
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Safety-Oriented Task Offloading for
Human-Robot Collaboration

A Learning-Based Approach

Supervisors

Prof. Iolanda LEITE

Prof. Tatiana TOMMASI

Candidate

Franco RUGGERI

2020/2021

© 2021 Franco Ruggeri

Abstract | i

Abstract
In Human-Robot Collaboration scenarios, safety must be ensured by a
risk management process that requires the execution of computationally
expensive perception models (e.g., based on computer vision) in real-time.
However, robots usually have constrained hardware resources that hinder
timely responses, resulting in unsafe operations. Although Multi-access Edge
Computing allows robots to offload complex tasks to servers on the network
edge to meet real-time requirements, this might not always be possible due to
dynamic changes in the network that can cause congestion or failures. This
work proposes a safety-based task offloading strategy to address this problem.
The goal is to intelligently use edge resources to reduce delays in the risk
management process and consequently enhance safety. More specifically,
depending on safety and network metrics, a Reinforcement Learning (RL)
solution is implemented to decide whether a less accurate model should run
locally on the robot or a more complex one should run remotely on the network
edge. A third possibility is to reuse the previous output through verification
of temporal coherence. Experiments are performed in a simulated warehouse
scenario where humans and robots have close interactions. Results show that
the proposed RL solution outperforms the baselines in several aspects. First,
the edge is used only when the network performance is good, reducing the
number of failures (up to 47 %). Second, the latency is also adapted to the
safety requirements (risk× latency reduced up to 48 %), avoiding unnecessary
network congestion in safe situations and letting other robots in hazardous
situations use the edge. Overall, the latency of the risk management process
is largely reduced (up to 68 %), and this positively affects safety (time in safe
zone increased up to 4 %).

Keywords
Human-Robot Collaboration, Multi-access Edge Computing, Task Offloading,
Artificial Intelligence, Reinforcement Learning

ii | Abstract

Acknowledgments | iii

Acknowledgments
The completion of this thesis project represents the end of a path from which I
come out very grown, not only from the knowledge perspective but especially
as a person. Without a doubt, one of the most significant contributions to
this growth is my experience in Stockholm and at Ericsson. For this reason,
I would like to express my sincere gratitude to my supervisors Rafia Inam,
Alberto Hata, and Ahmad Terra from Ericsson. They allowed me to work on
this exciting project in a truly global company where everyone has a positive
mindset directed towards innovation. Beyond this, they provided me constant
support and valuable suggestions during our weekly meetings. Likewise,
I would like to thank my academic supervisors Iolanda Leite and Tatiana
Tommasi, for always being available to clear my doubts.

Stockholm, October 2021
Franco Ruggeri

iv | Acknowledgments

CONTENTS | v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 3
1.3 Purpose . 4
1.4 Goals . 4
1.5 Research methodology . 5
1.6 Delimitations . 5
1.7 Structure of the thesis . 6

2 Background 7
2.1 Human-Robot Collaboration 7

2.1.1 Safety in automated warehouse 8
2.1.2 Risk management process 9
2.1.3 Scene understanding 9

2.2 Multi-access Edge Computing 11
2.2.1 MEC for safety framework in HRC 12

2.3 Reinforcement Learning . 12
2.3.1 Markov Decision Process 13
2.3.2 Q-learning . 15
2.3.3 Deep Q-Network . 16

2.4 Frameworks and tools . 18
2.4.1 ROS . 18
2.4.2 V-REP . 20
2.4.3 ns-3 . 21
2.4.4 OpenAI Gym . 23
2.4.5 Keras-RL . 24
2.4.6 Turtlebot 2i . 24

2.5 Related work . 25

vi | Contents

3 Methods 29
3.1 System design . 29

3.1.1 Task Offloading . 30
3.1.2 Network Monitor . 38
3.1.3 Task Proxy . 39

3.2 Implementation . 40
3.2.1 System . 42
3.2.2 Evaluation . 44

4 Results and analysis 45
4.1 Experiments . 45

4.1.1 Simulated scenario 46
4.1.2 Settings . 49

4.2 Evaluation framework . 51
4.2.1 Baselines . 51
4.2.2 Metrics . 52

4.3 Results . 54
4.3.1 Analysis of task offloading 54
4.3.2 Analysis of safety . 61

5 Conclusions and future work 63
5.1 Discussion . 63
5.2 Limitations . 64
5.3 Future work . 65
5.4 Ethical and societal aspects 66

References 67

A Results for second robot 75

LIST OF FIGURES | vii

List of Figures

1.1 Safety framework for HRC in automated warehouses. 2
1.2 Distributed architecture with the scene understanding always

offloaded to an edge server. 3

2.1 Warehouse simulated with V-REP in which human workers
and Turtlebot2i robots collaborate to load trucks. 8

2.2 A Turtlebot2i detects the objects in its FOV and builds the
scene graph. 10

2.3 MEC architecture [1]. 11
2.4 RL agent-environment interaction in automated warehouse. . . 13
2.5 Q-learning stores the Q-values for all the state-action pairs in

the Q-table. 15
2.6 DQN approximates the Q-value function with a DNN. The

input layer corresponds to the features of the state, while the
output layer contains one neuron for each possible action. . . . 16

2.7 ROS topic with one publisher and two subscribers [2]. 18
2.8 ROS service [3]. 19
2.9 ns-3 key concepts. 21
2.10 ns-3 real-time mode. 22
2.11 Real Turtlebot 2i (a) and V-REP model (b). 25

3.1 System design for task-offloading decision-making. 30
3.2 Action space in the RL safety-oriented task-offloading envi-

ronment. 31
3.3 Temporal coherence measured with SSIM between two

images captured within a short period of time. 33
3.4 Functions used in algorithm 3.1. 36
3.5 Implementation of system, including additional nodes for the

evaluation, with ROS. 41

viii | LIST OF FIGURES

4.1 Warehouse scenario used for the experiments, simulated with
V-REP. 47

4.2 Network topology used for the experiments, simulated in ns-3.
It is overlapped to the warehouse to clarify the position of the
ns-3 nodes. The smartphone icons represent congesting nodes. 48

4.3 Distribution of actions for DQN-2 and DQN-3 in scenarios
with one and two robots. 58

4.4 Joint distribution of risk value and latency for DQN-2 and
baselines in the scenario with one robot. The intensity of the
blue color indicates the frequency of the joint value (i.e., the
darker the blue, the more frequent), while the histograms on
the axes represent the marginal distributions. 59

4.5 Joint distribution of risk value and edge output (Boolean value
from substate S3) for DQN-2 and baselines in the scenario
with one robot. The intensity of the blue color indicates the
frequency of the joint value (i.e., the darker the blue, the
more frequent), while the histograms on the axes represent the
marginal distributions. 60

4.6 Scatter plot (i.e., there is one point for each action taken) of
risk value and temporal coherence for DQN-3 in the scenario
with one robot. The plot differentiates computation performed
(actions A1 and A2) and skipped (action A3) using different
colors. The marginal distributions are also shown on the axes
as Gaussian. 61

LIST OF TABLES | ix

List of Tables

4.1 Settings used in the experiments for the hyperparameters of
the system. 49

4.2 Results for the scenario with a single robot, grouped by type of
metric (offloading and safety). The best results for each metric
are highlighted in bold. 55

4.3 Results for the first robot in the scenario with two robots,
grouped by type of metric (offloading and safety). The best
results for each metric are highlighted in bold. 56

A.1 Results for the second robot in the scenario with two robots,
grouped by type of metric (offloading and safety). The best
results for each metric are highlighted in bold. 76

x | LIST OF TABLES

Algorithms | xi

Algorithms

2.1 Simple usage of an OpenAI Gym environment. 23
3.1 Reward function in the RL safety-oriented task-offloading

environment. 35

xii | Algorithms

List of acronyms and abbreviations | xiii

List of acronyms and abbreviations
A2C Advantage Actor-Critic

AI Artificial Intelligence

AP access point

API application programming interface

BS base station

CBR constant bit-rate

CC Cloud Computing

CEM Cross-Entropy Method

CNN Convolutional Neural Network

CPU Central Processing Unit

CR Cloud Robotics

CSMA Carrier-Sense Multiple Access

CV computer vision

DDR Double Data Rate

DL Deep Learning

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

EC Edge Computing

FL Fuzzy Logic

FOV field of view

FPS frames per second

xiv | List of acronyms and abbreviations

GD gradient descent

GPU Graphics Processing Unit

H-D Hypothetico-Deductive

HAZOP HAZard OPerability analysis

HRC Human-Robot Collaboration

ICMP Internet Control Message Protocol

KPI Key Performance Indicator

LAN Local Area Network

LiDAR Light Detection and Ranging

MD mobile device

MDP Markov Decision Process

MEC Multi-access Edge Computing

ML Machine Learning

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NE Nash equilibrium

NIC Network Interface Card

ns-3 Network Simulator 3

OS operating system

PC personal computer

RAM Random Access Memory

RAN Radio Access Network

List of acronyms and abbreviations | xv

ReLU Rectified Linear Unit

RGB Red Green Blue

RL Reinforcement Learning

RNG Random Number Generator

ROS Robotic Operating System

RPC remote procedure call

RTT Round-Trip Time

SARSA State–Action–Reward–State–Action

SINR Signal-to-Interference-Noise Ratio

SSD Solid-State Drive

SSIM Structural Similarity Index Measure

TCP Transmission Control Protocol

UDP User Datagram Protocol

V-REP Virtual Robot Experimentation Platform

Wi-Fi Wireless Fidelity

YANS Yet Another Network Simulator

xvi | List of acronyms and abbreviations

Chapter 1

Introduction

This chapter describes the specific problem that this thesis addresses and
introduces the context, the scope, and the goals of this degree project. In
addition, it outlines the structure of the thesis.

1.1 Background
The recent improvements in robotics andmachine learning have enabled a new
paradigm for working environments, where humans and robots share the same
workspace and collaborate to perform tasks. This approach, known as Human-
Robot Collaboration (HRC), represents a fundamental aspect in industry 4.0
and allows to improve performance and quality of the industrial production
[4]. The reason for this enhancement is related to the unique features of
robots and humans: robots outperform humans when it comes to repetitive
tasks requiring power, precision, and speed, but humans are creative, more
intelligent, and more flexible [5]. However, while HRC is beneficial, sharing
the same workspace with possible close interactions between humans and
robots raises new challenges, among which the most relevant is related to
safety: robots must minimize the risk of harming humans.

Recent research [5, 6, 7, 8, 9] proposed and implemented a safety
framework, shown in figure 1.1, for mobile robots in automated warehouses
with HRC. While this solution aims to perform on each robot a risk
management process in real-time, it also involves the execution of a
computationally expensive computer vision (CV) task as the first step, namely
the scene understanding. Unfortunately, mobile robots often have cheap
onboard hardware limiting energy consumption and size to operate longer
and maneuver easily, which is insufficient for this complex task. Terra et

1

2 | Introduction

Automated warehouse Scene
understanding Risk management Navigation

Dynamic objects

Static objects

Shelves

Conveyor
belts

Products

Human
workers

Mobile robots

Instance
segmentation

Scene graph
generator

Risk
identification

Risk analysis
& evaluation

Risk
mitigation

Path planning

Mapping

Localization

Logical sub-module (on each mobile robot)

Logical module (on each mobile robot)

Physical objects

Figure 1.1: Safety framework for HRC in automated warehouses.

al. [8] showed that the scene understanding has unacceptable delays when
executed on a mobile robot, resulting in unsafe operations. To overcome
this issue, the authors proposed a distributed architecture with the scene
understanding performed on an edge device, shown in figure 1.2. Indeed,
Multi-access Edge Computing (MEC) is a promising solution that enables
resource-constrained mobile devices (MDs) to execute computation-intensive,
time-sensitive applications by offloading them to servers located at the edge
of the network, close to the end-users [10, 11]. However, due to dynamic
changes in the network that can cause congestion or failures, using the edge
is not always possible or suitable. In particular, in case of network congestion
or failures, the risk management process keeps waiting for the output from the
scene understanding, leading to unsafe operations. It is worth noticing that
congestion is unavoidable when many mobile robots continually offload the
scene understanding because the inputs sent on the network are large. For
this reason, the static solution of figure 1.2, which always offloads the scene
understanding, is not adequate.

This project proposes a safety-oriented solution that, depending on safety
and networkKey Performance Indicators (KPIs), dynamically decides whether

Introduction | 3

Figure 1.2: Distributed architecture with the scene understanding always
offloaded to an edge server.

the complex scene understanding should be offloaded to an edge server or
a less accurate model should run locally. A third possibility is to skip the
computation and reuse the last output, exploiting the temporal coherence in
sequential images. The main goal is to use the edge only when suitable,
enhancing safety in the warehouse while optimizing the usage of the network
resources. Reinforcement Learning (RL) is used to learn policies from the
environment, instead of manually writing rules.

The work was carried out at the Ericsson AB department of Research, AI,
andCognitiveAutomation Lab. The proposedmethodwas filed on 26/02/2021
as a patent idea: Intelligent Task Offloading.

1.2 Problem
In an automated warehouse with HRC, mobile robots can guarantee safety
by using the safety framework implemented in [5, 6, 7, 8, 9]. The first step
of the process, i.e., the scene understanding, is a computationally expensive,
latency-critical, safety-critical task and needs to exploit MEC to fulfill the
latency requirements. However, networks might not always be able to satisfy
the real-time requirements due to dynamic changes that can cause congestion
or failures. It is necessary to find policies to decide whether to offload or not
dynamically, based on network and safety KPIs.

4 | Introduction

The research question that will be addressed in this thesis is: how can
mobile robots intelligently offload to the edge their computationally expensive,
latency-critical, safety-critical tasks to maximize safety in HRC scenarios?

This question can be broken down into the following sub-questions, which
can be more easily investigated:

• Which actions are possible when offloading is not suitable or possible
for computationally expensive, latency-critical, safety-critical task?

• Which KPIs are useful for the safety-oriented task-offloading decision-
making?

• Which RL algorithm can be used to learn safety-oriented task-offloading
policies?

• What is the impact of safety-oriented task-offloading policies on safety?

• What is the impact of safety-oriented task-offloading policies on the
usage of network resources?

1.3 Purpose
This degree project is built on top of [5, 6, 7, 8, 9], whose purpose is to create
a risk management strategy for HRC in automated warehouses. The success
of this work represents a further step towards a safe HRC in industry 4.0,
providing benefits to both industrial employers and employees. Indeed, HRC
has a great impact both on the industrial work chain, affecting the financial
aspects positively, and on the employees’ work experience because robots can
perform repetitive tasks. Furthermore, safety helps humans to trust robots, as
they do not feel afraid of getting injured.

In order to guarantee ethical research, all the methods and results were
backed up with scientific evidence. In particular, the results can be reproduced
using the code stored on the Ericsson AI GitLab server.

1.4 Goals
The main goal of this degree project is to propose a safety-oriented, learning-
based solution to the task-offloading problem for HRC scenarios. This goal
can be divided into the following sub-goals:

Introduction | 5

• Design and implement a modular system to integrate the new task-
offloading module with the existing modules.

• Design and implement an RL solution to learn safety-oriented task-
offloading policies.

• Design and implement a simulation of a warehouse with a network.

• Evaluate the solution using meaningful evaluation metrics and base-
lines.

1.5 Research methodology
This thesis uses the Hypothetico-Deductive (H-D) method and the experi-
mental methodology. The handled data is mainly primary and is collected
from simulations, but some results from previous work are used to make
assumptions and set parameters. The results are presented using both
quantitative and qualitative data.

The experiments were completely performed in simulated environments
with the help of Virtual Robot Experimentation Platform (V-REP) [12, 13]
for the warehouse and Network Simulator 3 (ns-3) [14, 15] for the network,
which model the real world very accurately. Such an approach leads to a
more reliable evaluation compared to experiments with synthesized data that
consider ideal behavior and few phenomena, such as those carried out by many
previous works in MEC. In general, simulations have been recognized as a
very important research tool [16]: in HRC scenarios, they allow to study and
design new functions without the risk of harming real humans; in networks,
they can reproduce complex systems with many physical phenomena without
the difficulty of setting up costly testbeds [17]; in RL, agents are often entirely
trained in a simulated environment before being deployed [18].

There is another non-technical reason why simulations were preferred to
real-world experiments, i.e., with real robots and a real network: unfortunately,
this project was carried out during the COVID-19 pandemic and, for safety
reasons, from home.

1.6 Delimitations
This project uses the safety framework implemented in [5, 6, 7, 8, 9]. It is
worth remarking that these modules were already available, and amodification

6 | Introduction

of them is out of the scope of this work. On the other hand, it was necessary
to tune parameters and make some changes to get everything working in the
new warehouse scenario (e.g., navigation). In addition to this, the designed
solution considers a fast instance segmentation model installed on the robot
as an alternative to the complex and accurate model installed on the MEC
server. While research of efficient models for MDs was necessary for this
work to perform meaningful experiments, training and using those models for
the automated warehouse is out of the scope of this thesis and is left as future
work.

There are also some limitations due to hardware resources. Since the
entire simulation, including V-REP and ns-3, has to be run in real-time on
one computer, dealing with performance is a big issue. Specifically, if the
simulation is too heavy, ns-3 cannot keep real-time, and V-REP runs at a
meager frame rate. Such concerns affected several choices for the experiments:

• The number of robots, simulated both physically in V-REP and as
network nodes in ns-3, was limited to two. The congestion in the
network was increased utilizing congesting nodes, i.e., virtual devices
simulated only as network nodes in ns-3.

• The network technology was set to Wi-Fi 802.11g [19] and not to
more capable ones that would have been heavier to congest (e.g., Wi-
Fi 802.11n [20]).

• An alternative implementation of the scene understanding extracting the
output by querying V-REP was used, and the execution latency was
simulated by sleeping for a certain time. This workaround represents
a good solution in terms of latency but does not simulate the different
accuracy of local and edge computing.

1.7 Structure of the thesis
The rest of the thesis is organized as follows. Chapter 2 introduces
the technical background necessary to understand the rest of the thesis,
the previous work this project is built on, and the related work in the
literature. Chapter 3 presents the methods used to solve the problem and the
implementation. Chapter 4 discusses the experiments and analyzes the results.
Lastly, chapter 5 gives the conclusions and suggests future work.

Chapter 2

Background

This chapter presents the related work and the technical background needed
to understand the rest of the thesis. Section 2.1 provides details about the
previous work in HRC representing the basis of this project, which has
been briefly introduced in chapter 1. Section 2.2 discusses the high-level
ideas of MEC and how it was used in HRC, focusing on the problems.
Section 2.3 briefly presents the background on RL, with particular attention
on Deep Q-Network (DQN) which is the algorithm selected for the solution.
Section 2.4 provides the main concepts of the frameworks and tools used for
the implementation without claiming to be exhaustive. Lastly, section 2.5
reviews the literature in MEC, highlighting limitations and useful ideas reused
in this degree project.

2.1 Human-Robot Collaboration
Human-Robot Collaboration (HRC) is an emerging research area that studies
collaborative processes in which humans and robots cooperate to achieve
shared goals. Industrial applications can benefit from it by combining
robots’ power, speed, and precision with the creativity and flexibility of
humans to allow more versatile automation steps that improve productivity
and quality [4]. However, HRC causes new hazardous situations, and therefore
collaborative robots require proper safety strategies to avoid harming humans
and their environments [5].

7

8 | Background

Figure 2.1: Warehouse simulated with V-REP in which human workers and
Turtlebot2i robots collaborate to load trucks.

2.1.1 Safety in automated warehouse
Recent research work [5, 6, 7, 8, 9] was carried out for automated warehouses
where mobile robots and humans collaborate to load trucks. In this scenario,
the robots pick products from shelves and place them on conveyor belts, while
the human workers fill the shelves with the ordered products. Robots and
humans are in the same workspace during such operations and can have close
interactions, especially around the shelves.

Inam et al. [5] proposed a two-fold safety strategy for this scenario,
including:

• Offline safety analysis: A warehouse controller evaluates the high-level
plans for the robots before sending the tasks to each robot.

• Online safety analysis: Each robot generates three safety fields around
itself, whose size is taken from standards (e.g., ISO/TS 15066:2016).
The safety fields are critical (red), warning (yellow), and safe (green).
Then, it analyzes its sensor data to assess and mitigate the risk. This
process is repeated continually at run-time.

In subsequent works [6, 7, 8, 9], the online safety analysis was further
detailed as the safety framework shown in figure 1.1, focusing on the
navigation phase1, whereas not considering the manipulation one2. The
1 The robot’s base moves towards waypoints while the arm is tucked in.
2 The robot’s arm picks or places products while the base is still.

Background | 9

implementation was done for a Turtlebot 2i [21, 22] using Robotic Operating
System (ROS) [23] and the experiments were conducted in simulated
warehouses using V-REP [12]. Figure 2.1 shows an example of a scenario
with human workers and Turtlebot 2i robots with their safety fields.

2.1.2 Risk management process
The core of the safety framework in figure 1.1 is the risk management process,
which consists of the following phases:

1. Risk identification: The first phase is to identify the possible hazards
and risks that can happen in the scenario. It was done manually
using HAZard OPerability analysis (HAZOP) and is the only phase not
performed at run-time [6].

2. Risk analysis and evaluation: The second phase analyzes the
surroundings and evaluates how risky the situation is. The input is a
scene graph, which models the robot’s knowledge of the surroundings
and is computed by the scene understanding module, as discussed in
section 2.1.3, while the output is a risk value for each node in the scene
graph. Furthermore, the three-layered safety fields are generated based
on the risk values and other information (e.g., robot’s speed). This
module was implemented using a Fuzzy Logic (FL) system [7].

3. Risk mitigation: The last phase uses the scene graph and the risk values
to reduce the risk and allow safe navigation. In particular, this is done
by scaling the speed of the robot’s left and right wheels to adjust linear
and angular velocities given by the navigation module3. Two methods
were used for the implementation of this module: FL and DQN [8].

It is worth mentioning that the risk management process needs to be
executed in real-time. In other words, it is a safety-critical, latency-critical
task. Indeed, the risk mitigation has to be executed frequently and with
updated information to adjust the navigation trajectory effectively.

2.1.3 Scene understanding
The scene understanding provides the necessary input to the risk management
process. Specifically, it analyzes sensor data to generate a scene graph
3 Turtlebot 2i is a differential drive robot, as described in section 2.4.6. Thus, both linear and
angular velocities can be modified by controlling the speed of the left and right wheels.

10 | Background

Figure 2.2: A Turtlebot2i detects the objects in its FOV and builds the scene
graph.

modeling the objects in the robot’s field of view (FOV) and their relationships.
As shown in figure 2.2, each graph node denotes an object and contains
semantic information such as the type (0 for static objects, 1 for dynamic
objects, 2 for humans), while a graph edge gives the position relationship
between two objects.

The computation of the scene graph is done in two steps:

1. Instance segmentation: the RGB camera image is processed to detect
and identify the objects. This module was implemented as a Mask R-
CNNwith ResNet101 backbone, a state-of-the-art Convolutional Neural
Network (CNN) for accurate instance segmentation [9, 24].

2. Scene graph generation: the detected objects are organized in a scene
graph. Moreover, other sensor data is used to compute semantic
information of the objects. For example, the depth camera image is used
to find the distance of the objects from the robot.

It is essential to highlight that the scene understanding is a safety-critical,
latency-critical task because it has to provide timely output to the risk
management process. Moreover, it is also computationally expensive because
of the enormous number of parameters of the Mask R-CNN.

An alternative implementation of the scene understanding was developed
by extracting the scene graph directly from V-REP. Although this solution

Background | 11

Figure 2.3: MEC architecture [1].

is not applicable in real environments, it turns out to be very useful for
experiments in simulations because it allows isolating the module to test
without depending on the accuracy and delay of the instance segmentation.
For example, it was used for testing the risk mitigation algorithms [8], and it
was used for the experiments of this project, as described in chapter 3.

2.2 Multi-access Edge Computing
In the last decade, Cloud Computing (CC) has emerged as a new computing
paradigm providing centralized computational resources and data storage
to the end-users employing large-scale data centers [25]. Although being
used by all kinds of machines, it comes especially in handy for resource-
constrained devices such as MDs (e.g., smartphones) and robots, which can
offload computation-intensive tasks to servers on the cloud. Indeed, a popular
application of CC is in robotics and is known as Cloud Robotics (CR) [26, 27].
However, due to the large distance of the data centers from the end-users, CC
cannot guarantee very low latency and thus is not suitable for real-time tasks.

In recent years, Edge Computing (EC) has been proposed as solution to
considerably reduce latency compared to CC, allowing end users to offload
also computation-intensive tasks with low-latency requirements [10, 11]. The
most common application is with mobile terminals in Radio Access Networks
(RANs) (4G and 5G) or wireless LANs (Wi-Fi), as shown in figure 2.3, in
which case EC is better known as Multi-access Edge Computing (MEC)4.
MEC servers are deployed very close to the end users, at the edge of the
network, either directly on base stations (BSs) and access points (APs), or
in small-scale data centers very close to these.

It is worth remarking that CC and MEC are not alternatives; instead, they
are complementary because they provide a different trade-off between latency
4 Formerly Mobile Edge Computing.

12 | Background

and computation power. The choice depends on the requirements of the task.

2.2.1 MEC for safety framework in HRC
Experiments by Terra et al. [8] showed that the only computationally
expensive task in the safety framework described in section 2.1 is the scene
understanding with Mask R-CNN. In particular, with local computation on a
Turtlebot 2i, all the phases of the risk management process run with ultra-low
execution times, in the order of milliseconds, whereas the scene understanding
takes almost 15 seconds. Such considerable delays in the scene understanding
represent a bottleneck for the whole safety framework and lead to unsafe
operations.

Terra et al. proposed to offload the scene understanding to an edge server,
as shown in figure 1.2, to achieve real-time performance. They tested this
approach in a network with only one robot. However, this static solution is
not robust to dynamic changes in the network, which can cause congestion or
failures, and this is the motivation for this degree project. In these cases, the
robot may not get the output from the scene understanding, resulting in the
risk management process waiting and not providing safety. In addition to this,
when manymobile robots use this solution, network congestion is unavoidable
because the scene understanding offloading involves sending large inputs on
the network. Therefore, dynamic decision-making to intelligently use MEC
is necessary. Many strategies to address this problem are available in the
literature and are discussed in section 2.5.

2.3 Reinforcement Learning
Reinforcement Learning (RL) [28] is the subfield of Machine Learning (ML)
that studies how to learn from interaction with uncertain environments. Such
interaction is illustrated in figure 2.4: the agent takes an action based on the
current environment state and receives a feedback in the form of a numerical
reward; also, the agent senses the environment again to get its new state in
order to repeat the loop. In this setting, the agent must learn to act in order
to maximize the expected rewards. It is worth highlighting that RL deals with
sequential decision-making and trial-and-error learning. The former means
that the action usually affects not only the immediate reward but also the next
environment state and, through that, all the subsequent rewards. The latter
indicates that the agent must discover which actions yield the most reward by

Background | 13

Figure 2.4: RL agent-environment interaction in automated warehouse.

trying them out, unlike supervised learning in which it is instructed with the
correct action (the label).

The RL framework is very general and can be applied for all the problems
involving making a sequence of decisions. Indeed, RL has been widely used
with good results in many areas, such as robotics [29], healthcare [30], and
game playing [31].

2.3.1 Markov Decision Process
A general5 RL problem is fully defined by the environment, which can be
formalized as a Markov Decision Process (MDP). AMarkov Decision Process
(MDP) is a discrete-time stochastic control process modeled as a 5-tuple
(S,A, T,R, γ) where:

• S is the state space, i.e., the set of possible environment states.

• A is the action space, i.e., the set of possible actions that the agent can
perform on the environment.

5 RL problems satisfying specific constraints can be formalized more simply as multi-armed
or contextual bandits, but they are omitted as not relevant for this work.

14 | Background

• T : S × A × S → [0, 1] is the state transition function giving the
probability that action a ∈ A in state s ∈ S leads to the new state
s′ ∈ S, i.e., T (s, a, s′) = P(St+1 = s′|St = s, At = a).

• R : S×A×S → R is the reward function giving the numerical reward
for the agent when action a ∈ A in state s ∈ S leads to the new state
s′ ∈ S, i.e. R(s, a, s′) ∈ R. Often the reward functionR is independent
of the action a ∈ A or the new state s′ ∈ S, or both of them.

• γ ∈ [0, 1] is the discount factor used to compute the return with an
exponentially decay of future rewards, as can be seen in equation (2.2).
This is necessary to compare policies in infinite-horizon problems6.

MDPs have the Markov property, which generally means that future and
past are independent given the present. In mathematical terms:

P (st+1|st, at) = P (st+1|st, at, ..., s0, a0) (2.1)

A solution to a MDP is a policy7 π : S → A expressing which action
a ∈ A to choose for each state s ∈ S. RL aims to find an optimal policy
π∗, i.e., a policy that maximizes the expected return for all the states s ∈ S.
The expected return, also known as V-value function or state-value function,
estimates how good a state s ∈ S is under a policy π:

Vπ (s) = E

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, π

]
(2.2)

In RL T and R are unknown, so the agent must try actions to learn. This
key feature also leads to a key challenge known as the exploration-exploitation
dilemma: the agent has to make a trade-off between exploiting the optimal
policy so far and exploring different actions, which might turn out to be better
than the current optimal ones. A widespread solution, also used in this project,
is the ε-greedy policy, which acts randomly with probability ε and according
to the optimal policy with probability 1− ε.

Background | 15

a1 a2 ...

s1 Q(s1, a1) Q(s1, a2) ...

s2 Q(s2, a1) Q(s2, a2) ...

...

State s2

Action a2

Q(s2, a2)

Figure 2.5: Q-learning stores the Q-values for all the state-action pairs in the
Q-table.

2.3.2 Q-learning
A very popular RL algorithm is Q-learning [32]. Instead of the V-value
function, it uses the Q-value function, also known as action-value function,
that estimates the value of taking action a ∈ A in state s ∈ S and thereafter
following the policy π:

Qπ (s, a) = E

[
∞∑
k=0

γkRt+k

∣∣∣∣∣St = s, At = a, π

]
(2.3)

The optimal Q-value function can be written recursively using the Bellman
equation and is independent of the policy:

Q∗ (s, a) = max
π

Qπ (s, a)

= E
[
Rt + γmax

a′∈A
Q∗(St+1, a

′)

∣∣∣∣St = s, At = a

] (2.4)

Q-learning aims to approximate Q∗ incrementally with the following update:

Q (St, At)← (1− α)Q (St, At) + α

[
Rt + γmax

a∈A
Q (St+1, a)

]
(2.5)

6 Problems that go on continually without limit and cannot naturally break into episodes.
7 A policy can potentially also be stochastic, but here only deterministic policies are
considered for simplicity.

16 | Background

State s

Q(s,a1)

Q(s,a2)

Q(s,a3)

Figure 2.6: DQN approximates the Q-value function with a DNN. The input
layer corresponds to the features of the state, while the output layer contains
one neuron for each possible action.

where α is the learning rate. Given Q∗, the optimal policy is:

π∗(s) = arg max
a∈A

Q∗ (s, a) (2.6)

Q-learning is proved to converge to the optimal Q-value function provided
that all the actions are repeatedly sampled in all the states (i.e., there is
sufficient exploration), independently of the policy used8. This condition
can be guaranteed by using the ε-greedy policy, described in the previous
subsection, which also addresses the exploration-exploitation dilemma.

The main limitation of Q-learning is that it needs to store the Q-values
for all the state-action pairs in a lookup table called Q-table, as illustrated
in figure 2.5. Consequently, state and action spaces must be discrete and
low-dimensional, which is not the case for many real-world problems. DQN
overcomes this constraint.

2.3.3 Deep Q-Network
Deep Reinforcement Learning (DRL) [33] combines RL and Deep Learning
(DL) to overcome the limitations due to high-dimensional state and action
spaces. The Deep Reinforcement Learning (DRL) extension of Q-learning is
called Deep Q-Network (DQN) and became popular for outperforming human
8 This is known as off-policy learning.

Background | 17

experts in several Atari games by learning directly from pixels [34].
The main idea is to parameterize the Q-value function with a Deep Neural

Network (DNN), as shown in figure 2.6. Such a DNN receives the state as
input and outputs the Q-values for all the possible actions. In this way, DQN
can relax the limitation of Q-learning and accommodate high-dimensional,
even continuous, state spaces. The problem is still to find the optimal Q-value
function, but it is achieved by training the DNN as follows:

θt+1 = θt − α∇θL(Y Q
t , θ)

∣∣∣
θt

(2.7)

where θ represents the weights of the DNN, L is a loss function (e.g., squared
loss), and Y Q

t is the target Q-value at the t-th step. According to equation (2.4)
and equation (2.5), Y Q

t is:

Y Q
t = Rt + γmax

a∈A
Q (St+1, a; θt) (2.8)

However, DNNs work well when there is a fixed dataset providing stable
targets, while Y Q

t in equation (2.8) depends on θ which is continually updated.
This might cause instabilities and divergence. To solve the problem, DQN uses
a second DNN, known as target network, to generate the target:

Y Q
t = Rt + γmax

a∈A
Q
(
St+1, a; θ−t

)
(2.9)

where θ− represents the weights of the target network and is updated
periodically every C ∈ N steps with the weights of the original network, i.e.,
θ− = θ. The period C has to be large enough to guarantee convergence.

Another trick used by DQN to improve stability and convergence is the
replay memory. Basically, the agent stores the experience of the last N ∈ N
steps as tuples (St, At, St+1, Rt). In this way, the DNN can be trained with
mini-batch gradient descent (GD) by randomly selecting mini-batches from
the replay memory. Mini-batch GD has many advantages over online GD,
such as more accurate estimates of the gradients and efficient parallelization
of the algorithm.

The solution developed in this project uses DQN because, as will be
described in chapter 3, the designed RL environment has a continuous state
space.

18 | Background

Figure 2.7: ROS topic with one publisher and two subscribers [2].

2.4 Frameworks and tools
The solution proposed in this degree project was implemented using standard
frameworks and popular tools. ROS was used to distribute the code on
robot and MEC server, as well as to integrate it with other available modules
and packages. The simulation was realized using V-REP for the physical
environment (e.g., robots and objects in the warehouse) and ns-3 for the
network, with ROS integrating the two simulators. The RL environment was
implemented following the OpenAI Gym API so as to use Keras-RL for the
RL agent. Lastly, following the previous work described in section 2.1, the
implementationwas done for a Turtlebot 2i. The rest of this section provides an
overview of these frameworks and tools along with the terminology necessary
to understand chapter 3, which contains more information on how they are
used in this project.

2.4.1 ROS
Robotic Operating System (ROS) [23, 35] is the most popular open-source
framework for writing robot software. Despite the name, it is not an operating
system (OS) in the traditional sense but runs above a host OS. The main idea
is to distribute the tasks of a robot system in several processes and provide
structured communication to exchange data among them. For instance, one
process can perform path planning, one can perform localization, and another
can control the wheel motors. Such processes can also run on different
machines, and this is a handy functionality for CR and MEC.

ROS represents processes and their communication as nodes and edges,
respectively, in a computation graph. In this regard, the main concepts are
[36]:

Background | 19

Figure 2.8: ROS service [3].

• Node: A ROS node is a process performing computation which is coded
with a ROS client library, i.e., either roscpp in C++ [37] or rospy in
Python [38].

• Message: A ROS message is basically a data structure and is defined
in simple text files. ROS nodes can communicate with each other by
passing ROS messages.

• Topic: A ROS topic transports ROS messages of a certain type between
ROS nodes with a many-to-many paradigm. Thus, there can be multiple
publishers and multiple subscribers. An example is shown in figure 2.7.
The reader can consider a ROS topic as a bucket where ROS nodes can
put or get information.

• Service: A ROS service provides a client-server paradigm for
communication between ROS nodes. Both request and response are
ROS messages. An example is shown in figure 2.8. The reader familiar
with remote procedure calls (RPCs) can notice the similarity.

• Master: The ROS master is a special ROS node that offers registration
and lookup services to all the other ROS nodes, letting them find each
other to exchange ROS messages.

• Naming: ROS nodes, topics, and services are identified by unique names

20 | Background

in the computation graph. The naming system is hierarchical through
namespaces. ROS allows remapping the names when a ROS node is
launched, and this is a powerful mechanism that allows easy integration
of different ROS nodes.

Besides the technical features, the greatest strength of ROS relies on
the vast number of available packages developed and maintained by a large
community. For example, the navigation stack [39] provides well-established
algorithms that enable a robot to navigate and was used in this project.

2.4.2 V-REP
Virtual Robot Experimentation Platform (V-REP) [12, 13] is a versatile
and scalable robot simulation framework that allows simulating quickly
and precisely complex physical scenarios utilizing a physical engine. A
simulation scene contains scene objects (e.g., shapes, vision sensors) arranged
hierarchically in a tree structure. V-REP provides an extensive library of scene
objects but also an integrated environment to create new ones.

Several programming paradigms are supported to execute control code.
The most interesting ones for this work are:

• Embedded scripts: The code is written in Lua [40] scripts attached to
scene objects, called child scripts. V-REP executes a simulation loop
written in the main script, which calls the child scripts following the
scene hierarchy. This paradigm is the most powerful because of its
modular and distributed nature.

• Remote API: It is possible to control a V-REP scene from external code
using the remote API. The external code, which is the client, can be
written in several languages, among which Python, and can use the
remote API functions almost as regular functions.

• ROS interface: V-REP can also launch a ROS node. In this case, child
scripts can communicate with other ROS nodes by means of ROS topics
and services, as described in section 2.4.1.

The previous work discussed in section 2.1 developed several scene
objects, along with their child scripts using ROS topics and services. The most
important one is the Turtlebot 2i with its sensors, described in section 2.4.6.
Concerning this project, instead, the remote API was exploited to reset the
scene from the RL environment.

Background | 21

Sockets-like API

Application

Protocol Stack

Net Device Channel

Application

Protocol Stack

Net Device

Node Node

Packet

Figure 2.9: ns-3 key concepts.

Apart from its powerful functionalities, V-REP was preferred to other
platforms (e.g., Gazebo [41, 42]) because it provides a library of scene objects
for warehouses. Figure 2.1 shows an example of simulated warehouse in V-
REP.

2.4.3 ns-3
Network Simulator 3 (ns-3) [14, 15] is an open-source network simulator
and represents the de-facto standard for academic and industrial research in
the telecommunication domain. It provides a large C++ library that includes
today’s most popular protocols and models for physical phenomena such as
fading and interference.

The key abstractions used in ns-3, shown in figure 2.9 and also commonly
used in networking, are [43]:

• Node: A ns-3 node represents a device connected to the network. For
example, it might be a laptop, a smartphone, or a robot.

• Application: A ns-3 application is a user-level software running on a ns-
3 node that performs a task using network services, which are accessed
through a sockets-like API. An example is the UdpEchoServerApplica-
tion class, which implements an echo server.

22 | Background

Figure 2.10: ns-3 real-time mode.

• Channel: A ns-3 channel abstracts the medium over which data flows.
For instance, a wire which many nodes can access with Carrier-
Sense Multiple Access (CSMA), such as Ethernet networks, can be
represented with the CsmaChannel class.

• Net device: A ns-3 node can connect to a ns-3 channel only if a specific
ns-3 net device is installed on it. In particular, a ns-3 net device
abstracts the driver of a Network Interface Card (NIC). An example is
the CsmaNetDevice class, which allows a ns-3 node to communicate
over a CsmaChannel.

• Packet: A ns-3 packet encapsulates the data to transfer, known as
payload, with the protocol information, known as the header, precisely
like in real packet-switched networks.

ns-3 is a discrete-event simulator. All the simulated objects, such as ns-
3 applications and net devices, schedule events to be executed at a specific
simulation time. Thus, the simulator runs the scheduled events in sequential
time order, jumping by default immediately to the next event when the current
one is completed. This operating mode means that the simulation time is
discrete, and there is no relationship between simulation time and real-time.

However, ns-3 supports also a real-time mode for integration with test-
beds. In this case, the simulator attempts to keep the simulation clock aligned
with the machine clock. Specifically, as shown in figure 2.10, when an event
is finished, the simulator computes the gap between the machine clock tm and
the simulation time of the next event ts: tgap = tm − ts. If tgap < 0, the
next event is scheduled for the future and the simulator sleeps for tgap before
executing it. Otherwise, when tgap > 0, the simulation is late because the

Background | 23

1 import gym
2

3 agent = get_agent()
4 env = gym.make('CartPole-v0')
5 env.seed(1)
6 for episode in range(20):
7 env.render()
8 state = env.reset()
9 done = False

10 while not done:
11 action = agent.get_action(state)
12 state, reward, done, _ = env.step(action)
13 env.close()

Algorithm 2.1: Simple usage of an OpenAI Gym environment.

computation of the previous event took too much time, so the next event is
immediately executed. For heavy simulations, tgap might increase indefinitely,
leading to inaccurate simulations. For this reason, it is possible to change the
synchronization mode from BestEffort (default) to HardLimit, which aborts
the simulation if tgap exceeds a user-defined threshold. In this project, the real-
time mode was used for integration with V-REP and theHardLimit option was
chosen to make sure the simulation is not too heavy and ns-3 keeps real-time.

2.4.4 OpenAI Gym
OpenAI Gym [44, 45] is a widely-used toolkit for defining and

implementing RL environments in Python. In particular, it provides a
collection of well-known problems, such as Atari games, and a library to
simplify the implementation of new ones. The main idea is to decouple
problem and agent so that different RL algorithms can be tested and compared,
and this is realized by defining a simple API shared by all the environments.
Algorithm 2.1 shows an example of usage of an OpenAI Gym environment
through such an API, which consists of the following methods:

• Step: Applies the action to the environment and returns the new state and
the reward, as well as a flag indicating if the episode has terminated.

• Reset: Resets the environment to an initial state and returns it. This
method is called when an episode ends and a new one has to be started.

24 | Background

• Render: Renders the environment, for example, by showing it on display
in a human-readable way. In order to save computation, it is possible to
turn the rendering off.

• Seed: Sets the seed for the Random Number Generators (RNGs). This
method enables the reproducibility of tests.

• Close: Performs the necessary cleanup before ending.

When implementing a new RL environment, it is worth doing it with
OpenAI Gym since many libraries provide ready RL agents which assume
this API. An example is Keras-RL [46], which was used in this project.

2.4.5 Keras-RL
Keras-RL [46] provides a Python library of state-of-the-art DRL algorithms
and works with OpenAI Gym environments. Behind the scenes, it uses the
Keras API [47] for all the things related to DL, such as neural networks,
optimizers, and loss functions.

Among other things, Keras-RL defines APIs for agents and callbacks
through abstract classes. Therefore, it is possible to implement new agents
and define new operations within the framework. In this project, Keras-RL
was chosen mainly to get a ready implementation of DQN. On the other hand,
some naive agents were implemented as Keras-RL agents to provide baselines,
and logging was realized using Keras-RL callbacks.

2.4.6 Turtlebot 2i
Turtlebot 2i [21, 22] is a differential-drive mobile robot manufactured by
Trossen Robotics. Like the other robots of the Turtlebot family, it is generally
used for education and research purposes. The robot is shown in figure 2.11
and includes the following hardware:

• Mobile base: Kobuki Mobile Base

• Robotic arm: Pincher MK3 Robo Arm

• Sensors: Orbbec Astra Cam, Intel RealSense 3D Camera SR300-Series,
Bumper Sensors, Scanse LiDAR

• Processor: Intel® Celeron® Processor J3455 (2 MB cache, up to 2.3
GHz)

Background | 25

(a) (b)

Figure 2.11: Real Turtlebot 2i (a) and V-REP model (b).

• Memory: 4 GB RAM DDR3L-1600MHz

• Storage: 240 GB SSD

• Connectivity: 802.11AC Wi-Fi, Bluetooth 4.0

ROS software is available for the mobile base, the robotic arm, and the
sensors. The LiDAR is not included by default but was added for the previous
work discussed in section 2.1. Turtlebot 2i was chosen because it is a low-cost
mobile robot that can navigate and perform pick-and-place operations, thanks
to the mobile base and the robotic arm.

2.5 Related work
Plenty of research work has been conducted to solve the resource management
problem in MEC [11, 48, 49]. The key challenge is to decide for each device
whether it should compute locally or offload. The main adopted approaches
are game theory and DRL. Indeed, the former can naturally be applied by
considering each MD as a player and results in efficient distributed algorithms
[50]. At the same time, the latter can learn a policy dynamically and then use
it to provide solutions efficiently [51]. Both approaches are used to find sub-
optimal solutions to NP-hard optimization problems, which cannot be solved
optimally in real-time.

Game theory was applied by Chen et al. [52] in a basic system with one
MEC server and multiple MDs, each one with one task. In particular, the

26 | Background

authors optimized a linear combination of latency and energy, and they proved
the solution to be a potential game, thus converging to a Nash equilibrium
(NE) in a finite number of iterations. Other papers followed a very similar
approach and extended [52]. Specifically, Yang et al. [53] also considered
hard latency constraints of the tasks, load on the servers, and allowed MDs
to offload also to MEC servers located in other 5G cells. Guo et al. [50]
studied a three-layered architecture with cloud and edge, allowing MDs to
choose whether to compute locally, offload to the MEC server, or offload to
the cloud, and compared the game-theoretic solution to centralized brute force
and greedy solutions. The same work was repeated also without cloud layer
but with multiple tasks per MD [54]. Furthermore, [54] was used to build a
dataset for training decision trees and to improve adaptability to changes in
the scenario, such as varying number of MDs. Li et al. [55] also applied
game theory in a specific scenario in which multiple robots have to perform
3D scene understanding. In that work, the authors exploited the knowledge
about the particular task and allowed partial offloading. Indeed, since the scene
understanding uses a CNN, a robot can also decide to forward the input until a
certain layer of the CNN locally and to offload the rest, lessening the data sent
on the network in comparison to complete offloading.

Concerning DRL, although not using the edge but only the cloud, a very
relevant work was done by Chinchali et al. [56]. The authors optimized
a linear combination of latency and energy with an Advantage Actor-Critic
(A2C) agent located on the robot that does not need information from
other devices, giving it a network budget9 as a fair-share term. Since they
focused on offloading ML tasks, in particular a face recognition task, they
also proposed to use a less accurate model for local computation providing
acceptable delays for onboard computation due to the fewer parameters and
fewer operations. Furthermore, they introduced the novel idea of skipping the
computation and reusing the last output, exploiting the temporal coherence10
in video streams. Other papers jointly optimized task-offloading decisions and
bandwidth allocation. Huang et al. [51] formulated the problem as mixed-
integer non-linear programming, which is highly complex to solve, and then
transformed it to a MDP in order to solve it faster with DQN. Another DRL
solution was applied in [57] with the same goal, also adding a procedure that
automatically adjusts the parameters of the algorithm on the fly.

All the discussed papers, except [56], model analytically the commu-
9 The robot can offload at most B times for each T times, B being the network budget and T
the finite horizon.

10 Sequential frames are significantly correlated and can be very similar.

Background | 27

nication with a wireless interference model based on the Shannon-Hartley
theorem [11], which allows estimating for each MD the throughput during
the offloading operation. These works also perform numerical experiments
using only synthesized data, in which ideal behavior and few phenomena
are considered. However, in real implementations, such a communication
model requires that the MDs candidate to offload measure their Signal-to-
Interference-Noise Ratio (SINR) by sending constant pilot signals to the BS
at the same time, as described in [52]. This mechanism is difficult to realize
with common packet-based protocols such as TCP and UDP, so the procedure
should be performed at low layers of the network protocol stack. In the case
of game-theoretic solutions, this has also to be repeated until convergence to
the NE. Moreover, these approaches imply a strong synchronization among
the MDs, that have to wait until all the tasks are completed before repeating
the offloading decision-making, possibly wasting time without using network
resources. Another limitation of the reviewed papers, excluding [56], is given
by the computation model. The capability of a device (MD or server) is
abstracted with the CPU-cycle frequency fcpu, whereas a task is represented
by the pair (L,X), where L is the input-data size and X is the computation
intensity (CPU cycles per bit). The execution time and energy are then
computed with basic operations using these parameters. However, in real
systems, this model is not very precise due to the varying load of the system
(i.e., processes other than the considered task are always present) and the
availability of GPUs beyond CPUs. Such issues make the solutions unsuitable
and complex to apply in real scenarios, so they were not chosen for this degree
project.

The solution developed in this degree project is mainly inspired by [56],
which does not suffer from the limitations mentioned above as the DRL
algorithm uses actual measurements of latency and energy in the reward
without modeling communication and computation analytically. Moreover,
since it does not rely on the wireless interference model to estimate the
throughput, it works with any network technology (4G, 5G, and Wi-Fi) and
any network topology (MEC servers in the BSs, APs, or in small-scale data
centers). It can also be easily extended to include both edge and cloud
layers. Another advantage is that other MDs using the network for operations
other than MEC (e.g., human workers’ smartphones accessing the Internet)
are allowed. Each robot also acts independently, not synchronizing with
the others, and this fits the strategy used in the previous work presented in
section 2.1. Such features simplify the implementation and the deployment in
real or simulated environments. Moreover, since the task to be offloaded in

28 | Background

this work is the scene understanding, both the less accurate model for local
computation and the temporal coherence ideas fit perfectly.

It is worth highlighting that this work does not merely implement the
solution in [56] for the HRC scenario, rather it develops several extensions,
representing novel contributions. The most important contribution, novel in
literature to the best of the authors’ knowledge, is the usage of a safety KPI
to achieve safety-oriented decision-making. Also, the solution is adapted for
MEC instead of CC. Lastly, the network budget is replacedwith actual network
measurements. Indeed, such a hyperparameter should be set manually and
would not be robust to dynamic changes in the scenario.

Chapter 3

Methods

This chapter provides the methods used to solve the task offloading problem
for the scene understanding formulated in chapter 1. Section 3.1 describes the
system design, including all the modules needed for the solution. Section 3.2,
instead, presents the system implementation in a simulated environment using
the frameworks and tools described in section 2.4.

3.1 System design
This work considers a MEC scenario with multiple robots and a single server.
The MEC server is supposed to provide enough resources to all the robots
through virtualization. So, despite the name used throughout the thesis, it is
more realistically a small-scale data center.

The safety-oriented solution to the task-offloading problem for the scene
understanding was designed as a system of several modules, some running
on the robot and others on the MEC server. Figure 3.1 illustrates such a
system. The red block represents the core decision-making logic, whereas
the yellow ones are helper modules. The blue blocks, instead, are part of the
safety framework of section 2.1, so they are not a direct contribution of this
work. All these modules realize the decision-making for one robot, so there is
one system for each robot.

The system aims to produce a scene graph continually andmake it available
for other processes on the robot (e.g., risk analysis and evaluation, risk
mitigation). For doing this intelligently using MEC and considering safety,
the task offloading module senses the environment state by cooperating with
network monitor (for network aspects) as well as risk analysis and evaluation
(for safety aspects). Thus, it decides whether to use the simplified scene

29

30 | Methods

Robot MEC server

Risk Analysis
& Evaluation

Scene
understanding

[Complex]
Task Proxy

Scene
understanding

[Simplified]

Task
Offloading Task Proxy

Stamper

Echo ServerNetwork
MonitorSensors

Sensor data

Scene graph

Risk value Sensor data

Scene graph + info

Command Network state

Echo request

Echo reply

Bytes + duration

Received bytes

Sensor data

Scene graph + info Sensor data Scene graph Sensor data

Module in safety framework

Helper module for task offloading

Decision-making module for task offloading

Figure 3.1: System design for task-offloading decision-making.

understanding available on the robot or the complex one on the MEC server.
Another choice is to reuse the last scene graph, stored internally. When a
scene graph is available on the task offloading module, the step terminates,
and the system repeats the loop. The rest of this section describes in detail
each component of the system.

3.1.1 Task Offloading
The task offloading module, highlighted in red in figure 3.1, is the core of
the system and is responsible for deciding if the scene understanding should
run on the robot or the MEC server. Since it uses RL, it provides the agent
and its interaction with the environment. However, the latter is realized in
cooperation with the other modules, which help sense the state, apply the
action, and compute the reward function.

Methods | 31

Figure 3.2: Action space in the RL safety-oriented task-offloading
environment.

In line with section 2.3, the RL environment is formalized as an MDP.
Therefore, state space S, action space A, and reward function R are defined
below. The reader is reminded that the discount factor γ ∈ [0, 1] is just a real
number and does not need further definitions, whereas the transition function
T is not available in RL.

Action space

Each action represents a way for the agent to perform the scene understanding.
Therefore, each successful step terminates with a scene graph available on the
task offloadingmodule. The possible actions that the agent can take, illustrated
in figure 3.2, are:

[A1] Offload to the edge: The robot sends the sensor data to the MEC server,
which performs the scene understanding and returns the scene graph.
On theMEC server, the scene understanding relies on a complex11 CNN
with high accuracy for instance segmentation.

[A2] Compute on the robot: The robot performs the scene understanding
locally. In this case, the instance segmentation is done with a less
complex CNNwith lower accuracy than the one used on theMEC server.

11 Complexity in CNNs is mainly measured by the number of parameters, thus it is related to
the architecture (e.g., number of layers, number of filters per layer).

32 | Methods

[A3] Skip computation and reuse last output: The robot does not perform any
calculation, nor does it offload the task to the MEC server. It just reuses
the previous output.

For action A1 some minor operations are also involved. Specifically, the
RGB image is resized to Inwsize before sending it on the network to speed up
the transfer. Inwsize can be the expected size of the CNN on the MEC server
or smaller than that, with the latter case causing image degradation. The
same resizing is applied to the depth image, given that it is combined with
the RGB one and the output of the instance segmentation. In addition to this,
the computation is aborted if the action takes more than the maximum allowed
latency Lmax. In such a case, the step is considered failed, and the scene graph
is not available. The communication over the network uses TCP as transport
layer protocol to have reliable delivery.

The key idea behind actions A1 and A2 is to provide a different trade-
off between accuracy and complexity. Indeed, with the same hardware, the
more complex a CNN is, the more operations and the longer its inference step
takes. On the other hand, a CNN generally runs faster when a GPU is available
on the machine. Therefore, this design uses a more complex CNN on the
edge, where a GPU is available, and a less complex one on board, where only
a low-cost CPU is present. In this setup, the local inference can satisfy the
latency requirements of the risk management process. In addition to this, it
is highlighted that, for these actions, the task offloading module only sends
the robot’s sensor data to the designated scene understanding module, which
processes the input and returns the scene graph. In other words, the action is
applied with the help of the scene understanding modules, and this can also be
seen in figure 3.1.

Concerning action A3, it exploits the temporal coherence among
sequential RGB images from the robot’s camera. Indeed, when the current
image is very similar to the last processed one, it is very likely that the new
scene graph would be almost identical to the last one. Hence, it makes sense to
skip the computation and reuse the last scene graph, which leads to immediate
zero-latency output and energy savings.

State space

The environment state was designed to capture all the information useful for
the agent to decide the action to take, in line with the reward function described
later in this section. It includes several substates:

Methods | 33

Figure 3.3: Temporal coherence measured with SSIM between two images
captured within a short period of time.

[S1] Network: The network state from the robot’s perspective is given by
throughput ∈ [0, Snwmax] and RTT ∈ [0, T pingmax]. Both attributes
have continuous domains, Snwmax represents the maximum network
speed, whereas T pingmax is the maximum allowed duration of the RTT
measurement. The network monitor is responsible to sense and provide
this substate on-demand.

[S2] Safety: The safety of the robot’s surroundings is measured by the
maximum risk value in the last output of the risk analysis and evaluation.
Therefore, it can assume any real value in [0, Rmax], where Rmax is the
maximum risk value that the risk analysis and evaluation can output.

[S3] Edge output: The MEC server provides a more accurate scene
understanding. This is represented with a Boolean value that is 1 if the
last scene graph was computed on the edge, 0 otherwise.

[S4] Temporal coherence: The similarity between the current and the last
processed images is measured with the Structural Similarity Index
Measure (SSIM) [58]. An example is shown in figure 3.3. More
specifically, this metric considers luminance, contrast, and structure
of the images to compute a real value SSIM ∈ [0, 1], where the
boundaries 0 and 1 mean distinct and identical, respectively.

Substate S1 is the only one containing more than one feature. Therefore,
the complete environment state can be obtained by unfolding it and counts five

34 | Methods

attributes: throughput, RTT, risk value, edge output, and temporal coherence.
The reason for including edge output (substate S3) is that it is useful in
combination with the temporal coherence (substate S4) for action A3. For
example, the agent might decide to skip the computation with a certain
temporal coherence only if the last scene graph was computed on the edge,
as a more accurate output is provided.

Since four of its five attributes are continuous, the environment state has
a huge domain. Moreover, its evolution depends on complex dynamics (e.g.,
network phenomena, navigation of the robot) and external factors (e.g., the
behavior of the human workers). Thus, it would be very complex, if not
impossible, to model it analytically or to define static rules, and this justifies
the need for an RL approach.

It is worth mentioning that the task offloading module senses the
environment state with the help of other modules, as shown in figure 3.1.
In particular, substate S1 is provided by the network monitor as will be
described in section 3.1.2, whereas the risk analysis and evaluation described
in section 2.1 is responsible for substate S2. Substates S3 and S4, instead, are
calculated internally directly by this module.

Reward function

The reward function was designed to incorporate the objectives that the robot
should learn. It provides positive rewards in the [0, 1] interval. The reason for
this is that negative rewards stimulate the agent to reach the goal as quickly as
possible [59], but the RL task-offloading problem is infinite-horizon in nature,
so there is no goal to reach. The pseudo-code is shown in algorithm 3.1. Input
and output are self-explanatory, except for the latency that needs clarification.
In this work, latency is the time elapsed from the agent’s action decision to the
scene graph received by the task offloading module. Therefore, in the case of
edge computing, latency includes both execution and communication time.

The reward function begins by checking whether the scene graph is
available (line 3), meaning that the computation was not aborted. The reader
is reminded that this can happen only for action A1, when the latency exceeds
the limit Lmax. If this check fails, the reward is set to 0, signaling that the
agent’s decision to offload was wrong.

Next, if the last scene graph was reused (action A3), it is compared with the
current reference scene graph (lines 6 to 15) to check that: (i) all the objects
in the current scene graph are present in the last scene graph, so no new object
was missed (line 12); (ii) the difference in distance and direction for each

Methods | 35

Algorithm 3.1: Reward function in the RL safety-oriented task-
offloading environment.

Input: State s, Action a, Scene graph sg, Latency l
Output: Reward

1

2 // Check success (step not aborted)
3 if sg = NULL then return 0
4

5 // Check scene graph
6 if a = A3 then
7 sgtrue ← ExtractSceneGraph()
8 risk_value← s[“risk_value”]
9 dist_tol← GetDistanceTolerance(risk_value)

10 dir_tol← GetDirectionTolerance(risk_value)
11 foreach objtrue in sgtrue do
12 if objtrue not in sg then return 0
13 ∆dist = |obj[“distance”]− objtrue[“distance”]|
14 ∆dir = |obj[“direction”]− objtrue[“direction”]|
15 if ∆dist > dist_tol or ∆dir > dir_tol then return 0
16 end
17 end
18

19 // Contributions to reward
20 rl ← GetLatencyReward(l)
21 if a = A1 or (a = A3 and s[“edge output”]) then ra ← 0.3 else

ra ← 0
22 if a 6= A1 then rc ← 0.5 else rc ← 0
23 if a = A3 then re ← 0.1 else re ← 0
24

25 // Safety weighs contributions
26 wrisk ← GetRiskWeight(risk_value)
27 return wrisk × (rl + ra) + (1− wrisk)× (rc + re)

36 | Methods

0.0 Rmax

risk value

Tdist
max

0.0

di
st

an
ce

 to
le

ra
nc

e

(a) GetDistanceTolerance

0.0 Rmax

risk value

Tdir
max

0.0

di
re

ct
io

n
to

le
ra

nc
e

(b) GetDirectionTolerance

0.0 Lgood
latency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

la
te

nc
y

re
wa

rd
 (r

l)

(c) GetLatencyReward

0.0 Rmax

risk value

0.0

0.2

0.4

0.6

0.8

1.0

w
ris
k

(d) GetRiskWeight

Figure 3.4: Functions used in algorithm 3.1.

object is within safety-based tolerances (lines 13 to 15). More specifically, the
distance and direction tolerances are calculated using the following functions,
also graphically shown in figures 3.4a and 3.4b, on the risk value:

GetDistanceTolerance (x) = T distmax

(
x

Rmax

− 1

)2

(3.1)

GetDirectionTolerance (x) = T dirmax

(
x

Rmax

− 1

)2

(3.2)

where T distmax and T dirmax are two hyperparameters indicating the maximum
allowed variations in distance and direction, respectively, corresponding to
risk value equal to 0. Rmax, instead, is the maximum risk value that the risk
analysis and evaluation can output. Keeping in mind that the input x is the
risk value, the idea behind these equations is that the robot does not care about
small inaccuracies in safe situations (e.g., a static object detected at 3.2 m

instead of 3 m does not have a negative effect), whereas it is important to
have an accurate and updated scene graph with mid-high risk (e.g., a small

Methods | 37

variation in the direction of a human worker at 0.5 m makes it difficult for the
robot to avoid them safely). In addition to this, as can be seen qualitatively in
figures 3.4a and 3.4b, their trend is steeper than linear functions to consider
medium risk values more as dangerous than safe. If the check fails, the reward
function returns 0, indicating that the scene graphwas inadequate for the safety
requirements and unsuitable for reusing the last output.

If all the above-mentioned checks pass, the function continues by
calculating several contributions for the final reward: a latency reward (rl)
inversely proportional to the latency (line 20); an accuracy reward (ra) when
the scene graph is output of the complex model on the MEC server (line 21);
a congestion reward (rc) when the network was not used (line 22); an energy
reward (re) when the computation was skipped (line 23). In particular, the
latency reward is calculated with the following function, also graphically
represented in figure 3.4c, applied to the latency:

GetLatencyReward (x) =

0.7 if x ≤ Lgood,

0.7
(
Lgood

x

)2
if x > Lgood.

(3.3)

where Lgood is a hyperparameter representing the latency achievable with little
network congestion, thus it should consider the network technology. The
latency reward saturates at such a value, avoiding large differences in rewards
with small variations in latency. This function encodes the robot’s desire to
get latency under a certain threshold Lgood.

The last part uses safety to calculate the final reward (lines 26 to 27).
First, the risk value is mapped to a weight (wrisk, line 26) using the following
function, also shown in figure 3.4d:

GetRiskWeight (x) = −
(

x

Rmax

)2

+
2x

Rmax

(3.4)

where the same consideration made for equations (3.1) and (3.2) applies,
meaning that medium risk values are treated more as hazardous than safe.
After that, this weight is used to combine the contributions mentioned above
(line 27). In particular, wrisk scales the contributions related to a safety
improvement (rl and ra), whereas 1 − wrisk the others (rc and re). The key
insight is to give more importance to latency and accuracy with mid-high risk,
whereas to encourage avoiding network congestion and saving energy with
low risk. In other words, the robot is stimulated to adapt latency and accuracy
to the safety requirements, using the edge only when the network performance

38 | Methods

is good and when the situation is hazardous. On the other hand, when in safe
conditions, the robot should not use the edge to let other robots in more critical
situations use it.

Finally, a consideration has to be made for the ExtractSceneGraph
function (line 7) used to generate the reference scene graph in case of
computation skip. Such a function cannot perform the scene understanding
with instance segmentation, or the advantage of skipping the computation
is lost. It needs to be fast. Section 3.2 provides information about its
implementation in simulations, whereas chapter 5 gives insights on how to
realize it in a real environment.

Agent

The RL environment defined above has a discrete action space and a
continuous state space. Indeed, the former contains just three possibilities,
whereas the latter has some continuous attributes (throughput, RTT, risk
value, temporal coherence). Based on these features and on what described in
section 2.3, DQN is a valid candidate. Considering also that it was previously
applied successfully by Terra et al. for the risk mitigation module [8] and it
was widely used in MEC [60, 61, 57, 62], it was chosen for the solution.

Other alternatives exist and could be used without any modifications of
the RL environment. For example, Cross-Entropy Method (CEM) [63] and
State–Action–Reward–State–Action (SARSA) [28] also work with discrete
action space and continuous state space. However, these agents are out of
the scope of this work and are left for possible future work.

3.1.2 Network Monitor
The network monitor provides a service for measuring on-demand the end-to-
end network performance between robot and MEC server. In other words,
since the module runs on board, it enables the robot to sense the network
state, corresponding to substate S1 of the RL environment state. As already
mentioned, the two metrics used to abstract the network performance are RTT
and throughput. The measurement, detailed in the following, is realized in
cooperation with two modules installed on the MEC server, namely the echo
server and the stamper, as shown in figure 3.1.

After receiving the command, the network monitor starts with a ping
operation. Specifically, it sends an ICMP echo request to the echo server and
waits for the ICMP echo reply. The echo server is responsible for sending back
such a reply and is part of the kernel in popular OSs. In this way, the network

Methods | 39

monitor can calculate the RTT, which is the time elapsed from the request to
the receipt of the reply:

RTT = treply − trequest (3.5)

where trequest is the time the request is sent, treply is the time the response
is received, and all the quantities are expressed in ms. As usual with ping
operations, the communication between network monitor and echo server uses
UDP at the transport layer, which is connection-less and so it can immediately
send packets without overhead, unlike TCP which has an initial handshake.
In case the operation takes more the maximum allowed duration T pingmax , the
network monitor sets RTT = T pingmax .

Once the RTT measurement is concluded, the network monitor estimates
the throughput from robot to MEC server by sending bytes to the stamper for
a duration of Ttp. The stamper waits for Ttp and then sends back the number
of received bytes nrecv. Therefore, the network monitor can calculate the
estimated throughput as follows:

throughput =
nrecv

T tpmax
· 8 · 10−6 (3.6)

where the multiplication factor converts the result in Mbps, as common when
dealing with network speeds. Such a communication uses TCP at the transport
layer, as the task offloading module does when sending the inputs to the scene
understanding. In this way, the throughput estimate is more significant.

It is worth noticing that, since one of the objectives of the whole system is
to reduce the latency, the measurement needs to be fast. The network monitor
guarantees this requirement, since the duration has an upper bound of T pingmax +

Ttp. Moreover, the measurement is independent of the topology, so it fits any
position of the MEC server (in the BS, AP, or small-scale data centers) and
also CC, even though the latter is not considered.

3.1.3 Task Proxy
A task proxy acts between a scene understanding and the task offloading
module and cooperates with them when performing an action. Specifically,
the goal is to calculate the communication latency lcomm and the execution
latency lexec, which are used by the task offloading module to estimate the
energy consumption, which is of interest in the experiments.

When the task offloading module takes an action, it sends the sensor data

40 | Methods

to the task proxy, which forwards it to the scene understanding and waits for
the output. Thus, the task proxy can calculate the execution latency as:

lexec = texecend − texecstart (3.7)

where texecstart is the time the sensor data is forwarded and texecend is the time the
scene graph is received from the scene understanding.

Next, the task proxy sends back the scene graph together with lexec to the
task offloading module. The latter can therefore calculate the latency:

l = tactionend − tactionstart (3.8)

where tactionstart and tactionend are start and end time of the whole procedure.
By difference, the task offloading module can also find the communication
latency:

lcomm = l − lexec (3.9)

which is due to the network in case of edge computing (action A1) whereas
negligible12 for local computing (action A2).

It is worth highlighting that the task proxy for edge computing (action A1)
runs on the MEC server to understand when the communication ends and
the execution starts. Even though local computing (action A2) does not
use the network, a task proxy is still used for symmetry to simplify the
implementation. In addition to this, the implementation in the simulated
environment gives more responsibilities to the task proxy, as described in
section 3.2.

3.2 Implementation
The implementationwas done in a simulated environment, withV-REP and ns-
3 realizing the physical objects and the network, respectively. All the modules
in figure 3.1 run on the same machine and are implemented using ROS, which
both provides them communication and also integrates V-REP and ns-3. The
implementation is shown in figure 3.5. Many of the ROS nodes are self-
explanatory since they implement the homonyms13 of figure 3.1. Therefore,
the rest of this section focuses only on those deserving particular attention.
12 There is still a small delay due to inter-process communication (IPC), i.e., communication
between processes through the kernel.

13 Risk analysis and evaluation was abbreviated to risk_assessment.

Methods | 41

/

network_simulation

vrep_ros_interface

/turtlebot2i

scene_graph_generator

task_proxy

task_offloading

network_monitor

risk_assessment

safety_zones

scene_graph

risk_value

odom

generate_scene_graph_proxy

generate_scene_graph

measure_network

/turtlebot2i/edge

task_proxy

scene_graph_generator
generate_scene_graph

generate_scene_graph_proxy

upload

ping

download

/turtlebot2i/eval

risk_assessment

scene_graph_generator

risk_value

scene_graph

safety_zones

ROS node

ROS topic

ROS service

Namespace

ROS node provides ROS service

Figure 3.5: Implementation of system, including additional nodes for the
evaluation, with ROS.

42 | Methods

It is worth mentioning that, even though figure 3.5 shows the implementa-
tion for one robot, multiple robots can be used just by launching everything
inside the /turtlebot2i namespace (including the nested namespaces) under
another namespace (e.g., /turtlebot2i_2). Moreover, even though the
warehouse scenario, the network topology, and the DQN architecture are
relevant contributions and part of the work, they are presented in chapter 4
as related to the setup of the experiments.

3.2.1 System
In the simulated environment, the network is realized with ns-3 but has
to be used on-demand by robots in V-REP. This is realized by the
network_simulation ROS node that:

• Simulates the network using ns-3 in real-time mode with the HardLimit
option. This is done in a dedicated thread, so that the process can also do
what described in the next bullet points. The simulated network contains
ns-3 nodes for each robot in V-REP and for theMEC server. The stamper
and echo server of figure 3.1 are implemented by installing a PacketSink
and a UdpEchoServer ns-3 application on the ns-3 node for the MEC
server, respectively.

• Provides ROS services for using the network. In particular, the upload
and download ROS services transfer bytes from robot to MEC server
and vice versa, respectively, while the ping ROS service realizes the
ping operation needed by the network monitor. All of them basically
schedule events in ns-3, which runs and executes them concurrently in
a separated thread.

• Keeps synchronized the positions of robots in V-REP and corresponding
ns-3 nodes. This is done by subscribing to the odom ROS topic,
on which V-REP publishes the robot’s position, and by updating the
position of the ns-3 node.

Such a multi-threaded strategy integrates ns-3 and V-REP using ROS and is
possible because ns-3 is thread-safe in real-time mode. To the best of the
authors’ knowledge, this is a novel approach not present in literature.

Another problem in the simulated environment is related to the execution
of the complex scene understanding on the MEC server. Indeed, since
commercial PCs like the one used for this project are usually not provided
with the powerful GPUs available on edge or cloud, the simulated edge

Methods | 43

computation would take longer than the real one. This is solved by the
scene_graph_generator ROS nodes, which extract the scene graph directly
from V-REP by querying it via remote API. Such an operation is much faster
than the real scene understanding and, combined with the modified task proxy
described in the following, allows pretending to perform the complex scene
understanding with a powerful GPU even without having it. In addition
to this, it is also ideal to implement the ExtractSceneGraph function in
algorithm 3.1 (line 7). However, the extracted scene graph is always perfect,
so the different accuracy between onboard and on-edge instance segmentation
models is not simulated, and this is one of the limitations discussed in
section 1.6. This ROS node was already available from previous work. Still,
it was extended to be alternatively either on-demand with a ROS service or
continuous by publishing to a ROS topic. The system uses the former mode,
but the latter is exploited for the evaluation, as described in section 3.2.2.

The task_proxy ROS node implements the homonym in figure 3.1
by providing the generate_scene_graph_proxy ROS service, but with the
extended responsibility of simulating communication and execution latencies.
In particular, the former is done only for edge computing (action A1) by using
the upload ROS service to upload the sensor data from robot to MEC server
and the download ROS service to download the scene graph fromMEC server
to robot. The latter, instead, is simulated by sleeping for:

tsleep = Lexec − (texecend − texecstart) + σ (3.10)

where Lexec = Ledgeexec or Lexec = Lrobotexec are hyperparameters for edge and local
computing, respectively, and σ ∼ N (0, 0.1 · Lexec) adds a Gaussian noise.
The execution latency then becomes:

lexec = Lexec + σ (3.11)

The RL environment is implemented in the task_offloading ROS node
using OpenAI Gym. It is highlighted that it requests the scene understanding
by calling the ROS services provided by the task_proxy ROS nodes, but
then it publishes the resulting scene graph on the scene_graph ROS topic
to make it available to all the other ROS nodes (e.g., risk_assessment).
In addition, it also bypasses the task_proxy ROS node and calls directly
the ROS service provided by the scene_graph_generator ROS node for the
ExtractSceneGraph function in algorithm 3.1 (line 7). Moreover, although
not shown in figure 3.5, it provides a pick-and-place navigation between
randomly sampled shelves and conveyor belts in the warehouse by sending

44 | Methods

navigation goals to the move_base ROS node. Since for experiments it is
necessary to define an end also for infinite-horizon problems, the episode
length Elen is measured in completed pick-and-place operations. Besides
ROS, the RL environment also uses the V-REP remote API to reset the
environment.

The RL agent is also contained in the task_offloading ROS node. DQN
is provided by the Keras-RL library, which works with OpenAI Gym
environments. Since neural networks learn better with normalized inputs,
the state is pre-processed by means of min-max normalization. In particular,
RTT, throughput, and risk value are normalized using T pingmax , Snwmax, Rmax,
respectively, which are hyperparameters representing the maximum values
(the minimum values are 0).

3.2.2 Evaluation
The evaluation of the solution discussed in chapter 4 is realized in two steps:

1. During the simulations, some loggers record all the necessary
information. Such loggers are implemented as Keras-RL callbacks so
that they can be attached to the Keras-RL agent. Thus, they run inside
the task_offloading ROS node.

2. After the simulations, the logs are analyzed with a specific Python script
which calculates the metrics and generates charts.

Importantly, the logs related to safety come from the risk_assessment and
scene_graph_generator ROS nodes. However, in order for this evaluation to
be fair, such information should be available with low latency independently of
the agent, and this is realized in the /turtlebot2i/eval namespace. In this case,
the scene_graph_generator ROS node runs in continuous mode and publishes
at a constant rate the scene graph to the ROS topic.

Chapter 4

Results and analysis

This chapter describes the experiments carried out to evaluate the solution and
discusses their results. Section 4.1 explains the experimental setup with all
the settings and the reasons behind them. Section 4.2 presents the evaluation
framework, including baselines and metrics. Finally, section 4.3 reports and
analyzes the results.

4.1 Experiments
In order to evaluate systematically the solution designed in chapter 3, two RL
agents were considered:

• DQN-2: The DQN agent can choose between local and edge computing
(actions A1 and A2), but cannot skip the computation (action A3).

• DQN-3: The DQN agent can choose among actions A1 to A3.

DQN-2 helps to understand whether the RL algorithm manages to learn well
when to offload the scene understanding, without action A3 which can affect
such an analysis. DQN-3, instead, represents the complete solution and, by
comparing with DQN-2, shows if skipping the computation is beneficial.
This sequence was also followed to tune the hyperparameters used in the
reward function. Furthermore, some naive agents were also tested and used as
baselines, as presented in section 4.2.

The simulated scenario, described and motivated in section 4.1.1, contains
up to two robots. From that, the following steps for the experiments were
carried out:

1. Train DQN-2 and DQN-3 in the scenario with one robot.

45

46 | Results and analysis

2. Test DQN-2, DQN-3, and the baselines in the scenario with one robot.

3. Test DQN-2, DQN-3, and the baselines in the scenario with two robots,
where both robots use the same agent.

The last step is useful to understand if the solution works with multiple robots
offloading the scene understanding, effectively sharing the network resources.
Moreover, it tests the generalization of DQN to slightly different states, as the
new robot introduces different levels of network congestion.

Since the problem is infinite-horizon and the end of an episode is
artificially defined as described in section 3.2, one episode can be considered
as an entire run. Therefore, the tests were run for 10 episodes, and then
the mean and standard deviation of the results were calculated. The rest of
this section describes the simulated scenario and lists the settings for all the
hyperparameters.

4.1.1 Simulated scenario
The simulated scenario was designed with the main idea of letting the robots
experience different degrees of risk and a wide variety of network conditions.
It includes two interconnected aspects: warehouse and network topology. The
former includes all the objects physically present inside the warehouse and
is simulated in V-REP. The latter, instead, indicates the arrangement of the
devices in the network and is simulated in ns-3.

The warehouse, shown in figure 4.1, contains many static and dynamic
objects that enable the robots to run into many situations with different risk
values. The static objects are walls, pillars, boxes, conveyor belts, and shelves.
Among these, only the walls are known a priori by the robots14. As for the
dynamic objects, instead, there are human workers and robots. The former
move according to a built-in AI provided byV-REP, whereas the latter perform
the pick-and-place navigation described in section 3.2. For guaranteeing
smooth navigation in the whole warehouse, one conveyor belt is placed in
each room of the lowest row, whereas there is one shelf per room in the rest.
Moreover, the simulation of robots demandsmore computing power than static
objects and human workers because of the sensors and all the external ROS
nodes. For this reason, in order to keep a frame rate of at least 10 FPS in
V-REP, the scenario contains only up to two robots.

As a building, the warehouse is 30 m wide and 30 m long. Such a size
provides enough space for the robots to meet varying distances from the AP,
14 This means that they are in the global cost map of the ROS navigation stack

Results and analysis | 47

Figure 4.1: Warehouse scenario used for the experiments, simulated with V-
REP.

which is correlated to the throughput. The space is divided in a 3 × 3 grid
of equal-size square rooms. In this way, the walls are also considered in the
network simulation by using the ns-3 Building class, which allows only square
rooms, so the fading phenomenon is simulated.

Figure 4.2 illustrates the network topology, overlapped to the warehouse
to understand the position of the ns-3 nodes. It is very simple: a Wi-Fi
802.11g LAN provides wireless connectivity in the entire warehouse and a
MEC server is directly connected with a point-to-point link to the AP. The
802.11g standard was chosen over more powerful technologies because it
can be congested with less traffic, helping ns-3 to keep real-time with the
HardLimit option, as described in section 2.415. The point-to-point link,
instead, provides 100 Mbps, which is by far more than whatWi-Fi 802.11g can
achieve and therefore it is not the bottleneck of the topology, and has a delay
15 Wi-Fi 802.11n (high throughput) with larger traffic was tried but resulted in ns-3 not being
able to keep real-time with the HardLimit option.

48 | Results and analysis

P2P 100 Mbps

WiFi 802.11g

Figure 4.2: Network topology used for the experiments, simulated in ns-3. It
is overlapped to the warehouse to clarify the position of the ns-3 nodes. The
smartphone icons represent congesting nodes.

of 2 ms, corresponding roughly to a distance of 400 km. The AP is positioned
in the upper-right corner so that the robots can experience a wide range of
distances from it.

In the wireless LAN there are two types of ns-3 nodes: robots and
congesting nodes. The robots use the network to communicate with the
MEC server when offloading the scene understanding. The congesting nodes,
represented with smartphone icons in figure 4.2, are instead virtual devices
simulated only in ns-3 that use the edge randomly. More specifically, they are
ns-3 nodes on which an OnOffApplication ns-3 application is installed. Such
an application dynamically switches between the on and off states: in the on
state it generates CBR traffic at Bcong rate towards the MEC server, while in
the off state, it does not use the network. The duration of the on state (ton) and
the duration of the off state (toff) are uniform random variables:

ton ∼ U
(
Tminon , Tmaxon

)
(4.1)

toff ∼ U
(
Tminoff , T

max
off

)
(4.2)

Results and analysis | 49

Table 4.1: Settings used in the experiments for the hyperparameters of the
system.

HP Value Brief description
Ledgeexec 0.195 s Execution latency on MEC server.
Lrobotexec 1.05 s Execution latency on robot.
Lmax 2 s Max. allowed latency before aborting.
Lgood 0.4 s Saturation value for latency reward.
T distmax 0.5 m Max. distance tolerance (reward function).
T dirmax 30° Max. direction tolerance (reward function).
T pingmax 100 ms Max. duration of RTT measurement.
Ttp 0.1 s Duration of throughput measurement.
Pcpu 10 W Power consumption of robot’s CPU.
Pnic 0.1 W Power consumption of robot’s NIC.
Snwmax 24 Mbps Max. network speed.
Inwsize 224× 224 Size of RGB and depth images over the

network.
Tminon 2 s Min. time in on state (congesting node).
Tmaxon 5 s Max. time in on state (congesting node).
Tmaxoff 5 s Min. time in off state (congesting node).
Tminoff 10 s Max. time in off state (congesting node).
Bcong 3 Mbps Data rate in on state (congestion node).
Rmax 4 Max. risk value.
Elen 5 Pick-and-place operations per episode.
γ 0.99 Discount factor for expected return in RL.

where Tminon , Tmaxon , Tminoff , Tmaxoff are hyperparameters. Therefore, the number
of active (i.e., in the on state) congesting nodes varies dynamically and this
provides different degrees of network congestion, which would not be possible
to achieve with only two robots. The scenario contains exactly 3 stationary
congesting nodes at the positions indicated in figure 4.2. This number was
chosen experimentally as the highest value allowing ns-3 to keep real-time.

4.1.2 Settings
The values used in the experiments for all the hyperparameters encountered in
this thesis are reported in table 4.1. Some motivations for these values as well
as further settings for DQN and ns-3 are discussed below.

Regarding the execution, a Mask R-CNN with ResNet101 as backbone
was considered for edge computing, in line with the previous work described

50 | Results and analysis

in section 2.1, and the MEC server was supposed to be provided with an
Nvidia Tesla M40 GPU. Thus, Ledgeexec was set according to the results in [24].
For local computing, instead, YOLACT [64] with ResNet50 as backbone
was considered, which is, to the best of the authors’ knowledge, the fastest
among the state-of-the-art models for real-time instance segmentation [65, 66].
Unfortunately, there is no measurement of its performance on Turtlebot 2i’s
CPU in literature16, so Lrobotexec was estimated in the following way. First,
YOLACT was optimized for Intel CPUs by using OpenVINO [67]. Then,
it was run on the CPU available on the PC used for this project, calculating
the mean inference time. Finally, this value was converted to an estimate
for the robot’s CPU by using benchmarks [68]. Such execution latencies
consider only the instance segmentation in the scene understanding, as the
other operations to build the scene graph are negligible in terms of time. As
for the power consumption, Pcpu was set to the power consumption of Turtlebot
2i’s CPU [69], whereas Pnic to that of common NICs for MDs [70].

Concerning the network, Inwsize was set to a value very widely used in CV.
Then, Lgood, T pingmax , and Ttp were adjusted accordingly. In particular, the
maximum duration of the network measurement T pingmax +Ttp is half of the good
latencyLgood to guarantee a good estimate of the throughput without impacting
too much on the system. In fact, with a too-small Ttp, such a measurement is
very inaccurate, for example, due to the overhead of the three-way handshake
in TCP. Snwmax, instead, was measured experimentally in the simulation but,
since it is used only for the min-max normalization of the throughput, a small
error in such a value is not important. As for the network congestion, the
reason why Tminoff > Tminon and Tmaxoff > Tmaxon is to increase the probability of
having all the congesting nodes in the off state so that the robots can experience
more frequently an excellent network state. In addition, Bcong was tuned
experimentally to provide throughput close to 0 when all the congesting nodes
are in the on state.

Some settings were conditioned by the implementation of the safety
framework available from previous work. In particular, Rmax was set to
the maximum value that can be output by the implementation of the risk
analysis and evaluation. Moreover, as mentioned in section 2.1, there are two
implementations for the risk mitigation available from previous work. For the
experiments, the FL-based onewas chosen because it does not require training.

With regards to DQN, Keras-RL was used for the RL agent and as a
16 A direct measurement on the robot, available physically at Ericsson’s headquarters in Kista,
was not possible either, because the work was carried out at home due to the COVID-19
pandemic, as mentioned in chapter 1.

Results and analysis | 51

consequence the DL part (e.g., DNN, optimizer) was provided by using Keras.
The DNN was built with 3 fully connected hidden layers of 16 neurons each
and ReLU activation [71]. The length of the training was set to 105 steps,
with the agent using the ε-greedy policy with ε = 0.1 and updating its target
network every 104 steps. Adam [72] was chosen as optimizer, with a learning
rate of 10−3. Instead, in the test phase, the agent was configured to use a greedy
policy, which always takes the action with the highest Q-value. These settings
resulted in a convergence of DQN, monitored through mean Q-value and loss.

In ns-3 a couple of settings were adjusted. Since it does not support the
automatic MSS tuning based on MTU discovery, which is instead done by
real routers, the MSS was increased to 1472, and this resulted in a much more
performing network compared to the default value. Such a value was taken
from an example available in the documentation of ns-3 [73]. Moreover, the
YANS model [74] was used for Wi-Fi channel and physical layer because,
according to the ns-3 documentation, it is the most suitable choice for Wi-Fi-
only channels (i.e., no mixed technologies on the same channel).

As a final remark, the focus is not on finding optimal settings, rather on
proving the soundness of the solution. Therefore, some settings were not
profoundly tuned. For instance, Adam was chosen as the optimizer without
trying alternatives. In addition to this, all the configurations not explicitly
mentioned in this section were left to the default values.

4.2 Evaluation framework
For evaluating the RL agents in a quantifiable way, it is necessary to design an
evaluation framework made of baselines and metrics. The rest of this section
presents it.

4.2.1 Baselines
The following baselines were used:

1. Edge-only policy: The agent always takes action A1.

2. Robot-only policy: The agent always takes action A2.

3. Random sampling: The agent randomly chooses between actions A1
and A2.

52 | Results and analysis

4. Without risk mitigation: The risk mitigation in the safety framework of
section 2.1 is disabled, so the risk management process does not affect
the navigation.

Baselines 1 to 3 are naive agents with no intelligence and are inspired by
related work in MEC [56]. The edge-only policy (baseline 1) also corresponds
exactly to the distributed architecture illustrated in figure 1.2. These baselines
are useful to assess the offloading decision-making of the RL agents. They
were implemented as Keras-RL agents, so that they can easily replace DQN.

Baseline 4, instead, was previously used in [8] and is helpful to assess
the improvements in terms of safety provided by the safety framework, which
is indirectly affected by the task offloading agent. The offloading agent is
not relevant for this baseline, as the interest is only in observing how safe
the navigation is. It is worth mentioning that the robot can avoid obstacles
also without the safety framework, with the use of sensors such as LiDAR.
However, in this way, the robot does not know semantic information about the
objects (e.g., object type), so it cannot adapt the navigation to the different
safety requirements.

4.2.2 Metrics
The metrics used for the evaluation can be classified into two groups:
offloading and safety metrics. Before listing them, the reader is reminded that
a step in the RL safety-oriented task-offloading environment is failed if the
computation is aborted due to latency exceeding the limit Lmax. Moreover,
the latency is calculated as in equation (3.8), whereas the energy consumption
is:

e =

Pnic · lcomm if a = 1,

Pcpu · lexec if a = 2,

0 if a = 3

(4.3)

where a is the action, Pcpu and Pnic are hyperparameters representing the
power consumption of CPU and NIC, respectively, lexec is the execution
latency from equation (3.7), and lcomm is the communication latency from
equation (3.9).

The offloading metrics evaluate the task offloading and are a direct
contribution of this work, as they were selected by analyzing the related work
in MEC and by reasoning about the specific problem addressed in this project.
Specifically, the list is as follows:

• Latency: The mean latency per step, considering all the steps.

Results and analysis | 53

• Latency no failures: The mean latency per step, considering only the
successful steps.

• Latency per output: The mean latency per output. It is calculated as
the sum of latencies considering all the steps divided by the number of
successful steps.

• Risk × latency: The mean risk value multiplied by latency, considering
all the steps.

• Success: The percentage of successful steps.

• Edge output: The percentage of steps with scene graph output of the
accurate model on the MEC server.

• Valid scene graph: The percentage of steps with scene graph passing the
checks in the reward function at lines 6 to 15 of algorithm 3.1 (i.e., no
new object missed and tolerance in distance and direction of each object
satisfied), considering only the successful steps.

• Energy: The mean robot’s energy consumption per step, considering all
the steps.

• Energy no failures: The mean robot’s energy consumption per step,
considering only the successful steps.

• Energy per output: The mean robot’s energy consumption per output.
It is calculated as the total energy consumption considering all the steps
divided by the number of successful steps.

The safety metrics evaluate how safe the robot’s navigation is and are taken
from [8]. For the sake of simplicity, since there are already many offloading
metrics, only the most relevant metrics from [8] are used:

• Critical zone: The percentage of time with the closest obstacle in the
critical (red) zone.

• Warning zone: The percentage of time with the closest obstacle in the
warning (yellow) zone.

• Safe zone: The percentage of time with no obstacle in the warning and
critical zones (i.e., the closest obstacle is in the green zone or outside
it).

54 | Results and analysis

• Risk × speed: The risk value is multiplied by the robot’s speed and
stored. Then, the mean value is calculated to get this metric.

It is worth mentioning that the RL safety-oriented task-offloading agent
affects the offloading metrics directly and the safety metrics indirectly. Indeed,
latency and accuracy of the scene understanding impact the quality of the risk
management process, which determines the safety of the navigation.

4.3 Results
The results of the experiments for the scenarios with one and two robots are
reported in tables 4.2 and 4.3, respectively. For the latter scenario, since the
two robots performed very similarly, only the outcome for one of them is
shown. For completeness, appendix A contains the results for the other one. In
line with the evaluation framework described in section 4.2, the tables include
offloading and safety metrics (separated by a horizontal line) for the baselines
as well as the RL agents (DQN-2 andDQN-3). The rest of this section provides
a systematic analysis.

4.3.1 Analysis of task offloading
The results showed that the edge-only policy, which always offloads
independently of the network state, was not appropriate for the HRC scenarios.
In the single-robot scenario, while showing the potential of edge computing
with the best latency no failures, the high percentage of failures (65 % of
success) made it the worst agent in terms of latency and latency per output.
After adding another robot always offloading, this baseline completely failed
at sharing the network resources (13.41 % of success and 14.21 s of latency
per output). These findings correct the previous results in [8], where this
naive policy was tested in a network without other robots or devices creating
congestion, and confirm the motivation for this degree project.

On the opposite side, the robot-only policy achieved a relatively high
latency (1.06 s), which may be inappropriate in dangerous situations. It also
had the highest energy consumption, implying that the robot must be charged
more often than the other agents. Besides this, the main limitation of this
naive agent is that it always uses the less accurate onboard model (0 % of edge
output) without exploiting the edge. Thus, the robot-only policy is not the best
approach.

Results and analysis | 55

Ta
bl
e
4.
2:

Re
su
lts

fo
rt
he

sc
en
ar
io

w
ith

a
si
ng

le
ro
bo

t,
gr
ou

pe
d
by

ty
pe

of
m
et
ric

(o
ffl
oa
di
ng

an
d
sa
fe
ty
).
Th

e
be
st
re
su
lts

fo
r

ea
ch

m
et
ric

ar
e
hi
gh

lig
ht
ed

in
bo

ld
.

M
et
ric

Ed
ge
-o
nl
y

Ro
bo

t-o
nl
y

R
an
do

m
w
/o

R
M

D
Q
N
-2

D
Q
N
-3

La
te
nc
y
(s
)

1.
18
±

0.
06

1.
06
±

0.
00

1.
06
±

0.
04

-
0.

91
±

0.
02

0
.5
5
±
0
.0
4

La
te
nc
y
no

fa
ilu

re
s(

s)
0.

74
±

0.
01

1.
06
±

0.
00

0.
90
±

0.
02

-
0.

81
±

0.
02

0
.4
8
±
0
.0
3

La
te
nc
y
pe
ro

ut
pu

t(
s)

1.
83
±

0.
21

1.
06
±

0.
00

1.
25
±

0.
08

-
0.

99
±

0.
02

0
.5
8
±
0
.0
4

R
is
k
×

la
te
nc
y
(s
)

1.
72
±

1.
69

1.
60
±

1.
08

1.
42
±

1.
36

-
1.

40
±

1.
25

0
.9
0
±
1
.2
0

Su
cc
es
s(

%
)

64
.9

5
±

4.
19

1
0
0
.0
0
±

0
.0
0

85
.4

6
±

2.
44

-
91
.8

5
±

0.
28

95
.2

5
±

0.
64

Ed
ge

ou
tp
ut

(%
)

6
4
.9
5
±

4
.1
9

0.
00
±

0.
00

35
.5

8
±

2.
82

-
54
.6

2
±

3.
44

47
.1

5
±

8.
34

Va
lid

sc
en
e
gr
ap
h
(%

)
1
0
0
.0
0
±

0
.0
0

1
0
0
.0
0
±

0
.0
0

1
0
0
.0
0
±

0
.0
0

-
1
0
0
.0
0
±

0
.0
0

86
.0

9
±

1.
93

En
er
gy

(J
)

0
.1
1
±

0
.0
1

10
.5

2
±

0.
03

5.
32
±

0.
14

-
3.

99
±

0.
36

2.
60
±

0.
25

En
er
gy

no
fa
ilu

re
s(

J
)

0
.0
6
±

0
.0
1

10
.5

2
±

0.
03

6.
17
±

0.
25

-
4.

31
±

0.
39

2.
71
±

0.
27

En
er
gy

pe
ro

ut
pu

t(
J
)

0
.1
7
±

0
.0
4

10
.5

2
±

0.
03

6.
23
±

0.
26

-
4.

35
±

0.
39

2.
73
±

0.
27

C
rit
ic
al
zo
ne

(%
)

2.
16
±

1.
76

2.
13
±

3.
19

3.
62
±

4.
12

2.
06
±

1.
41

1.
45
±

2.
03

0
.8
3
±
2
.4
6

W
ar
ni
ng

zo
ne

(%
)

14
.1

8
±

0.
84

1
3
.8
9
±

1
.0
2

14
.3

0
±

0.
76

17
.4

8
±

1.
42

14
.2

1
±

1.
32

14
.6

5
±

1.
77

Sa
fe
zo
ne

(%
)

83
.6

7
±

2.
18

83
.9

8
±

3.
74

82
.0

8
±

3.
53

81
.4

6
±

2.
24

84
.3

4
±

2.
42

8
4
.5
2
±
1
.7
5

R
is
k
×

sp
ee
d
(m
/s
)

0.
69
±

0.
03

0.
70
±

0.
03

0.
71
±

0.
08

0.
72
±

0.
03

0.
71
±

0.
04

0
.6
8
±
0
.0
9

56 | Results and analysis

Ta
bl
e
4.
3:

Re
su
lts

fo
rt
he

fir
st
ro
bo

ti
n
th
e
sc
en
ar
io

w
ith

tw
o
ro
bo

ts
,g

ro
up

ed
by

ty
pe

of
m
et
ric

(o
ffl
oa
di
ng

an
d
sa
fe
ty
).

Th
e

be
st
re
su
lts

fo
re

ac
h
m
et
ric

ar
e
hi
gh

lig
ht
ed

in
bo

ld
.

M
et
ric

Ed
ge
-o
nl
y

Ro
bo

t-o
nl
y

R
an
do

m
w
/o

R
M

D
Q
N
-2

D
Q
N
-3

La
te
nc
y
(s
)

1.
89
±

0.
01

1.
06
±

0.
00

1.
38
±

0.
03

-
0.

95
±

0.
02

0
.6
7
±

0
.0
3

La
te
nc
y
no

fa
ilu

re
s(

s)
1.

12
±

0.
05

1.
06
±

0.
00

1.
04
±

0.
01

-
0.

84
±

0.
02

0
.5
4
±

0
.0
2

La
te
nc
y
pe
ro

ut
pu

t(
s)

14
.2

1
±

1.
34

1.
06
±

0.
00

2.
15
±

0.
15

-
1.

02
±

0.
04

0
.7
3
±

0
.0
4

R
is
k
×

la
te
nc
y
(s
)

2.
91
±

1.
98

1.
60
±

1.
10

2.
18
±

1.
69

-
1.

45
±

1.
34

1
.1
7
±

1
.5
0

Su
cc
es
s(

%
)

13
.4

1
±

1.
18

1
0
0
.0
0
±

0
.0
0

64
.5

5
±

2.
94

-
87
.1

0
±

1.
11

91
.5

9
±

0.
92

Ed
ge

ou
tp
ut

(%
)

13
.4

1
±

1.
18

0.
00
±

0.
00

15
.3

5
±

3.
00

-
22
.0

5
±

3.
34

2
3
.1
8
±
3
.5
8

Va
lid

sc
en
e
gr
ap
h
(%

)
1
0
0
.0
0
±

0
.0
0

1
0
0
.0
0
±

0
.0
0

1
0
0
.0
0
±

0
.0
0

-
1
0
0
.0
0
±
0
.0
0

79
.9

4
±

3.
43

En
er
gy

(J
)

0
.1
9
±

0
.0
1

10
.4

9
±

0.
03

5.
34
±

0.
10

-
6.

41
±

0.
39

3.
90
±

0.
16

En
er
gy

no
fa
ilu

re
s(

J
)

0
.0
9
±

0
.0
1

10
.4

9
±

0.
03

8.
07
±

0.
39

-
7.

71
±

0.
43

4.
23
±

0.
20

En
er
gy

pe
ro

ut
pu

t(
J
)

1
.4
0
±

0
.2
7

10
.4

9
±

0.
03

8.
29
±

0.
41

-
7.

80
±

0.
43

4.
26
±

0.
20

C
rit
ic
al
zo
ne

(%
)

3.
04
±

1.
15

2.
45
±

2.
38

3.
03
±

1.
07

1.
44
±

1.
23

1.
61
±

3.
07

1
.1
3
±

0
.9
8

W
ar
ni
ng

zo
ne

(%
)

18
.9

7
±

1.
64

1
4
.1
4
±

1
.3
8

14
.7

8
±

1.
37

16
.9

7
±

1.
27

14
.9

7
±

2.
21

14
.3

3
±

1.
09

Sa
fe
zo
ne

(%
)

77
.9

9
±

2.
61

83
.4

1
±

2.
62

82
.1

9
±

1.
53

81
.5

9
±

2.
52

83
.4

2
±

3.
20

8
4
.5
4
±
2
.0
4

R
is
k
×

sp
ee
d
(m
/s
)

0.
68
±

0.
06

0.
67
±

0.
02

0.
70
±

0.
04

0.
73
±

0.
04

0
.6
4
±
0
.0
3

0.
66
±

0.
03

Results and analysis | 57

DQN-2 dynamically decides whether to offload the scene understanding
or to run it locally by considering, among other things, the network state. In
the single-robot scenario, the results show that it avoided to use the edge when
the network was congested, limiting the number of failures (+41 % of success
compared to the edge-only policy). Consequently, this RL agent outperformed
all the baselines in terms of latency and latency per output (−45 % of latency
per output compared to the edge-only policy). It is worth highlighting that
performing better than the random baseline indicates that DQN-2 learned
something useful from its experience and confirms the soundness of the
designed reward function.

In the scenario with two robots, DQN-2 continued to work correctly, in
contrast with the edge-only naive agent, and still outperformed the baselines.
For better understanding this, it is useful to observe figure 3.2, which shows
the distribution of actions taken by the RL agents. When another robot was
added to the warehouse, both DQN-2 and DQN-3 reduced the edge usage, so
they adapted to the network congestion and fairly shared the resources.

Since the main goal of this degree project is to have safety-oriented
decision-making, it is relevant to analyze the agents’ behavior by keeping
an eye on the risk value. Figure 4.4 illustrates the joint distribution of risk
value and latency for baselines and DQN-217. In contrast with the baselines,
which did not show any risk-dependent logic, DQN-2 adapted the latency
to the safety requirements, offloading the task to the MEC server only when
necessary and avoiding unnecessary congestion in the network. In particular,
when the risk was low, the agent allowed local computation, which resulted in
a relatively high delay (around 1 s) but did not congest the network. Instead,
in more hazardous situations, it tried to reduce the latency, often successfully.
This evaluation is quantified by the risk × latency metric, which was reduced
by DQN-2 (−48 % compared to the edge-only policy in the single-robot
scenario).

The same conclusion can be drawn by looking at figure 4.5, which shows
the joint distribution of risk value and edge output (Boolean value from
substate S3). Indeed, when the risk value is mid-high the agent preferred the
more accurate model on the edge (edge output = 1), whereas accepting local
outputs (edge output = 0) in safe situations.

DQN-3 differs from DQN-2 only for the possibility of skipping the
computation and reusing the last output (action A3). While this action is
beneficial in terms of latency and success rate, as it provides the scene graph
17 DQN-3 is omitted because the plot would be confused by action A3, which gives zero
latency.

58 | Results and analysis

37.6%

62.4%

(a) DQN-2, one robot

60.8%

39.2%

(b) DQN-2, two robots

compute on robot
offload to edge
use last output

24.1%

34.6%

41.3%

(c) DQN-3, one robot

36.4%

19.8%

43.8%

(d) DQN-3, two robots

Figure 4.3: Distribution of actions for DQN-2 and DQN-3 in scenarios with
one and two robots.

immediately, it should be used wisely. The results indicate that DQN-3 learned
to exploit such an action, reusing the last scene graph only when appropriate
(86.09 % and 79.94 % of valid scene graph in the scenarios with one and two
robots, respectively). Interestingly, as can be seen in figure 4.3, action A3
turned out to be the dominant choice (more than 40 % of the times). DQN-
3 performed even better than DQN-2 in terms of latency, especially in the
scenario with two robots, where skipping the computation also helps to avoid
network congestion (+5 % of success and −40 % of latency per output).

Another interesting analysis is about understanding how DQN-3 decides
to skip the computation based on the environment state. In this regard,
figure 4.6 represents the scatter plot of risk value and temporal coherence,
while differentiating between computation performed (actions A1 and A2) and
skipped (action A3). As can be seen, DQN-3 learned a safety-based decision
boundary for skipping the computation, with a threshold for the temporal
coherence that slightly increases as the risk value grows. It is worth remarking

Results and analysis | 59

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
risk value

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
la

te
nc

y
(s

)

(a) Edge-only

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
risk value

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

la
te

nc
y

(s
)

(b) Robot-only

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
risk value

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

la
te

nc
y

(s
)

(c) Random

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
risk value

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

la
te

nc
y

(s
)

(d) DQN-2

Figure 4.4: Joint distribution of risk value and latency for DQN-2 and
baselines in the scenario with one robot. The intensity of the blue color
indicates the frequency of the joint value (i.e., the darker the blue, the
more frequent), while the histograms on the axes represent the marginal
distributions.

that the robot found this out on its own, as the reward function does not use
the temporal coherence directly but only provides a means to understand the
quality of the scene graph. This represents an example of one of the advantages
of RL: learning from goal-oriented rewards.

Lastly, a positive side effect of edge computing is on energy consumption,
as sending data on the network usually consumes less than using the CPU for
local computation. Indeed, in terms of energy, DQN-2 resulted better than
the robot-only (−59 % and −26 % of energy per output in the scenario with

60 | Results and analysis

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
risk value

0.0

0.2

0.4

0.6

0.8

1.0

ed
ge

 o
ut

pu
t

(a) Edge-only

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
risk value

0.4

0.2

0.0

0.2

0.4

ed
ge

 o
ut

pu
t

(b) Robot-only

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
risk value

0.0

0.2

0.4

0.6

0.8

1.0

ed
ge

 o
ut

pu
t

(c) Random

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
risk value

0.0

0.2

0.4

0.6

0.8

1.0

ed
ge

 o
ut

pu
t

(d) DQN-2

Figure 4.5: Joint distribution of risk value and edge output (Boolean value
from substate S3) for DQN-2 and baselines in the scenario with one robot. The
intensity of the blue color indicates the frequency of the joint value (i.e., the
darker the blue, the more frequent), while the histograms on the axes represent
the marginal distributions.

one and two robots, respectively) and random (−30 % and −6 % of energy
per output in the scenario with one and two robots, respectively) baselines.
Skipping the computation played an important role also in this case, with
DQN-3 further reducing the energy consumption compared to DQN-2 (−37 %

and −45 % of energy per output in the scenario with one and two robots,
respectively).

Results and analysis | 61

0 1 2 3 4
risk value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

te
m

po
ra

l c
oh

er
en

ce

action
compute
skip

Figure 4.6: Scatter plot (i.e., there is one point for each action taken) of risk
value and temporal coherence for DQN-3 in the scenario with one robot. The
plot differentiates computation performed (actions A1 and A2) and skipped
(action A3) using different colors. The marginal distributions are also shown
on the axes as Gaussian.

4.3.2 Analysis of safety
The ultimate goal of this degree project is to intelligently offload the scene
understanding to enhance safety in the warehouse. Indeed, the scene
understanding offloading impacts safety both for latency and accuracy of the
scene graph. However, the reader is reminded that the implementation in the
simulated environment described in section 3.2 produces a perfect scene graph
both for edge and local computation. So, in the experiments, safety is affected

62 | Results and analysis

only by latency. A real environment in which the edge provides more accurate
scene graphs is envisioned to result in larger differences between robot-only
policy and the RL agents, but such experiments are left as future work.

In the single-robot scenario, the baselinewithout riskmitigation performed
the worst for all the safety metrics, meaning that the safety framework had a
positive effect also with the naive offloading agents. For the scenario with
two robots, instead, an interesting result can be seen: the edge-only policy
compromised safety compared to not having risk mitigation (−4 % of time in
safe zone). This finding is reasonable because the risk mitigation can wrongly
adjust the navigation when based on delayed information. The robot-only
policy, instead, which provides the scene graph at a constant rate, turned out
to be the best among the naive agents in both scenarios (roughly +2 % of time
in safe zone).

However, the RL agents outperformed all the baselines in terms of all
the safety metrics in both scenarios (up to +4 % of time in safe zone and up
to −10 % of risk times speed), once again validating the soundness of the
solution. More specifically, DQN-3 performed the best. The advantage of
adding action A3 over DQN-2 was subtle in the single-robot scenario (+0.2 %

of time in safe zone), but became more relevant with two robots (+1.3 % of
time in safe zone).

Chapter 5

Conclusions and future work

This chapter concludes the thesis. Section 5.1 briefly reviews the solution
and provides general conclusions, with links to the objectives presented in
chapter 1. Section 5.2 describes the limitations of the results, while section 5.3
suggests future work. Finally, section 5.4 reflects on the impact of the work
and discusses ethical and societal aspects.

5.1 Discussion
This degree project aims at intelligently using MEC in a HRC scenario
where constrained-hardware mobile robots need the real-time execution of a
safety framework that includes a computationally expensive task, namely the
scene understanding. For guaranteeing timely outputs of such a task, three
possible actions were identified: edge computation of the complex task, local
computation of a less accurate version of the task, and computation skip with
reuse of the previous output. DQN was then employed to learn choosing
among these actions rationally, based on network and safety aspects. For
achieving this, the problem was formalized as an RL environment, utilizing
meaningful KPIs to monitor the network and safety states (throughput, RTT,
and risk value) and formulating a specific reward function. The proposed
solution was designed and implemented as a modular system and integrated
with the previously developed safety framework. Specific simulated scenarios
were also realized to test and evaluate the solution using a set of metrics and
baselines. The extensive experiments validated the soundness of the method
and allowed drawing some general conclusions, discussed as follows.

The solution provides dynamic decision-making to use the edge only
when suitable. In particular, the agent offloads the computation to the MEC

63

64 | Conclusions and future work

server only when the network performance is not degraded and when an
unsafe situation is encountered. When such conditions are not satisfied, the
simplified version of the task providing lower accuracy runs locally on the
robot. Therefore, the solution adapts latency and accuracy to the safety
requirements, meaning that the robot avoids using the edge when the risk is
low, letting other nodes use it and thus wisely sharing the network resources.
Furthermore, given that the primary inputs to the scene understanding are
images from the robot’s camera, the inherently present temporal coherence is
exploited to skip the computation and reuse the previous output when suitable,
providing benefits in terms of latency, energy consumption, and network
congestion.

The ultimate goal of this project, which is the safety enhancement in
the HRC scenario employing MEC, was successfully achieved. Indeed, the
learned policy executes the scene understanding faster than the previously
used edge-only policy and guarantees low latency and high accuracy in
risky situations. Consequently, the whole safety framework runs at a higher
frequency, especially when the situation is hazardous.

Another key feature of the solution is that it is learning-based. The robot
learns its policy by interacting with the (simulated) environment using RL,
and the reward function allowing this is one of the significant contributions
of this work. Therefore, there are no hard-coded rules which usually rely on
domain-expert knowledge and are not robust to changes in the environment.
Moreover, even though this project considered the specific case of the scene
understanding, the solution may be generalized and applied to other safety-
related tasks.

5.2 Limitations
As discussed throughout the thesis, the simulated environment imposed some
constraints and forced some choices for the experiments. These constraints
also affect and limit the results, as described below.

The limitation about the number of simulated robots, which was bounded
to 2, was partially compensated by employing virtual congesting nodes
creating more traffic over the network. However, the robots have a different
network usage pattern because they send data for shorter periods. In this
regard, the solution was validated with two robots managing to fairly share
the available resources in a network congested by other devices. However, it
should be further tested in a scenario with more robots. These experiments
could also help determine the upper bound of the number of robots in the

Conclusions and future work | 65

warehouse that can share the network while achieving safe operations. Such a
value would also depend on network technology and warehouse scenario (e.g.,
number of human workers).

The other limitation concerns the implementation of the scene understand-
ing. In order to achieve the correct latency in the simulated environment, the
scene graph was generated by querying V-REP. However, this always provides
a perfect output and does not simulate the different accuracy of local and edge
computing, so the results do not consider such a distinction. Significantly,
this underestimates the safety improvement of edge computing compared to
local computing. Therefore, it is envisioned that the solution exploiting MEC
provides more benefits in terms of safety compared to local computing.

5.3 Future work
The most straightforward future work is to test the solution with other RL
algorithms. For example, CEM and SARSA could be tested with minimal
effort because they are provided byKeras-RL and support discrete action space
and continuous state space, like DQN.

Concerning the network, although in this work Wi-Fi 802.11g was chosen
to run ns-3 effectively in real-time, it is possible to test other technologies
with simulations on more powerful PCs or in real environments. The most
interesting one is 5G, which is envisioned as the most used in industry 4.0.
Theoretically, 5G can support a higher number of robots in the warehouse and
can achieve lower latency than Wi-Fi 802.11g, leading to enhanced safety.

Another relevant future work is to test the solution in a real environment.
This extension would require an expensive testbed including many robots and
dedicated network infrastructure (e.g., a 5G cell and a small data center) as
well as training YOLACT for the onboard scene understanding. Moreover, the
ExtractSceneGraph function in algorithm 3.1 would need to be redefined
because the extraction from V-REP would not be possible. For example, it
might build a simplified scene graph with just distance and direction by using
sensor data from a LiDAR.

The suggestions mentioned above are essentially experiments to further
validate the solution. It is also possible to extend the solution by adding
explainability. Indeed, explainable RL [75] is an emerging research area
and, for example, it was applied to the risk mitigation module of the safety
framework presented in section 2.1, achieving relevant results [76].

Finally, a different approach could be realized by using a centralized agent
which collects data from all the robots in the warehouse and decides which

66 | Conclusions and future work

ones should offload. This solution would be similar to the related work based
on game theory, thus more complex to implement for the reasons described in
section 2.5, but could still be realized and compared to the results of this work.

5.4 Ethical and societal aspects
This work contributes to the realization of a safe HRC in industry 4.0 by
providing an AI-based solution for MEC usage. Since this degree project
is related to AI and safety, which are the subject of numerous debates, it is
relevant to discuss its impact from an ethical and societal point of view.

Without a doubt, there are ethical issues that can occur in the HRC scenario
considered in this work. For example, what if two robots are both close
to humans? Should the robot surrounded by more people have precedence
to offload? Or should this decision be based on the age of the people?
Furthermore, who would be responsible if a robot harms a human because it
decided not to offload? Unfortunately, questions like these are hard to answer,
and there are still no laws and regulations nowadays.

On the other hand, HRC has a significant impact on society. The whole
population can benefit from the improved quality of industrial production.
Also, the industrial employees can avoid doing repetitive (that is a synonym of
boring for most people) tasks, so the quality of work is highly improved. By
properly guaranteeing safety, this shift in the work-life can happen with human
workers trusting their new artificial workmates.

Lastly, regarding sustainability, the solution proposed in this project
considers skipping the computation and reusing the previous output and
chooses this action whenever possible. This feature saves energy and is
therefore environmentally friendly.

References

[1] N. Shan, Y. Li, and X. Cui, “A Multilevel Optimization Framework
for Computation Offloading in Mobile Edge Computing,” Mathe-
matical Problems in Engineering, vol. 2020, pp. 1–17, Jun. 2020.
doi: 10.1155/2020/4124791

[2] “Exchange Data with ROS Publishers and Subscribers - MATLAB
& Simulink,” https://www.mathworks.com/help//ros/ug/exchange-data-
with-ros-publishers-and-subscribers.html.

[3] “Call and Provide ROS Services - MATLAB & Simulink,”
https://www.mathworks.com/help/ros/ug/call-and-provide-ros-
services.html.

[4] S. Robla-Gómez, V. M. Becerra, J. R. Llata, E. González-Sarabia,
C. Torre-Ferrero, and J. Pérez-Oria, “Working Together: A Review
on Safe Human-Robot Collaboration in Industrial Environments,”
IEEE Access, vol. 5, pp. 26 754–26 773, 2017. doi: 10.1109/AC-
CESS.2017.2773127

[5] R. Inam, E. Fersman, K. Raizer, R. Souza, A. Nascimento, and A. Hata,
“Safety for automated warehouse exhibiting collaborative robots,” in
Safety and Reliability – Safe Societies in a Changing World, Jun. 2018,
pp. 2021–2028. ISBN 978-1-351-17466-4

[6] R. Inam, K. Raizer, A. Hata, R. Souza, E. Forsman, E. Cao, and S.Wang,
“Risk Assessment for Human-Robot Collaboration in an automated
warehouse scenario,” in 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA), vol. 1, Sep.
2018. doi: 10.1109/ETFA.2018.8502466. ISSN 1946-0759 pp. 743–751.

[7] A. Hata, R. Inam, K. Raizer, S. Wang, and E. Cao, “AI-based
Safety Analysis for Collaborative Mobile Robots,” in 2019 24th

67

https://doi.org/10.1155/2020/4124791
https://doi.org/10.1109/ACCESS.2017.2773127
https://doi.org/10.1109/ACCESS.2017.2773127
https://doi.org/10.1109/ETFA.2018.8502466

68 | REFERENCES

IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), Sep. 2019. doi: 10.1109/ETFA.2019.8869263.
ISSN 1946-0759 pp. 1722–1729.

[8] A. Terra, H. Riaz, K. Raizer, A. Hata, and R. Inam, “Safety vs.
Efficiency: AI-Based Risk Mitigation in Collaborative Robotics,” in
2020 6th International Conference on Control, Automation and Robotics
(ICCAR), Apr. 2020. doi: 10.1109/ICCAR49639.2020.9108037. ISSN
2251-2446 pp. 151–160.

[9] H. Riaz, A. Terra, K. Raizer, R. Inam, and A. Hata, “Scene Understand-
ing for Safety Analysis in Human-Robot Collaborative Operations,” in
2020 6th International Conference on Control, Automation and Robotics
(ICCAR), Apr. 2020. doi: 10.1109/ICCAR49639.2020.9108083. ISSN
2251-2446 pp. 722–731.

[10] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali,
A. Niakanlahiji, J. Kong, and J. P. Jue, “All one needs to know about
fog computing and related edge computing paradigms: A complete
survey,” Journal of Systems Architecture, vol. 98, pp. 289–330, Sep.
2019. doi: 10.1016/j.sysarc.2019.02.009

[11] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
Fourthquarter 2017. doi: 10.1109/COMST.2017.2745201

[12] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile
and scalable robot simulation framework,” in 2013 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Nov. 2013.
doi: 10.1109/IROS.2013.6696520. ISSN 2153-0866 pp. 1321–1326.

[13] “Robot simulator CoppeliaSim: Create, compose, simulate, any robot -
Coppelia Robotics,” https://www.coppeliarobotics.com/.

[14] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and Tools for Network Simulation, K. Wehrle, M. Güneş, and
J. Gross, Eds. Berlin, Heidelberg: Springer, 2010, pp. 15–34. ISBN
978-3-642-12331-3

[15] nsnam, “Ns-3,” https://www.nsnam.org/.

https://doi.org/10.1109/ETFA.2019.8869263
https://doi.org/10.1109/ICCAR49639.2020.9108037
https://doi.org/10.1109/ICCAR49639.2020.9108083
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/IROS.2013.6696520

REFERENCES | 69

[16] L. Žlajpah, “Simulation in robotics,” Mathematics and Comput-
ers in Simulation, vol. 79, no. 4, pp. 879–897, Dec. 2008.
doi: 10.1016/j.matcom.2008.02.017

[17] R. Inam, N. Schrammar, K. Wang, A. Karapantelakis, L. Mokrushin,
A. V. Feljan, and E. Fersman, “Feasibility assessment to realise vehicle
teleoperation using cellular networks,” in 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), Nov. 2016.
doi: 10.1109/ITSC.2016.7795920. ISSN 2153-0017 pp. 2254–2260.

[18] Bonsai, “Simulators: The Key Training Environment for Applied Deep
Reinforcement Learning,” Feb. 2018.

[19] D. Vassis, G. Kormentzas, A. Rouskas, and I. Maglogiannis, “The IEEE
802.11g standard for high data rate WLANs,” IEEE Network, vol. 19,
no. 3, pp. 21–26, May 2005. doi: 10.1109/MNET.2005.1453395

[20] Y. Xiao, “IEEE 802.11n: Enhancements for higher throughput in
wireless LANs,” IEEE Wireless Communications, vol. 12, no. 6, pp. 82–
91, Dec. 2005. doi: 10.1109/MWC.2005.1561948

[21] “TurtleBot,” https://www.turtlebot.com/.

[22] “Interbotix Turtlebot 2i Mobile ROS Platform,”
https://www.trossenrobotics.com/interbotix-turtlebot-2i-mobile-ros-
platform.aspx.

[23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: An open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, vol. 3, Jan. 2009.

[24] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2961–2969.

[25] J. S. Ward and A. Barker, “A Cloud Computing Survey: Developments
and Future Trends in Infrastructure as a Service Computing,”
arXiv:1306.1394 [cs], Jun. 2013.

[26] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A Survey of Research
on Cloud Robotics and Automation,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 398–409, Apr. 2015.
doi: 10.1109/TASE.2014.2376492

https://doi.org/10.1016/j.matcom.2008.02.017
https://doi.org/10.1109/ITSC.2016.7795920
https://doi.org/10.1109/MNET.2005.1453395
https://doi.org/10.1109/MWC.2005.1561948
https://doi.org/10.1109/TASE.2014.2376492

70 | REFERENCES

[27] J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V. Vasilakos, “Cloud
robotics: Current status and open issues,” IEEE Access, vol. 4, pp. 2797–
2807, 2016. doi: 10.1109/ACCESS.2016.2574979

[28] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed., ser. Adaptive Computation and Machine Learning Series.
Cambridge, Massachusetts: The MIT Press, 2018. ISBN 978-0-262-
03924-6

[29] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement
learning in robotics: A survey,” The International Journal of
Robotics Research, vol. 32, no. 11, pp. 1238–1274, Sep. 2013.
doi: 10.1177/0278364913495721

[30] C. Yu, J. Liu, and S. Nemati, “Reinforcement Learning in Healthcare: A
Survey,” arXiv:1908.08796 [cs], Apr. 2020.

[31] I. Szita, “Reinforcement Learning in Games,” in Reinforcement
Learning: State-of-the-Art, ser. Adaptation, Learning, and Optimization,
M. Wiering and M. van Otterlo, Eds. Berlin, Heidelberg: Springer,
2012, pp. 539–577. ISBN 978-3-642-27645-3

[32] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[33] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare,
and J. Pineau, “An Introduction to Deep Reinforcement Learning,”
Foundations and Trends® in Machine Learning, vol. 11, no. 3-4, pp.
219–354, 2018. doi: 10.1561/2200000071

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015. doi: 10.1038/nature14236

[35] “ROS.org | Powering the world’s robots.”

[36] “Documentation - ROS Wiki,” http://wiki.ros.org/.

[37] “Standard C++,” https://isocpp.org/.

https://doi.org/10.1109/ACCESS.2016.2574979
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1561/2200000071
https://doi.org/10.1038/nature14236

REFERENCES | 71

[38] “Welcome to Python.org,” https://www.python.org/.

[39] “Navigation - ROS Wiki,” http://wiki.ros.org/navigation.

[40] “The Programming Language Lua,” https://www.lua.org/.

[41] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, Sep. 2004. doi: 10.1109/IROS.2004.1389727
pp. 2149–2154 vol.3.

[42] “Gazebo,” http://gazebosim.org/.

[43] “Ns-3 Tutorial — Tutorial,” https://www.nsnam.org/docs/tutorial/html.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv:1606.01540 [cs], Jun.
2016.

[45] OpenAI, “Gym: A toolkit for developing and comparing reinforcement
learning algorithms,” https://gym.openai.com.

[46] M. Plappert, “Keras-rl,” 2016.

[47] “Keras: The Python deep learning API,” https://keras.io/.

[48] A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad, “A survey on
the computation offloading approaches in mobile edge computing: A
machine learning-based perspective,” Computer Networks, vol. 182, p.
107496, Dec. 2020. doi: 10.1016/j.comnet.2020.107496

[49] B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent Offloading
in Multi-Access Edge Computing: A State-of-the-Art Review and
Framework,” IEEE Communications Magazine, vol. 57, no. 3, pp. 56–
62, Mar. 2019. doi: 10.1109/MCOM.2019.1800608

[50] H. Guo and J. Liu, “Collaborative Computation Offloading for
Multiaccess Edge Computing Over Fiber–Wireless Networks,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526,
May 2018. doi: 10.1109/TVT.2018.2790421

https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1016/j.comnet.2020.107496
https://doi.org/10.1109/MCOM.2019.1800608
https://doi.org/10.1109/TVT.2018.2790421

72 | REFERENCES

[51] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,” Digital Communications and Networks,
vol. 5, no. 1, pp. 10–17, Feb. 2019. doi: 10.1016/j.dcan.2018.10.003

[52] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient Multi-User Com-
putation Offloading for Mobile-Edge Cloud Computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2016.
doi: 10.1109/TNET.2015.2487344

[53] L. Yang, H. Zhang, X. Li, H. Ji, and V. C. M. Leung, “A
Distributed Computation Offloading Strategy in Small-Cell Networks
Integrated With Mobile Edge Computing,” IEEE/ACM Transactions on
Networking, vol. 26, no. 6, pp. 2762–2773, Dec. 2018. doi: 10.1109/T-
NET.2018.2876941

[54] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-Edge
Computation Offloading for Ultradense IoT Networks,” IEEE Internet
of Things Journal, vol. 5, no. 6, pp. 4977–4988, Dec. 2018.
doi: 10.1109/JIOT.2018.2838584

[55] L. Li, K. Ota, and M. Dong, “Sustainable CNN for Robotic: An
Offloading Game in the 3D Vision Computation,” IEEE Transactions
on Sustainable Computing, vol. 4, no. 1, pp. 67–76, Jan. 2019.
doi: 10.1109/TSUSC.2018.2844348

[56] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament,
E. Cidon, S. Katti, and M. Pavone, “Network Offloading Policies for
Cloud Robotics: A Learning-based Approach,” arXiv:1902.05703 [cs],
Feb. 2019.

[57] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep Reinforcement Learning for
Online Computation Offloading inWireless PoweredMobile-Edge Com-
puting Networks,” IEEE Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581–2593, Nov. 2020. doi: 10.1109/TMC.2019.2928811

[58] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, Apr.
2004. doi: 10.1109/TIP.2003.819861

https://doi.org/10.1016/j.dcan.2018.10.003
https://doi.org/10.1109/TNET.2015.2487344
https://doi.org/10.1109/TNET.2018.2876941
https://doi.org/10.1109/TNET.2018.2876941
https://doi.org/10.1109/JIOT.2018.2838584
https://doi.org/10.1109/TSUSC.2018.2844348
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1109/TIP.2003.819861

REFERENCES | 73

[59] Bonsai, “Deep Reinforcement Learning Models: Tips & Tricks for
Writing Reward Functions,” https://medium.com/@BonsaiAI/deep-
reinforcement-learning-models-tips-tricks-for-writing-reward-
functions-a84fe525e8e0, Nov. 2017.

[60] Z. Chen and X. Wang, “Decentralized computation offloading for multi-
user mobile edge computing: A deep reinforcement learning approach,”
EURASIP Journal on Wireless Communications and Networking, vol.
2020, no. 1, p. 188, Sep. 2020. doi: 10.1186/s13638-020-01801-6

[61] M. Tang and V. W. Wong, “Deep Reinforcement Learning for Task
Offloading in Mobile Edge Computing Systems,” IEEE Transactions on
Mobile Computing, pp. 1–1, 2020. doi: 10.1109/TMC.2020.3036871

[62] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis,
“Optimized Computation Offloading Performance in Virtual Edge
Computing Systems Via Deep Reinforcement Learning,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 4005–4018, Jun. 2019.
doi: 10.1109/JIOT.2018.2876279

[63] I. Szita and A. Lörincz, “Learning Tetris Using the Noisy Cross-Entropy
Method,” Neural Computation, vol. 18, no. 12, pp. 2936–2941, Dec.
2006. doi: 10.1162/neco.2006.18.12.2936

[64] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT: Real-Time
Instance Segmentation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9157–9166.

[65] “Aim-uofa/AdelaiDet,” Adelaide IntelligentMachines (AIM)Group, Jul.
2021.

[66] D. Bolya, “Dbolya/yolact,” Jul. 2021.

[67] “OpenVINO™ Toolkit Overview - OpenVINO™ Toolkit,”
https://docs.openvinotoolkit.org/latest/index.html.

[68] “UserBenchmark: Intel Celeron J3455 vs Core i7-8650U,”
https://cpu.userbenchmark.com/Compare/Intel-Core-i7-8650U-vs-
Intel-Celeron-J3455/m353957vsm200485.

[69] “Intel Celeron J3455 processor review: CPU specs, performance
benchmarks,” https://askgeek.io/en/cpus/Intel/Celeron-J3455.

https://doi.org/10.1186/s13638-020-01801-6
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1109/JIOT.2018.2876279
https://doi.org/10.1162/neco.2006.18.12.2936

74 | REFERENCES

[70] “8 reasons to turn down the transmit power of your Wi-Fi - Metis.fi,”
https://metis.fi/en/2017/10/txpower/.

[71] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),”
arXiv:1803.08375 [cs, stat], Feb. 2019.

[72] D. P. Kingma and J. Ba, “Adam: AMethod for Stochastic Optimization,”
arXiv:1412.6980 [cs], Jan. 2017.

[73] “Ns-3: Examples/wireless/wifi-tcp.cc Source File,”
https://www.nsnam.org/doxygen/wifi-tcp_8cc_source.html.

[74] M. Lacage and T. R. Henderson, “Yet another network simulator,” in
Proceeding from the 2006Workshop on Ns-2: The IPNetwork Simulator,
ser. WNS2 ’06. New York, NY, USA: Association for Computing
Machinery, Oct. 2006. doi: 10.1145/1190455.1190467. ISBN 978-1-
59593-508-3 pp. 12–es.

[75] E. Puiutta and E. M. S. P. Veith, “Explainable Reinforcement Learning:
A Survey,” inMachine Learning and Knowledge Extraction, ser. Lecture
Notes in Computer Science, A. Holzinger, P. Kieseberg, A. M. Tjoa,
and E. Weippl, Eds. Cham: Springer International Publishing, 2020.
doi: 10.1007/978-3-030-57321-8_5. ISBN 978-3-030-57321-8 pp. 77–
95.

[76] A. Iucci, Explainable Reinforcement Learning for Risk Mitigation in
Human-Robot Collaboration Scenarios. DiVA, 2021.

https://doi.org/10.1145/1190455.1190467
https://doi.org/10.1007/978-3-030-57321-8_5

Appendix A

Results for second robot

Table A.1 reports the results for the second robot in the scenario with two
robots. As can be seen, they are very similar to table 4.3.

75

76 | Appendix A: Results for second robot

Ta
bl
e
A
.1
:
Re

su
lts

fo
rt
he

se
co
nd

ro
bo

ti
n
th
e
sc
en
ar
io

w
ith

tw
o
ro
bo

ts
,g

ro
up

ed
by

ty
pe

of
m
et
ric

(o
ffl
oa
di
ng

an
d
sa
fe
ty
).

Th
e
be
st
re
su
lts

fo
re

ac
h
m
et
ric

ar
e
hi
gh

lig
ht
ed

in
bo

ld
.

M
et
ric

Ed
ge
-o
nl
y

Ro
bo

t-o
nl
y

R
an
do

m
w
/o

R
M

D
Q
N
-2

D
Q
N
-3

La
te
nc
y
(s
)

1.
88
±

0.
02

1.
06
±

0.
00

1.
41
±

0.
05

-
0.

93
±

0.
03

0
.6
0
±

0
.0
9

La
te
nc
y
no

fa
ilu

re
s(

s)
1.

13
±

0.
06

1.
06
±

0.
00

1.
06
±

0.
02

-
0.

83
±

0.
03

0
.4
9
±

0
.0
8

La
te
nc
y
pe
ro

ut
pu

t(
s)

13
.2

3
±

1.
57

1.
06
±

0.
00

2.
17
±

0.
17

-
0.

99
±

0.
06

0
.6
5
±

0
.1
1

R
is
k
×

la
te
nc
y
(s
)

2.
77
±

2.
04

1.
56
±

1.
10

2.
23
±

1.
70

-
1.

52
±

1.
41

1
.0
5
±

1
.4
5

Su
cc
es
s(

%
)

14
.4

1
±

1.
47

1
0
0
.0
0
±

0
.0
0

63
.9

8
±

2.
81

-
87
.3

2
±

1.
73

92
.5

9
±

1.
17

Ed
ge

ou
tp
ut

(%
)

14
.4

1
±

1.
47

0.
00
±

0.
00

14
.8

8
±

2.
99

-
22
.2

0
±

3.
07

2
2
.8
3
±
8
.1
1

Va
lid

sc
en
e
gr
ap
h
(%

)
1
0
0
.0
0
±

0
.0
0

1
0
0
.0
0
±

0
.0
0

1
0
0
.0
0
±

0
.0
0

-
1
0
0
.0
0
±
0
.0
0

78
.9

6
±

5.
71

En
er
gy

(J
)

0
.1
9
±

0
.0
1

10
.4

9
±

0.
02

5.
31
±

0.
12

-
6.

72
±

0.
40

3.
61
±

0.
49

En
er
gy

no
fa
ilu

re
s(

J
)

0
.1
0
±

0
.0
1

10
.4

9
±

0.
02

8.
11
±

0.
41

-
8.

07
±

0.
41

3.
87
±

0.
57

En
er
gy

pe
ro

ut
pu

t(
J
)

1
.3
0
±

0
.3
1

10
.4

9
±

0.
02

8.
33
±

0.
42

-
8.

16
±

0.
41

3.
90
±

0.
57

C
rit
ic
al
zo
ne

(%
)

4.
37
±

1.
55

3.
05
±

2.
98

3.
58
±

1.
02

1
.5
4
±
1
.1
9

2.
34
±

2.
46

1.
60
±

3.
28

W
ar
ni
ng

zo
ne

(%
)

16
.4

7
±

1.
54

13
.9

0
±

0.
95

15
.2

5
±

1.
39

16
.4

7
±

1.
23

14
.1

2
±

0.
61

1
3
.9
5
±
1
.4
7

Sa
fe
zo
ne

(%
)

79
.1

6
±

2.
49

83
.0

5
±

3.
77

81
.1

7
±

1.
46

81
.9

9
±

2.
55

83
.5

3
±

2.
41

8
4
.4
5
±
2
.7
2

R
is
k
×

sp
ee
d
(m
/s
)

0.
65
±

0.
04

0.
64
±

0.
00

0.
72
±

0.
04

0.
74
±

0.
04

0.
64
±

0.
01

0
.6
0
±

0
.0
7

	Introduction
	Background
	Problem
	Purpose
	Goals
	Research methodology
	Delimitations
	Structure of the thesis

	Background
	Human-Robot Collaboration
	Safety in automated warehouse
	Risk management process
	Scene understanding

	Multi-access Edge Computing
	MEC for safety framework in HRC

	Reinforcement Learning
	Markov Decision Process
	Q-learning
	Deep Q-Network

	Frameworks and tools
	ROS
	V-REP
	ns-3
	OpenAI Gym
	Keras-RL
	Turtlebot 2i

	Related work

	Methods
	System design
	Task Offloading
	Network Monitor
	Task Proxy

	Implementation
	System
	Evaluation

	Results and analysis
	Experiments
	Simulated scenario
	Settings

	Evaluation framework
	Baselines
	Metrics

	Results
	Analysis of task offloading
	Analysis of safety

	Conclusions and future work
	Discussion
	Limitations
	Future work
	Ethical and societal aspects

	References
	Results for second robot

