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Abstract
The process of cellular duplication occurs in all living organisms and forms the basis
for biological inheritance. This mechanism involves DNA replication that, being crucial
for the preservation of genetic material, counts a great number of control mechanisms
to verify its correctness. Discontinuities in a strand of the DNA double helix, known as
single-strand breaks (SSBs), can sometimes occur and, if not repaired appropriately, could
pose a serious threat to genetic stability and cell survival. Consequently, cells have evolved
efficient mechanisms for their fixation, involving Poly ADP-ribose polymerase (PARP), a
family of proteins whose main role is to detect and signal SSBs to the enzymatic machinery
involved in their repair (SSBR). The importance of this process is highlighted by the fact
that unrepaired SSBs could cause in proliferating cells the blockage or collapse of DNA
replication forks, leading to the formation of double-strand breaks (DSBs). Although
cells possess a remarkable capacity to accurately repair such DSBs using homologous
recombination (HR), acute increases in cellular levels of SSBs could saturate this pathway,
leading to genetic instability and/or cell death. Defects in HR repair mechanism, caused by
mutations in the pathway, confer the so-called "BRCAness" phenotype. Inactivation of this
pathway causes HR deficiency (HRD), resulting in high levels of genomic abnormalities.
Recent studies have demonstrated the importance of a good predictor of the biological
status of an HR-deficient tumour: the set of tumours that show BRCAness and that
can be selectively sensitive to PARP inhibitors includes a wide range of sporadic breast,
ovarian and also colorectal, cancers. All these features led Nik-Zainal’s research group
to use a weighted model, called "HRDetect", to identify mutational signatures predictive
of BRCA deficiency. This type of analysis requires the tumour and the matched normal
samples to correctly compare and extract the somatic variations caused by the tumour,
discarding the germinal ones.
The work carried out within this thesis is aimed at overcoming this limitation, being able
to correctly predict the score provided by the HRDetect algorithm in situations in which
the normal sample is not available (e.g. cell lines). Through the introduction of a new
"metanormal" sample it has been possible to unlink the tumour sample from the matched
normal, replacing it in the comparison. However, since the tumour is not "matched"
with the respective normal, series of germline mutations are not properly filtered as such
appearing in the set of extracted somatic variations.
To correctly emulate the expected HR scores, obtained by direct comparison between
the tumour sample and the normal matched sample of the considered patient, different
strategies were developed. These latter made it possible to extract somatic mutations
increasingly accurately, reducing the prediction errors related to the presence of germline
mutations. Each strategy was applied to all the breast cancer samples by running the
algorithms via the Linux shell, supported by the Python programming language and the
interpreted language "AWK". The application of the final strategy correctly predicted HR
deficiency/proficiency in 98.6% of the 77 samples considered. The consistency of these
results, through future implementation of the strategy to a larger number of samples,
could contribute significantly to biomedical research.
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Chapter 1

Introduction

This chapter is aimed at reviewing some basic aspects of biology and focuses attention on
two main points.
On one hand, some of the fundamental concepts that characterize modern genetics are
introduced. More precisely, the definitions of genome, gene, chromosome, as well as
the concepts of genetic signature, somatic/germline mutation and mutational class, are
provided.
On the other hand, some of the peculiar characteristics that give cancer its leading role
among the main causes of death in the world are represented.

For complete information on the subject, one can refer to: [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12].

1.1 What is cancer?

Cancer is a vast category of diseases that can begin in practically any organ or tissue
of the body and spread to other organs when abnormal cells proliferate uncontrollably,
invade adjacent regions of the body, and/or move to other organs.
When cancer cells proliferate and reproduce themselves, they often form into a clump
known as a tumour.
Tumours pressurise, crush, and destroy non-cancerous cells and tissues, causing many of
the symptoms of cancer.
Tumours are classified as benign or malignant. Because benign tumours are not cancerous,
they do not develop or spread to the same amount as cancerous tumours, and they are
rarely life-threatening.
On the other hand, malignant tumours grow and spread to other parts of the body.
Metastasis is the process by which cancer cells spread from the initial tumour location to
other sections of the body, and it is a leading cause of cancer death.
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Introduction

1.1.1 Cancer classification
Cancer remains the number two cause of death in the world, second only to heart disease
[1]. It refers to a wide range of disorders that all stem from unregulated cellular develop-
ment.
Commonly divided into benign or malignant tumours, cancers are further defined and
classified by their cell type, tissue or organ of origin.
Following this last partition, four main types of cancer to mention are [2]:

• Carcinomas. A carcinoma originates in the skin or the tissue that covers the surface
of internal organs and glands. Carcinomas are the most prevalent kind of cancer,
forming solid tumours in most cases.

• Sarcomas. Sarcomas begin in the body’s supporting and connecting tissues. Fat,
muscles, nerves, tendons, joints, blood arteries, lymph vessels, cartilage, and bone
can all form sarcomas.

• Leukemias. Leukemia is a kind of blood cancer. When healthy blood cells begin to
alter and expand uncontrolled, leukemia develops.

• Lymphomas. Lymphoma is a cancer that starts in the lymphatic system, which is a
network of tubes and glands that aids in the fight against infection.

1.1.2 Cancer biology
Cancer has afflicted multicellular living beings for about 200 million years, and evidence
of cancer among progenitors of contemporary humans dates back over a million years.
Cancer is now the world’s second biggest cause of mortality, accounting for an estimated
9.6 million fatalities in 2018, or one in every six deaths [3]. Men’s cancers include lung,
prostate, colorectal, stomach, and liver cancer, whereas women’s cancers include breast,
ovarian, colorectal, lung, cervical, and thyroid cancer.
Cancer cells are distinct from normal cells in a variety of ways (as shown in Figure 1.1).
Cancer cells, for example, grow in the absence of signals instructing them to do so, but
normal cells only grow in response to such signals. Cancer cells ignore signals that nor-
mally tell cells to stop dividing or die (a process known as programmed cell death, or
apoptosis), invading nearby areas and spreading to other parts of the body, whereas nor-
mal cells stop growing when they come into contact with other cells and do not move
around the body. Cancer cells also instruct blood arteries to expand in the direction of
tumours. This allows blood arteries to deliver oxygen and nutrition to tumours while also
removing waste materials.
The immune system generally destroys damaged or aberrant cells, but cancer cells can
hide from the immune system and deceive it into assisting them in staying alive and grow-
ing. Some cancer cells, for example, persuade immune cells to protect the tumour rather
than attack it.
Some cancer cells have twice as many chromosomes as normal cells and accumulate var-
ious chromosome alterations, such as duplications and deletions of chromosome sections.
Furthermore, some cancer cells rely on different types of nutrients than regular cells, and
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1.1 – What is cancer?

Figure 1.1. Hallmarks of cancer [13]

they derive energy from nutrients in a different method than the majority of normal cells.
This allows cancer cells to multiply at a faster rate.
Cancer cells often rely on aberrant activities so heavily that they can’t survive without
them. This has led to the development of medicines that target the aberrant characteris-
tics of cancer cells.
Cancer is a genetic disease, which means it’s a subtype of uncommon disease caused by
one or more genotype abnormalities, such as gene mutations or chromosome modifica-
tions, that might induce one or more pathologies.
Cancer-causing genetic alterations can arise as a result of parental inheritance, DNA dam-
age produced by dangerous substances in the environment, including chemicals in cigarette
smoke and UV rays from the sun, or errors that occur during cell division.
The body generally destroys cells with damaged DNA before they develop malignant, but
this ability is compromised by ageing, which explains why cancer risk increases as one
gets older.
It’s crucial to remember that each person’s cancer has a unique set of genetic changes,
and that as the cancer progresses, more changes will occur, and that different cells within
the same tumour may have different genetic mutations.
Proto-oncogenes, tumour suppressor genes, and DNA repair genes are the three primary
types of genes that are affected by genetic alterations that contribute to cancer.
Proto-oncogenes play a role in normal cell division and proliferation. These genes can
become cancer-causing genes (or oncogenes) if they are mutated in specific ways or are
more active than usual, allowing cells to grow and survive when they shouldn’t.
Tumour suppressor genes are also involved in cell growth and division; in fact, cells with
particular tumour suppressor gene mutations may divide uncontrollably.
DNA repair genes are responsible for repairing damaged DNA. Cells with mutations in
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these genes are more likely to generate mutations in other genes and chromosome alter-
ations, such as chromosome duplications and deletions. These alterations may lead the
cells to become malignant if they occur together.
Thirty years ago, scientists couldn’t come up with a logical explanation for what causes
a cell to become malignant. Cancer was known to be caused by cells proliferating un-
controllably within the body, and that chemicals, radiation, and viruses could cause this
alteration, but the particular mechanism was unknown.
However, research during the last three decades has transformed our understanding of
cancer. This breakthrough was made possible in large part by the invention and deploy-
ment of molecular biology tools, which allowed researchers to investigate and describe
aspects of individual cells in ways that were unthinkable a century earlier.
We now understand cancer to be a disease of molecules and genes, and we even know
more about these.
Indeed, as we learn more about these genes, we will be able to design intriguing new ways
for preventing, delaying, and even reversing the alterations that lead to cancer.

1.2 Key concepts of genetics
Genetics is a field of biology that studies genes, genetic diversity, and heredity in living
things.
The discovery of genes, the basic components responsible for inheritance, gave rise to ge-
netics. It may be described as the study of genes at all levels, including how they function
in cells and how they are handed on from parents to children.
Modern genetics focuses on deoxyribonucleic acid, or DNA, the chemical material that
makes up genes, and how it impacts the chemical reactions that make up biological activ-
ities within the cell.
The completion of the sequencing of the human genome, and the understanding of the
genes it encodes, is leading to a new era in medicine, which includes the ability to use
individual genetic profiles to predict, prevent, and prognosticate disease.

1.2.1 All genetic information, or “genome”
The human genome is the complete sequence of nucleotides that makes up the genetic
makeup of Homo sapiens, including nuclear DNA and mitochondrial DNA.
It has an inventory of approximately 3.2 billion DNA base pairs containing approximately
20,000 protein-coding genes.
A reference genome (also known as a reference assembly) is a digital nucleic acid sequence
database created by scientists to represent the set of genes in a single idealised individual
organism of a species [5].
Reference genomes do not correctly reflect the set of genes of any single particular organism
since they are generated through the sequencing of DNA from a number of different
contributors.
A reference, on the other hand, gives a haploid mosaic of various DNA sequences from each
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1.2 – Key concepts of genetics

donor. Multiple species of viruses, bacteria, fungi, plants, and mammals have reference
genomes.
The Human Genome Project (2003) has identified a reference sequence, which is used
globally in the biomedical sciences. The study also found that non-coding DNA totals
98.5%, more than expected, and therefore only about 1.5% of the total DNA length is
based on coding sequences. Reference genomes are frequently used as a blueprint for
creating new genomes, allowing them to be assembled considerably more swiftly and
inexpensively than the Human Genome Project.
The reference genome gives a decent approximation of each single individual’s DNA for a
large portion of the genome.
However, in areas where allelic diversity is substantial, the reference genome may differ
greatly from that of other people.
Reference genomes may be found in a variety of places online, including Ensembl ([14])
and the UCSC Genome Browser ([15]).
On December 17, 2013, the Genome Reference Consortium released the human reference
genome GRCh38. It’s the most recent version, and it’s the one I’m going to use in the
following study.

1 2 3 4 5 6 7 8 9 

10 

19 

11 
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21 

13 

22 

14 15 16 17 18 

X X X Y 

Human Genome 

Figure 1.2. Chromosomal equipment of the Human Genome
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1.2.2 Chromosomes: the genome building blocks
The nuclear DNA of the human genome is grouped into 24 types of chromosomes (Figure
1.2): 22 autosomes, plus two sex-determining chromosomes (X chromosome and Y chro-
mosome) [16].
A chromosome is made up of a single, very long DNA helix that contains thousands of
genes (Figure 1.3). A set of big, linear chromosomes stores the bulk of eukaryotic genes.
In addition to genes, eukaryotic chromosomes contain sequences that guarantee that DNA
is replicated without end sections being destroyed and sorted into daughter cells during
cell division.
The centromere is required for proper chromatid segregation during mitotic and meiotic
anaphase. Telomeres are long stretches of repetitive sequences that cap the ends of lin-
ear chromosomes and prevent degradation of coding and regulatory regions during DNA
replication. Replication origins are sequence regions where DNA replication is initiated
to make two copies of the chromosome.
In particular, man is part of living organisms which have two copies of each chromosome
in somatic cells, called homologous chromosomes. This condition is called diploidy.
Diploidy is most commonly caused via sexual reproduction. The copies of a chromosome
are genetically identical (but with different alleles from the two parents). An exception is
in the case of sex-linked chromosomes in the male, where, instead of two copies of the X
chromosome as in the female, an X is associated with a different, much shorter chromo-
some called a Y .
There are also haploid animals and cells, in which each chromosome is duplicated just
once. Gametes, which combine during the fertilisation process to generate the zygote (the
first diploid cell in the new creature that includes a copy of both parents’ genetic makeup),
are an example of haploid cells.
Polyploidy, in addition to diploidy and haploidy, is common in cultivated plants: these
organisms have more than two copies of their chromosomal composition.

1.2.3 The concept of gene
On each chromosome, at specific locations called locus, are placed units of genetic infor-
mation: the genes [6].
Members of a population can have various alleles at the locus, each with a slightly differ-
ent sequence.
This information is found in the nucleus of eukaryotes (such as animals, plants, and fungi).
Small subsets of genes separate from those present in the nucleus can also be discovered
in the mitochondria (in mammals) and chloroplasts (in plants).
The number of genes in an organism’s genome varies greatly between species. The genome
of the bacteria Mycoplasma genitalium, for example, includes just 517 genes, compared
to the estimated 20,000 to 25,000 in the human genome.
As introduced earlier, DNA represents the building block of chromosomes. It is made up
of four different nucleotide subunits, each of which contains a five-carbon sugar, a phos-
phate group, and one of the four bases adenine, cytosine, guanine, or thymine (Figure
1.3). Because adenine and thymine align to form two hydrogen bonds, but cytosine and
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Figure 1.3. Chromosomes structure

guanine form three hydrogen bonds, base pairing is particular.
In a double helix, the two strands must be complementary, with their base sequences
matching in such a way that it is possible to reconstruct the nucleotide sequence of the
complementary strand of a DNA strand whose sequence is known. In particular, for each
nucleotide there is only one complementary nucleotide, i.e. that can form a hydrogen
bond with the first: adenine and thymine are complementary to each other, as well as
guanine and cytosine.
Transcribing genes contained in DNA into RNA, a second kind of nucleic acid that is
extremely similar to DNA but whose monomers contain the sugar ribose rather than de-
oxyribose, is the first step in the expression of genes encoded in DNA.
In addition to thymine, RNA contains the nucleotide uracil.
RNA molecules are single-stranded and less stable than DNA ones. Codons, which are
three-nucleotide sequences that act as the "words" in the genetic "language", are found in
genes that code for proteins.
The genetic code determines the relationship between codons and amino acids during
protein translation.
All known creatures have almost identical genetic codes. The genetic code is determined
by the nucleotide sequence along a strand of DNA. When the product of a gene is re-
quired, the segment of the DNA molecule containing that gene splits. A strand of RNA
with bases complementary to those of the gene is produced from free nucleotides in the
cell during transcription. Introns (non-coding nucleotide sequences) are removed from the
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main transcript after transcription by editing and splicing mechanisms. A functioning
strand of mRNA is the consequence of these activities. This is a common step in the cre-
ation of mRNA for most genes, but other genes have several methods to splice the original
transcript, resulting in distinct mRNAs and, in turn, different proteins. The mRNA then
travels to ribosomes, where the translation, or protein synthesis, process takes place. A
second form of RNA, transfer RNA (tRNA), lines up the nucleotides on mRNA with par-
ticular amino acids during translation.
One amino acid is coded for by each set of three nucleotides. A polypeptide chain is made
up of one or more linked amino acids formed according to the sequence of nucleotides; all
proteins are made up of one or more linked polypeptide chains.
Experiments have revealed that many genes in organisms’ cells remain dormant for most
of the time, if not all of the time. Thus, it appears that a gene may be turned on or off at
any moment in both eukaryotes and prokaryotes; this process is known as gene regulation.
In higher organisms, the sequence of events connected with gene expression is regulated
at numerous levels and is frequently impacted by the presence or absence of molecules
known as transcription factors. These factors can operate as activators or enhancers at
the most fundamental level of gene regulation, which is the rate of transcription. At
different periods and in certain types of cells, certain transcription factors control the
creation of RNA from genes. Transcription factors frequently bind to the promoter, or
regulatory area, of higher organisms’ genes. Some also are controlled at the translational
and posttranslational levels.
Although DNA replication is often quite exact, mistakes (mutations) do occur. In eu-
karyotic cells, the error rate per nucleotide per replication can be as low as 10−8, but for
certain RNA viruses, it can be as high as 10−3. This indicates that each human cell adds
1–2 additional mutations every generation.
Point mutations, in which a single base is changed, and frameshift mutations, in which
a single base is inserted or deleted, are examples of small alterations generated by DNA
replication and the aftermath of DNA damage.
Missense (changing a codon to encode a different amino acid) or nonsense (a premature
stop codon) mutations can both affect the gene.
Larger mutations can be induced by chromosomal abnormalities such as duplication, dele-
tion, rearrangement, or inversion of substantial parts of a chromosome due to recombina-
tion mistakes.
Furthermore, when fixing physical damage to the molecule, DNA repair systems might
produce mutational mistakes. When healing double-strand breaks, for example, the repair
is more vital to life than restoring a perfect replica.
One of the possible causes of gene mutations may not be genetic but instead epigenetic
in origin, i.e. it can be related to heritable phenotypic modifications that do not entail
changes in the DNA sequence [17].
Modifications in gene activity and expression are the most common epigenetic changes,
although the phrase can also refer to any heritable phenotypic change.
External or environmental influences may have an effect on cellular and physiological phe-
notypic features, or they may be a natural aspect of development.
The term epigenetic also refers to the alterations themselves, which are functionally mean-
ingful changes to the genome that do not entail a nucleotide sequence change. Even though
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these modifications do not entail changes in the underlying DNA sequence of the organ-
ism, they can endure for numerous generations.
Instead, non-genetic factors affect the organism’s genes to function (or "express them-
selves") differently. The process of cellular differentiation is an example of an epigenetic
modification in eukaryotic biology.

1.2.4 Somatic and germline mutations
The mutational theory of cancer suggests that driver mutations in DNA sequence confers
proliferative advantage on a cell, resulting in the development of a neoplastic clone. This
latter, in general, is a collection of identical cells with a shared ancestor, implying that
they are all descended from the same cell.
Many cancers are theoretically a single clone of cells since they are derived from a single
sufficiently altered cell.
However, during cell division, one of the cells can become more altered and acquire new
traits, resulting in the formation of a new clone.
In recent years, this notion of cancer initiation has been questioned and several tumours,
including malignant mesothelioma, have been claimed to have polyclonal origin, i.e. pro-
duced from two or more cells or clones.
Some driver mutations are inherited in the germline, but the vast majority emerge in so-
matic cells during the cancer patient’s lifetime, along with a slew of "passenger" mutations
that aren’t linked to cancer formation.
A mature or developing person’s germline is the line (sequence) of germ cells that contain
genetic material that can be handed down to a descendent.
A germ cell is a member of the differentiation line that is responsible for the transmission
of genetic material to children. The expression is used in contrast to somatic cell, which
refers to the cells that make up an organism’s body, or soma.
Specifically, depending on the context considered, the term "somatic" is used also to refer
to cancer cells.
The numerous tissues which in complex organisms go to constitute the organs and, in
turn, the systems, are made up of aggregates of somatic cells. Only germline mutations
may be passed down from generation to generation [7].
Endogenous and exterior mutagen exposures, aberrant DNA editing, replication errors,
and defective DNA maintenance are among the mutational processes that generate these
mutations.

1.2.5 Principal mutation classes
A defect in a single gene can occur in different mutational signatures of all classes, includ-
ing base substitutions, insertions/deletions (commonly named “Indel” mutations), copy
number rearrangements and rearrangements.
These multiple mutational signatures are distinguished from most biomarkers as they are
the direct consequence of non-repair of the DSB. In particular, the term Single Nucleotide
Variant (SNV)[9] refers to a specific case of base substitution for which a single nucleotide
(adenine, thymine, cytosine, or guanine) in the genome sequence is altered.
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These DNA sequence variations may be rare or common in a population and sometimes
they are referred to as common single nucleotide polymorphisms (SNPs)[10].
A SNP is a variation of the genetic material of a single nucleotide, such that the poly-
morphic allele is present in the population in a proportion greater than 1% (Figure 1.4).
SNPs can occur within a coding sequence of a gene, within an intronic region, or within
an intergenic region.
When SNPs occur within a gene or in a regulatory region near a gene, they may play a
more direct role in disease by affecting the gene’s function [12].
SNPs within a gene, however, do not necessarily modify the coded amino acid sequence,
since the genetic code is degenerated.
Since RNA is a linear polymer of four distinct nucleotides and since each nucleotide triplet
(codon) designates an amino acid, there are 4 to the third power (64) potential triplets.
However, because proteins contain just 20 distinct amino acids, most amino acids are
encoded by more than one codon, indicating that the genetic code is degenerated.
A SNP that generates the same peptide in all its forms is called a synonym (synonymous).
SNPs that are not in a coding sequence can, however, have negative consequences on splic-
ing or binding of transcription factors.
Common SNPs make up 90% of all human genetic variations. SNPs with an allele fre-
quency of 1% or more occur every 100-300 base pairs or so throughout the genome. On
average, two out of three SNPs show a variation between cytosine and thymine.
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Most SNPs have no effect on health or development, however, some of these genetic dif-
ferences have proven to be very important in the study of human health.
Researchers have found SNPs that may help predict an individual’s response to certain
drugs, susceptibility to environmental factors such as toxins, and risk of developing par-
ticular diseases.
SNPs can also be used to track the inheritance of disease genes within families.
The main classes of mutation include Indel mutations. The term Indel refers instead to
the abbreviation of a mutation/recombination event that can be part of two classes: an
insertion or a cancellation, that may have occurred over the years and which have pro-
duced differences in DNA sequences under examination (Figure 1.4).
Single mutations, even in non-coding and hence seemingly unimportant areas like the
promoter, can have profound phenotypic consequences. In reality, the promoter is crucial
because it binds a series of proteins when a gene has to be switched on, due to precise
patterns that proteins detect. It is possible to lose the connection between the transcrip-
tion factor, which is needed to activate transcription, and the promoter if the latter is
mutated. As a result, a point mutation on the promoter might cause the definitive gene to
shut down completely, implying that this protein will no longer be generated since it will
never be able to bind a regulatory protein or initiating factor essential for transcription
to the mutation location.
It’s also possible that, contrary to popular belief, the promoter mutation can bind to the
initial transcription factor very well but will never unbind it, implying that the gene will
be transcribed even when it’s not needed, resulting in the production of a large amount
of gene product, which can lead to disease development.
In addition to single nucleotide substitution, insertion and deletion can occur as a result
of the DNA polymerase slipping on the replicating DNA.
The presence of a series of repeated nitrogenous bases in some areas of DNA is common,
which enhances the likelihood of a polymerase mistake during the copying step (for ex-
ample instead of copying 4 bases it can copy 3 or 5). This procedure can result in the
insertion (insertion) or deletion (deletion) of a base, but it can also entail a larger number
of bases. Indel mutations are common because the polymerase, although having proof-
reading function, is still an enzyme that tends to slide (slippage) and therefore to generate
mistakes when repeated bases are present, resulting in mutations that can lead to disease
development.
Depending on the reason that generated the mutation/recombination, it is possible to
distinguish 3 classes of indel mutations:

• Indel short, 1-5 consecutive bases long that may have been caused by a genome
transcription error;

• Indel medium, long from 100 to 30k bases that may have been caused by the
insertion of transposable elements;

• Indel long, more than 30k bases long and which may have been caused by genetic
recombination.

On the other hand, more generally, Structural Variants (SV) ([8], [11]) are referred to as
changes in the genomic landscape that can alter gene expression levels and thus lead to
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disease development.
The most common and best studied SVs in blood malignancies are chromosomal translo-
cations; here, parts of two genes that are normally on different chromosomes come into
close proximity due to a failure in DNA repair. As a consequence, fusion proteins, which
show a different function and/or cellular localization compared to the two original pro-
teins, are expressed, sometimes even at different levels.
The identification of chromosomal translocations is often used to identify the specific dis-
ease a patient is suffering from.
Copy number variation (CNV) is a phenomenon in which sections of the genome are
repeated (Figure 1.4). It is a type of structural variation: specifically, it is a type of
duplication or deletion event that affects a considerable number of base pairs.
Approximately two-thirds of the entire human genome may be composed of repeats and
4.8–9.5% of the human genome can be classified as copy number variations.

1.2.6 The concept of signature
As outlined above, somatic mutations found in cancer genomes may be the consequence
of different processes, such as incorrect DNA replication, exposure to endogenous or ex-
ogenous mutagens, but also enzymatic modification of DNA, or its incorrect repair [18].
Different mutational processes generate observable patterns of mutation within the genome.
These patterns are called mutational signatures [19].
Until recently, human cancer mutational signatures were studied using a small number of
commonly altered cancer genes, most notably TP53.
Recent advancements in sequencing technology have overcome previous scale limitations:
hundreds of somatic mutations may now be discovered in a single tumour sample, allowing
decipherment of mutational signatures even when many mutational processes are active.
Furthermore, because most mutations in cancer genomes are "passengers", they lack sig-
nificant selection fingerprints.
All types of mutations (such as substitutions, indels, and rearrangements) as well as any
additional mutation characteristics, such as the mutation’s sequence context or the tran-
scriptional strand on which it occurs, can be included in the collection of attributes that
characterise a mutational signature.
Mutational signatures may be extracted using base substitutions and information on the
sequence context of each mutation is also supplied.
There are 96 mutations in this categorization because there are six kinds of base sub-
stitution: C>A, C>G, C>T, T>A, T>C, T>G (It is chosen C>* and T>* because of
the reverse complement that makes the other substitutions identical). This 96-synonym
categorization is especially effective for differentiating mutational signatures that generate
the same changes in various sequence contexts (Figure 1.5). Only one or two of the 96
potential replacement mutations are prominent in some signals, suggesting extraordinary
specificity of mutation type and sequence context (for example signature 10). Others,
on the other hand, have a roughly equal distribution of all 96 variations (for example
signature 3).
There are signatures that are primarily defined by C>T mutations (signatures 1A/B, 6,
7, 11, 15, 19), C>A (4, 8, 18), T>C (5, 12, 16, 21), and T>G mutations (9, 17), as well
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Figure 1.5. Examples of Single Base Substitution (SBS) Signatures [20]

as signatures that reveal distinct combinations of mutation classes (2, 13, 14). At least
two mutational markers were found in most cancer classifications, with a maximum of six
in malignancies of the liver, uterine, and stomach. Although some of these discrepancies
might be explained by differences in signature extraction capacity, it appears that certain
tumours have a more complex repertoire of mutational mechanisms than others.
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Chapter 2

Homologous Recombination
Deficiency

This chapter introduces the concept of BRCAness, which outlines the foundation of the
study covered in the following chapters.
A general introduction of the BRCAness phenotype is presented first, then the analysis is
limited to breast cancer and proceeds with a quantitative definition of its peculiarities.

For more detailed information regarding defects in the HR repair mechanism, you can
refer to: [21], [22].

2.1 BRCAness phenotype
Cellular duplication is a process that happens in all living organisms and provides the
foundation for biological heredity. This mechanism involves DNA replication, which,
since it is so important for the preservation of genetic material, has a plethora of check-
points to ensure its accuracy. Single-strand breaks (SSBs) are discontinuities in a strand
of the double helix of DNA that can develop and, if not repaired properly, can represent
a major danger to genetic stability and cell survival [23]. As a result, cells have evolved
effective systems for their repair, which include Poly ADP-ribose polymerase (PARP), a
family of proteins involved in DNA repair and apoptosis, whose primary function is to
identify and signal SSBs to the enzymatic machinery involved in their repair (SSBR). The
significance of this process is underscored by the fact that unrepaired SSBs can induce the
blocking or collapse of DNA replication forks in growing cells, resulting in the creation
of double-strand breaks (DSBs). Although cells have a remarkable ability to repair such
DSBs utilizing homologous recombination (HR), acute increases in SSB levels in the cell
might overwhelm this mechanism, resulting in genetic instability and/or cell death. De-
fects in the homologous recombination (HR) repair mechanism [24], caused by mutations
in BRCA1/2 or other genes like RAD51 and PALB2, confer the so-called ’BRCAness’
phenotype in other tumour types including breast and ovarian malignancies [21].
Many chromosomal rearrangements are common in cancers caused by inactivating BRCA1
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or BRCA2 mutations. BRCA1-mutated cancers, but not BRCA2-mutated cancers, have
a high number of rearrangement signature 3 small tandem duplications [22].
Signature 5 deletions are seen in large numbers in cancers with BRCA1 or BRCA2 muta-
tions. There were no additional rearrangement signatures linked to BRCA1- or BRCA2-
null instances. In hierarchical clustering analysis, certain breast tumours without de-
tectable BRCA1/2 mutations or BRCA1 promoter methylation displayed similar charac-
teristics and clustered with BRCA1/2-null tumours.
Other mutant or promoter methylation genes may be exerting comparable effects in these
circumstances, or the BRCA1/2 mutations may have been undetected.
The HR pathway, which includes BRCA1 and BRCA2, is required for high-fidelity DNA
double strand break (DSB) [23] repair. Inactivation of such genes causes HR deficiency
(HRD), which results in elevated levels of genomic abnormalities.
Base substitution, insertions/deletions, and rearrangement mutational signals may be
more accurate indicators of poor homologous recombination-based DNA double-strand
break repair and drug sensitivity.
HRD is a common feature of many malignancies, and it’s more common in breast and
ovarian cancers.
In the clinic, the presence of a germline BRCA1/2 mutation is now the most common
genetic biomarker for HRD. However, there are some disadvantages to germline testing:

• It is reliant on the completeness and accuracy of clinical variant annotation databases;

• Epigenetic silencing is ignored;

• Current clinical genetic testing misses partial/complete deletions of the BRCA1/2
loci, resulting in BRCA1/2 status reporting based on the wild type allele from con-
taminating normal tissue;

• HRD can be caused solely by somatic events. Furthermore, the focus on BRCA1/2
ignores the inactivation of other genes in the HR pathway.

As a result, patients may get ineffective treatment or lose out on treatment options, ne-
cessitating the creation of improved HRD biomarkers.
Somatic passenger mutations, which can be discovered easily by whole-genome sequenc-
ing (WGS), have recently been proven to give insights into the mutational processes that
happened before and during carcinogenesis, opening the way for new clinical tumour di-
agnostic prospects. HRD cancers rely on alternative, more error-prone mechanisms for
DSB repair, such as microhomology mediated end-joining (MMEJ)[25]. MMEJ is an error-
prone repair mechanism that involves alignment of micro-homologous sequences internal
to the broken ends before joining, and is associated with deletions and insertions that
mark the original break site, as well as chromosome translocations. It is frequently as-
sociated with chromosome abnormalities such as deletions, translocations, inversions and
other complex rearrangements, resulting in a distinctive mutational footprint across the
genome that may be utilised to diagnose HRD independent of the underlying aetiology
(whether genetic or epigenetic).
The use of this method in primary tumours indicated that HRD is more common than
BRCA1/2-deficient breast cancer tumours, and that it occurs at varied rates in various
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cancer types. HRD rates in late metastatic cancer, on the other hand, are unknown,
despite the fact that they are the individuals who are increasingly being targeted with
customised therapy, such as PARP inhibitors for BRCA insufficiency.

2.2 BRCAness in breast cancer
Hereditary mutations in the BRCA1 and BRCA2 genes cause around 1-5 percent of breast
cancers [21], which are also particularly susceptible to poly (ADP-ribose) polymerase
(PARP) inhibitors. PARP is a nuclear enzyme (protein) that plays a role in a variety
of cellular activities, the most important of which are DNA repair and programmed cell
death (apoptosis). Poly(ADP-ribose) polymerases-1 and -2 (PARP-1 and PARP-2) are
nuclear enzymes that use NAD+ as a substrate to create ADP-ribose polymers.

Figure 2.1. PARP inhibitors: Treatment for BRCA mutant Breast Cancer

PARP-1 and -2 are key components of Base Excision Repair (BER), which is responsible
for repairing DNA damage caused by radiation and monofunctional alkylating chemicals.
PARP-1 and -2 are involved in DNA damage repair, transcriptional activities, cell cycle
and cell death control. PARP-1 is also involved in the generation of oxidant species that
cause DNA damage during inflammation. It has recently been discovered to be directly
implicated in the angiogenic process, implying that blocking both PARP-1 and PARP-2
might improve chemotherapy effectiveness and limit tumour growth via an anti-angiogenic
mechanism.
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PARP is involved in the repair of DNA damage caused by chemotherapeutic drugs (alky-
lating agents and topoisomerase I inhibitors): it is involved in the repair of alkylated
bases.
The phenomenon of tumour resistance to treatment is caused by PARP activation. In-
hibiting PARP, on the other hand, reduces cancers’ capacity to tolerate alkylating drugs
while increasing their susceptibility to chemotherapy.
Damaged single-stranded and double-stranded (DSB) DNA fragments accumulate in the
nucleus when PARP is inactivated. The damaged DNA’s DSBs go unrepaired, causing
cell growth, cell division, and finally tumour cell death to halt.
Other kinds of cancer with germline and/or somatic mutations in BRCA1 and/or BRCA2
are likewise sensitive to PARP inhibitors. As a result, detecting cancers caused by BRCA1
or BRCA2 loss is critical.
Somatic substitutions, rearrangement patterns, insertions/deletions, and mutational sig-
natures have all recently been linked to BRCA malfunction. BRCA1 and BRCA2 het-
erozygous germline mutations increase the lifetime risk of breast, ovarian, and other can-
cers. The BRCA1 and BRCA2 proteins have a variety of tasks, including maintaining ge-
nomic integrity by homologous recombination, which entails HR-mediated double-strand
break (DSB) repair. The deletion of the wild-type allele causes these genes, which are
known as tumour suppressors, to become fully dormant. BRCA1 and BRCA2 inactivation
causes tumours to be deficient in HR, making them particularly vulnerable to chemicals
that enhance the need for HR (Figure 2.1).
PARP inhibitors are an example of therapeutic medicines that induce the replication fork
to halt and collapse, resulting in an increase in DSBs. Failure to execute HR-dependent
DSB repair results in cancer cells being selectively killed. Preclinical and clinical inves-
tigations on breast and ovarian cancer have demonstrated the effectiveness of the PARP
inhibitor in family individuals with BRCA1 and BRCA2 mutations.
Inhibition of PARP, on the other hand, has uses beyond the therapy of germline altered
cancers. In high-grade serous ovarian cancer with germinal or somatic BRCA1 or BRCA2
mutations, effective PARP inhibition maintenance treatment has been reported. This has
resulted in a focus on identifying the molecular characteristics of tumours deficient in
BRCA1 or BRCA2 in cases where the genes are inactivated through germline, somatic,
or secondary mechanisms, such as promoter DNA hypermethylation or inactivation of a
related gene in the HR pathway.
As a result, gene-specific sequencing procedures (including sequencing of all known HR
genes), copy number-based approaches (to calculate homologous recombination deficit
index (HRD) and genomic "scars"), and functional HR competency tests have all been
developed to identify BRCA1/BRCA2 deficits.
The findings acquired using the approaches previously outlined, on the other hand, have
had minimal success in terms of prediction.
Recent studies have demonstrated the importance of a good predictor of the biological
status of an HR-deficient tumour, because the set of tumours that show BRCAness and
may be selectively sensitive to PARP inhibitors is not limited to the lower percentage of
familial breast and ovarian cancers with BRCA1 or BRCA2 mutations, but also includes
a wider range of sporadic breast and ovarian cancers, as well as other cancers of interest
in this study, such as CRC.
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Following recent technological advancements, sequencing costs have decreased signifi-
cantly, allowing for the detection of all somatic mutations in human cancers, including
base substitutions, insertions/deletions, copy number rearrangements, and aberrations,
using whole genome sequencing (WGS).
An in-depth examination revealed mutation patterns, also known as somatic mutational
signatures, which are the physiological readout of DNA damage and repair mechanisms
during carcinogenesis. These markers indicate current and previous exposure to endoge-
nous metabolic degradation, environmental stressors including UV light, and deficits in
DNA repair programs like HR.
As a result, mutational signatures showing BRCA1/BRCA2 deficiency in germline mu-
tated cancers can be utilised to predict BRCA1/BRCA2 deficiency in other malignancies
that exhibit it. Signature 3 was first discovered in a small subset of breast cancers, de-
fined by a base substitution that allowed researchers to separate germline tumours with
BRCA1/BRCA2-null alleles from sporadic tumours; the study was then expanded to in-
clude malignancies of the pancreas, ovary, and stomach.
Despite this, it is unable to determine an effective threshold for distinguishing BRCA
deficient from BRCA proficient malignancies using a single mutational signature.
Whole genome sequencing has just been more widely available, which has brought fresh
insight into the differentiation of these malignancies.
A single mutation in a single gene, such as BRCA1 or BRCA2, results in at least five
mutational signatures of various kinds, including base substitutions, indels, and rear-
rangements.
These numerous mutational fingerprints differ from other biomarkers in that they are the
direct result of the DSB not being repaired. As a result, this finding will be used in the
subsequent analyses to quantitatively describe the genomic properties of BRCA1/BRCA2
inactivation, offering a whole genome sequencing-based predictor for the diagnosis of HR-
deficient cancers.

2.3 Quantitatively define HR Deficiency

It was feasible to detect twenty-four samples containing genetic predisposition mutations
in BRCA1 (n = 5) and BRCA2 (n = 19) using Nik-Zainal’s work [21], which entailed the
sequencing of the breast cancer genomes of 560 patients.
The wild-type allele was lost in 22 of the latter, which was predicted to result in total in-
activation of the relevant protein. The overrepresentation of base substitution signatures
3 or 8, the rearrangement of signature 5, and a substantial number of deletions bigger
than three nucleotide bases, characterise the genomic profile of the 22 people studied.
Furthermore, BRCA1-null tumours displayed an excess of rearrangement signature 3 mu-
tations and a slight contribution of rearrangement signature 1 mutations.
The 22 BRCA1- tumours were compared to 235 additional cases of sporadic breast cancer
with quiescent genomic profiles, other than those of BRCA1/BRCA2-null tumours, in
order to quantify the features of the BRCA1/BRCA2 deficiency.
The study included the extraction of twelve basic substitution mutational signatures, two

29



Homologous Recombination Deficiency

indel, and six rearrangement, which allowed the HRD copy number indices to be calcu-
lated, as well as the use of a logistic regression model to count the mutational signatures
and HRD indices (log transformed and normalised to allow comparability between ge-
nomic parameters).
An iterative validation technique was utilised to guarantee that the parameters identified
as predictors of BRCA1/BRCA2 deficiency were robust and generalizable.
Ninety percent of the samples were used for the selection of model parameters. On
the remaining 10% of data, the weights for each parameter were examined. Finally,
five unique characteristics were determined to transmit the biggest difference between
BRCA1/BRCA2-deficient cancers and sporadic breast tumours: microhomology-mediated
indel, HRD index, base substitution signature 3, rearrangement signature 3, and rear-
rangement signature 5.
The model’s efficacy in predicting BRCA1/BRCA2 deficiency, as well as detecting any
additional cancers with comparable features to germline BRCA1/BRCA2-null tumours,
was evaluated using the specified parameters on a dataset of 560 breast tumours.
An additional 90 tumour samples with a likelihood of BRCA1/BRCA2 deficit greater than
0.7 were detected as a result of extending the analysis to the initial dataset, contributing
to a 20% rise in the overall proportion of patients with a high level of BRCA1/BRCA2.
This finding prompted the researchers to look for further germline and/or somatic muta-
tions in BRCA1 and BRCA2 in the dataset.
Thirty-three individuals were found to have pathogenic germline mutations in BRCA1 or
BRCA2, as well as somatic inactivation of the second allele.
This has significant clinical and potential genetic counselling implications for those affected
and their families in terms of therapeutic choices, as it involves a significant increase in
the number of individuals harbouring alleles of familial predisposition to cancer compared
to the known number at the start of the study.
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Chapter 3

Predicting BRCA1/BRCA2
deficiency in breast cancer

In this chapter, the aim is to illustrate a fundamental tool that this study uses in order
to predict the BRCAness phenotype: HRDetect.
It is intended to focus primarily on the application and performance of the tool, both
relative to breast and other cancer samples.

For information regarding the processing of HRDetect, reference can be made to the works
of the Nik-Zainal group [22], [21].

3.1 A HR status classifier

With a larger starting data set, enriched with 77 samples (22 with known germline muta-
tions, 33 with new germline mutations and 22 with somatic mutations), the same genomic
characteristics previously identified as predictive parameters for the 22 null germline sam-
ples (with the addition of signature 8) were identified.
Base substitution signatures 3 and 8, rearrangement signatures 3 and 5, microhomology-
mediated deletions, and the HRD index are among these traits [22].
The availability of a larger data set has allowed to confirm the stability of the critical
parameters chosen for distinguishing between BRCA1 and BRCA2-deficient tumours, as
well as identify interactions between genomic covariates, which could be potential causes
of the amplification of cooperating signature effects.
Although correlations were discovered, the performance of the model with interactions
did not improve on the predictions given by the model without interactions.
As a result, Nik-Zainal chose to keep a basic model with independent genomic parame-
ters.
In this context, the HRDetect predictor of BRCA1/BRCA2 deficiency was targeted to
that group [21].
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HRDetect’s performance was demonstrated to be superior to current techniques of diag-
nosing BRCA1 and BRCA2 insufficiency, based on the use of distinct mutational signa-
tures.
HRDetect correctly identified BRCA1/BRCA2 deficit in 560 people using a probabilistic
cutoff of 0.7, with a sensitivity of 98.7%, detecting 124 samples with a score greater than
0.7, including additional 47 samples with a high chance of BRCA1/BRCA2 deficiency. It
has been shown effective in alternate sequencing methodologies and has been verified on
separate cohorts of breast, ovarian, and pancreatic cancers.
When all of the classes of mutational signatures are combined, a higher proportion of peo-
ple with breast cancer who have BRCA1/BRCA2 deficiency (up to 22%) than previously
thought (1–5%) may exhibit preferential therapeutic sensitivity to PARP inhibition.

3.2 Other genetic factors related to BRCAness
Three samples exhibited mutations in the HR genes, despite having high HRDetect scores
and no biallelic BRCA1 or BRCA2 mutations [21]. One in particular had a high HRDe-
tect score and a profile that was normally linked with BRCA2 nullity, whereas the other
paternal allele was preserved despite having a BRCA2 germline mutation.
As a result, this patient was an outlier in which the genetic nullity of BRCA2 in the
tumour could not be proven, making it impossible to rule out the inactivation of the wild-
type allele by other mechanisms.
Inactivating monoallelic somatic mutations in other HR repair genes, such as ATR and
ATM, were not linked to increased BRCA1/BRCA2 deficient scores, which was surprising.
Furthermore, among cancers with high HRDetect scores, no gene from the HR gene list
could be identified as a contributor.
Notably, susceptibility alleles for high and moderate penetrance germinal breast cancer,
such as TP53, PTEN, ATM, CHEK2, ATR, RAD50, CDH1, STK11, and PALB2, were
not linked to a genomic profile or a high likelihood of BRCA1/BRCA2 deficiency.
This demonstrates not only the importance of knowing the status of the alternative
parental allele when interpreting mutation data, but also that nearly a third of tumours
with high HRDetect scores that predict deficiency are not states associated with either
a genome profile or a high probability of BRCA1/BRCA2 deficiency and thus cannot be
authenticated as null BRCA1 or BRCA2 through genetic and/or epigenetic means.
On the other hand, given the tumours’ resemblance to null BRCA1 and BRCA2 cancers,
it’s worth considering the biological similarities between them, as well as the fact that
they’re likely to respond to PARP inhibition in a similar way.

3.3 Application of HRDetect in other cancer types
HRDetect was applied to genome-wide sequencing of different malignancies, including
pancreatic and ovarian cancer, to see if it may be used for other tumour types[21]. This
was accomplished by analysing the available BAM data, extracting mutation signatures,
and obtaining copy number profiles utilising the somatic mutation invocation process.
Despite the distributions of HRDetect scores being significantly different from those
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obtained for breast cancer samples, HRDetect exhibited good sensitivity in detecting
BRCA1/BRCA2-null tumours for this kind of tumours (around 100 percent).

3.4 Robustness, stability and generalisability
A 10-fold nested cross-validation technique was used to assess the robustness and gen-
eralizability of the learnt weights, which included the usage of 10 external folds and the
availability of 10% of the data [21]. The remaining 90% of the data is instead utilised to
pick model parameters related to BRCA1 and BRCA2 deficiencies, which are examined
on the inner folds for a range of values that determine the sparsity of the results.
The model coefficients are calculated for each of the 10 folds, revealing that the findings
are consistently non-zero for each of the genomic parameters identified as different.
Finally, the stability of each coefficient was determined by randomly selecting half of the
samples in the training set and counting the number of times each genetic trait was iden-
tified as different (i.e. it had a coefficient other than zero). Each coefficient was non-zero
after iterating over the subsampling for 100 iterations.
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Chapter 4

How is the HRDetect score
predicted?

In this chapter I proceed to retrace the workflow, previously carried out by the research
group of Nik-Zainal, which allowed me to obtain as a result the HR score of interest for
the study.
On the one hand, I focus the attention on the use of two different pipelines. On the other
hand, I proceed with the validation of the results obtained by the group from the original
data and from the data remapped with a more recent version of the reference genome.

To obtain complete information on this topic, you can refer to:[22], [21]

4.1 From WGS analysis to the score
Once the data set, consisting of samples of individuals with breast cancer, used by Nik-
Zainal’s group in their study, was obtained, one of the first objectives I wanted to pursue
was to validate the results of this study.
This was possible by retracing the workflow previously carried out by the research group
and submitting to it a fraction of the samples they identified. As can be seen in the Figure
4.1, the workflow used, starting from the original alignment file, involves the use of a first
pipeline called cpgwgs, the results of which, after the application of appropriate filters, are
subjected to a second pipeline, the HRDetect one [21], through which it is finally possible
to have access to the HRDetect score (final result of the workflow).
The pipeline used by Nik-Zainal’s group, indicated as cgpwgs pipeline (Cancer Genome
Project Whole Genome Sequencing) or as Sanger pipeline (as the CG project is by Sanger),
requires two alignment files (in BAM format) as input: one related to the tumour tissue
of the patient under examination and one related to the corresponding normal tissue.
The comparison between the two tissues is essential for the identification of somatic mu-
tations, which are of interest in this case.
Specifically in fact, as already mentioned above, the germline mutation is a mutation that
occurs in germ cells or sex cells or in eggs and spermatozoa. Since this mutation is present
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in gametes, it is passed on to the next offspring and also, every cell in the entire organism
affects this germline mutation.
The rest of the cells other than the germline or sex cells are the somatic cells of an organ-
ism.
Somatic mutation is the mutation that occurs in a single cell of the body. Thus, this type
of mutation is localised only in the tissue derived from the mutated cell and therefore does
not affect every cell in the organism, unlike the germline mutation.

Alignment file 

cpgwgs   pipeline 

 filters 

HRDetect 
pipeline 

HRDetect 
score 

Figure 4.1. Workflow of the Nik-Zainal’s research group

This aspect is of significant importance, since to run the workflow it is necessary to be in
possession of both samples so that the pipeline can make the comparison between them.
In view of this "limit" of the pipeline supplied by the Sanger group, an important objective
will be outlined relating to the identification of a "surrogate" of the normal tissue sample
when this is not available due to lack of raw data.
This also opens a window towards a possible future study which provides for a refinement
of the workflow so that it is no longer essential to arrange the healthy tissue related to
the associated tumour sample under examination.
I also want to underline that, following the same steps taken by the research group, the
BAM files used as input are the result of the alignment to the reference human genome
(in the hg19 version) using Burrows – Wheeler aligner, BWA (v0.5.9).
Running the cgpwgs pipeline results in a series of files divided by variant types, collected
in the same folder. Specifically, the output consists of four files relating to the types of
variants corresponding to the results provided by four algorithms [22]: CaVEMan (Cancer
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Variants Through Expectation Maximisation [26]) was used to call single nucleotide varia-
tions (SNV); Indels in the tumour and normal genomes were called using modified Pindel
version 2.0 [27]; Structural variants (SV) were discovered using the BRASS (BReakpoint
AnalySiS) algorithm [28] through discordantly mapping paired-end reads followed by de
novo local assembly using Velvet to determine exact coordinates and features of break-
point junction sequence; allele-specific copy number analysis of tumours was performed
using ASCAT (v2.1.1) to generate integral allele-specific copy number profiles for the tu-
mour cells.
In particular, the files relating to SNV, SV and Indel are presented in the VCF format
described above (generally in the compressed form "file.vcf.gz"), while the file containing
the information relating to the change in the copy number is in tabular form.
At this point of the workflow, the files obtained as output are subjected to the application
of filters, taking on the characteristics required at the input of the HRDetect pipeline.
I also want to underline that the two pipelines, just described briefly in their operation,
are independent from each other, that is, they do not "communicate" with each other di-
rectly; for this purpose "intermediary" filters have been introduced between the pipelines,
in order to calculate the HRDetect score starting from the original raw data.

4.2 Validation on original mapped data
Following the procedure described above, it was possible to make a comparison between
the scores obtained by Nik-Zainal’s group[21], to which from this moment on I will refer
to the "expected" values, and those obtained by retracing the workflow they described by
means of the same data provided in input.
Through a comparison that provides for a focus on 30 of the patient samples examined
by the research group, it is clear that almost all of the results confirm those predicted by
the study.

Figure 4.2. HRDetect score validation on original mapped data (on the left)
and on remapped data

In particular, 28 out of 30 of the compared samples show a score coinciding with the
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expected one, making an incorrect estimate in only 6,7% of cases (Figure 4.2).
I want to underline the fact that the values of the scores obtained are not co-identifying
from a mathematical/numerical point of view, but in terms of classification as HR profi-
cient/deficient.
It is also assumed that for the two cases in which the score obtained differs from the
expected one, the cause of the failure is linked to possible variations in the input files
compared to those used in the actual by the Nik-Zainal group.

4.3 HRDetect score validation on raw reads data
Once the raw data of the HRDetect paper have been used to try to reproduce the same
scores published by the Nik-Zainal group [21], obtained by mapping on an old version of
the reference genome (hg19) using the algorithm BWA aln (Burrows - Wheeler Aligner,
v0.5.9), it was tried to proceed forward by remapping the same data differently (Figure
4.3). In particular, it was decided to use a more recent version of the reference genome
(currently the most advanced is indicated as hg38) used routinely, as well as to carry out
the remapping by means of a different mapper (BWA mem), which is the most recent
algorithm and currently in common use, recreating the situation in which the research
group of the Candiolo IRCCS generally works.

Alignment file 
(original) 

cpgwgs  pipeline 

filters 

HRDetect 
pipeline 

HRDetect 
score 

Alignment file 
(remapped) 

cpgwgs  pipeline 

 filters 

HRDetect 
pipeline 

Aligner: bwa aln 
Reference genome: hg19 

re-header 

Aligner: bwa mem 
Reference genome: hg38 

Figure 4.3. Comparison of the two pipelines used for the validation on original
mapped data and on remapped data

Specifically, to carry out the remapping, the alignment files in the BAM format (data

38



4.3 – HRDetect score validation on raw reads data

originally made available by the Nik-Zainal group) were initially converted into the FASTQ
format: from the BAM files it was possible to extract the sequence data; starting from the
FASTQ format, the reads were extracted and it was possible to complete the remapping
by reporting the data in the BAM format, using the most recent mapper and the reference
genome in the hg38 version.
The next step instead involves the reinsertion of the header section, in order to add
information necessary for the operation of the Sanger pipeline that was present in the
original BAM files but which are not present in the files obtained with the remapping.
Once these first steps have been completed, the BAMs obtained, containing information
similar to the initial ones, can be used as input for the previously described workflow,
which involves the execution of the cpgwgs pipeline, followed by filtering the data and
obtaining the HR score by means of the HRDetect pipeline.
Following the procedure described above, it was possible to make again a comparison
between the scores obtained by Nik-Zainal’s group, indicated as expected values, and
those obtained by retracing the workflow they described using the remapping results as
input.
Through a comparison that provides for a focus on the same 30 samples as the patients
examined previously, it is clear also in this case that almost all of the results confirm those
predicted by the study.
In particular, 29 out of 30 of the compared samples show a score coinciding with the
expected one, incorrectly estimating only with a probability of 3,3% as shown in Table
4.2 (lower than the previous case).
As before, I want to underline the fact that the values of the scores obtained are not
co-identifying from a mathematical/numerical point of view, but in terms of classification
as HR proficient/deficient.
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Chapter 5

Prediction on patients without
matched normal tissue

This chapter is intended to introduce the main objective of the thesis work through the
development of different strategies and of a new sample called metanormal.
Specifically, all the strategies adopted, in order to emulate the HR scores predicted by
the Nik-Zainal’s research group with the use of the new sample introduced, are retraced,
allowing the overcoming of the limitations imposed by the pipelines by construction.
The dataset is described and each strategy is examined in detail, outlining the insights
behind the development as well as the code implemented for the realisation.
Finally, the results obtained are proposed and compared with the expected scores.

To obtain complete information it is possible to make reference to [21], [29], [22].

5.1 Overcome the HRDetect limitations
As already mentioned, the pipeline used by Nik-Zainal’s group [21], indicated as
cgpwgs pipeline, requires two alignment files (in BAM format) as input: one relating to
the tumour tissue of the patient under examination and one relating to the corresponding
normal tissue.
Specifically, I want to emphasise that the two alignment files, related to the two samples,
are necessary for the operation of the cgpwgs pipeline just mentioned and it is not possible
to use it otherwise.
In particular, for this type of analysis the match between normal and tumour sample is
necessary in order to be able to make the comparison (Figure 5.1) and extract only the
somatic variations due to the tumour, discarding the healthy variations of the patient, i.e.
the germinal ones.
Consequently, the next step was to identify a way in which it was possible to make the
prediction of HR status without the patient’s normal match, for example to be able to
make a prediction for cell lines for which you do not have the normal sample.
This need identifies the main purpose of this thesis work.
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Figure 5.1. Normalized Variant Allele Frequency (VAF) distribution for N-T compar-
isons for SNV (on the left) and Indel (on the right) variations

To implement this, a new sample was constructed, taking the name of metanormal: a
normal sample resulting from the merge of a good number of sequences of normal tissues,
which presents characteristics such as to be able to be used as input of the workflow pre-
viously described.
The construction of the metanormal requires the use of data from normal tissue samples,
as these intrinsically contain a greater amount of information (describing frequency curves
of bell-shaped variations due to the diploidy of the sample itself and presenting variable
depth of sequencing). On the other hand, one could also think of sampling the reference
genome by extracting "dummy" reads, but in doing so one would lose all the information
due to the SNPs, leading to a "flat" frequency distribution (due to the haploidy of the
reference) and furthermore the depth of sequencing would be constant.
Specifically, in order to maintain the average read depth [30] (that describes the num-
ber of reads that cover/map each single base) comparable to that of the normal samples
originally used, the reads were randomly sampled for each of the normal patient samples
taken into consideration; the merge of the reads taken from the random sampling finally
allowed to obtain the metanormal sample.
At this point, in order to highlight the characteristics that could distinguish the N-T dis-
tribution from the MTN-T distribution, I chose to focus on the frequency distributions of
single nucleotide variations (SNV) and on insertions/deletions (Indel), as they are among
the most important types of variation in order to determine the HR score and thus con-
stitute a summary of the occurrence of variations.
By graphically representing these distributions for each metanormal-tumour comparison
(Figure 5.2), relative to each breast cancer sample involved in the study (83 in this case),
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5.1 – Overcome the HRDetect limitations

SNV Indel

VAF (%) VAF (%)

MTN-T MTN-T

Figure 5.2. Normalized Variant Allele Frequency (VAF) distribution for MTN-T com-
parisons for SNV (on the left) and Indel (on the right) variations

it is possible to observe a typical bell-shaped trend identified by the median of the distri-
butions, around which the different cases considered are distributed.

MTN-T
N-T

MTN-T
N-T

SNV Indel

VAF (%) VAF (%)

Figure 5.3. Normalized Variant Allele Frequency (VAF) distribution for MTN-T (blue)
and N-T (red) comparisons for SNV (on the left) and Indel (on the right) variations

Thus delineating the bell distribution, as well as its confidence interval, it is possible to
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ascertain that the curve is spiked around 50% as expected, since it is dominated by ger-
minal variations for diploid samples.
It is necessary to underline in particular that the comparison in this case is made between
the tumour samples and the metanormal constructed as described above. It follows that,
since the tumour is not "matched" with the respective normal (relating to the patient
under examination), series of germline mutations are not properly filtered as such, so they
appear in the set of extracted somatic variations.
On the other hand, representing the distributions of the SNV and Indel frequencies for each
of the comparisons between the tumour samples and the corresponding normal samples,
the median trend outlined is again bell-shaped (Figure 5.3), around which the confidence
intervals delineated by the individual curves for each patient examined can be observed.
Unlike the previous case, however, the peak of the distribution is decentralised and shifted
towards lower frequencies (around 20%), recounting the tumour content present in the
cells.
In particular, it is emphasised that in this case the focus is on the comparison between
matched samples of normal and tumour tissue, which entails the removal of the germinal
component from the tumour, thus obtaining a distribution relative to somatic variations
(Figure 5.4).
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Figure 5.4. Variant Allele Frequency (VAF) distribution (not normalized) for
somatic and germline mutations

5.2 Dataset description
DNA was extracted from 560 breast cancers and normal tissue (peripheral blood lym-
phocytes, adjacent normal breast tissue or skin) by Nik-Zainal’s group[21]. The latter
specified that no statistical methods were used to predetermine the sample size. For this
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study specifically, 77 samples were downloaded from the total 560 delineated by the group
during their research [Table 5.1]. These correspond to the only samples made available
by the group that are BAM-formatted and therefore the only ones that can be submitted
to the pipeline described above.
As can be seen from the pie chart (Figure 5.5), the data set is reasonably balanced: refer-
ring to the expected data, that is to the values of the scores obtained by the Nik-Zainal
group, 54.5% of the samples taken into consideration are HR proficient, 39% of the sam-
ples is HR deficient, while the remaining 6.5% relates to samples identified as doubtful,
not classifiable as HRP or HRD.

Patient Expected Score Patient Expected Score Patient Expected Score
PD22036a 0.000 PD23579a 0.0000 PD24219a NA
PD22251a 0.003 PD24182a 0.9996 PD24220a 0.0012
PD22355a 0.9999 PD24186a 0.7788 PD24221a 0.0078
PD22358a 0.9170 PD24189a 0.0000 PD24223a 0.0013
PD22359a 0.0018 PD24190a 0.0141 PD24224a 0.0006
PD22360a 0.9748 PD24191a 0.8996 PD24225a 0.0013
PD22361a 0.0004 PD24193a 0.0000 PD24302a 0.0002
PD22362a 0.0022 PD24195a 0.0009 PD24303a 0.8697
PD22363a 0.9723 PD24196a NA PD24304a 0.8740
PD22364a 0.0035 PD24197a 0.9978 PD24306a 0.9660
PD22365a 0.0062 PD24199a 0.0096 PD24307a 0.0006
PD22366a 0.9995 PD24200a 0.0272 PD24308a NA
PD23550a 0.0047 PD24201a 0.9969 PD24314a 0.0040
PD23554a 0.9964 PD24202a 0.9997 PD24318a 0.0216
PD23558a 0.9946 PD24204a 0.0001 PD24320a 0.0002
PD23559a 0.1954 PD24205a 0.9970 PD24322a 0.0009
PD23561a 0.0000 PD24206a 0.0007 PD24325a 0.1706
PD23562a 0.9998 PD24207a 0.0297 PD24326a 0.0008
PD23563a 0.9993 PD24208a 0.0186 PD24327a 0.0010
PD23564a 0.0000 PD24209a 0.0692 PD24329a 0.0002
PD23565a 0.0351 PD24212a 0.9987 PD24332a 0.0021
PD23566a 0.9999 PD24214a 0.0030 PD24333a 0.0023
PD23567a 0.9983 PD24215a NA PD24335a 0.0083
PD23570a 0.0071 PD24216a 0.0055 PD24336a 0.0006
PD23577a 0.9999 PD24217a 0.0004 PD24337a 1.0000
PD23578a 0.9941 PD24218a 0.0047

Table 5.1. Dataset Description

Breast cancer whole-genome sequence BAM files are available from the European Genome-
phenome Archive (EGA)[22]. EGAS00001001178 is the EGA accession number for the
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560 breast tumors used in the early development of HRDetect. This includes both whole-
genome sequence BAM files and SNP6 array CEL files. The accession number for the 80
additional breast cancers used for validation is EGAD00001002740 (sequence BAM files).

Figure 5.5. Dataset balancing

5.3 Strategy A
The previous observations, relating to the differences that emerge between the distri-
butions obtained by considering the comparison between the tumour sample and the
respective normal sample (N-T) and the comparison between the tumour sample and the
metanormal sample (MTN-T), led to the development of a strategy through which it was
possible, starting from data obtained with the metanormal, emulate the distribution ob-
tained with the matched normal sample.
This strategy, which I will refer to as Strategy A, has the ultimate goal of correctly pre-
dicting the HR score starting from the comparison between the tumour samples and the
constructed metanormal.
This strategy directly considers only what concerns the slice of allelic frequencies con-
taining the greatest content of somatic mutations. In particular, in fact, from the point
of view of statistical information, it is possible to realise that, when the normal matched
sample ( which would subtract all the germinal part leaving the somatic part) is not avail-
able, in the mix between germinal and somatic (dirty data obtained with the MTN-T
comparison), most of the somatic information of interest is in the region where the N-T
distribution peaks.
In this case, it is sufficient to consider the portion of variations that reside between the
frequencies of 10 and 20% (range in which the distribution of the N-T comparison is
spiked), both as regards single nucleotide variations and insertions/deletions (Figure 5.6).
Thus, the concept of Strategy A consists in removing everything that resides before 10%
and after 20%.
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MTN-T
N-T

MTN-T
N-T

SNV Indel

VAF (%) VAF (%)

Figure 5.6. Selection of a specific range of frequency (10-20%) from the normalized Vari-
ant Allele Frequency (VAF) distributions for MTN-T (blue) and N-T (red) comparisons
for SNV (on the left) and Indel (on the right) variations

5.3.1 Algorithms

The writing of the different scripts presented has been carried out mainly through the use
of the Linux shell.
Specifically, through the Bash environment (acronym for Bourne Again SHell), which rep-
resents a textual shell of the GNU project used in Unix and Unix-like operating systems,
such as GNU/Linux.
Bash is a command interpreter that allows the user to interface with its operating system
using a set of preset functions, as well as run applications and scripts.
It can execute instructions that are supplied to it, and it can use input and output redi-
rection to cascade many programs in a software pipeline, passing the previous command’s
result as input to the next command.
It also comes with a simple native scripting language that allows you to accomplish more
complicated operations by using variables, functions, and flow control structures in addi-
tion to collecting a sequence of instructions in a script.
These features determined the choice of the Bash shell for the realisation of the algorithms
of this thesis work.
On the other hand, the dynamism, simplicity and flexibility of the Python language meant
that this programming language was used to carry out certain operations within the al-
gorithms that outline the different strategies, in order to improve their readability and
comprehension.
In addition, the use of the interpreted programming language "AWK" allowed the simple
manipulation of textual data, both in the form of files and data streams from standard
input.
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Get_indel_from_freq-distr.py

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been sup-
plied as input.
Specifically, it is verified that the reference distribution file has been provided followed
by the VCF file relating to the Indel variations, saved respectively as REF_fd and IN-
DEL_fd. The read_ref_distribution function is defined.
It requires that a reference distribution file (corresponding to the distribution values of
the red curve in the Figure 5.6, indicated as a reference) is passed as a parameter in the
format as the GSL-histogram output.
GSL-histogram is a program for the GNU Scientific Library. It takes three arguments,
gsl-histogram xmin xmax [n], specifying the upper and lower bounds of the histogram
and the number of bins. It then reads numbers from "stdin" (standard input), one line at
a time, and adds them to the histogram.
When there is no more data to read it prints out the accumulated histogram, providing as
output a file containing line by line at the far left of the interval, far right of the interval,
and the number of variations in that specific interval.
The function read_ref_distribution, starting from the reference distribution file in the
format as the GSL-histogram output, returns an ordered nested list containing, for each
index, the three decimal numbers corresponding respectively to the start, end and number
of variations of the interval.
By calling the previously defined function read_ref_distribution, the Indel frequency dis-
tribution, initially saved in the "distr" list, is copied into the "distr_dict" dictionary, using
the "start end" pair (corresponding to the start and end of interval).
Then the function get_FORMAT_ID is defined.
As previously introduced, the VCF format includes a header, whose lines are identified
by the “##” symbols and a body which lists all the variants.
In particular, one of the 9 mandatory columns identified by the “#” symbol is represented
by the FORMAT, i.e. the list of annotations relating to the relationship of each variant
with each sample, therefore concerning the genotype.
Furthermore, there are a number of columns equal to the number of samples, in which
the value of the annotations present in the FORMAT column is reported.
The function get_FORMAT_ID, given a row of the VCF file and the identification name
of the specific field of the FORMAT (corresponding to ID), has the aim of extracting the
value contained in the column relating to the tumour sample in the position corresponding
to ID in the FORMAT. In particular, if the VCF line considered were the following:

CHROM POS ID REF ALT QUAL FILTER INFO
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;
FORMAT NA00001 NA00002 NA00003
GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5

calling the get_FORMAT_ID (VCF_row, "GQ") function would return "48" for the
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NA00002 sample.
At this point, once the dictionary keys have been saved in "bins", sorted by coordinates
identified by the extremes of the intervals considered, I want to assign the Indel variations
to each interval.
In particular, a dictionary called "Indels" is defined, in which each bin is associated with
a certain number of lines of the VCF file for which the variant allele frequency (VAF),
obtained by the parse_VCF function, falls within the defined range from bin.
In particular, to extract the frequencies of Indel variations starting from a VCF format
file relating to the Indel variations, it is necessary to consider two specific fields of the
FORMAT column, described in the header of the file as follows:
## FORMAT = <ID = FD, Number = 1, Type = Integer,
Description = "Fragment depth">
## FORMAT = <ID = FC, Number = 1, Type = Integer,
Description = "Fragment calls">

The first step therefore involves calling the get_FORMAT_ID function, in order to extract
from the tumour sample the values corresponding to the positions identified by "FC" and
"FD" in the FORMAT. Subsequently, the percentage frequencies of Indel variations are
obtained through the ratio between the two identified values taken in the order described,
multiplied by one hundred. The parse_VCF function cited above, starting from a VCF
file relating to the Indel variations, has the aim of returning the value of the variant allele
frequency, followed by the corresponding entire line of the VCF file. The crucial aspect
of the Get_indel_from_freq-distr.py algorithm consists in the realisation of the sampling
of the Indel variations through the definition of the so-called "support-unit". This process
in principle provides for the calculation of ratios as the ratio between the number of lines
of the VCF associated with a given bin (information obtained by calculating the length
of the Indels[bin] list) and the frequency calculated for that specific bin (corresponding to
the third value contained in the distr list for each index). All reports will then be saved
in the "ratios" list.
On the other hand, in the "non_zero_ratios" list, all the elements of the "ratios" list other
than zero will be saved. At this point the "support-unit" variable takes on the minimum
value among those identified in the "non_zero_ratios" list, unless this is empty, in which
case the "support-unit" is set equal to zero.
For each bin, the product between the "support-unit" and the number of variations iden-
tified for that interval (saved in distr_dict [bin]) is subsequently calculated, stored in
the variable N . If N is lower than the number of rows of the VCF associated with the
bin considered (N <len(Indels[bin])), then N is randomly selected from the lines of the
VCF associated with the bin considered and are saved in "sampled_indels"; otherwise (if
N>=len(Indels [bin])) all lines of the VCF associated with the considered bin are saved
in "sampled_indels".
Finally, all the contents of "sampled_indels" are printed.

Get_SNV_from_freq-distr.py

As seen for Get_indel_from_freq-distr.py, initially it is verified that the script has been
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launched correctly, by introducing a check which verifies that what is required for the
functioning of the script itself has been supplied as input.
Specifically, it is verified that the reference distribution file is provided, followed by the
VCF file relating to the SNV variations, saved respectively as REF_fd and SNV_fd.
The two functions read_ref_distribution and get_FORMAT_ID are defined.
In particular, these are analogous to the functions of the same name described for the
Get_indel_from_freq-distr.py script, therefore: the function get_FORMAT_ID , given
a row of the VCF file and the identification name of the specific field of the FORMAT
(corresponding to ID), has the aim of extracting the value contained in the column re-
lating to the tumour sample in the position corresponding to ID in the FORMAT; the
function read_ref_distribution , starting from the reference distribution file in the format
as the GSL-histogram output, returns an ordered nested list containing, for each index,
the three decimal numbers corresponding respectively to the start, end and number of
variations of the interval.
By calling the previously defined function read_ref_distribution , the SNV frequency dis-
tribution, initially saved in the "distr" list, is copied into the "distr_dict" dictionary, using
the "start end" pair (corresponding to the start and end of interval).
Differently from what was observed for the Get_indel_from_freq-distr.py script, in this
case to extract the frequencies of SNV variations, starting from a VCF format file relating
to the SNV variations, it is necessary to consider only one specific field of the FORMAT
column, described in the header of the file as follows:

##FORMAT= <ID= PM, Number= 1, Type= Float,
Description= "Proportion of mutated allele">

The first step therefore involves calling the get_FORMAT_ID function, in order to ex-
tract from the tumour sample the values corresponding to the position identified by "PM"
in the FORMAT.
Subsequently, the percentage values of frequencies of SNV variations are obtained by mul-
tiplying the identified value by one hundred.
The parse_VCF function, starting from a VCF file relating to the SNV variations, has the
aim of returning the value of the variant allele frequency, followed by the corresponding
entire line of the VCF file.
At this point, once the dictionary keys have been saved in "bins", sorted by coordinates
identified by the extremes of the intervals considered, I want to assign the Indel variations
to each interval. In particular, a dictionary called "SNV" is defined, in which each bin
is associated with a certain number of lines of the VCF file for which the variant allele
frequency (VAF), obtained by the parse_VCF function, falls within the defined range
from bin.
From this point on, the algorithm proceeds similarly to what was observed in the case of
the Indel variations, retracing step by step all the actions described for the Get_indel_from
_freq-distr.py script.
Therefore, taking up the conclusive part of the algorithm, the crucial aspect consists in the
realisation of the sampling of the SNV variations through the definition of the so-called
"support-unit".
This process in principle provides for the calculation of ratios as the ratio between the
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number of lines of the VCF associated with a given bin (information obtained by calcu-
lating the length of the SNV[bin] list) and the frequency calculated for that specific bin
(corresponding to the third value contained in the distr list for each index).
All reports will then be saved in the "ratios" list.
On the other hand, in the "non_zero_ratios" list, all the elements of the "ratios" list other
than zero will be saved. At this point the "support-unit" variable takes on the minimum
value among those identified in the "non_zero_ratios" list, unless this is empty, in which
case the "support-unit" is set equal to zero.
For each bin, the product between the "support-unit" and the number of variations iden-
tified for that interval (saved in distr_dict[bin]) is subsequently calculated, stored in the
variable N .
If N is lower than the number of rows of the VCF associated with the bin considered (N
<len (SNV [bin])), then N is randomly selected from the lines of the VCF associated with
the bin considered and are saved in "sampled_SNV "; otherwise (if N>=len(SNV [bin]))
all lines of the VCF associated with the considered bin are saved in "sampled_SNV".
Finally, all the contents of "sampled_SNV" are printed.

Recalibrate_HRD_A.sh

The first step concerns the acquisition of the files required for the script’s execution
through input.
Initially, it is acquired the name of the directory where the script is executed, saved in
BIN_DIR. From this directory it is possible to go back to the Indel_median-freq_from_N-
T_A and SNV_median-freq_from_N-T_A files, contained in the directory itself, corre-
sponding to the reference distribution files in the format as the GSL-histogram output,
with a little modification.

0 10 0
10 20 0.0381007
20 30 0.03151765
30 40 0.01347675
40 50 0.00401542
50 60 0.000756227
60 70 0
70 80 0
80 90 0
90 100 0

0 10 0.000308725
10 20 0.03462785
20 30 0.0273783
30 40 0.0159768
40 50 0.006558705
50 60 0.00233802
60 70 0.000655551
70 80 0.0002412795
80 90 0
90 100 0

Table 5.2. Median distribution of the Indel (on the left) and SNV (on the right) vari-
ations resulting from the comparison between the tumour sample and the associated
normal (N-T distribution)

The Indel_median-freq_from_N-T and SNV_median-freq_from_N-T files (as shown in
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the Table 5.2) respectively represent the median distribution of the SNV and Indel vari-
ations resulting from the comparison between the tumour sample and the associated
normal, corresponding to the red curve in the graphs previously illustrated.
The Indel_median-freq_from_N-T_A and SNV_median-freq_from_N-T_A files, in par-
ticular, are obtained by considering only the value in correspondence with the bin defined
between 10 and 20 and setting all others equal to zero (as shown in the Table 5.3).

0 10 0
10 20 0.0381007
20 30 0
30 40 0
40 50 0
50 60 0
60 70 0
70 80 0
80 90 0
90 100 0

0 10 0
10 20 0.03462785
20 30 0
30 40 0
40 50 0
50 60 0
60 70 0
70 80 0
80 90 0
90 100 0

Table 5.3. Median distribution of the Indel (on the left) and SNV (on the right) vari-
ations resulting from the comparison between the tumour sample and the associated
normal (N-T distribution), limited to the portion of variations that reside between
the frequencies of 10 and 20%

This trick specifically allows to select only the information contained in the 10-20 range,
"cutting" the portion of variations that reside between the frequencies of 10 and 20%.
This occurs since in that range the distribution of the N-T comparison is strongly spiked,
leading to exclude the frequencies with a negligible incidence compared to that of the
peak.
Exporting the described files is followed by verification that the script has been launched
correctly, by introducing a check which verifies that what is required for the functioning
of the script itself has been supplied as input.
Specifically, it is verified that the directory.files has been provided followed by the name
of the tumour sample considered, saved respectively as FILES_DIR and TUMOUR.
In particular, the first input refers to a folder obtained as a result of the execution of the
cpgwgs pipeline and the subsequent application of filters, corresponding to the input of
the HRD pipeline.
The second input instead refers to the name of the tumour sample, which can be identified
in the terminal part of the header of the BAM file of the tumour sample, preceded by the
abbreviation "SM:" (as can be seen in the figure for example for patient RC100851 ).

@RG ID:1 LB:dummy_LB PL:dummy_PL PU:dummy_PU SM:RC100851_T

The section dealing with input acquisition is followed by a section dedicated to the de-
scription of the functions used within the script.
As previously introduced the VCF format includes a header, whose lines are identified by
the "##" symbols and a body which lists all the variants. Inside the body, the information
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relating to each variant is organised according to 9 mandatory columns that are identified
by the "#" symbol.
The sampling_indel function, starting from a VCF file relating to the Indel variations
(first input supplied to the function), has the aim of returning a new VCF file, saved with
the name indicated in correspondence with the second input of the function, characterised
by the same header of the starting one followed by the corresponding lines of the VCF file
selected by sampling.
Specifically, the function begins with the extraction of the header and the first line of
the body of the VCF file taken as input and proceeds with the execution of the script
created in Python described above (Get_indel_from_freq-distr.py) providing it as input
the median distribution of the Indel variations resulting from the comparison between the
tumour sample and the associated normal and the VCF file.
Subsequently, the function foresees the ascending ordering of the rows of the VCF ob-
tained following the execution of the sampling, sorted alphabetically by its column 1
(corresponding to the chromosome on which the variant is present) and sorted numeri-
cally by its column 2 (corresponding to the position on which the variant call was made
respectively).
Finally, the resulting file, including the header followed by the VCF lines selected by sam-
pling, is compressed in the form "file.gz" and saved in the file corresponding to the second
input of the function.
The last step involves the generation of the VCF file in the form “vcf.gz” and of its index
file “vcf.gz.tbi”.
Subsequently, the sampling_SNV function is defined. It is analogous to the sampling_indel
function just described, with the only difference that it involves the execution of the
Python script Get_SNV_from_freq-distr.py providing it as input the median distribu-
tion of the SNV variations resulting from the comparison between the tumour sample and
the associated normal and the VCF.
The main body of the algorithm (viewable in the Appendix C in the form of pseudocode)
can be simply described through the identification of four fundamental steps, as observ-
able in the Figure 5.7.
Initially, the recalibrate_HRD_A.sh script foresees the execution of the sampling on
the data that describe the distribution obtained from the comparison between the tumour
sample and the normal equivalent.
In particular, the sub-folders of the FILES_DIR folder provided as the first input to the
script are initially defined: specifically, the two paths FILES_DIR/recalibrateA/Indel-
sampling and FILES_DIR/recalibrateA/SNV-sampling are generated (Figure 5.8).
The first step is then performed inside the recalibrateA folder, separately for SNV and
Indel.
In particular, the sampling_indel function (defined previously) is launched receiving as
parameters the file in the form Indel.*.vcf.gz (contained in FILES_DIR) followed by the
file Indel.*.vcf.RANDOM-1.gz (contained in the Indel-sampling folder).
Similarly, the sampling_SNV function (previously defined) is launched receiving as pa-
rameters the file in the form SNV.*.vcf.gz (contained in FILES_DIR) followed by the
SNV.*.vcf.RANDOM-1.gz file (contained in the folder SNV-sampling).
Consequently, in the Indel-sampling and SNV-sampling folders (Figure 5.9), it will be
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SAMPLING SNV AND INDEL 
BASED ON N-T DISTRIBUTION 

RECREATE AN UPDATED “.files” 
DIRECTORY 

CALCULATE HRD FOR 
RANDOM-1.files DIRECTORY 

RECALCULATE HRD BASED ON 
MEDIAN VALUES FROM 

DATAMATRIX 

Figure 5.7. Recalibrate_HRD_A.sh core workflow

possible to access the files containing the sampling results on the data describing the
distribution obtained from the comparison between the tumour sample and the normal
equivalent, respectively for insertions/deletions and for single nucleotides variants.
In particular, in this case, the Strategy A directly considers only what concerns the slice of
allelic frequencies containing the greatest content of somatic mutations, without sampling.
In this regard, it is in fact possible to note that the sampling_indel and the sampling_SNV
functions are launched only once.

During the second step, the recalibrate_HRD_A.sh script takes care of recreating an
updated ’.files’ directory.
Specifically, for the file in the form Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-
1.gz (for example Indel.PD24215a_vs_hg38_metanormal.annot.vcf.RANDOM-1.gz) con-
tained in the folder Indel-sampling, generated during Step 1, is performed a series of ac-
tions outlined below.
Directory is initially defined and created in the form RANDOM-1.files (Figure 5.10; the
files Indel.*, CNV.*, SNV.*, SV.* (Indel.PD24215a_vs_hg38_metanormal.annot.vcf.gz,
...), contained in the FILES_DIR folder, are copied into this directory.
At this point, the Indel replacement occurs, which involves overwriting the file in the form
Indel.*gz contained in the respective RANDOM-1.files directory (Indel.PD24215a_vs_hg38
_metanormal.annot.vcf.gz) with the file in the form Indel.*_vs_hg38_metanormal
.annot.vcf.RANDOM-1.gz (Indel.PD24215a_vs_hg38_metanormal.annot.
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recalibrate A 

Indel-sampling SNV-sampling RANDOM-1.files 

HRDetect_ 
fullPipeline.err 

HRDetect_ 
fullPipeline.out 

hg38_ 
metanormal 
__PD24215a. 
data-matrix 

Figure 5.8. Content of the recalibrate A folder for patient PD24215a

vcf.RANDOM-1.gz).
The same is done for the file in the form Indel.*gz.tbi, replaced with the file in the form
Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-1.gz.tbi.
The same process is repeated analogously for the replacement of the SNVs inside the
RANDOM-1.files directory: in particular the SNV.*_vs_hg38_metanormal.annot
.muts.vcf.RANDOM-1.gz file contained in SNV-sampling (for example SNV.PD24215a_vs
_hg38_metanormal.annot.muts.vcf.RANDOM-1.gz) overwrites the file SNV.*gz contained
in the respective RANDOM-1.files (SNV.PD24215a_vs_hg38_metanormal.annot.muts.vcf.gz,
considering the previous example), as well as for the file in the form SNV.*gz.tbi.

During the third step, the recalibrate_HRD_A.sh script takes care of calculating
HRD for the RANDOM directory. Specifically, for the directory in the form RANDOM-
1.files, contained in the recalibrateA folder, the pipeline HRDetect_fullPipeline-hg38.AUTO.sh
is run, passing it as parameters the sample name of the tumour (saved in $TUMOUR)
followed by the directory.
The script output will be saved in the HRDetect_fullPipeline.out file while any errors in
the HRDetect_fullPipeline.err file, both contained in RANDOM-1.files directory.

During the fourth step, the recalibrate_HRD_A.sh script takes care of recalculating
HRD based on median values from datamatrix.
In particular, the HRDetect pipeline requires an input data frame "data_matrix", which

55



Prediction on patients without matched normal tissue

recalibrateA 

SNV-sampling 

Indel-sampling 

SNV. 
PD24215a 
_vs_hg38_metanormal. 
annot.muts.vcf.RANDOM-1.gz 

SNV. 
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_vs_hg38_metanormal. 
annot.muts.vcf.RANDOM-1.gz.tbi 

Indel. 
PD24215a 
_vs_hg38_metanormal. 
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PD24215a 
_vs_hg38_metanormal. 
annot.muts.vcf.RANDOM-1.gz.tbi . . . 

Figure 5.9. Content of SNV-sampling and Indel-sampling folders for patient PD24215a

contains a sample in each row and one of six necessary features in each column.
The six features are:

• proportion of deletions at microhomology (del.mh.prop),

• number of mutations of substitution signature 3 (SNV3),

• number of mutations of rearrangement signature 3 (SV3),

• number of mutations of rearrangement signature 5 (SV5),

• HRD LOH (Loss of Heterozygosity) index (hrd),

• number of mutations of substitution signature 8 (SNV8).

Initially, for the HRDetect_fullPipeline.out file (contained in the folder in the form
RANDOM-1.files), generated during the previous step, I look for the values that I need
to define the data matrix (Figure 5.11). Through the "awk" command, I look for the
values corresponding to the fields of del.mh.prop, SNV3, SNV8, SV3, SV5 and hrd, as
well as the name of the sample, in the RANDOM-1.files/HRDetect_fullPipeline.out. At
this point the column names corresponding to del.mh.prop, SNV3, SV3, SV5, hrd, SNV8,
the name of the sample and the values associated with the previous columns, are saved in
hg38_metanormal__*.data-matrix. Finally, the pipeline _HRDetect-score_from_data-
matrix.R is launched, passing it as input the hg38_metanormal__*.data-matrix. The
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Figure 5.10. Content of RANDOM1.-files folder for patient PD24215a

script output will be saved in the HRDetect_fullPipeline.out file while any errors in the
HRDetect_fullPipeline.err, both contained in the recalibrateA folder (Figure 5.8).

5.3.2 Results obtained with Strategy A for breast cancer
Using the data of Nik-Zainal you therefore have a score that is the expected one derived
from the match between the normal and his tumour and then the result that is predicted
using the metanormal.
In particular, according to the work carried out by Nik-Zainal’s group, score values higher
than 0.70 are defined as HR deficient while score values lower than 0.30 are considered
HR proficient. All scores between 0.30 and 0.70 are indicated as doubtful, i.e. it is not
possible to attribute proficiency or deficiency on the basis of the observed value.
Taking this classification into account, as can be seen in the Table 5.4, a color code
was used that identified HR deficiency with red, HR proficiency with green and doubtful
situations with orange, for which it was not possible to express.
Analyzing the results, it is possible to note how overall Strategy A does not provide
faithful results to those expected, obtained by comparing the tumour sample and the
normal matched one.
In general, in fact, out of 73 samples of breast cancer patients, exactly 18 scores are
different from those predicted.
In particular, it should be noted that the samples for which the expected score was doubtful
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Figure 5.11. Content of HRDetect_fullPipeline.out and hg38_metanormal_
_PD24215a.data-matrix files for patient PD24215a

were excluded from the study (4 out of 77); this because, since it is not possible to express
with certainty regarding the data obtained from the comparison between the tumour
sample and the normal matched one, in the same way the result obtained by comparing
the tumour sample with the metanormal could not have been considered as certain.
A particularly important aspect to underline is that in this case not all the samples that
are expected to be HR deficient are actually correctly predicted by Strategy A; in fact,
specifically, for 2 out of 18 samples HR deficiency is predicted when HR proficiency is
expected. Similarly, not all samples that are expected to be HR proficient are predicted
correctly by Strategy A: the PD22360a sample is an exception, unique among the 18
erroneously predicted samples, for which HR proficiency is predicted although it is HR
deficient.
It follows that the most common errors attributable to Strategy A are related to the
declaration of doubtful situations for samples that are expected as HR proficient or HR
deficient.
Specifically, again with reference to these cases which were incorrectly assessed, 15 out of
17 samples are indicated with the color orange, of which 13 are HR proficient, while the
remaining 2 are HR deficient.
In summary, Strategy A correctly predicts the expected score 55 times out of 73 samples
considered as a whole, committing a percentage error of 24.66%.
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5.4 Strategy B
With the same objective as the previous one, a further strategy has been developed, to
which I will refer with the name of Strategy B, in order to improve the prediction of the
HR score.
Strategy B represents in particular an evolution of Strategy A which aims to determine
in the "optimal" frequency range, that is the window in which the greatest number of
somatic variations reside.
In particular, in fact, from the point of view of statistical information, it is possible to
realise that, when the normal matched sample (which would subtract all the germinal
part leaving the somatic part) is not available, in the mix between germinal and somatic
(dirty data obtained with the MTN-T comparison), most of the somatic information of
interest is in the region where the N-T distribution peaks.
In this case, it is sufficient to consider the portion of variations that reside between the
frequencies of 5 and 35% (range in which the distribution of the N-T comparison is spiked),
both as regards single nucleotide variations and insertions/deletions (Figure 5.12).
Thus, the concept of Strategy B consists in removing everything that resides before 5%
and after 35%.
In this case, specifically, the width of the window considered is equal to 30%, so there is
an overlap with Strategy A, but with a larger window width and thus more successfully.

MTN-T
N-T

MTN-T
N-T

SNV Indel

VAF (%) VAF (%)

Figure 5.12. Selection of a specific range of frequency (5-35%) from the normalized Vari-
ant Allele Frequency (VAF) distributions for MTN-T (blue) and N-T (red) comparisons
for SNV (on the left) and Indel (on the right) variations

In particular, it should be emphasised that, similarly to Strategy A, Strategy B does not
provide for any type of sampling; on the other hand, Strategy B foresees the choice of a
particular window (shifted by 5% to the left with respect to the previous strategy and
with an increased delta of 10%) and a cut at the ends of the window currently considered
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for the calculation of the score.

5.4.1 Methods

Get_VAF-range_indel.py

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been sup-
plied as input.
Specifically, it is verified that the lower and upper extremes of the considered interval were
provided, followed by the VCF file relating to the Indel variations, saved respectively as
start, end and INDEL_fd.
The definition of the functions in the Get_VAF-range_indel.py script perfectly follows
the one made for the Get_indel_from_freq-distr.py script, consequently only some cru-
cial aspects are reported.
Specifically, the function get_FORMAT_ID , given a row of the VCF file and the identi-
fication name of the specific field of the FORMAT (corresponding to ID), has the aim of
extracting the value contained in the column relating to the tumour sample in the position
corresponding to ID in the FORMAT.
parse_VCF function, starting from a VCF file relating to the Indel variations, has the
aim of returning the value of the variant allele frequency, followed by the corresponding
entire line of the VCF file.
The function read_ref_distribution , starting from the reference distribution file in the
format as the GSL-histogram output, returns an ordered nested list containing, for each
index, the three decimal numbers corresponding respectively to the start, end and number
of variations of the interval.
In particular, a dictionary called "Indels" is defined, in which the bin is associated with
a certain number of lines of the VCF file for which the variant allele frequency (VAF),
obtained by the parse_VCF function, falls within the defined range from bin.
It is of particular importance to underline that, unlike what was observed for the
Get_indel_from_freq-distr.py script, in this case a single specific interval is considered,
of which the extremes are supplied as input.
At the same time, the crucial aspect of the Get_indel_from_freq-distr.py algorithm
consists in the realisation of the sampling of the Indel variations through the definition of
the so-called "support-unit"; in particular, for each bin, the product between the "support-
unit" and the number of variations identified for that interval was calculated and stored
in the variable N . If N was lower than the number of rows of the VCF associated with
the bin considered, then N was randomly selected from the lines of the VCF associated
with the bin considered and were saved in "sampled_indels"; otherwise all lines of the
VCF associated with the considered bin were saved in "sampled_indels".
Finally, all the contents of "sampled_indels" were printed. In this case, however, in the
Get_VAF-range_indel.py script, neither the "support-unit" nor sampling is used, in
fact, once the VCF lines associated with the specific bin considered have been identified,
these are printed in their wholeness.
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Get_VAF-range_SNV.py

The two functions, get_FORMAT_ID and read_ref_distribution, are defined.
These are equal to the functions of the same name described for the Get_indel_from_freq-
distr.py script, therefore in particular: the function get_FORMAT_ID, given a row of
the VCF file and the identification name of the specific field of the FORMAT (corre-
sponding to ID), has the aim of extracting the value contained in the column relating to
the tumour sample in the position corresponding to ID in the FORMAT; the function
read_ref_distribution, starting from the reference distribution file in the format as the
GSL-histogram output, returns an ordered nested list containing, for each index, the three
decimal numbers corresponding respectively to the start, end and number of variations of
the interval.
Differently from what was observed for the Get_indel_from_freq-distr.py script, in
this case to extract the frequencies of SNV variations, starting from a VCF format file
relating to the SNV variations, it is necessary to consider only one specific field of the
FORMAT column, described in the header of the file as follows:

##FORMAT= <ID= PM, Number= 1, Type= Float,
Description= "Proportion of mutated allele">

Specifically, the definition of the parse_VCF function differs from that made for the
Get_indel_from_freq-distr.py and Get_VAF-range_indel.py scripts, but it perfectly fol-
lows that outlined for the Get_SNV_from_freq-distr.py script. It follows that the
parse_VCF function, starting from a VCF file relating to the SNV variations, has the aim
of returning the value of the variant allele frequency, followed by the corresponding entire
line of the VCF file.
From this point on, the algorithm proceeds similarly to what was observed in the case of
the Indel variations, retracing step by step all the actions described for the Get_VAF-
range_indel.py script.
The only substantial difference consists in the files provided in input, in fact, it is verified
that the lower and upper extremes of the considered interval are provided followed by the
VCF file relating to the SNV variations, saved respectively as start, end and SNV_fd.
Again it is possible to emphasise, unlike what was observed for the Get_SNV_from_freq-
distr.py script, in this case a single specific interval is considered, of which the extremes
are supplied as input.
At the same time, the crucial aspect of the Get_SNV_from_freq-distr.py algorithm
consists in the realisation of the sampling of the SNV variations through the definition of
the product between the "support-unit" and the number of variations identified for that
interval, stored in the variable N .
Then, if N was lower than the number of rows of the VCF associated with the bin con-
sidered, N was randomly selected from the lines of the VCF associated with the bin
considered and were saved in "sampled_SNV"; otherwise all lines of the VCF associated
with the considered bin were saved in "sampled_SNV".
Finally, all the contents of "sampled_SNV" were printed. In this case, however, in the
Get_VAF-range_SNV.py script, neither the "support-unit" nor sampling is used, in
fact, once the VCF lines associated with the specific bin considered have been identified,
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these are printed in their wholeness.

Recalibrate_HRD_B.sh

As observed for all the scripts described above, the initial section is dedicated to acquiring
the inputs needed to run the script itself.
I verify that the script has been launched correctly, introducing a check that verifies that
what is needed for the script to run has been provided as input. In particular, I check that
the name of the directory where the script will be executed has been provided, followed
by the name of the tumour sample and the name of the output directory where the results
will be printed, saved respectively as FILES_DIR, TUMOUR and OUT_DIR.
At this point I proceed with the definition of variables such as L (which is assigned the
value 30), corresponding to the VAF range or the "width" of the interval considered, and
SHIFT (which is assigned the value 5), corresponding to the sliding window shift.
It proceeds with the creation of the directory OUT_DIR that will contain the results pro-
duced by the execution of the script and with the definition of some necessary functions
for the same execution.

Figure 5.13. Recalibrate_HRD_B.sh core workflow

As previously introduced the VCF format includes a header, whose lines are identified by
the "##" symbols and a body which lists all the variants. Inside the body, the information
relating to each variant is organised according to 9 mandatory columns that are identified
by the "#" symbol. The sliding_indel function, starting from a VCF file relating to the
Indel variations (third input supplied to the function), has the aim of returning a new
VCF file, saved with the name indicated in correspondence with the fourth input of the
function, characterised by the same header of the starting one followed by the correspond-
ing lines of the VCF file selected by sliding.
Specifically, the function begins with the extraction of the header and the first line of the
body of the VCF file taken as input and proceeds with the execution of the script created
in python described above (Get_VAF-range_indel.py ) providing it as input the lower
and upper extremes of the considered interval and the VCF file.
Subsequently, the function foresees the ascending ordering of the rows of the VCF obtained
following the execution of the sliding, sorted alphabetically by its column 1 (corresponding
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to the chromosome on which the variant is present) and sorted numerically by its column
2 (corresponding to the position on which the variant call was made respectively).
Finally, the resulting file, including the header followed by the VCF lines selected by sam-
pling, is compressed in the form "file.gz" and saved in the file corresponding to the second
input of the function.
The last step involves the generation of the VCF file in the form “vcf.gz” and of its index
file “vcf.gz.tbi”.
The sliding_SNV function is analogous to the sliding_indel function just described,
with the only difference that it involves the execution of the python script Get_VAF-
range_SNV.py providing it as input the lower and upper extremes of the considered
interval and the VCF.
The definition of the run_HRDetect function follows.
Starting from the sample name of the tumour and the SNV, SV, INDEL, CNV files given
as input, the function has the aim of returning the results obtained by the running of the
HRDetect pipeline, using the listed input as parameters.
The main body of the algorithm (viewable in the Appendix C in the form of pseudocode)
can be simply described through the identification of two fundamental steps, as observable
in the Figure 5.13.

recalibrateB 

SNV-sampling 

Indel-sampling 

out_HRD 

. . . 

. . . 

Indel.PD24215a_vs_hg38_metanormal.annot.vcf. 
SLIDE-0-30.gz 

Indel.PD24215a_vs_hg38_metanormal.annot.vcf. 
SLIDE-0-30.gz.tbi 

Indel.PD24215a_vs_hg38_metanormal.annot.vcf. 
SLIDE-10-40.gz 

SNV.PD24215a_vs_hg38_metanormal.annot.muts. 
vcf.SLIDE-0-30.gz 

SNV.PD24215a_vs_hg38_metanormal.annot.muts. 
vcf.SLIDE-0-30.gz.tbi 

SNV.PD24215a_vs_hg38_metanormal.annot.muts. 
vcf.SLIDE-10-40.gz 

Figure 5.14. Content of SNV-sampling and Indel-sampling folders for patient PD24215a

Initially, the Recalibrate_HRD_B.sh script foresees the execution of the sliding on
the SNV and Indel results.
In particular, the sub-folders of the OUT_DIR folder provided as the third input to
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the script are initially defined: specifically, the three paths OUT_DIR/Indel-sliding,
OUT_DIR/SNV-sliding and OUT_DIR/out_HRD are generated (figure 5.14.
The first step is then performed inside the OUT_DIR folder, separately for SNV and
Indel.
In particular, the sliding_indel function (defined previously) is launched for each "start"
in a sequence ranging from 0 to 100-$L (ie 70) with a step of 5 ($SHIFT = 5) receiving as
parameters the values contained in $start and in $end, the file in the form Indel.*.vcf.gz
(contained in FILES_DIR) followed by the file Indel.*.vcf.SLIDE-$start-$end.gz (con-
tained in the Indel-sliding folder), where "start" represents the index that is updated at
each iteration. Similarly, the sliding_SNV function (previously defined) is launched for
each "start" in the sequence [0,5,10, ... 65,70] receiving as parameters the values contained
in $start and in $end, the file in the form SNV.*.vcf.gz (contained in FILES_DIR) fol-
lowed by the file SNV.*.vcf.SLIDE-$start-$end.gz (contained in the SNV-sliding folder).
Consequently, in the Indel-sliding and SNV-sliding folders, it will be possible to access
the files containing the sliding results on the data for insertions / deletions and for single
nucleotides variants.
During the second and last step, the Recalibrate_HRD_B.sh script takes care of cal-
culating the HRD score, running the function run_HRDetect. Specifically, for each file in
the form Indel.*.gz, files generated during Step 1 contained in the Indel-sliding folder, the
function run_HRDetect is run, passing it as parameters the sample name of the tumour
(saved in $TUMOUR) followed by the files: SNV.*$range.gz contained in SNV-sliding
(e.g. SNV.PD24215a_vs_hg38_metanormal.annot.muts.vcf.SLIDE-0-30.gz for patient
PD24215a and range 0-30) , $FILES_DIR/SV.*.gz (SV.PD24215a_vs_hg38_metanormal
.annot.bedpe.OK.gz), Indel-sliding/Indel.*.gz (Indel.PD24215a_vs_hg38_metanormal.
annot.vcf.SLIDE-0-30.gz) and $FILES_DIR/CNV.*.OK
(CNV.PD24215a.copynumber.caveman.OK).
The script output will be saved in the INDEL-$range.SNV- $range.HRDetect_fullPipeline.out
file while any errors in the INDEL-$range.SNV-$range.HRDetect_fullPipeline.err file,
both contained in $OUT_HRD directory.

5.4.2 Results
Again, using the data of Nik-Zainal one therefore has a score that is the expected one
derived from the match between the normal and his tumour and then the result that is
predicted using the metanormal.
In particular, in accordance with what has been explained for Strategy A, score values
higher than 0.70 are defined as HR deficient while score values lower than 0.30 are con-
sidered HR proficient. All scores between 0.30 and 0.70 are indicated as doubtful, i.e. it
is not possible to attribute proficiency or deficiency on the basis of the observed value.
Using this categorization, a color code was created, as shown in Table 5.5, that recognized
HR deficiency with red, HR proficiency with green, and dubious situations with orange.
When looking at the data, it’s easy to see how Strategy B mostly matches (but not ex-
actly) the predicted findings produced by comparing the tumor sample to the normal
matched sample.
In general, in fact, out of 73 samples of breast cancer patients, only 7 scores are different
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from those predicted.
In particular, it should be noted, as previously done, that the samples for which the
expected score was doubtful were excluded from the study (4 out of 77); this because,
since it is not possible to express with certainty regarding the data obtained from the
comparison between the tumour sample and the normal matched one, in the same way
the result obtained by comparing the tumour sample with the metanormal could not have
been considered as certain.
A particularly important aspect to underline is that in this case all the samples that are
predicted to be HR deficient by Strategy B are actually such, as expected, unlike what
happened for Strategy A.
It follows that the only errors attributable to Strategy B are related to the declaration
of doubtful situations for samples that are expected as HR proficient or HR deficient.
Specifically, again with reference to these incorrectly assessed cases, 2 out of 7 samples
are indicated with the orange colour when they are HR proficient, while the remaining 5
samples are indicated with the orange colour when they are HR deficient.
In summary, Strategy B correctly predicts the expected score every time it shows the
colour red or green, therefore HR deficiency or HR proficiency, committing a percentage
error of 9.59% when identifying doubtful samples.

5.5 Strategy C
The failure of Strategy A found in a relevant number of cases (particularly with regard to
the prediction of HR deficient scores), but also the hope of further improving the results
achieved with Strategy B, has led to the development of a new strategy, which is called
Strategy C, with the ultimate goal of predicting correctly the HR score starting from the
comparison between the tumour samples and the constructed metanormal.
This strategy differs from the previous ones since, instead of considering only what con-
cerns the slice of allelic frequencies containing the greatest content of somatic mutations,
it directly extracts the frequencies starting from the average frequency distribution in the
N-T comparison.
In this case, it is therefore not sufficient to "cut" the portion of variations that reside be-
tween two specific frequencies, as done for Strategy A and B, it is necessary to sample the
complete data obtained with the metanormal, both as regards single nucleotide variations
and insertions/deletions (Figure 5.3).
This strategy, which I will refer to as Strategy C, involves sampling the data with the
(complete) metanormal in order to have a frequency range that instead reflects the dis-
tribution of the N-T comparison.
In particular, in fact, from the point of view of statistical information, it is possible to
realise that, when the normal matched sample ( which would subtract all the germinal
part leaving the somatic part) is not available, in the mix between germinal and somatic
(dirty data obtained with the MTN-T comparison), most of the somatic information of
interest is in the region where the N-T distribution peaks.
This process therefore provides for a sampling of the "dirty" initial data, which, although
it does not produce a very precise result, should not damage the correctness of the result
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itself; this is because the signatures are extracted from the initial data, which in turn
are statistical products, therefore, from a statistical point of view, not necessarily all the
data must be good (somatic), but most of the data is sufficient. In this way there is a
certain confidence that most (not all and not exactly) of the germline mutations have
been removed.
To extrapolate the data, especially somatic, I try to reproduce the N-T curve. Accord-
ing to the proportion of the variations for each bin of the N-T distribution, the same
proportion is extracted but starting from the distribution obtained with the metanormal,
corresponding to the whole datum.
Specifically, I try to understand how much it is necessary to scale the MTN-T curve,
extracting a certain number of variations per bin, so that it is below the N-T curve.
In reality, the extraction is independent of the number of variations, which is part of the
calculation of the ratios / proportions: for example, the maximum mode peak of the N-T
distribution does not coincide with the peak of the mode of the MTN-T distribution and,
in particular, when variations are extracted at the peak of the mode of the MTN-T distri-
bution (ie at a frequency of 50%) in reality the N-T distribution is almost zero, resulting
in almost zero extraction.

5.5.1 Methods
The algorithm associated with Strategy C is created by introducing some specific changes
to the one seen for Strategy A.
In particular, it is possible to notice how the entire flowchart coincides almost perfectly
with the one described above, both as regards the Get_SNV_from_freq-distr.py script
and Get_indel_from_freq-distr.py.
In light of the fact that some changes have been made, in order to adapt the workflow
to the new strategy introduced, the new script created in bash will take the name of
Recalibrate_HRD_C.sh (differentiating from that relating to Strategy A, called Recali-
brate_HRD_A.sh).

Recalibrate_HRD_C.sh

The first step concerns the acquisition of the files required for the script’s execution
through input.
Initially, it is acquired the name of the directory where the script is executed, saved in
BIN_DIR.
From this directory it is possible to go back to the Indel_median-freq_from_N-T and
SNV_median-freq_from_N-T files, contained in the directory itself, corresponding to
the reference distribution files in the format as the GSL-histogram output.
The Indel_median-freq_from_N-T and SNV_median-freq_from_N-T files ( shown in
the Table 5.2) respectively represent the median distribution of the SNV and Indel vari-
ations resulting from the comparison between the tumour sample and the associated
normal, corresponding to the red curve in the graphs previously illustrated.
The first disparity that emerges between the two scripts (Recalibrate_HRD_A.sh and
Recalibrate_HRD_C.sh) consists precisely in the files acquired as input.
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In fact, it is possible to observe for the Strategy A script the definition of
INDEL_NT_DISTRIBUTION as $BIN_DIR/ Indel_median-freq_from_N-T_A and of
SNV_NT_DISTRIBUTION as $BIN_DIR/ SNV_median-freq_from_N-T_A, where
$BIN_DIR represents the name of the directory in which the script is executed, within
which you can find the files Indel_median-freq_from_N-T_A and SNV_median-freq_from
_N-T_A, corresponding to the reference distribution file in the format of the GSL-
histogram output with a small modification.

SAMPLING SNV AND INDEL 
BASED ON N-T DISTRIBUTION 

(N=10) 

RECREATE AN UPDATED “.files” 
DIRECTORY 

CALCULATE HRD FOR ALL 
RANDOM DIRECTORIES 

RECALCULATE HRD BASED ON 
MEDIAN VALUES FROM 

DATAMATRIX 

Figure 5.15. Recalibrate_HRD_C.sh core workflow

In particular, these files are obtained by copying all the values contained in the Indel_median-
freq_from_N-T and SNV_median-freq_from_N-T files, respectively, by considering only
the value in correspondence with the bin defined between 10 and 20 and setting all others
equal to zero (as shown in the Table 5.3).
This trick allows in particular to select only the information contained in the range 10-20,
"cutting" the part of variations that reside between the frequencies of 10 and 20%, as
required by Strategy A.
Exporting the described files is followed by verification that the script has been launched
correctly, by introducing a check which verifies that what is required for the functioning
of the script itself has been supplied as input. Specifically, it is verified that the direc-
tory.files has been provided followed by the name of the tumour sample considered, saved
respectively as FILES_DIR and TUMOUR.
In particular, the first input refers to a folder obtained as a result of the execution of the
cpgwgs pipeline and the subsequent application of filters, corresponding to the input of
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the HRD pipeline.
The second input instead refers to the name of the tumour sample, which can be identified
in the terminal part of the header of the BAM file of the tumour sample, preceded by the
abbreviation "SM:" (as can be seen for example for patient RC100851).

@RG ID:1 LB:dummy_LB PL:dummy_PL PU:dummy_PU SM:RC100851_T

The section dealing with input acquisition is followed by a section dedicated to the de-
scription of the functions used within the script.
The sampling_indel function, starting from a VCF file relating to the Indel variations
(first input supplied to the function), has the aim of returning a new VCF file, saved with
the name indicated in correspondence with the second input of the function, characterised
by the same header of the starting one followed by the corresponding lines of the VCF file
selected by sampling.
Specifically, the function begins with the extraction of the header and the first line of
the body of the VCF file taken as input and proceeds with the execution of the script
created in python described above (Get_indel_from_freq-distr.py) providing it as input
the median distribution of the Indel variations resulting from the comparison between the
tumour sample and the associated normal and the VCF file.
Subsequently, the function foresees the ascending ordering of the rows of the VCF ob-
tained following the execution of the sampling, sorted alphabetically by its column 1
(corresponding to the chromosome on which the variant is present) and sorted numeri-
cally by its column 2 ( corresponding to the position on which the variant call was made
respectively).
Finally, the resulting file, including the header followed by the VCF lines selected by sam-
pling, is compressed in the form "file.gz" and saved in the file corresponding to the second
input of the function. The last step involves the generation of the VCF file in the form
“vcf.gz” and of its index file “vcf.gz.tbi”.
Subsequently, the sampling_SNV function is defined. It is analogous to the sampling_indel
function just described, with the only difference that it involves the execution of the python
script Get_SNV_from_freq-distr.py providing it as input the median distribution of the
SNV variations resulting from the comparison between the tumour sample and the asso-
ciated normal and the VCF.
The main body of the algorithm (viewable in the Appendix C in the form of pseudocode)
can be simply described through the identification of four fundamental steps, as observ-
able in the Figure 5.15.
Initially, the Recalibrate_HRD_C.sh script foresees the execution of the sampling on the
data that describe the distribution obtained from the comparison between the tumour
sample and the normal equivalent.
In particular, the sub-folders of the FILES_DIR folder provided as the first input to the
script are initially defined: specifically, the two paths FILES_DIR/recalibrateC/Indel-
sampling and FILES_DIR/recalibrateC/SNV-sampling are generated (Figure 5.16).
The first step is then performed inside the recalibrateC folder, separately for SNV and In-
del. In particular, the sampling_indel function (defined previously) is launched N times
receiving as parameters the file in the form Indel.*.vcf.gz (contained in FILES_DIR)
followed by the file Indel.*.vcf.RANDOM-$i.gz (contained in the Indel-sampling folder),
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recalibrateC 

Indel-sampling SNV-sampling RANDOM-1.files 

HRDetect_ 
fullPipeline.err 

HRDetect_ 
fullPipeline.out 

hg38_ 
metanormal 
__PD24215a. 
data-matrix 

RANDOM-10.files 

. . . 

Figure 5.16. Content of recalibrate C folder for patient PD24215a

where "i" represents the index that is updated at each iteration proceeding from 1 to N .
Similarly, the sampling_SNV function (previously defined) is launched N times receiving
as parameters the file in the form SNV.*.vcf.gz (contained in FILES_DIR) followed by
the SNV.*.vcf.RANDOM-$i.gz file (contained in the folder SNV-sampling).
Consequently, in the Indel-sampling and SNV-sampling folders, it will be possible to access
the files containing the sampling results on the data describing the distribution obtained
from the comparison between the tumour sample and the normal equivalent, respectively
for insertions/deletions and for single nucleotides variants (Figure 5.17).
During the second step, the Recalibrate_HRD_C.sh script takes care of recreating an
updated ’.files’ directory.
Specifically, for each file in the form Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-
*.gz (for example Indel.PD24215a_vs_hg38_metanormal.annot.vcf.RANDOM-1.gz) con-
tained in the folder Indel-sampling, generated during Step 1, is performed a series of ac-
tions outlined below.
Directories are initially defined and created in the form RANDOM-*.files (RANDOM-
1.files referring to the previous example); the files Indel.*, CNV.*, SNV.*, SV.*
(Indel.PD24215a_vs_hg38_metanormal.annot.vcf.gz, ...), contained in the FILES_DIR
folder, are copied into these directories.
At this point, the Indel replacement occurs, which involves overwriting the file in the form
Indel.*gz contained in the respective RANDOM-*.files directory (Indel.PD24215a_vs
_hg38_metanormal.annot.vcf.gz) with the file in the form Indel.*_vs_hg38_metanormal

69



Prediction on patients without matched normal tissue

recalibrateC 

Indel-sampling 

SNV-sampling 

. . . 

. . . 

Indel.PD24215a_vs_hg38_metanormal.annot.vcf. 
RANDOM-1.gz 

Indel.PD24215a_vs_hg38_metanormal.annot.vcf. 
RANDOM-1.gz.tbi 

Indel.PD24215a_vs_hg38_metanormal.annot.vcf. 
RANDOM-2.gz 

SNV.PD24215a_vs_hg38_metanormal.annot. 
muts.vcf.RANDOM-1.gz 

SNV.PD24215a_vs_hg38_metanormal.annot. 
muts.vcf.RANDOM-1.gz.tbi 

SNV.PD24215a_vs_hg38_metanormal.annot. 
muts.vcf.RANDOM-2.gz 

. . . 

Figure 5.17. Content of SNV-sampling and Indel-sampling folders for patient PD24215a

.annot.vcf.RANDOM-*.gz (Indel.PD24215a_vs_hg38_metanormal.annot.vcf.RANDOM-
1.gz).
The same is done for the file in the form Indel.*gz.tbi, replaced with the file in the
form Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-*.gz.tbi. The same process is
repeated analogously for the replacement of the SNVs inside the RANDOM-*.files direc-
tory: in particular the SNV.*_vs_hg38_metanormal.annot.muts.vcf.RANDOM-*.gz file
contained in SNV-sampling (for example SNV.PD24215a_vs_hg38_metanormal.annot
.muts.vcf.RANDOM-1.gz) overwrites the file SNV.*gz contained in the respective RANDOM-
*.files (SNV.PD24215a_vs_hg38_metanormal.annot.muts.vcf.gz considering the previous
example), as well as for the file in the form SNV.*gz.tbi.
During the third step, the Recalibrate_HRD_C.sh script takes care of calculating HRD
for all RANDOM directories.
Specifically, for each directory in the form RANDOM-*.files, contained in the recalibrateA
folder (Figure 5.18), the pipeline HRDetect_fullPipeline-hg38.AUTO.sh is run, passing
it as parameters the sample name of the tumour (saved in $TUMOUR) followed by the
directory. The script output will be saved in the HRDetect_fullPipeline.out file while any
errors in the HRDetect_fullPipeline.err file, both contained in RANDOM-*.files directory.

During the fourth step, the Recalibrate_HRD_C.sh script takes care of recalculating
HRD based on median values from datamatrix. In particular, the HRDetect pipeline re-
quires an input data frame "data_matrix", which contains a sample in each row and one
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Figure 5.18. Content of RANDOM-*.files folder for patient PD24215a

of six necessary features in each column. The six features are:

• proportion of deletions at microhomology (del.mh.prop),

• number of mutations of substitution signature 3 (SNV3),

• number of mutations of rearrangement signature 3 (SV3),

• number of mutations of rearrangement signature 5 (SV5),

• HRD LOH (Loss of Heterozygosity) index (hrd),

• number of mutations of substitution signature 8 (SNV8).

Initially, for each of the HRDetect_fullPipeline.out files (contained in the folders in the
form RANDOM-*.files), generated during the previous step, I look for the values corre-
sponding to the fields of del.mh.prop, SNV3 and SNV8.
Of the N values (in this case N is defined equal to 10) extracted for each field from the
HRDetect_fullPipeline.out files (since the RANDOM-*.files folders are N and each con-
tains only one HRDetect_fullPipeline.out file), the medians are calculated (per column),
obtaining three numbers saved in variables MH, SNV_3, SNV_8.
Through the "awk" command, look for the values corresponding to the fields of del.mh.prop,
SNV3, SNV8, SV3, SV5 and hrd, as well as the name of the sample, in the RANDOM-
1.files/HRDetect_fullPipeline.out.
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Figure 5.19. Content of HRDetect_fullPipeline.out and hg38_metanormal_
_PD24215a.data-matrix files for patient PD24215a

At this point the "original" values corresponding to del.mh.prop, SNV3 and SNV8 are
replaced with the median values calculated previously (ie MH, SNV_3, SNV_8) and are
saved in hg38_metanormal__*.data-matrix the column names corresponding to del.mh.prop,
SNV3, SV3, SV5, hrd, SNV8, the name of the sample and the values associated with the
previous columns, taking into account the replacements (sample, MH, SNV_3, SV3, SV5,
hrd, SNV_8).
Finally, the pipeline _HRDetect-score_from_data-matrix.R is launched, passing it as in-
put the hg38_metanormal__*.data-matrix (Figure 5.19).
The script output will be saved in the HRDetect_fullPipeline.out file while any errors in
the HRDetect_fullPipeline.err, both contained in the recalibrateC folder.
As it is possible to observe comparing the two scripts, the algorithm realised for Strategy
C represents a generalisation of the one initially introduced for Strategy A.
In fact it is possible to obtain the same result by executing the script Recalibrate_HRD_A.sh
or by executing the script Recalibrate_HRD_C.sh taking care to set N = 1 (which cor-
responds to the definition of the number of samplings performed).
In this way, during the Step 1, the function sampling_indel (previously defined) is launched
N times (N is defined equal to 10 for the Strategy C, while N is defined equal to 1 for
the Strategy A ) receiving as parameters the file in the form Indel.*.vcf.gz (contained in
FILES_DIR) followed by the file Indel.*.vcf.RANDOM-$i. gz (contained in the folder
Indel-sampling), where "i" represents the index that is updated at each iteration proceed-
ing from 1 to N .
Similarly, the function sampling_SNV (previously defined) is launched N times receiving
as parameters the file in the form SNV.*.vcf.gz (contained in FILES_DIR) followed by
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the file SNV.*.vcf.RANDOM-$i.gz (contained in the folder SNV-sampling).
In this way, Strategy A directly considers only what concerns the slice of allelic frequencies
containing the highest content of somatic mutations, without sampling (in fact you can
see that the functions sampling_indel and sampling_SNV are launched only once).
At the same time instead, Strategy C involves sampling the data with the (full) metanor-
mal to have a frequency range that reflects the distribution of the N-T comparison.

5.5.2 Results
Using the data of Nik-Zainal one therefore has a score that is the expected one derived
from the match between the normal and his tumour and then the result that is predicted
using the metanormal.
Score values more than 0.70 are classified as HR deficient, while score values lower than
0.30 are defined as HR proficient, according to what has been discussed for Strategy A
and Strategy B. All scores between 0.30 and 0.70 are classified as dubious, meaning that
the observed value cannot be used to identify them. A color code was constructed using
this categorisation, as shown in Table 5.6, that highlighted HR deficiency with red, HR
proficiency with green, and ambiguous scenarios with orange.
Analysing the results, it is possible to note how overall Strategy C traces well (although
not perfectly) the expected results, obtained by comparing the tumour sample and the
normal matched one.
In general, in fact, out of 73 samples of breast cancer patients, only 6 scores are different
from those predicted. In particular, it should be noted that the samples for which the
expected score was doubtful were excluded from the study (4 out of 77); this because,
since it is not possible to express with certainty regarding the data obtained from the
comparison between the tumour sample and the normal matched one, in the same way
the result obtained by comparing the tumour sample with the metanormal could not have
been considered as certain.
A particularly important aspect to underline is that in this case all the samples that are
predicted to be HR deficient by Strategy C are actually such, as expected, unlike what
happened for example for Strategy A.
Likewise, all the samples that are predicted to be HR deficient by Strategy C are actually
such, as expected.
It follows that the only errors attributable to Strategy C, as noted for Strategy B, are
related to the declaration of doubtful situations for samples that are expected as HR
proficient or HR deficient (most common errors attributable to Strategy A).
Specifically, again with reference to these incorrectly assessed cases, 4 out of 6 samples
are indicated with the orange color when they are HR proficient, while the remaining 2
out of 6 samples are indicated with the orange color when they are HR deficient.
For two of the latter, in particular PD24304a and PD22360, it is also possible to note that
the predicted score (respectively 0.6575 and 0.5324) is remarkably close to the 0.70 value
indicated as the threshold, showing a tendency to red.
In summary, Strategy C correctly predicts the expected score every time it shows the
color red or green, therefore HR deficiency or HR proficiency, committing a percentage
error of 8,22% when identifying doubtful samples, significantly lower than that identified
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by Strategy A.

5.6 Strategy D
Up to this moment, the strategies developed were aimed at emulating a frequency distri-
bution of the expected variations, corresponding to the comparison between the tumour
sample and the matched normal sample.
These studies have underlined how the type of reasoning used allows to obtain sufficiently
satisfactory results. On the other hand, however, some of the cases examined tend to flee
from these techniques, reporting different scores from those expected.

MTN-T
N-T

SNV

VAF (%)

MTN-T
N-T

VAF (%)

Figure 5.20. The average distribution of the frequencies of SNV for the N-T and MT-
N-T comparisons (on the left) is compared with the sample-specific distribution of the
frequencies of SNV for the N-T and MTN-T comparisons (on the right)

One of the possible responses to the misclassification of a certain number of samples from
breast cancer patients lies in the fact that the contribution of somatic variations is not
generalizable but is sample-specific, that is, dependent on the patient considered. The
Figure 5.20 presented here is an example of what has just been described.
In particular, on the left it is again possible to observe the average distribution of the fre-
quencies of single nucleotide variations obtained for the comparison between the tumour
sample and the respective normal (indicated in red) and that obtained through the com-
parison between the tumour sample and the metanormal (indicated in blue), calculated
using samples of the breast cancer data set, as previously described.
On the right, the analysis presented is related to a single breast cancer patient.
The distributions of the frequencies of single nucleotide variations obtained for the com-
parison between the tumour sample and the respective normal (indicated in red) and
through the comparison between the tumour sample and the metanormal (indicated in
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green) are presented. The patient considered in this case challenges the idea of a multi-
sample generalisation of the distribution due to the contribution of somatic variations.
As can be observed from the Figure 5.20, although the green curve is comparable to the
blue curve, the two red curves are considerably different, despite the fact that both are
the result of a comparison between the tumour sample and the normal matched sample.
So the curve for the specific patient deviates from that described as median.

As expected

Different

Figure 5.21. The sample-specific distributions of the frequencies of SNV, resulting
from the N-T and MTN-T comparisons, are represented. The distinction is made
between the samples for which the trend is the expected one (red curve Figure
5.20), indicated in the upper part of the Figure, and the samples for which the
trend is different (lower part of the Figure).

At this point the question related to the correctness of the generalisation of the mean
distribution of the variations in the N-T comparison arises spontaneously; trying to re-
produce a distribution that is as close as possible to an "expected" distribution that does
not reflect reality for the specific patient, could generate a confusion which would be re-
flected in the calculation of the HR score.
To analyse this aspect, different examples are then taken into consideration.
First of all it is necessary to specify that the analysis will be focused on the distributions of
single nucleotide variations, but could be performed in parallel on the insertions/deletions
as done previously.
The illustrated examples (Figure 5.21), for which green is used to describe the distribution
of the MTN-T comparison while red to describe the one of the N-T comparison, show how
in some cases the trend is the expected one (corresponding to the red curve of the previous
figure), but in other cases, such as those represented in the lower part of the figure, this
is not the case.
It is possible to note that some cases show trends that are not unimodal but bimodal,
for which the expected/real distribution presents a double peak, which strongly deviates
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from the trend shown by the generalised expectation. An hypothesis could be that the
second peak, not represented by the theoretical red curve, may contain information that
I would lose using the generalisation.

VAF(%)

Figure 5.22. Representation of the distribution of the frequencies of SNV resulting from
the N-T (red) and MTN-T (green) comparisons, as well as the mirror (purple) and
subtraction (blue) curves, for a specific examined sample.

Furthermore, some samples in Figure 5.21, such as for example the one represented in
the figure at the bottom right, have for both curves a good representation of frequencies
above 50%.
These almost rare samples are probably purer (more tumorous and more clonal) and have
very different trends compared to the generalised curve, underlined by the shift of the
peak from 20% in the generalised to 40% in the real one.
The objective at this point becomes that of creating an expected curve that is sample/-
patient specific and this provides the basis for the development of a new strategy which I
will refer to as Strategy D.
The idea is based on the hypothesis that the contribution provided by the germline mu-
tations can be seen by referring to the right tail of the distribution obtained as a result
of the comparison between the metanormal and the selected tumour sample (indicated in
green in the Figure 5.22), selecting in particular the section of the curve that corresponds
to frequencies above 50%.
In this regard, assuming that the somatic mutations reside mainly in the frequencies below
50%, the idea is to use the trend of the curve for frequencies above 50% as a template,
making it a mirror to obtain the trait corresponding to frequencies below 50%.
The result is a sample-specific bell function, symmetrical about the vertical axis defined
by the equation x = 50%.
I can now assume that the bell distribution I created (depicted in the Figure 5.22 by a

76



5.6 – Strategy D

purple line) is completely germinal, and that the somatic component corresponds to the
point-by-point subtraction of the MTN-T distribution (green) from the one I just con-
structed.
The resulting curve (indicated by the blue color in the Figure 5.22) appears more rounded
in the part corresponding to frequencies around 20%.
The latter, which from a certain point of view represents more of a probability distribution
of frequencies rather than a distribution of frequencies, will be generated by subtraction
for each sample and will be used as an expected curve for subsequent studies, replacing
the N-T comparison distribution.

VAF(%)

VAF(%)

VAF(%) VAF(%)

VAF(%) VAF(%)

Figure 5.23. Representation of the distribution of the frequencies of SNV, resulting
from the N-T (red) and MTN-T (green) comparisons, and of the mirror (purple) and
subtraction (blue) curves, for different examined samples.

By observing the representative graph in Figure 5.22, it is of fundamental importance to
observe how much the generated subtraction curve (blue) follows the expected red curve
(the N-T comparison distribution).
Obviously the mirror curve (purple) does not perfectly represent the totality of the ger-
minal variations and consequently some useful data could be lost.
Despite this, thanks to the use of the subtraction curve, it is possible to trace/predict
a bimodal trend of the distribution of the N-T comparison, managing to reproduce even
poorly represented trends.
In particular, it is necessary to underline that the subsection curve for construction will
always go to zero over 50%, since starting from 50% the cast is coincident and therefore
the subtraction is zero; it will therefore be possible to evaluate the behaviour of the curve
only for frequencies below 50%.
Once the subtraction distribution has been outlined, the goal becomes to use this curve as
an expected curve, different sample by sample (Figure 5.23), in order to repeat a sampling
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similar to that carried out during Strategy C.

5.6.1 Methods
Get_Indel_freq-distr_anyPerc.NORM.sh

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been sup-
plied as input.
Specifically, it is verified that the VCF file relating to the Indel variations has been pro-
vided followed by the length of the bin, saved respectively as INDEL and L.
Through the use of the "awk" command, the length of the bin acquired in input is used to
calculate the number of total bins contained in an interval from 0 to 100, which is saved
in the variable N .
The length of the bin is also used for the definition of the start and end, corresponding
respectively to the left end of the first bin and the right end of the last bin outlined.
Specifically, these do not correspond directly to the values 0 and 100 as it is advisable
for graphic reasons to translate the two positions so that, once the data has been used to
create a histogram, the latter is centred and not superimposed on the axis lines.
At this point, the values corresponding to the number of bins, the start and the end are
printed. Remember in particular that, as previously introduced, the VCF format includes
a header, whose lines are identified by the "##" symbols, the 9 mandatory columns iden-
tified by the "#" symbol and a body which lists all the variants.
In this regard, I proceed by extraction of all the lines of the VCF file taken as input with
the exception of those preceded by the symbol "#" (therefore only the lines belonging to
the body of the file); for each of these lines splitting of the string of the last column of
the VCF file into smaller strings using the “:” as a separator, saving these strings in the
“t” array.
In fact, remember that to extract the frequencies of Indel variations, starting from a VCF
format file relating to the Indel variations, it is necessary to consider two specific fields of
the FORMAT column, described in the header of the file as follows:

## FORMAT = <ID = FD, Number = 1, Type = Integer,
Description = "Fragment depth">
## FORMAT = <ID = FC, Number = 1, Type = Integer,
Description = "Fragment calls">

I therefore proceed with the extraction of the value in the tumour sample corresponding
to the position of "FC" in the FORMAT, saved in t[n2] and with the extraction of the
value in the tumour sample corresponding to the position of "FD" in the FORMAT, saved
in t[n2 − 1].
Subsequently, the frequencies of Indel variations are obtained through the ratio between
the two identified values taken in the order described. Therefore, the result of multiplying
the quotient obtained by 100 is printed, in order to obtain a percentage value of the variant
allele frequency.
Finally, using the gsl-histogram command it was possible to organise the obtained data in
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the required output format. In fact, the command takes three arguments, gsl-histogram
[−u] xmin xmax [n], specifying the upper and lower bounds of the histogram and the
number of bins.
It then reads numbers from "stdin", one line at a time, and adds them to the histogram.
If −u is given, histogram is normalised so that the sum of all bins is unity.

Get_SNV_freq-distr_anyPerc.NORM.sh

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been supplied
as input.
Specifically, it is verified that the VCF file relating to the SNV variations is provided
followed by the length of the bin, saved respectively as SNV and L.
The algorithm proceeds similarly to what was observed in the case of the Indel variations,
retracing step by step all the actions described for the Get_Indel_freq-distr_anyPerc
.NORM.sh script.
Through the use of the "awk" command, the length of the bin acquired in input is used to
calculate the number of total bins contained in an interval from 0 to 100, which is saved
in the variable N . The length of the bin is also used for the definition of the start and
end, corresponding respectively to the left end of the first bin and the right end of the
last bin outlined.
Specifically, these do not correspond directly to the values 0 and 100 as it is advisable
for graphic reasons to translate the two positions so that, once the data has been used to
create a histogram, the latter is centred and not superimposed on the axis lines.
At this point, the values corresponding to the number of bins, the start and the end are
printed.
Remember in particular that, as previously introduced, the VCF format includes a header,
whose lines are identified by the "##" symbols, the 9 mandatory columns identified by
the "#" symbol and a body which lists all the variants.
In this regard, I proceed by extraction of all the lines of the VCF file taken as input with
the exception of those preceded by the symbol "#" (therefore only the lines belonging to
the body of the file); for each of these lines splitting of the string of the last column of
the VCF file into smaller strings using the “:” as a separator, saving these strings in the
“t” array.
Differently from what was observed for the Get_Indel_freq-distr_anyPerc.NORM.sh, in
this case to extract the frequencies of SNV variations, starting from a VCF format file
relating to the SNV variations, it is necessary to consider only one specific field of the
FORMAT column, described in the header of the file as follows:
##FORMAT= <ID= PM, Number= 1, Type= Float,
Description= "Proportion of mutated allele">

I therefore proceed with the extraction of the value in the tumour sample corresponding
to the position of "PM" in the FORMAT, saved in t[n2].
Subsequently, the percentage values of frequencies of SNV variations are obtained by mul-
tiplying the identified value by one hundred.
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Finally, using the gsl-histogram command it was possible to organise the data obtained in
the required output format, as seen for Get_Indel_freq-distr_anyPerc.NORM.sh script.

Get_Indel_freq-distr_anyPerc.sh

The algorithm is identical to that described for Get_Indel_freq-distr_anyPerc.NORM.sh
script.
The only difference lies in the use of the gsl-histogram command, which was used in the
previous cases with the −u feature, which implies the creation of a normalised histogram
so that the sum of all bins is unity.
In the case of Get_Indel_freq-distr_anyPerc.sh the command is executed without this
feature, consequently the obtained histogram is not normalised.

Get_SNV_freq-distr_anyPerc.sh

The algorithm is identical to that described for Get_SNV_freq-distr_anyPerc.NORM.sh
script.
The only difference lies in the use of the gsl-histogram command, which was used in the
previous cases with the −u feature, which implies the creation of a normalised histogram
so that the sum of all bins is unity. In the case of Get_SNV_freq-distr_anyPerc.sh the
command is executed without this feature, consequently the obtained histogram is not
normalised.

_get_mirror_distribution.py

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been sup-
plied as input.
Specifically, it is verified that the distribution file relating to the Indel variations or to the
SNV variations has been provided.
In particular, the input requested by this python script corresponds to the output in the
format obtained as a result of the Get_SNV_freq-distr_anyPerc.sh, Get_Indel_freq-
distr_anyPerc.sh, Get_SNV_freq-distr_anyPerc.NORM.sh, Get_Indel_freq-distr
_anyPerc.NORM.sh scripts described above.
For each line of the distribution file acquired as input, the line is initially split using
" " as separator, through the split() function, after it has been deprived of spaces at the
beginning and at the end using the strip() function.
Through the Python function map(), the float() function is applied to the split line (which,
starting from a number or a string containing decimal points, returns a floating point num-
ber).
The three decimal numbers obtained for each line of the distribution file are subsequently
saved in the list called "distribution".
At this point, for each index in the distribution list the mean value of the bin (i[0]+i[1])/2),
the frequency associated with the bin (i[2]), the lower end of the bin (i[0]) and the upper
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end of the bin (i[1]) are saved in order in the list x_y. Through the zip function all the
elements of x_y and of the ordered x_y list (sorted in descending order) are associated,
obtaining a tuple with the elements of the objects according to their position order.
For each i, index of the list x_y, and for each j, index of the ordered list x_y, I ask if the
first element of the i-th row of the list x_y is less than the first element of the j-th row of
the list x_y in decreasing order: if the answer is yes, the second and third element of the
i-th row of the list x_y followed by the first element of the j-th row of the ordered list
x_y ( corresponding respectively to the right end of the bin and to the frequency relative
to the bin, extracted from the first list, and to the left end of the bin, extracted from the
second list); otherwise, the second, the third and the first element of the i-th row of the
list x_y are printed ( corresponding respectively to the right end of the bin, the frequency
relative to the bin and the left end of the bin, extracted from the first list ).

_subtract_distribution.py

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been sup-
plied as input.
Specifically, it is verified that the distribution file relating to the Indel variations (or to
the SNV variations), obtained as output of the script Get_Indel_freq-distr_anyPerc.sh
(or Get_SNV_freq-distr_anyPerc.NORM.sh), has been provided, followed by the output
obtained by _get_mirror_distribution.py by using the distribution file relating to the
Indel variations (or to the SNV variations) as input.
Once the required distribution files have been acquired as input, for each line of the distri-
bution1, the line is initially split using " " as separator, through the split() function, after
it has been deprived of spaces at the beginning and at the end using the strip() function.
Through the python function map(), the float() function is applied to the split line (which,
starting from a number or a string containing decimal points, returns a floating point num-
ber).
The three decimal numbers obtained for each line of the distribution file are subsequently
saved in the list called d1. The same procedure is carried out for each line of the distri-
bution2 file and the results are saved in the d2 list.
At this point, for each index in the list d1 the mean value of the bin (i[0] + i[1])/2), the
frequency associated with the bin (i[2]), the lower end of the bin (i[0]) and the upper end
of the bin (i[1]) are saved in order in the list x_y1. The same procedure is performed for
each index in the d2 list and the results are saved in the x_y2 list.
The lengths of the two lists just described are then calculated and a check is made on
them to verify that the two distributions compared have the same size; if I do not have
the same dimension, an error is returned as it is not possible to calculate the difference
between the distributions provided in input.
The enumerate() function is used to iterate through all the elements of the list x_y1,
having both the indices (n) and the values of the list (i) as variables to manage.
In particular, it is saved in x1 the first value contained in the i-th value of the x_y1 list
(corresponding to the average value of the bin of the i-th row) while in x_y2[n][0] there is
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the first value contained in the n-th value of the x_y2 list (corresponding to the average
value of the bin of the n-th row).
At this point a check is made to verify that the bin identified in distribution1 exists in
distribution2, if this is not verified an error is returned as it is not possible to calculate
the difference between the distributions provided in input for that bin.
Finally, the difference between the second value contained in the i-th value of the x_y1 list
(corresponding to the value of the frequency associated with the bin of the i-th row) and
the second value contained in the n-th value is calculated of the x_y2 list (corresponding
to the value of the frequency associated with the bin of the n-th row); the third and fourth
value contained in the i-th value of the x_y1 list (corresponding to the extremes of the
bin of the i-th row) are then printed, followed by the calculated difference if the difference
is positive, otherwise by zero.

Get_freq-distr_anyPerc_from_distribution.NORM.sh

The algorithm proceeds similarly to what was observed in the case of Get_Indel_freq-
distr_anyPerc.NORM.sh, retracing step by step all the actions described for the script.
Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been sup-
plied as input.
Specifically, it is verified that the distribution file relating to the Indel variations or to
the SNV variations has been provided followed by the length of the bin, saved in $DISTR
and $L respectively.
In particular, the first input requested by this script corresponds to the output in the for-
mat obtained as a result of the _get_mirror_distribution.py and _subtract_distribution.py
scripts described above.
As noted above, through the use of the "awk" command, the length of the bin acquired in
input is used to calculate the number of total bins contained in an interval from 0 to 100,
which is saved in the variable N .
The length of the bin is also used for the definition of the start and end, corresponding
respectively to the left end of the first bin and the right end of the last bin outlined.
At this point, the values corresponding to the number of bins, the start and the end are
printed.
Differently from what has been seen for the Get_Indel_freq-distr_anyPerc.NORM.sh
script, using the "awk" command on the $DISTR file again, for each line of the file the
average value of the bin ((right_extreme + left_extreme)/2) is saved in x and the value
of the variation frequency relative to bin is saved in y. At this point, x is printed y times
and finally, using the gsl-histogram command it is possible to organise the obtained data
in the required output format (normalised histogram).

Subtract_germline_distribution.SNV.sh

The script Subtract_germline_distribution.SNV.sh, supplied in input the VCF file relat-
ing to the metanormal (in the form metaNormal.SNV.vcf [.gz]), a name chosen as the
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basename of the subsequent outputs of the script and the length of the bin, executes in
succession the scripts described above in order to graphically represent the distribution
relative to the metanormal, the "subtraction" distribution and the "mirror" distribution,
both normalised and non-normalized.
The main body of the algorithm is viewable in the Appendix C in the form of pseudocode.

Subtract_germline_distribution.Indel.sh

The script Subtract_germline_distribution.Indel.sh, supplied in input the VCF file relat-
ing to the metanormal (in the form metaNormal.Indel.vcf [.gz]), a name chosen as the
basename of the subsequent outputs of the script and the length of the bin, executes in
succession the scripts described above in order to graphically represent the distribution
relative to the metanormal, the "subtraction" distribution and the "mirror" distribution,
both normalised and non-normalized.
The algorithm is identical to that described for Subtract_germline_distribution.SNV.sh
script therefore it is not reported.

Recalibrate_HRD_D.sh

The algorithm associated with Strategy D is created by introducing some specific changes
to the one seen for Strategy C.
In particular, it is possible to notice how the entire flowchart coincides almost per-
fectly with the one described above for Strategy C (Figure 5.24, both as regards the
Get_SNV_from_freq-distr.py and Get_indel_from_freq-distr.py.
In light of the fact that some changes have been made, in order to adapt the workflow
to the new strategy introduced, the new script created in bash will take the name of
Recalibrate_HRD_D.sh (differentiating from that relating to Strategy C, called Recali-
brate_HRD_C.sh and from that relating to Strategy A, called Recalibrate_HRD_A.sh).
Specifically, the only disparities that emerge between the two scripts made in bash are
identified by:

1. In the acquisition of input files, associated with the initial section of the algorithm,
it is possible to observe for both scripts that the first step is to get the name of
the directory where the script is executed, saved in BIN_DIR. From this directory
it is possible to go back to the Indel_median-freq_from_N-T and SNV_median-
freq_from_N-T files (Table 5.2), contained in the directory itself, corresponding to
the reference distribution files in the format as the GSL-histogram output.
These respectively represent the median distribution of the SNV and Indel varia-
tions resulting from the comparison between the tumour sample and the associated
normal, corresponding to the red curve in the graphs previously illustrated.
Exporting the described files is followed by verification that the script has been
launched correctly, by introducing a check which verifies that what is required for
the functioning of the script itself has been supplied as input.
Specifically, for the Strategy C script, it is verified that the directory.files has been
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GET SNV AND INDEL N-T 
DISTRIBUTIONS 

SAMPLING SNV AND INDEL 
BASED ON N-T DISTRIBUTION 

(N=10) 

RECREATE AN UPDATED “.files” 
DIRECTORY 

CALCULATE HRD FOR ALL 
RANDOM DIRECTORIES 

RECALCULATE HRD BASED ON 
MEDIAN VALUES FROM 

DATAMATRIX 

Figure 5.24. Recalibrate_HRD_D.sh core workflow

provided followed by the name of the tumour sample considered, saved respectively
as FILES_DIR and TUMOUR.
On the other hand, for the script related to Strategy D, it is verified that the di-
rectory.files has been provided followed not only by the name of the tumour sample
considered but also by $L_BIN, corresponding to the chosen length of the bin.

2. Always corresponding to the initial section of the script, it is possible to observe for
the script of Strategy C the definition of N = 10 which corresponds to the definition
of the number of sampling performed. In fact, the Recalibrate_HRD_C.sh script
foresees the execution of the sampling on the data that describe the distribution ob-
tained from the comparison between the tumour sample and the normal equivalent.
In particular, the sub-folders of the FILES_DIR, folder provided as the first input to
the script are initially defined: specifically, the two paths FILES_DIR/recalibrateC/
Indel-sampling and FILES_DIR/recalibrateC/SNV-sampling are generated.
The first step is then performed inside the recalibrateC folder, separately for SNV
and Indel.
In particular, the sampling_indel function (defined previously) is launched N times
receiving as parameters the file in the form Indel.*.vcf.gz (contained in FILES_DIR)
followed by the file Indel.*.vcf.RANDOM-$i.gz (contained in the Indel-sampling
folder), where "i" represents the index that is updated at each iteration proceed-
ing from 1 to N .
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Similarly, the sampling_SNV function (previously defined) is launched N times re-
ceiving as parameters the file in the form SNV.*.vcf.gz (contained in FILES_DIR)
followed by the SNV.*.vcf.RANDOM-$i.gz file (contained in the folder SNV-sampling).
On the other hand, Strategy D differs from the previous one since it sets the value
of N equal to 50 (five times the value chosen for Strategy C).
The sub-folders of the FILES_DIR folder, provided as the first input to the script, are
initially defined: specifically, the two paths FILES_DIR/recalibrateD.$L_BIN/Indel-
sampling and FILES_DIR/recalibrateD. $L_BIN/SNV-sampling are generated to
differentiate it from recalibrateC, referring to the Strategy C).
I go to the recalibrateD.$L_BIN folder and the sampling_indel function is launched
fifty times receiving as parameters the file in the form Indel.*.vcf.gz (contained in
FILES_DIR) followed by the file Indel.*.vcf.RANDOM-1.gz (contained in the Indel-
sampling folder). Similarly, for the sampling_SNV function.

3. As regards the central body of the script created for Strategy D, this differs from
the one created for Strategy C as it includes a further step.
Specifically, in addition to the steps Sampling on N-T distribution, Recreate an
updated ’.files’ directory, Calculate HRD for all RANDOM directories, Recalculate
HRD based on median values from datamatrix, previously described, the "step zero"
is introduced.
In particular, the introduction of the new step involves the execution of the two
scripts created in bash $BIN_DIR/Subtract_germline_distribution.SNV.sh and
$BIN_DIR/Subtract_germline_distribution.Indel.sh. The latter, receiving in input
respectively $FILES_DIR/SNV.*.vcf.gz, "SNV_distribution" (name chosen as base-
name relative to the script outputs), $L_BIN and $FILES_DIR/Indel.*.vcf.gz, "In-
del_distribution", $L_BIN, allows the exportation of the distribution (respectively
named SNV_NT_DISTRIBUTION and INDEL_NT_DISTRIBUTION) resulting
from the subtraction of the "mirror” distribution from the metanormal one.

5.6.2 Results
Using the data of Nik-Zainal one therefore has a score that is the expected one derived
from the match between the normal and his tumour and then the result that is predicted
using the metanormal.
In particular, in accordance with what has been explained for the other strategies illus-
trated above, score values higher than 0.70 are defined as HR deficient while score values
lower than 0.30 are considered HR proficient.
All scores between these two values are indicated as doubtful, i.e. it is not possible to
attribute proficiency or deficiency on the basis of the observed value.
Taking this classification into account, as can be seen in the Table 5.7, a color code was
used that identified HR deficiency with red, HR proficiency with green and doubtful sit-
uations with orange, for which it was not possible to express.
Analysing the results, it is possible to note how overall Strategy D does not provide faith-
ful results to those expected, obtained by comparing the tumour sample and the normal
matched one.
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In general, in fact, out of 73 samples of breast cancer patients, exactly 12 scores are dif-
ferent from those predicted.
In particular, it should be noted that the samples for which the expected score was doubt-
ful were excluded from the study (4 out of 77); this because, since it is not possible to
express with certainty regarding the data obtained from the comparison between the
tumour sample and the normal matched one, in the same way the result obtained by
comparing the tumour sample with the metanormal could not have been considered as
certain.
A particularly important aspect to underline is that in this case all the samples predicted
to be HR deficient by Strategy D are actually such, as expected, like what happened for
Strategy C.
On the other hand, not all the samples that are predicted to be HR proficient by Strat-
egy D are actually such, as expected: specifically 6 among the 12 erroneously predicted
samples, for which HR proficiency is predicted although they are HR deficient.
It follows that common errors attributable to Strategy D (similarly to what happened for
Strategy C and for Strategy A) are related to the declaration of doubtful situations for
samples that are expected as HR proficient or HR deficient.
Specifically, again with reference to these cases which were incorrectly assessed, 6 out of
12 samples are indicated with the colour orange, of which 1 is HR proficient, while the
remaining 5 are HR deficient.
In summary, Strategy D correctly predicts the expected score 61 times out of 73 samples
considered as a whole, committing a percentage error of 16.44%, significantly higher than
that identified by Strategy C and by Strategy B, but lower than that outlined by Strategy
A.

5.7 Ensemble strategy
In order to improve the results obtained through the predictions made by the strategies
described above, the Ensemble Strategy is introduced, which draws its origins from en-
semble learning.
Ensemble learning is a general meta approach to machine learning that seeks better pre-
dictive performance by combining the predictions from multiple models[29].
Although there appears to be no limit to the number of ensembles that may be created
for a predictive modelling task, the area of ensemble learning is dominated by three ap-
proaches.
Ensemble learning approaches are divided into three categories [29]:

• Bagging: This method seeks to generate a group of classifiers with similar relevance.
Each model will vote on the prediction’s result at the moment of classification, and
the aggregate output will be the class with the most votes.

• Boosting: Unlike bagging, each classifier has a set weight on the final grade. The
accuracy error that each model will incur throughout the learning phase will be used
to determine this weight.
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5.7 – Ensemble strategy

• Stacking: Unlike bagging, where the output is the outcome of a vote, stacking
introduces a new classifier (called a meta-classifier) that leverages the predictions of
other sub-models to do extra learning.

In this case, the methodology that will be used, will take its cue from the class of methods
called Stacking.
Stacked Generalisation, or stacking, is an ensemble approach for finding a varied group of
members by modifying the model types fit on the training data and combining predictions
with a model.

INPUT 

OUTPUT 

Strategy A Strategy B Strategy C Strategy D 

Ensemble 
Strategy 

LE
VE

L 
0 

LE
VE

L 
1 

Figure 5.25. Stacking workflow

Stacking has its own terminology, with level-0 models referring to ensemble members and
level-1 models referring to the model that is used to integrate the forecasts.
Although additional levels of models can be utilised, the most frequent strategy is a two-
level hierarchy of models.
Instead of a single level-1 model, one may has three or five level-1 models and a single
level-2 model that integrates level-1 model predictions to generate a forecast.
The essential aspects of stacking may be summarised as follows:

• The training dataset has not been altered.

• Each ensemble member has its own algorithm.

• A model for determining the optimal way to integrate forecasts.
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The multiple models utilised as ensemble members provide diversity.
As a result, it’s preferable to utilise a collection of models that are taught or built in a
variety of methods, guaranteeing that they make various assumptions and, as a result,
have less associated prediction mistakes.
Specifically, the developed strategy sees as level 0 models, i.e. as members of the ensemble,
strategies C, A, D and B (as shown in Figure 5.25).
By applying these models to the same dataset, consisting of 77 samples of patients with
breast cancer, it was in fact possible to obtain predictions regarding the status of the HR
score. Using Nik-Zainal’s data one gets a score that is the expected one derived from the
match between the normal and his tumour and then the result that is predicted using the
metanormal with the previously listed strategies.
In particular, in accordance with what has been explained before, score values higher
than 0.70 are defined as HR deficient while score values lower than 0.30 are considered
HR proficient.
All scores between 0.30 and 0.70 are indicated as doubtful, i.e. it is not possible to
attribute proficiency or deficiency on the basis of the observed value.
Taking this classification into account, a color code was used that identified HR deficiency
with red, HR proficiency with green and doubtful situations with orange, for which it was
not possible to express. In this way it was possible to associate a color to each prediction
made through each strategy, depending on the score obtained.

Figure 5.26. Representation of the errors outlined by the previously described strategies
through application on the breast cancer dataset examined, differentiated by type of error.

Analysing the results, it is possible to note how overall Strategy C traces well the expected
results, obtained by comparing the tumour sample and the normal matched one.
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In general, in fact, out of 73 samples of breast cancer patients, only 6 scores are different
from those predicted.
In particular, it should be noted that the samples for which the expected score was doubtful
(4 out of 77) were excluded from the study; this because, since it is not possible to express
with certainty regarding the data obtained from the comparison between the tumour
sample and the normal matched one, in the same way the result obtained by comparing
the tumour sample with the metanormal could not have been considered as certain.
A particularly important aspect to underline is that in this case all the samples that are
predicted to be HR deficient by Strategy C are actually such, as expected, as could also
be seen for Strategy B.
Precisely for this reason and since Strategy C is associated with the lowest percentage
error (Figure 5.26), for the execution of the new strategy introduced, it was decided to
use the results obtained starting from Strategy C as a reference, in order to improve the
predictions made by it.
The level 1 model, used to combine the forecasts obtained through the level 0 models,
therefore envisages considering Strategy C as a reference and aims to answer the question:
”Is the sample HRD ?”, correcting the erroneous predictions that in this case are related
to the declaration of doubtful situations for samples that are expected as HR proficient
or HR deficient, as explained above.
The level 1 model is therefore used exclusively on the samples that have been predicted
as “not HRD”, so on samples declared HRP or doubtful.
Specifically, the model assigns the value "1" to the HR proficiency (therefore to the green
color), the value "-1" to the HR deficiency (therefore to the red color) while assigning a
null value to all cases marked in orange as doubtful situations.
In this way, for each of the 50 patients considered, each strategy will be associated with a
numerical value, relative to the prediction made by the strategy itself. By summing up the
values for each patient separately, 50 values are obtained, which track the contributions
provided by the strategies overall.
At this point the decision-making phase intervenes: if the result obtained for the single
patient sample is positive, HR proficiency (green color) is assigned as prediction, if it is
negative, HR deficiency (red color) is assigned otherwise (the result is null) recognizes the
situation again as doubtful (indicating the corresponding sample with orange color).

5.7.1 Methods
Ensemble_strategy.sh

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been sup-
plied as input.
Specifically, it is verified that at least one directory, containing the information related to
the application of the different strategies to the patient considered, has been provided.
By iterating on each directory in the form directory.files (relative to a specific sample
examined) provided as input, it was possible to obtain for each of them the HR score
obtained by using the Ensemble Strategy.
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Specifically, through the use of the "awk" command, it was possible to extract from the
files in the form HRDetect_fullPipeline.out, contained in the recalibrateB, recalibrateC,
recalibrateA, recalibrateD folders, respectively, the HR scores obtained as a result of the
execution of Strategies B, C, A, D on the samples of the patients considered.
As anticipated, since Strategy C is associated with the lowest percentage error, for the
execution of the new strategy introduced, it was decided to use the results obtained start-
ing from Strategy C as a reference, in order to improve the predictions made by it.
In this regard, the "ensemble" variable is introduced, which is associated with the HR
score obtained by performing the Strategy C; in particular, the value 2, 1 or 0 to ensem-
ble is assigned depending on whether the score is respectively >0.70, <0.30 or between
0.30 and 0.70 (extremes included).
It follows that the Ensemble Strategy will be applied only if the value contained in the en-
semble variable is different from 2, which implies that the score predicted by the Strategy
C is doubtful, between 0.30 and 0.70, or that the score predicted is less than 0.30 (HRP).
In the other case, ensemble = 2, the script will simply provide the result obtained through
Strategy C, used as a reference, printing that the sample is HRD.
Assuming that ensemble takes the value 0 or 1 and therefore the Ensemble Strategy comes
into play, the model assigns the value "1" to the HR proficiency (therefore to score values
lower than 0.30), the value "-1 "to the HR deficiency (therefore to score values higher than
0.70) while assigning a null value to all scores between 0.30 and 0.70 (extremes included),
as outlined above.
In this way each strategy will be associated with a numerical value, relative to the predic-
tion made by the strategy itself, which in this case have been named R1, R3, R4 (referring
respectively to strategies B, A and D).
At this point, the values obtained are added and the decision phase takes place: if the
result obtained for the single patient sample (ie for the current file directory) is positive,
HR proficiency is assigned as prediction, if it is negative, HR deficiency is assigned, other-
wise (the result is null) the situation is recognized as doubtful and assigns the value "NA"
(Not Available).

5.7.2 Results
As can be seen in the Table 5.8, a color code was used that identifies HR deficiency with
red, HR proficiency with green and doubtful situations with orange, for which it was not
possible to express.
Analysing the results, it is possible to note how overall Ensemble Strategy traces well (al-
though not perfectly) the expected results, obtained by adding the single values assigned
for each of the previously examined strategies.
In general, in fact, out of 50 samples corresponding to breast cancer patients for whom
Strategy C predicted a “non-HRD” score, only 1 score is different from those predicted.
In particular, it should be noted, as previously done, that the samples for which the ex-
pected HRD score was perfectly replicated by Strategy C were excluded from the study;
this is because it has been chosen to use Strategy C as a reference.
A particularly important aspect to underline is that in this case all the samples that are
predicted to be HR deficient by Ensemble Strategy are actually such, as expected.
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Figure 5.27. Representation of the errors outlined by the strategies through application
on the breast cancer dataset examined, differentiated by type of error.

At the same time, all of the samples that are predicted to be HR proficient by Ensemble
Strategy are actually such, as expected. It follows that the only error attributable to the
Ensemble Strategy is related to the declaration of doubtful situation for a sample that is
expected as HR deficient (specifically the sample PD22360a).
In summary, Ensemble Strategy correctly predicts the expected score in 72 of the 73 cases
considered.
It follows that, by applying the new strategy introduced, it is possible to bring the per-
centage error committed by Strategy C from 8.22% to 1.37%, passing from 6 errors to 1
error on 73 patients examined (Figure 5.27).
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Patient Expected Score Strategy A Patient Expected Score Strategy A
PD22036a 0.000 0.396 PD22251a 0.003 0.2097
PD22355a 0.9999 1.0000 PD22358a 0.9170 0.9933
PD22359a 0.0018 0.0001 PD22360a 0.9748 0.0152
PD22361a 0.0004 0.0430 PD22362a 0.0022 0.3783
PD22363a 0.9723 0.3414 PD22364a 0.0035 0.0232
PD22365a 0.0062 0.5297 PD22366a 0.9995 0.9977
PD23550a 0.0047 0.5409 PD23554a 0.9964 0.8665
PD23558a 0.9946 0.9993 PD23559a 0.1954 0.9889
PD23561a 0.0000 0.0016 PD23562a 0.9998 0.9977
PD23563a 0.9993 0.9965 PD23564a 0.0000 0.0002
PD23565a 0.0351 0.6148 PD23566a 0.9999 0.9024
PD23567a 0.9983 0.9997 PD23570a 0.0071 0.1508
PD23577a 0.9999 0.9991 PD23578a 0.9941 0.9984
PD23579a 0.0000 0.0001 PD24182a 0.9996 0.9972
PD24186a 0.7788 0.5665 PD24189a 0.0000 0.0002
PD24190a 0.0141 0.5206 PD24191a 0.8996 0.9748
PD24193a 0.0000 0.0003 PD24195a 0.0009 0.0877
PD24196a NA NA PD24197a 0.9978 0.9997
PD24199a 0.0096 0.2393 PD24200a 0.0272 0.0575
PD24201a 0.9969 0.9685 PD24202a 0.9997 0.9997
PD24204a 0.0001 0.0012 PD24205a 0.9970 0.9986
PD24206a 0.0007 0.0796 PD24207a 0.0297 0.1936
PD24208a 0.0186 0.4868 PD24209a 0.0692 0.1333
PD24212a 0.9987 0.9991 PD24214a 0.0030 0.0023
PD24215a NA NA PD24216a 0.0055 0.5763
PD24217a 0.0004 0.0953 PD24218a 0.0047 0.0210
PD24219a NA NA PD24220a 0.0012 0.0007
PD24221a 0.0078 0.2384 PD24223a 0.0013 0.0827
PD24224a 0.0006 0.0163 PD24225a 0.0013 0.1822
PD24302a 0.0002 0.0695 PD24303a 0.8697 1.0000
PD24304a 0.8740 0.9751 PD24306a 0.9660 1.0000
PD24307a 0.0006 0.1001 PD24308a NA NA
PD24314a 0.0040 0.4013 PD24318a 0.0216 0.4321
PD24320a 0.0002 0.0054 PD24322a 0.0009 0.1117
PD24325a 0.1706 0.3457 PD24326a 0.0008 0.0069
PD24327a 0.0010 0.1367 PD24329a 0.0002 0.1331
PD24332a 0.0021 0.6388 PD24333a 0.0023 0.8560
PD24335a 0.0083 0.0507 PD24336a 0.0006 0.3386
PD24337a 1.0000 0.9956

Table 5.4. Results obtained with Strategy A for breast cancer.
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Patient Expected Score Strategy B Patient Expected Score Strategy B
PD22036a 0.000 0.211 PD22251a 0.003 0.1552
PD22355a 0.9999 0.9840 PD22358a 0.9170 0.8585
PD22359a 0.0018 0.0751 PD22360a 0.9748 0.9348
PD22361a 0.0004 0.1514 PD22362a 0.0022 0.1820
PD22363a 0.9723 0.3721 PD22364a 0.0035 0.0921
PD22365a 0.0062 0.0901 PD22366a 0.9995 0.9974
PD23550a 0.0047 0.0864 PD23554a 0.9964 0.9975
PD23558a 0.9946 0.9692 PD23559a 0.1954 0.1255
PD23561a 0.0000 0.0105 PD23562a 0.9998 0.9981
PD23563a 0.9993 0.8455 PD23564a 0.0000 0.0002
PD23565a 0.0351 0.1579 PD23566a 0.9999 0.8685
PD23567a 0.9983 0.9975 PD23570a 0.0071 0.1328
PD23577a 0.9999 0.9057 PD23578a 0.9941 0.9942
PD23579a 0.0000 0.0001 PD24182a 0.9996 0.9887
PD24186a 0.7788 0.3871 PD24189a 0.0000 0.0002
PD24190a 0.0141 0.2261 PD24191a 0.8996 0.8587
PD24193a 0.0000 0.0029 PD24195a 0.0009 0.6269
PD24196a NA NA PD24197a 0.9978 0.9988
PD24199a 0.0096 0.0509 PD24200a 0.0272 0.4198
PD24201a 0.9969 0.8127 PD24202a 0.9997 0.9523
PD24204a 0.0001 0.1456 PD24205a 0.9970 0.9830
PD24206a 0.0007 0.2054 PD24207a 0.0297 0.0293
PD24208a 0.0186 0.1449 PD24209a 0.0692 0.1443
PD24212a 0.9987 0.5900 PD24214a 0.0030 0.0919
PD24215a NA NA PD24216a 0.0055 0.1826
PD24217a 0.0004 0.1339 PD24218a 0.0047 0.0922
PD24219a NA NA PD24220a 0.0012 0.1067
PD24221a 0.0078 0.1484 PD24223a 0.0013 0.1211
PD24224a 0.0006 0.1527 PD24225a 0.0013 0.1988
PD24302a 0.0002 0.1081 PD24303a 0.8697 0.8989
PD24304a 0.8740 0.5106 PD24306a 0.9660 0.5147
PD24307a 0.0006 0.0288 PD24308a NA NA
PD24314a 0.0040 0.1468 PD24318a 0.0216 0.1303
PD24320a 0.0002 0.0115 PD24322a 0.0009 0.1622
PD24325a 0.1706 0.0493 PD24326a 0.0008 0.0179
PD24327a 0.0010 0.1479 PD24329a 0.0002 0.2216
PD24332a 0.0021 0.0711 PD24333a 0.0023 0.0524
PD24335a 0.0083 0.1621 PD24336a 0.0006 0.1540
PD24337a 1.0000 0.9934

Table 5.5. Results obtained with Strategy B for breast cancer
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Patient Expected Score Strategy C Patient Expected Score Strategy C
PD22036a 0.000 0.215 PD22251a 0.003 0.1570
PD22355a 0.9999 0.9955 PD22358a 0.9170 0.9926
PD22359a 0.0018 0.0133 PD22360a 0.9748 0.5324
PD22361a 0.0004 0.0428 PD22362a 0.0022 0.2851
PD22363a 0.9723 0.7002 PD22364a 0.0035 0.0649
PD22365a 0.0062 0.2702 PD22366a 0.9995 0.9942
PD23550a 0.0047 0.1677 PD23554a 0.9964 0.9909
PD23558a 0.9946 0.9897 PD23559a 0.1954 0.2104
PD23561a 0.0000 0.0052 PD23562a 0.9998 0.8948
PD23563a 0.9993 0.9870 PD23564a 0.0000 0.0002
PD23565a 0.0351 0.0956 PD23566a 0.9999 0.8490
PD23567a 0.9983 0.9987 PD23570a 0.0071 0.1316
PD23577a 0.9999 0.9986 PD23578a 0.9941 0.9954
PD23579a 0.0000 0.0001 PD24182a 0.9996 0.9946
PD24186a 0.7788 0.8016 PD24189a 0.0000 0.0002
PD24190a 0.0141 0.3162 PD24191a 0.8996 0.8060
PD24193a 0.0000 0.0009 PD24195a 0.0009 0.1563
PD24196a NA NA PD24197a 0.9978 0.9988
PD24199a 0.0096 0.1602 PD24200a 0.0272 0.0609
PD24201a 0.9969 0.9033 PD24202a 0.9997 0.9699
PD24204a 0.0001 0.0300 PD24205a 0.9970 0.9919
PD24206a 0.0007 0.2000 PD24207a 0.0297 0.0536
PD24208a 0.0186 0.0759 PD24209a 0.0692 0.1559
PD24212a 0.9987 0.9327 PD24214a 0.0030 0.0029
PD24215a NA NA PD24216a 0.0055 0.0682
PD24217a 0.0004 0.1332 PD24218a 0.0047 0.0522
PD24219a NA NA PD24220a 0.0012 0.0326
PD24221a 0.0078 0.1262 PD24223a 0.0013 0.0707
PD24224a 0.0006 0.0932 PD24225a 0.0013 0.1895
PD24302a 0.0002 0.0804 PD24303a 0.8697 0.9648
PD24304a 0.8740 0.6575 PD24306a 0.9660 0.9763
PD24307a 0.0006 0.0388 PD24308a NA NA
PD24314a 0.0040 0.3782 PD24318a 0.0216 0.3340
PD24320a 0.0002 0.0122 PD24322a 0.0009 0.0654
PD24325a 0.1706 0.0305 PD24326a 0.0008 0.0211
PD24327a 0.0010 0.1759 PD24329a 0.0002 0.1045
PD24332a 0.0021 0.1828 PD24333a 0.0023 0.2251
PD24335a 0.0083 0.0714 PD24336a 0.0006 0.4682
PD24337a 1.0000 0.9954

Table 5.6. Results obtained with Strategy C for breast cancer
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Patient Expected Score Strategy D Patient Expected Score Strategy D
PD22036a 0.000 0.066 PD22251a 0.003 0.0309
PD22355a 0.9999 0.9650 PD22358a 0.9170 0.1631
PD22359a 0.0018 0.0682 PD22360a 0.9748 0.4249
PD22361a 0.0004 0.0521 PD22362a 0.0022 0.0675
PD22363a 0.9723 0.1964 PD22364a 0.0035 0.0524
PD22365a 0.0062 0.0511 PD22366a 0.9995 0.8291
PD23550a 0.0047 0.0135 PD23554a 0.9964 0.7752
PD23558a 0.9946 0.2500 PD23559a 0.1954 0.0920
PD23561a 0.0000 0.0192 PD23562a 0.9998 0.9133
PD23563a 0.9993 0.6807 PD23564a 0.0000 0.0002
PD23565a 0.0351 0.0754 PD23566a 0.9999 0.8226
PD23567a 0.9983 0.8918 PD23570a 0.0071 0.0640
PD23577a 0.9999 0.8997 PD23578a 0.9941 0.7013
PD23579a 0.0000 0.0001 PD24182a 0.9996 0.6659
PD24186a 0.7788 0.1518 PD24189a 0.0000 0.0002
PD24190a 0.0141 0.0953 PD24191a 0.8996 0.0000
PD24193a 0.0000 0.0049 PD24195a 0.0009 0.2889
PD24196a NA NA PD24197a 0.9978 0.9893
PD24199a 0.0096 0.0563 PD24200a 0.0272 0.2342
PD24201a 0.9969 0.7634 PD24202a 0.9997 0.8669
PD24204a 0.0001 0.0752 PD24205a 0.9970 0.4079
PD24206a 0.0007 0.1138 PD24207a 0.0297 0.0327
PD24208a 0.0186 0.0002 PD24209a 0.0692 0.1269
PD24212a 0.9987 0.2970 PD24214a 0.0030 0.0786
PD24215a NA NA PD24216a 0.0055 0.1511
PD24217a 0.0004 0.0375 PD24218a 0.0047 0.0553
PD24219a NA NA PD24220a 0.0012 0.0141
PD24221a 0.0078 0.3287 PD24223a 0.0013 0.1737
PD24224a 0.0006 0.0702 PD24225a 0.0013 0.2410
PD24302a 0.0002 0.0575 PD24303a 0.8697 0.9399
PD24304a 0.8740 0.8556 PD24306a 0.9660 0.3596
PD24307a 0.0006 0.0370 PD24308a NA NA
PD24314a 0.0040 0.0525 PD24318a 0.0216 0.0945
PD24320a 0.0002 0.0149 PD24322a 0.0009 0.0660
PD24325a 0.1706 0.0492 PD24326a 0.0008 0.0179
PD24327a 0.0010 0.0560 PD24329a 0.0002 0.1207
PD24332a 0.0021 0.0585 PD24333a 0.0023 0.0565
PD24335a 0.0083 0.0489 PD24336a 0.0006 0.0837
PD24337a 1.0000 0.8429

Table 5.7. Results obtained with Strategy D for breast cancer.
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Patient Expected Score Ensemble Patient Expected Score Ensemble
PD22036a 0.000 HRP PD22251a 0.003 HRP
PD22355a 0.9999 HRD PD22358a 0.9170 HRD
PD22359a 0.0018 HRP PD22360a 0.9748 NA
PD22361a 0.0004 HRP PD22362a 0.0022 HRP
PD22363a 0.9723 HRD PD22364a 0.0035 HRP
PD22365a 0.0062 HRP PD22366a 0.9995 HRD
PD23550a 0.0047 HRP PD23554a 0.9964 HRD
PD23558a 0.9946 HRD PD23559a 0.1954 HRP
PD23561a 0.0000 HRP PD23562a 0.9998 HRD
PD23563a 0.9993 HRD PD23564a 0.0000 HRP
PD23565a 0.0351 HRP PD23566a 0.9999 HRD
PD23567a 0.9983 HRD PD23570a 0.0071 HRP
PD23577a 0.9999 HRD PD23578a 0.9941 HRD
PD23579a 0.0000 HRP PD24182a 0.9996 HRD
PD24186a 0.7788 HRD PD24189a 0.0000 HRP
PD24190a 0.0141 HRP PD24191a 0.8996 HRD
PD24193a 0.0000 HRP PD24195a 0.0009 HRP
PD24196a NA NA PD24197a 0.9978 HRD
PD24199a 0.0096 HRP PD24200a 0.0272 HRP
PD24201a 0.9969 HRD PD24202a 0.9997 HRD
PD24204a 0.0001 HRP PD24205a 0.9970 HRD
PD24206a 0.0007 HRP PD24207a 0.0297 HRP
PD24208a 0.0186 HRP PD24209a 0.0692 HRP
PD24212a 0.9987 HRD PD24214a 0.0030 HRP
PD24215a NA NA PD24216a 0.0055 HRP
PD24217a 0.0004 HRP PD24218a 0.0047 HRP
PD24219a NA NA PD24220a 0.0012 HRP
PD24221a 0.0078 HRP PD24223a 0.0013 HRP
PD24224a 0.0006 HRP PD24225a 0.0013 HRP
PD24302a 0.0002 HRP PD24303a 0.8697 HRD
PD24304a 0.8740 HRD PD24306a 0.9660 HRD
PD24307a 0.0006 HRP PD24308a NA NA
PD24314a 0.0040 HRP PD24318a 0.0216 HRP
PD24320a 0.0002 HRP PD24322a 0.0009 HRP
PD24325a 0.1706 HRP PD24326a 0.0008 HRP
PD24327a 0.0010 HRP PD24329a 0.0002 HRP
PD24332a 0.0021 HRP PD24333a 0.0023 HRP
PD24335a 0.0083 HRP PD24336a 0.0006 HRP
PD24337a 1.0000 HRD

Table 5.8. Results obtained with Ensemble Strategy for breast cancer
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Chapter 6

Applying this method to
colorectal cancer patients

This chapter is intended to extend the above studies to a new type of cancer: colorectal
cancer (CRC).
Initially, the chapter provides an explanation of the reasons why it is reasonable to proceed
through the extension to new types of tissues, as well as a general presentation of the CRC
and its role in the global disease scenario.
Consequently, the focus is on the introduction of the new data set and the presentation
of the results obtained in the prediction of the HR score with CRC patients.

For complete information on the subject, one can refer to: [31],[32], [33], [34].

6.1 Introduction
Colorectal cancer is the second most prevalent cancer in women and the third most fre-
quent cancer in men: incidence and fatality rates are around 25% lower in women than
in males[33].
Every year, colorectal cancer accounts for around 10% of all diagnosed malignancies and
cancer-related deaths globally.
These rates also vary by geography (Figure 6.1), with the greatest rates being seen in the
most developed nations.
The global incidence of colorectal cancer is expected to rise to 25 million new cases in
2035, owing to continued growth in emerging nations[34]. These have been ascribed mostly
to countrywide screening programs and greater colonoscopy uptake in general, however
lifestyle and nutritional modifications may also play a role [32].
In contrast, a concerning increase in patients younger than 50 years old who present
colorectal cancer, particularly rectal cancer and left-sided colon cancer, has been docu-
mented.

97



Applying this method to colorectal cancer patients

Figure 6.1. The age-standardized incidence and mortality rates in men (m) and women
(f) (per 100.000 people) across geographic zones [34]

Although there may be a link between genetics, lifestyle, obesity, and environmental fac-
tors, the actual causes of this rise remain unknown.
Male sex and rising age have continuously demonstrated high relationships with illness
incidence in epidemiological research.
Colorectal cancer is caused by a combination of inherited and environmental risk factors.
Positive family history appears to play a role in 10–20 percent of all colorectal cancer
patients, with risk variables based on the number and degree of afflicted relatives as well
as the age of colorectal cancer diagnosis.
Despite the fact that multiple genome-wide association studies of colorectal cancer have
effectively discovered cancer susceptibility genes linked to colorectal cancer risk, the ma-
jority of variables that cause inheritance remain unknown and need to be investigated
further.
Making the diagnosis is critical because it allows the patient to develop an optimal colorec-
tal cancer prevention strategy, as well as an optimal surveillance strategy for extracolonic
cancers if applicable, optimal treatment in the event of incident colorectal cancer, and
appropriate surveillance advice for relatives at risk.
To enhance the diagnosis of this hereditary disease, a comprehensive molecular examina-
tion of tumour tissue in patients of any age or a subset of those younger than 70 years is
currently employed.
While CRC is curable in its early, localised stages, around 25% of people are diagnosed
with the disease already metastatic. As a result, metastatic CRC (mCRC) continues to
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be a significant public health issue.
Colorectal cancers are caused by pre-malignant polypoid lesions (Figure 6.2).
The multistep evolution seen at the histopathological level is driven by the ongoing accu-
mulation of genetic and epigenetic alterations.
The high intertumour heterogeneity at the genomic level is connected to the large vari-
ability in prognosis and response to different therapies among CRC patients at all stages.
As a result, biomarkers must be developed in order to categorise patients into prognostic
groups depending on the biology of each tumour.

Healthy colon Colon cancer 

Small benign 
growth  
(Polyp) 

Large benign 
growth  

(Early adenoma) 

Large benign 
growth  

(Late adenoma) 

Normal epithelium 
(No abnormalities) 

Malignant 
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(Carcinoma) 

Loss of tumor 
suppressor gene 

APC 

Activation of  
KRAS 

oncogene 

Loss of tumor  
suppressor gene 

DCC 

Loss of tumor  
suppressor gene 

p53 

10 year progression 

Additional  
mutations 

Figure 6.2. Colon cancer disease progression

In recent years, significant efforts have been undertaken to address this problem, and dif-
ferent genetic and epigenomic features of CRC have been disclosed, suggesting that CRC
is a far more intricate disease than radiological and histological studies would suggest.
Finally, therapeutic treatment for the great majority of metastatic CRC patients is based
on a "one-size-fits-all" strategy, which is impeded by a lack of thorough knowledge of each
patient’s biological and molecular landscape.
Preclinical knowledge of the molecular origins of CRC nature and heterogeneity is im-
proving, paving the way for more individualized and personalised therapies.
Preclinical CRC characterization has just recently begun to inform clinical therapy of this
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variable and complicated condition.
Over the last fifteen years, the treatment of metastatic colorectal cancer (mCRC) has
improved thanks to the introduction of EGFR (Epidermal growth factor receptor) tar-
geted therapy, antiangiogenic agents, and intensive triplet chemotherapy regimens based
on fluoropyrimidines, oxaliplatin, and irinotecan [31].
Immune checkpoint drugs have been shown to provide long-lasting responses in a subset of
roughly 5% of mCRC patients with mismatch repair deficiency (MMRd) or microsatellite
instability (MSI).
Targeted therapy trials are proceeding with positive results in subgroups of molecularly
selected CRCs, such as BRAF mutant or HER2 amplified cases, and these targeted com-
binations are anticipated to reach clinical practice in the near future.
However, median overall survival in mCRC patients has reached a plateau, ranging from
18 months in RAS mutant and right colonic tumours to 42 months in BRAF/RAS wild-
type and left colonic cancers.
In conclusion, while combining and fine-tuning the use of cytotoxics, targeted treatments,
and immunotherapy has improved overall survival in mCRC patients, their impact has
been incremental rather than transformative.
As a result, better disease management and overall survival in mCRC patients are needed,
especially for individuals who aren’t candidates for targeted medicines or immunotherapy.
Furthermore, intrinsic and acquired drug resistance, as well as neuropathy associated with
oxaliplatin-based regimens, limit the duration of long-term illness care and must be ad-
dressed as a clinical concern.
Molecular profiling of large CRC datasets has found subsets of CRC patients with anoma-
lies in DNA repair pathways, and some of these cases may respond to therapeutic treat-
ment.
BRCA1 germline pathogenic mutations are being linked to anomalies in the homologous
recombination (HR) repair pathway as a risk factor for CRC, particularly early-onset
CRC. Importantly, up to 15% of people have germline or somatic genetic anomalies in
HR repair genes, according to current studies.
However, toxicity and a lack of patient selection have prevented the development of PARP
inhibitors in CRC, either alone or in combination with other cytotoxic treatments.
These premises therefore provide interesting conditions for the development of research in
this direction, motivating the extension of the analysis carried out previously on breast
cancer to colorectal cancer.

6.2 Dataset description
Despite recent targeted and immunological treatment advancement, the prognosis in pa-
tients affected with stage IV or metastatic disease is still dismal.
Particularly, the subset of patients affected by BRAF V600E mutant metastatic CRC,
accounting for 8-10% of all CRC, achieves overall survival most of time inferior to 20
months. Differently, around 20% of BRAF V600E mutant CRC patients survives beyond
24 months from initial diagnosis.
However, no molecular biomarkers have been so far identified capable of picking up this
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peculiar subset of BRAF mutant CRC.

Patient Expected Score
CL120464 0.007
DL261241 0.004
DLM180561 0.000
GA280852 0.000
IRCC36-A 0.007
IRCC77-B 0.014
MMA050852 0.005
PV181152 0.019
RC100851 0.746
SN020557 0.014

Table 6.1. CRC dataset description

Genetic alteration occurring in the DNA damage response (DDR) pathway represents a
well-known and effective target of treatment in many cancer types but in CRC the role
of these alterations is still to be addressed.
In particular, 10 BRAF V600E mutant CRC patients, of whom frozen samples were avail-
able, were identified in a cohort of BRAF mutant CRC patients treated at Niguarda
Cancer Centre.
On these samples it is planned to perform Whole Genome Sequence (WGS) to assess
whether a specific Homologous Recombination Deficiency (HRD) signature can be iden-
tified in CRC.
As can be seen from the Table 6.1, the results set is not absolutely balanced: referring to
the expected data, that is to the values of the scores obtained by the comparison between
the tumour sample and the associated normal sample, 90% of the samples taken into
consideration are HR proficient, 10% of the samples are HR deficient, while no samples
are identified as doubtful, not classifiable as HRP or HRD.
Specifically, only patient RC100851 falls into this 10% (indicated in red).

6.3 Results on CRC dataset
Once the new data set is introduced, featuring 10 samples from colorectal cancer patients,
the same analyses performed previously for the breast cancer data set are performed on
it.
In particular, for the breast cancer data set the data provided by the group of Nik-Zainal
derived from the comparison between a tumour sample and the matched normal sample.
On the other hand, for the new data set, the scores obtained through the pipeline de-
scribed above by comparing the tumour sample and the associated normal sample are
used as expected data; in fact, for each of the CRC samples taken into consideration,
although it is a very limited data set, both the tumour sample and the corresponding
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normal (healthy) sample are available, thus allowing to proceed with the classical analysis
that requires N-T comparison.
Therefore, unlike what occurred for breast cancer samples, in this case there is no valida-
tion of the results by the Nik-Zainal group.
The other scores presented instead represent the results of the application of the various
strategies to the comparison between the tumour sample and the metanormal (previously
defined).
In particular, in accordance with what has been explained for the other strategies illus-
trated above, score values higher than 0.70 are defined as HR deficient while score values
lower than 0.30 are considered HR proficient.
All scores between 0.30 and 0.70 are indicated as doubtful, i.e. it is not possible to at-
tribute proficiency or deficiency on the basis of the observed value.
Taking this classification into account, as can be seen in the Table 6.1, a color code was
used that identified HR deficiency with red, HR proficiency with green and doubtful sit-
uations with orange, for which it was not possible to express.
As can be seen from the expected scores, the available data set is not only limited but
also considerably unbalanced: only one sample (specifically RC100851, highlighted in the
Table 6.1) is HR deficient, while all the others are characterised by HR proficiency.
Based on the results obtained previously from the breast cancer data set, I chose to use
the Ensemble Strategy to perform the HR score prediction, as it was identified as the
most accurate strategy.

Patient Expected Score Ensemble
CL120464 0.007 HRP
DL261241 0.004 HRP
DLM180561 0.000 HRP
GA280852 0.000 HRP
IRCC36-A 0.007 HRP
IRCC77-B 0.014 NA
MMA050852 0.005 HRP
PV181152 0.019 NA
RC100851 0.746 HRD
SN020557 0.014 HRP

Table 6.2. Results obtained with Ensemble Strategy for CRC

The level 1 model, used to combine the forecasts obtained through the level 0 models,
therefore envisages considering Strategy C as a reference and aims to correct its erroneous
predictions, related to the declaration of doubtful situations for samples that are expected
as HR proficient and to the failure in the case of particular interest identified by sample
RC100851, as explained above.
The level 1 model is therefore used on the samples predicted as “non-HRD”, so in this
case it is used on all the samples of the data set.
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Specifically, the model assigns the value "1" to the HR proficiency (therefore to the green
color), the value "-1" to the HR deficiency (therefore to the red color) while assigning a
null value to all cases marked in orange as doubtful situations.
In this way, for each of the 10 patients considered, each strategy will be associated with
a numerical value, relative to the prediction made by the strategy itself.
By summing up the values for each patient separately, 10 values are obtained, which track
the contributions provided by the strategies overall.
At this point the decision-making phase intervenes: if the result obtained for the single
patient sample is positive, HR proficiency (green color) is assigned as prediction, if it is
negative, HR deficiency (red color) is assigned, otherwise (the result is null) recognizes
the situation again as doubtful (indicating the corresponding sample with "NA").
As can be seen from the Table 6.2, the introduction of the Ensemble Strategy allows us
to correctly predict the expected score in 8 of the 10 cases considered.
In particular, it is of crucial importance to point out that the two errors can be delin-
eated as due to "background noise", while the HR score related to the patient of interest
RC100851 is correctly predicted.
Therefore, the only sample that is predicted as HR deficient by Ensemble Strategy is actu-
ally HR deficient, and the same holds true for samples that are predicted as HR deficient.
It follows that the only errors attributable to the Ensemble Strategy relate to the state-
ment of questionable status for two samples that are predicted as HR proficient (specifi-
cally sample IRCC77_B and sample PV181152 ).
As a result, using the most recent strategy, it is feasible to properly estimate the HR score
in 80 percent of instances, with a 20 percent error rate, equal to two patients out of ten
examined.
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A serious threat to genetic stability and cell survival could be discontinuities in one strand
of the DNA double helix, known as single-strand breaks (SSBs). The importance of re-
pairing SSBs is highlighted by the fact that these breaks could cause proliferating cells
to block or collapse DNA replication forks, leading to the formation of double-strand
breaks (DSBs). Cells have a remarkable ability to accurately repair such DSBs using ho-
mologous recombination (HR). Defects in the HR repair mechanism confer the so-called
’BRCAness’ phenotype and can lead to genetic instability and/or cell death. Inactiva-
tion of these genes causes HR deficiency (HRD), resulting in high levels of impairment of
double strand repair, a frequent driver of tumorigenesis. Recent studies have shown that
the set of tumours exhibiting BRCAness and which may be selectively sensitive to PARP
inhibitors is probably not limited to the small percentage of familial breast and ovarian
cancers with BRCA1 or BRCA2 but extends to a larger fraction of sporadic breast and
ovarian cancers and ovarian cancers, as well as other cancers.
In light of the importance of identifying a good predictor of the HR status of a tumour,
Nik-Zainal’s research group introduced a weighted model called HRDetect in order to ac-
curately detect BRCA1/BRCA2-deficient samples. This type of analysis requires tumour
and matched normal samples to compare and correctly extract somatic variations caused
by the tumour, while discarding germline variations. The importance of overcoming this
limitation, being able to correctly predict the score provided by the HRDetect algorithm
in situations where the normal sample is not available (e.g. cell lines), defined the main
objective of this thesis work. Through the introduction of a new ”metanormal” sample
it was possible to disconnect the tumour sample from the matched normal, replacing it
in the comparison. As a result, since the tumour is not ”matched” to its normal, the
germline mutation series are not properly filtered as such appearing in the set of somatic
variations extracted. In order to correctly emulate the expected HR scores, obtained from
a direct comparison between the tumour sample and the matched normal sample of the
patient considered, several strategies were developed. These strategies allowed increas-
ingly accurate extraction of somatic mutations, reducing prediction errors related to the
presence of germline mutations.
The application of an Ensemble strategy, which has its origins in a general meta-approach
to machine learning that seeks better predictive performance by combining results from
multiple models, correctly predicted HR deficiency and HR proficiency in 98.6% of the 77
breast cancer samples considered. A particularly important aspect to underline is that
in this case all the samples that are predicted to be HR deficient or HR proficient by
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Ensemble are actually such, as expected. It follows that the only error attributable to the
strategy is related to the declaration of doubtful situation for a sample that is expected
as HR deficient. In summary, my latest strategy correctly predicts the expected score in
72 of the 73 cases considered, lowering the percentage of error to 1.37%.
The consistency of these results and the importance of the development of PARP in-
hibitors in CRC, motivated the extension of the analysis previously performed on breast
to colorectal cancer samples. For each of the samples of the new dataset, both the tumour
sample and the corresponding normal (healthy) sample are available, thus allowing to
proceed with the classical analysis that requires N-T comparison, whose scores became
the expected data. The other scores presented instead represent the results of the appli-
cation of the various strategies to the comparison between the tumour sample and the
metanormal.
The introduction of the Ensemble Strategy in this case correctly predicts the expected
score in 8 of the 10 cases considered: the only sample that is predicted as HR deficient by
the strategy is actually HR deficient, and the same holds true for samples that are pre-
dicted as HR deficient. These results therefore show that with this approach it is indeed
possible to correctly predict the HRDetect score even in those particular situations where
the normal sample is missing, making it interesting to extend the analysis to other areas.
This demonstrates the potential diagnostic value for the stratification of patients towards
treatment with, for example, ADP-ribose polymerase inhibitors (PARPi), contributing
significantly to biomedical research.
The possible improvement of the proposed analysis opens doors in terms of exploration
of historical and existing clinical studies.
First of all, given the availability of one of the largest academic bank on CRC at Candiolo
IRCCS, it would be interesting to extend the application on colorectal cancer cell lines,
for which a tumour sample can be extracted but it is not possible to have the normal
sample matched, perfectly suiting to the purpose identified in this thesis work.
Furthermore, another aspect of great interest would be that of being able to predict
the HR score starting from the comparison between the normal sample of a patient and
the associated tumour sample preserved in formalin. Formalin fixation and paraffin em-
bedding (FFPE) of patient material remains standard practice in clinical pathology labs
around the world. With regard to this, the pathology archive of any large hospital is likely
to contain tens of thousands of FFPE blocks, so enabling accurate genomic analysis of
FFPE material would unlock the enormous translational research potential of these vast
collections of archival material.
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In this chapter the attention is turned to some of the future perspectives that can be
identified regarding the studies exposed in the previous chapters.
On the one hand the focus is on colorectal cancer cell lines, with regard to their biological
importance due to the large availability of data.
On the other hand the study turns to the samples fixed in formalin, as objects of new
predictions.

For more detailed information regarding these aspects, you can refer to: [35],[36].

Exploiting HRDetect score on CRC cell lines bank

Although advances in genomics during the last decade have opened new avenues for trans-
lational research and allowed the direct evaluation of clinical samples, there is still a need
for reliable preclinical models to test therapeutic strategies.
Human cancer-derived cell lines [35] are the most widely used models to study the biology
of cancer and to test hypotheses to improve the efficacy of cancer treatment.
On the other hand, given the availability of one of the largest academic banks on CRC
cell lines at Candiolo IRCCS, it is of great interest to focus the attention on these latter.
Specifically, a cell line is defined as a clonal, genetically stable population of neoplastic or
normal cells capable of proliferating in vitro.
While neoplastic derived cells are able to proliferate indefinitely, normal cells undergo a
phenomenon of clonal senescence and after a defined number of cell divisions lose the
ability to divide.
In this case the focus is on cancer cell lines, for which therefore, by definition, it will be
possible to extract a tumour sample but it will not be possible to have the normal sample
matched.
This aspect is perfectly suited to the purpose identified for this thesis work, aimed at
determining the HR score of a specific sample from a tumour sample available. In this
regard, the study related to the prediction of the HR score for CRC cell lines can be
identified as a future perspective.
Similarly, the prediction can be associated with the study of sensitivity to treatment with
PARP inhibitors, since it is possible to test treatments more easily and feasibly on cell
lines than on mice or patients, introducing a translational face in this research.
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Predicting BRCAness on Formalin Fixation and Paraf-
fin Embedding samples

In order to contextualise the content of this paragraph, it is important to go over some of
the steps previously discussed.
Once the raw data of the HRDetect paper have been used to try to reproduce the same
scores published by the Nik-Zainal group, obtained by mapping on an old version of the
reference genome (hg19) using bwa aln (Burrows-Wheeler aligner or BWA, v0.5.9), it was
tried to proceed forward by remapping the same data differently (Figure 6.3).
In particular, as described before, it was decided to use a more recent version of the ref-
erence genome (currently the most advanced is indicated as hg38) used routinely, as well
as to carry out the remapping by means of a different mapper (bwa mem), recreating the
situation in which the research group of the Candiolo IRCCS generally works.
As already mentioned, the pipeline used by Nik-Zainal’s group, indicated as cgpwgs
pipeline, requires two alignment files (in BAM format) as input: one relating to the
tumour tissue of the patient under examination and one relating to the corresponding
normal tissue.
In particular, for this type of analysis the match between normal and tumour sample is
necessary in order to be able to make the comparison and extract only the somatic varia-
tions due to the tumour, discarding the typical variations of the patient, i.e. the germinal
ones.
Consequently, the next step was to identify a way in which it was possible to make the
prediction of HR status without the patient’s normal match (Figure 6.3).
To implement this, what has taken the name of "metanormal" was constructed: a normal
sample resulting from the "sum" of a good number of sequences of normal tissues, which
presents characteristics such as to be able to be used as input of the workflow previously
described.

Figure 6.3. Representation of the project roadmap

108



Future Perspectives

Another aspect of great interest in this regard would be that of being able to predict the
HR score starting from the comparison between the normal sample of a patient and the
associated tumour sample preserved in formalin (Figure 6.3).
Formalin fixation and paraffin embedding (FFPE)[36] of patient material remains stan-
dard practice in clinical pathology labs around the world.
This technique preserves tissue morphology and enables immunohistochemical analysis
for clinical diagnosis.
However, genomic analysis of DNA extracted from FFPE blocks is problematic, because
formalin fixation negatively impacts DNA quantity and quality compared to fresh frozen
(FF) material.
In fact, formalin is a recognized mutagen and sequencing of DNA derived from FFPE
material is known to be riddled with artifactual mutations. The FFPE signature is domi-
nated by C>T transitions caused by cytosine deamination, and has very high similarity to
COSMIC signature SBS30 (base excision repair deficiency due to inactivation mutations
in NTHL1, Figure 6.4).
Further, it can be shown that chemical repair of formalin-induced DNA lesions, a process
that is routinely performed as part of sequencing library preparation, leads to a signature
highly similar to COSMIC signature SBS1 (spontaneous deamination of methylated cy-
tosine, Figure 6.4).
On the other hand, the pathology archive of any large hospital is likely to contain tens
of thousands of FFPE blocks, so enabling accurate genomic analysis of FFPE material
would unlock the tremendous translational research potential of these vast collections of
archival material.

Figure 6.4. Representation of the mutational signatures SBS1 (above) and
SBS30 (below) [20]

A further step forward could be that of being able to predict the HR score starting from
the comparison between the tumour sample of a patient preserved in formalin and the
metanormal, bypassing the need to have both the normal sample and the fresh tumour
sample. The possibility to use these very numerous samples could have wider impact,
accelerating a broad spectrum of oncological research.
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Appendix A

Description of file formats

This chapter is aimed at presenting some of the main file formats used for the manipulation
of biological data from a bioinformatics point of view.
Specifically, a detailed description of the structure of the FASTQ, BAM, SAM and VCF
file formats is provided, for which some useful examples are given.

For complete information on the subject, one can refer to: [37], [38], [39]

A.1 The FASTQ format
FASTQ format is a text-based format for storing both a biological sequence (usually
nucleotide sequence) and its corresponding quality scores [37]. Both the sequence letter
and quality score are each encoded with a single ASCII character for brevity.
It has recently become the de facto standard for storing the output of high-throughput
sequencing instruments. A FASTQ file normally uses four lines per sequence:

• Line 1 begins with a ’@’ character and is followed by a sequence identifier and an
optional description.

• Line 2 is the raw sequence letters.

• Line 3 begins with a ’+’ character and is optionally followed by the same sequence
identifier (and any description) again.

• Line 4 encodes the quality values for the sequence in Line 2, and must contain the
same number of symbols as letters in the sequence.

A FASTQ file containing a single sequence might look like this:

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
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+
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In this context it can be helpful to introduce some important definitions [30]:

• the “read”: a small synthesis DNA sequence obtained from a sequencing reaction.

• the “read depth”: the number of reads that cover (map) each single base.
From this data it is possible to calculate:

– the “total read depth”: the sum of all the depths across a particular coordinate
range such as a gene or a peak. This is NOT exactly the same as [read length]
× [num reads, i.e. fastq lines ÷ 4] ÷ [length of reference in bp] because not all
reads in the fastq will get aligned or completely aligned.

– the “average read depth”: [Total Read Depth] ÷ [number of base pairs (co-
ordinates) in aligned region or reference]

• the “coverage”: the sum of all the depths across a particular coordinate range such
as a gene or a peak.

A.2 The BAM format
All available information relating to the samples studied are contained in files saved in
the BAM format. Binary Alignment Map (BAM) [38] is the comprehensive raw data of
genome sequencing; it consists of the lossless, compressed binary representation of the
Sequence Alignment Map (SAM).
SAM is a text-based format originally for storing biological sequences aligned to a reference
sequence developed by Heng Li and Bob Handsaker et al [40]. The overall TAB-delimited
version of the format is widely used for storing data, such as nucleotide sequences, gener-
ated by next generation sequencing technologies.
SAM files can be analysed and edited with the software SAMtools.
The SAM format consists of a Header and an Alignment section: the Header section must
be prior to the alignment section if it is present in particular headings begin with the ’@’
symbol, which distinguishes them from the alignment section; Alignment sections have 11
mandatory fields, as well as a variable number of optional fields (shown in Table A.1).
The meaning of each record in the header section is specified by a two-letter code that

immediately follows the symbol ’@’; each contains a list of attributes (separated by tabs),
where each attribute follows the format

TAG : V ALUE

• TAG = a string of two characters;

• V ALUE = value of the attribute).

Specifically:
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Col Field Type Brief description
1 QNAME String Query template NAME
2 FLAG Int bitwise FLAG
3 RNAME String References sequence NAME
4 POS Int 1- based leftmost mapping POSition
5 MAPQ Int MAPping Quality
6 CIGAR String CIGAR string
7 RNEXT String Ref. name of the mate/next read
8 PNEXT Int Position of the mate/next read
9 TLEN Int observed Template LENgth
10 SEQ String segment SEQuence
11 QUAL String ASCII of Phred-scaled base QUALity+33

Table A.1. Alignment section of the SAM format

• The @HD record represents the header of the Header Section

@HD VN:[version] SO:[sorting]

• Each @SQ record represents a reference sequence

@SQ SN:[ref_name] LN:[length]

The @SQ record provides for other (optional) attributes including SP, the whose
value is the name of the species of the reference.

• Each @RG record represents a group of reads

@RG ID:[group_id] SM:[sample]

Other optional attributes include:

– LB:[library]
– DS:[description]
– PU:[platform_unit]
– DT:[date]

• Each @PG record represents (alignment) software

@PG ID:[program_id] PN:[program_name]
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Other optional attributes include:

– VN:[program_version]
– CL:[command_line]

Example Header Lines:

@HD VN:1.0 SO:coordinate
@SQ SN:1 LN:249250621 AS:NCBI37 UR:file:/data/ref/human_g1k_v37.fasta

M5:1b22b98cdeb4a9304cb5d48026a85128
@SQ SN:2 LN:243199373 AS:NCBI37 UR:file:/data/ref/human_g1k_v37.fasta

M5:a0d9851da00400dec1098a9255ac712e
@SQ SN:3 LN:198022430 AS:NCBI37 UR:file:/data/ref/human_g1k_v37.fasta

M5:fdfd811849cc2fadebc929bb925902e5
@RG ID:UM0098:1 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L001 LB:80

DT:2010-05-05T20:00:00-0400 SM:SD37743 CN:UMCORE
@RG ID:UM0098:2 PL:ILLUMINA PU:HWUSI-EAS1707-615LHAAXX-L002 LB:80

DT:2010-05-05T20:00:00-0400 SM:SD37743 CN:UMCORE
@PG ID:bwa VN:0.5.4
@PG ID:GATK TableRecalibration VN:1.0.3471

CL:Covariates=[ReadGroupCovariate, QualityScoreCovariate,
CycleCovariate, DinucCovariate, TileCovariate],
default_read_group=null, default_platform=null, force_read_group=null,
force_platform=null, solid_recal_mode=SET_Q_ZERO,
window_size_nqs=5, homopolymer_nback=7, exception_if_no_tile=false,
ignore_nocall_colorspace=false, pQ=5, maxQ=40, smoothing=1

Among the 11 mandatory fields described in the alignment sections of the SAM format
files, the ones of most interest are:

• FLAG : 16-bit integer to be interpreted as a string of flags 0|1; every flag has a
precise meaning (for example if the read has been reverse&complemented or if the
alignment is primary)

• RNAME (String): identifier of the reference sequence (or reference) to which the
read is aligned

• POS (Int): position (on the reference) where the alignment starts

• MAPQ (Int): quality of the alignment equal to −10 · log10(p) , where p is the
probability that the alignment position is wrong
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• CIGAR (String): defines the operations that provide the alignment of the query
with respect to the reference. The operations operations are encoded in uppercase
letters:

M: match/mismatch
I: insertion in the reference
D: deletion in the reference
N: insertion in the reference due to spliced alignment
S: soft clipping (of the query sequence)
H: hard clipping (of the query sequence)
P: silent "deletion" (padding)

• SEQ (String): query sequence (or query), sequence produced in a sequencing exper-
iment (also called read).

Example Alignments:
This is what the Alignment section of a SAM file looks like:

1:497:R:-272+13M17D24M 113 1 497 37 37M 15 100338662 0
CGGGTCTGACCTGAGGAGAACTGTGCTCCGCCTTCAG 0 ;==-==9; >>>>>=>>>>>>>>>>>=>>>>>>>>>>
XT:A:U NM:i:0 SM:i:37 AM:i:0 X0:i:1 X1:i:0 XM:i:0 XO:i:0 XG:i:0
MD:Z:37

19:20389:F:275+18M2D19M 99 1 17644 0 37M = 17919 314
TATGACTGCTAATAATACCTACACATGTTAGAACCAT >>>>>>>>>>>>>>>>>>>><<>>><<>>4::>>:<9
RG:Z:UM0098:1 XT:A:R NM:i:0 SM:i:0 AM:i:0 X0:i:4 X1:i:0 XM:i:0 XO:i:0 XG:i:0
MD:Z:37

19:20389:F:275+18M2D19M 147 1 17919 0 18M2D19M = 17644 -314
GTAGTACCAACTGTAAGTCCTTATCTTCATACTTTGT ;44999;499<8<8<<<8<<><<<<><7<;<<<>><<
XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:4 X1:i:0 XM:i:0 XO:i:1 XG:i:2 MD:Z:18^CA19

9:21597+10M2I25M:R:-209 83 1 21678 0 8M2I27M = 21469 -244
CACCACATCACATATACCAAGCCTGGCTGTGTCTTCT <;9<<5><<<<><<<>><<><>><9>><>>>9>>><>
XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:5 X1:i:0 XM:i:0 XO:i:1 XG:i:2 MD:Z:35

A.3 The VCF format
The Variant Call Format (VCF) [39] is a tab-separated text file format used in bioinfor-
matics to collect genomic variants and is currently at version 4.3. The format allows to
describe in tabular format the most common genomic variants of a genome, together with
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the possibility of inserting annotations and metadata.
Several tools and software libraries have also been developed to be able to manipulate the
format. The format includes a header, whose lines are identified by the "##" symbols
and a body which lists all the variants. Inside the body, the information relating to each
variant is organised according to 9 mandatory columns (shown in Table A.3).
The 9 mandatory columns are identified by the "#" symbol.

1. CHROM - chromosome on which the variant is present (e.g. chr1 or 1)

2. POS - position on which the variant call was made.

3. ID - identification of the variant. If absent, the symbol is read.

4. REF - reference allele present on the specified position.

5. ALT - allele or list of alternative alleles.

6. QUAL - quality score of the reading of the alternative allele.

7. FILTER - result or filters with which the variant was selected.

8. INFO - list of annotations relating to the variant defined by a pair <key> = [,
value].

9. FORMAT - list of annotations relating to the relationship of each variant with each
sample, therefore concerning the genotype.

Furthermore, there are a number of columns equal to the number of samples, in which the
value of the annotations present in the FORMAT column is reported. The VCF format
supports both single-sample and multiple-sample variant calling.

Example:
This is what the header section of a VCF file looks like:

##fileformat=VCFv4.3
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
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##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001

CHROM POS ID REF ALT QUAL FILTER

20 14370 rs6054257 G A 29 PASS
20 17330 . T A 3 q10
20 1110696 rs6040355 A G, T 67 PASS
20 1230237 . T . 47 PASS
20 1234567 microsat1 GTC G, GTCT 50 PASS

INFO FORMAT NA00001
NS = 3; DP = 14; AF = 0.5; DB; H2 GT : GQ : DP : HQ 0|0 : 48 : 1 : 51,51
NS = 3; DP = 11; AF = 0.017 GT : GQ : DP : HQ 0|0 : 49 : 3 : 58,50
NS = 2; DP = 10; AF = 0.333,0.667 GT : GQ : DP : HQ 1|2 : 21 : 6 : 23,27
NS = 3; DP = 13; AA = T GT : GQ : DP : HQ 0|0 : 54 : 7 : 56,60
NS = 3; DP = 9; AA = G GT : GQ : DP 0|1 : 35 : 4

Table A.2. Body of the VCF format
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Appendix B

Model description

The aim of this chapter is to present the model that led to the development of the HRDe-
tect algorithm.
Specifically, the Lasso logistic regression model is introduced in order to distinguish sam-
ples subject to BRCA1/BRCA2 deficiency, translating this peculiarity into the coefficients
of the regression itself.

For further information about the model pursued, please refer to : [21]

B.1 Lasso logistic regression modeling
The purpose of Nik-Zainal’s group was to devise a method for detecting genetic features
connected to BRCAness that could be used to determine the chance that a tumour sample
was HR deficient at some time in its history. The method, which was based on whole
genome sequencing, classified the number of copies based on the signatures of single base
substitutions, indels, and rearrangements, as well as HRD indexes [21]. It was possible
to detect BRCA-proficient samples by manually analysing the genomic graphs of overall
mutation patterns, assuming that BRCA1/BRCA2-proficient malignancies are frequently
described as almost genomically stable and quiescent in the mutational profile.
The algorithm requires the following inputs:

1. the counts of the mutations associated with each signature of the
single-base substitutions: signatures 1,2, 3, 5, 6, 8,13, 17, 18, 20 and
26;

2. indel with microhomology at the junction of the indel breaking point,
indel in the polynucleotide repeat tracts and other complex indel as
proportions;

3. counts of rearrangements associated with each signature of the RS1-
RS6 rearrangements;
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4. HRD index.

Because some samples had a significantly larger number of substitutions than others, the
genomic features had to be log transformed, specifically according to the formula:

x′ = ln (x + 1)

Similarly, the converted data was standardised since the ranges of values for each mutation
class were so dissimilar. As a result, each feature has a zero mean and unit standard
deviation, allowing them to be compared to one another.

x′′ = x′ − mean(x′)
s.d.(x′)

To identify samples from individuals who did not have BRCA1 or BRCA2 deficient from
those who did, a lasso logistic regression model was applied. The logistic model, often
known as the logit model, is a nonlinear regression model used in statistics when the
dependent variable is dichotomous.
The model’s purpose is to determine the likelihood that an observation will yield one of
the dependent variable’s values.
A regression model with a dichotomous dependent variable, i.e. a variable with only two
possible values of 0 and 1, determines the chance that this variable will acquire value 1.
Because the probabilities are defined as being between [0, 1], a linear regression model
would not be acceptable; in fact, it would yield values from the whole set R.
Take, for example, the following linear model:

Pr(Y = 1|X = x) = β0 + β1X

where:

• Pr indicates the probability;

• Y is the dichotomous dependent variable

• X is the vector of independent variables or regressors X1...Xk

• β is the vector of parameters β0...βk

Through variable selection, the lasso technique allows for the learning and weighting of the
genetic information most significant to predicting BRCA1/BRCA2 status. The coefficients
learnt from the genetic features of the BRCA1/BRCA2-proficient and BRCA1/BRCA2-
deficient samples supplied to the algorithm are represented by the letter β.
It is possible to obtain the optimal values assumed by the coefficients minimising the
function:

min
((β0,β))∈Rp+1

A
−
C

1
N

NØ
i=1

yi · (β0 + xT
i β) − log

A
1 + eβ0+xT

i β

BD
+ λ∥β∥1

where:
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• yi is the BRCA status of a sample: yi = 1 for BRCA1/BRCA2-null samples, yi = 0
otherwise;

• β0 is the intercept, interpreted as the log of odds of yi = 1 when xT
i = 0;

• β is a vector of weights, each corresponding to a genomic feature (as shown in Table
B.1);

• p is the number of features characterizing each sample;

• N is the number of samples; xT
i is the vector of features characterizing the ith sample;

• λ is the penalty promoting the sparseness of the weights, as learned through nested
cross-validation;

• λ∥β∥1 is the L1 norm of the vector of weights (i.e., the sum of the absolute values
of all entries of the coefficient vector)

Because positive weights reflect the biological presence of mutational processes due to
BRCA1/BRCA2 deficiency, all samples are evaluated for the presence of relevant muta-
tional signatures associated with BRCA1/BRCA2 deficiency, regardless of whether these
signatures were the dominant mutational process in cancer. This ensures that some mu-
tational processes that may be overshadowed by hypermutating mutational phenotypes in
specific types of malignancies are recognized. Finally, the lasso logistic regression model
is used to assign a probabilistic score to any new sample that is being analyzed, using
the normalized exposures of mutational processes in the sample (xT

i ) and applying the
parameters of the model (β) as follows:

P (Ci = BRCA) = 1
1 + e−(β0+xT

i β)

where:

• Ci is the variable encoding the status of the ith sample;

• β0 is the intercept weight;

• xT
i is the vector encoding features of the ith sample;

• β is the vector of weights (as shown in Table B.1).

121



Model description

Genomic feature name Feature label Weight
Intercept intercept -13.52352584
Proportion of deletions at microhomology del.mh.prop 5.889097823
HRD index hrd 1.752273557
Substitution Signatures 3 e.3 1.721594565
Rearrangement Signature 3 (RS3) SV3 1.285002819
Rearrangement Signature 5 (RS5) SV5 0.38123313
Rearrangement Signature 1 (RS1) SV1 0
Rearrangement Signature 2 (RS2) SV2 0
Rearrangement Signature 4 (RS4) SV4 0
Rearrangement Signature 6 (RS6) SV6 0
Substitution Signatures 1 e.1 0
Substitution Signatures 2 e.2 0
Substitution Signatures 5 e.5 0
Substitution Signatures 6 e.6 0
Substitution Signatures 8 e.8 0
Substitution Signatures 13 e.13 0
Substitution Signatures 17 e.17 0
Substitution Signatures 18 e.18 0
Substitution Signatures 20 e.20 0
Substitution Signatures 26 e.26 0
Insertions ins 0
Proportion of deletions at repeats del.rep.prop 0
Proportion of deletion not at microhomology or repeats del.none.prop 0

Table B.1. Weights from Lasso logistic regression learning phase, obtained by using 22
previously known BRCA1 and BRCA2 germline null samples
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Appendix C

Code Implementation

This chapter is aimed at illustrating all the algorithms used in the course of the study to
elaborate the different strategies.
In particular, the presentation of each code is accompanied by comments as well as de-
scriptive sections that deal in detail with each step of the workflow.

For more information on the programming languages used, please refer to: [41],[42],[43]

C.1 Introduction
The writing of the different scripts presented has been carried out mainly through the use
of the Linux shell.
Specifically, through the Bash environment (acronym for bourne again shell), which rep-
resents a textual shell of the GNU project used in Unix and Unix-like operating systems,
such as GNU/Linux [41].
Bash is a command interpreter that allows the user to interface with its operating system
using a set of preset functions, as well as run applications and scripts.
It can execute instructions that are supplied to it, and it can use input and output redi-
rection to cascade many programs in a software pipeline, passing the previous command’s
result as input to the next command.
It also comes with a simple native scripting language that allows you to accomplish more
complicated operations by using variables, functions, and flow control structures in addi-
tion to collecting a sequence of instructions in a script.
These features determined the choice of the Bash shell for the realisation of the algorithms
of this thesis work.
On the other hand, the dynamism, simplicity and flexibility of the Python language [43]
meant that this programming language was used to carry out certain operations within
the algorithms that outline the different strategies, in order to improve their readability
and comprehension.
In addition, the use of the interpreted programming language "AWK" [42] allowed the
simple manipulation of textual data, both in the form of files and data streams from
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standard input.

C.2 Get_indel_from_freq-distr.py
• Definition of functions

1 def get_FORMAT_ID (VCF_row , ID):
2 FORMAT_string = VCF_row [8] # extraction of the field

relating to the FORMAT
3 TUMOR = VCF_row [10] # extraction of the field relating to the

tumor sample
4 idx = FORMAT_string .split(’:’).index(ID) # identification of

the position of ID in the FORMAT
5 return TUMOR.split(’:’)[idx] # extraction of the value in the

tumor sample in idx position

As previously introduced the VCF format includes a header, whose lines are identified
by the "##" symbols and a body which lists all the variants. In particular, one of the
9 mandatory columns identified by the "#" symbol is represented by the FORMAT,
i.e. the list of annotations relating to the relationship of each variant with each
sample, therefore concerning the genotype. Furthermore, there are a number of
columns equal to the number of samples, in which the value of the annotations
present in the FORMAT column is reported.
The function get_FORMAT_ID, given a row of the VCF file and the identification
name of the specific field of the FORMAT (corresponding to ID), has the aim of
extracting the value contained in the column relating to the tumour sample in the
position corresponding to ID in the FORMAT.
In particular, if the VCF line considered were the following:

CHROM POS ID REF ALT QUAL FILTER INFO
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;
FORMAT NA00001 NA00002 NA00003
GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5

calling the get_FORMAT_ID (VCF_row, "GQ") function would return "48" for the
"NA00002" sample.

1 def parse_VCF (fd):
2 for row in fd: # iteration over each line of the VCF file
3 if row [0] == ’#’: # exclusion of all lines preceded

by the symbol ’#’ corresponding to the header and description of
the columns

4 continue
5 row = row.strip ().split(’\t’) # splitting of the

entire line into strings using the tab as a separator
6 support = int( get_FORMAT_ID (row , "FC")) # extraction

of the value in the tumor sample corresponding to the position
of "FC" in the FORMAT
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7 depth = int( get_FORMAT_ID (row , "FD")) # extraction of
the value in the tumor sample corresponding to the position of

"FD" in the FORMAT
8 VAF = 100* support /depth # calculation of the variant

allele frequency
9 yield (VAF , row) # extraction of the VAF value followed by the

respective VCF row

To extract the frequencies of Indel variations, starting from a VCF format file relating
to the Indel variations, it is necessary to consider two specific fields of the FORMAT
column, described in the header of the file as follows:

## FORMAT = <ID = FD, Number = 1, Type = Integer,
Description = "Fragment depth">
## FORMAT = <ID = FC, Number = 1, Type = Integer,
Description = "Fragment calls">

The first step therefore involves calling the get_FORMAT_ID function, in order to
extract from the tumour sample the values corresponding to the positions identified
by "FC" and "FD" in the FORMAT. Subsequently, the percentage frequencies of
Indel variations are obtained through the ratio between the two identified values
taken in the order described, multiplied by one hundred. The parse_VCF function
described above, starting from a VCF file relating to the Indel variations, has the aim
of returning the value of the variant allele frequency, followed by the corresponding
entire line of the VCF file.

1 def read_ref_distribution (fd):
2 distr = [] # creation of the list in which the values will

be saved
3 for row in fd: # iteration over each line of the reference

distribution file
4 row = row.strip ().split () # splitting of the entire

line into strings using the default separator
5 start = float(row [0]) # saving of the first string

contained in the line of the file ( corresponding to the
beginning of the range) in a variable

6 end = float(row [1]) # saving of the second string
contained in the line of the file ( corresponding to the end of
the range) in a variable

7 value = float(row [2]) # saving of the third string
contained in the line of the file ( corresponding to the number
of variations in the interval ) in a variable

8 distr. append (( start ,end , value)) # addition of
numeric values to the list

9 distr.sort () # sort by coordinate of the list
10 return distr

The read_ref_distribution function described above requires that a reference distri-
bution file (corresponding to the distribution values of the red curve in the figure, in-
dicated as a reference) be passed as a parameter in the format as the GSL-histogram
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output. GSL-histogram is a demonstration program for the GNU Scientific Library.
It takes three arguments, gsl-histogram xmin xmax [n], specifying the upper and
lower bounds of the histogram and the number of bins. It then reads numbers from
’stdin’, one line at a time, and adds them to the histogram. When there is no more
data to read it prints out the accumulated histogram, providing as output a file
containing line by line at the far left of the interval, far right of the interval, and the
number of variations in that specific interval. The function read_ref_distribution,
starting from the reference distribution file in the format as the GSL-histogram out-
put, returns an ordered nested list containing, for each index, the three decimal
numbers corresponding respectively to the start, end and number of variations of
the interval.

• Central body of the script

Initially, it is verified that the script has been launched correctly, by introducing a
check which verifies that what is required for the functioning of the script itself has
been supplied as input. Specifically, it is verified that the reference distribution file
has been provided followed by the VCF file relating to the Indel variations, saved
respectively as REF_fd and INDEL_fd.

1 if len(sys.argv) != 2+1: # checking the correctness of the number of
files supplied in input

2 sys.exit("""
3 Usage: %s reference_freq -distr Indel.file.vcf|-
4 """ % sys.argv [0]) # printing of information relating to

the type of input requested if those provided are not correct
5 REF_fd = open(sys.argv [1]) # acquisition of the input reference

distribution file
6 INDEL_fd = (sys.argv [2] != ’-’) and open(sys.argv [2]) or sys.stdin #

acquisition of the VCF file relating to the Indel variations

By calling the previously defined function read_ref_distribution, the Indel frequency
distribution, initially saved in the "distr" list, is copied into the "distr_dict" dictio-
nary, using the "start end" pair (corresponding to the start and end of interval).

1 # reading the distribution
2 distr = read_ref_distribution ( REF_fd ) # saving in distr the list

obtained by calling the function
3 distr_dict = {} # dictionary initialization
4 for i in distr: # iteration on each index of the list
5 distr_dict [(i[0], i[1])] = i[2] # dictionary definition
6 bins = sorted ( distr_dict .keys ()) # saving of sorted dictionary keys

in bins

At this point, once the dictionary keys have been saved in "bins", sorted by coor-
dinates identified by the extremes of the intervals considered, I want to assign the
Indel variations to each interval. In particular, a dictionary called "Indels" is defined,
in which each bin is associated with a certain number of lines of the VCF file for
which the variant allele frequency (VAF), obtained by the parse_VCF function, falls
within the defined range from bin.
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1 # reading the VCF and assigning the Indel variations to the bins
2 Indels = {} # dictionary initialization
3 for i in bins: # iteration on each index of the list
4 Indels [i] = [] #list initialization
5 for f, row in parse_VCF ( INDEL_fd ): # iteration on each couple

frequency , row result returned by the function
6 for b in bins: # iteration on each index of the list
7 if f <= b[1]: # checking if the frequency is lower than

the far right of the range , it answers the question : does the
frequency fall into the current bin?

8 Indels [b]. append (row) #If the answer to the
previous question is yes , then the VCF line is associated with
the current bin through the " Indels " dictionary

9 break #in the moment the VCF line has been
assigned to a specific bin , I move to the next line

The crucial aspect of the algorithm consists in the realisation of the sampling of
the Indel variations through the definition of the so-called "support-unit". This
process in principle provides for the calculation of ratios as the ratio between the
number of lines of the VCF associated with a given bin (information obtained by
calculating the length of the Indels [bin] list) and the frequency calculated for that
specific bin (corresponding to the third value contained in the distr list for each
index). All reports will then be saved in the "ratios" list. On the other hand, in
the "non_zero_ratios" list, all the elements of the "ratios" list other than zero will
be saved. At this point the "support-unit" variable takes on the minimum value
among those identified in the "non_zero_ratios" list, unless this is empty, in which
case the "support-unit" is set equal to zero. For each bin, the product between the
"support-unit" and the number of variations identified for that interval (saved in
distr_dict [bin]) is subsequently calculated, stored in the variable N . If N is lower
than the number of rows of the VCF associated with the bin considered (N <len
(Indels [bin])), then N is randomly selected from the lines of the VCF associated
with the bin considered and are saved in "sampled_indels"; otherwise (if N> = len
(Indels [bin])) all lines of the VCF associated with the considered bin are saved in
"sampled_indels". Finally, all the contents of "sampled_indels" are printed.

1 # Realisation of the " support_unit "
2 ratios = [len( Indels [( start , end)])/value for (start , end , value) in

distr if value != 0] # calculation of ratios as the ratio
between the number of lines of the VCF associated with a given
bin and the frequency calculated for that specific bin

3 non_zero_ratios = [i for i in ratios if i!=0] # saving of all the
elements of the " ratios " list other than zero

4 if non_zero_ratios == []:
5 support_unit = 0 #the "support -unit" is set equal to zero

because all the ratios are equal to zero
6 print(" WARNING : empty ratios list .... setting support_unit

to 0.", file=sys. stderr )
7 else:
8 support_unit = min( non_zero_ratios ) #"support -unit" variable

takes on the minimum value among those identified in the "
non_zero_ratios " list
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9 for b in bins: # iteration on each index of the list
10 N = int( support_unit * distr_dict [b]) # definition of N as the

product between the "support -unit" and the number of variations
identified for that interval

11 if N<len( Indels [b]): #If N is lower than the number of rows
of the VCF associated with the bin considered

12 sampled_indels = random . sample ( Indels [b], N) #N rows
are randomly selected from the lines of the VCF associated with
the bin considered and they are saved in " sampled_indels "

13 else:
14 sampled_indels = Indels [b] #all lines of the VCF

associated with the considered bin are saved in " sampled_indels "
15 for i in sampled_indels : # iteration on each element of the

list
16 print(’\t’.join(i)) #all the content of "

sampled_indels " is printed in the form of a single string
consisting of tuples separated by tabs

C.3 Get_SNV_from_freq-distr.py
• Definition of functions

– get_FORMAT_ID (VCF_row, ID)
– read_ref_distribution (fd)
–1 def parse_VCF (fd):
2 for row in fd: # iteration over each line of the VCF

file
3 if row [0] == ’#’: # exclusion of all lines

preceded by the symbol ’#’ corresponding to the header and
description of the columns

4 continue
5 row = row.strip ().split(’\t’) # splitting of the

entire line into strings using the tab as a separator
6 VAF = 100* float( get_FORMAT_ID (row , "PM")) #

calculation of the variant allele frequency
7 yield (VAF , row) # extraction of the VAF value followed by

the respective VCF row

Differently from what was observed for the Get_Indel_from_freq-distr.py script,
in this case to extract the frequencies of SNV variations, starting from a VCF format
file relating to the SNV variations, it is necessary to consider only one specific field
of the FORMAT column, described in the header of the file as follows:

##FORMAT= <ID= PM, Number= 1, Type= Float,
Description= "Proportion of mutated allele">

The first step therefore involves calling the get_FORMAT_ID function, in order to
extract from the tumour sample the values corresponding to the position identified
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by "PM" in the FORMAT. Subsequently, the percentage values of frequencies of
SNV variations are obtained by multiplying the identified value by one hundred.
The parse_VCF function described above, starting from a VCF file relating to the
SNV variations, has the aim of returning the value of the variant allele frequency,
followed by the corresponding entire line of the VCF file.

• Central body of the script

Initially,it is verified that the script has been launched correctly, by introducing a
check which verifies that what is required for the functioning of the script itself has
been supplied as input. Specifically, it is verified that the reference distribution file is
provided followed by the VCF file relating to the SNV variations, saved respectively
as REF_fd and SNV_fd.

1 if len(sys.argv) != 2+1: # checking the correctness of the number of
files supplied in input

2 sys.exit("""
3 Usage: %s reference_freq -distr SNV.file.vcf|-
4 """ % sys.argv [0]) # printing of information relating to

the type of input requested if those provided are not correct
5 REF_fd = open(sys.argv [1]) # acquisition of the input reference

distribution file
6 SNV_fd = (sys.argv [2] != ’-’) and open(sys.argv [2]) or sys.stdin #

acquisition of the VCF file relating to the SNV variations

By calling the previously defined function read_ref_distribution, the SNV frequency
distribution, initially saved in the "distr" list, is copied into the "distr_dict" dictio-
nary, using the "start end" pair (corresponding to the start and end of interval).

1 # reading the distribution
2 distr = read_ref_distribution ( REF_fd ) # saving in distr the list

obtained by calling the function
3 distr_dict = {} # dictionary initialization
4 for i in distr: # iteration on each index of the list
5 distr_dict [(i[0], i[1])] = i[2] # dictionary definition
6 bins = sorted ( distr_dict .keys ()) # saving of sorted dictionary keys

in bins

At this point, once the dictionary keys have been saved in "bins", sorted by coor-
dinates identified by the extremes of the intervals considered, I want to assign the
Indel variations to each interval. In particular, a dictionary called "SNV" is defined,
in which each bin is associated with a certain number of lines of the VCF file for
which the variant allele frequency (VAF), obtained by the parse_VCF function, falls
within the defined range from bin.

1 # reading the VCF and assigning the Indel variations to the bins
2 SNV = {} # dictionary initialization
3 for i in bins: # iteration on each index of the list
4 SNV[i] = [] #list initialization
5 for f, row in parse_VCF ( SNV_fd ): # iteration on each couple

frequency , row result returned by the function
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6 for b in bins: # iteration on each index of the list
7 if f <= b[1]: # checking if the frequency is lower than

the far right of the range , it answers the question : does the
frequency fall into the current bin?

8 SNV[b]. append (row) #If the answer to the
previous question is yes , then the VCF line is associated with
the current bin through the "SNV" dictionary

9 break #in the moment the VCF line has been
assigned to a specific bin , I move to the next line

The crucial aspect consists in the realisation of the sampling of the SNV variations
through the definition of the so-called "support-unit". This process in principle
provides for the calculation of ratios as the ratio between the number of lines of
the VCF associated with a given bin (information obtained by calculating the length
of the SNV[bin] list) and the frequency calculated for that specific bin (corresponding
to the third value contained in the distr list for each index). All reports will then
be saved in the "ratios" list. On the other hand, in the "non_zero_ratios" list, all
the elements of the "ratios" list other than zero will be saved. At this point the
"support-unit" variable takes on the minimum value among those identified in the
"non_zero_ratios" list, unless this is empty, in which case the "support-unit" is set
equal to zero. For each bin, the product between the "support-unit" and the number
of variations identified for that interval (saved in distr_dict [bin]) is subsequently
calculated, stored in the variable N . If N is lower than the number of rows of the
VCF associated with the bin considered (N <len (SNV [bin])), then N is randomly
selected from the lines of the VCF associated with the bin considered and are saved in
"sampled_SNV "; otherwise (if N>=len(SNV [bin])) all lines of the VCF associated
with the considered bin are saved in "sampled_SNV". Finally, all the contents of
"sampled_SNV" are printed.

1 # Realisation of the " support_unit "
2 ratios = [len(SNV [( start , end)])/value for (start , end , value) in

distr if value != 0] # calculation of ratios as the ratio between
the number of lines of the VCF associated with a given bin and

the frequency calculated for that specific bin
3 non_zero_ratios = [i for i in ratios if i!=0] # saving of all the

elements of the " ratios " list other than zero
4 if non_zero_ratios == []:
5 support_unit = 0 #the "support -unit" is set equal to zero

because all the ratios are equal to zero
6 print(" WARNING : empty ratios list .... setting support_unit

to 0.", file=sys. stderr )
7 else:
8 support_unit = min( non_zero_ratios ) #"support -unit" variable

takes on the minimum value among those identified in the "
non_zero_ratios " list

9 for b in bins: # iteration on each index of the list
10 N = int( support_unit * distr_dict [b]) # definition of N as the

product between the "support -unit" and the number of variations
identified for that interval

11 if N<len(SNV[b]): #If N is lower than the number of rows of
the VCF associated with the bin considered
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12 sampled_indels = random . sample (SNV[b], N) #N rows
are randomly selected from the lines of the VCF associated with
the bin considered and they are saved in " sampled_SNV "

13 else:
14 sampled_SNV = SNV[b] #all lines of the VCF

associated with the considered bin are saved in " sampled_SNV "
15 for i in sampled_SNV : # iteration on each element of the list
16 print(’\t’.join(i)) #all the content of "

sampled_indels " is printed in the form of a single string
consisting of tuples separated by tabs

C.4 Recalibrate_HRD_A.sh

• Acquisition of input files

1 BIN_DIR =$( readlink -e $( dirname $0)) #get the name of the directory
where the script is executed

2 INDEL_NT_DISTRIBUTION = $BIN_DIR / Indel_median - freq_from_N -T_A #
extraction of the reference distribution file in the format as
the GSL - histogram output ( median distribution of the Indel
variations resulting from the comparison between the tumour
sample and the associated normal )

3 SNV_NT_DISTRIBUTION = $BIN_DIR /SNV_median - freq_from_N -T_A # extraction
of the reference distribution file in the format as the GSL -
histogram output ( median distribution of the SNV variations
resulting from the comparison between the tumour sample and the
associated normal )

4 export INDEL_NT_DISTRIBUTION SNV_NT_DISTRIBUTION BIN_DIR
5 if [ $# -ne 2 ]; then # checking the correctness of the number of

files supplied in input
6 echo "Usage: $0 directory .files tumour_sample " >&2 # printing

of information relating to the type of input requested if those
provided are not correct

7 echo " Recalibrate SNV and Indel files and recalculate HRD."
>&2

8 exit 78
9 fi

10 FILES_DIR =$1 # acquisition of the input directory .files ( result of
the Sanger pipeline and the application of filters )

11 TUMOUR =$2 # acquisition of the name of the tumour sample provided in
input

12 export TUMOUR
13

14

The first step is to get the name of the directory where the script is executed, saved
in BIN_DIR. From this directory it is possible to go back to the Indel_median-
freq_from_N-T_A and SNV_median-freq_from_N-T_A files, contained in the di-
rectory itself, corresponding to the reference distribution files in the format as the
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GSL-histogram output, with a little modification. The Indel_median-freq_from_N-
T and SNV_median-freq_from_N-T files (Table 5.2) respectively represent the me-
dian distribution of the SNV and Indel variations resulting from the comparison
between the tumour sample and the associated normal, corresponding to the red
curve in the graphs previously illustrated. The Indel_median-freq_from_N-T_A
and SNV_median-freq_from_N-T_A files (Table 5.3), in particular, are obtained
by replacing the value obtained by adding 1 to the original value in correspondence
with the bin defined between 10 and 20 . This trick specifically allows you to select
only the information contained in the 10-20 range, "cutting" the portion of varia-
tions that reside between the frequencies of 10 and 20%. This occurs since in that
range the distribution of the N-T comparison is strongly spiked, leading to exclude
the frequencies with a negligible incidence compared to that of the peak. Exporting
the described files is followed by verification that the script has been launched cor-
rectly, by introducing a check which verifies that what is required for the functioning
of the script itself has been supplied as input. Specifically, it is verified that the
directory.files has been provided followed by the name of the tumour sample con-
sidered, saved respectively as FILES_DIR and TUMOUR. In particular, the first
input refers to a folder obtained as a result of the execution of the cpgwgs pipeline
and the subsequent application of filters, corresponding to the input of the HRD
pipeline. The second input instead refers to the name of the tumour sample, which
can be identified in the terminal part of the header of the BAM file of the tumour
sample, preceded by the abbreviation "SM:"(as can be seen in the figure for example
for patient RC100851).

@RG ID:1 LB:dummy_LB PL:dummy_PL PU:dummy_PU SM:RC100851_T

• Definition of functions
1 function sampling_indel {
2 # $1: vcf.gz
3 # $2: out ( $OUT_I /$( basename $1))
4 (
5 openAll $1 | \
6 grep ’^#’ # extraction of the header and the

first line of the body of the VCF file taken as input
7 openAll $1 | \
8 python3 $BIN_DIR / get_indel_from_freq -distr.py

$INDEL_NT_DISTRIBUTION - | \
9 # execution of the script created in python described above providing

as input the median distribution of the Indel variations
resulting from the comparison between the tumour sample and the
associated normal and the VCF file

10 sort -k1 ,1 -k2 ,2n
11 # ascending ordering of the VCF rows obtained following the execution

of the sampling , sorted alphabetically by its column 1 (
corresponding to the chromosome on which the variant is present )

and sorted numerically by its column 2 ( corresponding to the
position on which the variant call was made respectively )

12 ) | \
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13 bgzip > $2 # compression of the file in the form file.gz and
saving of the overall result obtained in the file corresponding
to the second input of the function

14 tabix $2 # generation of the VCF file in the form vcf.gz and
of its index file vcf.gz.tbi

15 }
16

As previously introduced the VCF format includes a header, whose lines are iden-
tified by the "##" symbols and a body which lists all the variants. Inside the
body, the information relating to each variant is organised according to 9 manda-
tory columns that are identified by the "#" symbol. The sampling_indel function
described above, starting from a VCF file relating to the Indel variations (first input
supplied to the function), has the aim of returning a new VCF file, saved with the
name indicated in correspondence with the second input of the function, charac-
terised by the same header of the starting one followed by the corresponding lines
of the VCF file selected by sampling. Specifically, the function begins with the ex-
traction of the header and the first line of the body of the VCF file taken as input
and proceeds with the execution of the script created in python described above
(Get_indel_from_freq-distr.py) providing it as input the median distribution
of the Indel variations resulting from the comparison between the tumour sample
and the associated normal and the VCF file. Subsequently, the function foresees the
ascending ordering of the rows of the VCF obtained following the execution of the
sampling, sorted alphabetically by its column 1 (corresponding to the chromosome
on which the variant is present) and sorted numerically by its column 2 ( correspond-
ing to the position on which the variant call was made respectively). Finally, the
resulting file, including the header followed by the VCF lines selected by sampling,
is compressed in the form "file.gz" and saved in the file corresponding to the second
input of the function. The last step involves the generation of the VCF file in the
form “vcf.gz” and of its index file “vcf.gz.tbi”. The sampling_SNV function is anal-
ogous to the sampling_indel function just described, with the only difference that
it involves the execution of the python script Get_SNV_from_freq-distr.py
providing it as input the median distribution of the SNV variations resulting from
the comparison between the tumour sample and the associated normal and the VCF.

1 function sampling_SNV {
2 # $1: vcf.gz
3 # $2: out ( $OUT_S /$( basename $1))
4 (
5 openAll $1 | \
6 grep ’^#’ # extraction of the header and the

first line of the body of the VCF file taken as input
7 openAll $1 | \
8 python3 $BIN_DIR / get_SNV_from_freq -distr.py

$SNV_NT_DISTRIBUTION - | \
9 # execution of the script created in python described above providing

as input the median distribution of the SNV variations
resulting from the comparison between the tumour sample and the
associated normal and the VCF file
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10 sort -k1 ,1 -k2 ,2n
11 # ascending ordering of the VCF rows obtained following the execution

of the sampling , sorted alphabetically by its column 1 (
corresponding to the chromosome on which the variant is present )

and sorted numerically by its column 2 ( corresponding to the
position on which the variant call was made respectively )

12 ) | \
13 bgzip > $2 # compression of the file in the form file.gz and

saving of the overall result obtained in the file corresponding
to the second input of the function

14 tabix $2 # generation of the VCF file in the form vcf.gz and
of its index file vcf.gz.tbi

15 }
16 export -f sampling_indel sampling_SNV # export of the two functions

described above
17

• Central body of the script
1 I create a " recalibrateA " subfolder in the FILES_DIR folder acquired

as input
2 I position myself inside the " recalibrateA " subfolder within "

recalibrateA "
3 I create the "Indel - sampling " and "SNV - sampling " subfolders

1. Sampling on N-T distribution
1 I print " Sampling SNV and Indel results based on N-T frequency

distribution "
2

3 #Indel
4 I launch the sampling_indel function ( previously defined )

passing it as parameters to the file in the form Indel .*. vcf
.gz ( contained in FILES_DIR ) followed by the file Indel .*.
vcf.RANDOM -1. gz contained in the Indel - sampling folder

5

6 #SNV
7 I launch the sampling_SNV function ( defined previously ) passing

it as parameters to the file in the form SNV .*. vcf.gz (
contained in FILES_DIR ) followed by the SNV .*. vcf.RANDOM -1.
gz file contained in the Indel - sampling folder

8

Initially, the recalibrate_HRD_A.sh script foresees the execution of the
sampling on the data that describe the distribution obtained from the compar-
ison between the tumour sample and the normal equivalent. In particular, the
sub-folders of the FILES_DIR folder provided as the first input to the script
are initially defined: specifically, the two paths FILES_DIR/recalibrateA/Indel-
sampling and FILES_DIR/recalibrateA/SNV-sampling are generated. The first
step is then performed inside the recalibrateA folder, separately for SNV and In-
del. In particular, the sampling_indel function (defined previously) is launched
receiving as parameters the file in the form Indel.*.vcf.gz (contained in FILES_DIR)
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followed by the file Indel.*.vcf.RANDOM-1.gz (contained in the Indel-sampling
folder). Similarly, the sampling_SNV function (previously defined) is launched
receiving as parameters the file in the form SNV.*.vcf.gz (contained in FILES_DIR)
followed by the SNV.*.vcf.RANDOM-1.gz file (contained in the folder SNV-
sampling). Consequently, in the Indel-sampling and SNV-sampling folders, it
will be possible to access the files containing the sampling results on the data
describing the distribution obtained from the comparison between the tumour
sample and the normal equivalent, respectively for insertions/deletions and for
single nucleotides variants. In particular, in this case, the Strategy A directly
considers only what concerns the slice of allelic frequencies containing the great-
est content of somatic mutations, without sampling. In this regard, it is in fact
possible to note that the sampling_indel and the sampling_SNV functions are
launched only once.

2. Recreate an updated ’.files’ directory
1 I print ’Recreate an un updated ’.files ’ directory ’
2 I define Indel_file as the basename of the file in the form

Indel .* gz contained in the FILES_DIR folder
3 I define Indel_file_noExt as an indel_file of the .gz extension
4 I define rnd as the Indel - sampling / $indel_file_noExt .*. gz file
5 I define SMP as the second "field" of rnd basename after using

the ’.’ as a separator .
6 I define X as rnd without the .gz extension
7 I define RND as the last "field" of X after using the ’.’ as a

separator .
8 I define and create the directory RND_DIR as $RND.files
9 I repeat for each i in CNV Indel SNV SV

10 I copy files in form $i.* contained in the FILES_DIR folder
in the RND_DIR directory created

11 #I replace the Indel
12 Overwrite rnd on Indel_file in the RND_DIR directory
13 Overwrite rnd.tbi on Indel_file .tbi in the RND_DIR directory
14 #I replace the SNV
15 I define SNV_file as the file basename in the form SNV .*gz

contained in the FILES_DIR folder
16 I define SNV_file_noExt as SNV_file without the .gz extension
17 Overwrite the file SNV.$SMP.annot.muts.vcf.$RND.gz contained in

the SNV - sampling folder on the file $SNV_file in the RND_DIR
directory

18 Overwrite the file SNV.$SMP.annot.muts.vcf.$RND.gz.tbi contained
in the SNV - sampling folder on the file $SNV_file .tbi in the
RND_DIR directory

19

During the second step, the recalibrate_HRD_A.sh script takes care of
recreating an updated ’.files’ directory. Specifically, for the file in the form
Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-1.gz (for example
Indel.PD24215a_vs_hg38_metanormal.annot.vcf.RANDOM-1.gz) contained in
the folder Indel-sampling, generated during Step 1, is performed a series of ac-
tions outlined below. Directory is initially defined and created in the form
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RANDOM-1.files; the files Indel.*, CNV.*, SNV.*, SV.* (Indel.PD24215a_vs_
hg38_metanormal.annot.vcf.gz, ...), contained in the FILES_DIR folder, are
copied into this directory. At this point, the Indel replacement occurs, which
involves overwriting the file in the form Indel.*gz contained in the respective
RANDOM-1.files directory
(Indel.PD24215a_vs_hg38_metanormal.annot.vcf.gz) with the file in the form
Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-1.gz
(Indel.PD24215a_vs_hg38_metanormal.annot.vcf.RANDOM-1.gz). The same
is done for the file in the form Indel.*gz.tbi, replaced with the file in the form
Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-1.gz.tbi. The same process
is repeated analogously for the replacement of the SNVs inside the RANDOM-
1.files directory: in particular the
SNV.*_vs_hg38_metanormal.annot.muts.vcf.RANDOM-1.gz file contained in
SNV-sampling (for example
SNV.PD24215a_vs_hg38_metanormal.annot.muts.vcf.RANDOM-1.gz) overwrites
the file SNV.*gz contained in the respective RANDOM-1.files
(SNV.PD24215a_vs_hg38_metanormal.annot.muts.vcf.gz considering the pre-
vious example), as well as for the file in the form SNV.*gz.tbi.

3. Calculate HRD for the RANDOM directory

1 I print ’Calculate HRD for the RANDOM directory ’
2 I place myself inside the RANDOM -1. files directory
3 I run the pipeline HRDetect_fullPipeline -hg38.AUTO.sh , contained

in the $BIN_DIR folder ( previously defined and containing
the name of the directory where the script is executed )
passing it as parameters the sample name of the tumour (
saved in $TUMOUR ) followed by the RANDOM -1. files directory .
The script output will be saved in the HRDetect_fullPipeline
.out file while any errors in the HRDetect_fullPipeline .err
file

4

During the third step, the recalibrate_HRD_A.sh script takes care of cal-
culating HRD for the RANDOM directory. Specifically, for the directory in
the form RANDOM-1.files, contained in the recalibrateA folder, the pipeline
HRDetect_fullPipeline-hg38.AUTO.sh is run, passing it as parameters the sam-
ple name of the tumour (saved in $TUMOUR) followed by the directory. The
script output will be saved in the HRDetect_fullPipeline.out file while any er-
rors in the HRDetect_fullPipeline.err file, both contained in RANDOM-1.files
directory.

4. Recalculate HRD based on median values from data matrix

1 I print ’Finally , recalculate HRD based on median values from
data matrix coming from the RANDOM directory ’

2 I define FIRST_RANDOM as the RANDOM -1. files directory
3 I define DATA_MATRIX as $FILES_DIR without the extension ’.files

’ to which I add ’.data -matrix ’ in the queue
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4 Through the ’awk ’ command , I look for the values corresponding
to the fields of del.mh.prop , SNV3 ,SNV8 ,SV3 ,SV5 and hrd , as
well as the name of the sample , in $FIRST_RANDOM /
HRDetect_fullPipeline .out .

5 I save in $DATA_MATRIX the column names corresponding to del.mh.
prop , SNV3 ,SV3 , SV5 , hrd , SNV8 , the name of the sample and
the values associated with the previous columns .

6 Finally , I launch the pipeline _HRDetect - score_from_data - matrix .
R, contained in the $BIN_DIR folder ( previously defined and
containing the name of the directory where the script is
executed ) passing it as parameters the $DATA_MATRIX . The
script output will be saved in the HRDetect_fullPipeline .out

file while any errors in the HRDetect_fullPipeline .err.
7

During the fourth step, the recalibrate_HRD_A.sh script takes care of
recalculating HRD based on median values from datamatrix. In particular, the
HRDetect pipeline requires an input data frame "data_matrix", which contains
a sample in each row and one of six necessary features in each column. The six
features are:

– proportion of deletions at microhomology (del.mh.prop),
– number of mutations of substitution signature 3 (SNV3),
– number of mutations of rearrangement signature 3 (SV3),
– number of mutations of rearrangement signature 5 (SV5),
– HRD LOH (Loss of Heterozygosity) index (hrd),
– number of mutations of substitution signature 8 (SNV8).

Initially, for the HRDetect_fullPipeline.out file (contained in the folder in the
form RANDOM-1.files), generated during the previous step, I look for the val-
ues that I need to define the data matrix. Through the "awk" command, I
look for the values corresponding to the fields of del.mh.prop, SNV3, SNV8,
SV3, SV5 and hrd, as well as the name of the sample, in the RANDOM-
1.files/HRDetect_fullPipeline.out. At this point the column names correspond-
ing to del.mh.prop, SNV3, SV3, SV5, hrd, SNV8, the name of the sample and
the values associated with the previous columns, are saved in hg38_metanormal_
_*.data-matrix. Finally, the pipeline _HRDetect-score_from_data-matrix.R
is launched, passing it as input the hg38_metanormal__*.data-matrix. The
script output will be saved in the HRDetect_fullPipeline.out file while any er-
rors in the HRDetect_fullPipeline.err, both contained in the recalibrateA folder.

C.5 Get_VAF-range_indel.py
• Definition of functions

– get_FORMAT_ID (VCF_row, ID)
– read_ref_distribution (fd)
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– parse_VCF(fd)

• Central body of the script

Initially, it is verified that the script has been launched correctly, by introducing a
check which verifies that what is required for the functioning of the script itself has
been supplied as input. Specifically, it is verified that the lower and upper extremes
of the considered interval were provided, followed by the VCF file relating to the
Indel variations, saved respectively as start, end and INDEL_fd.

1 if len(sys.argv) != 3+1: # checking the correctness of the number of
files supplied in input

2 sys.exit("""
3 Usage: %s start end Indel.file.vcf|-
4 """ % sys.argv [0]) # printing of information relating to

the type of input requested if those provided are not correct
5 start = float(sys.argv [1]) # acquisition of the lower extreme of the

considered interval
6 end = float(sys.argv [2]) # acquisition of the upper extreme of the

considered interval
7 INDEL_fd = (sys.argv [2] != ’-’) and open(sys.argv [2]) or sys.stdin #

acquisition of the VCF file relating to the Indel variations

In particular, a dictionary called "Indels" is defined, in which the bin is associated
with a certain number of lines of the VCF file for which the variant allele frequency
(VAF), obtained by the parse_VCF function, falls within the defined range from
bin.

1 Indels = {( start , end): []} # dictionary initialization
2 for f, row in parse_VCF ( INDEL_fd ): # iteration on each couple

frequency , row result returned by the function
3 if start <= f <= end: # checking if the frequency is lower

than the far right of the range and higher than the far left. It
answers the question : does the frequency fall into the current

bin?
4 Indels [( start , end)]. append (row)#If the answer to

the previous question is yes , then the VCF line is associated
with the current bin through the " Indels " dictionary

5 for k, v in Indels .items (): # iteration over all the key -value pairs
present in the dictionary

6 for i in v: # iteration on all the lines of the VCF
associated with the specific bin considered

7 print(’\t’.join(i)) #all the lines of the VCF
associated with the specific bin considered , contained in the
dictionary , are printed in the form of a single string
consisting of tuples separated by tabs

It is of particular importance to underline that, unlike what was observed for the
Get_indel_from_freq-distr.py script, in this case a single specific interval is
considered, of which the extremes are supplied as input. At the same time, the
crucial aspect of the Get_indel_from_freq-distr.py algorithm consists in the
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realisation of the sampling of the Indel variations through the definition of the so-
called "support-unit"; in particular, for each bin, the product between the "support-
unit" and the number of variations identified for that interval was calculated and
stored in the variable N . If N was lower than the number of rows of the VCF
associated with the bin considered, then N was randomly selected from the lines of
the VCF associated with the bin considered and were saved in "sampled_indels";
otherwise all lines of the VCF associated with the considered bin were saved in
"sampled_indels". Finally, all the contents of "sampled_indels" were printed. In this
case, however, in the Get_VAF-range_indel.py script, neither the "support-
unit" nor sampling is used, in fact, once the VCF lines associated with the specific
bin considered have been identified, these are printed in their wholeness.

C.6 Get_VAF-range_SNV.py
• Definition of functions

– get_FORMAT_ID (VCF_row, ID)
– read_ref_distribution (fd)
– parse_VCF(fd)

• Central body of the script

Initially, it is verified that the script has been launched correctly, by introducing a
check which verifies that what is required for the functioning of the script itself has
been supplied as input. Specifically, it is verified that the lower and upper extremes
of the considered interval are provided followed by the VCF file relating to the SNV
variations, saved respectively as start, end and SNV_fd.

1 if len(sys.argv) != 3+1: # checking the correctness of the number of
files supplied in input

2 sys.exit("""
3 Usage: %s start end SNV.file.vcf|-
4 """ % sys.argv [0]) # printing of information relating to

the type of input requested if those provided are not correct
5 start = float(sys.argv [1]) # acquisition of the lower extreme of the

considered interval
6 end = float(sys.argv [2]) # acquisition of the upper extreme of the

considered interval
7 SNV_fd = (sys.argv [2] != ’-’) and open(sys.argv [2]) or sys.stdin #

acquisition of the VCF file relating to the SNV variations
8 In particular , a dictionary called "SNV" is defined , in which the

bin is associated with a certain number of lines of the VCF file
for which the variant allele frequency (VAF), obtained by the

parse_VCF function , falls within the defined range from bin.
9 SNV = {( start , end): []} # dictionary initialization

10 for f, row in parse_VCF ( SNV_fd ): # iteration on each couple frequency
, row result returned by the function
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11 if start <= f <= end: # checking if the frequency is lower
than the far right of the range and higher than the far left. It

answers the question : does the frequency fall into the current
bin?

12 SNV [( start , end)]. append (row)#If the answer to the
previous question is yes , then the VCF line is associated with
the current bin through the "SNV" dictionary

13 for k, v in SNV.items (): # iteration over all the key -value pairs
present in the dictionary

14 for i in v: # iteration on all the lines of the VCF
associated with the specific bin considered

15 print(’\t’.join(i)) #all the lines of the VCF
associated with the specific bin considered , contained in the
dictionary , are printed in the form of a single string
consisting of tuples separated by tabs

Again it is possible to emphasise, unlike what was observed for the
Get_SNV_from_freq-distr.py script, in this case a single specific interval is
considered, of which the extremes are supplied as input. At the same time, the cru-
cial aspect of the Get_SNV_from_freq-distr.py algorithm consists in the real-
isation of the sampling of the SNV variations through the definition of the product
between the "support-unit" and the number of variations identified for that interval,
stored in the variable N . Then, if N was lower than the number of rows of the
VCF associated with the bin considered, N was randomly selected from the lines
of the VCF associated with the bin considered and were saved in "sampled_SNV";
otherwise all lines of the VCF associated with the considered bin were saved in "sam-
pled_SNV". Finally, all the contents of "sampled_SNV" were printed. In this case,
however, in the Get_VAF-range_SNV.py script, neither the "support-unit" nor
sampling is used, in fact, once the VCF lines associated with the specific bin consid-
ered have been identified, these are printed in their wholeness.

C.7 Recalibrate_HRD_B.sh
• Acquisition of input files

1 BIN_DIR =$( readlink -e $( dirname $0)) #get the name of the directory
where the script is executed

2 if [ $# -ne 3 ]; then
3 echo "Usage: $0 directory .files tumour_sample out_dir " >&2 #

checking the correctness of the number of files supplied in
input

4 echo " Recalibrate SNV and Indel files and recalculate HRD."
>&2 # printing of information relating to the type of input
requested if those provided are not correct

5 exit 78
6 fi
7 FILES_DIR =$( readlink -e $1) # acquisition of the input directory .

files ( result of the Sanger pipeline and the application of
filters )
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8 TUMOUR =$2 # acquisition of the name of the tumour sample provided in
input

9 OUT_DIR =$3 # acquisition of the output directory in which the results
will be saved

10 L=30 #VAF range (’width ’ of the interval )
11 SHIFT =5 # sliding window shift
12 export TUMOUR
13 mkdir $OUT_DIR # creation of the output directory that will contain

the results obtained by the script
14

I verify that the script has been launched correctly, introducing a check that verifies
that what is needed for the script to run has been provided as input. In particular,
I verify that the name of the directory where the script will be executed has been
provided, followed by the name of the tumour sample and the name of the output
directory where the results will be printed, saved respectively as FILES_DIR, TU-
MOUR and OUT_DIR. At this point I proceed with the definition of variables such
as L (which is assigned the value 30), corresponding to the VAF range or the "width"
of the interval considered, and SHIFT (which is assigned the value 5), corresponding
to the sliding window shift. It proceeds with the creation of the directory OUT_DIR
that will contain the results produced by the execution of the script and with the
definition of some necessary functions for the same execution.

• Definition of functions
1 function sliding_indel {
2 # $1: start
3 # $2: end
4 # $3: vcf.gz
5 # $4: out ( $OUT_I /$( basename $1)
6 (
7 openAll $3 | \
8 grep ’^#’ # extraction of the header and the

first line of the body of the VCF file taken as input
9 openAll $3 | \

10 python3 $BIN_DIR /get_VAF - range_indel .py $1
$2 - | \

11 # execution of the script created in python described above providing
as input the extremes of the interval considered and the VCF

file
12 sort -k1 ,1 -k2 ,2n
13 # ascending ordering of the VCF rows obtained following the execution

of the sliding , sorted alphabetically by its column 1 (
corresponding to the chromosome on which the variant is present )

and sorted numerically by its column 2 ( corresponding to the
position on which the variant call was made respectively )

14 ) | \
15 bgzip > $4 # compression of the file in the form file.gz and

saving of the overall result obtained in the file corresponding
to the second input of the function

16 tabix $4 # generation of the VCF file in the form vcf.gz and
of its index file vcf.gz.tbi

141



Code Implementation

As previously introduced the VCF format includes a header, whose lines are identi-
fied by the "##" symbols and a body which lists all the variants. Inside the body, the
information relating to each variant is organised according to 9 mandatory columns
that are identified by the "#" symbol. The sliding_indel function described above,
starting from a VCF file relating to the Indel variations (third input supplied to the
function), has the aim of returning a new VCF file, saved with the name indicated
in correspondence with the fourth input of the function, characterised by the same
header of the starting one followed by the corresponding lines of the VCF file selected
by sliding. Specifically, the function begins with the extraction of the header and
the first line of the body of the VCF file taken as input and proceeds with the execu-
tion of the script created in Python described above (get_VAF-range_indel.py)
providing it as input the lower and upper extremes of the considered interval and
the VCF file. Subsequently, the function foresees the ascending ordering of the rows
of the VCF obtained following the execution of the sliding, sorted alphabetically
by its column 1 (corresponding to the chromosome on which the variant is present)
and sorted numerically by its column 2 (corresponding to the position on which the
variant call was made respectively). Finally, the resulting file, including the header
followed by the VCF lines selected by sampling, is compressed in the form "file.gz"
and saved in the file corresponding to the second input of the function. The last
step involves the generation of the VCF file in the form “vcf.gz” and of its index file
“vcf.gz.tbi”.

1 function sliding_SNV {
2 # $1: start
3 # $2: end
4 # $3: vcf.gz
5 # $4: out ( $OUT_I /$( basename $1)
6 (
7 openAll $3 | \
8 grep ’^#’ # extraction of the header and the

first line of the body of the VCF file taken as input
9 openAll $3 | \

10 python3 $BIN_DIR /get_VAF - range_SNV .py $1 $2
- | \

11 # execution of the script created in python described above providing
as input the extremes of the interval considered and the VCF

file
12 sort -k1 ,1 -k2 ,2n
13 # ascending ordering of the VCF rows obtained following the execution

of the sliding , sorted alphabetically by its column 1 (
corresponding to the chromosome on which the variant is present )

and sorted numerically by its column 2 ( corresponding to the
position on which the variant call was made respectively )

14 ) | \
15 bgzip > $4 # compression of the file in the form file.gz and

saving of the overall result obtained in the file corresponding
to the second input of the function

16 tabix $4 # generation of the VCF file in the form vcf.gz and
of its index file vcf.gz.tbi
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The sliding_SNV function is analogous to the sliding_indel function just described,
with the only difference that it involves the execution of the python script get_VAF-
range_indel.py providing it as input the lower and upper extremes of the consid-
ered interval and the VCF.

1 function run_HRDetect {
2 local SMP=$1 # acquisition of the tumour sample provided in

input
3 local SNV=$( readlink -e $2) # acquisition of SNV file

provided in input
4 local SV=$( readlink -e $3) # acquisition of SV file provided

in input
5 local INDEL=$( readlink -e $4) # acquisition of INDEL file

provided in input
6 local CNV=$( readlink -e $5) # acquisition of CNV file

provided in input
7 Rscript $BIN_DIR / HRDetect_fullPipeline -hg38.R $SMP $SNV $SV

$INDEL $CNV
8 # running of HRDetect pipeline passing it as parameters SMP , SNV , SV ,

INDEL , CNV in the described order
9 }

10 export -f sliding_indel sliding_SNV run_HRDetect

The run_HRDetect function described above, starting from the sample name of the
tumour and the SNV, SV, INDEL, CNV files given as input, has the aim of returning
the results obtained by the running of HRDetect pipeline, using the listed input as
parameters.

• Central body of the script
1 I position myself inside the $OUT_DIR folder provided in input
2 Within $OUT_DIR I create the "Indel - sliding ", "SNV - sliding " and "

out_HRD " subfolders

1. Sliding
1 I print " Sliding SNV and Indel results "
2 #Indel
3 I repeat for each ’start ’ in a sequence ranging from 0 to 100-

$L (i.e. 70) with a step of $SHIFT (5):
4 I define $end , corresponding to the upper extreme of the bin , as

the sum of the value of $start and $L (equal to 30)
5 I launch the sliding_indel function ( previously defined ) passing

it as parameters the values contained in $start and in $end
followed by the file in the form Indel .*. vcf.gz ( contained

in FILES_DIR ) and the file in the form Indel .*. vcf.SLIDE -
$start -$end.gz ( contained in the Indel - sliding folder )

6 #SNV
7 I repeat for each ’start ’ in a sequence ranging from 0 to 100-

$L (i.e. 70) with a step of $SHIFT (5):
8 I define $end , corresponding to the upper extreme of the bin , as

the sum of the value of $start and $L (equal to 30)
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9 I launch the sliding_indel function ( previously defined ) passing
it as parameters the values contained in $start and in $end
followed by the file in the form SNV .*. vcf.gz ( contained in
FILES_DIR ) and the file in the form SNV .*. vcf.SLIDE -$start -

$end.gz ( contained in the SNV - sliding folder )
10

Initially, the Recalibrate_HRD_B.sh script foresees the execution of the
sliding on the SNV and Indel results. In particular, the sub-folders of the
OUT_DIR folder provided as the third input to the script are initially defined:
specifically, the three paths OUT_DIR/Indel-sliding, OUT_DIR/SNV-sliding
and OUT_DIR/out_HRD are generated. The first step is then performed in-
side the OUT_DIR folder, separately for SNV and Indel. In particular, the
sliding_indel function (defined previously) is launched for each "start" in a se-
quence ranging from 0 to 100-$L (ie 70) with a step of 5 ($SHIFT = 5) receiving
as parameters the values contained in $start and in $end, the file in the form
Indel.*.vcf.gz (contained in FILES_DIR) followed by the file Indel.*.vcf.SLIDE-
$start-$end.gz (contained in the Indel-sliding folder), where "start" represents
the index that is updated at each iteration. Similarly, the sliding_SNV func-
tion (previously defined) is launched for each "start" in the sequence [0,5,10, ...
65,70] receiving as parameters the values contained in $start and in $end, the
file in the form SNV.*.vcf.gz (contained in FILES_DIR) followed by the file
SNV.*.vcf.SLIDE-$start-$end.gz (contained in the SNV-sliding folder). Conse-
quently, in the Indel-sliding and SNV-sliding folders, it will be possible to access
the files containing the sliding results on the data for insertions/deletions and
for single nucleotides variants.

2. Run HRDetect

1 I print " Running HRDetect "
2 I repeat for each "indel" in Indel - sliding /Indel .*. gz (ie I

cycle on all files generated during Step 1 contained in the
Indel - sliding folder )

3 Using the "awk" command , I extract the range from the
basename of $indel and I save it in the variable " range"

4 I define "snv" as the file in the form SNV .* $range .gz
contained in SNV_sliding folder

5 I define "OUT" as $OUT_HRD /INDEL - $range .SNV - $range
6 I create the tmp - sliding .INDEL - $range .SNV - $range directory
7 I position myself into the newly created tmp - sliding .INDEL

- $range .SNV - $range directory
8 I run the function run_HRDetect ( previously defined )

passing it as parameters the sample name of the tumour (
saved in $TUMOUR ) followed by the $snv , $SV , $indel , $CNV
files. The script output will be saved in the $OUT.
HRDetect_fullPipeline .out file while any errors in the $OUT.
HRDetect_fullPipeline .err file

9 Finally , I delete the folders in the form tmp - sliding .*

During the second and last step, the Recalibrate_HRD_B.sh script takes
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care of calculating the HRD score, running the function run_HRDetect. Specif-
ically, for each file in the form Indel.*.gz, files generated during Step 1 contained
in the Indel-sliding folder, the function run_HRDetect is run, passing it as pa-
rameters the sample name of the tumour (saved in $TUMOUR) followed by the
files: SNV.*$range.gz contained in SNV_sliding
(e.g. SNV.PD24215a_vs_hg38_metanormal.annot.muts.vcf.SLIDE-0-30.gz for
patient PD24215a and range 0-30) , $FILES_DIR/SV.*.gz
(SV.PD24215a_vs_hg38_metanormal.annot.bedpe.OK.gz),
Indel-sliding/Indel.*.gz (Indel.PD24215a_vs_hg38_metanormal.annot
.vcf.SLIDE-0-30.gz) and $FILES_DIR/CNV.*.OK (CNV.PD24215a.copynumber
.caveman.OK). The script output will be saved in the INDEL-$range.SNV-
$range.HRDetect_fullPipeline.out file while any errors in the INDEL-$range.SNV-
$range.HRDetect_fullPipeline.err file, both contained in $OUT_HRD direc-
tory.

C.8 Recalibrate_HRD_C.sh
• Acquisition of input files

1 BIN_DIR =$( readlink -e $( dirname $0)) #get the name of the directory
where the script is executed

2 INDEL_NT_DISTRIBUTION = $BIN_DIR / Indel_median - freq_from_N -T# extraction
of the reference distribution file in the format as the GSL -

histogram output ( median distribution of the Indel variations
resulting from the comparison between the tumour sample and the
associated normal )

3 SNV_NT_DISTRIBUTION = $BIN_DIR /SNV_median - freq_from_N -T # extraction of
the reference distribution file in the format as the GSL -

histogram output ( median distribution of the SNV variations
resulting from the comparison between the tumour sample and the
associated normal )

4 export INDEL_NT_DISTRIBUTION SNV_NT_DISTRIBUTION BIN_DIR
5 if [ $# -ne 2 ]; then # checking the correctness of the number of

files supplied in input
6 echo "Usage: $0 directory .files tumour_sample " >&2 # printing

of information relating to the type of input requested if those
provided are not correct

7 echo " Recalibrate SNV and Indel files and recalculate HRD."
>&2

8 exit 78
9 fi

10 FILES_DIR =$1 # acquisition of the input directory .files ( result of
the Sanger pipeline and the application of filters )

11 TUMOUR =$2 # acquisition of the name of the tumour sample provided in
input

12 N=10 # definition of the sampling number
13 export TUMOUR
14

The first step is to get the name of the directory where the script is executed, saved
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in BIN_DIR. From this directory it is possible to go back to the Indel_median-
freq_from_N-T and SNV_median-freq_from_N-T files (Table 5.2), contained in
the directory itself, corresponding to the reference distribution files in the format
as the GSL-histogram output. These files respectively represent the median dis-
tribution of the SNV and Indel variations resulting from the comparison between
the tumour sample and the associated normal, corresponding to the red curve in
the graphs previously illustrated. Exporting the described files is followed by ver-
ification that the script has been launched correctly, by introducing a check which
verifies that what is required for the functioning of the script itself has been supplied
as input. Specifically, it is verified that the directory.files has been provided followed
by the name of the tumour sample considered, saved respectively as FILES_DIR
and TUMOUR. In particular, the first input refers to a folder obtained as a result
of the execution of the cpgwgs pipeline and the subsequent application of filters,
corresponding to the input of the HRD pipeline. The second input instead refers to
the name of the tumour sample, which can be identified in the terminal part of the
header of the BAM file of the tumour sample, preceded by the abbreviation "SM:"
(as can be seen in the figure for example for patient RC100851).

@RG ID:1 LB:dummy_LB PL:dummy_PL PU:dummy_PU SM:RC100851_T

• Definition of functions

– sampling_Indel
– sampling_SNV

• Central body of the script

The main body of the algorithm (viewable in the form of pseudocode) can be simply
described through the identification of four fundamental steps, as observable in the
figure.

1 I create a " recalibrateC " subfolder in the FILES_DIR folder acquired
as input

2 I position myself inside the " recalibrateC " subfolder within "
recalibrateC "

3 I create the "Indel - sampling " and "SNV - sampling " subfolders

1. Sampling on N-T distribution
1 I print " Sampling SNV and Indel results based on N-T frequency

distribution " #Indel
2 I repeat for each i in N (where N is the variable previously

defined as sampling number , set equal to 10)
3 I launch the sampling_indel function ( previously defined )

passing it as parameters to the file in the form Indel. *.
vcf.gz ( contained in FILES_DIR ) followed by the file Indel.
*. vcf.RANDOM -$i.gz contained in the Indel - sampling folder

4

5 #SNV
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6 I repeat for each i in N (where N is the variable previously
defined as sampling number , set equal to 1)

7 I launch the sampling_SNV function ( defined previously )
passing it as parameters to the file in the form SNV .*. vcf.
gz ( contained in FILES_DIR ) followed by the SNV .*. vcf.RANDOM
-$i.gz file contained in the Indel - sampling folder

Initially, the recalibrate_HRD_C.sh script foresees the execution of the
sampling on the data that describe the distribution obtained from the compar-
ison between the tumour sample and the normal equivalent. In particular, the
sub-folders of the FILES_DIR folder provided as the first input to the script are
initially defined: specifically, the two paths FILES_DIR/ recalibrateC/Indel-
sampling and FILES_DIR/recalibrateC/SNV-sampling are generated. The first
step is then performed inside the recalibrateC folder, separately for SNV and In-
del. In particular, the sampling_indel function (defined previously) is launched
N times receiving as parameters the file in the form Indel.*.vcf.gz (contained in
FILES_DIR) followed by the file Indel.*.vcf.RANDOM-$i.gz (contained in the
Indel-sampling folder), where "i" represents the index that is updated at each
iteration proceeding from 1 to N . Similarly, the sampling_SNV function (pre-
viously defined) is launched N times receiving as parameters the file in the form
SNV.*.vcf.gz (contained in FILES_DIR) followed by the SNV.*.vcf.RANDOM-
$i.gz file (contained in the folder SNV-sampling). Consequently, in the Indel-
sampling and SNV-sampling folders, it will be possible to access the files con-
taining the sampling results on the data describing the distribution obtained
from the comparison between the tumour sample and the normal equivalent,
respectively for insertions/deletions and for single nucleotides variants.

2. Recreate an updated ’.files’ directory
1 I print " Recreate an un updated ’.files ’ directory "
2 I define Indel_file as the basename of the file in the form

Indel .* gz contained in the FILES_DIR folder
3 I define Indel_file_noExt as an indel_file of the ".gz"

extension
4 I repeat for each rnd in Indel - sampling / $indel_file_noExt .*. gz (

ie I cycle on all files generated during Step 1 contained in
the Indel - sampling folder )

5 I define SMP as the second "field" of rnd basename after
using the "." as a separator .

6 I define X as rnd without the ".gz" extension
7 I define RND as the last "field" of X after using the "." as

a separator .
8 I define and create the directory RND_DIR as $RND.files
9 I repeat for each i in CNV Indel SNV SV

10 I copy files in form $i.* contained in the FILES_DIR
folder in the RND_DIR directory created

11 #I replace the Indel
12 Overwrite rnd on Indel_file in the RND_DIR directory
13 Overwrite rnd.tbi on Indel_file .tbi in the RND_DIR directory
14 #I replace the SNV
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15 I define SNV_file as the file basename in the form SNV .*gz
contained in the FILES_DIR folder

16 I define SNV_file_noExt as SNV_file without the ".gz"
extension

17 Overwrite the file SNV.$SMP.annot.muts.vcf.$RND.gz contained
in the SNV - sampling folder on the file $SNV_file in the

RND_DIR directory
18 Overwrite the file SNV.$SMP.annot.muts.vcf.$RND.gz.tbi

contained in the SNV - sampling folder on the file $SNV_file .
tbi in the RND_DIR directory

During the second step, the recalibrate_HRD_C.sh
script takes care of recreating an updated ’.files’ directory. Specifically, for each
file in the form Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-*.gz (for
example Indel.PD24215a_vs_hg38_metanormal.annot.vcf.RANDOM-1.gz) con-
tained in the folder Indel-sampling, generated during Step 1, is performed a se-
ries of actions outlined below. Directories are initially defined and created in the
form RANDOM-*.files (RANDOM-1.files referring to the previous example); the
files Indel.*, CNV.*, SNV.*, SV.* (Indel.PD24215a_vs_hg38_metanormal.annot
.vcf.gz, ...), contained in the FILES_DIR folder, are copied into these directo-
ries. At this point, the Indel replacement occurs, which involves overwriting the
file in the form Indel.*gz contained in the respective RANDOM-*.files directory
(Indel.PD24215a_vs_hg38_metanormal.annot.vcf.gz) with the file in the form
Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-*.gz (Indel.PD24215a_vs
_hg38_metanormal.annot.vcf.RANDOM-1.gz).
The same is done for the file in the form Indel.*gz.tbi, replaced with the file
in the form Indel.*_vs_hg38_metanormal.annot.vcf.RANDOM-*.gz.tbi. The
same process is repeated analogously for the replacement of the SNVs inside the
RANDOM-*.files directory: in particular the SNV.*_vs_hg38_metanormal
.annot.muts.vcf.RANDOM-*.gz file contained in SNV-sampling (for example
SNV.PD24215a_vs_hg38_metanormal.annot.muts.vcf.RANDOM-1.gz) overwrites
the file SNV.*gz contained in the respective RANDOM-*.files (SNV.PD24215a
_vs_hg38_metanormal.annot.muts.vcf.gz considering the previous example),
as well as for the file in the form SNV.*gz.tbi.

3. Calculate HRD for all RANDOM directories
1 I print " Calculate HRD for all RANDOM directories "
2 I repeat for each i in the $RND.files folders (in the form

RANDOM -*. files ) created in step 2
3 I place myself inside the $i directory
4 I run the pipeline HRDetect_fullPipeline -hg38.AUTO.sh ,

contained in the $BIN_DIR folder ( previously defined and
containing the name of the directory where the script is
executed ) passing it as parameters the sample name of the
tumour (saved in $TUMOUR ) followed by the $i directory . The
script output will be saved in the HRDetect_fullPipeline .out

file while any errors in the HRDetect_fullPipeline .err file
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During the third step, the recalibrate_HRD_C.sh script takes care of cal-
culating HRD for all RANDOM directories. Specifically, for each directory
in the form RANDOM-*.files, contained in the recalibrateA folder, the pipeline
HRDetect_fullPipeline-hg38.AUTO.sh is run, passing it as parameters the sam-
ple name of the tumour (saved in $TUMOUR) followed by the directory. The
script output will be saved in the HRDetect_fullPipeline.out file while any er-
rors in the HRDetect_fullPipeline.err file, both contained in RANDOM-*.files
directory.

4. Recalculate HRD based on median values from data matrix
1 I print "Finally , recalculate HRD based on median values from

data matrix coming from RANDOM directories "
2 I define FIRST_RANDOM as the RANDOM -1. files directory
3 I define DATA_MATRIX as $FILES_DIR without the extension ". files

" to which I add ".data - matrix " in the queue
4 I repeat for each "out" in HRDetect_fullPipeline .out files (

contained in the folders in the form RANDOM -*. files)
5 Through the "awk" command , I look for the values corresponding

to the fields of del.mh.prop , SNV3 e SNV8 for each file in
the form RANDOM -*. files/ HRDetect_fullPipeline .out

6 Calculating the median (per column ) of all the values
corresponding to del.mh.prop , SNV3 and SNV8 , extracted from
RANDOM -*. files/ HRDetect_fullPipeline .out files , obtaining
three numbers saved in variables MH , SNV_3 , SNV_8.

7 Through the "awk" command , I look for the values
corresponding to the fields of del.mh.prop , SNV3 ,SNV8 ,SV3 ,
SV5 and hrd , as well as the name of the sample , in
$FIRST_RANDOM / HRDetect_fullPipeline .out .

8 I replace the " original " values corresponding to del.mh.prop ,
SNV3 and SNV8 with the median values calculated previously (
ie MH , SNV_3 , SNV_8)

9 I save in $DATA_MATRIX the column names corresponding to del.mh.
prop , SNV3 ,SV3 , SV5 , hrd , SNV8 , the name of the sample and
the values associated with the previous columns , taking into

account the replacements (sample , MH , SNV_3 , SV3 , SV5 , hrd ,
SNV_8)

10 Finally , I launch the pipeline _HRDetect - score_from_data - matrix .
R, contained in the $BIN_DIR folder ( previously defined and
containing the name of the directory where the script is
executed ) passing it as parameters the $DATA_MATRIX . The
script output will be saved in the HRDetect_fullPipeline .out

file while any errors in the HRDetect_fullPipeline .err.

During the fourth step, the recalibrate_HRD_C.sh script takes care of re-
calculating HRD based on median values from datamatrix. In particular, the
HRDetect pipeline requires an input data frame "data_matrix", which contains
a sample in each row and one of six necessary features in each column. The six
features are:

– proportion of deletions at microhomology (del.mh.prop),
– number of mutations of substitution signature 3 (SNV3),
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– number of mutations of rearrangement signature 3 (SV3),
– number of mutations of rearrangement signature 5 (SV5),
– HRD LOH (Loss of Heterozygosity) index (hrd),
– number of mutations of substitution signature 8 (SNV8).

Initially, for each of the HRDetect_fullPipeline.out files (contained in the fold-
ers in the form RANDOM-*.files), generated during the previous step, I look for
the values corresponding to the fields of del.mh.prop, SNV3 and SNV8. Of the
N values (in this case N is defined equal to 10) extracted for each field from the
HRDetect_fullPipeline.out files (since the RANDOM-*.files folders are N and
each contains only one HRDetect_fullPipeline.out file), the medians are calcu-
lated (per column), obtaining three numbers saved in variables MH, SNV_3,
SNV_8. Through the "awk" command, look for the values corresponding to the
fields of del.mh.prop, SNV3, SNV8, SV3, SV5 and hrd, as well as the name of
the sample, in the RANDOM-1.files/HRDetect_fullPipeline.out. At this point
the "original" values corresponding to del.mh.prop, SNV3 and SNV8 are re-
placed with the median values calculated previously (ie MH, SNV_3, SNV_8)
and are saved in hg38_metanormal__*.data-matrix the column names cor-
responding to del.mh.prop, SNV3, SV3, SV5, hrd, SNV8, the name of the
sample and the values associated with the previous columns, taking into ac-
count the replacements (sample, MH, SNV_3, SV3, SV5, hrd, SNV_8). Fi-
nally, the pipeline _HRDetect-score_from_data-matrix.R is launched, pass-
ing it as input the hg38_metanormal__*.data-matrix. The script output will
be saved in the HRDetect_fullPipeline.out file while any errors in the HRDe-
tect_fullPipeline.err, both contained in the recalibrateC folder.

C.9 Get_Indel_freq-distr_anyPerc.NORM.sh

1 if [ $# -ne 2 ]; then # checking the correctness of the number of files
supplied in input

2 echo "Usage: $0 Indel.vcf [.gz] bin_length " >&2 # printing of
information relating to the type of input requested if those
provided are not correct

3 echo " Output the normalised GSL - histogram output " >&2 # printing
of information relating to the type of output returned by the script

4 exit 78
5 fi
6 INDEL=$1 # acquisition of the VCF file relating to the Indel variations
7 L=$2 # acquisition of the length of the bin by input

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been supplied
as input. Specifically, it is verified that the VCF file relating to the Indel variations has
been provided followed by the length of the bin, saved respectively as INDEL and L.

1 eval $(echo $L | awk ’{
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2 L=$1 # acquisition of the first (and only)
argument acquired in input by the "AWK" command that corresponds to
the length of the bin

3 N=int (100/ $1)+1; # calculation of the total
number of bins based on the length of the bin

4 start =-1*L/2; # definition of the extreme left of
the first bin

5 end =100+L/2; # definition of the extreme right of
the last bin

6 print "N="N";", "start =" start ";", "end =" end ";"
#print of the values corresponding to the number of bins followed by

the start and the end
7 }’)
8 zcat -f $INDEL | \
9 grep -v ’^#’ | \ # extraction of all the lines of the VCF

file taken as input with the exception of those preceded by the
symbol "#"

10 awk ’BEGIN{OFS ="\t"}
11 {
12 n2=split($(NF),t ,":") # splitting of the string

of the last column of the VCF file into strings using the ":" as a
separator , saving these strings in the "t" array

13 print 100*t[n2]/t[n2 -1]
14 # extraction of the value in the tumour sample corresponding to the

position of "FC" in the FORMAT , saved in t[n2]. Extraction of the
value in the tumour sample corresponding to the position of "FD" in
the FORMAT , saved in t[n2 -1]. Calculation and print of the variant
allele frequency .

15 }’ | \
16 gsl - histogram -u -- $start $end $N
17 #use of the gsl - histogram command to save data in the required format

Through the use of the "awk" command, the length of the bin acquired in input is used
to calculate the number of total bins contained in an interval from 0 to 100, which is
saved in the variable N . The length of the bin is also used for the definition of the start
and end, corresponding respectively to the left end of the first bin and the right end of
the last bin outlined. Specifically, these do not correspond directly to the values 0 and
100 as it is advisable for graphic reasons to translate the two positions so that, once the
data has been used to create a histogram, the latter is centred and not superimposed
on the axis lines. At this point, the values corresponding to the number of bins, the
start and the end are printed. Remember in particular that, as previously introduced,
the VCF format includes a header, whose lines are identified by the "##" symbols, the 9
mandatory columns identified by the "#" symbol and a body which lists all the variants.
In this regard, I proceed by extraction of all the lines of the VCF file taken as input with
the exception of those preceded by the symbol "#" (therefore only the lines belonging to
the body of the file); for each of these lines splitting of the string of the last column of the
VCF file into smaller strings using the ":" as a separator, saving these strings in the "t"
array. In fact, remember that to extract the frequencies of Indel variations, starting from
a VCF format file relating to the Indel variations, it is necessary to consider two specific
fields of the FORMAT column, described in the header of the file as follows:
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## FORMAT = <ID = FD, Number = 1, Type = Integer,
Description = "Fragment depth">
## FORMAT = <ID = FC, Number = 1, Type = Integer,
Description = "Fragment calls">

I therefore proceed with the extraction of the value in the tumour sample corresponding to
the position of "FC" in the FORMAT, saved in t[n2] and with the extraction of the value
in the tumour sample corresponding to the position of "FD" in the FORMAT, saved in
t[n2 − 1]. Subsequently, the frequencies of Indel variations are obtained through the ratio
between the two identified values taken in the order described. Therefore, the result of
multiplying the quotient obtained by 100 is printed, in order to obtain a percentage value
of the variant allele frequency. Finally, using the gsl-histogram command it was possible
to organise the obtained data in the required output format. In fact, the command takes
three arguments, gsl-histogram [−u] xmin xmax [n], specifying the upper and lower
bounds of the histogram and the number of bins. It then reads numbers from ’stdin’, one
line at a time, and adds them to the histogram. If −u is given, histogram is normalised
so that the sum of all bins is unity.

C.10 Get_SNV_freq-distr_anyPerc.NORM.sh

1 if [ $# -ne 2 ]; then # checking the correctness of the number of files
supplied in input

2 echo "Usage: $0 SNV.vcf [.gz] bin_length " >&2 # printing of
information relating to the type of input requested if those
provided are not correct

3 echo " Output the normalised GSL - histogram output " >&2 # printing
of information relating to the type of output returned by the script

4 exit 78
5 fi
6 SNV=$1 # acquisition of the VCF file relating to the Indel variations
7 L=$2 # acquisition of the length of the bin by input

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been supplied
as input. Specifically, it is verified that the VCF file relating to the SNV variations has
been provided followed by the length of the bin, saved respectively as SNV and L. The al-
gorithm proceeds similarly to what was observed in the case of the Indel variations, retrac-
ing step by step all the actions described for the Get_Indel_freq-distr_anyPerc.NORM.sh
script.

1 eval $(echo $L | awk ’{
2 L=$1 # acquisition of the first (and only)

argument acquired in input by the "AWK" command that corresponds to
the length of the bin

3 N=int (100/ $1)+1; # calculation of the total
number of bins based on the length of the bin

4 start =-1*L/2; # definition of the extreme left of
the first bin
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5 end =100+L/2; # definition of the extreme right of
the last bin

6 print "N="N";", "start =" start ";", "end =" end ";"
#print of the values corresponding to the number of bins followed by

the start and the end
7 }’)
8 zcat -f $SNV | \
9 grep -v ’^#’ | \ # extraction of all the lines of the VCF

file taken as input with the exception of those preceded by the
symbol "#"

10 awk ’BEGIN{OFS ="\t"}
11 {
12 n2=split($(NF),t ,":") # splitting of the string

of the last column of the VCF file into strings using the ":" as a
separator , saving these strings in the "t" array

13 print 100*t[n2]
14 # extraction of the value in the tumour sample corresponding to the

position of "PM" in the FORMAT , saved in t[n2]. Calculation and
print of the percentage values of frequencies of SNV variations ,
obtained by multiplying the identified value by one hundred .

15 }’ | \
16 gsl - histogram -u -- $start $end $N
17 #use of the gsl - histogram command to save data in the required format

Through the use of the "awk" command, the length of the bin acquired in input is used to
calculate the number of total bins contained in an interval from 0 to 100, which is saved
in the variable N . The length of the bin is also used for the definition of the start and
end, corresponding respectively to the left end of the first bin and the right end of the last
bin outlined. Specifically, these do not correspond directly to the values 0 and 100 as it is
advisable for graphic reasons to translate the two positions so that, once the data has been
used to create a histogram, the latter is centred and not superimposed on the axis lines.
At this point, the values corresponding to the number of bins, the start and the end are
printed. Remember in particular that, as previously introduced, the VCF format includes
a header, whose lines are identified by the "##" symbols, the 9 mandatory columns
identified by the "#" symbol and a body which lists all the variants. In this regard, I
proceed by extraction of all the lines of the VCF file taken as input with the exception of
those preceded by the symbol "#" (therefore only the lines belonging to the body of the
file); for each of these lines splitting of the string of the last column of the VCF file into
smaller strings using the ":" as a separator, saving these strings in the "t" array. Differently
from what was observed for the Get_Indel_freq-distr_anyPerc.NORM.sh, in this
case to extract the frequencies of SNV variations, starting from a VCF format file relating
to the SNV variations, it is necessary to consider only one specific field of the FORMAT
column, described in the header of the file as follows:

##FORMAT= <ID= PM, Number= 1, Type= Float,
Description= "Proportion of mutated allele">

I therefore proceed with the extraction of the value in the tumour sample corresponding
to the position of "PM" in the FORMAT, saved in t[n2]. Subsequently, the percent-
age values of frequencies of SNV variations are obtained by multiplying the identified
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value by one hundred. Finally, using the gsl-histogram command it was possible to or-
ganise the data obtained in the required output format, as seen for Get_Indel_freq-
distr_anyPerc.NORM.sh script.

C.11 Get_Indel_freq-distr_anyPerc.sh
The algorithm is identical to that described for Get_Indel_freq-distr_anyPerc.NORM.sh
script. The only difference lies in the use of the gsl-histogram command, which was
used in the previous cases with the −u feature, which implies the creation of a nor-
malised histogram so that the sum of all bins is unity. In the case of Get_Indel_freq-
distr_anyPerc.sh the command is executed without this feature, consequently the
obtained histogram is not normalised.

C.12 Get_SNV_freq-distr_anyPerc.sh
The algorithm is identical to that described for Get_SNV_freq-distr_anyPerc.NORM.sh
script. The only difference lies in the use of the gsl-histogram command, which was
used in the previous cases with the −u feature, which implies the creation of a nor-
malised histogram so that the sum of all bins is unity. In the case of Get_SNV_freq-
distr_anyPerc.sh the command is executed without this feature, consequently the
obtained histogram is not normalised.

C.13 _get_mirror_distribution.py

1 if len(sys.argv) != 1+1: # checking the correctness of the number of
files supplied in input

2 sys.exit("""
3 Usage: %s distribution # printing of information relating to the

type of input requested if those provided are not correct
4 """ % sys.argv [0])
5 distribution = [list(map(float ,i.strip ().split ())) for i in open(sys.

argv [1])]
6 #For each line of the distribution file acquired as input , the line is

first split using " " as separator ; through the python function "map
()" the "float ()" function is applied (which , starting from a number

or a string containing decimal points , returns a floating point
number ) to the split line. The decimal numbers obtained are
subsequently saved in the list called " distribution ".

7 x_y = [((i[0]+i[1]) /2., i[2], i[0], i[1]) for i in distribution ]
8 #For each index in the distribution list the mean value of the bin , the

frequency associated with the bin , the lower end of the bin and the
upper end of the bin are indicated in order

9 for i,j in zip(x_y , sorted (x_y , reverse =True)):
10 # Through the zip function all the elements of x_y and of the ordered x_y

list ( sorted in descending order) are associated obtaining a tuple
with the elements of the objects according to their position order.
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11 if i[0]<j[0]: #If the first element of the i-th row of the list
x_y is less than the first element of the j-th row of the list x_y

in decreasing order
12 print(i[2], i[3], j[1])
13 #it prints the second and third element of the i-th row of the list x_y

followed by the first element of the j-th row of the list x_y
ordered in decreasing order

14 else: # otherwise
15 print(i[2], i[3], i[1])
16 #it prints the second , the third and the first element of the i-th row

of the list x_y

Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been sup-
plied as input. Specifically, it is verified that the distribution file relating to the Indel
variations or to the SNV variations has been provided. In particular, the input requested
by this python script corresponds to the output in the format obtained as a result of the
Get_SNV_freq-distr_anyPerc.sh, Get_SNV_freq-distr_anyPerc.NORM.sh,
Get_Indel_freq-distr_anyPerc.sh, Get_Indel_freq-distr_anyPerc.NORM.sh,
scripts described above. For each line of the distribution file acquired as input, the line
is initially split using " " as separator, through the split() function, after it has been de-
prived of spaces at the beginning and at the end using the strip() function. Through the
python function map(), the float() function is applied to the split line (which, starting
from a number or a string containing decimal points, returns a floating point number).
The three decimal numbers obtained for each line of the distribution file are subsequently
saved in the list called "distribution". At this point, for each index in the distribution
list the mean value of the bin (i[0] + i[1])/2, the frequency associated with the bin i[2],
the lower end of the bin i[0] and the upper end of the bin i[1] are saved in order in the
list x_y. Through the zip function all the elements of x_y and of the ordered x_y list
(sorted in descending order) are associated, obtaining a tuple with the elements of the
objects according to their position order. For each i, index of the list x_y, and for each
j, index of the ordered list x_y, I ask if the first element of the i-th row of the list x_y
is less than the first element of the j-th row of the list x_y in decreasing order: if the
answer is yes, the second and third element of the i-th row of the list x_y followed by
the first element of the j-th row of the ordered list x_y ( corresponding respectively to
the right end of the bin and to the frequency relative to the bin, extracted from the first
list, and to the left end of the bin, extracted from the second list); otherwise, the second,
the third and the first element of the i-th row of the list x_y are printed (corresponding
respectively to the right end of the bin, the frequency relative to the bin and the left end
of the bin, extracted from the first list ).

C.14 _subtract_distribution.py

1 if len(sys.argv) != 1+2: # checking the correctness of the number of
files supplied in input

2 sys.exit("""
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3 Usage: %s distribution1 distribution2 # printing of information
relating to the type of input requested if those provided are not
correct

4 """ % sys.argv [0])
5 d1 = [list(map(float ,i.strip ().split ())) for i in open(sys.argv [1])]
6 d2 = [list(map(float ,i.strip ().split ())) for i in open(sys.argv [2])]
7 #For each line of the distribution1 file acquired as input , the line is

first split using " " as separator ; through the python function map
(), the float () function is applied to the split line (which ,
starting from a number or a string containing decimal points ,
returns a floating point number ). The decimal numbers obtained are
subsequently saved in the list called "d1". The same is done for the

distribution2 file.
8 x_y1 = [((i[0]+i[1]) /2., i[2], i[0], i[1]) for i in d1]
9 x_y2 = [((i[0]+i[1]) /2., i[2], i[0], i[1]) for i in d2]

10 #For each index in the d1 list the mean value of the bin , the frequency
associated with the bin , the lower end of the bin and the upper end
of the bin are indicated in order. The same is done for the list d2

11 if len(x_y1) != len(x_y2):
12 sys.exit("ERROR: distributions have different sizes!")
13 # performing a check on the length of the two lists to verify that the

two distributions compared have the same size
14 for n,i in enumerate (x_y1):
15 #The enumerate () function is used to iterate through all the elements of

a list , having both the indices (n) and the values of the list (i)
as variables to manage .

16 x1 = i[0] # save in x1 the first value contained in the i-th
value of the x_y1 list ( corresponding to the average value of the
bin of the i-th row)

17 # in x_y2[n][0] there is the first value contained in the n-th value of
the x_y2 list ( corresponding to the average value of the bin of the
n-th row)

18 if x_y2[n][0] != x1:
19 # performing a check on the average value of the bin to verify that the

bin exits in distribution2
20 sys.exit("ERROR: bin not found in distribution2 : %s-%s"

% (i[2], i[3]))
21 diff = i[1]- x_y2[n][1]
22 # calculating the difference between the second value contained in the i-

th value of the x_y1 list ( corresponding to the value of the
frequency associated with the bin of the i-th row) and the second
value contained in the n-th value of the x_y2 list ( corresponding to

the value of the frequency associated with the bin of the n-th row)
23 if diff > 0: #check if the difference is positive
24 print(i[2], i[3], diff)
25 #print the third and fourth value contained in the i-th value of the

x_y1 list ( corresponding to the extremes of the bin of the i-th row)
followed by the calculated difference ).

26 else:
27 print(i[2], i[3], 0)
28 #print the third and fourth value contained in the i-th value of the

x_y1 list ( corresponding to the extremes of the bin of the i-th row)
followed by zero.
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Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been sup-
plied as input. Specifically, it is verified that the distribution file relating to the Indel
variations (or to the SNV variations), obtained as output of the script get_Indel_freq-
distr_anyPerc.sh (or get_SNV_freq-distr_anyPerc.sh), has been provided, followed by
the output obtained by _get_mirror_distribution.py by using the distribution file relating
to the Indel variations (or to the SNV variations) as input. Once the required distribution
files have been acquired as input, for each line of the distribution1, the line is initially split
using " " as separator, through the split() function, after it has been deprived of spaces
at the beginning and at the end using the strip() function. Through the python function
map(), the float() function is applied to the split line (which, starting from a number or
a string containing decimal points, returns a floating point number). The three decimal
numbers obtained for each line of the distribution file are subsequently saved in the list
called d1. The same procedure is carried out for each line of the distribution2 file and the
results are saved in the d2 list. At this point, for each index in the list d1 the mean value
of the bin (i[0] + i[1])/2, the frequency associated with the bin i[2], the lower end of the
bin i[0] and the upper end of the bin i[1] are saved in order in the list x_y1. The same
procedure is performed for each index in the d2 list and the results are saved in the x_y2
list. The lengths of the two lists just described are then calculated and a check is made
on them to verify that the two distributions compared have the same size; if I do not have
the same dimension, an error is returned as it is not possible to calculate the difference
between the distributions provided in input. The enumerate () function is used to iterate
through all the elements of the list x_y1, having both the indices (n) and the values of
the list (i) as variables to manage. In particular, it is saved in x1 the first value contained
in the i-th value of the x_y1 list (corresponding to the average value of the bin of the
i-th row) while in x_y2[n][0] there is the first value contained in the n-th value of the
x_y2 list (corresponding to the average value of the bin of the n-th row). At this point
a check is made to verify that the bin identified in distribution1 exists in distribution2,
if this is not verified an error is returned as it is not possible to calculate the difference
between the distributions provided in input for that bin. Finally, the difference between
the second value contained in the i-th value of the x_y1 list (corresponding to the value of
the frequency associated with the bin of the i-th row) and the second value contained in
the n-th value is calculated of the x_y2 list (corresponding to the value of the frequency
associated with the bin of the n-th row); the third and fourth value contained in the i-th
value of the x_y1 list (corresponding to the extremes of the bin of the i-th row) are then
printed, followed by the calculated difference if the difference is positive, otherwise by
zero.

C.15 Get_freq-distr_anyPerc_from_distribution.NORM.sh
The algorithm proceeds similarly to what was observed in the case of Get_Indel_freq-
distr_anyPerc.NORM.sh, retracing step by step all the actions described for the script.
Initially, it is verified that the script has been launched correctly, by introducing a
check which verifies that what is required for the functioning of the script itself has
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been supplied as input. Specifically, it is verified that the distribution file relating to
the Indel variations or to the SNV variations has been provided followed by the length
of the bin, saved in $DISTR and $L respectively. In particular, the first input re-
quested by this script corresponds to the output in the format obtained as a result of
the _get_mirror_distribution.py and _subtract_distribution.py scripts described above.

1 if [ $# -ne 2 ]; then # checking the correctness of the number of files
supplied in input

2 echo "Usage: $0 distribution bin_length " >&2 # printing of
information relating to the type of input requested if those
provided are not correct

3 echo " Output the normalised GSL - histogram output " >&2 # printing
of information relating to the type of output returned by the script

4 exit 78
5 fi
6 DISTR=$1 # acquisition of the VCF file relating to the Indel variations
7 L=$2 # acquisition of the length of the bin by input
8

9 eval $(echo $L | awk ’{
10 L=$1 # acquisition of the first (and only)

argument acquired in input by the "AWK" command that corresponds to
the length of the bin

11 N=int (100/ $1)+1; # calculation of the total
number of bins based on the length of the bin

12 start =-1*L/2; # definition of the extreme left of
the first bin

13 end =100+L/2; # definition of the extreme right of
the last bin

14 print "N="N";", "start =" start ";", "end =" end ";"
#print of the values corresponding to the number of bins followed by

the start and the end
15 }’)
16 cat $DISTR | \
17 awk ’BEGIN{OFS ="\t"}
18 {
19 x = ($1+$2)/2
20 #the average value of the bin (( extreme right + extreme left)/2) is

saved in x
21 y = $3 #the value of the variation frequency

relative to bin is saved in y
22 for(i=1;i<=y;i++) print x #for each integer i

ranging from 1 to y, x is printed
23 }’ | \
24 gsl - histogram -u -- $start $end $N
25 #use of the gsl - histogram command to save data in the required format

As noted above, through the use of the "awk" command, the length of the bin acquired in
input is used to calculate the number of total bins contained in an interval from 0 to 100,
which is saved in the variable N . The length of the bin is also used for the definition of the
start and end, corresponding respectively to the left end of the first bin and the right end
of the last bin outlined. At this point, the values corresponding to the number of bins, the
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start and the end are printed. Differently from what has been seen for the Get_Indel_freq-
distr_anyPerc.NORM.sh script, using the "awk" command on the $DISTR file again, for
each line of the file the average value of the bin (extreme_right + extreme_left)/2 is
saved in x and the value of the variation frequency relative to bin is saved in y. At this
point, x is printed y times and finally, using the gsl-histogram command it is possible to
organise the obtained data in the required output format (normalised histogram).

C.16 Subtract_germline_distribution.SNV.sh
The script Subtract_germline_distribution.SNV.sh, supplied in input the VCF file
relating to the metanormal (in the form metaNormal.SNV.vcf [.gz]), a name chosen as the
basename of the subsequent outputs of the script and the length of the bin, executes in
succession the scripts described above in order to graphically represent the distribution
relative to the metanormal, the "subtraction" distribution and the "mirror" distribution,
both normalised and non-normalized.
The main body of the algorithm follows in the form of pseudocode.

1 I verify that the script has been launched correctly , by introducing a
check which verifies that what is required for the functioning of
the script itself has been supplied as input. Specifically , the
script requests as input the VCF file relating to the metanormal (in

the form metaNormal .SNV.vcf [.gz]), a name chosen as the basename
of the subsequent outputs of the script and the length of the bin ,
respectively saved in META , OUT and L_BIN.

2 The name of the directory where the script is executed , saved in BIN_DIR
3 I run the script $BIN_DIR / get_SNV_freq - distr_anyPerc .NORM.sh providing

$META $L_BIN as input and saving the output in $OUT.meta.norm
4 I run the script $BIN_DIR / get_SNV_freq - distr_anyPerc .sh providing $META

$L_BIN as input and saving the output in $OUT.meta
5 I run the script $BIN_DIR / _get_mirror_distribution .py supplying $OUT.

meta as input and saving the output to $OUT. mirror
6 I run the script $BIN_DIR /get_freq - distr_anyPerc_from_distribution .NORM.

sh supplying $OUT. mirror and $L_BIN as input and saving the output
in $OUT. mirror .norm

7 I run the script $BIN_DIR / _subtract_distribution .py providing $OUT.meta
and $OUT. mirror as input and saving the output in $OUT. substracted

8 I run the script $BIN_DIR /get_freq - distr_anyPerc_from_distribution .NORM.
sh providing $OUT. substracted as input and saving the output in $OUT
. substracted .norm

9 Rappresento in SNV_distribution .norm.SNV.freq - distr_comparison_after -
subtract .pdf i grafici normalizzati di $OUT.meta.norm $OUT.
subtracted .norm $OUT. mirror .norm

10 Rappresento in SNV_distribution .raw.SNV.freq - distr_comparison_after -
subtract .pdf i grafici di $OUT.meta $OUT. subtracted $OUT. mirror

C.17 Subtract_germline_distribution.Indel.sh
The script Subtract_germline_distribution.Indel.sh, supplied in input the VCF
file relating to the metanormal (in the form metaNormal.Indel.vcf [.gz]), a name chosen as
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the basename of the subsequent outputs of the script and the length of the bin, executes
in succession the scripts described above in order to graphically represent the distribution
relative to the metanormal, the "subtraction" distribution and the "mirror" distribution,
both normalised and non-normalized. The algorithm is identical to that described for
Subtract_germline_distribution.SNV.sh script therefore it is not reported.

C.18 Recalibrate_HRD_D.sh

The algorithm associated with Strategy D is created by introducing some specific changes
to the one seen for Strategy C. In particular, it is possible to notice how the entire
flowchart coincides almost perfectly with the one described above for Strategy C, both as
regards the Get_SNV_from_freq-distr.py script and Get_indel_from_freq-distr.py. In
light of the fact that some changes have been made, in order to adapt the workflow to
the new strategy introduced, the new script created in bash will take the name of Re-
calibrate_HRD_D.sh (differentiating from that relating to Strategy C, called Recali-
brate_HRD_C.sh and from that relating to Strategy A, called Recalibrate_HRD_A.sh).
Specifically, the only disparities that emerge between the two scripts made in bash are
identified by:

• In the acquisition of input files, associated with the initial section of the algorithm,
it is possible to observe for both scripts that the first step is to get the name of
the directory where the script is executed, saved in BIN_DIR. From this directory
it is possible to go back to the Indel_median-freq_from_N-T and SNV_median-
freq_from_N-T files (Table 5.2), contained in the directory itself, corresponding to
the reference distribution files in the format as the GSL-histogram output. These
respectively represent the median distribution of the SNV and Indel variations re-
sulting from the comparison between the tumour sample and the associated normal,
corresponding to the red curve in the graphs previously illustrated. Exporting the
described files is followed by verification that the script has been launched correctly,
by introducing a check which verifies that what is required for the functioning of the
script itself has been supplied as input. Specifically, for the Strategy C script, it is
verified that the directory.files has been provided followed by the name of the tumour
sample considered, saved respectively as FILES_DIR and TUMOUR. On the other
hand, for the script related to Strategy D, it is verified that the directory.files has
been provided followed not only by the name of the tumour sample considered but
also by $L_BIN, corresponding to the chosen length of the bin.

1 BIN_DIR =$( readlink -e $( dirname $0)) #get the name of the directory
where the script is executed

2 INDEL_NT_DISTRIBUTION = $BIN_DIR / Indel_median - freq_from_N -T# extraction
of the reference distribution file in the format as the GSL -

histogram output ( median distribution of the Indel variations
resulting from the comparison between the tumour sample and the
associated normal )
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3 SNV_NT_DISTRIBUTION = $BIN_DIR /SNV_median - freq_from_N -T # extraction of
the reference distribution file in the format as the GSL -

histogram output ( median distribution of the SNV variations
resulting from the comparison between the tumour sample and the
associated normal )

4 export INDEL_NT_DISTRIBUTION SNV_NT_DISTRIBUTION BIN_DIR
5 if [ $# -ne 3 ]; then # checking the correctness of the number of

files supplied in input
6 echo "Usage: $0 directory .files tumour_sample L_bin" >&2 #

printing of information relating to the type of input requested
if those provided are not correct

7 echo " Recalibrate SNV and Indel files and recalculate HRD."
>&2

8 exit 78
9 fi

10 FILES_DIR =$1 # acquisition of the input directory .files ( result of
the Sanger pipeline and the application of filters )

11 TUMOUR =$2 # acquisition of the name of the tumour sample provided in
input

12 L_BIN=$3 # acquisition of the chosen length of the bin
13 N=50 # definition of the sampling number
14

• Always corresponding to the initial section of the script, it is possible to observe
for the script of Strategy C the definition of N = 10 which corresponds to the def-
inition of the number of sampling performed. In fact, the Recalibrate_HRD_C.sh
script foresees the execution of the sampling on the data that describe the dis-
tribution obtained from the comparison between the tumour sample and the nor-
mal equivalent. In particular, the sub-folders of the FILES_DIR, folder provided
as the first input to the script are initially defined: specifically, the two paths
FILES_DIR/recalibrateC/Indel-sampling and FILES_DIR/recalibrateC/SNV-
sampling are generated. The first step is then performed inside the recalibrateC
folder, separately for SNV and Indel. In particular, the sampling_indel function
(defined previously) is launched N times receiving as parameters the file in the form
Indel.*.vcf.gz (contained in FILES_DIR) followed by the file Indel.*.vcf.RANDOM-
$i.gz (contained in the Indel-sampling folder), where "i" represents the index that
is updated at each iteration proceeding from 1 to N . Similarly, the sampling_SNV
function (previously defined) is launched N times receiving as parameters the file in
the form SNV.*.vcf.gz (contained in FILES_DIR) followed by the SNV.*.vcf.RANDOM-
$i.gz file (contained in the folder SNV-sampling). On the other hand, Strategy D dif-
fers from the previous one since it sets the value of N equal to 50 (five times the value
chosen for Strategy C). The sub-folders of the FILES_DIR folder, provided as the
first input to the script, are initially defined: specifically, the two paths FILES_DIR /
recalibrateD. $L_BIN/Indel-sampling and FILES_DIR/recalibrateD. $L_BIN/SNV-
sampling are generated to differentiate it from recalibrateC, referring to the first
strategy). I go to the recalibrateD. $L_BIN folder and the sampling_indel function
is launched fifty times receiving as parameters the file in the form Indel.*.vcf.gz (con-
tained in FILES_DIR) followed by the file Indel.*.vcf.RANDOM-1.gz (contained in
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the Indel-sampling folder). Similarly, for the sampling_SNV function.

• As regards the central body of the script created for Strategy D, this differs from
the one created for Strategy C as it includes a further step. Specifically, in addition
to the steps Sampling on N-T distribution, Recreate an updated ’.files’ directory,
Calculate HRD for all RANDOM directories, Recalculate HRD based on median
values from datamatrix, previously described, the "step zero" is introduced.

0. Get SNV_NT_DISTRIBUTION & INDEL_NT_DISTRIBUTION

1 I define "SNV" as the file in the form SNV .*. vcf.gz contained in
the folder $FILES_DIR

2 I run the script $BIN_DIR / subtract_germline_distribution .SNV.sh
passing it as parameters the file $SNV followed by "
SNV_distribution " (name chosen as the basename of the
subsequent outputs of the script ) and the value $L_BIN .

3 I export SNV_distribution . subtracted saving it in
SNV_NT_DISTRIBUTION

4 I define "INDEL" as files in the form Indel .*. vcf.gz contained
in the $FILES_DIR folder

5 I run the script $BIN_DIR / subtract_germline_distribution .Indel
.sh passing it as parameters the file $INDEL followed by "
Indel_distribution " (name chosen as the basename of the
subsequent outputs of the script ) and by the value $L_BIN .

6 I export Indel_distribution . subtracted saving it in
INDEL_NT_DISTRIBUTION

In particular, the introduction of the new step involves the execution of the two
scripts created in bash $BIN_DIR/Subtract_germline_distribution.SNV.sh and
$BIN_DIR/Subtract_germline_distribution.Indel.sh. The latter, receiving in
input respectively
$FILES_DIR/SNV.*.vcf.gz, "SNV_distribution" (name chosen as basename
relative to the script outputs), $L_BIN and $FILES_DIR/Indel.*.vcf.gz, "In-
del_distribution" , $L_BIN, allows the exportation of the distribution (respec-
tively named SNV_NT_DISTRIBUTION and INDEL_NT_DISTRIBUTION)
resulting from the subtraction of the "mirror” distribution from the metaNormal
one.

C.19 Ensemble_strategy.sh
1 if [ $# -lt 1 ]; then # checking the correctness of the number of files

supplied in input
2 echo "Usage: $0 directory .files [ directory . files_2 ....]" >&2 #

printing of information relating to the type of input requested if
those provided are not correct

3 echo " Collect score for Ensemble Strategy " >&2 # printing of
information relating to the type of output returned by the script

4 exit 6
5 fi
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Initially, it is verified that the script has been launched correctly, by introducing a check
which verifies that what is required for the functioning of the script itself has been supplied
as input. Specifically, it is verified that at least one directory, in the form directory.files,
containing the information relating to the application of the different strategies to the
patient considered, has been provided.

1 for d in $* #I iterate over each directory .files introduced in input
2 do
3 mkdir $d/ recalibrate_Ensemble #I create the directory in which

the result relating to the execution of the Ensemble Strategy will
be saved

4 RECC=$d/ recalibrateC #I save in the variable RECC the path in the
form directory .files/ recalibrateC , relative to the folder in which

the HR score obtained through the execution of Strategy C is saved
5 if [ -e "$RECC" ]; then
6 ensemble =$(awk ’{if(NF >0) score = $NF}END{ ensemble =0; if(

score <0.30) ensemble =1; if(score >0.70) ensemble =2; print ensemble }’
$RECC/ HRDetect_fullPipeline .out)

7 #I extract the HR score from the HRDetect_fullPipeline .out file
contained in recalibrateC , I assign the value 2, 1 or 0 to ensemble
depending on whether the score is respectively >0.70, <0.30 or
between 0.30 and 0.70 ( extremes included ), according to the
criterion explained previously .

8 fi
9 if [ $ensemble -ne 2 ]; then

10 #I check the value contained in the ensemble variable , if the value is
different from 2 this implies that the Strategy C has predicted a
doubtful value ( between 0.30 and 0.70) or a value less than 0.30 (
HRP), therefore it is possible to apply the Ensemble Strategy to try

to get a better result
11 RECB=$d/ recalibrateB #I save in the variable RECB the

path in the form directory .files/ recalibrateB , relative to the
folder in which the HR score obtained through the execution of
Strategy B is saved

12 if [ -e "$RECB" ]; then
13 RB=$(awk ’{if(NF >0) score = $NF}END{ result =0; if

(score <0.30) result =1; if(score >0.70) result =-1; print result }’
$RECB/ out_HRD /INDEL -SLIDE -5 -35. SNV -SLIDE -5 -35. HRDetect_fullPipeline .
out)

14 #I extract the HR score from the HRDetect_fullPipeline .out file
contained in Strategy B, I assign the value -1, 1 or 0 to RB
depending on whether the score is respectively >0.70, <0.30 or
between 0.30 and 0.70 ( extremes included ), according to the
criterion explained previously .

15 fi
16 RECA=$d/ recalibrateA #I save in the variable RECA the

path in the form directory .files/ recalibrateA , relative to the
folder in which the HR score obtained through the execution of
Strategy A is saved

17 if [ -e "$RECA" ]; then
18 RA=$(awk ’{if(NF >0) score = $NF}END{ result =0; if

(score <0.30) result =1; if(score >0.70) result =-1; print result }’
$RECA/ HRDetect_fullPipeline .out)
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19 #I extract the HR score from the HRDetect_fullPipeline .out file
contained in recalibrateA , I assign the value -1, 1 or 0 to RA
depending on whether the score is respectively >0.70, <0.30 or
between 0.30 and 0.70 ( extremes included ), according to the
criterion explained previously

20 fi
21 RECD=$d/ recalibrateD #I save in the variable RECD the

path in the form directory .files/ recalibrateD , relative to the
folder in which the HR score obtained through the execution of
Strategy D is saved

22 if [ -e "$RECD" ]; then
23 RD=$(awk ’{if(NF >0) score = $NF}END{ result =0; if

(score <0.30) result =1; if(score >0.70) result =-1; print result }’
$RECD/ HRDetect_fullPipeline .out)

24 #I extract the HR score from the HRDetect_fullPipeline .out file
contained in recalibrateD , I assign the value -1, 1 or 0 to RD
depending on whether the score is respectively >0.70, <0.30 or
between 0.30 and 0.70 ( extremes included ), according to the
criterion explained previously .

25 fi
26 echo $RB $RA $RD | awk ’BEGIN {FS = " "};{ sum=$1+$2+$3+

$4}END{if(sum >0) print "HRP ";if(sum <0) print "HRD ";if(sum ==0) print
"NA"}’ > $d/ recalibrate_Ensemble / HRDetect_fullPipeline .out

27 #I sum the values obtained previously by assigning the "HRD" score if
the sum is negative , the "HRP" score if the sum is positive and "NA"

(Not Available ) otherwise , saving the result in the
HRDetect_fullPipeline .out file in the $d/ recalibrate_Ensemble folder
.

28 else #the ensemble value is equal to 2 and the score is >0.70 (
HRD)

29 echo "HRD"> $d/ recalibrate_Ensemble /
HRDetect_fullPipeline .out

30 fi
31 done

By iterating on each directory in the form directory.files (relative to a specific sample ex-
amined) provided as input, it was possible to obtain for each of them the HR score obtained
by using the Ensemble Strategy. Specifically, through the use of the "awk" command, it
was possible to extract from the files in the form HRDetect_fullPipeline.out, contained
in the recalibrateB, recalibrateC, recalibrateA, recalibrateD folders, respectively, the HR
scores obtained as a result of the execution of Strategies B, C, A, D on the samples of
the patients considered. As anticipated, since Strategy C is associated with the lowest
percentage error, for the execution of the new strategy introduced, it was decided to use
the results obtained starting from Strategy C as a reference, in order to improve the
predictions made by it. In this regard, the "ensemble" variable is introduced, which is
associated with the HR score obtained by performing the Strategy C; in particular, the
value 2, 1 or 0 to ensemble is assigned depending on whether the score is respectively
>0.70, <0.30 or between 0.30 and 0.70 (extremes included). It follows that the Ensemble
Strategy will be applied only if the value contained in the ensemble variable is different
from 2, which implies that the score predicted by the Strategy C is doubtful, between
0.30 and 0.70, or that the score predicted is less than 0.30 (HRP). In the other case,
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ensemble = 2, the script will simply provide the result obtained through Strategy C, used
as a reference, printing that the sample is HRD. Assuming that ensemble takes the value
0 or 1 and therefore the Ensemble Strategy comes into play, the model assigns the value
"1" to the HR proficiency (therefore to score values lower than 0.30), the value "-1 "to the
HR deficiency (therefore to score values higher than 0.70) while assigning a null value to
all scores between 0.30 and 0.70 (extremes included), as outlined above. In this way each
strategy will be associated with a numerical value, relative to the prediction made by the
strategy itself, which in this case have been named RB, RA, RD (referring respectively
to strategies B, A and D). At this point, the values obtained are added and the decision
phase takes place: if the result obtained for the single patient sample (ie for the current
file directory) is positive, HR proficiency is assigned as prediction, if it is negative, HR
deficiency is assigned, otherwise (the result is null) the situation is recognized as doubtful
and assigns the value "NA" (Not Available).
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