െ 1
 

(3. 11) 

Thus, with a for loop, we build a new array with the same length of the switched off and on 

arrays where, at each loop, we repeat the following procedure: 

 

𝐶𝐷𝐹ሺ𝑖ሻ ൌ  𝑝 ൅ 𝑝 ሺ𝑖 െ 1ሻ 

(3. 12) 

Which means that at each step we add the probability p plus the sum of the probabilities of all 

its previous steps. In this way we will obtain a graph with, at the x axis, the sorted values of the 

arrays and, on the y, the sequence of the ECDF. ECDF is a useful tool that enables to compare 

arrays with different lengths: in fact, the y axis has a relative scale ranging between 0 and 1, the 

lower and upper limits, thus it doesn’t matter the number of elements of each array: the ECDF 

will just compare with a percentage the number of elements which are lower or greater than a 

given value of yield.  

 



44 
 

 

Figure 3. 15: ECDF of switched on and off cells 

 

The plot illustrates the probability that an element is lower or greater that a certain yield. It is 

immediately evident that, between 0 and 5.5 ton/ha, switched-on cells are more likely than 

switched off cells. For example, below 2 ton/ha we have 20% of turned off cells, while 

regarding switched on cells, there is almost 40% of values. At 5.5 ton/ha we have an inversion 

of the tendency: the probability of switched off pixels is greater than the one for switched on.  

 

 

 

3.7.4 Compare national yield and total harvested area of the reconstructed and 

GAEZ maps 

 

Now it’s necessary to compare the differences between mze_2010_yld and Yield_maize_2010 

maps at country scale. To do this, we repeat the procedure done in the section National Yield, 

during the creation of Summary matrix, but for the reconstructed and GAEZ matrices. This 

time, a new dataset named Comparison_matrix is built to contain the mean national yield, total 

harvested area, and the number of pixels in each country for both matrices.  

In a for loop, that iterates the procedure for each country code, we firstly find the cells 

corresponding to that country which contain positive values of yield and area for the 

reconstructed matrix Yield_maize_2010, then we extract their values of yield and area from the 

maps, and we sum all the areas of each cell to get the total national area; we can repeat this 



45 
 

procedure also for mze_2010_yld. At this point, it is possible to calculate the total production 

(product between yield and area) and divide it with the total national area, in this way we get 

the mean national yield. The results of the Comparison_matrix are then saved as .mat file and 

are ready to be displayed. 

 

 

Figure 3. 16: compare reconstructed matrix vs GAEZ 2010 matrix, yield. Radius of the circles is proportional to national 
harvested area 

 

Figure 3. 17: compare reconstructed matrix vs GAEZ 2010 matrix, area. Radius of the circles is proportional to national 
harvested area 
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Looking at the scatter plot of yield, we notice that, generally, mean national yield of the 

countries of the reconstructed matrix are well aligned with those of GAEZ map, however there 

are some nations, such as Timor-Leste (FAO code: 176), Luxembourg (FAO code: 256) and 

Malaysia (FAO code: 131) that are not coherent between the two maps (regarding Malaysia, 

this is caused by the fact that, in GAEZ map, 4 cells remained on). 

 

 

 

3.7.5 Overall comparison of yield and area pixels of reconstructed and GAEZ 

maps 

 

We also create a third scatter plot, which displays the yield of all cells of both matrices, to check 

how they are correlated. We notice that, generally, yields are well aligned on the bisector, 

however there is an evident horizontal pseudo-correlation close to the x axis (circled in orange). 

It is worth to check where these pixels are located on the global map and if they belong to one 

or more countries. In addition, it may be interesting to also identify the position of the cells with 

greatest yields (green circle), again to check if they are concentrated in a single country or they 

if are spread around the world.  

 

 

Figure 3. 18: scatter plot of all pixels of reconstructed and GAEZ 2010 matrices 
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We extract the cells in the orange circle by isolating the pixels by setting the condition x>10 

ton/ha, where x is the yield according to Yield_maize_2010 and y<5, where y is the yield 

according to mze_2010_yld. We notice that these cells are all concentrated in a region in South-

Central Canada: this means that, in that area, the reconstructed matrix Yield_maize_2010 has 

overestimated the yield with respect to GAEZ map. 

Cells in the green circle are instead isolated by setting the condition x>18 ton/ha and y>15 

ton/ha, then they are represented on GIS: these pixels are concentrated in some desertic 

countries of the Middle East, which however have very high technological standards and, 

consequently, very high production in a limited space. In particular, these countries are Israel, 

Jordan, Kuwait and Qatar. 

 

 

Figure 3. 19: identification of pseudo‐correlation 
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Figure 3. 20: identification of greatest yields 

 

The scatter plot of all cells is repeated also for harvested areas, where the reconstructed map, 

Area_maize_2010 and GAEZ matrix mze_2010_area are compared to each other. This time we 

don’t the presence of any pseudo correlation, all values are parallel to the bisector. Actually, 

some cells are not well aligned to the bisector, but there is a constant coefficient that separate 

them to the straight line. Probably these pixels belong to a country where the mean national 

yield of FAO differs from the mean national yield proposed by GAEZ. 

 

 

Figure 3. 21: scatter plot of all pixels of harvested area 
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4 Water footprint calculation 
 

 

4.1 Actual evapotranspiration 
 

After a deep analysis of the global evolution of yield and harvested areas of maize, we now 

pass to the data processing of crop and climatic data, in order to derive green and blue water 

footprint. The Water Footprint (WF) of a product is the volume of freshwater used to produce 

the product, measured over the full supply chain (Hoekstra et al., 2011). In our analysis, we are 

interested in the unit Water Footprint [m3/ton], that expresses the amount of water necessary to 

produce a ton of maize, and the two parameters for the determination of the indicator are yield 

[ton/ha] and evapotranspiration [mm]. Now, the global evolution of yield has been derived from 

the data processing of the previous chapters, while the second parameter still needs to be 

obtained. 

Under a physical point of view, evapotranspiration is the passage of water from liquid to vapor 

and it is the composition of two main processes, that is evaporation (from the soil or water 

surface) and transpiration (process that occurs inside the plant). Evapotranspiration is a 

parameter that depends on the local climate, so temperature, solar radiation, wind, latent heat 

of vaporization and then also on water availability. 

There are three main types of evapotranspiration: 

‐ Reference Evapotranspiration, ET0: it is the most general description of 

evapotranspiration, that is the evapotranspiration from a well-watered surface with a 

standard type of vegetation, with given dimensions and characteristics (0.12 m high, 

albedo equal to 0.23). Therefore, it doesn’t refer to a specific crop, but only depends on 

weather parameters.  

‐ Crop Evapotranspiration, ETc: it introduces a coefficient that keeps into account crop 

characteristics; however, this crop is in standard conditions, with no pesticides, optimal 

amount of nutrients and a surface that is always well watered. 

𝐸𝑇௖ ൌ 𝑘௖ ∗ 𝐸𝑇଴ 

(4. 1) 

‐ Actual Evapotranspiration, ETa: this kind of evapotranspiration introduces a second 

coefficient that considers the presence of water stress in the crop  

𝐸𝑇௔ ൌ 𝑘௦ ∗ 𝐸𝑇௖ 

(4. 2) 
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Figure 4. 1:  evolution of kc of maize during the growing period 

 

The parameter ks varies from 0 to 1 according to the water content θ: if water content is high, 

between pore saturation n and θ* (stomata closure), the crop is in “field capacity” condition, 

meaning that water availability is enough to guarantee a pattern equal to the standard one (ETc). 

if water content is below θ*, it means that the crop is suffering water stress, so the coefficient 

will start decreasing linearly to 0 since its performances will decrease. The wilting point θw 

corresponds then to the soil water content at which we have zero performance, therefore a ks 

equal to zero. 

 

Figure 4. 2: pattern of ks according to water content 

 

 

Initial stage  Growth Mid season Senescence 
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4.2 Modelling the green and blue evapotranspiration 
 

As it was said earlier, Actual Evapotranspiration (ETa) depends on crop, weather, and soil 

parameters, so we need a model that, given these inputs, it generates temporal series of 

evapotranspiration. The provided model MODEL_soil_water_balance_irrigated fulfils this 

purpose: it is a Matlab function which requires information regarding  

‐ Type of crop 

‐ Climatic area 

‐ The starting and ending dates of the culture 

‐ Initial soil moisture 

‐ Sowing soil moisture 

‐ Available water capacity (AWC), i.e., the quantity of water that the soil can store after 

drainage 

‐ Precipitation 

‐ ET0 

 

From these inputs the model provides the crop water requirements, that is the amount of 

precipitation and irrigation water required to satisfy the needs of the plant and avoid water 

stress. 

The choice of the crop is made by choosing its number from a list of possible crops that the 

model considers (in our case, maize is number 2) and the same thing applies also for the climatic 

region, where it’s possible to choose between 10 regions which range from tropical to oceanic, 

continental, boreal and even arctic. Regarding the starting and ending date of the culture, the 

model asks the user to insert the day of the year based on a scale of 365 days (with 1 

corresponding to the 1st of January and 365 to the 31st of December). For example, if in a pixel 

of the global map the cultivation starts on May 16th, we would indicate 136 as starting date.  

For precipitation and ET0, instead, we need to provide to the model a matrix with the daily 

precipitation and reference evapotranspiration for that cell, with values expressed in [mm/day].  

The initial soil moisture, then, corresponds to the initial condition of soil moisture before the 

soil water balance of the i-th day (this is actually the result of the soil water balance of the 

previous day). In the model, the function then converts the soil moisture from [m3 of water/m3 

of soil] to [mm], by considering the rooting depth of each day. The sowing soil moisture, 

instead, is the moisture of soil during sowing day, which is expressed with the same unit of the 

initial SM and AWC, that is in [m3 of water/m3 of soil].  
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After data processing, the output of the model will then be the green evapotranspiration 

(ET_green), that is the contribute of evapotranspiration supplied by precipitation and, 

consequently, the irrigation requirements, that is the daily irrigation required to avoid crop 

water stress. For our case, we want to keep the ks equal to 1 since we want to avoid water stress 

and maintain the crop at field capacity. It’s important to remark that the irrigation requirements 

provided by the model do not correspond to the water quantity that has been effectively 

provided to the plant in that pixel in that year, while it is intended as the theorical irrigation 

contribute that must be supplied to the plant to keep the cultivation at its maximum efficiency.  

 

The soil water balance of the model works with a for loop that for each day of the year: 

‐ 1st step: it calculates the daily crop coefficient, depending on the period of the growing 

season 

‐ 2nd step: it derives the increment od soil moisture in the rooting zone, thanks to the 

information provided by precipitation matrix 

‐ 3rd step: the model calculates TAW (Total Available Water in the rooting zone) and 

RAW (Readily Available Water), according to the following equations: 

𝑇𝐴𝑊 ൌ 𝐴𝑊𝐶 ∗ 𝑟𝑜𝑜𝑡𝑖𝑛𝑔 𝑑𝑒𝑝𝑡ℎௗ௔௬ሺ௜ሻ 

(4. 3) 

𝑅𝐴𝑊 ൌ 𝑇𝐴𝑊 ∗ 𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

(4. 4) 

‐ 4th step: calculation of the water stress coefficient, that is the minimum amount of 

irrigation necessary to avoid water stress. Keeping ks equal to 1 means keeping the 

condition of field capacity in the cultivation, but actually ks can also assume other values 

based on the final user needs (for example, ks can be kept equal to 0.9 instead of 1, thus 

maintaining a mild but constant condition of water stress to limit irrigation inputs). 

‐ 5th step: calculation of Actual Evapotranspiration ETa, which is the result of 

𝐸𝑇௔ ൌ 𝑘௦ ∗ 𝑘௖ ∗ 𝐸𝑇଴ 

(4. 5) 

‐ 6th step: the model calculates the reduction of soil moisture, that is the increase of deficit 

due to actual evapotranspiration, where deficit is the difference between TAW and SM 

𝑑𝑒𝑓𝑖𝑐𝑖𝑡 ൌ TAW െ 𝑆𝑀 

(4. 6) 

‐ 7th step: it calculates then the evapotranspiration components, ET green and ET blue, 

i.e., the water input that comes from precipitation and irrigation respectively.  
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‐ 8th step: calculation of the total irrigation requirements, which is the sum of the 

evapotranspirative component and the water for soil component (which occurs only 

during sowing dates). 

‐ 9th step: the model finally calculates the final soil moisture at the end of the i-th day, 

which is independent from the Rooting Depth, then this value is used as initial soil 

moisture for the next day. 

 

 

 

4.3 Distributed unit water footprint at the global scale 
 

 

4.3.1 Global maps of green, blue and total uWF 

 

 After a deep analysis of historical evolution of the water footprint pattern in Pino Torinese, it’s now the 

time to expand this procedure to the rest of the world’s pixels. To do this, it is necessary to collect the 

data of green and blue evapotranspiration such as irrigated and rainfed area for all the cells in the world. 

In fact, in each country, there is a certain number of harvested cells with a given crop. Each cell i is 

characterized by a known harvested surface, which may be decomposed in a fraction 𝐴𝑟𝑓,𝑖 that is only 

rainfed and another that is equipped for irrigation (so it is both irrigated and rainfed), 𝐴𝑖𝑟𝑟,𝑖. Therefore, 

the total harvested area can be expressed as  

 

ሺ𝐴௥௙,௜ ൅ 𝐴௜௥௥,௜ሻ ൌ 𝐴௜ 

(4. 7) 

In the rainfed area of cell i the effective evapotranspiration corresponds to the green 

contribution only  

 

𝐸𝑇𝑎,𝑖
𝑟𝑓 ൌ 𝐸𝑇𝑔,𝑖

𝑟𝑓
 

(4. 8) 

while, in the irrigated fraction of the same cell, it is the sum of the green and blue component, 

namely 

𝐸𝑇𝑎,𝑖
𝑖𝑟𝑟 ൌ 𝐸𝑇𝑔,𝑖

𝑖𝑟𝑟 ൅ 𝐸𝑇𝑏,𝑖
𝑖𝑟𝑟 

(4. 9) 
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To obtain the mean green or blue national evapotranspiration for the nation N, it is necessary 

to perform a weighted mean of evapotranspiration values according to their rainfed or irrigated 

areas, that is 

𝐸𝑇௚
ே ൌ

∑ ൫𝐸𝑇௔,௜
௥௙ ∙ 𝐴௥௙,௜ ൅ 𝐸𝑇௚,௜

௜௥௥ ∙ 𝐴௜௥௥,௜൯௜∈ே,௥௙∪௜௥௥

∑ ൫𝐴௥௙,௜ ൅ 𝐴௜௥௥,௜൯௜∈ே,௥௙∪௜௥௥
  

(4. 10) 

𝐸𝑇௕
ே ൌ

∑ ሺ𝐸𝑇௕,௜
௜௥௥ ∙ 𝐴௜௥௥,௜ሻ௜∈ே,௜௥௥

∑ ሺ𝐴௥௙,௜ ൅ 𝐴௜௥௥,௜ሻ௜∈ே,௥௙∪௜௥௥
 

(4. 11) 

where the sum of the products between ETs and their related areas of a country is then divided 

by the sum of all the rainfed and irrigated areas of the country. 

Unit Water Footprint is then obtained by the ratio between the mean national evapotranspiration 

𝐸𝑇௚
ே or 𝐸𝑇௕

ே and the mean national yield 𝑌ே 

𝑢𝑊𝐹௚
ே ൌ 10 ∙

𝐸𝑇௚
ே

𝑌ே   

(4. 12) 

𝑢𝑊𝐹௕
ே ൌ 10 ∙

𝐸𝑇௕
ே

𝑌ே   

(4. 13) 

From these data, it is possible to reconstruct the historical maps of total, green and blue unit 

water footprint. 

As a first step, we recreate the historical maps of actual, green and blue evapotranspiration, 

creating a series of grid files with the same resolution of the maps of yield and harvested area 

(5 x 5 arc min). From .mat files CROP_INFO_irr and CROP_INFO_irr we extract the position 

in the maps, in terms of rows and columns, of all the cells in the rows of ET_a, ET_blue, 

ET_green, then they are converted from subscripts [row,col] to linear indices (idx1, 

idx2,…idxi). At this point, with a for loop running with all the 50 years, at each iteration the 

code extracts the column of the evapotranspiration matrices corresponding to the i-th year and 

correctly place the values of the array inside the ET maps, according to the linear indices.  

Now it’s the turn for rainfed and irrigated areas. In the previous chapters, we already described 

the steps to obtain the historical maps of maize harvested area in the time-interval 1961 – 2019, 

which were obtained by multiplying the harvested area of crop c in cell i in year 2000, 

𝐴௜,௖ሺ2000ሻ, with the ratio between the national harvested area of crop c in country N in year t, 

𝐴ே,௖ሺ𝑡ሻ, over the national harvested area of the same crop in the same nation for year 2000, 
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𝐴ே,௖ሺ2000ሻ. This procedure assumes that all the cells of country N have proportionally grown 

in the years, with a uniform factor for all the country, therefore this implies that no cell switched 

off or on during the time interval, so that the distribution of the cells over the country remained 

constant. 

Regarding the irrigated area of maize, instead, it is necessary to find a way to estimate its 

historical global evolution. Databases don’t provide the time series of AEI for each crop, 

however FAOSTAT offers the historical time series of total AEI of each country, 𝐴ே
௜௥௥, 

considering all crops together, with values arranged on an annual scale, from 1961 to 2020. 

Therefore, the equation to reconstruct the maize irrigated area in cell i in year t can be expressed 

as 

 

𝐴𝑖,𝑐
𝑖𝑟𝑟ሺ𝑡ሻ ൌ 𝐴𝑖,𝑐

𝑖𝑟𝑟ሺ2000ሻ ∙
𝐴𝑁

𝑖𝑟𝑟ሺ𝑡ሻ

𝐴𝑁
𝑖𝑟𝑟ሺ2000ሻ

 

(4. 14) 

where 𝐴௜,௖
௜௥௥ሺ2000ሻ is the irrigated area in cell i of crop c (maize) in year 2000, which is 

multiplied by the ratio between the total AEI in year t of country N, 𝐴ே
௜௥௥ሺ𝑡ሻ, and the AEI of the 

same country in year 2000. This time, we add the assumption that, during the time interval, the 

agricultural area equipped for irrigation in a country grew proportionally for all crops.  

At this point, the historical evolution of rainfed area in the cells that contain an irrigated fraction 

can be expressed as the difference between the maize harvested area in year t, 𝐴௜,௖ሺ𝑡ሻ, and the 

irrigated area in the same year, 𝐴௜,௖
௜௥௥ሺ𝑡ሻ, that is 

𝐴𝑖,𝑐
𝑟𝑓ሺ𝑡ሻ ൌ 𝐴𝑖,𝑐ሺ𝑡ሻ െ 𝐴𝑖,𝑐

𝑖𝑟𝑟ሺ𝑡ሻ 

(4. 15) 

Instead, the cells which don’t contain irrigated areas (thus are rainfed only) are simply 

considered as equal to the maize harvested area in year t, 𝐴௜,௖ሺ𝑡ሻ. 

 

In the file AEI_TOT_FAO, arranged as a 178 x 50 matrix, where each row contains the time 

series of national AEI of a country from 1970 to 2019, we initially convert the absolute values 

in each cell into a ratio between the value of that cell over the value in year 2000, in order to 

already obtain the aforementioned factor 𝐴ே
௜௥௥ሺ𝑡ሻ 𝐴ே

௜௥௥ሺ2000ሻ⁄ . However, we also need to fill 

the gaps of the today’s countries which were part of larger Unions in the past. More specifically, 

we keep into account the countries which were part of: 

‐ Belgium – Luxembourg, up to 1999 
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‐ Czechoslovakia, up to 1992 

‐ Ethiopia PDR, up to 1992 

‐ URSS, up to 1991 

‐ Yugoslavia, up to 1991 

 

To do this, the rows of the today’s countries composing these Unions are identified and the sum 

of their AEI in year 2000 is performed. For example, for Czechoslovakia it is the sum between 

the AEI of Czech Republic in 2000 and the AEI of Slovakia in 2000, thus obtaining 

𝐴஼௭௘௖௛௢௦௟௢௩௔௞௜௔
௜௥௥ ሺ2000ሻ . Then, the values of the time series of national AEI of Czechoslovakia 

from 1961 to 1992 are divided by 𝐴஼௭௘௖௛௢௦௟௢௩௔௞௜௔
௜௥௥ ሺ2000ሻ, deriving the factor 

𝐴ே
௜௥௥ሺ𝑡ሻ 𝐴ே

௜௥௥ሺ2000ሻ⁄ , which is then inserted in the gaps of Czech Republic and Slovakia from 

1961 to 1992. This procedure is then repeated for the other counties involved in this process. 

 

At this point it’s possible to create the historical maps of Total, Green and Blue uWF. With a 

for loop running over the 50 years’ time interval, the following equations are performed over 

each cell of the 2160 x 4320 matrix that contain positive values of ET and yield, 

 

𝑢𝑊𝐹௧௢௧,௜ ൌ 10 ∗
𝐸𝑇௔,௜

௥௙ ∙ 𝐴௥௙,௜ ൅ 𝐸𝑇௚,௜
௜௥௥ ∙ 𝐴௜௥௥,௜ ൅ 𝐸𝑇௕,௜

௜௥௥ ∙ 𝐴௜௥௥,௜

ሺ𝐴௥௙,௜ ൅ 𝐴௜௥௥,௜ሻ ∗ 𝑌௜
 

(4. 16) 

𝑢𝑊𝐹௚,௜ ൌ 10 ∗
𝐸𝑇௔,௜

௥௙ ∙ 𝐴௥௙,௜ ൅ 𝐸𝑇௚,௜
௜௥௥ ∙ 𝐴௜௥௥,௜

ሺ𝐴௥௙,௜ ൅ 𝐴௜௥௥,௜ሻ ∗ 𝑌௜
  

(4. 17) 

𝑢𝑊𝐹௕,௜ ൌ 10 ∗
𝐸𝑇௕,௜

௜௥௥ ∙ 𝐴௜௥௥,௜

ሺ𝐴௥௙,௜ ൅ 𝐴௜௥௥,௜ሻ ∗ 𝑌௜
 

(4. 18) 

where the ET values are those got from the matrices of ETa, ETg, ETb, 𝐴௥௙,௜ and 𝐴௜௥௥,௜ are the 

values of area rainfed and irrigated in the i-th pixel from matrices of rainfed area and irrigated area and 

𝑌௜ is the yield in the i-th pixel from matrix of yield.  

Results are then inserted into 2160 x 4320 matrices for each year and saved into Matlab 

structures.  
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4.3.2 Historical series of mean national green, blue and total uWF 

 

To reproduce historical time series of mean national uWF, the procedure is very similar to the 

one for the historical maps, with the only difference that the equation is not performed cell by 

cell anymore, but along the cells of each nation for each year.  

To obtain mean national green and blue evapotranspiration, we apply equations (3.33) and (3.34) 

over a double for loop that iterates the equations for all the countries of the world for all the 50 

years. Then, Green and Blue uWF is derived applying equations (3.35) and (3.36), where the 

mean national yield is taken from the matrix Y_TOT_FAO, which contains the mean national 

yield of all countries from 1970 to 2019. Finally, the historical series are saved into 178 x 50 

matrices (where the rows correspond to the number of countries and columns to the years of 

the time interval), named UWF_naz, UWFg_naz, UWFb_naz.  

 

 

4.4 Trend analysis 
 

In this thesis, the analysis of trends allows us to understand the pattern of a variable, if and how 

much it’s increasing or decreasing, how sharp are the fluctuations etc. For example, there may 

be variables that increase monotonically, but at the same time there can be variables which are 

increasing at a minor growth rate, with strong fluctuations throughout the time interval. 

Consequently, it is worth to find an objective criterion to quantify the level of significance of a 

trend, a method that can tell us whether the trend of a certain dataset, according to how data are 

distributed, is significant or not. In this case, we rely on the application of the t-Student test, a 

statistical test that states whether there is or not dependency between the independent variable 

x and the dependent one y. We start from the definition of the null hypothesis H0, that is that 

the angular coefficient b1 is a random variable with zero mean, thus x and y are independent 

between each other. First of all, we build a linear relationship between the variables x and y (in 

this case, years and precipitation/evapotranspiration) by defining a first-degree linear model, 

 

𝑦 ൌ 𝑦෤ ൅ 𝜀 ൌ ሺ𝑏଴ ൅ 𝑏ଵ ∗ 𝑥ሻ ൅ 𝜀 

(4. 19) 

where 𝑏଴ and 𝑏ଵ are respectively the known term and the angular coefficient of the linear 

regression model, while 𝜀 is the error between the true and the predicted estimation. The 𝑏଴ and 
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𝑏ଵ parameters are estimated by minimizing the sum of the squared errors, through the Least 

Square Method: 

𝑏଴ ൌ 𝑦ത െ 𝑏ଵ ∗ 𝑥̅ 

(4. 20) 

𝑏ଵ ൌ
∑ ሺ𝑦௜ െ 𝑦തሻሺ𝑥௜ െ 𝑥̅ሻ௡

௜ୀଵ

∑ ሺ𝑥௜ െ 𝑥̅ሻଶ௡
௜ୀଵ

ൌ
𝑆௫௬

𝑆௫௫
 

(4. 21) 

The errors must be independent and identically distributed in order to have a mean equal to zero 

and variance 𝜎ఌ
ଶ, 

𝜎ఌ
ଶ ൌ

∑ 𝜀ଶ௡
௜ୀଵ

𝑛 െ 2
 

(4. 22) 

At this point we can build the test variable T, namely 

𝑇 ൌ
𝑏ଵ

ඥ𝜎ఌ
ଶ/𝑆௫௫

 

(4. 23) 

which is the ratio between the angular coefficient of the regression model over a sort of standard 

deviation of the data. 

Then we set a level of significance α, that is the probability of rejecting the null hypothesis, 

corresponding to the extremes of the distribution tails where H0 is not accepted. Therefore, the 

limits of these areas, 𝑡௟௜௠,  

Correspond to the limits of acceptance of the t-Student test, where 

𝑡௟௜௠ ൌ 𝑡 ቀ
𝛼
2

, 𝑛 െ 2ቁ 

(4. 24) 

If |𝑇|< 𝑡௟௜௠, the null hypothesis is accepted, therefore there is no dependency between x and y 

variables and the angular coefficient 𝑏ଵ is not significantly different than zero. Conversely, if 

|𝑇|> 𝑡௟௜௠, this means that there H0 is rejected, thus we have a statistically significant 

dependence between x and y. 
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5 Results 
 

In this chapter, the thesis results will be presented with the following organization. Initially, 

the hydrological model is performed on a single pixel, Pino Torinese, where we evaluate the 

time series of green and blue uWF together with further analysis on climatic data 

(precipitation, ET0, ETa etc…). Later, we introduce the results of a multi-regression analysis 

that aims at finding a relation between ETb/ETa ratio and the climatic data (P, ET0). Then the 

global maps of total, green and blue uWF are displayed, such as the time series of these 

variables for some countries (Italy, USA, Australia, Nigeria and Viet Nam) and the scatter 

plots of the comparison of our results with Water Footprint Network and with data obtained 

applying the Fast Track approach. In conclusion the last section is dedicated to the display of 

the time series of water footprint, at global and country level. 

 

5.1 Local analysis: Pino Torinese 
 

5.1.1 Run the hydrological model on a single pixel: Pino Torinese 
 

To verify the model and have a deeper understanding of the results, we firstly run it for a single 

pixel of the global matrix, in this way we can perform further analysis which may result too 

complex if carried on for the whole globe. Therefore, we choose the town of Pino Torinese as 

representative area for our testing. The village is located in Piemonte (Italy), with coordinates 

45°02′36.56″N 7°46′21.2″E UTM and [539, 2253] on the 5 arc-minute resolution global maps.  

This cell has a total agricultural area of 6058 hectares, where 248 of them are equipped for 

irrigation (Maize AEI is 98 ha). Pino Torinese belongs to the Climatic zone n° 5, that is 

Temperate sub-continental, the available water capacity (AWC) is estimated 0.2 m3 of water/m3 

of soil and maize cultivation period ranges between day 106 (16th April) to 258 (15th 

September). Then, from databases, we get the historical time series of precipitation, ET0 and 

soil moisture of this pixel for 365 days a year for 50 years (from 1970 to 2019). These series 

are arranged as 50x365 matrices, where rows correspond to the years of the time interval and 

columns to the days of each year. To make the dimension of season_start and season_end (the 

beginning and ending of the culture) and AWC variables coherent with the other matrices, they 

are arranged as 50x1 arrays, then the model can finally be run. 
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The results of the model are as well arranged as 50x365 matrices, so now it’s possible to create 

some plots to display the results from them. 

 

We firstly display the yearly evolution of the main evapotranspirations (ETa, ETg and ETb) of 

a single year, 2003, which has been characterized by particularly intense meteorological events 

in that pixel such as in the rest of Piemonte. 

 

 

Figure 5. 1: temporal series of maize ETs in 2003 on Pino Torinese 

 

Looking at the chart, it can be seen that the pattern of ETa almost regularly follows the one of 

kc (the crop coefficient), since, from equation 3.14, ETa is simply the product between the crop 

coefficient and ET0 (in this case the water stress coefficient is set to 1 so it doesn’t influence 

the equation). The crop coefficient, in fact, during the initial period (planting) is supposed to be 

constant at a low value, then, during growth stage, it linearly grows up to its maximum, 

consequently it remains constant during the mid-season and finally it linearly decades during 

the last period, the senescence. A very similar behaviour occurs also for Actual 

Evapotranspiration.  

In addition, we can see that, up to day 160 ETg is able to satisfy the crop water requirements, 

therefore it corresponds to ETa. After that day, irrigation requirements start to increase, 

balancing with ETg.  

 

However, this plot represents the pattern of a single year, obtained from the climatic conditions 

of that year, therefore we try now to repeat the previous plot for all the years of the time interval 



62 
 

adding also the mean Actual, Green and Blue Evapotranspiration, weighted over the entire 

period 1970-2019; in this way the yearly fluctuations should be attenuated and we may obtain 

a behaviour similar to the theorical one. 

 

 

Figure 5. 2: time series of ETa, ETg and ETb, 1970‐2019 average on Pino Torinese 

 

In Figure 5. 2 it is possible to see the thicker lines corresponding to the mean Actual, Green and 

Blue ET, while the thinner and more transparent lines refer to the evolution of the same 

variables of each year of the time-interval. It is evident that the average of the three variables 

attenuates all the fluctuations caused by yearly variability of the climatic conditions in that 

pixel.  

Moreover, there is a clear similarity between the pattern of ETa with the one of the crop 

coefficient kc, that grows between days 140 – 180, then it remains constant during mid-season 

and finally linearly decreases up to the harvesting day (Figure 4. 1).  

Looking at green evapotranspiration, we see that it perfectly follows the pattern of ETa up to 

day 160, when irrigation starts to be practiced, then, after reaching its peak at day 180, ETg’s 

trend begins to fall with some fluctuation up to the day of the harvest. Therefore, to balance the 

decrease of the green contribute, ETb starts to rise from day 180 to approximately day 205-210, 

then it gradually decreases as well from day 220 since also Actual Evapotranspiration reduces 

in the senescence period. These trends can be explained by the fact that, during spring, the 

precipitation input is generally high, thus rainfall is able to be the only source of supply for the 

crop, but during summer this contribute usually reduces, hence it is necessary to resort to 

irrigation to keep maize culture at field capacity. 
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Figure 5. 3: standard deviation of ETa, ETg and ETb, 2003 on Pino Torinese 

 

We now want to look at the standard deviations (STD) of the contributes of evapotranspiration, 

remembering that standard deviation expresses the degree of dispersion of a set of values. In 

this case, the calculation of the standard deviation has been performed over the rows of the 

matrices, meaning that each day of the year contains 50 samples, as 50 are the years taken into 

analysis.  

From the graph we can clearly see that the standard deviation of ET0 is generally constant 

throughout the year with very little fluctuations; this means that the results of all the days of the 

year have data which have approximately the same degree of dispersion. The STD of ETa is 

slightly different: initially its dispersion is very low (all observations show similar values) up 

to days 165-170, where it reaches the one of ET0 and crosses it. Anyway, this pattern is very 

similar to ET0 because it differs by the term kc, which is constant from day 177 to day 228. 

Different situation applies to the STD of Green and Blue ET. As we said earlier, ETg follows 

ETa up day 160 then they separate, with ETg a significantly increased dispersion throughout the 

rest of the growing period. ETb, instead, is zero until day 160, then its dispersion suddenly rises 

crossing 2.5, thus being the variable with the greatest variability. The coefficient of variation 

(CV) of ETb shows a particular pattern: it is very high at the beginning of irrigation period, then 

it gradually decreases, inversely proportional to the rise of its STD. We must remember, in fact, 

that  
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𝐶𝑉 ൌ
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
 

(5. 1) 

During first days of irrigation period, ETb has higher standard deviation, but a very low mean, 

later mean Blue Evapotranspiration increases, so the fluctuations of STD are compensated by 

higher values of mean, which then result in a lower Coefficient of Variation (see Annexes, 

Figure 7. 1). 

 

Let’s now check the frequency distribution of Reference and Actual Evapotranspiration, to see 

how these data are arranged for Pino Torinese cell.  

 

Figure 5. 4: frequency distribution of ET0 and ETa 

 

This chart illustrates the histogram and the Cumulative Distribution Function of the two types 

of evapotranspiration in Pino Torinese in year 2003: while ETa has a wider range, which goes 

from approximately 0.2 to 7.5 mm, Reference ET has a shorter variance, with most of data 

concentrated between 4 and 5.8 mm. ETa data show peaks, one at 1 mm, corresponding to the 

initial period of the cultivation, and the other between 5.5 – 6.5 mm, that includes the values 

during the mid-season period. 

The same characteristics can be seen also from CDF curves: the red one (corresponding to ETa) 

is wider than the black curve and it shows a milder growth.  

 

We now look at the histograms of ETg and ETb and compare them with those of precipitation 

and irrigation requirements along the growing period. 
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Figure 5. 5: frequency distribution of ETg and ETb 

 

 

Figure 5. 6: frequency distribution of precipitation and irrigation 

 

At a first glance, we notice that both graphs have in common the fact that the green variables 

(precipitation and ETg) contain most of their data in the leftward columns, that is the bins of the 

lower values of mm of water. This is particularly evident for precipitation: almost 70% of data 

show values which are lower than 0.5 mm. Irrigation histogram, instead, is skewed to the left, 

with fewer data on the left side of the graph and the peak at 5.5 – 6 mm.  
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5.1.2 Calculation of uWF in Pino Torinese 

 

At this point, we can calculate the unit water footprint and its green and blue components in the 

pixel of Pino Torinese. We already know that the two terms to determine uWF are the 

evapotranspiration and the crop yield, therefore, we need to identify the annual series of these 

two parameters for this pixel. 

We start by identifying the pixel of Pino Torinese inside the matrix Yield_maize. Therefore, we 

extract from that matrix the yields from 1970 to 2019 at the coordinates [539,2253]. This series 

is already arranged with annual values; thus, we don’t need further processing. 

Evapotranspiration is instead arranged as a 50 x 365 matrix, so we need to sum all the values 

in the rows of ETg matrix, such as in ETb, to obtain one single value per year.  

Now, it’s possible to calculate Total uWF, according to the equation 

 

𝑢𝑊𝐹 ൌ 10 ∗
൫𝐸𝑇௚ ൅ 𝐸𝑇௕൯

𝑌௉௜௡௢
 ቆ

𝑚ଷ

𝑡𝑜𝑛
ቇ 

(5. 2) 

while, for Green and Blue uWF, the equations become 

 

𝐺𝑟𝑒𝑒𝑛 𝑈𝑊𝐹 ൌ 10 ∗
𝐸𝑇௚

𝑌௉௜௡௢
 ቆ

𝑚ଷ

𝑡𝑜𝑛
ቇ 

(5. 3) 

𝐵𝑙𝑢𝑒 𝑈𝑊𝐹 ൌ 10 ∗
𝐸𝑇௕

𝑌௉௜௡௢
 ቆ

𝑚ଷ

𝑡𝑜𝑛
ቇ 

(5. 4) 

In this way we obtain three 50 x 1 arrays where each cell contains the total, green and blue unit 

water footprint estimates in Pino Torinese on a specific year. Now the time series are displayed 

on a plot to see their trend in time. 
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Figure 5. 7: evolution of total, green and blue uWF, 1970‐2019 

 

As we can see, total unit water footprint has gradually decreased over time, from approximately 

950 m3/ton in 1970 to 500 in 2019. Also green water footprint shows a descending trend during 

the time-interval, while Blue uWF remained approximately constant, with no evident trend and 

with greater fluctuations. As ETa=ETg+ETb, we clearly see that Green and Blue uWF 

compensate reciprocally: during rainy years, the total contribution has been fully satisfied by 

green unit water footprint, while in others (such as in 1991, 2003, 2006), where precipitation 

was not sufficient, irrigation became the greatest contribution to keep the crop at field capacity 

condition.   

 

 

 

5.2 Relation between blue fraction of uWF and climatology in 
Pino Torinese and at global scale 

 

 

The model Model_soil_water_balwnce_irrigated can be computationally demanding because 

it requires several input parameters to be able to run (climatic region, precipitation, ET0, soil 

conditions, etc.), also, it is not available to all the community of people interested in the 

investigation of crop water footprint. Therefore, it is worth to investigate an alternative way to 

obtain green and blue evapotranspiration without relying on all such input parameters. An 
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effective option can be the implementation of a multi regression analysis, where 

evapotranspiration is supposed to be dependent by a linear combination of some input 

parameters, for example precipitation P and reference evapotranspiration ET0, which are the 

parameters that can be mainly accessible to final users.  

So, before jumping into the details of this multi regression analysis, we firstly analyse these 

two variables, by plotting their time series and checking how their evolution behaves in time. 

 

 

Figure 5. 8: time series of P and ET0, 1970‐2019 on Pino Torinese 

 

From this plot, we notice that, while ET0 remains approximately constant over time (except for 

the changes induced by climate change, which generate a mild increasing trend), precipitation 

pattern looks irregular, with very sharp fluctuations, hence it’s hard to see a clear trend. 

Therefore, we apply a statistical inference on their time series, checking the level of significance 

of their trends. The results we obtain are coherent from the previous expectations: for ET0, |𝑇|> 

𝑡௟௜௠, thus we have a statistically significant trend, while for precipitation, the trend is not 

statistically significant. In fact, this variable has a too low angular coefficient of the linear 

regression model with respect to the high standard deviation of the oscillations, therefore it is 

not possible to state that this variable is characterised by a significant trend.   

We now perform a multi regression analysis, trying to estimate evapotranspiration from the 

historical series of precipitation and ET0. More specifically, we suppose that the ratio of ETb 

over ETa can be described with a regressive law, namely 
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𝐸𝑇௕

𝐸𝑇௔
ൌ 𝐴଴ ൅ 𝐴ଵ ∗ 𝑃 ൅ 𝐴ଶ ∗ 𝐸𝑇଴ 

(5. 5) 

where P and ET0 are respectively the precipitation and reference evapotranspiration time series 

in that pixel in the time interval 1970-2019, while 𝐴଴, 𝐴ଵ,  𝐴ଶ are a set of constant coefficients. 

In order to be able to determine the ratio of the two evapotranspiration parameters, we need to 

estimate the three coefficients applying the Least Square Method, to minimize the sum of the 

squared errors. We want to use  𝐸𝑇௕ 𝐸𝑇௔⁄  instead of 𝐸𝑇௕ 𝐸𝑇௚⁄  because, looking at the time 

series of the two ratios, we see that blue over green ET series shows much greater fluctuations 

with respect to 𝐸𝑇௕ 𝐸𝑇௔⁄  (see Annexes, Figure 7. 5); since it’s too hard to reconstruct the annual 

variability of such an unpredictable variable, we focus of the ratio between blue and actual 

evapotranspiration, which instead exhibits weaker oscillations. 

As mentioned before, the three coefficients are determined by minimising the sum of the 

squared prediction errors, that is by minimising the sum of the squared distances between the 

predicted and expected data points. To perform this operation, we need to identify a part of the 

dataset that will be used to “train” the model by finding the most appropriate coefficient of the 

linear regression and another one that performs the testing of the results. Therefore, the dataset 

is randomly split into training and testing data, where the training dataset contains 75% of data, 

while the testing dataset the remaining 25%. Since this operation is performed by a random 

selection of the data inside the series, we want to repeat this procedure for a certain number of 

times (in this case, we opt for 200 iterations), in order to have a stronger evaluation of the 

prediction error of the model. Then, the training set such as the testing set are identified: in this 

case, the training and testing X correspond to P and ET0, while the Y is associated to the ratio 

between ETb and ETa. Afterward, the Least Square Method is applied on the training dataset 

and the three coefficients 𝐴଴, 𝐴ଵ,  𝐴ଶ are determined, having values of -1.5, -8.7*10-5 and 

3.3*10-3 respectively. At this point, the three coefficients are used on the testing dataset, to 

create an estimation of the ratio 𝐸𝑇௕ 𝐸𝑇௔⁄ , which is then compared with the true values (ytest) in 

a scatter plot, and the RMSE (Root Mean Square Error) between predicted and expected data 

is computed for each of the 200 iterations, with the equation 

𝑅𝑀𝑆𝐸 ൌ ඩ෍
ሺ𝑦పෝ െ 𝑦௜ሻଶ

𝑛

௡

௜ୀଵ

 

(5. 6) 
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where 𝑦పෝ  is the predicted 𝐸𝑇௕ 𝐸𝑇௔⁄  ratio applying the regression model and 𝑦௜ is the expected 

𝐸𝑇௕ 𝐸𝑇௔⁄  ratio. 

 

Figure 5. 9: scatter plot of predicted ETb/ETa ratio by the linear regression versus expected ETb/ETa (200 iterations) 

 

From the scatter plot, we can see that the model provides rather well aligned results, considering 

that the dataset contains a limited number of data (only 50 data, as 50 are the years of the time-

interval) and the only input parameters are P and ET0. By plotting the histogram of the error, 

we see that the pattern looks quite as a normal distribution, with the mean of RMSE 

corresponding almost to the peak of the curve, between 0.093 and 0.1, a mean coefficient of 

variation of RMSE that is around 0.34 and a coefficient of determination (R2) which is 0.41. In 

addition, looking at the three coefficients of the parametric equation, it can be clearly observed 

that the coefficient 𝐴ଵ, that refers to precipitation, has a lower weight with respect to 𝐴ଶ, the 

one of ET0, in fact the first has an order of 10-5 – 10-4, while the second a dimension of 10-3.  

The analysis can be extended at the spatial scale, thus aiming at the estimation of the spatial 

heterogeneities of the ratio ETb/ETa over all the world’s cells of a single year. We extract the 

values of ETg, ETb, ET0 and precipitation of year 2000 in all the pixels containing irrigated 

areas, then the four arrays are grouped in a single matrix named variables. At this point, the 

procedure for the creation of the regression model becomes equal to the one done for Pino 

Torinese, therefore with the random splitting of the dataset into training and testing, the 

determination of the three coefficients  𝐴଴,  𝐴ଵ,  𝐴ଶ (which account for 5.3*10-3, -1.8*10-4, 

4.13*10-4 respectively) and the estimation of ET ratio. The scatter plot between true versus 

expected data is then represented; it can be seen that there is a less clear correspondence 

between expected versus predicted data, particularly due to the very high amount of data. This 
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time, the estimation provides worse results of mean cv_RMSE (0.80), while the R2 is slightly 

higher, around 0.43. The analysis may be further deepened by performing a spatio-temporal 

regression, that is by estimating the temporal evolution of ETb/ETa ratio for all the pixels of the 

world, however, from the already obtained results, we can state that the best fitting results are 

found in the temporal variability rather than in the spatial one. In fact, the estimation of green 

and blue evapotranspiration at the spatial level must take into account different climatic regions 

and different crop growing periods, therefore the only information of annual precipitation and 

ET0 is not able to describe the irrigation requirements. Instead, by performing the multi-

regression analysis at the temporal scale, there is no variability of such variables, therefore we 

can have a slightly better estimation of the irrigation needs. 

 

Figure 5. 10: scatter plot of expected versus true ETb/ETa ratio in all the pixels of the world, 2000 

 

 

5.3 Display global maps of total, green and blue uWF 

 

In this section, the global maps of total, green and blue uWF are represented, choosing years 

1970, 1980, 2000 and 2019 for data display. To obtain these results, maps have been processed 

on ArcMap software, where the values of the cells have been split into 5 classes according to 

the range of data distribution.  
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5.3.1 Total uWF, years 1970, 1980, 2000, 2019 
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Figure 5. 11: total uWF, of years 1970, 1980, 2000, 2019 

 

 

 

Looking at the four images, we can clearly observe that total uWF has generally decreased over 

time. In 1970, the “blue cells” (the cells with uWF values lower than 1000 m3/ton) were only 

in Central Europe and East China, then they progressively spread globally, with almost all 

continents reaching those values. African countries, instead, exhibit a minor decrease of water 

consumption per unit of product with respect to the other continents, with many areas in the 

southern part of the continent showing values above 5000 m3/ton in 2019. 

 

 

5.3.2 Green uWF, years 1970, 1980, 2000, 2019 
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Figure 5. 12: green uWF of years 1970, 1980, 2000, 2019 
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5.3.3 Blue uWF, years 1970, 1980, 2000, 2019 
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Figure 5. 13: blue uWF of years 1970, 1980, 2000, 2019 

 

 

Comparing the historical maps of green and blue uWF, we can see that both green and blue 

uWF changed in the 1970 – 2019 time-interval. In addition, we can appreciate that the green 

contribute is much greater than the blue one: the former show values between approximately 

200 – 10000 m3/ton, while the values of the latter range between 0 and 2000 m3/ton.  

While green uWF exhibits an evident decreasing trend globally, the values of the blue uWF 

maps reduce with a smaller rate and, in some regions, they increase in time, meaning that it is 

harder to reduce blue water consumption per unit of product with respect to the green water. 
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5.4 Evolution of global Area Equipped for Irrigation 

 

It is worth exploring the temporal evolution of global AEI, analysing how this variable globally 

and locally evolved throughout the time interval 1970 – 2019. In the section “Global maps of 

Green, Blue and Total uWF” we described the steps to reconstruct the global evolution of 

irrigated areas, correcting the pixel-scale value of year 2000 with the ratio between the national 

AEI of all crops of a certain year over the national AEI of all crops of 2000. The values, then, 

have been collected in matrix Area_irr_hist, which contains the evolution of all pixels for the 

50 years’ time-interval.  

From these data, we group them nation by nation, creating a new file AEI_TOT, with the AEI 

time series at national scale. Then, the values of all nation are summed together, thus obtaining 

the global AEI of a certain year. 

 

 

Figure 5. 14: time series of global Area Equipped for Irrigation (AEI), 1970‐2019 

 

The chart illustrates the temporal evolution of global AEI and it can be clearly observed that 

the areas significantly raised from 1970 to 2019. The variable, in fact, grows monotonically, 

behaving as a straight line. Calculating the growth rate between the beginning and end of the 

time interval applying the equation 

 

𝐺𝑅 ሺ%ሻ ൌ
𝐴𝐸𝐼௘௡ௗ െ  𝐴𝐸𝐼௦௧௔௥௧ 

𝐴𝐸𝐼௦௧௔௥௧
 

(5. 7) 



78 
 

where 𝐴𝐸𝐼௘௡ௗ is the global AEI averaged in the years 2015-2019 and 𝐴𝐸𝐼௦௧௔௥௧ is the global AEI 

averaged in years 1970-1974, we notice that global AEI had a 70,7% growth during the 50 

years’ time interval, passing from 18 million hectares to 31 in 2019.  

We extend the analysis at the national scale, checking the growth rate of each country. With a 

for loop, that iterates the operation for each nation, we identify the starting and ending date of 

the time series, and we perform the calculation of the growth rate, saving the result in a table, 

named AEI_growth_table. Then, the growth rates of each country are printed in a 2160 x 4320 

resolution global map, where the surface of each country assumes the values of the national 

growth rate. 

 

 

 
Figure 5. 15: relative and absolute national AEI growth rate, 1970‐2019 

By observing the maps, it can be seen that, as expected, national AEI significantly raised in 

most of countries; however, there are some exceptions in which the area equipped for irrigation 

reduced between 1970 and 2019 (such as Sudan, Portugal, Italy, Afghanistan, etc.) or it 
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remained rather constant (Australia and Chile). In US, the relative increment of maize AEI is 

not so high (< 30%), probably due to the already well-disposed irrigation system in the country, 

while in many African countries, such as in the Arabic peninsula and South America, the growth 

rate exceeds 120%. In fact, by looking at the Blue uWF maps, we see that many of these 

countries totally depend on irrigation to satisfy crop water needs (e.g., countries in Arabic 

Peninsula), with Blue uWF exceeding the green component, therefore it is expected that these 

regions invested on the expansion of the irrigation systems. 

The map of the absolute increment of national AEI shows a different situation: there are 

countries with very little absolute AEI increase which instead had high rates in the relative map 

(e.g., several African and Arabic countries), while there are nations with a huge increment in 

the absolute AEI (such as US) even though the relative growth was very small. This difference 

depends on the total Area Equipped for Irrigation of the country, which gives different weight 

to the relative increment depending on its absolute dimensions. For a nation like US, which has 

a very extended irrigated surface, a difference of more than 200 thousand hectares is not so 

significant since its dimensions in 1970 were almost 4 million ha. In Yemen, instead, which 

had 9000 ha in the early ‘70s, a difference of 12000 ha constitutes a growth rate that exceeds 

120%. 

 

 

 

5.5 Temporal evolution of total, green and blue uWF of some 

countries 

 

As we did in the previous parts, we choose Italy, US, Australia, Nigeria and Viet Nam as testing 

countries to visualize the historical evolution of Total, Green and Blue uWF. Firstly, we look 

at the time series of total uWF of the five countries and check the differences among them. 
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Figure 5. 16: historical evolution of total uWF of several nations 

 

Looking at this graph, it can be clearly observed that, generally, green + blue uWF is decreasing 

in all the countries into analysis, such as for the global mean. Western countries show values 

lower or at least coincident with the global mean throughout the time interval, while developing 

countries, in this case Nigeria and Viet Nam, exhibit very high estimates of unit water footprint, 

which however are significantly decreasing in time. More specifically, among western 

countries, Italy and Australia are the countries that always showed the lowest values of uWF 

(always less than 1000 m3/ton), while data of US manifest a pattern which is very similar to the 

global mean. In fact, global uWF is calculated with a production-weighted mean: therefore, 

countries which produce more (such as US) are also more impacting on the global mean, while 

those with a limited production have a reduced effect. Regarding the trend, it is crystal clear 

that Viet Nam is the one with the sharpest decrease, passing from approximately 3500 m3/ton 

in 1970 to less than 800 m3/ton in 2019, reaching values comparable to those of the western 

countries. Nigeria is instead the nation with the greatest water consumption per unit of product; 

in the 70s its data were around 4000 m3/ton, but the trend didn’t fall such rapidly as for Viet 

Nam, remaining above 2000 m3/ton also after year 2000. In addition, in the first decade of the 

time series, Nigerian uWF exhibits some very sharp fluctuations, with values crossing 6600 

m3/ton in years 1972-73. Probably, this is due to the lack of reliability of the data, so they should 

be intended as outliers rather than effective values.  

Now, turning into details, we display the time series of green and blue uWF country by country, 

comparing their values to the respective global mean of green and blue uWF and analysing the 

trends of the regression lines.  
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We start with the time series of Italy, one of the countries with the lowest water consumption 

per unit of product. It can be seen that values of green uWF are well below the global mean, 

while those of blue unit water footprint are fluctuating up and down the line of the global mean. 

In addition, while for the green line we notice a clear declining tendency, for blue uWF there is 

no evident trend, in fact the polynomial regression line looks flat, with an angular coefficient 

very close to zero. 

 

 

Figure 5. 17: time series of green and blue uWF, Italy 

 

 

Figure 5. 18: time series of green and blue uWF, US 
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Also for USA, the behaviour is very similar to Italy: green uWF is significantly decreasing, 

while blue uWF presents a descending pattern which is rather imperceptible. It is worth noticing 

that the various spikes in the time series of global green uWF are associated with the 

fluctuations of US green uWF data, remarking the concept that US, being the nation with the 

greatest maize production, is the country that mostly affects global mean patterns. This 

phenomenon is clearly visible also in blue uWF regression line, which perfectly overlays the 

global mean blue unit water footprint. 

Regarding Australia, it can be observed that, differently from the previous countries, green and 

blue uWF values are very close to each other, which means that in the country irrigation 

component displays a greater contribute. However, both trends are evidently declining toward 

values around 200 m3/ton. 

 

 

 

Figure 5. 19: time series of green and blue uWF, Australia 
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Figure 5. 20: time series of green and blue uWF, Nigeria 

 

As said previously, Nigerian uWF is the one among the testing countries with the greatest water 

use per unit of product. The local crops require great water inputs to compensate the strong 

evapotranspiration of the plants which is due to the very hard climatic conditions. In addition, 

the country doesn’t show values in the blue uWF time series, mainly because most of local 

crops are not equipped for irrigation, therefore all water input is provided by precipitation. 

The last country is Viet Nam. Also this nation almost fully relies on precipitation, nevertheless 

green uWF is drastically falling, especially thanks to the sharp increase of the crop yield, which 

grew from 1 ton/ha to almost 5 ton/ha in 50 years (see figure Figure 3. 3).  

 

Figure 5. 21: time series of green and blue uWF, Viet Nam 
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5.5.1 Trend analysis of blue uWF and crop yield  
 

The reason why Italian blue uWF trend is almost flat is explained by the fact that the numerator 

of blue uWF equation (ET blue) grew with the same rate of denominator (yield), resulting in a 

flat overall tendency.  

Therefore, it is worth investigating this feature over the rest of the world’s countries, using the 

level of significance of the blue uWF and crop yield. The best way to perform this operation is 

by applying the t-Student test over the time series of the two variables, reporting the results in 

a matrix that pulls them together for each country. More specifically, we create a matrix named 

T-student_array, that for each nation it reports the results of the t-Student test applied on blue 

uWF variable and crop yield, placing “0” if the test variable T is lower than tlim, thus if there is 

no evident trend in the regression, “1” if there is a significant positive trend, “-1” if the trend is 

significant and negative.  

 

Once the test is made running over all the countries and results are inserted in T-student_array, 

the outcomes can be displayed on a global map. With another iterative loop, the code assigns a 

number, X, to a country according to its condition (e.g., “0” if in country N there is no trend in 

blue uWF and positive in yield, “1” if there is no trend in both uWF and yield, “2” if there is 

no trend in uWF and negative in yield, etc.), then the results are represented in a 5 x 5 arc min 

resolution world map, where the resulting number X is inserted in all the pixels of the respective 

country. In this way the countries are coloured according to their condition. 

 
Figure 5. 22: t‐Student test of uWFb and yield trend 
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Table 5. 1: description of legend numbers 

Legend number 
Trend in 
blue uWF 

Trend in 
yield 

7  Negative  No trend 

6  Negative  Positive 

5  Positive  Negative 

4  Positive  No trend 

3  Positive  Positive 

2  No trend  Negative 

1  No trend  No trend 

0  No trend  Positive 

 

 

5.6 Results verification 
 

 

The two main ways to verify the goodness of results consist in applying a verification of internal 

and external coherence. In particular, the internal coherence aims at comparing the national 

uWF time series using the same input data, but two different approaches, while the external 

coherence checks if the obtained results are consistent with those obtained by other works. More 

specifically, we refer to the values provided by the Water Footprint Network, which provides 

green, blue and grey unit water footprint estimates at subnational scale, weighted along the 

time-interval 1996-2005.  

 

 

5.6.1 Comparison with Water Footprint Network  
 

In order to make data from the Water Footprint Network comparable with the results obtained 

from our work, we need to perform quick pre-processing operations. Firstly, data from Excel 

are imported into Matlab. They show up as two arrays of 3252 values, where each row of the 

first one contains the uWF of a specific region in a nation and in the second we have the name 

of the nation in which that region belongs to. With the unique(_) function, we extract the unique 

values of each nation and, with a for loop, we perform the mean of the regional unit water 

footprint values for each country. Then, we load the Excel file “Paesi_FAO”, that contains the 

names and FAO codes of all the countries which, according to our previous calculations, own 
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values of unit water footprint. In this way, with a second for loop, we associate a FAO code to 

the countries of the Water Footprint Network dataset. This operation is done for both green and 

blue unit water footprint.  

Regarding data from our data processing, we perform the arithmetic mean of green and blue 

uWF values from 1996 to 2005, to obtain average values as closer as those contained in the 

Water Footprint Network dataset.  

We are able now to create the scatter plot. As we did at the very beginning of this work, while 

comparing processed data of yield and harvested areas versus FAOSTAT data, we create a 

three-dimension scatter plot, where unit water footprint values are weighted with national maize 

production. In this way, we can understand whether a potential incoherence between the uWF 

according to the Network or to our calculations in a country is more or less significant.  

 

 

Figure 5. 23: green uWF compared with Water Footprint Network 
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Figure 5. 24: blue uWF compared with Water Footprint Network 

 

At a first glance, we can notice that green uWF scatter plot shows better alignment of the two 

arrays with respect to Blue uWF, where many large nations diverge from the bisector, especially 

those which exhibit low unit water footprint. In addition, while the range of green uWF data is 

shorter, between approximately 101 and 104 m3/ton, national blue water footprints assume a 

wider range of values, between 10-5 and 104 m3/ton. 

 

To have a deeper look into details and quantify the incoherence between countries, we estimate 

the relative error between the national uWF values with our approach and those according to 

the Water Footprint Network, with the equation 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 ൌ
𝑢𝑊𝐹௧௛௜௦ ௦௧௨ௗ௬ െ 𝑢𝑊𝐹௡௘௧௪௢௥௞

𝑢𝑊𝐹௡௘௧௪௢௥௞
 

(5. 8) 

At this point, we set a threshold in the relative error to identify the countries with the worst 

alignment. More specifically, we set 0.7 (70%) and 1 (100%) for green and blue unit water 

footprint respectively. The threshold of the second is greater than the one of the former because 

in blue water footprint the error between uWF estimations is generally higher.  

Here the tables reporting the countries with estimation errors greater than the thresholds, with 

their corresponding green and blue uWF, and maize national productivity. 
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Table 5. 2: countries with error in blue uWF greater than 1 

Country 
code 

Country name  uWF Blue (m^3/ton)  Production (kton)  Relative error (‐) 

115  Cambodia  3.32E‐06  156.97  393.03 

60  El Salvador  2.86E‐03  582.68  259.90 

89  Guatemala  3.50E‐03  1053.55  334.49 

178  Eritrea  2.64E‐02  0.45  579.80 

157  Nicaragua  0.56  181.00  5.30 

237  Viet Nam  0.86  2005.90  13.37 

159  Nigeria  1.36  3.78  1.66 

137  Mauritius  5.99  0.62  17.78 

195  Senegal  7.96  78.59  1.51 

49  Cuba  11.26  273.20  2.82 

39  Chad  23.80  64.01  5.01 

121  Lebanon  68.86  3.50  1.44 

158  Niger  250.91  412.20  1.52 

72  Djibouti  783.90  0.01  3.34 

 

 

Table 5. 3: countries with error in green uWF greater than 0.7 

Country 
code 

Country name  uWF Green (m^3/ton)  Production (kton)  Relative error (‐) 

118  Kuwait  52.70  5.55  ‐0.99 

179  Qatar  78.09  5.32  ‐0.86 

59  Egypt  175.98  6474.45  ‐0.78 

212 
Syrian Arab 
Republic 

347.29  190.50  ‐0.81 

40  Chile  428.51  652.02  ‐0.80 

121  Lebanon  505.16  3.50  ‐0.98 

103  Iraq  629.95  55.00  ‐0.77 

194  Saudi Arabia  930.95  40.61  ‐0.83 

4  Algeria  975.94  1.56  ‐1.00 

2  Afghanistan  1062.76  115.00  ‐0.88 

193 
Sao Tome and 

Principe 
1526.92  2.23  ‐0.98 

72  Djibouti  1880.25  0.01  ‐0.70 

89  Guatemala  3081.68  1053.55  ‐0.92 

55  Dominica  3738.63  0.18  ‐1.00 

46  Congo  4314.57  6.36  ‐0.73 

 

From these tables, we can clearly see that national blue water footprint shows much greater 

errors with respect to the green component. In fact, by setting a greater threshold in blue uWF 
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(1 versus 0.7), the table of blue unit water footprint contains 14 countries with bad estimations, 

while the table of uWF green contains 15 countries which, however, never exceed 1 in the error. 

Results are ordered from the country with lowest uWF value to the greatest. 

It can be observed that there is a sort of correlation between the magnitude of blue uWF and 

the error. More specifically, the greatest errors are associated to very low values of unit water 

footprint, while, by increasing national uWF, we assist to a general decrease of the incoherence 

between Unit Water Footprint Network data and our estimations. This phenomenon is crystal 

clear in the blue uWF case since there are countries with very low uWF estimates: in fact, those 

with values lower than 10-2 m3/ton show errors in the order of 102, while unit water footprint 

values greater than 10 m3/ton are associated to errors ranging between 1.5 – 5. 

In green unit water footprint table, instead, this characteristic is not evident, mainly because 

green uWF estimates are generally greater than the blue ones (they range between 101 – 103) 

and the error is always below 1.  

 

The reason why blue uWF shows greater errors, particularly in the lowest estimates, can be 

explained by the fact that historical series of variables for obtaining ETb may not always be 

reliable worldwide. In fact, by looking at both tables, it can be noticed that all the countries 

involved are developing nations, belonging to African, Middle East, Asiatic and Central-South 

American regions. In fact, it is more likely to have greater data uncertainties in these countries 

rather than in European and North American nations, where it’s usually easier to collect reliable 

agricultural data estimations. In addition, with such low estimates of national blue uWF, it is 

very hard to find a coherence between our values and those of the Water Footprint Network, 

since even a very small difference in the estimation reflects into a large relative error.  

 

 

 

5.6.2 Verify coherence of results comparing bulk versus local-weighted data 
 

As we said at the beginning of this chapter, it is also possible to check the consistency of the 

estimations by applying an internal coherence method, that verifies the results without 

comparing them with external data. In particular, national uWF time series obtained with a 

“bulk” calculation, that is by performing a weighted mean of ETs on their rainfed and irrigated 

areas, are compared with local-weighted data, obtained with the following equation, 
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𝑢𝑊𝐹௪௘௜௚௛௧௘ௗ
ே ൌ

∑ ሺ𝑢𝑊𝐹𝑖 ∙ 𝑃𝑖ሻ𝑖∈𝑁

∑ ሺ𝑃𝑖ሻ𝑖∈𝑁
 

(5. 9) 

where 𝑢𝑊𝐹௜ is the i-th cell of nation N obtained with the bulk approach and 𝑃௜ is the crop 

production in the same cell. This approach performs a production-weighted mean of the uWFs 

of a country, where at each pixel of country N is assigned a weight according to its production, 

then they are summed, and the result is divided by the total national production in country N.  

The time series of the results are then compared with the national green and blue uWF 

regressions calculated with bulk approach, choosing Italy, US, Australia and Viet Nam as 

testing countries for this verification analysis. 

 

 

 

 
Figure 5. 25: green uWF time series calculated with bulk and local weight approaches 
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Figure 5. 26: blue uWF time series calculated with bulk and local weight approaches 

 

Looking at the line plots, it is immediately visible that the internal coherence approach provides 

a satisfying fitting between bulk uWF time series and those obtained with the local weights. 

The time series of green uWF calculated with both approaches perfectly overlap in all countries, 

while, for blue uWF, we assist to very mild discrepancies between the two patterns in US and 

Australia. This is explained by the fact that there are countries with more homogeneity in the 

climate such as in the distribution of production, therefore many areas are supposed to contain 

values similar to the national mean, while other nations (like Australia) show greater 

heterogeneity in these two variables. In fact, there are warmer areas with greater water 

consumption but very low production and others with a more favourable climate that allows a 

greater production with lower uWF; this causes a misalignment of local weights of uWF from 

the original national values. 

 

 

 

5.6.3 Comparison with Fast Track approach 
 

 

As we said in the chapter “Methods and Data”, the Fast Track (FT) is a quicker and less 

computational demanding approach which allows the determination of unit water footprint 

without relying on complex hydrological models or an excessive amount of input data. More 

specifically, this method assumes that the variations of uWF are only dependent by crop yield 

patterns, while the evapotranspiration trend is supposed to be constant throughout the duration 

of the time-interval (Tuninetti et al., 2017). Comparing data which adopted a detailed approach 

versus those obtained with the Fast Track allow us to visualise the validity of this method, by 

looking at the historical evolution of both variables and the goodness of the estimation country 

by country. 
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Fast Track data are organised as a 255 x 56 matrix, where each row contains the historical time 

series of national uWF a country from 1961 to 2016. To be compared with uWF data with 

detailed approach, it is firstly necessary to execute a quick pre-processing to adjust the data and 

make the two matrices comparable (i.e., by having an equal time-interval and the list of 

countries ordered in the same way). Since FT data have a time-interval between 1961 to 2016 

while uWF from rigorous approach are from 1970 to 2019, the chosen time interval will be the 

range 1970-2016.  

At this point the uWF patterns of some countries are displayed on a line plot, choosing again 

Italy, US, Australia and Viet Nam for the test. 

 

 

 
Figure 5. 27:time series of uWF calculated with detailed and Fast Trach approaches 

 

 

 

 

As we can see from the illustrations, apart from Italy, that manifests a good fitting between the 

two variables, in the other countries there is an evident distance between the regression obtained 

with the detailed approach and the one derived from the Fast Track. However, even if the curves 

do not coincide, the pattern of both regressions is very similar not only in the trend, but also in 

yearly fluctuations.  
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Moreover, it is worth reproducing a scatter plot displaying the coherence of the two estimations 

in all countries. To do this, we repeat the procedure adopted for the comparison of uWF results 

with Water Footprint Network data, that is by creating a 3D scatter plot with national values 

averaged in the period 1996-2005 and where each dot of the scatter has a size according to its 

national productivity.  

 

 

Figure 5. 28: uWF data between detailed approach vs Fast Track 

 

At a first glance, we notice that most of countries show a good alignment, except for few nations 

where the estimate is completely out of the track (countries 193 and 118 in particular). 

Therefore, we calculate the relative error between the two variables, isolating the countries 

which have an error greater than 1 (100%) and reporting them in the following table:   

 

Table 5. 4: countries with relative error greater than 1 (detailed vs FT approach) 

Country 
code 

Country name  UWF (m^3/ton)  Production (kton) 
Relative 
error (‐) 

118  Kuwait  8.23  1.77  29.55 

193  Sao Tome and Principe  31.25  881.59  48.40 

156  New Zealand  162.55  17556.90  2.84 

121  Lebanon  179.81  18.83  1.90 

89  Guatemala  262.07  25.90  10.94 

10  Australia  319.87  16780.65  3.48 

214  China, Taiwan Province of  379.12  8.90  1.19 

74  Gabon  697.22  6474.45  1.77 

49  Cuba  872.46  3.79  1.22 

12  Bahamas  988.03  1851.73  1.39 

2  Afghanistan  1045.94  115.00  4.40 
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23  Belize  1064.38  9.35  1.06 

46  Congo  1171.30  106000.00  2.26 

250 
Democratic Republic of 

the Congo 
1402.53  4472.90  1.89 

37  Central African Republic  1631.28  6953.70  1.33 

238  Ethiopia  1723.83  178.32  1.47 

197  Sierra Leone  2346.30  0.45  1.19 

 

 

To summarize, the table contains the list of countries where yield variable is not able enough 

to correctly estimate crop water footprint. In fact, most of these countries belong to desertic or 

tropical regions, where climate plays an important role in the determination of uWF, thus 

relying on yield variability only leads to a mismatch in the estimation. In addition, another 

reason for this misalignment may be due to a weak crop yield’s trend, thus a time series showing 

sharp fluctuations and an unclear increasing or decreasing tendency, thus the climatic 

component gains importance in the ratio 𝐸𝑇ே 𝑌ே⁄ . 

 

 

 

5.7 From unit water footprint [m3/ton] to water footprint [m3] 

 

So far, the work focused on the global and local time evolution of unit Water Footprint, uWF, 

that is the volume of water required to produce a unit of product. This is an indicator that 

expresses the agricultural efficiency in water use, however there is no mention about the 

effective amount of water which has been employed by a country to produce the annual quantity 

of maize. This indication is provided by Water Footprint, WF, which expresses the total cubic 

meters of water used to produce given units of crop and it is obtained with the equation 

 

𝑊𝐹௖
ே ൌ 𝑢𝑊𝐹௖

ே ∗ 𝑃௖
ே 

(5. 10) 

where 𝑢𝑊𝐹௖
ே is the unit water footprint of crop c in country N and 𝑃௖

ே is the national production 

of the same product in nation N.  

Having the matrices of national total, green and blue uWF already, such as those of national 

production, the calculation of green and blue WF is simply the product between the two. Once 

obtained these matrices, it is possible to display the annual series of some countries (Italy, US, 
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Australia, Nigeria and Viet Nam) such as the global evolution of this variable, to see if their 

trends are similar to those of uWF or if they follow a different shape.  

 

 

Figure 5. 29: global pattern of Green and Blue Water Footprint 

 

By observing the historical time series of global green and blue WF, we immediately notice 

that the trend is reversed with respect to the global mean uWF regressions. In fact, even though 

water consumption per unit of product significantly reduced (green contribute) or at least 

remained quasi-constant (blue uWF), the global volume of water consumption for maize 

production increased both in the green and blue contribute. More specifically, green WF raised 

from 400 Gm3 to 700 Gm3 in 50 years, while the amount of water from irrigation has doubled, 

passing from 40 Gm3 to almost 80. Although water use efficiency increased in the past 50 years, 

the global maize production intensified with a greater rate, thus increasing the effective water 

volume required by the crop. 

Here below the time series of Green and Blue WF of Italy, US, Australia, Nigeria and Viet 

Nam, with a remark on the angular coefficients of the linear interpolations of green blue data, 

reported in Table 5. 5.  
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Figure 5. 30: time series of Green and Blue WF, Italy 

 

 

Figure 5. 31: time series of Green and Blue WF, US 
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Figure 5. 32: time series of Green and Blue WF, Australia 

 

Figure 5. 33: time series of Green and Blue WF, Nigeria 

 

Figure 5. 34: time series of Green and Blue WF, Viet Nam 
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Table 5. 5: slope coefficient (m) of green and blue water footprint 

Country  mblue (x106 m3/y) mgreen (x106 m3/y)

Italy  8.84  ‐7.28 

US  61.69  970.83 

Australia  0.17  ‐0.09 

Nigeria  0.20  470.78 

Viet Nam  0.33  79.87 

 

 

Looking at the time series of Italy, it is possible to observe that the green WF has a decreasing 

tendency, while the trend of the blue contribute is instead increasing at a greater rate. 

Comparing these regressions to the time series of the input variables of Italy (see Annexes, 

Figure 7. 6), we notice that green and WF fluctuations follow the pattern of harvested area and 

production. 

In the US time series, instead, there is a growth on both green and blue components. An 

interesting detail of this graph is that, in 1983, there is a sudden drop of the green contribute, 

suggesting that a serious drought may have happened. However, blue WF value of that year 

didn’t exhibit a sharp increase to balance the lack of precipitation, but it remained very close to 

the mean. The paper provided by W. M. Wendland (1984) in the Bulletin of the American 

Meteorological Society reports that, in 1983, an exceptional dry summer involved the Upper 

Mid-West of US, with mean July and August temperatures above +2°C the monthly averages 

of the period 1951-80. However, most of US irrigated areas are concentrated in central US, so 

probably they haven’t been affected so much by the drought, which instead involved more the 

rainfed-only areas that couldn’t balance with the blue contribute to keep the crop at field 

capacity. 

However, the previous method is not the only way to calculate green and blue water footprint, 

since it can be derived also from evapotranspiration [mm] and area [ha], using the equations 

 

𝑊𝐹௚
ே ൌ ෍ ൫𝐸𝑇௔,௜

௥௙ ∙ 𝐴௥௙,௜ ൅ 𝐸𝑇௚,௜
௜௥௥ ∙ 𝐴௜௥௥,௜൯

௜∈ே,௥௙∪௜௥௥

 

(5. 11) 

𝑊𝐹௕
ே ൌ ෍ ൫𝐸𝑇௕,௜

௜௥௥ ∙ 𝐴௜௥௥,௜൯
௜∈ே,௜௥௥

 

(5. 12) 

that is, by multiplying ETg or ETb times the rainfed and irrigated area of the i-th cell and then 

making the sum of the products for all the cells of country N. This is a procedure that avoids 
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the calculation of uWF and national production, since it calculates WF from 

evapotranspiration and area data, thus it is quicker and more direct. To verify if data obtained 

with both approaches are coherent, we compare the time series of Italy obtained in both ways. 

 

Figure 5. 35: comparison between the two approaches for the calculation of green WF, Italy 

 

Figure 5. 36: comparison between the two approaches for the calculation of blue WF, Italy 

From both illustrations we can appreciate that the regressions of both approaches well fit each 

other, with a cv_RMSE (Coefficient of Variation of RMSE) equal to 5.6*10-3 and 6.2*10-3 for 

green and blue WF respectively. Thus, we can state that both methods are perfectly suitable 

for the description of water footprint at national scale, both for Italy and all other world’s 

nations.   
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6 Conclusions 
 

In the present thesis, the temporal variability of green and blue unit water footprint of maize, 

has been analysed. Unit Water Footprint [m3/ton] is the indicator that expresses the water 

volume employed to produce a unit of product, and it can be partitioned into green uWF, the 

water that comes from precipitation, and blue uWF, the contribute coming from irrigation.   

Values were obtained from high-resolution modelling and intense data analysis, relying on 

national time series and gridded data, which account for spatio-temporal variations of this crop 

worldwide. We noticed that there is a strong spatial heterogeneity of this indicator around the 

world, where countries with higher technological development and more favourable climatic 

conditions are those with the lowest values of green and blue unit water footprint, thus a more 

efficient use of water resources. Along the considered time-interval, we observe a global 

decrease of unit water footprint. While for the green contribution this phenomenon is 

widespread in all the analysed countries, the blue component has a less remarked decreasing 

trend, that for some countries shows an angular coefficient very close to zero. 

Looking at the historical evolution of green uWF on the global maps, we see that from 1970, 

where the only areas with values lower 1000 m3/ha were in East China, Central Europe and 

some regions in the Middle East, the values drastically reduced worldwide, especially in the 

US, in the rest of Europe, in China and in South America. Africa, instead, shows a rather 

negligible change with respect to the rest of the world.  

Blue uWF maps, instead, exhibit a different pattern: in 1970, the lowest values belong to the 

countries with an already efficient irrigation system (US and Europe) or which do not rely much 

on irrigation (e.g., India, Brazil and some African countries), while nations in desertic 

environments, which can’t count on precipitation as main source of water supply, show very 

high rates of blue uWF. Over time, some nations significantly reduced their blue unit water 

footprint contribute (US and some European countries), while other nations kept on maintaining 

high irrigation volumes per unit of product.  

Tuninetti et al. (2015) demonstrated that, for all crops, the spatial heterogeneity of crop water 

footprint is mainly driven by yield patterns, suggesting that agricultural practices are more 

effective on water footprint than climatic conditions. With this work, we prove that the 

dependence of WF from crop yield is evident also on a temporal scale. In fact, between 1970 

and 2019 the national yield significantly raised in the countries into analysis, with different 

growth rates according to the nation; meanwhile, the water footprint of these nations reduced 

proportionally to the trend of yield. More specifically, the yield of Viet Nam is one of those 
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with the greatest growth rates, therefore this explains why its unit water footprint has drastically 

reduced over the years. On the contrary, crop yield in Nigeria followed a minor growth with 

respect to the other countries, thus water footprint reduction was less remarked.  

In addition, we cross-compared our national uWF data with those obtained with the Fast Track 

approach (Tuninetti et al., 2017), with uWF data averaged over time-interval ranging from 1996 

to 2005. We noticed that data show a good alignment, with only 17 countries over 149 having 

a relative error greater than 1. In addition, the comparison between the time series of uWF 

calculated with our approach and with Fast Track of some nations results very similar in the 

pattern; in some countries, such as Italy, the two curves are almost overlapping throughout the 

time interval, while in other countries they just differ by a quasi-constant coefficient. This fact 

proves the potential differences from an accurate estimation of the uWF (this thesis) and a valid 

but simplified method of calculation (Fast Track). 

By looking at the historical evolution of green and blue Water Footprint, it is clearly observed 

that the trend is generally increasing, both at global and country level. In fact, even though the 

efficiency in water use improved over the time-interval, the huge increase of maize harvested 

area and production throughout the 1970 – 2019 time-interval determined an increment of water 

volumes. Among the analysed countries, United States is the country with the greatest yearly 

growth of green WF (more than 900 million cubic meters), followed by Nigeria (400 million 

m3), while the trend of Australia and Italy is mildly decreasing, mainly due to the decrease of 

the harvested areas. Regarding blue WF, the trend is rising in all the five countries, meaning 

that the irrigation requirements are getting more and more important due the effect of climate 

change. 

This thesis contributes to extend the knowledge on the spatio-temporal variability of green and 

blue uWF of crops. However, for the seek of simplicity, the analysis has been developed only 

for a single crop, maize, one of the most cultivated worldwide, thus one of the most impacting 

in terms of water consumption. To enrich the survey on this field, the analysis can be further 

extended on other crops, starting from wheat, rice and soybean, which, together with maize, 

represent the four most cultivated grains, and later to other irrigation-demanding products. In 

addition, it is worth to deepen the study about the relation between the blue fraction of uWF 

and climatology, thus the possibility of estimating the ratio ETb/ETa on the base of climate 

variables, that are precipitation and reference evapotranspiration. This would allow to achieve 

an alternative and less computational demanding method which does not require the use of 

complex hydrological soil water balance models.   
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7 Annexes 
 

 

7.1 Display of input variables of uWF in Pino Torinese   
 

 

 

Figure 7. 1: Standard deviation and coefficient of variation of ETs 

 

 

 

Figure 7. 2: temporal series of P, ETa and irrigation requirements, 2003 
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Figure 7. 3: temporal series of soil moisture and TAW, 2003 

 

 

Figure 7. 4: evolution of green and blue evapotranspiration and yield, 1970‐2019 
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Figure 7. 5: ratio between evapotranspirations, 1970‐2019 

 

 

7.2 Display time series of harvested area, AEI, production and 
ET of the five countries 

 

 

7.2.1 Italy 

 

 
Figure 7. 6: plots of uWF input variables, Italy 
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7.2.2 US 

 

Figure 7. 7: plots of uWF input variables, US 

 

 

 

7.2.3 Australia 

 

 
Figure 7. 8: plots of uWF input variables, Australia 
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7.2.4 Nigeria 

 

 
Figure 7. 9: plots of uWF input variables, Nigeria 

 

 

7.2.5 Viet Nam 

 
Figure 7. 10: plots of uWF input variables, Viet Nam 
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7.3 Global map of area equipped for irrigation, 2000 

 
Figure 7. 11: global Area Equipped for Irrigation (AEI), 2000 

 

 

7.4 National green uWF table  
 

Country name  FAO code  1970  1975  1980  1985  1990  1995  2000  2005  2010  2015  2019 

Afghanistan  2  65.7  60.1  59.5  60.6  77.3  99.4  224.3  120.1  168.7  125.6  131.4 

Albania  3  909.9  790.8  716.3  601.9  588.3  865.3  593.1  681.9  425.9  369.6  378.8 

Angola  7  3384.9  4137.0  4630.2  7618.1  11864.5 8963.0  5524.5  4721.9  4485.3  2708.9  3001.6 

Antigua and Barbuda  8  1486.6  1967.5  2084.6  1886.7  1523.3  2233.0  2194.0  2475.7  2474.9  2033.4  2331.1 

Argentina  9  2244.4  2131.2  1977.6  1410.6  1424.5  1111.8  953.2  698.1  665.7  689.8  635.5 

Armenia  1  0.0  0.0  0.0  0.0  0.0  2310.6  1827.0  940.6  934.0  634.4  1036.7 

Australia  10  541.7  478.4  456.3  417.2  303.7  305.4  280.6  216.9  283.7  166.2  186.6 

Austria  11  792.1  562.6  551.9  475.3  481.9  466.9  400.0  370.7  407.6  463.2  404.4 

Azerbaijan  52  0.0  0.0  0.0  0.0  0.0  1516.4  550.6  366.9  414.1  252.5  194.2 

Bahamas  12  2561.9  2509.3  2235.6  1878.4  1695.9  1336.7  996.1  718.0  329.0  299.3  264.8 

Bangladesh  16  3202.7  3278.5  4417.7  3583.9  3005.5  2828.0  1436.0  594.7  522.4  422.8  389.8 

Barbados  14  1585.0  1477.9  1488.1  1462.8  1405.6  1322.0  1423.7  1462.1  1407.6  1256.1  1367.2 

Belarus  57  0.0  0.0  0.0  0.0  0.0  1391.1  1603.0  882.6  774.3  764.4  641.4 

Belgium  255  0.0  0.0  0.0  0.0  0.0  0.0  311.6  317.8  297.8  365.8  389.2 

Belize  23  1595.2  2405.7  1368.0  1884.6  1320.9  1474.0  1166.6  1022.0  943.0  900.0  1048.9 

Benin  53  4858.0  4186.4  4013.5  3532.5  3489.5  2616.1  2672.1  2729.2  2759.3  2417.9  2048.7 

Bhutan  18  2168.7  2108.5  2209.7  2219.2  3102.6  2151.5  1873.4  1025.8  1238.1  812.3  862.0 

Bolivia (Plurinational State of)  19  3338.8  3315.6  3141.4  2676.3  2688.7  2271.1  2000.0  2049.7  1568.0  1835.5  2016.2 

Bosnia and Herzegovina  80  0.0  0.0  0.0  0.0  0.0  1178.8  2099.8  915.0  1045.1  1191.1  772.5 

Botswana  20  38569.8  4761.7  12578.6 14721.1 9107.5  3149.5  30437.8 12443.7  18925.5  8723.9  12418.3

Brazil  21  2921.1  2752.8  2268.1  2166.1  2238.2  1544.7  1496.9  1350.0  952.2  750.5  746.5 

Bulgaria  27  1171.2  1026.7  1109.0  1407.9  1503.2  1172.5  2223.9  823.3  717.1  838.2  640.5 
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Country name  FAO code  1970  1975  1980  1985  1990  1995  2000  2005  2010  2015  2019 

Burkina Faso  233  5551.5  6188.2  4023.2  3686.4  2568.5  3188.6  2112.2  2067.0  2475.1  2045.1  2152.0 

Burundi  29  2377.7  2460.5  2618.6  2259.4  2106.6  2237.4  2853.9  2741.6  2711.8  2154.4  2885.4 

Cabo Verde  35  7727.0  5778.7  5077.2  6145.4  7344.5  9779.9  3466.6  9833.0  14150.2  10289.2 93692.5

Cambodia  115  2362.8  3084.5  3624.6  4029.0  1993.5  3133.0  1306.9  1058.3  1061.8  805.2  729.1 

Cameroon  32  2707.6  1909.3  2935.7  1485.6  1412.0  1616.0  1019.1  1185.9  1250.0  1442.7  1532.3 

Canada  33  776.7  708.9  688.6  630.5  574.5  563.3  589.5  477.0  408.6  385.2  433.8 

Central African Republic  37  2287.1  3680.3  3998.4  1572.5  2155.9  1820.5  1505.6  1754.2  970.6  1991.8  2550.2 

Chad  39  2097.4  2275.6  4385.3  4330.3  3907.2  4148.3  4901.2  3358.8  4412.9  3158.2  2840.5 

Chile  40  230.3  242.4  315.3  106.7  87.6  70.9  100.9  78.1  65.9  63.0  61.5 

China  351  1706.3  1338.3  1110.9  961.4  773.7  699.2  719.5  654.6  620.2  549.8  515.7 

China, Taiwan Province of  214  883.7  774.3  786.2  501.2  477.6  427.0  382.4  360.6  369.0  390.0  400.6 

Colombia  44  1892.0  2010.6  1940.8  1821.5  1783.6  1668.0  1221.1  954.3  947.8  729.8  717.9 

Comoros  45  4102.6  4163.0  4387.2  2978.1  1907.3  1858.0  2026.7  2071.1  2166.5  2029.2  2200.4 

Congo  46  1607.4  1496.5  1144.5  1218.7  1590.6  1205.1  1137.8  1176.0  1140.1  1088.2  926.4 

Costa Rica  48  2478.1  2146.7  1495.8  1889.7  1809.9  1626.6  1634.8  1414.9  1475.8  1670.3  1722.9 

Côte dIvoire  107  3766.0  5100.3  3215.8  2995.4  2276.4  1789.5  1365.9  1277.0  1387.7  1331.1  1338.3 

Croatia  98  0.0  0.0  0.0  0.0  0.0  935.4  1079.7  659.9  657.2  710.3  530.8 

Cuba  49  1655.7  1463.1  1490.8  1547.1  2243.3  1656.0  705.1  586.0  751.4  481.0  616.4 

Czechia  167  0.0  0.0  0.0  0.0  0.0  897.8  573.1  519.5  553.8  721.8  491.0 

Democratic Peoples Republic of Korea 116  755.4  822.9  661.4  570.0  473.1  1348.7  1604.2  1076.0  956.6  807.1  676.6 

Democratic Republic of the Congo  250  1509.7  1463.1  1372.7  1374.8  1372.9  1417.3  1370.9  1478.8  1454.2  1460.9  1434.4 

Denmark  54  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  638.2  510.3  421.0 

Djibouti  72  0.0  0.0  0.0  874.6  594.8  958.1  614.2  929.0  685.9  346.6  545.2 

Dominican Republic  56  2446.5  2174.4  3323.2  2633.6  2512.5  3042.7  3298.3  2879.1  2480.8  2817.8  2459.5 

Ecuador  58  2076.1  1916.9  2023.5  1342.0  1779.3  1637.8  1363.8  983.3  1019.8  534.6  530.5 

Egypt  59  77.9  75.7  60.1  55.2  44.7  46.9  37.5  34.7  37.3  37.3  36.7 

El Salvador  60  2596.5  2584.3  2596.9  2408.1  2245.7  2002.9  2117.8  1497.2  1399.7  1984.7  1800.6 

Eritrea  178  0.0  0.0  0.0  0.0  0.0  11684.3 15584.4 8148.8  4233.9  3616.6  3949.5 

Eswatini  209  5881.7  2274.2  2629.8  1703.4  2711.5  1588.3  1816.5  2647.9  2893.6  2897.4  2923.5 

Ethiopia  238  0.0  0.0  0.0  0.0  0.0  2102.1  1741.7  1442.8  1298.8  1095.3  672.5 

France  68  855.7  1014.9  791.9  635.3  638.9  484.5  452.8  431.9  430.0  447.1  449.4 

Gabon  74  730.3  745.7  707.2  741.2  679.2  690.3  652.5  705.4  686.2  676.8  683.5 

Gambia  75  3803.7  3278.2  3805.3  2541.4  3350.8  3066.1  2536.9  3836.3  3195.4  5075.3  8190.9 

Georgia  73  0.0  0.0  0.0  0.0  0.0  1436.1  2612.3  1875.7  3139.1  2499.2  1489.4 

Germany  79  684.8  629.6  581.7  521.2  514.4  473.5  365.3  388.1  385.7  419.5  406.8 

Ghana  81  2582.0  2625.8  3132.6  2838.9  2401.0  1908.6  1967.2  1816.6  1525.1  1496.6  1460.3 

Greece  84  706.7  711.5  306.0  217.0  215.2  243.3  201.8  237.8  242.8  226.2  236.1 

Grenada  86  3535.2  3493.8  3286.8  3191.0  2904.1  2982.3  3075.2  3239.2  3241.1  2783.7  3016.3 

Guadeloupe  87  2143.9  3718.3  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Guatemala  89  394.6  274.6  343.3  290.5  236.1  248.3  280.9  217.8  254.3  234.8  238.9 

Guinea  90  2496.6  2502.2  2925.9  2690.5  3005.4  2494.6  2123.3  1955.8  1790.9  2370.0  2046.0 

Guinea‐Bissau  175  5305.8  5355.6  3580.9  5434.6  3478.1  3628.9  3684.5  3395.8  3396.2  4157.5  3557.7 

Guyana  91  2507.2  1861.5  2539.5  3639.6  2378.3  2799.5  2949.5  3060.8  2674.1  2654.2  2688.0 

Haiti  93  3636.4  4295.0  4741.4  5302.3  5097.1  5109.8  4651.9  5107.1  5134.0  5183.4  5646.1 

Honduras  95  2624.2  2814.8  2730.8  2290.5  2089.8  2012.3  2292.9  2052.2  1972.1  1881.6  1913.9 
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Country name  FAO code  1970  1975  1980  1985  1990  1995  2000  2005  2010  2015  2019 

Hungary  97  1235.5  839.9  745.6  660.2  911.0  933.9  836.4  557.1  631.3  703.4  537.8 

India  100  3059.3  3160.4  3370.4  3463.9  2495.1  2466.6  2164.8  2075.5  1540.9  1514.1  1222.3 

Indonesia  101  3880.4  3212.2  2466.8  2050.9  1714.1  1588.0  1329.4  1050.9  857.1  642.0  618.5 

Iran (Islamic Republic of)  102  508.5  348.7  505.7  214.6  158.9  153.9  95.5  93.4  91.7  91.0  116.7 

Iraq  103  315.4  179.3  156.3  193.0  128.3  274.0  282.5  114.1  115.8  100.4  79.4 

Israel  105  111.2  112.9  106.7  34.9  30.1  52.9  32.3  41.1  18.1  26.2  25.6 

Italy  106  868.9  645.4  562.1  509.9  476.2  426.3  402.1  413.9  444.5  376.1  381.5 

Jamaica  109  3127.2  2308.0  2807.6  3369.1  4057.1  3213.3  3742.2  3122.6  3348.1  3799.4  3879.3 

Japan  110  1251.0  1298.4  1620.4  1394.7  1378.5  1317.4  1442.2  1409.4  1416.8  1348.1  1314.3 

Jordan  112  5087.9  1598.5  212.5  1503.2  179.7  127.6  99.7  72.4  55.2  49.7  58.0 

Kazakhstan  108  0.0  0.0  0.0  0.0  0.0  813.9  453.1  299.1  247.4  211.2  197.4 

Kenya  114  2660.0  2248.0  2721.4  1843.2  1965.1  1744.4  2057.7  1979.6  1895.5  1828.5  1854.4 

Kuwait  118  0.0  61.9  6.9  0.2  0.9  0.3  0.2  0.2  0.1  0.8  0.4 

Kyrgyzstan  113  0.0  0.0  0.0  0.0  0.0  963.1  514.9  450.3  471.0  427.5  380.5 

Lao Peoples Democratic Republic  120  1921.6  2092.9  3175.0  2561.3  1809.7  1810.8  1341.0  752.9  704.7  550.9  701.5 

Lebanon  121  20.6  27.0  15.6  26.3  8.8  8.2  13.6  11.5  8.3  19.6  10.2 

Lesotho  122  7729.6  5363.2  4152.3  4893.9  3453.0  4910.1  5361.4  5472.8  4338.8  6233.6  5696.4 

Lithuania  126  0.0  0.0  0.0  0.0  0.0  2748.7  1735.1  1074.0  484.3  695.3  446.7 

Luxembourg  256  0.0  0.0  0.0  0.0  0.0  0.0  457.8  417.2  471.2  626.4  886.2 

Madagascar  129  3034.0  2796.1  3113.8  3030.9  3253.3  3146.4  3451.1  2068.2  1953.8  1739.6  1803.9 

Malawi  130  3621.9  3159.2  2665.8  2563.1  3261.2  2373.9  1779.6  4106.2  1535.3  1857.6  1720.3 

Malaysia  131  1488.7  2494.2  2800.1  1973.0  1909.9  1647.0  1338.0  1104.9  552.3  510.3  392.1 

Mali  133  3093.0  3834.2  3049.9  2631.0  3005.2  2668.5  2600.2  2322.5  1237.7  1356.2  1278.7 

Mauritania  136  5559.9  12234.8 5218.9  11077.2 4118.9  4570.2  3718.6  3330.0  4405.0  6845.1  3908.7 

Mauritius  137  1855.8  1690.5  1704.4  794.1  882.3  952.2  406.8  508.5  577.7  625.1  523.8 

Mexico  138  2726.3  2627.7  1847.7  1817.5  1729.4  1451.1  1387.5  1176.5  1013.0  1047.0  898.4 

Morocco  143  3678.0  3452.0  2965.7  2983.1  2309.1  17817.8 5717.2  7701.5  1583.9  2493.3  2262.9 

Mozambique  144  2799.8  7813.2  6056.2  7334.7  7491.9  4679.7  3402.8  6505.6  2687.3  3913.3  4167.2 

Myanmar  28  3462.8  3193.9  2254.0  1401.5  1669.5  1528.1  1460.8  896.6  726.5  671.2  673.6 

Namibia  147  2837.6  2695.3  2853.7  4602.7  2552.7  2927.3  5300.2  1640.2  1941.6  1320.7  1918.1 

Nepal  149  1642.8  1820.9  1933.1  2156.4  1879.7  1896.9  1799.8  1562.0  1431.1  1310.0  1111.3 

Netherlands  150  781.0  556.8  787.2  281.4  305.2  382.2  291.0  390.7  266.9  319.6  399.5 

New Caledonia  153  1620.3  1306.2  1378.0  999.7  1582.8  949.3  956.0  1038.3  1011.8  486.3  464.1 

New Zealand  156  217.5  183.1  170.6  161.3  176.7  163.3  156.2  157.1  167.7  155.4  162.0 

Nicaragua  157  4242.3  4234.7  3429.7  3586.2  3112.9  3353.1  3160.3  2833.4  2941.4  3685.7  3150.0 

Niger  158  5403.5  9563.6  5495.5  10906.8 9347.6  2445.1  4999.8  4421.8  5873.7  3112.4  2476.9 

Nigeria  159  3725.7  2680.0  2840.5  3267.1  3333.6  2916.4  2880.4  2322.8  2058.5  2427.4  2370.5 

North Macedonia  154  0.0  0.0  0.0  0.0  0.0  1228.9  1150.3  985.2  932.9  910.2  920.2 

Pakistan  165  2910.5  3100.9  2760.2  2769.5  2418.0  2215.1  1897.5  1175.3  1020.0  852.2  707.5 

Panama  166  4209.4  4163.3  4016.1  3259.7  2988.9  2540.7  2511.4  2564.9  2635.5  2479.2  1763.5 

Papua New Guinea  168  4628.0  3650.6  1663.0  1824.1  1552.4  1128.6  740.7  826.3  816.2  728.3  654.0 

Paraguay  169  3572.2  3583.7  3069.9  3007.1  2236.6  1887.6  2550.9  2360.1  1251.9  897.0  959.0 

Peru  170  1221.2  1161.9  1264.8  1049.8  1035.1  1052.3  850.4  796.9  669.1  612.8  607.0 

Philippines  171  4322.6  4212.1  3578.9  3089.1  2592.9  2307.7  1927.3  1620.3  1396.0  1162.8  1088.4 

Poland  173  1433.2  660.1  937.1  827.8  715.3  718.7  597.1  632.1  628.0  749.6  663.7 
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Country name  FAO code  1970  1975  1980  1985  1990  1995  2000  2005  2010  2015  2019 

Portugal  174  986.9  990.4  803.9  682.7  404.3  366.0  255.0  265.7  229.9  144.4  152.1 

Puerto Rico  177  955.0  1562.1  3304.0  2873.4  1497.4  1065.1  1251.2  1565.0  1483.6  822.7  835.0 

Qatar  179  0.0  0.0  0.0  0.0  13.5  16.5  11.2  9.5  3.7  20.3  16.3 

Republic of Korea  117  2573.7  2095.7  762.9  703.9  777.8  838.1  886.5  753.9  759.7  736.2  726.0 

Republic of Moldova  146  0.0  0.0  0.0  0.0  0.0  1513.2  1808.7  1446.7  1387.5  1603.6  1008.8 

Réunion  182  1039.2  789.1  795.6  754.1  769.4  432.5  456.8  431.9  0.0  0.0  0.0 

Romania  183  2002.0  1553.5  1285.4  1103.3  1528.7  1356.7  2298.8  1084.7  1001.3  1246.6  676.1 

Russian Federation  185  0.0  0.0  0.0  0.0  0.0  1195.7  1639.4  848.4  989.3  662.6  563.9 

Rwanda  184  1919.5  2184.9  2007.9  1859.4  2339.8  2155.1  3537.5  2800.4  1017.3  1561.6  1670.6 

Sao Tome and Principe  193  44.5  44.1  43.9  46.2  35.1  30.3  30.1  29.3  41.4  28.9  34.1 

Saudi Arabia  194  824.3  798.9  400.1  324.5  87.0  234.5  74.1  71.4  62.3  64.7  74.0 

Senegal  195  4390.3  4086.3  4735.0  2510.6  2947.2  3270.9  3190.3  1260.4  2358.3  2288.5  1555.0 

Serbia and Montenegro  186  0.0  0.0  0.0  0.0  0.0  1171.4  1807.0  860.0  0.0  0.0  0.0 

Sierra Leone  197  2183.4  2244.9  2403.7  2141.6  2135.8  2330.6  2481.3  2354.3  1564.9  3671.5  671.2 

Slovakia  199  0.0  0.0  0.0  0.0  0.0  903.9  1385.6  683.2  843.7  919.3  673.7 

Slovenia  198  0.0  0.0  0.0  0.0  0.0  631.4  721.0  477.1  472.0  472.8  447.4 

Somalia  201  2947.6  3231.9  2987.9  2485.7  2159.5  3666.1  1880.6  2386.1  1960.9  4584.4  5173.7 

South Africa  202  2389.9  1641.6  1341.6  1754.3  1443.5  2179.0  1100.4  927.8  705.9  835.3  615.7 

Spain  203  551.3  664.3  458.3  332.5  323.5  281.7  229.3  166.7  214.1  173.9  164.7 

Sri Lanka  38  4896.3  5480.3  3092.1  4035.1  3247.7  3670.6  3365.5  2327.0  1362.6  1077.7  924.3 

Sudan (former)  206  2577.8  3743.9  3854.2  6371.1  2936.1  5617.3  1702.5  1843.4  1536.8  0.0  0.0 

Suriname  207  3379.7  2690.7  3329.2  3163.2  2423.5  2331.1  2693.4  2908.6  2207.7  2150.5  1947.4 

Switzerland  211  580.6  515.9  502.8  495.1  422.8  411.7  354.8  356.1  399.8  409.6  343.9 

Syrian Arab Republic  212  939.2  322.2  195.6  124.3  52.0  78.4  71.2  74.3  76.7  97.4  67.9 

Tajikistan  208  0.0  0.0  0.0  0.0  0.0  578.5  311.8  249.2  112.1  76.8  72.7 

Thailand  216  1374.1  1474.9  1603.2  1378.6  1536.8  1078.0  935.8  935.4  865.4  871.5  798.0 

Timor‐Leste  176  2645.2  3818.8  2579.8  2678.3  1892.2  1424.8  1903.4  1709.0  2108.5  966.3  855.6 

Togo  217  2436.9  2447.8  3192.9  3449.4  3234.1  3595.1  2568.1  2690.0  2553.7  2234.6  2510.7 

Trinidad and Tobago  220  590.5  671.0  922.9  908.6  602.4  879.9  1011.4  1133.2  1066.8  1190.6  1616.6 

Turkey  223  1550.7  1355.6  1135.4  717.5  612.8  770.8  545.9  357.1  358.7  300.8  299.9 

Turkmenistan  213  0.0  0.0  0.0  0.0  0.0  158.3  433.3  501.2  270.4  332.5  436.1 

Uganda  226  2486.5  2560.5  2904.3  2527.9  2211.7  2056.9  1916.3  2066.2  1433.5  1340.3  1188.1 

Ukraine  230  0.0  0.0  0.0  0.0  0.0  1421.6  1375.3  990.2  966.7  720.8  584.5 

United Republic of Tanzania  215  4294.2  1697.7  1757.7  1604.9  1410.1  1031.9  958.1  2102.3  1349.4  1386.7  1341.9 

United States of America  231  1129.9  974.9  934.3  751.8  721.3  770.8  600.5  563.8  572.3  523.9  536.5 

Uruguay  234  5201.9  4217.0  4416.7  3406.3  2125.2  1603.7  2407.8  919.0  739.3  707.5  526.0 

Uzbekistan  235  0.0  0.0  0.0  0.0  0.0  229.2  273.2  185.3  142.3  57.7  96.1 

Vanuatu  155  7216.5  7712.0  7476.1  7367.4  7430.7  7860.1  7466.7  7380.8  6719.9  6385.2  6112.6 

Venezuela (Bolivarian Republic of)  236  3343.4  3143.7  3010.2  2341.4  2002.7  1666.6  1292.7  1489.8  1288.5  1554.9  1278.3 

Viet Nam  237  3120.4  3348.4  3025.5  2276.5  2206.1  1603.1  1268.4  988.0  891.3  795.4  760.5 

Yemen  249  1057.4  1049.4  841.9  1421.9  786.4  1272.1  1241.5  2170.7  1095.2  1177.0  1299.8 

Zambia  251  5441.3  2332.4  2086.9  1729.7  2469.7  2501.3  1887.3  1914.8  1280.5  1129.3  1473.5 

Zimbabwe  181  2476.9  1832.7  2535.3  1481.2  1915.6  5433.8  2626.3  4986.1  3713.0  5312.5  3893.7 
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7.5 National blue uWF table  
 

Country name  FAO code  1970  1975  1980  1985  1990  1995  2000  2005  2010  2015  2019 

Afghanistan  2  505.3  434.9  442.4  504.2  591.5  575.4  1461.8  913.8  699.4  622.1  951.7 

Albania  3  412.1  384.0  543.4  637.2  726.2  440.0  673.0  378.9  263.8  341.8  314.0 

Argentina  9  8.7  10.4  26.4  9.1  15.5  13.2  5.5  6.3  5.2  5.6  3.4 

Armenia  1  0.0  0.0  0.0  0.0  0.0  9.4  19.8  3.1  5.6  3.6  14.6 

Australia  10  160.4  159.1  160.5  134.7  95.4  67.8  74.2  79.6  46.2  49.8  107.3 

Austria  11  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Azerbaijan  52  0.0  0.0  0.0  0.0  0.0  2633.1  1002.8  625.5  693.6  554.2  388.7 

Belarus  57  0.0  0.0  0.0  0.0  0.0  370.2  126.8  123.5  33.1  78.6  9.2 

Belgium  255  0.0  0.0  0.0  0.0  0.0  0.0  0.8  0.5  0.8  0.7  3.1 

Belize  23  2.1  29.0  0.0  0.6  0.1  0.1  1.7  5.9  0.0  0.9  14.1 

Benin  53  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Bolivia (Plurinational State of)  19  0.0  2.2  0.9  0.6  4.4  1.0  0.2  0.8  1.0  0.3  0.9 

Bosnia and Herzegovina  80  0.0  0.0  0.0  0.0  0.0  0.8  2.9  0.6  1.1  1.6  0.9 

Brazil  21  0.9  1.0  1.0  1.0  2.4  1.1  1.3  2.0  1.6  1.4  1.5 

Bulgaria  27  9.3  3.8  14.1  34.8  40.8  8.4  48.1  0.4  1.9  2.0  1.2 

Burkina Faso  233  0.0  0.1  0.1  0.1  0.3  0.2  0.1  0.0  0.0  0.0  0.0 

Burundi  29  0.5  0.4  0.5  0.4  0.5  0.6  1.3  0.8  1.0  0.7  0.4 

Cambodia  115  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Cameroon  32  0.0  0.0  0.2  0.0  2.7  0.0  0.0  0.0  0.0  0.1  0.0 

Canada  33  15.9  11.5  7.1  12.4  8.5  6.6  11.0  6.3  4.6  7.2  5.9 

Chad  39  269.3  283.8  247.4  190.2  343.0  170.7  232.5  80.7  70.7  55.2  38.5 

Chile  40  892.3  713.2  589.4  364.2  310.2  272.3  289.9  152.9  183.1  169.3  239.9 

China  351  112.7  135.2  96.4  53.2  34.1  39.2  91.4  54.4  66.4  75.3  73.6 

Colombia  44  0.0  0.1  0.5  0.1  0.0  0.2  0.6  0.2  0.0  0.7  0.3 

Croatia  98  0.0  0.0  0.0  0.0  0.0  0.3  1.1  0.7  2.1  5.6  3.5 

Cuba  49  7.2  15.0  5.1  15.6  49.3  8.0  68.2  2.2  0.4  120.5  16.2 

Czechia  167  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Democratic Peoples Republic of Korea 116  0.5  0.0  6.1  1.9  0.0  0.0  17.6  0.2  0.4  9.1  55.9 

Democratic Republic of the Congo  250  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Denmark  54  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  49.5  1.8  18.1 

Djibouti  72  0.0  0.0  0.0  2787.3  3579.8  2865.3  3196.7  3437.6  2978.7  3047.8  2488.7 

Dominican Republic  56  0.2  0.5  0.4  0.3  0.6  0.7  1.9  0.6  0.0  2.6  0.9 

Ecuador  58  194.1  127.7  239.6  122.8  171.0  59.0  35.0  137.4  73.3  42.4  55.9 

Egypt  59  1198.2  1162.9  949.9  844.4  676.0  747.5  573.1  549.9  611.9  605.9  596.4 

El Salvador  60  0.8  1.7  0.1  1.2  0.7  0.0  0.8  0.0  0.0  2.6  1.0 

Eritrea  178  0.0  0.0  0.0  0.0  0.0  8.4  21.9  6.3  3.6  6.6  2.9 

Eswatini  209  7.7  0.0  1.5  0.1  0.4  3.5  0.0  1.4  1.9  5.0  1.8 

Ethiopia  238  0.0  0.0  0.0  0.0  0.0  55.5  38.7  44.6  38.3  52.5  30.2 

France  68  41.5  74.5  34.6  68.1  163.9  139.2  75.9  157.9  121.5  150.8  158.7 

Gambia  75  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Georgia  73  0.0  0.0  0.0  0.0  0.0  12.7  50.6  13.9  98.7  76.7  57.6 

Germany  79  4.3  15.5  2.0  3.2  6.4  5.4  0.4  1.4  2.2  2.5  6.1 
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Greece  84  498.4  407.3  226.7  226.8  195.3  185.4  242.6  176.0  183.2  211.1  268.1 

Guadeloupe  87  0.0  140.5  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Guatemala  89  0.4  0.7  0.2  0.7  0.5  0.0  0.8  0.3  0.2  2.4  1.5 

Haiti  93  47.5  46.2  29.6  53.1  68.9  61.6  100.1  37.3  22.6  85.8  36.7 

Honduras  95  2.2  15.9  2.3  1.0  0.9  0.4  5.3  0.9  0.0  9.0  13.6 

Hungary  97  0.2  0.3  0.4  0.8  1.8  1.0  2.0  0.0  0.2  1.3  0.9 

India  100  25.8  7.0  78.6  80.8  26.9  29.4  60.8  19.8  9.4  38.9  2.0 

Indonesia  101  107.4  5.8  104.1  69.5  71.1  46.6  37.1  36.1  0.1  64.2  39.5 

Iran (Islamic Republic of)  102  3039.9  1964.9  2791.3  1288.0  999.7  536.0  485.9  329.8  406.0  483.8  444.4 

Iraq  103  5551.4  2495.0  2061.5  2819.8  1809.3  3187.4  6211.4  1086.7  1532.5  1540.0  779.2 

Israel  105  794.1  637.2  825.6  199.7  254.8  363.3  305.4  296.7  139.5  191.0  181.1 

Italy  106  130.8  140.8  93.1  172.7  150.9  95.3  110.5  104.0  64.6  136.4  117.8 

Japan  110  2.1  11.7  0.3  105.9  79.0  86.1  28.1  11.7  25.4  3.2  1.4 

Jordan  112  5.2  0.8  1.3  3.7  0.3  0.1  0.1  0.0  0.1  0.1  0.1 

Kazakhstan  108  0.0  0.0  0.0  0.0  0.0  2387.4  1387.0  1156.6  1022.2  855.1  761.5 

Kenya  114  0.9  0.6  0.9  0.6  1.1  1.1  2.7  1.6  1.9  1.6  1.3 

Kuwait  118  0.0  1775.3  197.4  6.5  29.0  21.9  7.1  6.0  4.7  15.3  6.8 

Kyrgyzstan  113  0.0  0.0  0.0  0.0  0.0  417.5  234.7  255.8  219.0  228.6  247.5 

Lao Peoples Democratic Republic  120  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Lebanon  121  330.1  313.0  236.5  342.3  168.5  112.7  166.3  184.2  103.7  158.7  176.9 

Lesotho  122  0.8  0.0  0.7  0.0  0.0  3.5  0.0  0.0  0.8  2.8  6.7 

Lithuania  126  0.0  0.0  0.0  0.0  0.0  0.9  0.0  0.4  0.0  0.1  0.0 

Malawi  130  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Mali  133  0.1  0.2  0.5  0.1  0.5  0.1  0.5  0.5  0.0  0.0  0.1 

Mauritania  136  225.1  264.6  195.9  772.3  472.2  268.2  90.9  123.5  48.5  198.2  104.6 

Mauritius  137  11.0  54.4  31.2  41.1  73.1  59.2  46.1  16.5  23.3  5.2  61.5 

Mexico  138  86.2  97.4  85.8  69.3  32.8  55.7  98.0  69.6  43.4  56.1  60.2 

Morocco  143  1043.8  697.5  1125.5  1025.7  742.5  7547.1  4114.9  9899.0  1494.4  3491.0  5317.2 

Mozambique  144  5.1  3.5  8.9  5.1  6.0  9.3  0.0  8.5  1.9  5.4  1.7 

Myanmar  28  130.4  63.2  46.9  29.0  36.5  38.2  35.5  19.2  14.6  8.2  6.1 

Namibia  147  40.1  29.8  27.3  71.4  26.2  72.5  33.4  26.4  19.5  30.7  50.2 

Nepal  149  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.2  0.0 

Netherlands  150  42.2  116.7  35.5  2.4  84.9  114.5  2.0  8.3  25.3  7.3  57.9 

New Zealand  156  0.6  0.2  0.0  3.4  5.1  2.5  1.2  3.0  6.2  11.7  11.1 

Nicaragua  157  0.0  0.2  0.2  2.7  3.2  0.0  1.9  0.1  0.0  42.0  17.4 

Niger  158  247.7  78.0  49.1  253.3  1034.7  660.0  443.9  1249.7  149.9  45.1  46.2 

Nigeria  159  8.1  5.4  19.2  6.2  4.2  2.4  5.0  3.4  1.4  1.6  1.3 

North Macedonia  154  0.0  0.0  0.0  0.0  0.0  49.7  126.0  147.5  193.5  232.9  213.6 

Pakistan  165  724.8  150.8  517.7  589.2  404.6  241.1  471.1  219.0  93.9  106.7  86.9 

Paraguay  169  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Peru  170  39.9  9.7  64.5  35.1  55.0  42.2  18.4  34.8  27.5  17.6  24.1 

Poland  173  86.4  50.3  8.8  10.0  25.3  44.9  1.7  7.7  1.4  10.1  9.4 

Portugal  174  1274.7  1730.6  1510.5  1323.6  1219.2  783.5  621.4  900.2  569.8  489.5  438.5 

Puerto Rico  177  50.2  657.0  133.2  559.6  400.2  441.6  548.2  0.0  53.4  586.4  302.6 

Qatar  179  0.0  0.0  0.0  0.0  498.5  510.4  339.6  534.8  324.7  536.3  542.2 

Republic of Korea  117  0.0  0.0  0.0  0.0  0.0  0.0  0.4  0.0  0.0  1.7  1.7 
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Republic of Moldova  146  0.0  0.0  0.0  0.0  0.0  99.3  141.8  65.8  64.2  216.3  77.7 

Romania  183  4.6  6.2  7.4  15.7  34.2  10.7  55.3  6.9  17.8  25.0  13.9 

Russian Federation  185  0.0  0.0  0.0  0.0  0.0  197.5  172.6  141.4  347.0  72.4  57.1 

Saudi Arabia  194  1452.9  2499.7  6027.4  3770.4  2551.0  1884.0  401.7  277.5  301.8  834.2  374.7 

Senegal  195  36.8  19.7  21.1  6.2  12.1  11.0  24.0  6.2  7.1  7.4  5.2 

Serbia and Montenegro  186  0.0  0.0  0.0  0.0  0.0  2.5  15.1  2.3  0.0  0.0  0.0 

Slovakia  199  0.0  0.0  0.0  0.0  0.0  62.4  102.7  13.7  5.9  16.5  7.0 

Slovenia  198  0.0  0.0  0.0  0.0  0.0  0.9  4.0  0.4  2.7  4.7  4.1 

Somalia  201  1180.2  649.9  937.5  673.0  962.3  1140.6  816.6  904.6  766.6  2036.3  2280.2 

South Africa  202  30.3  12.5  15.5  14.4  20.2  51.5  12.1  19.0  18.5  34.1  27.0 

Spain  203  516.1  516.6  448.4  369.5  434.1  475.6  350.2  405.1  349.9  325.3  337.5 

Sudan (former)  206  2630.0  1682.9  2632.6  2986.0  7009.5  2710.0  3972.4  2508.7  2099.2  0.0  0.0 

Switzerland  211  0.0  0.0  0.0  0.0  0.1  0.1  0.0  0.0  0.0  1.9  0.3 

Syrian Arab Republic  212  16536.8  5355.2  2987.8  2159.2  968.2  1091.3  1255.4  1247.6  1462.1  1615.2  1163.1 

Tajikistan  208  0.0  0.0  0.0  0.0  0.0  2740.3  2018.8  1254.9  407.7  518.7  410.6 

Thailand  216  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

Timor‐Leste  176  0.0  0.0  0.0  0.0  111.9  118.5  158.5  174.1  12.4  145.2  206.8 

Turkey  223  152.9  161.5  185.6  168.8  163.7  146.5  179.9  102.3  107.3  68.7  70.1 

Turkmenistan  213  0.0  0.0  0.0  0.0  0.0  1979.8  7258.1  7528.1  4317.6  5559.3  5955.2 

Ukraine  230  0.0  0.0  0.0  0.0  0.0  92.9  62.4  49.1  31.5  18.7  11.2 

United Republic of Tanzania  215  44.7  15.1  27.9  24.6  28.5  22.1  34.7  33.9  31.1  27.3  26.9 

United States of America  231  151.1  108.2  115.4  59.2  80.0  84.2  78.2  68.0  56.5  44.5  41.9 

Uruguay  234  5.7  5.5  8.4  15.3  8.5  26.6  99.6  17.5  0.1  14.7  5.5 

Uzbekistan  235  0.0  0.0  0.0  0.0  0.0  1668.6  2255.4  1237.2  702.3  536.2  623.1 

Venezuela (Bolivarian Republic of)  236  16.2  28.3  48.8  26.2  23.3  20.3  22.8  16.3  8.3  87.7  57.3 

Viet Nam  237  45.5  1.9  60.1  19.3  37.8  16.0  5.2  10.7  5.2  3.0  1.8 

Yemen  249  836.1  352.4  802.8  722.4  1010.7  868.1  924.3  2016.9  674.2  1936.5  1263.8 

Zambia  251  0.2  0.0  0.0  0.0  0.1  0.4  0.0  1.8  0.0  0.1  0.6 

Zimbabwe  181  10.5  0.8  5.2  1.3  5.1  22.7  0.0  23.4  10.3  42.0  21.4 
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