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1 Thesis overview

In a turbulent period where the complexity of the vehicle is increasing steeply day by day, it is
important to find smarter ways to validate a software that can satisfy the needs of the client,
and the new regulations imposed by the government in order to reduce the pollutant emissions.
In this thesis, it is possible to find a description of the techniques used in order to validate a
software. Thanks to the interest on development of a new kind of approach of test validation of
the company Westport Fuel System Italy, it was possible to discover the innovative way of the
automatic tests: Automation Desk is the main software (developed by dSpace) that is used in
order to test in an automatic way the software implemented in the control unit. The automatic
test covers the test points decided a priori from the user and, it will give the result of the test.
This SW covers the test points that are defined from the user and checks if the expectation
were satisfied. A preliminary introduction of the chapters is presented in the following para-
graph.
In the first chapter, a general discussion about the normative OBD-2 is done, it follows a punc-
tual description of the V-cycle: a graphical representation of the steps that must be covered in
order to validate a software. These two topics are very important in order to understand the
process and the rules which the company follows.
The second chapter enlightens the different types of approach that can be used in order to
validate a software. The types of tests that can be done are SiL, MiL, HiL and vehicle tests;
in the thesis it is possible to find a particular focus on HiL and the hardware used during the
activity.
The next chapter focuses its attention to the software functionality: a first description of the
functions (Misfire detection and Pre-Catalyst Oxygen sensor) from the physical point of view
is done, then, a description of the technical requirements is presented and an explanation of
the Simulink logic concludes the chapter.
The fourth chapter covers the innovative part of the thesis, in which the new technique about
the automatic test is introduced; the activity was done in parallel with Altran (Capgemini)
using the software “Automation Desk” (developed by dSpace).
The last chapter is used for results and conclusion of the thesis: in this case, a discussion of
the result and of the limits of this research is done.

1.1 Purpose of the thesis
The purpose of the thesis is to present a modern type of validation for a software that will be
implemented in the control unit for a vehicle. In this work, a particular focus on two software
components is done. The two software functionalities are compliant with OBD-2 legislation,
and they are useful in order to give as output the result of a continuous check on the compo-
nents of the engine. In particular, the first functionality analyzes the correct operating func-
tioning of the catalytic converter in order to take under control the pollutant emissions and
the state of the catalyst itself, instead, the second functionality can detect the absence of the
ignition inside the combustion chamber (commonly known as misfire event). The new type of
validation can be very useful in the future of the company in order to be more precise respect
to a manual test, and to reduce the time necessary to validate a software.
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2 Normative and organizational approach for software
validation

This chapter is dedicated to point out the normative OBD-2 and the organization style that is
used inside the company. In particular, a description of the V-cycle and the main steps that
must be covered in order to validate a software is done; it follows a discussion about the history
of the normative OBD and the main faults that are analyzed in order to alert the driver of a
problem. Nowadays, the V-cycle is the most used approach in the majority of the companies,
especially in the automotive sector and it can be very useful in order to have a schedule of the
works.

2.1 V-cycle: organization of the software development inside West-
port Fuel System Italy

The V-cycle, or V-model, is a graphical representation of a software development process. It is
constituted by several steps that must be covered in order to validate a software. The definition
of the steps can be different and depends on the ethic adopted by the company. A general
description of the steps can be seen in figure 1.

Figure 1: V-cycle scheme

The steps are:

• SW Specification Requirements: a document file represents what it is necessary in order
to satisfy a particular need from the technical point of view;

• SW Architectural Design: the tools that can be used in order to represent the logic can
be various, e.g. Excel, PowerPoint, or Simulink, but every tool have to describe what are
the critical points in order to accomplish the requirements, from the logic point of view;

• SW Unit Design and Implementation: the software funcionality is created using Simulink
as toll to create the logic, and to generate C-code, Embedded Coder is used (the code is
generated automatically);
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• SW Integration: the C-code is implemented in a microprocessor in order to be tested in
different ways as SIL, HIL and on vehicle;

• SW Unit Testing: this is the first step in which the logic is tested on SIL or MIL and
occasionally this is done in parallel with the step ‘SW Unit Design and Implementation’;

• SW Integration Testing: a more advanced step using a more realistic approach can be
done considering a test on HiL (a particular model that simulate the engine and its
functions is required);

• System functional testing: this is the last step and the unit is tested on a vehicle using
predefined calibrations that simulate the critical points.

During the activity in Westport, the focus was on the step nr. 6 ‘SW Integration Testing’,
in which a new approach for the test was introduced. In order to develop this new technique,
the training activity was done in parallel with the external company Altran. But, the focus
of the stage was centered even to the previous steps, in fact, my personal contribution was to
create two software functions basing on their requirements, and to test them using different
approaches, as it was already stated in the introduction.
The general activity started with the analysis of the software requirements: this step is very
important in order to understand the physical function of the single software functionality and
to start the design of its logic in Simulink’s environment. The same activity was done in a
team where it was possible to discuss about the possible solutions and approaches to satisfy
the requirements. The logic was built singularly and discuss with the same team in order to
find discrepancies or inconsistency with the software requirements.
The same activity continues with the integration of the software functionality inside the control
unit and with the tests in a more realistic environment respect to host PC.
The teamwork in all the stages was very important in order to communicate any problems to
the other entities and discuss about the requirements themselves.

2.2 OBD-2 Legislation
The OBD system informs about the pollutant emissions of the vehicle. The monitoring of the
vehicle and its emission is done using the lambda sensor: this is the main component that
takes under control the quantity of the emissions emitted by the vehicle. The sensor is inside
the catalyst and monitors the quantity of oxygen that is going out from the vehicle, so it is
possible to know how much pollutant emissions are produced during the function.
Initially, the OBD system was used in order to take under control the pollutant emissions,
because, in the past, it was thought that an increase of pollutant emission could be related to
a deterioration of some components that were responsible of the conversion of the elements.
The first generation of diagnosis was OBD-1 (it can be simply defined as OBD) and it was
implemented in 1988 just to monitor the pollutant emissions. The second generation (OBD-2)
was developed in order to take under control the life components of the engine too. In fact, the
new system does periodic or continuous checks of the operating conditions and of the single
components. In case of a malfunction, the system will turn on a LED in order to advice the
driver to stop the vehicle or to do maintenance.
The continuous checks are:

• unexpected loss of torque;

• erroneous quantity of injected fuel inside the combustion chamber;
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• CCM (Carbon Ceramic Material, e.g. piston, crankshaft)

Once the system is on, the OBD checks continuously these factors, especially the request of
fuel and the loss of torque.
The periodic checks are made in different components:

• EGR system;

• O2 sensors;

• heater O2 sensors;

• secondary air;

• catalytic converter.

Respect to the continuous checks, these can not have a continuous monitor, this is due to the
fact that they can operate only with particular conditions, so, for this reason, they are called
periodic checks.
In order to have the complete usage of the OBD-2, it is necessary to work on different condi-
tions. These conditions can be created during a dedicated driving cycle that includes highways
and urban roads. For what concern the lighting of the MIL (led or symbol that comes on only
when it is detected a fault), it comes on only when a particular operating condition is present,
and it comes off only if the condition is not more present (so the system considers the damage
to one component not so important to stop the vehicle) or there is maintenance of the vehicle
(the damage is considered important and a more precise check is needed).
The faults generated by malfunction of the engine or another component are named DTC (Di-
agnostic Trouble Codes). When this error is detected, the control unit stores this information
and the MIL comes on, and if the damage was just a temporary not critic condition, then, at
the successive crank of the engine, the MIL is off (or in the successive trips).
The two software functionalities that were designed and validated during the stage in West-
port, are very important from the OBD legislation point of view, in fact, the first software
(Pre-Catalyst Oxygen Sensor) takes under control the air/fuel ratio in function of the operat-
ing conditions, while the second software (Misfire) detects the absence of ignition or a partial
ignition inside the combustion chamber. The misfire detection is a permanent check because it
can be a cause of loss of torque, while the analysis of the air/fuel ratio is a periodic check, as it
was stated before.
The detection of a fault can be done just watching when the MIL comes on in the dashboard
of the driver, but, in order to identify what is the correct factor that produced that fault, it is
necessary to connect the host PC with a CAN-line and, for the case of my activity, use the BRC
Calibration Tool. This software allows to program the control unit, so to update the version of
the software in the ECU, and, at the same time, identifies the particular fault that enable the
lighting of the MIL.
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Figure 2: Example of a fault recorded in the control unit and detected by software

In figure 2, it is presented an example of the result given by the BRC Calibration Tool.
In the next chapter, a more specific discussion about the approaches of how to validate the
software is done.
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3 Validation types
This chapter is dedicated to the different approaches to validate a software, considering the
V-cycle, this part points out the right branch. The diffusion of the ICE in the automotive
sector pushes the different companies to develop their technologies and to find new ways of
validations to be more precise and faster. Nowadays, this aspect is very important in order to
respect the more stringent limits on pollutant emissions. In this period, the most diffused ap-
proach in order to validate a software is the V-cycle and, in particular, it takes in consideration
different techniques, such as: MiL (Model-In-The-Loop), SiL (Software-In-The-Loop) and HiL
(Hardware-In-The-Loop). After these steps, it is necessary to use the most realistic approach:
vehicle test.

Figure 3: Scheme for correlation with reality of the different approaches

As it is possible to see from figure 3, there is a direct proportionality between cost-time and
real world correlation, in fact, the most complex and long approach is the best (vehicle test)
but, for preliminary tests, it is better to check errors in a simple PC and occasionally use a
hardware that can simulate the real world (HiL).
The compromise is always based on the time and on the complexity of the system in order
to validate the software: generally, as it is possible to deduce from figure 3, the choice is al-
ways between a simple model with a low simulation time and a complex system with a long
simulation time. Obviously, this choice is dependent on the available hardware and on the per-
formance of the same. On the next sections a discussion about the different approaches that
were used in order to validate the software functionalities is done. In particular, an analysis on
the components and on the performances that they can have in order to validate the software
is done.

3.1 MiL, SiL and HiL

The first type of approach that can be used in order to validate a software is the MiL: this step
can be covered using a dedicated environment like Simulink. In this thesis, Simulink plays a
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major role for the design of the software, in fact, there is a dedicated section where it is used
in order to create the logic that is useful to accomplish the technical requirements of the SW
functionality.

Figure 4: Software-in-the-Loop scheme

As it is possible to see from figure 4, no hardware or ECU is used to validate the software
(except for the PC). The validation can be done in Simulink emulating the inputs that are use-
ful for the software functionality. At this level, there is not so much complexity in terms of
input and there is not the possibility to record a result in an external memory (Not Volatile
Memory). The model runs in processor-time, which is much faster than real-time.

Figure 5: Software-in-the-Loop Simulink blocks

As it is possible to see from figure 5, the tests that can be done in MiL are very simple: the
inputs are simulated as signals (blue block) and they are analyzed in the software (white block)
in order to produce an output (orange block). This is a limited analysis of the logic, because the
input that are produced are not the same of a real driving cycle, and it is not possible to store
an information inside the ECU or in another not-volatile memory.
The next step is to use the Software-In-The-Loop: there are no differences for what concern
the types of components, but now the model is compiled into C-code and run with a fixed time-
step. In this step, it is necessary to see if there are differences between the results from the
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SiL and the results from MiL, and, in case of discrepancies, it is necessary to modify the model
in Simulink to correct them. So for this step, the same figure utilized for MiL can be used to
describe the architecture of SiL.

Figure 6: Hardware-in-the-Loop scheme

The next important step is to check with a more complex system if there are any problems
with the logic of the software functionality. From figure 6, it is possible to see the differences
between the components exploited in order to validate the software by using SiL or MiL, and
the components used with the HiL: the software is installed inside the ECU, and the external
condition are simulated using a load plates. The core of the system is the real-time controller,
because it is able to guarantee a real-time simulation. The computing power is very important,
because, if the system were to check only some fault of the ECU, a high computing power is
not necessary, while if a simulation of engine and vehicle is requested, then, it is necessary to
increase the computing power of the HiL.
The load plates is a dedicated section where it is possible to install real hardware to provide
a more realistic functionality of the simulator. The component that are installed inside the
hardware are (not all of the component installed inside the hardware are present in this list):

• throttle valves;

• solenoid valves;

• spark plugs;

• accelerator pedal;

• dashboard;

• changeover switch.

The dimension and the integration in the system of the load plates are directly proportional
to its complexity. However, the possibilities of the system to simulate other phenomenons are
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high, so the composition of the load plates depends by the choices of the company and its bud-
get.
This is a Master & Slave system, so a periphery is present and it can control the bus of the en-
tire system: in the time when a command is sent to a particular unit, other units, or the same
unit, can send a feedback about the output. In this particular case, the host PC programs the
control unit with the wanted software (the software can be upgraded any time it is considered
necessary: for example, if there is a particular need to change the software because of a little
upgrade, then, a new release of the software will be produced). The Scalexio (name of the hard-
ware unit that simulate the real world conditions) can simulate engine, vehicle , environment
and sends signals to ECU and to the loads, and, at the same time, it can read input given by
the ECU and by the loads. So a communication between the units must be present. The sys-
tem must be calibrated, so an information file is used to send data to the system. In order to
accomplish this task, two dedicated software (BRC Calibration Tool and INCA) are used: the
first is used to program the ECU, this is managed by the company and it provides information
about the faults given by the software (e.g. injector malfunction, high voltage); INCA is used
to manage the calibration (a connection with the control unit is necessary) and to take under
control the signals.

Figure 7: Model variation throughout development

In figure 7, it is possible to see the differences in terms of run time and hardware type
between the different levels of validation through the development cycle. The progressive
alteration of the model to meet the changing requirements at each stage of development is
a core concern in system modeling since it impacts developments overhead, re-usability and
model fidelity. To be more clear, HiL and vehicle test can be more precise respect to MiL and
SiL because of the fact that the input signal can be considered valid or even real. Then, the
other important difference between these is the run-time: now, a real-time is used.
From figure 7, it is also possible to confirm what it was stated before for what concern the
physical components of MiL and SiL, in fact, the only difference between them is how they
are simulated: the run-time for MiL is the processor time, while for SiL is fixed. For what
concern the HiL and the Deployment (vehicle test), it is necessary to use the real time as run-
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time and the inputs must be provided from a physical source. The only difference between the
two systems of test is just the hardware and how the input signals can be managed: in the
vehicle,e.g. it is not possible to control perfectly the speed or the load as it is desired.

3.2 Vehicle tests
The vehicle test is the last step to be covered in order to validate a software, but, in terms
of cost and time, is the worst because it has the highest level of correlation with reality; this
statement was explained correctly in a more efficient way in the introduction of the third chap-
ter of the thesis, in fact, the vehicle test stays on the farthest part of the scheme in figure 3.
Some tests were conducted on a vehicle, but they are not reported in the thesis because the
main topic is the automation test. In order to accomplish the test requirements, a real vehicle
Apè was used as testing unit. In the vehicle an OBD-2 unit was equipped in order to take under
control the correct functionality of the catalytic converter and of the emissions produced by the
engine. The operating conditions of the test depend by the software function that is wanted to
test: for example, the Pre-Catalyst monitor could be checked in idle or during acceleration con-
dition, instead, the Misfire monitor must be checked only during acceleration condition. The
connection with the control unit is the same, so in terms of components and their connection
there are not differences with the HiL, the only difference is that the load plates is substituted
with the vehicle itself and the model to simulate the vehicle with the engine is not more nec-
essary because there is not more the need to do a simulation but it is just a record of what is
happening in the real situation.

Figure 8: Vehicle test scheme

In figure 8, it is possible to see a representation of the scheme for the vehicle test: the
inputs are produced at vehicle level. The misfire is a particular condition that could happen
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inside the engine, but this depends by specific operating conditions. In order to avoid this
particular problem and if there is the necessity to create tests that imply a misfire event, there
is the possibility to create it manually from the vehicle, exploiting a particular function that
can create a systematic misfire with a loss of torque and engine speed. In opposition, the
oxygen monitor strategy can be tested easily because of the fact it has to check only the correct
functioning of the catalyst. This means that the same manual test that were used on HiL, can
be used for the vehicle test to check any software requirements.
For the thesis activity, the vehicle tests were not essential, but they could add more precision
in terms of validation for the two software functionalities. The next chapter introduce the
innovative part about the automatic tests describing the software functionalities that were
implemented in the control unit from the physical point of view and then from the logical point
of view.
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4 Software functions
In order to validate a software, it is not possible to consider an ECU based only on a single
software functionality, but it is necessary to integrate the so-called "Big Model": it is the merge
of multiple functionality in which some inputs are produced from the BSWL and they are used
in order to produce a result (for example, during the training activity, it was necessary to pro-
duce a command that enables the opening of the solenoid valve for the injection of alternative
fuel). The input signals can be produced with different velocities and the velocity depends on
the requirements (generally the speed in order to produce the result is a requirement stated
on the document). For example, in order to detect the presence of a misfire in a driving cycle,
the analysis must be done every 180° (cylinder event), because it is necessary to focus on the
time passed during combustion phase and during intake phase. For the other software func-
tionalities that were analyzed during the activity, a run-time of 10 ms or 100 ms was enough
because the analysis of the inputs were temporal and not dependent on the cylinder event.
On the next subsections, a discussion about the single software functionalities will be done.

4.1 Pre Cat Oxygen Sensor
In order to satisfy the more stringent regulations on the pollutant emissions, during the years,
a new way of conversion and control of the exhaust gases was developed.
The oxygen sensors are positioned before and after the catalyst, so it is possible to control the
quantity of exhaust gases that are converted into non-harmful emissions. A communication
between the different components such as injector, ECU and spark plug is always needed, so,
as it is possible to check from figure 9, all the operating components are connected to create a
closed-loop control, in order to check the correct quantity of fuel that must be injected to the
combustion chamber every cycle.

Figure 9: Closed loop control system for air/fuel ratio

In figure 9, it is possible to see the position of the two oxygen sensors; the first software
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functionality is made in function of the preliminary oxygen sensor.
The closer the air/fuel ratio of the exhaust gases are to stoichiometry, the higher will be the
catalyst’s efficiency at converting emissions to water, nitrogen and carbon dioxide. The figure
9 shows the most common way of how it is possible to communicate and adjust the mixture of
air and fuel that is going inside the combustion chamber. The first oxygen sensor is used in
parallel with the air mass sensor in order to communicate to the ECU the adjustment of the
mixture, while the second sensor provides the result of the catalytic converter, so there is a
continuous broadcast communication within the units. Generally, the changes on the mixture
are very small, so it is possible to be precise on mixture’s quality. A practical example of the
calculus made by the hardware Scalexio in order to correct quantity of fuel injected in the com-
bustion chamber can be seen in figure 10.

Figure 10: Scheme of closed loop control system for air/fuel ratio

As first, a quantity of fuel is evaluated by the ECU, this value corresponds to an opening
time of the valve evaluated by the ECU (this value must coincide with the opening time evalu-
ated from the hardware Scalexio). A determined value of air, dependent by the angular speed
of the engine and the load, is used in order to evaluate λ as in equation (1).

λ= m f uel /mair

(m f uel /mair)st
(1)

At this value of λ, corresponds a voltage from the HEGO sensor that provides a correction to
the value of the fuel injected to the combustion chamber evaluated by the ECU. The correction
factor is known as KO2, and it is used in order to adjust the level of fuel in the combustion
chamber: if KO2 is lower than 1, the fuel mass should be decreased because of a too rich
mixture, instead, if the KO2 is higher than 1, the fuel mass generated by the ECU should be
increased because of a too lean mixture.

4.1.1 Physical meaning

The oxygen sensor is a product of the evolution from the Nerst principle. The Nerst principle
describes the thermochemical behaviour of a galvanic element. The two main types of oxygen
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sensors are the universal exhaust gas oxygen (UEGO) sensors and the switching-type (EGO)
sensors. The first can measure the ratio between the air and the fuel that is injected inside the
combustion chamber, while the second can indicate to the ECU only if the mixture of air and
fuel is lean or rich (so only if the ratio is higher or lower than the stoichiometric value). The
problem associated with this type of sensor is based on the fact that they measure the air/fuel
ratio only at the sensor’s surface, instead they should measure the actual ratio of the exhaust
gases.
Nowadays, there are three types of EGO sensors, and the distinction is based on material,
principle of operation or configuration, and are referred to as:

• potentiometric;

• amperometric;

• resistive semiconductor.

The potentiometric EGO is widely used and is based on the Nerst cell principle, where the out-
put varies logarithmically with the air/fuel ratio. Because of the fact that there is an abrupt
response of the sensor, this is referred to as the “switch-type” EGO sensor.
The amperometric sensor, commonly referred to as wide band or broad band lambda sensor, is
based on the limiting current principle, where an additional cell is used for oxygen pumping.
The pumping current is a function of the oxygen concentration, like the potentiometric sensor.
The advantage of this type of sensor is the wide range of measurement: in fact, it is possible to
detect an air/fuel ratio range 0.7-4.
The resistive sensor is not so much used in the automotive field because of poor durability.
The basic principle is a change in the semiconductor material conductivity that reacts with the
change in the oxygen concentration, then, there is a direct correlation with voltage output of
the signal.
The oxygen sensor is made up of a solid electrolyte that current is carried through by oxygen
ions, a ceramic electrolyte separates two platinum electrodes and the difference in partial pres-
sure between the two electrodes causes the oxygen ions to carry current between the chambers.
So there is a direct relation between the difference in pressure and the output current (actu-
ally, the real output of this component is a voltage, so there is an associated resistance, and the
product between resistance and current gives as result a voltage). For example, a rich mixture
such that λ < 1, produces a higher output voltage due to the difference in oxygen concentra-
tions between the two electrodes of the Nerst cell. Conversely, a value of lambda that equates
to a relatively high oxygen concentration (lean mixture), creates a lower output voltage due
to the smaller difference in oxygen concentration among the electrodes. The sensor is very
sensible to the oxygen concentration and, as it is possible to see from the figure 11, there is a
thin threshold that separates lean voltage output from rich voltage output.
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Figure 11: Typical output voltage of a lambda sensor

The output of an oxygen sensor is a voltage and the efficiency of the catalyst can be evalu-
ated based on the result of the two oxygen sensors (pre and post): the correction of the lambda
sensor made upstream of the duct are very frequent, while the correction made by a normal
lambda sensor in the downstream of the duct are less frequent than the pre-catalyst sensor.
The efficiency of an oxygen sensor can be assumed as the comparison between the frequency
of corrections made the downstream catalyst and the upstream catalyst: if the two results are
similar, the efficiency can be considered low, on the contrary, if the two results are very differ-
ent with each other, the efficiency can reach high values.

Figure 12: Catalyst efficiency monitored by oxygen sensors

In figure 12 it is possible to see a comparison between a good and a bad catalyst where the
response of the lambda sensors can be analyzed: the first is not good because the post-catalyst’s
output is bouncing between a rich and a lean mixture.
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4.1.2 Requirements for the software

This software functionality aims to detect a performance deterioration of the Pre-Catalyst oxy-
gen sensor, in order to fulfill the OBD-2 compliances. It consists in 3 oxygen sensor signal
checks:

• frequency check: the response time of an aged sensor can be deteriorated and, as conse-
quence, the frequency at which we have a rising and a falling edge is decreasing; during
a monitoring window, if the value of the frequency is under a threshold for a certain
amount of time, the check will result failed;

• drift check: the response time of a sensor in rich can be different respect to the time spent
in lean, and the operating condition influences these time; however, in stoichiometric con-
ditions, it is possible to see an asymmetric behaviour; during the monitor time, the ratio
between the time spent in lean and the time spent in rich is calculated and compared to
a minimum and a maximum threshold, and, if the time of failure is higher than a certain
percentage threshold, the check will result failed;

• offset check: the signal of an aged sensor can have a different value for the span, so
in this check the difference between the maximum and minimum value of the voltage
is compared to a minimum threshold, and if this is lower than it, the check will result
failed.

For this software functionality, it is implemented the so-called machine state logic, in which,
depending on the operating conditions, the monitor will have a different value. The different
states are: “UNABLE_TO_PERFORM”, “PENDING”, “ACTIVE” and “COMPLETE”. The first
state is when the monitor is temporarily disabled because the enabling conditions are not
satisfied, then, when they are satisfied, the state will pass to “PENDING”, in which the monitor
waits for the activation conditions (the operating conditions of the engine characterize the
activation of the monitor). The last state is accomplished only when a certain time has passed.
The requests in order to enable the monitor are:

• an enable command must be present;

• if particular faults are detected (e.g. injector faults, too rich system, ignition fault, O2
sensor malfunction . . . ), monitor will be disabled for the current trip;

• the coolant temperature at crank must be limited by a minimum and a maximum thresh-
old;

• if the barometric pressure is lower than a calibration, the monitor must be disabled for
the current trip;

• if the level of the fuel in the storage is lower than a calibration, then the monitor is
disabled for the current trip;

• the monitor will start only if is completed a warm-up cycle; it is defined considering the
temperature of the cooling fluid:

– ECT at crank must be lower than a threshold;

– the current ECT must be greater than a minimum;

– the ECT must be risen by a certain calibrated value;
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• a certain time from the crank has to be passed in order to enable the monitor.

Once the enabling condition are satisfied, in order to activate the monitor, it is necessary to
satisfied the so-called activation condition: steady state condition: the engine speed (expressed
in rpm) and the Manifold Absolute Pressure (MAP, expressed in mbar) are controlled and it is
necessary to compare the raw signal with the filtered signal (2):

|x(t)− x(t) f ilt| ≤ δ (2)

the monitor shall be enabled only in a region where the engine speed and the load has the
lowest risk to produce a failure: this is expressed limiting the two input by a minimum and
a maximum threshold; the monitor can be activated only if the lambda closed loop control is
active and the engine is producing a positive torque or it is idle. Once the monitor is active,
as it was stated before, a certain minimum time has to pass in order to go to “COMPLETE”.
The other state that is necessary to consider, is the result of the monitor: until the state of the
monitor is “COMPLETE”, the result will be “DATA_NOT_READY”, and, in base of the result,
the state will be “FAIL” or “PASS”.

4.1.3 Simulink logic

In figure 13 it is possible to see an example of implementation of machine state logic in the
software dedicated to check the operating functionality of the oxygen sensor. The logic is based
on the Simulink block "Switch-case", that is used to define the status of the monitor and the
status of its result. The monitor will pass through a different state every time some conditions
are satisfied, for example, if the initial state of the monitor is "UNABLE_TO_PERFORM" and
the enabling conditions are satisfied, then the state of the monitor will become "PENDING".
So it is possible to recognize an evolution of the monitor through these states.

Figure 13: Example of a machine state for the result of O2 monitor

In figure 14 and figure 15, enabling conditions and activation conditions Simulink blocks
are presented: they are very similar for what concerns the logic of implementation, in fact,
each of them is based on an "AND" block. The common block is a boolean block, so the output
can be only 1 or 0, if the conditions are satisfied, the output will be positive, otherwise it will
be negative (the description of the conditions to be accomplished is presented in chapter 4.1.2).
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Figure 14: Enabling condition for O2 monitor
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Figure 15: Activation condition for O2 monitor
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In the figures 16, 17 and 18, it is possible to recognize the representation of the checks used
in order to control the correct functioning of the lambda sensor.

Figure 16: Software-in-the-Loop Simulink blocks for frequency check
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Figure 17: Software-in-the-Loop Simulink blocks for drift check
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Figure 18: Software-in-the-Loop Simulink blocks for offset check
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As it was discussed in the second chapter for the software requirement analysis, all the
checks are analyzed during the monitoring window, and if one of these three checks is "FAIL",
it means that there was a fault in that window. The system is realised in order to choose even
what of the checks can be enabled, so, just changing some parameters in the calibration file,
it is possible to select what type of controls must be done in that window. This conclude the
first part of the fourth chapter; in the next part, a similar discussion about the second software
functionality implemented inside the "big model" is present.
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4.2 Misfire detection
For a typical engine cycle, it is possible to distinguish two important phases(referencing to fig-
ure 19: intake and combustion. During the intake phase, a preparation for the combustion is
present, so, inside the combustion chamber, particular operating conditions that favours the
combustion are generated. The thesis is based on the analysis of a Spark Ignition engine, so
the ignition is created through a spark plug that ignites the mixture and creates the so-called
flash of a combustion.
When the ignition is ready, the fuel is already vaporized due to the high level of pressure
that is generated in the combustion chamber and mixed with the air already inside and mea-
sured in function of the operating condition. From the spark, it is possible to recognize the
core’s flame, where the flame is begun; then, the flame expands gradually creating the so-
called “flame front”, that is an irregular surface that separates the combusted mixture from
the uncombusted mixture. This process ends with the total consumption of the mixture in the
combustion chamber, without any waste or uncombusted mixture, so the development of en-
ergy of the mixture that is burning is progressive and regular.
Above, a description of a normal combustion is present, but, it is possible that the combustion
can be abnormal (not perfect combustion) because there are so many factors that influence it:
for example, turbulence, temperature, pressure, air/fuel ratio, presence of previous exhaust
gases and more other. So, there are multiple factors that can create an abnormal combustion.
One of the most dangerous and common problems that can be present during an engine cycle,
is the misfire. On the next chapters, a discussion about the detection of this phenomenon is
present.

Figure 19: Phases of a ICE with 4 strokes

4.2.1 Physical meaning

The misfire is the loss of combustion in a cylinder of a spark ignition engine, this can be due to
lack of spark, fault on the mixture level, poor decompression or other faults linked to injection
or spark plug. This is an unwanted phenomenon because it produces a null or lower torque,
and it is dangerous for the life of the catalyst. The mixture, in presence of a misfire, can reach
the catalyst and the oxidation of the mixture could produce an increase of the temperature
with serious problems on catalyst’s life material. Another consequence related to the misfire,
is the increase of pollutant emissions because the performances of the catalyst are worse than
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the original situation, so there is a poor conversion efficiency of the catalyst. The abnormal
increase of pollutant emissions is the reason why it is very important to detect the presence of
misfire during the engine cycle.
Generally, it is possible to recognize three modalities of lack of torque due to faults related to
injection or ignition:

• slow-burn cycles: the loss of torque is not so much high, but it can not be negligible, and
it can be accounted with a range of 15-55%;

• partial-burn cycles: the loss of torque is higher, and generally is higher than 55% of the
medium torque;

• misfiring cycles: the torque is negative or zero.

Figure 20: Photographic sets of the combustion’s evolution

In figure 20, it is possible to see the evolution of an engine cycle when the misfire is not present
and when it is present. The first set of figures shows that the light is spread among the cylinder,
so the combustion has not problem, while the other set, shows that the light is not spreading
after the spark ignition, so a misfire is present and the mixture can not be burned in the right
way.
The OBD-2 systems must detect a misfire in two main cases:

• misfire damages the catalyst: for any operating conditions, it is necessary to detect the
percentage of misfire over 200 cycles that increases the temperature and could damage
the catalytic converter;

• misfire increases the pollutant emissions by 50% more than the regulations: it is neces-
sary to detect the percentage of misfire over 1000 cycles that causes an increase of the
pollutant emission by 1.5 times the ordinary condition.
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If one of these conditions are satisfied, the MIL turns on. The same system, in case of a single
misfire, has to be able to detect the cylinder where the misfire happens, while, in a multiple
case of misfire, it is not important to detect the cylinders. Following the OBD-2 regulations,
the monitor must be active from the second cycle, in order to avoid the crank condition, and
during every situation of positive torque (no cut-off, idle or any other conditions).
In order to detect the misfire, there are different solutions: nowadays, the most diffused tech-
nique is based on the analysis of the signal generated by the tone wheel. The tone wheel is a
toothed wheel made by 24-2 or 60-2 teeth, that detects the velocity of the engine: if the velocity
is reduced in an unexpected way, it is possible that a misfire was present, due to the fact that it
generates a decrease of the useful torque. This system does not require a particular hardware
and it is well suited for a low cylinders engine, while, the engine with a high number of cylin-
ders, especially with low velocity and high load, could have more difficulties for what concern
the detection of the engine speed variation.
Another similar way to detect the presence of misfire, is based on an acoustic analysis where
the vibrations generated during the functioning can be analyzed in order to find a misfire in
the driving cycle.
Another different way to detect a misfire is based on the ionization current on the electrodes
of the spark plug: monitoring this current, it is possible to detect the presence of the misfire.
This system has the advantage based on the fact it is not related to the tone wheel’s signal, but
additional hardware is required.

4.2.2 Requirements for the software

This functionality aims to detect the misfire events and to evaluate their impact on the emis-
sions, in order to satisfy the OBD-2 compliances. The main input used by the monitor is the
crankshaft speed sensor signal. In fact, it is used by the ECU in order to detect the flywheel’s
teeth. As it was introduced before, the engine produces positive work only during the expan-
sion stroke, while on the other 3 strokes, the engine produces negative work. From the physical
point of view, the engine speed is increased only during the expansion stroke, while during the
other 3 strokes, the engine speed will decrease, so, this can be simplified stating that there are
two different types of revolution: the fast revolution and the slow revolution. The important
condition in which the monitor can be active is the fact that the engine must be in “torque
condition”, so the engine should not be in idle, or in cut off or in another condition, otherwise,
the misfire can be associated with another factor.
The core of the analysis is the measurement of the time passed between two calibrated teeth
in the expansion stroke and in the combustion stroke. The window in which the time can be
evaluated is the same, so it is necessary to evaluate the ratio between these two times, and if
this is under a certain threshold then, there is the presence of a misfire. The evaluation of the
monitor can be done only in specific conditions in order to obtain reliable results.
In this case, it is necessary to consider a cylinder-event ruster, due to the fact that the infor-
mations are gathered every revolution of the piston.
(inserire l’analisi della valutazione dei tempi in base ai denti) For this software functional-
ity, a similar approach to the Pre-Catalyst Oxygen sensor is done: the machine state logic
is used, so, it is possible to identify four states that describe the state of the monitor (“UN-
ABLE_TO_PERFORM”, “PENDING”, “ACTIVE” and “COMPLETE”, as the previous software
functionality). Even in this case, some conditions are necessary to pass from a state to another
one.
The enabling conditions in order to pass from the state “UNABLE_TO_PERFORM” (monitor
temporarily disabled) to “PENDING” (monitor waiting for the activation conditions) are:
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• an enable command shall be present;

• if particular faults are detected (e.g. injector faults, too rich system, ignition fault, O2
sensor malfunction . . . ), monitor will be disabled for the current trip;

• the coolant temperature at crank must be limited by a minimum and a maximum thresh-
old;

• if the barometric pressure is lower than a calibration, the monitor must be disabled for
the current trip;

• if the level of the fuel in the storage is lower than a calibration, then the monitor is
disabled for the current trip;

• the monitor will start only if is completed a warm-up cycle; it is defined considering the
temperature of the cooling fluid:

– ECT at crank must be lower than a threshold;

– the current ECT must be greater than a minimum;

– the ECT must be risen by a certain calibrated value.

• a flag in order to overpass all the other enabling conditions shall be present (for debug
use).

The activation conditions in order to activate the monitor are:

• steady state condition: the engine speed (expressed in rpm) and the Manifold Absolute
Pressure (MAP, expressed in mbar) are controlled and it is necessary to compare the raw
signal with the filtered signal (1);

• a certain time from the crank has to be passed in order to activate the monitor;

• the engine should work only in during the torque condition;

• a specific range of the temperature of the coolant fluid must be present in order to eval-
uate the monitor;

• a specific low risk map shall be present in order to detect the correct fault: two different
arrays discriminate the minimum and maximum load (MAP), in function of the engine
speed, and it is also necessary to define a minimum value and a maximum value of the
engine speed to activate the monitor.

From the moment when the monitor is active, a cycle counter is increased, when this counter
reaches a minimum calibrated threshold, the state of the monitor will become “COMPLETE”.
During the monitoring window, a ratio between the time measured during the expansion stroke
and the combustion stroke of the same engine cycle is done. If this ratio is below a threshold,
then the combustion does not occured for the cycle (3).

TimeTeethintake

TimeTeethcombustion
≤ Ratiothr(MAP; speed) (3)

During the monitoring window, every time a misfire occurs, a counter increases; if the counter
exceeds a maximum threshold, then a DTC is activated.
For every driving cycle, it is necessary to post two outputs: the first is the counter of engine
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cycles where a misfire is occured in the actual driving cycle, while the second is the Exponential
Weighted Moving Average for the previous driving cycles (4):

EWMA = 0,1∗ (MisCountactual)+0,9∗ (MisCountprev,avg) (4)

4.2.3 Simulink logic

The same machine state logic that was implemented for the lambda sensor, can be found in
this software functionality. In order to be more coherent, the adopted nomenclature for the
first functionality, is used for the second one.
In figure 21 and figure 22 can be found the representation of the enabling condition and the
activation condition for the misfire monitor. As before for the oxygen sensor, the two groups of
conditions converge in one "AND" block, so the result of the operating conditions for the ICE
can have as output 0 or 1.
For what concern the check and the final result of the test, it is necessary just to analyze the ra-
tio between the so called "fast cycle" and the "slow cycle": if this ratio is below a predetermined
threshold, the final result of the test will be "FAIL".
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Figure 21: Simulink blocks for enabling conditions for Misfire monitor

31



Figure 22: Simulink blocks for activation conditions for Misfire monitor

In figure 23, it is possible to recognize the Simulink blocks used in order to check if a misfire,
during the driving cycle was present or not: the logic implies a control based on a percentage
of fails during a predetermined number of engine cycles, if the percentage of fails is higher
respect to a predetermined value, then the result coming from the monitor will be "FAIL".
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Figure 23: Simulink blocks for Misfire check

In the next chapter, a discussion about the types of automatic that could be done in order
to validate a software is made. It will introduce the results and the discussion about the test
done during the training activity in Westport.
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5 Automatic tests
This chapter is dedicated to the description of the innovative part of the thesis: automatic test.
The activity was done in parallel with Capgemini, where they prepared a particular sequence
of tests as an example. The first type of test is the so-called static test, in which a particular
stated sequence of actions is made in order to acquire inputs and compare outputs with the
planned one. The second type of test is based on the acquisition of a particular signal (signal
based test or dynamic test), and then, the output signal is compared to the planned one. The
automatic tests are used in order to be more precise than the manual test, in fact, it is possible
to build a particular sequence of inputs in a precise way, in order to obtain the wanted result.
The software used for this purpose is Automation Desk: it can use the information from Con-
trol Desk (software developed by the same supplier) and information from the calibration file
(INCA). The output of the test can be a report that can be customized in order to be more clean
and more organized. In order to be customized, python language is used.
The automatic tests can be very useful because they can be re-used for any test, they can save
time and they can be very precise in terms of scheduling.

5.1 Sequence based test
In this chapter, a first description of the automatic tests executed with a sequence of actions is
done. The test made by Capgemini was a sequence of action that aims to do the so-called static
test. A static test is a sequence of operating points that the engine must cover in a rigid way.

Figure 24: General structure of a static automatic test

In figure 24, it is possible to see the sequence from the graphical point of view. So, the
sequence of points for every variable is stated at priori, then, it is used inside the sequence to
cover the path. The sequence can be organized in different macro areas: the first can be con-
sidered as the initialization, in which all the variables are initialized to a stated value; then,
the next step is defined as “steps and evaluation”, where the operating points that were stated
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before, are covered by the engine, and the results are evaluated comparing them with the ex-
pected results; then a cleanup is used in order to restore the system at its original status. For
this case, a simple sequence of points is used, but the internal sequence of operations can be
changed in function of the needs of the user. In order to validate the O2 monitor, a dedicated
sequence is used.

Figure 25: General structure of an ad-hoc automatic test

The aim was to validate the highest number of software requirements that are possible
to validate. For this particular case, just one test is presented in order to describe the steps
that are covered. As usual, an initialization step is covered in order to define the start of the
sequence, then a sequence of actions and evaluation is done, and a cleanup concludes the test.
In particular, in the evaluation, referring to chapter 4.2.2 where the software requirements are
defined, every state of the monitor is evaluated, so it is necessary to create the operating con-
ditions in order to accomplish the enabling conditions and the activation conditions. The next
step is to control the deactivation of the control unit and the state of the DTC (this controls the
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activation of the MIL). The test is created in order to have a fail or a pass when it is needed, so
it is possible to control the state of the DTC in any condition.

5.2 Signal based test
The aim of the signal based test is common with the sequence based test: to validate a soft-
ware. The inputs provided to the system are prevently prepared using an acquisition from
INCA software (.mf4 file). This type of approach can be better for what concerns the reality of
the inputs because there is real-time management of the signals with a precision of millisec-
onds, while the other kind of tests have not the certainty of the timing, because of the host
communication. The signal based test has some disadvantages in terms of interaction with
the system: it is possible just to change the variable around the control unit, so the internal
variable of the ECU can not be changed.
This type of the test is based on a sequence where the test can be prepared (pre-actions where
the inputs are set to the initial value) and a part where the test begins and the outputs are
controlled. The types of signals are: capture, stimulate and trigger. The trigger is a signal
that defines the start and the end of the test. The “stimulate signals” are just signals that
are associated with the input from ControlDesk. The “capture signals” are the signals that
are controlled and compared with a reference value. So based on these, it is possible to decide
which are the inputs and which are the outputs that must be checked.

Figure 26: Inputs for the dynamic test

36



Figure 27: Result for the dynamic test in HiL

In figure 26, it is possible to see an example of the inputs provided to the ECU: the inputs
must be provided from an acquisition taken from INCA (this type of approach can be useful
in order to reproduce a complex manoeuvre made on vehicle, like a driving cycle). In this
case, the test was conducted in order to check the correct analysis of the injection phase and
of the quantity of fuel injected inside the combustion chamber (for simplicity, just the injected
quantity of fuel in ms was checked and presented inside the report).
As it was introduced previously, the report of of the result can be visible in figure 27, in this
case, a continuous check on the produced result is present, so it is possible to customize the
tolerance on the result in order to provide reliable result on it. The example reported in figure
27 is just an example of a single test, so this can not be considered as the official conducted
test for the quantity of fuel injected.
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6 Activity results
This chapter is dedicated to the discussion of the conclusion. Manual test results and automatic
test results will be compared in order to find discrepancies and to discuss the advantages and
disadvantages of the two approaches. Then, a discussion of the limits of these approaches is
presented.

6.1 Results and discussion
In this sub-chapter, a general description of the tests conducted is done. First, it is possible to
see from figure 28 and figure 29 an example of the results and the inputs for a static test: the
test was simplified in order to get more visible results, in fact, just ten points were presented
in the report. The test was conducted considering comparing expected results and calculated
outputs, so for each point a check was done. The first conducted test (treated as example)
was done in order to check the right quantity of injected fuel inside the combustion chamber
and the injection phase. As it is possible to check, there are some points that are not correct,
this means that the software could have problems (the fails were wanted in order to prove the
consistency of the application).

Figure 28: Example of results for the static test

Figure 29: Typical results of a static test

The advantage to use this type of test is the possibility to select each operating point with
a particular precision. The checks are made considering a particular tolerance: this data can
vary based on the type of output/input that must be wanted to check. So, if the tolerance is too
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strict, there is the possibility that some checks could failed, so further considerations on the
test must be taken (opposite result will arise if the system takes in consideration a too wide
tolerance). The results obtained from the report can not be considered as they are, but other
considerations because some fluctuations of the results are possible, so the test is not 100%
reliable if an user check is not performed.
In figure 30, it is possible to see a test made on SiL: inputs can be imposed as the user wants,
even in an illogical way, in fact, this type of test must be applied only for a first control of the
logic of the software.

Figure 30: Points of operation for the test in SiL

The status of the lambda sensor monitor can be used as reference in order to take under
control the functionality of the system: as it is possible to be assumed, as the load value de-
creases below a certain threshold, the status of the logic will degrade to "PENDING" (see the
chapter 4.1.2 in order to find the software requirement that respects this function). Then, as
the system returns to its correct operating condition, the test ends. The results of this test
can be seen in figure 31 and figure 32: the test in fact, is passed, so it means that the lambda
sensor is new and the functioning is correct. It is necessary to specify that the voltage of the
lambda sensor is managed by the user, and, in this case, in order to pass the frequency check,
the output voltage has a value of frequency that is reasonable with the thresholds during the
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check.

Figure 31: Status of test in SiL for the Oxygen Sensor Monitor

Figure 32: Result of test in SiL for the Oxygen Sensor Monitor

In figure 33, the result coming from an ad-hoc test is present: the test is conducted following
the sequence presented in figure 25. The test was made in order to create 3 failed checks and
1 passed check in order to test the functionality of the logic made for the DTC state. In order
to create a correct test, only one factor was changed in order to create a "PASS" or a "FAIL".
The factor that change the result of the test is the value of output voltage from the lambda
sensor, in fact, this could be changed with an appropriate action from AutomationDesk using
the following blocks:

• LambdaFixed: the characteristic of the output voltage is flat, so the value of the fre-
quency is equal to zero and this is the cause of the fail of the test (this condition is valid
until the characteristic is changed by a manual action from the interface or from another
block in the same environment);
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• LambdaStd: the characteristic of the output voltage is restored and it follows the stan-
dard value, so the value of frequency has a reasonable value and the test is passed.

The result of the test are presented in the report in figure 33, where other conditions except the
result of the test are checked: restore of the status of the monitor ("UNABLE_TO_PERFORM"),
enabling conditions and activation conditions verified ("PENDING" and "ACTIVE").

Figure 33: Typical results of an ad-hoc test

The results coming from the report could be considered good and the test can be repeated
multiple times in order to check possible changes in the software functionality, and, if the
results are the same, the software can be considered good.
In figure 34, it is possible to see the points of operation of a manual test conducted in HiL: the
angular speed of the engine and the associated load can vary in a very steep way and the rate
of change of the data can be changed by the user.
This can be assumed as an example of inputs for an HiL test and, as it was descripted in
the previous chapter, this provides a better simulation respect to the SiL test because of the
implementation of a load plates that could provide a higher accuracy on the simulation of real
situations.

Figure 34: Points of operation for the test in HiL

The figure 35 is referencing to a test done on the HiL bench test: as it is possible to rec-
ognize, just the representation of angular speed and load is present, then, the status and the
result of the monitor are presented. Following the software requirements that were descripted
in the previous chapter, the result of this test is good, so the frequency, offset and drift checks
are resulted good. In this case, two checks are present, this is due to the fact that a test on the
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DTC state logic is wanted too, so it was necessary to shut down the ECU, in order to repeat
another test and to pass in another state for the DTC.

Figure 35: Output for HiL test

As it was possible to see, only two types of automatic tests were used, this is due to the fact
that the validation of a software depends by the logic that is necessary to test. In this partic-
ular case, the software does not need a specific manoeuvre or a specific driving cycle, because
of the fact that the lambda sensor is checked from the functional point of view. The lambda
sensor could be affected mainly by ageing, so a specific driving cycle is not required.
The test that were conducted for software validation must be very robust in order to be re-
peated in the future: it is probable that some changes on the software could be applied, so the
results of the test must be the same as before the changes.

6.2 Limits of the research
In this part of the thesis the limits of the research and possible future development of it will be
discussed. The automation test is a very useful tool in terms of software validation because of
the fact that it could reduce so much the time to validate and to check the possible errors that
are present inside a software. The most important limit of the application is the unsuitability
of a test realized for one single software functionality for all the software functionalities, this is
due to the fact that every software functionality considers a different logic, so a different type
of approach to test it. This problem could lead to create for every function a dedicated test that
could be used to test future development of the same logic, but not the logic of different soft-
ware functionalities. In terms of cost and time could be expensive, but it could be considered
even as an investment for the future in which a new version of the software with the same
logic is released, and it is necessary to test it.
Another problem relative to the software used in order to create the tests is the communication
with other softwares when a dynamic automatic test is designed: this type of approach could
be very useful in order to copy different driving cycles that could be very complex, but it is
useless for what concern the control of the variable inside the CPU.
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7 Conclusions
This last chapter is dedicated to a final discussion of the activity covered in the stage period
in Westport Fuel System Italy. The thesis focused on a preliminary part where the software
funcyionalities were described in their entirety: as first, a description of the software require-
ments was done in which their functionality was rendered, then a description of the logic and
of the conducted test were done.
The aim of this thesis was to focus the attention on the automation of the tests: respect to the
manual test, in which the manoeuvres have a bad accuracy, with an automatic test is possible
to be very precise, in particular, for the logic of the software functionality that take in consider-
ation timers or specific manoeuvres that have to be done in a specific order, the automatic test
is very reliable and accurate. In fact, the errors coming from the human are reduced because
every action is preselected with a specific timing decided by the user in advance.
Another advantage emerged from the thesis was the possible re-usability of the test: for exam-
ple, if the software changes in some way, it is possible to re-test it in order to prove that the
produced result is the same. The reliability of this tool is very high because the requirements
of the software can always be tested in every moment without increasing the probability of
failure of a test, so the important advantage of this methodology is its repeatability.
In conclusion, the company considers to implement this methodology in its process develop-
ment, therefore, the produced result could be used for commercial purposes of the company.
The thesis, in fact, aimed to point out a method of validation and not to create concrete re-
sults about a software functionality, but just to underline the need of a company to develop its
software validation process.
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