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Summary

In the last decade, we have seen many practical applications of Reinforcement
Learning (RL) to different practical tasks, that obtained great success. The fields
of applications are various, ranging from robotics and autonomous driving, to AI
for video games or strategic games like chess. In particular, a key element for
the success of these methods is without doubt the integration of RL with Deep
Learning. Indeed, thanks to the advances in terms of computational power, today
we have the possibility of training neural deep approximators to learn patterns
from unstructured data like images or text.
However, very recently a new paradigm has emerged from traditional RL, called
Offline Reinforcement Learning (Offline RL), in which every interaction between
the agent and the environment is prohibited, so that the agent to be trained can
only learn from previously collected datasets. The necessity for this new branch of
RL stems from the fact that, in many practical applications, learning from scratch
in the real environment can be unfeasible, or even dangerous for the agent and the
surroundings.
The purpose of this work is to experiment with two offline RL algorithms, namely
CQL and COMBO, on a problem concerning the energy consumption of a hybrid
vehicle along a fixed trajectory. In particular, in order to assess the goodness
of these methods we also chose a suitable baseline, which is basically a plain
adaptation of classical online DQN algorithm to offline RL.
The training and testing of the three agents (including the baseline) was performed
on a simulated environment developed by PoliTo and AddFor S.p.a. written in
Python/Matlab. Regarding the training, datasets have been gathered using different
online RL agents trained on the same framework. In this way, we were able to
gather up to 5 different datasets.
CQL is a model-free algorithm, meaning that the data is used just to learn how
good are certain state-action couples; on the other hand, COMBO is a model-based
algorithm, meaning that it first try to learn a representation of the outside world
using the data available.
The experiments performed on CQL and COMBO were differentiated based upon
the dataset used for training an agent. At the end of each training, a testing

iii



episode was performed; as a metric to compare the results, we chose the return
obtained by the agent on the testing episode. What we found is that, while CQL
is not able to outperform the baseline, COMBO is able to obtain good results in
every dataset-based scenario; moreover, COMBO obtains the best results overall
in 4 out of 5 scenarios.
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Chapter 1

Introduction

The traditional approach to Reinforcement Learning (or RL, for short) has
always been to tackle problems within an online setting, meaning that the agent
trained enacts a real-time interaction with the environment, which in turns output
a numerical signal (the reward). This online paradigm has proven to be succesful
in many scenarios, especially when coupled with Deep Learning, which let us
exploit powerful approximation architectures in order to correctly learn from high-
dimensional and unstructured data, like images and text.
Within the set of RL algorithms we can characterize two different families, called
model-free and model-based RL: methods from the first family codify the
information about the environment directly within the agent, which in turn assigns
good rewards to promising actions and bad rewards to nonoptimal actions; on the
other hand, a model-based algorithm attempts to learn a model representation of
the transition dynamics of the environment: in this way, starting from the current
state, the agent can look ahead to search for promising states.

There are situations in which training an online RL agent from scratch could
be expensive, or even unsafe: for example, it could be that we have to control a
robotical arm operating on an industrial line, or we could be in the situation where
an RL agent must assign the proper treatment to a human patient based on some
data concerning his health. To this end, we must prevent the agent from exploring
too much the set of solutions, because the risk-reward ratio is simply not worth
it. At the same time, the agent must be able to explore a large portion of the
state-action space in order to optimally solve the task.

In order to go around this impasse, in the last years the researchers have tried
to follow a different path, which led research to a new RL paradigm called Offline
Reinforcement Learning. In Offline RL, the interaction between agent and
environment is not allowed; instead, the agent can solely learn from data which has
been previously collected by other domain experts (for example, they can be online
RL agents or even human demonstrations). In this way, we prevent the agent to
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Introduction

take risky actions in the environment, avoiding economical and physical damages.
The lack of exploration and real-time feedback in Offline RL is the cause of

an inherent structural problem called distributional shift: this is the change in
distribution of states and actions examined and chosen by the agent in relation
to the ones from the training data: this shift occurs naturally as the agent learns
and modifies its behavior; the fact that it no longer receives rewards from the
environment has the consequence that the behaviors that it thinks can be rewarding
might actually be overly optimistic, leading to poor results at test time.

In recent works, an adopted solution is to design agents that take a conservative
approach at training time, meaning that actions that are too much distant in
distribution from the ones in the training dataset are seen with diffidence.

The goal of this work thesis is to investigate algorithms with such approach
on a practical task: we want to train an agent in order to optimally control the
energy consumption of a hybrid vehicle along a fixed trajectory. In particular, we
want to make a comparison between the offline RL model-free and the offline RL
model-based approaches and assess their power against a suitable baseline.

The Offline RL research field is rather young, although many algorithms have
already been theorized and experimented: the most known is probably an extension
to the offline scenario of the well-known DQN algorithm, called CQL (Conservative
QLearning): in this extension, the data used for training is not sampled from
the interaction with the environment; instead, the agent is provided with a fixed
training dataset that has already been gathered; then, at each training step, a
batch from this dataset is sampled and a conservative training step is performed.
Our goal is to apply CQL along with a more sophisticated offline model-based algo-
rithm called COMBO (Conservative Offline Model-Based Policy Optimization),
which is basically an upgrade of CQL to the model-based world, meaning that the
agent is coupled with a model (also trained on the offline dataset) which accurately
approximates the dynamics of the environment. In our thesis, these two methods
are compared to a chosen baseline, which consists of a plain adaptation of DQN to
the offline scenario.
To achieve the desired goals, experiments have been performed on a practical
driving mission simulator developed by Addfor Indsutriale and Politecnico
di Torino. In the experiments, we tested CQL and COMBO on this simulated
environment, along with the chosen baseline, after training them on data collected
by online agents from this environment. Basically, we used three different agents:
the first is a random one (AgentRandom), meaning that at each step it takes an
action uniformly sampled from the set of feasible action given the current state;
the second one is based on the well-known QLearning algorithm (therefore called
AgentQLearning ), after being fully trained. Finally, we employed the online
DQN algorithm to obtain two different agents, one coming from the partially
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trained DQN, the other coming from the fully trained one (both these ones are
called AgentDDQN). As we show in Chapter 4, we collect up to 5 different
datasets (one coming from AgentRandom, one from AgentQLearning, three
from AgentDDQN). Then, each offline algorithm is trained on all of the datasets;
in this way, we obtain 5 different agents per algorithm. What we found is that
COMBO performs better than CQL and the baseline; In particular, we implement
two different instances of COMBO, which differ in the choice of the model: one
version, called Single COMBO, assumes that the transition dynamics of the envi-
ronment follow a normal distribution; on the other hand, the second version, called
Ensemble COMBO, employs an ensemble of models, each of them representing a
normal distribution: this ensures that variance is reduced at inference time. From
the experiments performed we evince that, on every dataset, COMBO is better
than CQL and the baseline.
This thesis is structured as follows: in Chapter 2, we provide an introduction to
Reinforcement Learning, with details on the agent-environment interface and a
rather rigorously mathematical treatment concerning the goal of RL, p1olicies
and value functions; moreover, some basic algorithms like Policy Iteration are
described, along with some properties concerning optimality convergence; lastly,
we provide an introduction to Deep Reinforcement Learning. Chapter 3 deals
with Offline Reinforcement Learning, discussing its inherent problems and the
solutions employed by many promising algorithms; we present CQL and COMBO,
along with their theoretical properties. The performed experiments are detailed in
Chapter 4, which provides also a brief description of the simulated environment
and its related task; we discuss how data has been collected for training, and we
present the results obtained by our algorithms against the baseline. Finally, in
Chapter 5 we draw our conclusions.
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Chapter 2

Reinforcement Learning

When we think about the nature of practical learning, we usually have in mind
the idea of acquiring a task through an interaction with some sort of environment.
Indeed, we can think about a child who’s learning to ride a bicycle, or a bird pet
who wants to fly for the first time: in each of these situations, the environment
responds to what we do, and we seek to influence its changing through our behavior.
More generally, learning from interaction is a foundational idea underlying nearly
all theories of learning and intelligence: in this work we deal with Reinforcement
Learning, or shortly, RL, a mathematical framework that deals with a type of
learning process.
RL is a class of problems and mathematical methods that deals with what to do in
a certain scenario, which means what actions to perform in it in order to maximize
a numerical signal; so, it’s a particular kind of optimization problem.
More formally, we have an agent that interacts with an environment by taking
some actions. The environment is represented by an internal state which changes
accordingly to the present state and the action performed by the agent.
Reinforcement Learning is different from supervised learning (also referred to as
SL), the most known field of machine learning. In SL, we deal with a training set
of labeled examples provided by an external domain expert. The objective here is
to generalize, i.e. to extrapolate a function in order to answer to previously unseen
data. On the other hand, in RL we do not have a label that tells us whether the
instance is "right"/"wrong" (as in the case of binary classification). Instead, the
agent receives a reward, which is a numerical intensity regarding the goodness
of the taken action. Moreover, in interactive problems one does not have already
an experience dataset at hand (unless we are dealing with Offline RL, which will
be presented in subsequent chapters). This means that if we want to acquire
significative learning, we have to explore the world surrounding us, acting in it and
collecting essential information.
RL has its roots in the field of Dynamic Programming (DP), a general and
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flexible principle that is used to design optimization algorithms, based upon the
fundamental principle of decomposing a multistage (stochastic or not) decision
problem into a sequence of simpler, single-stage problems. However, as we will see,
the remarkable feature of RL, thanks to which it is becoming a pervasive technology,
lies in the fact that one does not need to know how to represent the environment.
This ability, mixed with the powerful approximation capacity of neural networks, is
responsible for RL’s success in many fields, ranging from robotics to management
science.
In this chapter we present the framework under which many concepts of classic RL
are developed.

2.1 Agent-Environment Interface
The learner or decision maker is called the agent. The world with which the agent
interacts and in which it takes actions is the environment, which in response to
said actions updates its internal state and provides the agent with a reward: we
can imagine a closed-loop feedback like in Fig.2.1. In this work, the mathematical

Figure 2.1: RL closed-loop feedback diagram: the agent receives a state rep-
resentation and a reward associated with it from the environment; in turn, the
agent selects an action which is transmitted to the environment, which updates its
previous state representation and reward signal.

structure modeling the system is the (finite) Markov Decision Process, or
shortly MDP. Basically, the interaction between the agent and the environment
can be represented as a discrete-time stochastic process on the state representation
space of the environment. more formally:
Definition 2.1.1 (Markov Decision Process). A Markov decision process is a
4-tuple (S, A, P, R) where

• S is a set of states called the state space

• A is a set of actions called the action space
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• P : S × A× S → [0,1] is the function underlying the transition dynamics of
the environment; that is, we define

P (s′, a, s) := Pr(St+1 = s′|St = s, At = a) (2.1)

• R : S × A × S → R+ is the reward function: this models the feedback
communication between agent and environment, that is

R(s′, a, s) := r, (2.2)

where r is the immediate reward received after performing action a in state s,
with the environment transitioning to the next state s′.

Every (finite) MDP has a (finite) state space S which represent the possible
configurations that the environment can assume. On the other hand, the set of
possible actions that the agent can take at a given time generally depends on the
present state; so, when the environment is in state St ∈ S, the agent can take an
action in the feasible action space A(St). At each discrete time step t ∈ N, the
environment is in a state St; when the agent takes an action At ∈ A(St); then, the
environment updates the state to St+1 and outputs a reward Rt+1 ∈ R.
In this case, both state and reward are discrete random variables and their proba-
bility distributions depend only on the previous state and action, that is

p(s′, r|s, a) := P[St+1 = s′, Rt+1 = r|St = s, At = a], (2.3)

for all s, s′ ∈ S, a ∈ A(s). p is usually called the transition dynamics function
and, under the Markov hypothesis, it completely characterizes the environment’s
dynamics. This means that the probability of the environment transitioning to
state s and outputting a reward r simply depends on the state of the environment
and the action taken by the agent at the previous time step, and not on the past
history: in a sense, we can say that the environment codifies the entire previous
history in the current state.

2.2 The goal of RL
We have seen that the only way the environment communicates with the agent is
through the output reward. In fact this signal, which is a real number, suffices to
enclose all the information the agent needs to learn. This is because the agent’s
goal is to maximize the total amount of reward it receives, which can be rephrased
by the reward hypothesis (taken from [1]):

" That all of what we mean by goals and purposes can be well thought of
as the maximization of the expected value of the cumulative sum of a
received scalar signal (called reward). "
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This means that the objective is not to simply maximize immediate reward, but
the cumulative reward in the long run.
At this point it should be clear to the reader that the way the reward function is
shaped influences the goal we want the agent to accomplish. For example, let’s
consider an agent which must learn to play chess: the goal is clearly accomplished
if an agent can win the game against his opponent. Now: what reward function
should we define?
This is the kind of situation in which we want to be careful: indeed, if we assign
positive reward when the agent captures some pieces (so that we associate positive
reward with a subgoal), the agent could find a way of losing the game but after
capturing the maximum number of pieces possible (or the pieces that lead to
greatest reward), pursuing a greedy strategy. Actually, after some thinking, we
recognize the right reward function in the one that assigns reward +1 when the
game is won, -1 for losing and 0 whenever that’s a draw and for all nonterminal
positions.

2.3 Formal definition of return
Now let’s state the goal introduced in the previous section in a formal mathematical
way. What does it mean to "maximize the cumulative reward in the long run" ?
If we are at time t, we have ahead of us a sequence of rewards Rt+1, Rt+2, . . . , RT

(with T that can also be infinite). The sum of all these rewards is called the return
Gt, defined as

Gt :=
TØ

τ=t

Rτ (2.4)

and, since it’s a random variable, what we seek to maximize is the expected return
E[Gt].
This definition makes sense when T is finite; this is the case of the so-called episodic
tasks. In this case, a sequence of tuples {(st, at, rt, st+1)}, with t = 1, . . . , T , is
called an episode: every episode finishes with the agent in the same special state
called the terminal state; after that, the agent is reset to any of the possible
initial states and a new episode begins. The time of termination is in general a
random variable.
On the other hand, let’s suppose a task where we have a robot that must solve
some kind of balancing problem: the objective is to remain in an equilibrium phase
the longest possible time. We understand that this kind of problem doesn’t suit
well an episodic framework; tasks like this one are called continuing tasks and,
since it’s T =∞, the return definition that we have given it’s problematic, because
this random variable could be infinite with nonzero probability. In order to solve
this problem we must add the concept of discounting.
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The idea is to introduce a discounting factor 0 < γ < 1 and, instead of the
simple expected return, to compute the expected value of the discounted return

Gt := Rt+1 +
∞Ø

k=1
γkRt+k+1. (2.5)

Now this sum is finite in expectation, as long as the rewards are a.s. bounded. For
example, if the rewards are +1 constantly, then the expected return is q∞

k=0 γk =
1

1−γ
.

Discounting surely appears as a mere trick to make the return converge. While this
is certainly its main raison d’être, discounting has also other meanings, even related
to the nature of the problem: for example, discounting is common in financial
applications, where we have a stream of future random cashflows which must be
converted to their present value (see [2] for some examples). More in general, the
discount rate determines the present value of future rewards: a reward received
k time steps in the future is worth only γk−1 times what it would be worth if it
was received immediately. If γ = 0, the agent acts in a short-sighted manner: since
all rewards are seen as zero except for Rt+1, it tries only to maximize the next
immediate reward by correctly choosing At.
This would heavily simplify the original RL goal, because now the multistage
decision problem is decomposed in a sequence of single-step optimization problems,
so that such a "myopic" agent could maximize the total return by separately
maximizing each immediate reward. However, in practice this approach does not
work, since these problems are not independent, i.e., a decision (action) taken at a
certain timestep influences the behavior of the environment at future timesteps.

2.4 Policies and Value Functions
What we really want in the end is that our agent behaves in a way such that, at
every state, the best action is taken by it. This strategy to pursue can be formally
represented by a policy π, i.e. a distribution π over actions, conditioned on the
present state; that is,

Definition 2.4.1 (Policy). Given a Markov decision process, a policy π : S×A→
[0,1] is a function of the form

π(a|s) = P[at = a|st = s] (2.6)

.

With this definition at hand, now we can state the RL Objective: an RL agent
aims to learn a policy that maximizes the expected discounted return, obtained by
following the very same policy:
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Definition 2.4.2 (RL Objective). The goal of an RL agent is to learn a policy π
that solves the following optimization problem:

max
π

Eπ[
∞Ø

t=0
γtr(st, at)|s0 ∼ p0, at ∼ π(·|st), st+1 ∼ P (·|st, at)] (2.7)

where p0 is the distribution over the set of initial states.

Now we have a way of select actions; what about states? Indeed, some states
should be preferable to others, in the sense that a wise agent should try to get to
good states instead of bad ones. A formal definition of goodness of a state is the
state value function:

Definition 2.4.3 (State value function). Given a policy π, the value function
V : S → R is defined as

Vπ(s) = Eπ[Gt|st = s]. (2.8)

where the expected value is computed provided that the agent at every time step
follows the policy π (under this definition the value of a terminal state is zero).

Since we deal also with actions, sometimes it’s more useful to talk about the
action-value function (or just q-function), which measures the goodness of a
state-action tuple:

Definition 2.4.4 (State-action value function). Given a policy π, the state-action
value function (or q-function) is a function Q : S × A→ R defined as

Qπ(s, a) = Eπ[Gt|st = s, at = a]. (2.9)

This is the expected return starting from s, taking the action a (even if not in
the support of the policy) and thereafter following the policy π.
These two functions can also be defined by a recursive equation after some algebraic
manipulation; for example, we can write

Vπ(s) = Eπ[Gt|st = s] = Eπ[Rt+1 + γGt+1|st = s] (2.10)
=

Ø
a

π(a|s)
Ø
s′

Ø
r

p(s′, r|s, a)[r + γEπ[Gt+1|st+1 = s′]] (2.11)

=
Ø

a

π(a|s)
Ø
s′

Ø
r

p(s′, r|s, a)[r + γVπ(s′)] (2.12)

This is the Bellman Equation for Vπ, which relates the value of a state to the
value of its successor states, meaning that the value function under the policy can
be decomposed into two parts:

• the immediate expected reward r starting from state s

9
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• the discounted value of any successor state, weighted by the transition proba-
bility.

An analogous equation exists for the action-value function.
As we can see in Fig. 2.2, we can think of starting from state s and looking a
step ahead; the agent can take some actions from A(s) with a nonzero probability,
based on the current policy. From each of these state-action pairs, the environment
transitions to some possible states s′, with probabilities defined by its transition
dynamics, yielding an immediate reward r. Each lookahead contribute in the
Equation is used for computing the average outcome, with weights each given by
its probability of occurring. What we have said holds for every policy; but, in the

Figure 2.2: backup diagram for vπ: starting from state s as the root of the
tree, we choose the action a according to the policy distribution π(a|s); then, the
environment updates its state to s′ according to the transition probability p(s′|s, a).

end, we are interested with the ones which yield highest rewards along time. Still,
it turns out that value functions define a partial ordering over the set of feasible
policies, that is

π ≥ π′ ⇐⇒ Vπ(s) ≥ Vπ′(s) ∀s ∈ S. (2.13)

Now let
V ∗(i) := sup

π
Vπ(i). (2.14)

We have the following:

Definition 2.4.5 (Policy optimality). A policy π∗ is said to be γ-optimal if

Vπ∗(s) = V ∗(s) ∀s ∈ S. (2.15)

Hence, a policy is γ-optimal if its expected γ-discounted return is maximal for
every initial state.
What’s interesting about the optimal value function defined in (2.14), is that said
function has their own special Bellman Equation, as stated by the following (proof
is taken from [3])

10
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Theorem 1 (Optimality Equation).

V ∗(s) = max
a

Ø
s′

Ø
r

p(s′, r|s, a)[r + γV ∗(s′)] (2.16)

Proof. Let π be any arbitrary policy that chooses action a ∈ A at time t = 0 with
probability pa. Then,

Vπ(s) =
Ø

a

pa

Ø
s′

Ø
r

p(s′, r|s, a)[r + γWπ(s′)], (2.17)

where Wπ(s′) represents the the discounted return from t = 1 onward obtained by
following policy π and starting from state s′. We clearly have Wπ(s′) ≤ γV ∗(s′),
thus

Vπ(s) ≤
Ø

a

pa

Ø
s′

Ø
r

p(s′, r|s, a)[r + γV ∗(s′)] (2.18)

≤
Ø

a

pa max
a

Ø
s′

Ø
r

p(s′, r|s, a)[r + γV ∗(s′)] (2.19)

= max
a

Ø
s′

Ø
r

p(s′, r|s, a)[r + γV ∗(s′)] (2.20)

Because π is arbitrary, we have

V ∗(s) ≤ max
a

Ø
s′

Ø
r

p(s′, r|s, a)[r + γV ∗(s′)]. (2.21)

Now, let a0 be s.t. it maximizes the right member of (2.16) and let π be the policy
which chooses a0 in t = 0 and, if the next state is s′, it follows a policy πs′ s.t.
Vπs′ (s′) ≥ V ∗(s′)− ϵ. Hence,

Vπ(s) =
Ø
s′

Ø
r

p(s′.r|s, a0)[r + γVπs′ (s′)] (2.22)

≥
Ø
s′

Ø
r

p(s′.r|s, a0)[r + γV ∗(s′)]− γϵ, (2.23)

which, because V ∗(s) ≥ Vπ(s), implies that

V ∗(s) ≥
Ø
s′

Ø
r

p(s′.r|s, a0)[r + γV ∗(s′)]− γϵ. (2.24)

Hence, by the particular choice of a0, we have

V ∗(s) ≥ max
a

Ø
s′

Ø
r

p(s′, r|s, a)[r + γV ∗(s′)]− γϵ. (2.25)

The proof is now completed given that ϵ is arbitrarily positive.

11



Reinforcement Learning

Starting from this Equation, three important theorems can be proved (see [3]);
we just state them without proofs:

Theorem 2 (The policy determined by the optimality equation is optimal). Let f
be he stationary policy that, when the agent observes state s, it selects a maximizing
action. Then Vf (s) = V ∗(s), and hence f is γ-optimal.

Theorem 3. V ∗ is the unique bounded solution of (2.16)

Theorem 4. For any policy π, Vπ is the unique solution of

Vπ(s) =
Ø
s′

Ø
r

p(s′, r|s, π(s))[r + γVπ(s′)] (2.26)

In the same way we can define an optimal action-value function Q∗ that satisfies
its own Bellman Optimality Equation.
For finite MDPs, the value function is just a vector and so to solve the Equation
we must solve a system of piecewise linear equations, which can be solved by
rather simple iterative methods. While this looks quite the trivial task, in practice
it’s actually not; for example, it can be that the state space is very large or we
really don’t know the transition probabilities (i.e., when we don’t have a model
of the environment). However, some difficulties are mitigated if we consider the
Q-function: indeed, we can observe that

Q∗(s, a) =
Ø
s′

Ø
r

p(s′, r|s, a)[r + γV ∗(s′)] (2.27)

and
V ∗(s) = max

a
Q∗(s, a). (2.28)

Hence, we can rewrite the optimality equation as

Q∗(s, a) =
Ø
s′

Ø
r

p(s′, r|s, a)[r + γ max
ã

Q∗(s′, ã)] (2.29)

If we compare this last result to Eq. (2.16), we have good and bad sides:

• since the Q-function depends on two variables instead of one like the value
function, it seems that we have augmented the dimensionality, which may be
not convenient.

• we have swapped expectation and optimization, which is good: it is easier
to solve many simple (deterministic) optimization problems than a large
(stochastic) one.

12
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When V ∗ is known, it’s easy to get an optimal policy: for each state s, there will be
one or more actions which maximizes the Bellman Optimality Equation; so, every
policy which assigns a nonzero probability only to those actions is optimal. Such
policies are called greedy with respect to those actions, meaning that they select
actions based only on short-term consequences. Since V ∗ already takes in account
all the possible future reward behaviors, we have that just a one-step lookahead
suffices to give optimal policies in the long term, since, thanks to V ∗, the optimal
expected return is turned into a quantity that is locally available in all states.
In this sense, with Q∗ our life is even easier, since the agent does not require to
look one step further in the future: given state s, it suffices to select the action
ã = arg maxa Q∗(s, a); however, this comes at the cost of representing a function
of state-action pairs instead of just states. The good side is that now the agent
doesn’t have to know anything about the environment’s dynamics.
So, the "q-values" can be learned by statistical sampling, which is useful when
the transition dynamics is not known: this leads to model-free Reinforcement
Learning. Lastly, when dimensionality makes finding estimates for all state-action
couples prohibitive, we can resort to a compact representation of the Q-function
based on deep function approximators like Deep Neural Networks.

2.5 Generalized Policy Iteration

Generalized Policy Iteration (or GPI for short) refers to an algorithmic
framework to find an optimal policy. Almost all RL methods can be classified as
GPI instances.
GPI is the combination of two interacting processes: Policy Evaluation and
Policy Improvement. The first process makes the value function consistent with
the current policy; the second improves the policy in a greedy way, with respect
to the current value function. In this way, at each step the current policy gets
properly assessed in term of goodness of returns that can be obtained; then, we
can refine such policy.
When the value function becomes consistent with the current policy, the evaluation
process doesn’t produce changes anymore; on the other hand, the improvement step
halts when the policy becomes greedy with respect to the current value function.
So, when both processes stabilize, the value function and policy must be optimal.
What’s interesting to observe is that the two processes are adversarial, meaning
that they pull in opposite directions: for example, when the policy changes, the
value function is not consistent anymore. In the long run, however, they work to a
joint solution, as we can see in Figures 2.3-2.4.

13
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Figure 2.3: GPI algorithmic flow

Figure 2.4: GPI iteration: the two processes converge to a common solution

2.6 QLearning
QLearning is a model-free algorithm (meaning that we don’t have an approxima-
tion of the environment’s dynamics) used to solve finite MDPs. The reality is that,
in many applications, we actually don’t know the transition probabilities. Hence,
we have to learn by sampling from the environment. How to do it? Let’s give a
constructive explanation of the algorithm: supposing we are at iteration k, the
agent has to choose action ak and we have estimates Qk−1(s, a) which has been
computed at the previous step. Supposing we are at state sk = i, the action is
selected in a greedy way:

ak = arg max
a

Qk−1(i, a) (2.30)

After applying this action, the environment yields:

• a next state sk+1 = j

• a reward rk+1

Now, we can update the estimate Q(sk, ak). Indeed, we have sampled an observation
of a random variable that combines the short-term contribution (the reward) with
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the long-term behavior:

q̃ = r + γ arg max
a

Q̃k−1(sk+1, a) (2.31)

Then, we can update the q-value for the pair (sk, ak) in this way:

Q̃k(sk, ak) = αq̃ + (1− α)Q̃k−1(sk, ak) (2.32)

This kind of estimation is called exponential smoothing, since we can roll it out
recursively as:

Q̂k = αq̃k + (1− α)Q̂k−1 (2.33)
= αq̃k + α(1− α)q̃k−1 + (1− α)2Q̂k−2 (2.34)

=
k−1Ø
t=0

α(1− α)kq̃k−t + (1− α)kQ̂0 (2.35)

We see that, unlike the standard sample mean, the weights of older observations
have an exponential decreasing, controlled by a parameter α, which is called
learning rate. We can express this concept in another way: we define a factor
named temporal difference

∆k = [r + γ max
a

Q̂k−1(j, a)]− Q̂k−1(i, ak) (2.36)

Then, the update is

Q̂k(s, a) =
Q̂k−1(s, a) + α∆k if s = sk and a = ak

Q̂k−1(s, a) otherwise
(2.37)

From a GPI perspective, in QLearning we constantly changes the policy, which
is implicitly defined by the q-values: therefore, we are so optimistic about the
assessment of the current policy that we only do a policy improvement step (so
no evaluation steps at all). Moreover, we can say that QLearning is an off-policy
algorithm, since we apply one policy (the greedy one at step k − 1) to learn about
another one (the improved policy).
Finally, we can spend a few more words on the update: the temporal difference is
also called bootstrapping error. If the q-function was the optimal one, then, in
expectation with respect to the reward and next state, the term ∆k should be 0, since
the two terms of the difference should be equal by the Bellman Eq.2.29. Actually
this doesn’t happen, both because we take a sample instead of computing the full
expectation and because the current q-function may not be optimal (otherwise
the method would have already converged). So, in practice we have ∆k /= 0 and,
thanks to that, we can update our current estimates. The term "bootstrapping"
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is used since the q-values are updated based only on the reward and the previous
q-values.
QLearning was introduced by [4] in his PhD thesis in 1989; here a first proof on
the convergence of this one-step QLearning approach was given.
The idea is that Q∗ is the fixed point of the contraction operator H, defined as

(Hq)(s, a) =
Ø
s′

Ø
r

p(s′, r|s, a)[r + γ max
a′

q(s′, a′)], (2.38)

for a generic function
q : S × A −→ R (2.39)

. This operator is also called the Bellman Operator B; it is a contraction in the
sup-norm, that is

∥Hq1 −Hq2∥∞ ≤ γ∥q1 − q2∥∞ (2.40)

The following lemma holds:

Lemma 1. The random process {∆t} taking values in Rn and defined as

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x) (2.41)

converges to zero under the following assumptions:

• 0 ≤ αt ≤ 1, q
t αt(x) =∞ and q

t α2
t (x) <∞

• ∥E[Ft(x)|Ft]∥W ≤ γ∥∆t∥W , with γ < 1

• V ar[Ft(x)|Ft] ≤ C(1 + ∥∆t∥2
W ), for C > 0

Now we can state the Theorem concerning the convergence of the algorithm:

Theorem 5. Given a finite MDP (S,A, P, r), the QLearning algorithm given by
the update rule

Qt+1(st, at) = Qt(st, at) + αt(st, at)[r + γ max
b

Qt(st+1, b)−Qt(st, at)] (2.42)

converges almost surely to the optimal q-function as long asØ
t

αt(s, a) =∞ and
Ø

t

α2
t (s, a) <∞, (2.43)

for all (s, a) ∈ S ×A. Notice that, since 0 ≤ α < 1, last two equations require all
state-action pairs be visited infinitely often.
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Proof. We start by rewriting Eq. (2.42) as
Qt+1(st, at) = (1− αt(st, at))Qt(st, at) + αt(st, at)[rt + γ max

b
Qt(st+1, b)] (2.44)

Subtracting from both sides the term Q∗(st, at) and letting
∆t(st, at) = Qt(st, at)−Q∗(st, at) (2.45)

yields
∆t = (1−αt(st, at))∆t(st, at)+αt(st, at)[rt +γ max

b
Qt+1(st, b)−Q∗(st, at)] (2.46)

If we write
Ft(s, a) = r(s, a, X(s, a)) + γ max

b
Q(s′, b)−Q∗(s, a), (2.47)

where X(s, a) is a random sample state obtained from the Markov chain (S, Pa),
we have

E[Ft(s, a)|Ft] =
Ø
s′

p(s′, r|s, a) (2.48)

= [r + γ max
b

Qt(s′, b)−Q∗(s, a)] (2.49)

= (HQt)(s, a)−Q∗(s, a) (2.50)
Using the fact that HQ∗ = Q∗,

E[Ft(s, a)|Ft] = (HQt)(s, a)− (HQ∗)(s, a). (2.51)
It is now immediate from the contraction property that

∥E[Ft(s, a)|Ft]∥∞ ≤ γ∥Qt −Q∗∥∞ = γ∥∆t∥∞. (2.52)
Finally,

var[Ft(s, a)|Ft] = (2.53)
= E[(r + γ max

b
Qt(s′, b)−Q∗(s, a)− (HQ)(s, a) + Q∗(s, a))2]

(2.54)
= E[(r + γ max

b
Qt(s′, b)− (HQ)(s, a))2] (2.55)

= var[r + γ max
b

Qt(s′, b)|F⊔] (2.56)

which, due to the fact that r is bounded, clearly verifies
var[Ft(s)|Ft] ≤ C(1 + ∥∆t∥2

W ) (2.57)
for some constant C. Then, previous Lemma, ∆t converges a.s. to zero, i.e., Qt

converges to Q∗ a.s.

QLearning is a building block of many complex algorithms in Deep RL, as we
shall see in the next chapters.
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2.6.1 State vs Observation
In this section we make an important distinction concerning the observability of
the environment.
Sometimes, in certain applications, the agent isn’t able to directly access the full
state representation of the environment, which acts as a "black-box"; instead, the
environment just yields a compact state representation called observation, which
does not need to be in a one-to-one correspondence with the internal state, meaning
that different hidden states can be mapped into the same observation. For example,
this often happens when working with image-based tasks, as represented in Fig.
2.5. This means that we must modify the notion of MDP to take in account this

Figure 2.5: Atari Breakout: this system has partial observability because, if the
agent is only supplied with the image, it is not able to predict the direction and
the verse of the ball’s velocity

obsrvability problem. Formally, we have the following definition:

Definition 2.6.1 (Partially Observable MDP). A POMDP (Partially Observable
MDP) is a tuple < S,A,P ,R,Z,O, γ >, where O is the set of observations and
Z is the observation conditional distribution, that is

Z(o, s, a) := P[Ot+1 = o|St+1 = s, At = a]. (2.58)

So, partial observability blurs the idea of a current state, with the consequence
that the rule of selecting actions based on the current state is no longer valid. While
the hidden transition dynamics is still Markovian, since we don’t have access to
the internal state of the system we should keeping track of the entire history of the
process, meaning that the Markov Property is no longer valid for the agent-observer.
Equivalently, instead of representing the whole history explicitly, we can define a
probability distribution over the state space conditioned on the current history and,
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when we perform an action and make an observation, we update the distribution.
This distribution is called the belief state; formally,

b(s; h) := P[St = s|h], (2.59)

where h := (o1, o2, . . . , ot) is the history up to time t + 1. Luckily, we can find that
the process defined over the belief state space is Markovian, which is equivalent
to say that the next belief state depends only on the current belief state (and
the current action and observation). This means that we can convert a discrete
POMDP problem into a continuous MDP one and we can apply the methods
previously illustrated.

2.6.2 Maximization Bias in QLearning
As we have seen, QLearning involves a maximization operation for computing the
target q̃ in the update step. That is, a maximum of the q-values over all possible
actions given a certain next state sk+1 is computed, and used implicitly to estimate
the state-action value function in the tuple (sk, ak). This gives rise to a problem,
because this operation can lead to positive bias.

For example, in Fig. 2.6, we have depicted an MDP with two nonterminal states
(example is taken from [1]). Episodes always start in A with two possible action
choices: left or right. When the agent chooses right, the environment updates the
state to a terminal one with zero reward and return. On the other hand, the left
action also yields a reward of zero, but now from the state B many different action
choices are possible, all with the same reward distribution, which is normal with
mean -0.1 and variance 1. This means that, when in A, the right action is superior
on average to the left action in terms of total return. However, due to sampling
error and maximization bias, the left action might appear more promising. As a
matter of fact, in the Figure we can also observe that QLearning with an ϵ−greedy
strategy (which means that the action is uniformly random selected with probability
ϵ and chosen in the usual way with probability 1− ϵ) initially learns to strongly
favor the left action in this example. One possible solution to the maximization
bias is the Double Learning. Since using the maximum of the estimates to obtain
the estimate of the maximum of the true values can lead to positive bias, one way to
view the problem is to see that we use the same samples both to determine the best
action and its estimated value; so, we can try to disentangle these two processes,
meaning that we divide the samples into two sets for two different Q-value estimates
Q1 and Q2. Then, one estimate is used to determine the maximizing action, while
the other used to estimate its value.
When we couple this idea with the QLearning algorithm we obtain Double
QLearning: at each timestep one of two estimates is randomly selected (suppose
Q1) and updated; after that, the maximizing action is extrapolated from that

19



Reinforcement Learning

Figure 2.6: MDP example: in this Figure the MDP is represented with its transi-
tion and reward functions; moreover, in the graph is shown how, as a consequence
of maximization bias, QLearning highly prefers the left action during the first
part of training; what’s more, we can observe how it takes time for the algorithm
to abandon this incorrect belief. On the other hand, when Double QLearning is
employed, the training proceeds smoothly, as the left action is chosen with low
probability already after a few episodes

estimate (Q1 again), while the value of the action is estimated by the other q-
function estimate (suppose Q2). In formulas, we have

Q1(s, a)← Q1(s, a) + α[r(s, a) + γQ2(s′, arg max
a′

Q1(s′, a′))−Q1(s, a)] (2.60)

The estimator obtained in this way is unbiased, in the sense that

E[Q1(·, a∗)] = q(·, a∗) = E[Q2(·, a∗)]. (2.61)

Double QLearning was introduced for the first time in [5].
As we said, the q-function update in QLearning can give us some problems since
we try to estimate the maximum expected value over actions using the maximum
action value. The idea of the paper is to use a double estimator, that is, trying to
decouple the action selection from the estimate of the q-function on the action.
Generally speaking, we can think of the problem of estimating the maximum of
the expected values of N variables X1, X2 . . . , XN . If we use a single estimator
approach in the style of QLearning, we define N estimators X̂1, X̂2, . . . , X̂N with
means µi, i = 1,2, . . . , N . The maximal estimator µ := maxi µi is obviously an
unbiased estimate for E[µ].
Given the PDFs and CDFs for the estimators µi by, respectively, the notation
f i

µ, F i
µ, we can recover the CDF for µ as

Fµ(x) = P(max
i

µi ≤ x) =
NÙ

i=1
P(µi ≤ x)

NÙ
i=1

F i
µ(x). (2.62)
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Then, we can express E[µ] as

E[µ] =
Ú ∞

−∞
xfµ(x)dx (2.63)

=
Ú ∞

−∞
x

d

dx

Ù
i

F i
µ(x)dx (2.64)

=
Ø

j

Ú ∞

−∞
xf j

µ(x)
Ù
i /=j

F i
µ(x)dx. (2.65)

So, this estimator is unbiased for E[maxi µi], but positively biased for maxi E[X̂i];
that’s where the overestimation comes from.
The alternative method is to use two different estimators for each variable, which
we group into two sets µA = {µA

1 , . . . , µa
N} and µB = {µB

1 , . . . , µB
N}.

Now, if a∗ is an index that maximizes µA, i.e., µa∗ = maxi µA
i , then we can use this

index to choose in the set µB the estimate µB
a∗ for maxi E[Xi] = maxi µB

i . Moreover,
we can recover the expected value of this estimator, since

Ø
j

P(j = a∗)E[µB
j ] =

Ø
j

E[µB
j ]

Ú ∞

−∞
fA

j (x)
Ù
j /=i

F A
i (x)dx. (2.66)

Eqs. 2.66 and 2.63 express the means of the two estimators. We can see that the
second uses E[µB

j ] in lie of x; so it’s an underestimation, since the probabilities
P(j = a∗) represent the coefficients of a convex linear combination of expected
values which are lower or equal to the maximum one which is being estimated. On
the other hand, the single estimator tends to overestimate, since x is positively
correlated with the monotonically increasing product of CDFs inside the integral.
Also Double QLearning converges in the limit to the optimal policy in a finite
MDP: (the following theorems can be found in [5])

Lemma 2. Consider a stochastic process (ζt, ∆t, Ft), t ≥ 0 where ζt, ∆t, Ft : X → R
satisfy the equations:

∆t+1(xt) = (1− ζt(xt))∆t(xt) + ζt(xt)Ft(xt), (2.67)

where xt ∈ X. Let Pt be a sequence of increasing σ − fields s.t. ∆0 and ζ0 are
P0 −measurable and ζt, ∆t, Ft−1 are Pt −measurable. Assume that the following
hold:

• X is finite;

• ζt(xt) ∈ [0,1], q
t ζt(xt) =∞,

q
t ζt(xt)2 <∞w.p.1 and ∀xt : ζt(x) = 0

• ||E[Ft|Pt]|| ≤ κ||∆t||+ ct, where κ ∈ [0,1) and ct converges to zero w.p.1.
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• V ar[Ft(xt)|Pt] ≤ K(1 + κ||∆t||)2, for some constant K. Here || · || denotes a
maximum norm. Then, ∆t converges to zero almost surely.

Having this Lemma, the next Theorem follows:

Theorem 6. In an ergodic MDP s.t.

• γ ∈ [0,1);

• Q1andQ2 receive an infinite number of updates;

• αt(st, at) ∈ [0,1], q
t αt(st, at) = ∞,

q
t αt(st, at)2 < ∞ w.p.1 and ∀(s, a) /=

(st, at) : αt(s, a) = 0;

• ∀s, a, s′ : V ar[E[R(s′, a, s)]] <∞;

both Q1 and Q2 will converge to the optimal q-function Q∗ almost surely if an
infinite number of experiences in the form of rewards and state transitions for each
state-action pair are given by a proper learning policy. (e.g., a random policy)

2.7 Model-Based RL
Up to now, we have seen RL methods belonging to the model-free family: this
kind of methods use the information leveraged from the interaction with the envi-
ronment only to update their critic, which can be an exact tabular representation
of the value function, or just some deep approximator. However, if on one hand
solutions like QLearning are created to overcome the problem of not knowing
the real transition dynamics probabilities, another idea could be starting with an
approximated representation of these distributions, and try to refine them online
as more information comes from the environment. This is the main feature of
model-based RL algorithms.
We can think of methods belonging to these families as two possible approaches to
the problem of visiting a foreign city: since we don’t know well the city, one way to
go around without getting lost (let’s say from point A to point B) could be to use
some reference points (like a big square with a fountain) and remember what route
to take from there. This is equivalent to employ a state (or state-action) function,
assigning a certain value to certain positions.
Another method could be to use a map: we could buy one (really accurate but
expensive solution, maybe unfeasible) or drawing one: if we go with the latter
choice, at first our map will be really approximative; however, as more information
comes in, we can refine it and use it to simulate the real world. Meaning, if we get
stuck in a point, we can trace back our steps or even look ahead to find the right
trajectory.
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In practice, what we actually want to represent is how the environment changes
its state in response to the agent’s action. Given a state and an action, a model
produces a prediction of the resultant next state (or a distribution over the possi-
ble next states, and possibly the reward: the part dealing with the states is the
transition function, while the second is the reward function.
Why a model of the environment should be useful? For starting, a model can be
used to simulate experience. Given a starting state and action, a model gener-
ates all possible transitions weighted by their probabilities of occurring. Given a
starting state and a policy, a model could generate all possible episodes and their
probabilities. So, in the classic model-based learning cycle the interaction with the
real world is used to learn the model; in turn, the model is used to plan through
it generating a value function/policy which is used to interact in the real world,
gaining new experience, so that we can learn a better model.
An example which conveys the idea of model-based usefulness is the game of chess:
in this case, the state space has a size of approximately 1048! Moreover, moving one
piece from its square to an adjacent one can completely change the position from
winning to losing; this means that the optimal value function is really sharp, so
learning that (or directly the policy) is really hard. On the contrary, the dynamics is
quite easy to represent, since chess rules are simple and transitions are deterministic.
So, if I can use the model to look ahead, I’m able to estimate the value function by
clever tree search strategies (planning). So, an advantage of model-based RL is that
model can be a more useful representation of the information of the environment
than value function. One another advantage is that model can be learned by
supervised learning; moreover, the model is also useful if you want to reason about
model uncertainty, which is what you don’t know about the environment and what
you don’t know you don’t know; in other words, you want to understand the world
better. With the model, you can choose actions to reach regions of the space you
don’t know well.
One disadvantage is that we use an approximate model to learn an approximate
value function, so now there are two sources of error.

Model-free RL:

• No model

• Learn value function (and/or policy) from experience

Model-based RL:

• Learn a model from experience

• Plan (lookahead using the model) value function (and/or policy) from the
model
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In the end, what we want to learn is a transition function P̂Ψ[·|s, a] which approxi-
mates the one of the real environment, which is P [·|s, a]. In this way we have two
ways of generating experience:

• real experience: sampled from the environment (true MDP) s′ ∼ P [·|s, a]

• simulated experience: sampled from the model (approximate MDP) s′ ∼
P̂Ψ[·|s, a]

2.7.1 DYNA: model-free + model-based
Dyna is an algorithmic framework developed by Richard Sutton (see [6]) which is
structured in this way:

• learn model from real experience

• learn and plan value function (and/or policy) from real and simulated experi-
ence

Real experience can be exploited by a planning agent in two different ways: it can
be used to update and improve the model, or to directly improve value function/
policy via model-free approaches (direct RL). This is summarized in Fig. 2.7: each
arrow shows a relationship of influence and presumed improvement. The algorithm
can be summarized as following (see Fig.2.8): once the q-function and transition
model are initialized, we enter the main loop, in which, given a state, an action
is selected by an ϵ-greedy policy. Subsequently, the action is executed and the
environment transitions to the next state s′ with a reward r; we end this process by
updating our q-function. So far, this looks like plain QLearning. However, at this
point we enter an inner loop which exploits the learned model: at every inner step,
given state s, we choose a random action from those that were previously taken
when encountered state s and, after that, we output a next state s′ and a reward
r using the learned model. Then, we update the q-function and the step ends.
Model-free and model-based approaches both have advantages and disadvantages.
While the former are much simpler in their design and are not affected by biases
due to model learning, model-based methods usually make fuller use of a limited
amount of experience and thus achieve a better policy with fewer interactions with
the environment, as we can see in Fig. 2.9: as the agent is allowed more "thinking
time" (the number N of planning steps), we observe that the number of steps
required to reach the end of an episode sharply decreases and reaches its minimum
after few training steps, contrarily to the case where the agent is not allowed to
"think" at all (pure model-free method).
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Figure 2.7: Algorithm flow of Dyna

Figure 2.8: Dyna algorithm

2.8 Deep Learning

2.8.1 Deep Function Approximators
The way we presented QLearning gives us a ready-to-use recipe to compute the
state-action value function when the state-action space S ×A can be represented

25



Reinforcement Learning

Figure 2.9: Sample efficiency of Dyna: as we can see, leveraging the predictive
power of an accurate model really really contributes to the decrease of the number
of steps per episode.

in a tabular way; in order for this to be possible, this space must be discrete
and sufficiently small. However, in many practical scenarios, we have the very
opposite situation: for example, think about a task which requires our agent
to work with images of 200 × 200 pixels. If an element of the space (i.e. an
image) is RBG encoded, this means that the cardinality of just the state space
is |S| = (2563)200×200 ! This is a pretty huge number: in fact, it’s bigger than the
number of atoms in the universe.
As a second example, even if we could theoretically deal with this memory problem,
there’s nothing we can do when the state (and/or action) space is continuous.
A solution is therefore to resort to approximators, i.e. interpolation functions:
for example, we can discretize the problem in some way and apply an algorithm of
choice to the discretized problem; then, we can interpolate with these functions
(for example we can use cubic splines) and compute the final policy in the original
continuous space. At present days, the common choice is to resort to deep
approximators.
A major breakthrough of the last decade in AI has been the "re-discovery" of
Artificial Neural Networks: the evolution of hardware capabilities and dedicated
software libraries has made possible to succesfully solve tasks in many fields like
text/speech recognition, computer vision and so on. A rigorous presentation of
neural networks can be found in [7]; basically, we can define a neural network in
the following way: we start by defining its components and then we give the final
definition of artificial neural network.

Definition 2.8.1 (Topology). A topology for a neural network is an ordered pair
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(F, I), where

• F is the framework, an ordered pair (L, {N1, . . . , NL}), where L ∈ N is the
number of layers and {N1, . . . , NL} is the sequence of number of neurons per
layer;

• I is the interconnection scheme, which is a set of relations between sets of
source neurons {ωl,i} and terminal neurons {nm,j} .

Definition 2.8.2 (Constraints). The constraints on a neural net form a tuple
(CW , CΘ, CA), where CW ⊂ R defines the value ranges for the neurons’ weights,
while CΘ ⊂ R and CA ⊂ R represent respectively the value ranges for the layer
biases and for the activation functions.

Definition 2.8.3 (Initial State). The initialization state for a neural net is
a triple (W (0), Θ(0), A(0)), where W (0) is the initial weights state, while Θ(0) =
{θl,i ∈ CT heta : 1 ≤ l ≤ L, 1 ≤ i ≤ Wl} and (0) = {a1,i ∈ CA : 1 ≤ i ≤ N1}.

Definition 2.8.4 (Transition Function). A transition function of a neural net
is a 4-tuple (nf, lr, cf, of) where:

• nf is the neuron function, which specify the output of a neuron given its
inputs;

• lr is the learning rule, which defines how weights get updated;

• cf is the clamping function, which defines how the output signal of each neuron
gets clamped;

• af is the ontogenic function, which specifies any change in the topology of the
network;

Definition 2.8.5 (Artificial Neural Network). An artificial neural network is
a 4-tuple containing its topology, its constraints, its initial state and its transition
function.

In practice, if we want to give an informal idea of what a neural network is, we
can say that a neural network is a function fθ : X → Y (or better, a composition of
functions), depending on a vector of parameters θ ∈ Θ, where Θ is the parameter
space.
A basic example of neural network is the MultiLayer Perceptron (MLP for
short), which is depicted in Fig. 2.10: it consists of multiple layers of neurons
each fully connected to those in the subsequent and precedent layers; in the case
depicted the net has three inputs, two outputs and one hidden layer containing
four hidden units. Fully connected means that the input vector goes as input to
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Figure 2.10: Scheme of MLP: each neuron of the Input Layer (in green), receives
the input sample, which passes through a pipeline containing an affine transfor-
mation and a nonlinear activation function (similar to a filter in signal analysis);
subsequently, the output serves as input for the Hidden Layer(s) (in red), and
finally the Output Layer (in cyan) produces the result.

each hidden unit, that is: given the input vector x = (x1, x2, . . . , xd) (where d = 3
is the dimension of x); given the matrix of hidden-layer weights W1 ∈ Rd×h (where
h = 4 is the number of hidden units), the bias vector b1 ∈ Rh, we have that the
output of the hidden layer is

h = σ(W1x + b1) . (2.68)

In order to realize the potential of multilayer architectures, we add another element,
which is the nonlinear activation function σ : R→ R, which is applied element-
wise to each hidden unit following the affine transformation. Finally, the result of
the output layer is

o = W2h + b2, (2.69)

where W2 ∈ Rh×q and b2 ∈ Rq are the output-layer weights and biases (here we
have q = 2). More general MLPs can be designed by stacking many hidden layers
(each with its own activation function) one on top of the other.
Although the MLP proposed seems somewhat naive, it is known that it works as a
universal approximator: even with a single hidden-layer network, given enough
nodes (possibly absurdly many), and the proper set of weights, we can model any
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function, though actually learning that function is the hard part.
There are mainly three ways in which we can employ this technology in designing
succesful Deep RL algorithms (see Fig. 2.11):

Figure 2.11: Scheme 1: pipeline of an abstract value-based algorithm.

• value-based algorithms: a neural network is used to approximate either
the state value function V or the state-action value function Q; the policy
then is defined and updated implicitly as π(s) = arg maxa Q(s, a). Indeed,
by definition, the value function estimates the expected return obtained by
following the policy π.
Along the fashion of QLearning algorithm, we can turn Eq.2.29 into a learning
algorithm, by minimizing the difference between the left-hand side and right-
hand side of this equation with respect to the parameters θ of a parametric
Q-function estimator Qθ(s, a), for example by taking gradient steps on the
Bellman error objective, as we will show in the next subsection.

• policy gradient algorithms: this is a class of intuitive methods to optimize
the RL objective in Eq.2.5 by directly estimating its gradient. The method is
to parametrize the policy πθ(·|s) by means of a neural network that outputs
a distribution for the actions conditioned on the state s. In this way, the

29



Reinforcement Learning

Figure 2.12: Scheme 2: pipeline of an abstract policy gradient algorithm.

Figure 2.13: Scheme 3: pipeline of an abstract actor-critic algorithm.
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gradient of the objective w.r.t. θ is

∇θG(πθ) = Eτ∼pπθ
(τ)

5
ΣT

t=0γ
t∇θ log πθ(at|st)

3
ΣT

t′=tγ
t′−tr(st′ , at′)− b(st)

4
ü ûú ý

return estimate Â(st,at)

6
,

(2.70)
where Â can be learned either as a separate network or estimated by Monte
Carlo sampling by generating trajectories from pπθ(τ), while b is a suitable
baseline (for example, we can set b := V ): the usefulness of the baseline is to
reduce the variance.
Indeed, this is because policy gradient suffers from high variance in term of the
samples. One way of reduce variance is to introduce the principle of causality,
which states that the action in the present doesn’t affect the rewards obtained
in the past: this is why in the return estimate we only consider time steps that
come after t. Another trick is to use the baseline: in this way "bad" returns
are negative and "good" rewards are positive; this doesn’t change the value
of the expectation since it can be proved that E[∇θ log pθ(τ)b] = 0, but the
variance gets reduced.

• actor-critic algorithms: an actor-critic method combines the ideas of the two
ones shown before, by approximating with neural networks both the policy
and the value function: in particular, the latter is used to try to compute the
return estimate Â in the policy gradient.
While in QLearning we use samples to directly update our estimates of the
optimal Q-function, in actor-critic methods we work on the Q-function defined
by the policy π, that is the one defined in Eq.2.9.
Actor-critic follows the philosophy of Policy Iteration: the policy evaluation
phase consists of computing the q-function for the current policy π, for example
via gradient updates. Then, in the policy improvement phase the next iterate
of the policy is computed as the one which maximizes the q-function at each
state (greedy update), or by using a gradient update procedure.

.

2.8.2 DQN
DQN (Deep Q-Network) is the most common value-based online algorithm for
Deep RL and it has been introduced in 2015 by DeepMind research group [8].
It was the first algorithm employing neural networks in Reinforcement Learning to
be stable.
In this work, a neural network is used to model the q-function and trained by
adjusting its parameters θ to reduce the mean-squared error in the Bellman Equation.
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In fact, since we don’t know the transition dynamics, we can’t work with the exact
Bellman Operator B, operatively defined as

(BQ)(s, a) := r(s, a) + γ · Es′∼P (·|s,a)[max
a′

Q(s′, a′)], (2.71)

we must work with an empirical version of B obtained by sampling data from the
environment: this approximation is the empirical Bellman operator B̂, which
is basically the same approach taken in simple QLearning in Section 2.6.
The network used to model the q-function is called Q-Network; it takes as input a
state and it yields as output the q-values Qθ(s, ·), for every action a ∈ A. At each
training step, assuming we have a sample batch of n transitions {(si, ai, ri, s′

i)}n
i=1

(here we use s′
i as notation for the next state seen after si to not confuse it with

the state si+1 of the next transition in the sample batch), we compute the target
for each sample as

yi = ri + γ ·max
a

Qθ(s′
i, a); (2.72)

then, the loss is simply the MSE over the targets:

L(θ) := 1
n

nØ
i=1

[yi −Qθ(si, ai)]2. (2.73)

It must be observed that in Eq. 2.72, the operator implicitly used is B̂. Un-
fortunately, under these conditions the algorithm doesn’t work properly; this is
because:

• in Supervised Learning, we work under i.i.d. hypothesis, meaning that we
assume the samples to be drawn independently from the same distribution.
This assumption doesn’t hold in RL, since transitions from the same trajectory
are obviously not independent.

• in Supervised Learning, the gradient descent is performed w.r.t the gradient of
the target; however, if we consider the gradient update of a basic value-based
method, that is

θ ← θ − α
∂Q

∂θ

3
Qθ(s, a)− [r(s, a) + γ max

a′
Qθ(s′, a′)]

4
, (2.74)

we are not taking the gradient also w.r.t. the target value in squared paren-
theses [·]. Moreover, the target moves itself during training as the q-function
gets updated, with the risk of causing divergence during the gradient descent.

To solve the first problem, the idea was to use a data buffer (see Fig.2.14) , i.e.,
to collect the transitions observed during the interaction with the environment
and store them in this buffer, which is called Experience Replay. In this way,
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Figure 2.14: DQN Buffer Replay: this data structure interacts with the environ-
ment, which at each step supplies the replay with the most recent transition; in
turn, the replay adds the transition to its internal stack, so that it can be used for
future batch samplings.

every time we have to update the q-function, we perform gradient descent by
sampling a batch of transitions from the buffer and computing the target. Every
transition is represented in the form (s, a, r, s′), where s′ is the state to which the
environment transitions to after the agent sees state s and takes action a. If we
employ a sufficiently large stack (size is up to 106 in the paper), then sampling from
experience is very close to i.i.d. sampling from a distribution over the state-action
space. This contributes to decrease the variance of L(θ), ensuring algorithmic
stability.
The second problem was addressed with the introduction of a second network
called target network: since the moving target causes instability in training,
the idea is to use lagging targets for a fixed number of training steps: this means
that we define a second network which initially has the same parameters’ values
as the Q-Network; at training time, its parameters stay fixed for a number C
of consecutive training steps, while the Q-Network gets updated; then, after C
steps we copy the Q-Network’s parameters into the target network and the process
restarts. In Fig. 2.15, the three-steps evolution of this Q-iteration are shown: the
first is the basic implementation, without buffer replay neither target network; in
the second we add the buffer replay but still no target network, while the third one
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Figure 2.15: Evolution of the dqn algorithm, starting from a simple "Online
Q-Iteration", up to the classic DQN implementation (Buffer Replay + Target
Network), which has proven to work in many different tasks.

is the classic DQN implementation, which has actually been proved to work.
Since this is a QLearning-derived algorithm, it suffers from the maximization bias
problem; the solution that has been taken in this direction is, even in this case,
to apply Double QLearning: this means that, besides the Q-network, we employ
another network (for easiness we can use the target network) to act as critic. So,
the Q-network is used to evaluate the action and the target network is used to
evaluate the value; in formulas, the target is computed as

y = r + γQθ′(s′, arg max
a′

Qθ(s′, a′)), (2.75)

where θ′ are the weights of the target network. This enhanced version of DQN is
called Double Deep Q-Network (or DDQN); in this thesis work, the offline RL
algorithms presented are built on top of this one.
Finally, a rigorous theoretical explanation of the success of DQN can be found in
[9]. In the article, a theoretical foundation for DQN is provided: in particular, the
mathematical motivations for the use of experience replay and target network are
showed.
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Chapter 3

Offline RL

As we have seen, standard RL provides an online learning paradigm, which involves
the act of iteratively collecting experience by interacting with the environment.
However, in practical applications, this approach can be unfeasible, either because
data collection is expensive (e.g., industrial robotics) or dangerous (e.g., healthcare).
Moreover, there are domains for which collected datasets already exist, so it would
be more efficient to use those to leverage knowledge.
Actually, the main successes in the field of machine learning have come with the
advent of scalable data-driven methods, which become better and better at their
tasks when trained with more and more data (without incurring in overfitting);
this has been possible also thanks to the advances in deep learning theory, which
has produced numerous complex deep architectures, each one suitable for its own
task.
In recent years, the question arose whether it’s possible to develop completely
offline RL algorithms, offline meaning that they are trained on previously collected
datasets, without additional interaction with the environment; a high-level scheme
of such methods is depicted in Fig. 3.1 .

Figure 3.1: Offline RL workflow: since no interaction with the environment is
allowed, we use data collected from the world to train the agent, which is then
deployed in the real environment
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Of course, this change of paradigm doesn’t come for free: unfortunately, such
data-driven offline RL methods also pose major algorithmic challenges.
Formally, the end goal is still to optimize the objective in Eq.(2.7); however,
the agent no longer has the ability to interact with the environment and collect
additional transitions using any policy. Instead, the learning algorithm is provided
with a static dataset of transitions D = {(si

t, ai
t, si

t+1, ri
t)}, and must learn the best

policy it can using the dataset. This is similar to what happens in supervised
learning, therefore we can think of D as the training dataset.
Clearly, the training set has an inherent probability distribution over states and
actions which we can call the behavioral distribution (or behavior policy) πβ;
in this sense, states are sampled from s ∼ dπβ (s) and a ∼ πβ(a|s).

3.1 Difficulties of Offline RL

The main practical challenge with offline reinforcement learning is distributional
shift: if we want to train a policy which behavior at the end of training is more
rewarding than the one of the policy (policies) used to collect data, our trained
agent must learn new strategies and action trajectories, therefore distant from
the ones that can be sampled from the dataset. This goes against the theoretical
assumptions of classical machine learning, i.e. the i.i.d. hypothesis, which
assume that data is independent and identically distributed; so, while in standard
supervised learning we want our model to perform well (for example, with great
accuracy) on data coming from the same distribution of the training set, this is
quite the opposite of what we want to accomplish in offline RL: that is, we want
our agent to learn a policy that does better (and therefore it’s different) from the
behavior seen in the dataset.
In a technical way, we say that the agent must make and answer to counterfactual
queries: the agent must formulate hypotheses about what might happen if it
were to choose actions different from the ones seen in the data. The problem is
that with counterfactual queries, distributional shift arises: while our function
approximator (for example the one representing the value function) is trained
under one distribution, it will be evaluated on a different distribution, due both to
the change in visited states by the new policy and by the act of maximizing the
expected return (for example, when using algorithms in the style of QLearning).
How harmful can distributional shift be when trying to learn a policy?
In [10] we are provided with a theoretical example: suppose that at every state
s ∈ D we are provided with optimal actions labels a∗. Under this assumption, we
can try to bound the number of mistakes made by the learned policy π(a|s) based
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on this labeled dataset, as

l(π) = Epπ(τ)[
HØ

t=0
δ(at /= a∗

t )] (3.1)

If we train π(a|s) with supervised learning (i.e. standard empirical risk minimiza-
tion) on this labeled dataset, we have the following result:

Theorem 7 (Behavioral cloning error bound). If π(a|s) is trained via empirical risk
minimization on s ∼ dπβ (s) and optimal action labels a∗, and attains generalization
error ϵ on s ∼ dπβ (s), then l(π) ≤ C +H2ϵ is the best possible bound on the expected
error of the learned policy.

So, even if this optimality assumption should hold, we get an error bound that
is at best quadratic in the time horizon H. We can give an intuitive explanation of
why this happens: at evaluation time, the learned policy π(a|s), may enter into
states that are far outside of its training distribution, since dπ(s) may be very
different from dπβ (s). In these out-of-distribution states, the generalization error
bound ϵ no longer holds, since standard empirical risk minimization makes no
guarantees about error when encountering out-of-distribution inputs that were
not seen during training. Once the policy enters one of these out-of-distribution
states, it will keep making mistakes and may remain out-of-distribution for the
remainder of the trial, accumulating O(H) error. Since there is a non-trivial chance
of entering an out-of-distribution state at every one of the H time steps, the overall
error therefore scales as O(H2).

3.2 Model-Free Offline RL - Conservative QLearn-
ing

As we have seen, value-based methods such as QLearning algorithms are often
an appealing choice for RL tasks, due to both the simplicity of design and their
effectiveness: this is because their main objective is to learn a state (or state-action)
value function and then use it to recover the optimal policy. However, standard al-
gorithms designed for the online setting tend to produce unsatisfying performances
in the offline scenario.
As we know, learning in the offline setting revolves around counterfactual predic-
tions (i.e., answering what-if queries). The problem is, counterfactual predictions
for decisions that deviate too much from the behavior in the dataset cannot be
made reliably, because we don’t know the underlying data distribution.
So, as a consequence of maximization bias, algorithms like QLearning, which per-
form their update steps by querying the state-action value at out of distribution
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actions for computing the bootstrapping target in training, tend to overestimate
the outcome of such state-action pairs which are unknown. As we can see in Fig.
3.2, the policy learned tends to deviate away from the behavior distribution looking

Figure 3.2: Overestimation of unseen, out-of-distribution outcomes when value-
based algorithms like QLearning are trained on offline datasets.

for a promising outcome, which actually is not optimal.
Recently, in order to avoid the learned policy to adopt reckless behaviors, in many
different papers researchers have presented their own safe strategies in which poli-
cies and value functions are learned in a conservative way, which simply means that
we try to estimate the value of out of distribution state-action pairs conservatively,
or, in other words, we try to assign them a low value; in this way, the policy will
not take advantage of this overly-optimistic biases; in this way, the agent can adopt
safe behaviors.
A simply designed but powerful algorithm is Conservative QLearning, or shortly
CQL (reference paper can be found at [11]).
As we have seen, directly adapting QLearning-type algorithms to the offline sce-
nario results in poor performances, due to issues with bootstrapping from out-
of-distribution actions, which has as its consequence the erroneously optimistic
estimation of the value function. In contrast, the core idea of CQL framework offers
an alternative: the real value function is estimated in a conservatve way, which
means that we can extract a lower bound on the true one. This is accomplished
by minimizing the q-values Q(s, a) under a suitably chosen distribution over state-
action tuples, and then tighten more this bound by adding a maximization term
over the dataset distribution.
Being possible to implement CQL both as a value-based (like DQN) and actor-critic
algorithm, we can think the algorithm to be made up of two main steps, which are
illustrated in the next subsections: one is the evaluation (i.e., the assessment) of
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the current policy iterate; the second is a policy improvement step.

3.2.1 Conservative Off-Policy Evaluation
When we talk about off-policy evaluation we mean that the objective is to estimate
the value function V π of a certain target policy π computed by using a datset D
collected by a behavior policy πβ.
Since we want to take a conservative approach, we learn a lower-bound q-function
by minimizing the standard Bellman Error objective along with the minimization
of q-values: in more detail, we minimize the expected q-value under a particular
distribution of state-action pairs µ(s, a) = dπβ (s)µ(a|s), where dπβ (s) is the state
marginal distribution of the dataset: we leave this part unaltered since the prob-
lem with maximization bias is only on unseen actions and not on unseen states.
Moreover, the added penalization term is controlled by a tradeoff parameter α; in
this way the iterative update results in

Q̂k+1 ← arg min
Q

α(Es∼D,a∼µ(a|s)[Q(s, a)]+

1
2Es,a∼D[(Q(s, a)− B̂πQ̂k(s, a))2], (3.2)

where B̂π is the empirical Bellman operator, which is the empirical approxima-
tion under the dataset collected and the target policy π of the contraction operator
H defined in Chapter 1.
In the paper it has been shown that the limit of this sequence of functions, for
k →∞, is a point-wise lower bound for the true Qπ; however, this can be a too
strict bound if we just want to obtain a lower-bound on expectation of Qπ (which
is equivalent to obtain a lower-bound estimation of V π). Consequently, in order
to refine this bound we can add a q-value maximization term, where the implicit
distribution is the one of the dataset; in mathematical formalism (in explicit, the
added term is the one preceded by a minus sign), we have

Q̂k+1 ← arg min
Q

α(Es∼D,a∼µ(a|s)[Q(s, a)]− Es,a∼D[Q(s, a)]+

1
2Es,a,s′∼D[(Q(s, a)− B̂πQ̂k(s, a))2]. (3.3)

The refined bound now becomes

Eπ(a|s)[Q̂(s, a)] ≤ V π(s) (3.4)

when µ(a|s) = π(a|s) . The intuitive explanation of Eq.(3.3) is that, since q-values
under the behavior policy π̂β are maximized, q-values for actions that are likely
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under such distribution might be overestimated, with the consequence that Q̂π

might not be a pointwise lower-bound of Qπ.
It can be shown that, for a suitable choice of α, both bounds hold under sampling
error (related to the size of the dataset) and function approximation. Moreover,
as the dataset gets larger, the theoretical value of α that is needed to obtain such
bounds decreases; so, in the limit of infinite data, we can use infinitely small values
for the parameter.

3.2.2 CQL for Off-Policy Learning
So far we have seen how we can conservatively estimate the value of a chosen policy
π if we set µ = π. How can we use this for learning an optimal policy offline?
Since at time k the policy π̂k is implicitly derived from the q-function (for example,
as an ϵ−greedy policy), we can choose µ(a|s) to approximate the policy that
would maximize the current q-function iterate; in this way, we obtain a family of
optimization problems over µ(a|s). An instance of this family is CQL(R), which
is characterized by a particular choice of the regularizer R(µ):

min
Q

max
µ

α(Es∼D,a∼µ(a|s)[Q(s, a)]− Es,a∼D[Q(s, a)]+

1
2Es,a,s′∼D[(Q(s, a)− B̂πQ̂k(s, a))2] +R(µ). (3.5)

Following the work proposed in the paper, we chooseR(µ) to be the KL-divergence
against the prior distribution ρ(a|s) = Unif(a), where Unif(a) is the uniform
distribution on the action space.
We recall that, given two probability distributions P, Q over a probability space
with sample space Ω, we can define the Kullback-Leibler divergence as

DKL(P, Q) :=
Ú ∞

−∞
p(x) log

3
p(x)
q(x)

4
dx, (3.6)

where p and q denote the probability densities of P and Q respectively.
Now, if we define R(µ) := −DKL(µ, ρ), it can be shown that µ(a|s) ∝ ρ(a|s) ·
exp Q(s, a).
So, with this choice the first term in Eq.3.5 corresponds to a soft-maximum of the
q-values at any state s; the optimization problem obtained, called CQL(H), is

min
Q

αEs∼D[log
Ø

a

exp Q(s, a)− Ea∼π̂β(a|s)[Q(s, a)]]+

1
2Es,a,s′∼D[(Q(s, a)− B̂πQ̂k(s, a))2]. (3.7)
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The derivation of CQL(H) is immediate once we substitute R = H(µ), where H(µ)
is the entropy of µ; then, we solve the optimization over µ in closed form for a
given q-function. Indeed, if we consider the optimization problem

max
µ

Ex∼µ(x)[f(x)] +H(µ) s.t.
Ø

x

µ(x) = 1, µ(x) ≥ 0 ∀x, (3.8)

the solution is µ∗(x) = 1
Z

exp f(x), where Z is a normalizing factor.
Moreover, if we use as our regularizer the KL-divergence instead of the entropy H,
we can restate the problem as

max
µ

Ex∼µ(x)[f(x)] + DKL(µ||ρ) s.t.
Ø

x

µ(x) = 1, µ(x) ≥ 0 ∀x. (3.9)

In this case the optimal solution is µ∗(x) = 1
Z

ρ(x) exp f(x). Plugging this result
back in Eq. 3.5 we obtain

min
Q

αEs∼d
πβ (s)

5
Ea∼ρ(a|s)

5
Q(s, a)exp Q(s, a)

Z

6
− Ea∼πβ(a|s)[Q(s, a)]

6
+

1
2Es,a,s′∼D

53
Q− BπkQ̂k

426
(3.10)

In this work, we implemented a QLearning variant of CQL, meaning that we only
parametrize the q-function, while the policy is implicitly defined as a greedy one
over said q-function. The Algorithm is illustrated in Fig.1:

Algorithm 1 CQL: Conservative QLearning
1: Initialize Q-function, Qθ and target network Qθ′ .
2: for step t in i = 1,2,3, . . . do
3: Train the Q-function using GQ gradient steps on objective from Equation

3.7
4: θt := θt−1 − ηQ∇θ CQL(R)(θ)
5: Update target network every K steps
6: end for

3.2.3 Theoretical Analysis of CQL
In this Section we present results that show the conservatism of the policy updates,
i.e, each successive policy iterate is optimized against a lower bound on its value.
The next Theorem states that, at each step, the q-value estimates that are learned
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lower-bound the actual q-function under the action-distribution defined by the
current policy if this is updated slowly. Hereon, we use the notation DT V (·, ·) to
represent the total variation distance between two probability measure (for its
definition, see [12]).

Theorem 8 (CQL learns lower-bounded values). Let πQ̂k(a|s) ∝ exp Q̂k(s, a) and
assume that DT V (π̂k+1, πQ̂k) ≤ ϵ (i.e., π̂k+1 changes slowly w.r.t Q̂k). Then, the
policy value under Q̂k lower-bounds the actual policy value, V̂ k+1(s) ≤ V k+1(s) ∀s,
if

Eπ
Q̂k (a|s)

5πQ̂k(a|s)
π̂β(a|s) − 1

6
≥ max

a s.t. π̂β(a|s)>0

3πQ̂k(a|s)
π̂β(a|s)

4
· ϵ. (3.11)

The term on the left corresponds to the actual amount of conservatism induced in
the value function by choosing a soft-max policy over the q-function, i.e., π̂k+1 = π

Q̂k .
However, since the actual policy π̂k+1 may be different, the term on the right is the
maximal amount of potential overestimation due to this difference. Since we want
a lower-bound on the value function, we require the amount of underestimation to
be higher: this can be obtained if the policy changes slowly, i.e. for small values of
ϵ.
Moreover, we can observe that the q-function receives updates that are "gap-
expanding", in the sense that the difference between q-values for in-distribution
actions (i.e., actions represented in the dataset) and over-optimistically Q-values
for out-of-distribution actions is larger than the one obtained computing the
true Q-function on the same actions. This has the logical consequence that the
policy πk(a|s) ∝ exp Q̂k(s, a) is constrained to be closer to the dataset distribution
π̂β(a|s). So, CQL helps in preventing the dangerous effects of over-estimation and
distributional shift.

Theorem 9 (CQL is gap-expanding.). At any iteration k, CQL expands the
difference in expected q-values under the behavior policy πβ(a|s) and µk, such that
for large enough values of αk, we have that

∀s, Eπβ(a|s)[Q̂k(s, a)]− Eµk(a|s)[Q̂k(s, a)] ≥ Eπβ(a|s)[Qk(s, a)]− Eµk(a|s)[Qk(s, a)].
(3.12)

In conclusion, with the proper values of α, the algorithm learns a conservative
estimate of the actual q-function, with the consequence that the CQL-learned policy
performs at least at the same level of the actual one. Moreover, we showed that
the q-function updates are gap-expanding: that is, only the difference between in-
distribution and out-of-distribution actions is overestimated, so that maximization
bias can be prevented.
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3.2.4 Safe Policy Improvement Guarantees
In this section we show that CQL optimizes the objective defined by the empirical
return, providing a safe policy improvement.
Given a policy π, we define its empirical return J(π, M̂) as the discounted return
of π in the empirical MDP M̂ , induced by the transitions present in the dataset,
i.e., M̂ = {(s, a, r, s′) ∈ D}.

Theorem 10. Let Q̂π be the fixed point of Eq. 3.3; then

π∗(a|s) := arg max
π

Es∼ρ(s)[V̂ π(s)] (3.13)

is equivalently obtained by solving:

π∗(a|s)← arg max
π

J(π, M̂)− α
1

1− γ
Es∼dπ

M̂
(s)[DCQL(π, π̂β)(s)], (3.14)

where DCQL(π, π̂β)(s) := q
a π(a|s) ·

3
π(a|s)

π̂β(a|s) − 1
4

.

The Theorem states that CQL performs an optimization of a policy’s performance
in the empirical MDP M̂ while at the same time it succeeds in keeping the learned
policy not too far from the behavior policy π̂β; what’s more, the policy obtained is
actually a ζ−safe improvement over the behavior policy:
Theorem 11. Let π∗(a|s) be the the policy obtained by optimizing Eq.3.14; then,
the policy is a ζ−safe improvement over π̂β in the actual MDP M , i.e., J(π∗, M) ≥
J(π̂β, M)− ζ with probability 1− δ, where ζ is given by:

ζ = 2
3

Cr,δ

1− γ
+ γRmaxCT,δ

(1− γ)2

4
Es∼dπ∗

M̂
(s)

5 ñ
|A|
|D(s)

ñ
DCQL(π∗, π̂β)(s) + 1

6
−3

J(π∗, M̂)− J(π̂β, M̂)
4

ü ûú ý
≥α 1

1−γ
Es∼d∗

M̂
(s)[DCQL(π∗,π̂β)(s)]

, (3.15)

where Cr,δ and CT,δ are constants depending on δ, the reward function r and the
true transition function T .

We can see how ζ is made up of two terms: the first term represents the policy
decrease in performance in M̂ , since this one was actually trained on M̂ ; we refer to
this contribution as sampling error. The second term represents how the policy
performance increase due to the conservatism induced by CQL in the empirical
MDP M̂ .
The policy π∗ that we obtain improves over the behavior policy π̂β for suitable
choices of α; this values can be chosen as small as sampling error decreases (i.e., as
the dataset size increases).
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3.3 Model-Based Offline RL
The use of predictive models can be a powerful tool for enabling effective offline rein-
forcement learning. Since basically the core principle of model-based reinforcement
learning algorithms is to leverage the learned transition dynamics T (st+1|st, at),
which is approximated by a parametrized model TΨ(st+1|st, at), their use is surely
motivated when we have powerful supervised learning methods for fitting the model,
as well as access to large and differentiated data sources. However, also model-based
methods are susceptible to distributional shift.
Indeed, since the policy is optimized to obtain the highest possible expected return
under the current model, this optimization process can lead to the policy exploiting
the model, intentionally producing o.o.d (out-of-distribution) states and actions at
which the model TΨ(st+1|st, at) erroneously predicts successor states st+1 that lead
to higher returns than the actual successor states that would be obtained in the
real MDP. This model exploitation problem can lead to policies that produce sub-
stantially worse performance in the real MDP than what was predicted under the
model. Regarding optimality guarantees using a model-based approach, theoretical
analysis of model-based policy learning can provide bounds on the error incurred
from the distributional shift due to the divergence between the learned policy π(a|s)
and the behavior policy πβ(a|s), similar to what we have done before, except that
now both the policy and transition probabilities experience distributional shift. In
[10] some results are shown concerning the possibility of these methods in terms of
final return.
In particular, if we assume that the total variational distance1 (TVD) between
the learned model TΨ and the true dynamics T is bounded by an error

ϵm = max
t

Edπ
t
DT V (TΨ(st+1|st, at)∥T (st+1|st, at)), (3.16)

and the TVD between π and πβ is likewise bounded by ϵπ, then the true policy
value J(π) is related to the policy estimate under the model, JΨ(π), according to

J(π) ≥ JΨ(π)−
52γrmax(ϵm + 2ϵπ)

(1− γ)2 + 4rmaxϵπ

1− γ

6
(3.17)

Intuitively, the second term within squared parentheses represents the error due
to the distributional shift, while the other one is consequence of the shift in dis-
tribution of the approximated model. The first error also includes a dependence
on ϵπ, because as the policy goes farther from πβ, new states encountered will be
consequently not present in the data distribution; this means that, since the model

1Recall that, given two probability measures P, Q defined on a sigma-algebra F , their total
variation distance can be computed as DT V (P, Q) := supA∈F |P (A)−Q(A)| .
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is trained on the very offline dataset, it will be less confident with predictions
conditioned on these more recent states.
Although model-based reinforcement learning appears to be a natural fit for the
offline paradigm, many of the current methods rely on explicit uncertainty esti-
mation for the model to detect and quantify distributional shift, for example by
using a bootstrap model ensemble. For instance, recently two concurrent methods,
MOReL ([13]) and MOPO ([14]) have proposed offline model-based methods that
aim to utilize conservative value estimates to provide analytic bounds on perfor-
mance. This is accomplished not immediately on the critic’s training; instead,
both these methods work on a conservative modification of the original MDP, in
order to directly induce conservative behavior in the simulated transition dynamics.
Basically, the reasoning behind these precautions is to induce the policy to assign
low values to states on which we think the model is probably not able to make safe
predictions. In this way, as the learned policy is constrained to perform actions
belonging to regions where the model is accurate, then the model-based estimate
of the policy’s value will be accurate too.
Although these methods has consistently proven to be succesful, their weak link
lies in the fact that, in order to work, they must address in some manner the
uncertainty caused by the model approximation. For the sake of theory, we can
just assume the existence of an error oracle u(s, a) that provides a consistent
estimate of the accuracy of the model at state-action tuple (s, a); for example, the
oracle could satisfy the property that D(TΨ(st+1|st, at)∥T (st+1|st, at)) ≤ u(st, at)
for some divergence measure D. Then, conservative behavior can be induced
either by modifying the reward function to obtain a conservative reward of the
form r̃(s, a) = r(s, a) − λu(s, a), as in MOPO, or by modifying the MDP under
learned model so that the agent enters an absorbing state with a low reward value
when u(s, a) is below some threshold, as in MOReL. In both cases, we have that
the estimated policy’s performance under the modified reward function or MDP
structure is a lower bound for the policy’s true performance in the real MDP; this
means that if we stay safe we avoid the risk of overestimating the final result.
However, this is easier said than done, since such ways of proceeding still need a
faithful estimation of the error oracle u(s, a).

3.4 COMBO
We now present COMBO (short for Conservative Offline Model-Based Policy
Optimization), the main algorithm used in this work (reference paper can be found
at [15]).
As we have seen before, practical variants of model-based algorithms rely on explicit
uncertainty quantification for incorporating pessimism. The innovative idea of
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COMBO instead is to regularize the value function on out-of-support state-action
tuples generated via rollouts under the learned model. In this way, we avoid being
overly-optimistic when it comes to assess the value of state-action tuples that are
out-of-support (i.e., not present in the training dataset), without the necessity
to explicitly represent the world’s uncertainty (which is what we don’t know we
don’t know). Concerning the general algorithmic framework of COMBO, since
it’s a model-based approach, we must first use the data available to learn an
approximation of the transition dynamics; subsequently, we can either train an
actor-critic agent or a value-based one (similarly to DQN); however, differently
from CQL, since now we have a model representation of the environment, we can
use it to augment our dataset by generating synthetic transitions. This is similar
to what we have seen with Dyna, but, differently from it, the critic function in
COMBO stays conservative by trying to penalize the value function in state-action
tuples that, as we said before, are out of the distribution for the dataset: such
tuples are therefore only the ones synthetically generated by the model.
Regarding the theoretical results, it can be proven that, same as CQL, the policy
learned by this algorithm obtains a lower-bound performance on the one from the
real optimal policy.
We can observe that COMBO is an extension of CQL adapted to the model-based
setting; so, as in the model-free algorithm, at each iteration we first try to assess the
goodness of the current policy in a conservative way; secondly, we try to improve
the policy, as follows:

• conservative policy evaluation: at iteration k, we will have a suboptimal
policy πk; what we want to do is trying to assess the value of such policy by
evaluating its q-function Qπk in a conservative way. Similarly to CQL, this is
accomplished by penalizing Qπk on tuples drawn from a particular state-action
distribution that is more likely to be out-of-support while pushing up the
q-values on state-action pairs that are reliable. In short, we solve the following
optimization problem:

Q̂k+1 ← arg min
Q

β(Es,a∼ρ(s,a)[Q(s, a)]− Es,a∼D[Q(s, a)]+

1
2Es,a,s′∼df

[(Q(s, a)− B̂πQ̂k(s, a))2], (3.18)

where M̂ is the approximated MDP implicitly defined by the learned model;
ρ(s, a) and df are sampling distributions that we can choose: for ρ(s, a), we
make the following choice:

ρ(s, a) = dπ
M̂(s)π(a|s), (3.19)

where dπ
M̂ is the discounted marginal state distribution when executing π in

the learned model M̂. Samples from such distribution can be drawn by rolling
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out π in the learned model. Similarly, df is an f−interpolation between the
offline dataset and synthetic rollouts from the model:

dµ
f = fd(s, a) + (1− f)dµ

M̂(s, a), (3.20)

where f ∈ [0,1] is the ratio of the datapoints drawn from the offline dataset and
µ(·|s) is the rollout distribution used with the model, which can be modelled
as π or a uniform distribution. For simplicity, hereon we denote df := dµ

f .
Under such choices of ρ and df , we push down (or conservatively estimate)
q-values on the state-action tuples from model rollouts and push up q-values
on the real state-action pairs from the offline dataset. When updating q-values
with the Bellman backup, we make use of both the model-generated data
and the real data, similar to Dyna. Note that in comparison to CQL and
other model-free algorithms, COMBO learns the q-function over a richer set
of states beyond the states in the offline dataset. This is made possible by
performing rollouts under the learned dynamics model, denoted by dµ

M̂.

• Policy Improvement Using a Conservative Critic: after learning a
conservative critic Qπ , we improve the policy as:

π′ ← arg max
π

Es∼ρ,a∼π(·|s)[Q̂π(s, a)] (3.21)

where ρ(s) is the state marginal of ρ(s, a).

When policies are parameterized with neural networks, we approximate the arg max
with a few steps of gradient descent. The algorithm is represented in Fig. 2.

Algorithm 2 COMBO: Conservative Model Based Offline Policy Optimization
Require: Offline dataset D, rollout distribution µ(·|s), learned dynamics model

T̂θ, initialized critic QΨ.
Train the probabilistic dynamics model T̂θ(s′, r|s, a) on D.

2: Initialize the replay buffer Dmodel ← ∅.
for i = 1,2,3, . . . do

4: Perform model rollouts by drawing samples from µ and T̂θ starting from
states in D. Add model rollouts to Dmodel.

Conservatively evaluate current policy by repeatedly solving (3.18) to obtain
Qi

Ψ using data sampled from DtDmodel.
6: Improve policy under state marginal of df by solving (3.21) to obtain πi.

end for
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3.4.1 Theoretical Properties
This Section shows the results obtained by COMBO’s authors in [15].
Assuming that state and action spaces are both finite, the q-function found at step
k can be obtained by differentiating 3.18 with respect to Qk:

Q̂k+1(s, a) = (B̂πQk)(s, a)− β
ρ(s, a)− d(s, a)

df (a, ) . (3.22)

We can see that the three distributions ρ, d, df constitutes a penalty weighted by β
for the q-function; such penalty can be shown to be positive in expectation, which
is useful since we want to prevent overestimation. Moreover, we have the following
result:

Lemma 3 (Interpolation Lemma). For any f ∈ [0,1], and any given ρ(s, a) ∈
∆|S||A|, let df be an f−interpolation of ρ and D, i.e., df := fd(s, a) + (1− f)ρ(s, a).
For a given iteration of Eq.3.22, define the expected penalty under ρ(s, a) as:

ν(ρ, f) := Eρ

5
ρ(s, a)− d(s, a)

df (s, a)

6
. (3.23)

Then, ν(ρ, f) satisfies:

• ν(ρ, f) ≥ 0 ∀ρ, f

• ν(ρ, f) is monotonically increasing in f for a fixed ρ

• ν(ρ, f) = 0 iff ∀(s, a), ρ(s, a) = d(s, a) or f = 0

Since in the COMBO implementation we set ρ(s) = dπ
M̂(s) and ρ(a|s) = π(a|s),

each update step of 3.22 penalizes the q-function, making it more conservative;
such penalization is controlled by f , which in practice controls the balance between
real and synthetically generated data.
COMBO optimizes a lower bound on the expected return of the learned policy,
which is close to the performance of the actual policy, if its state-action distribution
is in support of the one of the behavior policy; otherwise, it’s nevertheless a
conservative estimation of it.
It can be shown that, given any policy π, the asymptotic q-function learned
by COMBO is a lower-bound of the actual q-function of the policy with high
probability, when β is large enough. Indeed, we can think of the Bellman backup
in Eq.(3.18) as an f−interpolation of two Bellman backups, namely Bπ

M̄
and Bπ

M̂
,

where M̄ is the empirical MDP obtained by taking raw data counts of the elements
in the dataset, while M̂ is the learned model.
Now we can state the Theorem:
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Theorem 12. [Asymptotic lower-bound] Let P π denote the Hadamard product of
the dynamics P and a given policy π in the actual MDP and let Sπ := (I−γP π)−1cS,
where cS is a suitably chosen positive constant. Let D denote the total variation
divergence between two distributions. For any π(a|s), the q-function obtained by
recursively applying Eq.(3.22) with B̂π = fBπ

M̄
+ (1− f)Bπ

M̂
, with probability at least

1− δ, results in Q̂π that satisfies:

∀s, a, Q̂π(s, a) ≤ Qπ(s, a)− β · ϵc + fϵs + (1− f)ϵm,

where ϵc, ϵs, ϵm are given by:

ϵc(s, a) :=
5 1
cS

Sπ
5
ρ− d

df

66
(s, a),

ϵm(s, a) :=
5
Sπ

5
|R−RM̂ |+

2γRmax

1− γ
D(P, PM̂)

66
(s, a),

ϵs(s, a) :=
5
Sπ

5
Cr,T,δRmax

(1− γ
ñ
|D|)

66
(s, a).

Having stated these results, we can formulate a straightforward corollary:

Corollary 1. For a sufficiently large β, we have that

Es∼µ0(s),a∼π(·|s)[Q̂π(s, a)] ≤ Es∼µ0(s),a∼π(·|s)[Qπ(s, a)],

where µ0(s) is the initial state distribution. Furthermore, when ϵs is small, such
as in the large sample regime; or when the model bias ϵm is small, a small β is
sufficient along with an appropriate choice of f .

Theorem 12 states that large values of β emphasize conservatism, which leads to
"smaller" q-functions, which happens also with CQL. However, COMBO improves
over the latter, since we can leverage the learned model to handle states that
are not represented in the dataset; moreover, COMBO does not produce a value
function which underestimates the real one at every state, but only lower-bounds
the expected value function under the initial state distribution: this results in a
tighter lower-bound.

3.4.2 Safe Policy-Improvement Guarantees
Finally, we show that the policy learned by COMBO is actually an improvement
over the behavior policy:

Theorem 13. ζ−safe policy improvement Let π̂out be the policy learned by COMBO.
The policy is a ζ−safe policy improvement over πβ in the actual MDP M, i.e.,
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J( ˆπout,M) ≥ J(π̂β,M)− ζ, with probability at least 1− δ, where ζ is given by:

ζ = O
3

γf

(1− γ)2

4 5
E

s∼d
π̂out
M

5öõõô |A|
|D(s)|DCQL(π̂out, πβ)

66
ü ûú ý

:=(1)

+ (3.24)

O
3

γ(1− f)
(1− γ)2 DT V (M̄,M̂)ü ûú ý

:=(2)

− β
ν(ρπ, f)− ν(ρβ, f)

(1− γ)

4
ü ûú ý

:=(3)

. (3.25)

Here, DCQL is a probabilistic distance between policies defined as

DCQL(π, πβ)(s) :=
Ø

a

π(a|s) ·
1 π(a|s)

πβ(a|s) − 1
2

(3.26)

So, we see that ζ is made up of three contributions: term (1) accounts for the
performance decrease due to the limited size of the dataset and gets negligible
with huge amount of data available; term (2) accounts for the approximation error
induced by using a learned model; lastly, it can be shown that term (3) is equivalent
to the improvement in policy performance if we run COMBO first in the empirical
and then in the model MDPs. This is because the learned model has been trained
on the dataset, so that the marginal distribution ρ(s, a) will be closer to the dataset
distribution d(s, a) than its counterpart for the learned policy, which is ρπ. So, term
(3) tends to be positive in practice, and help in reducing the penalties introduced
by the other two terms, refining the performance gain.
It’s important to notice that sampling error (term (1)) is significantly reduced
w.r.t. the one of CQL, if a near-accurate learned model is employed to generate
data. Moreover, differently from other state-of-art model-based methods, even if
the model is suboptimally accurate, we can bias the updates towards the empirical
MDP by controlling the parameter f .

50



Chapter 4

Environment Setup and
Experiments

In this chapter we present the environment on which the algorithms have been
applied as well as the results obtained.
We first start with describing the problem we have tried to solve as well as the
framework developed to formalize such problem.

4.1 CARS Framework
At present time, hybrid electric vehicles (HEV for short) seems like one of the
best ways to go among the many technologies available for greenhouse-gases and
pollutant emissions on-road reduction. In this thesis we want to address the
problem of balancing energy consumption in a hybrid electric vehicle: in particular,
fixed a certain trajectory, we want the vehicle to use fuel as little as possible,
making sure at the same time that battery charge always remains within a certain
charge interval. The simulation of the physical environment and its experiments
are realized by working on a framework developed by PoliTo-AddFor CARS
team in [16].

In HEVs, energy is generated by different sources: the conventional internal
combustion engine ICE integrated with one or more motor-generators (MGs) and
batteries. This energy-power complex system must be managed by an internal
controller: this is the role of the energy management system (EMS), which is used
to define the sequence of operating modes to be realized during a specific driving
mission (DM for short).
As said before, our goal is EMS optimal control: however, we want to address this
problem from an Offline RL perspective.

As in every RL task, the general formulation of the problem accounts for an
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objective function J to be optimized under a control policy π and a set of boundary
conditions. More specifically, here we want to minimize the fuel consumption (FC)
variable while achieving a charge-sustaining (CS) of the battery. In formulas, we
have

π∗ = arg min
π∈f

J = arg min
π∈f

Ú T

0
ṁf (4.1)

with
SoCT = SoC0

V t
v = V t

r

, (4.2)

for t = 1,2, . . . , T , where ṁf is the actual FC, T is the final timestep of the DM,
SoC0 and SoCT are the initial and final battery states of charge (SoCs)and V t

v , V t
r

are respectively the vehicle velocity and the DM requested velocity at time t. In
this way, the FC minimization gets targeted including two boundary conditions:
the first is battery CS, while the second is the compliance of the vehicle velocity
w.r.t. the DM request.
The reward function chosen deals with these boundary conditions and is

RF CEq = a + c · FC + d · FCeq, (4.3)

where
FCeq = −(SoC − SoC∗) · Eb,w

Hi · η̄ICE

. (4.4)

a, c, d are numerical coefficients to be tuned; SoC∗ is a reference battery SoC value,
SoC is the actual battery SoC value and FCeq is the equivalent FC. In Eq. 4.4
Eb,w is the battery energy content related to the admitted battery SoC window, Hi

is the lower heating value of the fuel considered for the specific ICE application
and η̄ICE is a fixed average ICE efficiency value.

4.1.1 Software Framework
In this section we present the Integrated Modular Software Framework
developed by CARS team in [16], on which the experiments have been conducted.
The tool is made up of four distinct modular components: the Simulator, the
Environment, the Communication Interface and the Agent. The Agent and
the Environment are written using the Python 3.8.5 programming language [17];
the HEV simulator is written using MATLAB® [18], while the Communication
Interface uses the UDP communication protocol. The complete configuration of all
parts ensures complete reproducibility of the experiments and, to facilitate, the
configuration of each experiment can be stored in separated databases.
The simulator reproduces the pre-transmission functions of the HEV: it receives
the action ãt (in the physical representation) from the Environment at time step t;
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in turn, it generates the new state st+1, along with an action feasibility mask
mt+1: this represents the set of actions which are allowed to be taken by the agent
at time step t. In practice, since the action space is discrete, the feasibility mask is
a boolean array that indicates whether an action is or not physically possible, for
example in the case where the power requested by the road is not realizable or the
battery SoC range has been trespassed.
The Environment resembles the OpenAIGym suite’s design (see [19] for more info).
Within this module, a distinction is made between physical and logical actions: the
physical action ãt is the actual action applied to the HEV powertrain, while at is
its logical representation.
Regarding the states, the agent doesn’t have access to the full state representation:
instead, it receives only an observation of it, containing partial information. The
state filtering can be done both in a discrete or in a continuous space; in the second
case the observation is standardized in the interval [0,1].

4.2 Data collection
The gathering of datasets to experiment with was performed along the standards of
state-of-the-art offline RL works. This means that data were collected from different
online RL policies, which stem from three different agents, namely AgentRandom,
AgentDDQN and AgentQLearning.
AgentRandom is an agent employing a random policy, meaning that at each time
step the action taken is chosen uniformly at random among the feasible actions.
This ensures the maximum degree of exploration, i.e., this is the policy which
covers the most of the state-action space.
The AgentDDQN instead employs an ϵ-greedy policy based on the Double DQN
algorithm presented in Section 2.8.2, with ϵ-greedy meaning that, at each time
step t, the agent chooses an action uniformly at random (like AgentRandom) with
probability ϵ; on the other hand, with probability 1−ϵ, the action is chosen greedily
w.r.t. the q-function, that is

at = arg max
a feasible

Q(st, a). (4.5)

ϵ is an exploration parameter that linearly decreases during training: this ensures
that exploration is predominant in the beginning of the training, when the agent
is not confident with its predictions, while towards the end of the training the
exploration is really minimal, since by that time the agent will hopefully be almost
optimally trained, so that we would like the actions to be chosen based on its
predictions and not randomly sampled. We start from an ϵ value of 0.8; every
episode it decreases by 0.002, until a value of 0.05 is reached.
Each dataset collected contains transitions in the form (s, a, r, done, s′), where s is
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the state observed by the agent at a certain time step, a is the action taken, r and
s′ are respectively the reward and the next state observed, while done is a boolean
flag that indicates whether the episode is terminated or not (in the state s′).
The datasets collected are the following:

• random: we collected 250000 transitions in the form (s, a, r, done, s′) using
the policy of AgentRandom;

• qlearning: we collected 250000 transitions using an expert QLearning agent;

• expert: we collected 250000 transitions by fully training AgentDDQN; at
the end of the training, we perform some episodes, of which each step was
collected;

• medium: same as the expert dataset, with the difference that training was
stopped when the return obtained in an episode is half of the maximum which
can be obtained after full training of the agent;

• medium-expert: the union of medium and expert datasets (500000 steps);

When collecting qlearning, medium and expert data, we set an ϵ value of 0.25; this
is because the environment is deterministic, so a trained agent following a greedy
policy (i.e., ϵ = 0) would see the same sequence of transitions at each episode.
So, by adding a slight degree of exploration, we ensure that a proper dataset can
be gathered. Each episode is made up of 500 steps, so that 250000 transitions
correspond to 500 collecting episodes.
In the next sections we delve in the proper experimentation of the offline algorithms.

4.3 CQL vs Baseline
For starters, we trained and tested on the collected data a simple offline version of
AgentDDQN, which we called OfflineDDQN: at each training step, a batch of
data is sampled and used to train the critic using the classic DQN target loss (which
is the Mean Squared Bellman Error, or MSBE). This was done in order to have a
reference baseline with which we would have been able to compare the results of
CQL and COMBO. Generally, offline plain adaptations of DDQN are known not to
properly work on complex RL tasks (for example, see [20]). However, contrarily to
what should be to expect, the agent OfflineDDQN is capable of steadily learning,
at least partially, and outperforms the conservative AgentCQL, Indeed, as we can
see here in Figs. 4.5-4.6, we show the returns on a single test episode: in the first
one the metric chosen is the cumulative reward without any discount factor (i.e.,
the return computed with γ = 1), while the second figure shows the return using
a discount factor of γ = 0.99. What’s interesting to see is that both agents are
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capable of learning good and near-optimal policies from random data, which are
collected from a random policy, while, on the other hand, learning from an expert
agent leads to very poor results, unless the expert data is joined with the medium
one, as in medium-expert. The same happens in the case of qlearning, which is
also a near-optimal policy.
On the other hand, the baseline yields better results overall than our CQL imple-
mentation, showing that this offline algorithm fails to deliver promising results
for this task. What’s more, for qlearning, medium and expert the CQL policy
yields negative nondiscounted returns.
An explanation for this behavior could be found in the narrowness of the data
distribution: that is, the data gathered could bring not enough information to cover
the interesting portions of the state-action space, making the algorithm unable to
leverage said data.
For example, in Fig. (4.1) we can see the distributions for the state s variable from
random, medium, expert and qlearning datasets: we can observe that qlearning

Figure 4.1: State distributions: on the x label, obs stands for "observation"

and expert distributions have very sharp peaks: this means that when they are
used for training, the agent can only see a small portion of the state space. This
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problem could be exacerbated when we implement a conservative approach, like in
CQL: since the states collected in qlearning and expert dataset are those visited
from near-optimal policies (since said policies are expert DQN and qlearning),
when the conservative critic of CQL receives a batch containing these states, it
adjusts in a conservative way only those parameters relative to such states. This
can results in an overly-pessimistic approach. However, to validate this hypothesis
is not that simple, since CQL performs poorly also on medium dataset, which
state s distribution does not present sharp peaks; this means that further analyses
are necessary.
Both agents are trained for 250k steps before being tested. For completeness, in
Figs. 4.2-4.4 are showed also the distributions of the other variables: as we can

Figure 4.2: Action distributions: on the x label, ac stands for "action"

see, distributions on qlearning and expert are always very concentrated along
their mean.
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Figure 4.3: Reward distributions: on the x label, re stands for "reward"

Another interesting fact to observe is that on some datasets the agent trained is
not able to fully complete the episode; indeed:

• CQL trained on qlearning dataset incurs in a SOC out of boundaries error,
meaning that it’s not able to keep the state of charge in the correct range
along the trajectory; moreover, the agent trained takes the same action (action
1) at every step;

• CQL trained on expert dataset incurs in a SOC out of boundaries error; more-
over, the agent trained takes only actions 0 and 1 throughout the (prematurely
halted) test episode.
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Figure 4.4: Next state distributions: on the x label, nextobs stands for "next
observation"

4.4 COMBO vs Baseline
For the COMBO practical implementation we have tested two different transition
models: the first is a single Gaussian network, that is, we trained a neural
network to approximate a transition function of the type

T (st+1, r|st, at) = N (µ(st, at), Σ(st, at)), (4.6)

meaning that the network produces a Gaussian distribution (by outputting the
mean and standard deviation conditioned on the observed state-action tuple) over
the next state and reward.
The second model is a Gaussian ensemble: we trained N single Gaussian
networks with the same architecture but with different random initialization of the
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Figure 4.5: Offline Test Returns - CQL vs DQN: CQL produces poor results on
qlearning and expert data

parameters; during validation phase, we only pick the best K < N models and,
when collecting rollouts, we randomly pick one dynamics model from the best K;
in practice, we set N = 7, K = 5. Both the versions (single and ensemble) have
been trained via maximum likelihood.

4.4.1 Model Accuracy
The first thing to assess is the model’s prediction accuracy, i.e. whether the model
used is able to accurately represent the environment dynamics. Regarding the
single Gaussian model, in Fig. 4.7, we can see the total MSE along an episode with
respect to the number of steps used for training the model. We plotted the trend
of the prediction accuracy based on the number of model training steps using the
random dataset, while the critic is chosen as random (i.e., each time the action
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Figure 4.6: Offline Test Discounted Returns - CQL vs DQN: CQL produces poor
results on qlearning and expert data

taken is sampled at uniform).
As we can see, the model is able to basically represent the whole portion of interest
of the state-action space. Moreover, we show in Fig.4.8 that also the ensemble has
good predictive power, actually better than the single dynamics: indeed, in this
case the MSE goes towards zero even sharper.

4.4.2 Horizon
Since COMBO leverages the predictive power of the trained model to collect
rollouts, the horizon parameter (that is, the number of consecutive timesteps the
model has to infer) must also be calibrated. To this end, we conduct some analyses
in this sense. In Fig. 4.9, we show the trend of the absolute relative error in
computing multistep predictions: that is, starting from an initial true state st, we
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Figure 4.7: Cumulative MSE error of the single gaussian model averaged over 10
episodes with respect to the no. of training steps

use the learned model to predict the next stat, ŝt+1; then, this prediction is used
to bootstrapping a predicted rollout ŝt+1, ŝt+2, . . . , ŝt+h, where h is the horizon
parameter. This parameter draws a tradeoff between richness in synthetic data
gathering, and accuracy of the same synthetic data generated.
As we can see, values of h larger than 3 result in absolute relative error larger than
50%, which is unacceptable; therefore, in this implementation of COMBO we stuck
with a value of h = 3.

4.4.3 Results
As for the model-free algorithms, also in this case the agents are trained for a
number of 250k steps on each dataset before being tested; however, for each dataset
and type of model (single or ensemble, so that in the end we have a total of 10
different models), the transition dynamics to be learned needs a different number
of training epochs for each data and model-type configuration.
First, we analyze the results of COMBO equipped with the single Gaussian model
(single-COMBO): these are depicted in Fig. 4.10 and in Fig. 4.11 . As we can see,
single-COMBO performs way better than OfflineDDQN on all types of data, with
the exception of the random and medium-expert datasets, where the results of
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Figure 4.8: Cumulative MSE error of the ensemble model averaged over 10
episodes with respect to the no. of training steps

the model-free baseline are slightly better; what’s more interesting, COMBO seems
pretty insensitive to the type of dataset used in terms of final result.
Using an ensemble model produces slightly better results: the final outcome
is comparable to single-COMBO, but, if we look at the Table 4.1, we can see
that Ensemble COMBO is always better than Single COMBO and OfflineDDQN;
moreover, the ensemble method proves to be the best one in 4 out of 5 scenarios.
As for the single-Gaussian instance, also EnsembleCOMBO proves to be insensitive
to the training data distribution. If we compare this observation with the hypothesis
made in the case of CQL, we can suggest the idea that learning the transition
dynamics and using it to augment the training dataset with synthetically-generated
data can heavily boost the final performance. If this is true, then tweaking the df

parameter in COMBO, which controls the real-synthetic data ratio, can lead to
different outcomes. This analysis is illustrated in the next Section.

4.4.4 Sensitivity analysis of df

As we explained in Subsection 3.4.2, even when the model is suboptimally accurate,
we can bias the updates towards the empirical MDP (which is the MDP represented
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Figure 4.9: Multistep analysis of the single Gaussian model: absolute relative
error in multistep predictions

Offline Test Returns (250k training steps)
OfflineDDQN CQL Single

COMBO
Ensemble
COMBO

Random 4856 4890 4845 4886
QLearning -570 -2119 4857 4874
Medium 2726 -1486 4868 4892
Expert 2603 -788 4883 4886
Medium-
Expert

4893 4830 4879 4899

Table 4.1: Offline Test Returns: as we can see, Ensemble COMBO is the most
powerful method, as it achieves the best results in the majority of cases. In blue
are highlighted the best results for each dataset

by the learned model’s transition dynamics) by controlling the parameter f .
In practice, f controls the percentage of real vs. synthetic data to use for training
the critic. So, if we are confident with our model’s predictive power and we think
the offline dataset does not adequately cover the true MDP, we can shift the value
of f towards 0 to ensure that when training the critic, the larger portion of each
batch is made up of synthetic data, which is data generated from the learned model.
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Figure 4.10: Comparison of results between single Gaussian COMBO and Of-
flineDDQN - Episode test returns

For our experiments, we set f = 0.25 (25% real data, 75% synthetic data) and
f = 0.75. In Table 4.2 we show the results obtained with Ensemble-COMBO on
a testing episode for the values of f used. As we can see, the choice of value for
this parameter is critical to the success of the algorithm and so must be properly
analyzed. For example, this Table shows us that while augmenting the percentage
of synthetic data in training produces more or less stable results, when we set a
lower value for f the performance sharply declines, especially for random and
qlearning (in the latter case the final return is even negative).
What’s peculiar is that for the expert data the opposite is true, while the medium-
expert dataset is really not affected by this sensitivity analysis, probably because
the dataset is sufficiently large and widespreaded.
Even if this analysis can’t directly prove the hypothesis on the reasons of the poor
performance of CQL on certain datasets, it surely gives an insight of how well these
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Figure 4.11: Comparison of results between single Gaussian COMBO and Of-
flineDDQN - Episode test discounted returns

offline algorithms can leverage the different types of data.
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Figure 4.12: Comparison of results between ensemble Gaussian COMBO and
OfflineDDQN - Episode test returns

Sensitivity Analysis of df (on Ensemble-COMBO)
f = 0.25 f = 0.5 f = 0.75

Random 4822 4886 1328
QLearning 3566 4874 -1556
Medium 4359 4892 3858
Expert 2096 4886 4345
Medium-
Expert

4848 4899 4878

Table 4.2: Offline Test Returns as function of f : as we can see, a balanced choice
of real and synthetic data, which corresponds to f = 0.5 delivers the best results:
however, COMBO is more inclined towards using synthetic data, as we can see from
the low returns (highlighted in red) obtained when the real data is predominant;
an exception is the expert dataset, which yields opposite results
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Figure 4.13: Comparison of results between ensemble Gaussian COMBO and
OfflineDDQN - Episode test discounted returns
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Chapter 5

Conclusions

This work aimed to investigate the power of Offline RL methods in a practical
task; in particular, we tried to analyze the differences in terms of final results
between model-free and model-based algorithms. In explicit, the algorithm of
reference for the model-free scenario is Conservative QLearning (CQL), while for
the model-based approach we chose COMBO (Conservative Offline Model-Based
Policy Optimization): both the algorithms are state-of-the-art methods.
The task to experiment was a driving mission of 500 seconds in the CARS
framework.
We conduct five different experiments, based on the different data collected. Using
various online agents (i.e., a random policy, a policy based on QLearning and one
based on DDQN), we gathered 5 different datasets: random, qlearning, medium,
expert and medium-expert.
As a baseline to which we could compare our results, we trained an offline adaptation
of DDQN called OfflineDDQN: this is simply an algorithm that is trained
on batches sampled from the dataset, without the addition of any particular
regularization approach. Although such way of procedure is known in literature
not to work, in our task the agent has proven to be a mildly strong baseline, at
least when trained on random and medium-expert datasets: the reason could
be the simplicity of the environment and the problem related.
Following the results, we evince that CQL is an overly-pessimistic algorithm, since
when trained on datasets collected from near-optimal policies (i.e., expert and
qlearning), it yields poor results. Such excessively pessimistic consideration of
out-of-distribution actions by the algorithm is worth of further analyses.
On the other hand, when we build a model which is able to correctly interpreting
and simulating the environment, things are definitely better: this is what COMBO
does.
We developed two different implementation of COMBO, which differ in the choice
of model: single-COMBO employs a single Gaussian network (i.e., we assume

68



Conclusions

the transition probabilities of the environment to follow a normal distribution);
ensemble-COMBO is an upgrade of single-COMBO, because the states are predicted
by an ensemble of networks, which helps in reducing variance.
We conducted an analysis of the predictive power of both models: we can say that
each of them is able to correctly predict the next observation given the current
state-action tuple. As we expected, the second method is more powerful than
single-COMBO, since it shows a better performance in every type of dataset-based
scenario.
Although our DDQN baseline is slightly better than single-COMBO in 4 out of 5
scenarios, DDQN performs poorly on the expert dataset; on the contrary, single-
COMBO yields good results in every scenario, which makes it a more reliable
algorithm than the baseline.
Overall, Ensemble-COMBO delivers the best results: the algorithm performs better
than the baseline in each scenario except one (QLearning); moreover, Ensemble-
COMBO is the best method overall in 3 out of 5 scenarios.
In the end, we have seen that Offline RL proves to be rather succesful for the task
chosen, although some algorithms among those used make a distinction (in terms
of final result) between the type of dataset used for training. What’s more, training
and leveraging an approximate transition dynamics (i.e., a model) to train an agent
pays dividends at the end of the day. Indeed, as we have shown, model-based
algorithms like COMBO are insensitive to the dataset used for training, achieving
near-optimal performances on all of them.
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