Politecnico di Torino (logo)

Energetic efficiency in the brazilian built environment : retrofitting strategies for a hotel in Goiania.

Eduardo Cademartori

Energetic efficiency in the brazilian built environment : retrofitting strategies for a hotel in Goiania.

Rel. Guglielmina Mutani, Jan Hensen, Paolo Oliaro, Daniel Costola, Claudia Amorim. Politecnico di Torino, Corso di laurea specialistica in Architettura, 2011

This is the latest version of this item.


Currently the world is experiencing an urbanization at an unprecedented rate. Urban centers, which are definitely thè predominant morphologic unit of thè contemporary society, are essentially collective. As citizens we have no choice but to learn how to live collectively, solving and avoiding thè main problems of our cities, therefore leading them into a sustainable behavior.

Living together in great cities couid be thè origin for many environmental problems, but this agglomeration is also a fundamental driver of innovation in our time. Due to technology and scientific development, settled indeed in thè urban environment, anything we find inconvenient is supposed to not endure. Eliminating unpieasant conditions seems to be one of thè main motivations to innovation. In order to find remarkable ideas for thè future, it is necessary to identify thè significance of these inconvenient things. Probably thè foreseeable future of our cities is to support us proactively in our day lives.

Energy remains a fundamental requirement of today's society. It is thè basis of almost everything we do today, and there is no doubt thè way its production and distribution is settled nowadays must be changed. Energy's broad concept represents thè feeding of ali production organisms in thè world, from food moving individuai to oil, gas or naturai coal, which move cities and industriai fields. Day after day this word and its strong meaning have became more elaborated: politic and environmental dimensions have been increasingly taken into account in energy's consumption and production, due to thè global changes' perception and analysis in thè last decades

Relators: Guglielmina Mutani, Jan Hensen, Paolo Oliaro, Daniel Costola, Claudia Amorim
Publication type: Printed
Subjects: A Architettura > AO Design
Corso di laurea: Corso di laurea specialistica in Architettura
Classe di laurea: UNSPECIFIED
Aziende collaboratrici: Politecnico di Milano - Dipartimento di Scienza e Tecnologie dell' Ambiente costruito (BEST), Unit Building Physics & Systems - Eindhoven University of Technology - Nederland, Unit Building Physics & Systems - Eindhoven University of Technology - Nederland, Departamento de Tecnologia em Arquitetura - Universidade de Brasilia - República Federativa do Brasil
URI: http://webthesis.biblio.polito.it/id/eprint/2177

How are people currently dealing with energy in the built environment?

I Opening remarks: broad research question

I.1. Energy in cities

I.2. Energy in buildings

Why and how is energetic efficiency in Braziiian buildings being supported?

II Context presentation and problem's definition

II.1. The Braziiian energetic crisis of 2001

II.2. Braziiian energy policies for thè built environment

II.3. Energy consumption in Braziiian buildings

Energy consumption in residences

Energy consumption in commerciai and public buildings

How to implement energetic efficiency in Braziiian buildings?

Design methodology and strategies

III Environmental integrated design and passive strategies

III.1. Bioclimaticzoning

III.2. Passive cooling

Naturai ventilation

Thermal mass for cooling

Evaporative cooling

Green roof

III.3. Passive heating

Implementation and orientation

Passive solar heating T

hermal mass for heating

III.4. Daylighting and envelope's shading

The Morphological Diagram for Braziiian buildings

IV Renewable energy generation in buildings

IV.1. Solar energy

Solar thermal

Photovoltaic cells

Solar cooling

IV.2. Wind energy

Domestic eolie turbines

IV.3. Earth energy

Geothermal for air cooling

IV.4. Organic energy

Biomass systems

Which are thè quantitative outeomes of this methodology?

Case study: energy efficient retrofitting strategies for a hotel in Goianla

V Context presentation

V.l. Hotels and Braziiian recent great events

V.2. Goiània: city, weather and architecture

V.3. Establishing energy consumption reference ranges

VI Buiiding's status quo

VI.l.Business hotel in Goiània: case study's building

VI.2.Simulator calibration and quality assurance (BESTEST)

VI.3.Modeling principles

VI.4.Constructions' specifications

Materials' properties

External walls

Glazed surfaces

Fiat roofs

Internai floors/ceilings

Ground-contact floor

VI.5. Uses profiles

Ground floor zone

Terrace zone

Rooms zone

VI.6. Simulation assumptions and sources of uncertainty

Buiiding's location

Opaque and glazed closures stratigraphies occurrence

Air conditioning systems

Users behavior

Internai spaces division, shafts and vertical circulation

Intern thermal mass

Underground floors

Naturai ventilation

Assumed references to end uses percentages

Congruence between simulation results and real consumption

VI.7. Simulation results and discussion

Variables involved on energy consumption

Overall daily building behavior

Cooling and heating sensible loads

Contrasting air conditioner simulated demand with real consumption

VI.8. Building's Energy Label - PROCEL Edifica

VII Retrofitting scenarios for energetic efficiency promotion

Vll.1. Reduction on buiiding's energy demand

Scenario 1 - Overhangs implementation for shading

Scenario 2 - Louvers' frames implementation

Scenario 3 - Air changes and setpoints redefinition

Scenario 4 - H&C centralized System with high efficiency

Scenario 5 - Luminous efficacy increase on lighting System

Scenario 6 - Facades' absorptances lowering and solar factor increase

Scenario 7 - Roof remodeling for buiiding's envelope Label LevelA

VII.2. System sizing for renewable energy generation

Scenario 8 - Solar thermal collectors for domestic hot water Scenario 9 - Photovoltaic cells for electricity generation

VII.3. Final Scenario - Maximum energetic efficiency Associating previous retrofitting strategies

VII.4. Resumed scenarios and discussion

VIII Conclusions



ABNT (Associalo Brasileira de Normas Técnicas). NBR 10821 - Window frames for buildings. Brazil, 2001.

ABNT (Associalo Brasileira de Normas Técnicas). NBR 15220-2 - Thermal performance in buildings - Part 2. Calculation methods of thermal transmittance, thermal capacity, thermal delay and solar heat factor of elements and components of buildings.

ABNT (Associacao Brasileira de Normas Técnicas). NBR 15220-3 - Thermal performance in buildings - Part 3. Brazilian Bioclimatic Zones And Building Guidelines For Low-cost Houses.

ABNT (Associacao Brasileira de Normas Técnicas). NBR 7198 - Buildings' domestic hot water systems.

AMORIM, C.N.D. Diagrama Morfològico Parte I: Instrumento de analise e projeto ambientai com uso de luz naturai, Universidade de Brasflia, Brazil, 2007.

AMORIM, C.N.D. lluminacao Naturai e Eficiéncia Energètica, Partes I e II. Universidade de Brasflia, Brazil, 2002.

ANEEL. Atlas de Energia Elétrica do Brasil. 2pd edition, 2005.

Available at: <http://www3.aneel.gov.br/atlas/atlas_2edicao/index.html> (Accessed on

November27th, 2010)

ASHRAE, American Society of Heating, Refrigerating and Air-conditioning Engineers. Inc. Atlanta, USA, 1992

BAKER, N.; STEEMERS, K. Energy and Environment Architecture: A Technical Design Guide. E&FN Spon. London, United Kingdom, 2000.

Brazilian Ministry of Mines and Energy, Balanco Energètico Nacional, Brazil, 2009.

BANHAM, R. The Architecture of thè Well-tempered Environment. The Architecture Press. London, United Kingdom, 1969.

BAPTISTA, A.S.C. Analise da viabilidade econòmica da utilizacao de aquecedores solares de àgua em resorts no nordeste do Brasil. Dissertation (MSc in Engineering, Energetic Planning), Universidade Federai do Rio de Janeiro, Brazil, 2006.

BOHN, A.R. Instalacao predial de àgua quente. Department of Civil Engineering, Universidade Federai de Santa Catarina, Florianópolis, Brazil.

Brundtland Report. Our Common Future, World Commission on Environment and Developmnent. United Nations, 1987.

BUARAJ, A. B. Evolucao Tecnològica na Construcao de Hotéis. Dissertation (MSc in Architecture), Universidade de Sào Paulo, Brazil, 2004.

BUORO, A.B. Conforto tèrmico e eficiència energètica em hotéis econòmicos.

Dissertation (MSc in Architecture, Architectural Technology), Universidade de Sào Paulo, Brazil, 2008.

CHAPPELS, H.; SHOVE, E. Comfort: A review of philosophies and paradigms. United Kingdom, 2004.

CHIRAS, D. The Solar House: Passive Heating and Cooling. Chelsea Green Publishing Company, USA, 2002.

DENG, S.; BUMETT, J. A study of energy performance of hotel buildings in Hong Kong.

Energy and Buildings, 2000.

EUROPEAN COMMISSION. Green Paper: For a European Union Energy Policy.

Available in: <http://www.eur-lex.europa.eu/en/index.htm> (Access on July 19th, 2009)

FIORELLI, F.S.; HERNANDEZ, A.N.; TRIBESS, A. Avaliacào de estratégia para racionalizacao do consumo de energia em ediffcios com ar condicionado. In: ENCAC files. Campinas, Brazil, 2001.

FOSDICK, J. Passive Solar Heating. Tierra Concrete Homes.

Available on: <http://www.wbdg.org/resources/psheating.php> (Accessed on November

17th, 2010)

GHISI, E.; GOSCH, S.; LAMBERTS, R. Electricity end-uses in thè residential sector of

Brazil. Laboratory of Energy Efficiency in Buildings, Universidade Federai de Santa Catarina. Florianópolis, Brazil, 2007.

GROSSO, M. Il Raffrescamelo Passivo degli Edifici. Maggioli Editore. Rimini, Italy, 1997.

HAWKES, D.; FOSTER, W. Energy efficient building: architecture, engineering and environment. New York, USA, 2002.

HERNANDEZ NETO, A. Carga tèrmica em edificacoes climatizadas. In: REVISTA Climatizacao, Sao Paulo, Brazil, 2005.

HERNANDEZ NETO, A.; TRIBESS, A.; FIORELLI, F.A.S. Evaluation of thermal performance index for air conditioning commerciai buildings. In: COBEM 2003, ABCM. Sao Paulo, Brazil, 2003.

KONTOLEON, K.J.; BIKAS, D.K. The influence of thè zone's indoor temperature settings on thè cooling/heating loads for fixed and controlied ventilation.

Available on: <linkinghub.elsevier.com/retrieve/pii/S0360132305000041> (Accessed on January21th, 2011)

Laboratory for Architectural Research. Good lighting and poor lighting. Instituto de Artes, Universidade de Campinas, Brazil.

LIMA, G.L.F. Influència de variàveis arquitetónicas no desempenho energètico de hotéis no clima quente e ùmido da cidade de Natal/RN. Oissertation (MSc in Architecture and Urbanism), Universidade Federai do Rio Grande do Norte, Brazil, 2007.

LOVINS, A.B. Energy Strategy: thè road not taken?

Available in: <http://www.foreignaffairs.com/articles/26604/amory-b-lovins/energy-strategy-the-road-not-taken> (Accessed on July 27th, 2009)

MASOERO, M. Energy Saving in Buildings. ASP Course of Global Change and Sustainability, Lecture Notes. Bardonecchia, 2009.

MELO, A.P.; WESTPHAL, F.S.; LAMBERTS, R. Avaliacao computacional de estratégias para a reducao do consumo de energia elétrica em um hotel em Florianópolis.

Laboratory of Energy Efficiency in Buildings, Universidade Federai de Santa Catarina, Florianópolis, Brazil, 2005.

OLGYAY, V.; OLGYAY, A. Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press, USA, 1963.

PANESI, A.R.Q. Uso de ferramenta computacional para determinar a participacao dos usos finais de energia de urna edificacao comercial. Interscience Piace, International scientific magazine. Year 3, number 15. Sao Paulo, Brazil, 2010.

PROCEL, ENCE. Regulamento Tècnico da Qualidade do Nivel de Eficiència Energètica de Edificios Comeriais, de Servicos e Pùblicos (RTQ-C). Brazil.

RICHMAN, E. ANSI/ASHRAE/IESNA Standard 90.1-2007, An Overview of thè Lighting and Power Requirements. U.S. Department of Energy, Energy Efficiency and Renewable Energy. USA, 2008.

SCUDO, G. Sustainable Architecture. ASP Course of Global Change and Sustainability, Lecture Notes. Bardonecchia, 2009.

SERRA, R.; COUCH, H. L'energia nel progetto di architettura. CittàStudi. Milano, Italy, 1997.

SINERGIA CUT, Crise Energètica no Brasil - Contribuicao do Sinergia CUT ao debate, Sào

Paulo, 2001. Available on:

<http://www.sinergiaspcut.org. br/areas/memoria/topicos/pdfs/crisecaderno_2edicao.p

df> (Accessed on November 17th, 2010)

SOLARTERM. Potential Analysis for a New Generation of Solar Thermal Systems in thè Southern Mediterranean Countries. SOLATERM Project Report of September. Available at:

<http://www.solaterm.eu/publications/solaterm_potential_analysis_15.12.08_final.pdf> (Accessed on February 12th, 2011)

TEIXEIRA, MA; NIETERS, A.; ASSMANN, D. Aumento da eficiència energètica no setor hoteleiro no Brasil com foco na integracào do uso de energia solar. Revista Brasileira de Energia, Voi. 15, No. 1, pp. 109-11, Brazil, 2009.

UNI 10339, Air-conditioning systems for thermal comfort in buildings. General, classification and requirements. Offer, order and supply specifications, Italy.

USAID ECO. Ili Project, Energy assessment guide for commerciai buildings. India, 2010.

XING, S.; ZHANG, X. Environmental performance optimization of window-wall ratio for different window type in hot summer and cold winter zone in China based on life cycle assessment. HVAC and Gas Research Institute, Tongji University, Shanghai, China.

Modify record (reserved for operators) Modify record (reserved for operators)