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Abstract

Smoking and sedentary lifestyle make individuals more susceptible to certain diseases,
thus negatively affecting the quality of life and life expectancy of the population, and
ultimately resulting in a higher healthcare expenditure. The ultimate aim of this study is
to quantify in the short/medium term the effects of prevention policies that reduces expo-
sure to such risk factors of the Italian population. We consider the cost of each prevention
policy, and associate an economic cost to every year of life lost due to the disease (YLL)
and every year lived with disability (YLD). We then compare a baseline scenario with
each prevention scenario (in which a prevention policy is implemented), and estimate the
net benefits achieved by each prevention policy.

We model the evolution of individuals by independent Markov chains whose state
spaces describe the exposition to risk factors and the health of the individuals. We focus
on five tracer diseases (lung cancer, stroke, myocardial infarction, chronic obstructive pul-
monary disease and diabetes) which are responsible for a large fraction of YLL and YLD
attributable to smoking and sedentary lifestyle. To calibrate the model, we use data from
the Global Burden of Disease Study and Istat data and surveys on the Italian population.

We present and discuss the results obtained by the model. In particular, the model
predicts in the baseline scenario the decrease of the size of the population and the increase
of the average age over 30 years of simulations. We validate these outcomes by comparing
our results with Istat forecasting and with a simplified model appropriately defined to
capture only demographical aspects. Finally, we conduct an analytical sensitivity anal-
ysis to identify what parameters the model is more sensitive to, distinguishing between
parameters that affect the baseline, and parameters that affect the difference between
baseline and prevention scenarios. Such an analysis can be used as a tool to estimate the
error of model estimations due to the uncertainty of the parameters.
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Chapter 1

Introduction

It is estimated that between 70000 and 83000 deaths per year in Italy are attributable
to smoking [1]. Tobacco is a risk factor for four of the six diseases that cause the most
deaths worldwide [2], while physical inactivity is the fourth biggest risk factor for deaths,
accounting for 6% of all deaths. The annual public health expenditure of the European
Union for the treatment of six main categories of diseases smoking-related diseases is es-
timated at 25.3 billion Euro [1]. On the other hand an insufficiently active person has a
20− 30% higher risk of mortality than a person who engages in half an hour of physical
activity most days of the week. Sedentary lifestyle causes about 27% of cases of diabetes
and about 30% of cases of ischaemic heart disease [3].

The aim of this study is to estimate the effects of prevention campaigns to reduce
exposure to smoking and sedentary risk factors. We model each individual as a discrete-
time Markov chain independent of the rest of the population, and study the correspondent
population dynamics. This led us to a population dynamics model. The model is defined
and calibrated by using data from several sources, in particular Italian demographical
data and data on the exposure to risk factors from Istat, data on prevalences and inci-
dences of the disease from Global Burden of disease (GBD), and other parameters from
other sources. We compare over a finite time horizon a baseline scenario, where a co-
hort of individuals is evolved without any prevention policy, with a prevention scenario,
in which a certain prevention policy is implemented at the beginning of the simulation.
Both prevention policies on the sedentary lifestyle and smoking are considered. Beyond
the construction and the calibration of the model, our contribution is two-fold. First, we
validate the demographical evolution predicted by our model by comparing the output
of the model with Istat forecasting and with a simplified model appropriately defined to
highlight demographical aspects. The simulations in particular show that an important
decrease in the population size, and a massive increase of the average age are expected
to occur in the next 30 years. The second contribution involves a sensitivity analysis
model on a simplified model: in particular, we highlight which parameters affect more the
baseline and the difference between baseline and prevention scenario, which measures the
impact of a prevention policy. Such an analysis is analytical and involves notions from
graph theory such as centrality of nodes in graphs.
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1 – Introduction

Markovian models to model prevention scenarios in populations are not new in litera-
ture. Our model is a generalization of the model defined in [4], where however only the
smoking risk factor was considered. Another Markovian model on smoke is considered in
[5], while a work on prevention policy for sedentary lifestyle is considered in [6]. Other
work on the effectiveness of prevention policies are considered in [7, 8, 9]. To best of our
knowledge, this is the first model that takes into account both smoking and sedentary
lifestyle.

In Chapter 2, we introduce the basic notions on Markov chains and graph theory
needed for the thesis. In Chapter 3, our general model is described, and a theorem on
sensitivity is enunciated. In Chapter 4, our case study, which fits with the model intro-
duced in Chapter 3, is described in details. Then, in Chapter 5 we show the results of our
model, and conclusions ar given in the final chapter
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Chapter 2

Markov Chain and Graph
Theory

In this chapter we introduce the theoretical tools that we used for the purposes of our
study. The first part deals with the theory of discrete-time Markov chains, while the
second part introduces graph theory, focusing in particular on the notion of centrality.
For a more in-depth reference on Markov chains, stochastic processes, graph theory and
centrality measure, we refer to [10], [11], [12], [13].

2.1 Discrete Time Markov Chain
Definition 1. A discrete random process (Xk)k≥0 with values in a finite set S, is said a
discrete-time Markov Chain (DTCM) with initial distribution π(0) and transition matrix
P = P(k) relatively to the finite state space S if:

• X0 has distribution π(0), i.e.

πi(0) = P{X0 = i}, ∀i ∈ S, and
∑
i∈S

πi(0) = 1,

• it holds that

P{Xk+1 = ik+1|X0 = i0, X1 = i1, ..., Xk = ik} = P{Xk+1 = ik+1|Xk = ik},

• the transition matrix P(k) at step k is defined as:

Pij(0) = P{Xk = i|Xk−1 = j}.

The last condition is known as theMarkov Property and it characterises Markov processes.
This property says that the state at step k+ 1 depends on the state at step k, but not on
the past states. Note that the index k represents the discrete time, and in principle the
transition matrix could depend on time.
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2 – Markov Chain and Graph Theory

Remark. We refer to the convention according to which Pij represents the transition from
state j to state i.
Moreover the following are valid for P(k):

Pij(k) ≥ 0 ∀i, j ∈ S,∀k ∈ N and
n∑
i=1

Pij(k) = 1 ∀j ∈ S,∀k ∈ N.

where n represents the state space cardinality, i.e. n = |S|. In other words, P(k) is
non-negative and the sum of elements on each column is equal to one. Such matrices
are called column-stochastic. Column stochasticity is due to the fact that the column j
describes the probability to reach any other state i starting from j and this probability
is normalized on the state space. Column-stochasticity can also be formulated in vector
form by

1′P(k) = 1, ∀k ∈ N,

where 1 represents the vector of all 1, whose size can be deduced from the context.

Definition 2. A discrete-time Markovian Chain is said to be homogeneous if P is k-
independent, i.e. P is constant in time.

For simplicity, from now on we consider homogeneous Markov chains. The probability of
finding the Markov chain in state i at time k is:

πi(k) = P{Xk = i}
=
∑
j∈S

P{Xk = i|Xk−1 = j} · P{Xk−1 = j}

=
∑
j∈S

Pijπj(k − 1),

which in matrix form reads

π(k) = Pπ(k − 1). (2.1)

Iterating (2.1) leads to
π(k) = Pkπ(0).

Remark. Note that column stochasticity implies that the normalization of π(k) is pre-
served, since 1′π(k) = 1′P kπ(0) = 1′π(0) = 1.
We now give some characterization on the states of a Markov chain.

Definition 3. A state i is said to be reachable from state j if exists k /= 0 such that

(Pk)ij > 0.

Definition 4. A non-empty subset S ′ ⊂ S is said to be closed if

Pji = 0 for i ∈ S ′, j ∈ S\S ′.

8



2.2 – Centrality Measure in Graphs

Definition 5. A subset S ′ ⊂ S is said to be irreducible if S ′ is closed and it does not
contain another close subset otherwise it is said to be reducible.

Definition 6. If a single state is a closed subset of S is said to be absorbing.

The state space S of a reducible Markov chain can be partitioned in

S = T ∪
(⋃

i

Si
)
,

where every Si is irreducible closed subset and T is the set of transient state.

It is possible however to define a transient Markov chain by removing from the tran-
sition matrix the row and the column referring to the states of every closed irreducible
Si ∈ S. Let C =

⋃
i Si. In such a case, assuming that C is reachable from T = S \ C, the

corresponding transition matrix is sub-stochastic, i.e., 1′P ≤ 1′ and there exists at least
a state j such that

∑
i Pij(k) < 1. In such a representation, the probability of reaching

the nodes in C may be seen as the probability of leaving the system. Note that the sub-
stochasticity of P implies that the normalization of π(k) is not preserved, in particular
1′π(k + 1) ≤ 1′π(k).

2.2 Centrality Measure in Graphs
The state space of a Markov chain can be seen as a network where each node represents
a state of the chain. Network can be modelled thorough Graph Theory.

Definition 7. A Directed Graph is defined as the triple:

G = (V , E ,W) (2.2)

where:

• N is the countable set of nodes (vertices),

• E ⊆ N ×N is the set of links (edges),

• W is the weighted matrix, which has nonnegative entries.

We indicate by
n = |N |

the order of the graph. The weighted matrix is such that Wij > 0 if and only if (j, i) ∈ E .
Let G = (N , E ,W) be a graph. Then

• A walk from node i to node j is defined as a finite string of nodes γ = (γ0, γ1, · · · , γl)
such that γ0 = i, γl = j, and (γh−1, γh) ∈ E ∀h = 1, · · · , l;

• A node j is said to be reachable from a node i if there exists a walk from i to j;

• A node j ∈ N is said to be an in-neighbour of node i ∈ N if (j, i) ∈ E .

9



2 – Markov Chain and Graph Theory

Definition 8. The out-degree and in-degree of a node i are defined, respectively as follow:

wi =
∑
j∈N

Wji and w−i =
∑
j∈N

Wij . (2.3)

For a graph G = (N , E ,W) it can be used the compact notation:

w = W′1, w− = W1. (2.4)

Now, let
D = diag(w) (2.5)

be a diagonal matrix whose diagonal entries correspond to the out-degree of the corre-
sponding nodes. We can assume without loss of generality, that all nodes have positive
out-degree, i.e., wi > 0 for all i ∈ N since, if wi = 0 for some node i, we can always
modify G by adding a self-loop on i of some positive weight Wii.

Definition 9. The normalized weighted matrix Q is defined as

Q = WD−1. (2.6)

Q is a column-stochastic matrix (it si nonnegative and also every column sums to one).
Remark. Note that we can associate to every graph G = (V , E ,W) a unique homogeneous
Markov chain, where the set of nodes correspond to the set of states, the edges of the
graph correspond to non-null transition probability, and the normalized weighted matrix
correspond to the transition matrix.

Definition 10. A graph G is called strongly connected if given any two nodes i ∈ N and
j ∈ N , we have that i is reachable from j.

Definition 11. Let call centrality the measures that capture the importance of a node’s
position in a graph. The degree centrality is a measure whereby the importance of a node
i is simply given by its degree (in-degree or out-degree).

A natural extension of the in-degree centrality is the eigenvector centrality where the
centrality of a node i is proportional to the sum of the centralities of the in-neighbours j
of i.

Definition 12. Let λ−1 > 0 be the proportionality constant and let u ∈ Rn be the vector
of node centralities. It is defined as the vector that satisfies the following equation:

u = 1
λ

Wu. (2.7)

So, u is an eigenvector of W respectively to λ. If we choose λ = λW the dominant
eigenvalue of W, it follows from Corollary 2.3 of the Perron-Frobenius Theorem in [11]
that W admits a corresponding non-negative eigenvector u = λ−1

W Wu. Assuming G
strongly connected and imposing the normalization u′1 = 1, then u is unique and is called
the eigenvector centrality of G. It would be better considering a normalization of W,
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2.2 – Centrality Measure in Graphs

otherwise each node contributes to the centrality of all its out-neighbors irrespective by
its out-degree. So, replacing W with its normalized version Q = WD−1. Considering
that the dominant eigenvalue for Q is 1, it follows the equation:

u = Qu. (2.8)

The distribution u is invariant and assuming G strongly connected, is also unique due to
Proposition 2.4 from [11] is also unique. This centrality measure is called the invariant
distribution centrality of G. The notion of centrality can be modified to avoid some
theoretical issues. The problem is that the centrality of a node can increase arbitrarily
just by adding a self-loop of very large weight. As an alternative to self-loops, one can
easily take two nodes and add a non-direct link of increasing weight between them. This
situation can be avoided by allowing nodes to get some centrality, independently of their
in-neghbors. So let ξ ∈ (0,1] and let µ the vector describing the intrinsic centrality of each
node. Then the solution of

u(ξ) = (1− ξ)Qu(ξ) + ξµ (2.9)

is referred to as the Bonacich centrality and it can be write explicitly as

u(ξ) =
[
I− (1− ξ)Q

]−1
ξµ (2.10)

remembering that if Q is column-stochastic, then (1− ξ)Q is column-substhocastic and
so I− (1− ξ)Q is an invertible matrix.
Remark. Note that thanks to the term (1 − ξ), the matrix (1 − ξ)Q is sub-stochastic.
However, a similar centrality can be defined by considering an already sub-stochastic
weighted matrix.
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Chapter 3

Theoretical Model

In this chapter we introduce a population model that describes the evolution of a popula-
tion subject to risk factors. The model is Markovian and builds on the notions introduced
previously. We first define and analyse the model in Sections 3.1 and 3.2, and finally
establish a sensitivity result in Section 3.3.

3.1 Individual Dynamics
In this section we describe how the evolution of individual is modelled. In particular, we
define the state space of individuals and the structure of its transition matrix. We make
a fundamental assumption when modelling the life of an individual: the evolution of an
individual is independent of the rest of the population. In particular every individual is
described by a discrete-time homogeneous Markov chain with arbitrary time-step. We
assume that every individual is described by a set of features, some of them evolving
deterministically (e.g., age, gender) and some of them stochastic, possibly dependent on
each other. The choice of the features depends on the application. The state space S is
in the form

S =
∏
i

Sqi ,

where with
∏
i Sqi , we denote the Cartesian product of the sets Sqi and with index qi

we represent the different possible features. We denote n = |S| its cardinality. Since
we consider age and gender characteristics included in S, the resulting Markov process is
homogeneous.
Remark. It is also possible not to consider deterministic characteristics (age and gender)
as part of S. This approach leads to a reduced state space, but the associated Markov
process is not homogeneous, since the individual transition matrix would depend on its
age, which evolves over time, and on its gender.
Obviously, the model has to consider the possibility of dying for an individual. We do not
include a state associate to death, but consider instead a sub-stochastic transition matrix
(see Section 2.1) where the probability of dying is equivalent to the probability of leaving
the system.

13



3 – Theoretical Model

Remark. An alternative approach is to include the deaths into the state space. In this case,
the transition matrix would be stochastic and death states would be absorbing states.

In our application the state space is:

S = Se × Sg × Sf × Sa × Sm,

in which we consider age, gender, smoking state, physical activity state and disease state
as features describing an individual. Note that in S are all transient state. Every individ-
ual is expected to leave the system. The element Pij of the transition matrix represents
the transition probability from state j = (e, g, f, a,m) to state i = (e′, g′, f ′, a′,m′).

Let π(k) be the marginal probability distribution for an individual at step k. Then it
holds

π(k + 1) = Pπ(k), k ∈ N,

where P ∈ Rn×n is the transition matrix of the homogeneous discrete time Markov chain.
Note that in the case where no particular assumptions are made about the age states, the
state cardinality could be infinite, since considering all theoretically possible ages would
lead to an infinite number of states. A useful simplification in this regard could be for
example to consider an age state that collects all ages above a fixed age.

Let us make some considerations about deterministic characteristics. The ordering
of the elements of π is completely arbitrary and this allows formulations that highlight
structural features of the transition matrix as long as it is constructed consistently with
the ordering of π. For this purpose, we consider macro-blocks in π and P stratified first
by gender and then by age. Clearly an individual cannot change gender, so we have:

π(k + 1) =
(
πmal
πfem

)
(k + 1) =

(
Pmal 0

0 Pfem

) (
πmal
πfem

)
(k),

for k ∈ N. Each block Pmale and Pfem represents the sub-matrix of P including the
transition probabilities of all other features except gender. Essentially, in S we can identify
two transient and non-communicating subsets, Smal,Sfem ⊂ S defined as

Smal = {male} × Se × Sf × Sa × Sm, Sfem = {female} × Se × Sf × Sa × Sm.

This is equivalent to have two completely decoupled Markov chains, one for each gender.

About the ages, let us consider a maximum age of the model that we indicate as Emax.
The maximum age, as mentioned above, includes all the following ages, so in the course
of evolution the individual will continue to belong to the age state Emax once it has been
reached. Let us consider also a minimum age that we indicate with Emin, that can be
0 or a higher age depending on the application. So, the age state space is defined as
Se = {Emin, ..., Emax} and considering the stratification by age first this time, it follows:

14



3.2 – Populations Dynamics

P =



0 0 0 · · · 0 0 · · ·
P2,1 0 0 · · · 0 0 · · ·

0 P3,2 0 · · · 0 0 · · ·
...

...
...

...
...

...
...

0 0 0 · · · Pe,e−1 0 · · ·
...

...
...

...
...

...
...

0 0 0
... 0 PEmax,Emax−1 PEmax,Emax


.

We want to point out the particular structure of the transition matrix with all null ele-
ments minus the lower codiagonal, the last row and the element PEmax,Emax consequence
of the assumption on the maximum age. Each block Pi,i−1 represents the sub-matrix of P
includes the transition probabilities of all other features except age for a person evolving
from age i− 1 to age i.

The characterization of transitions in the other subspace depend crucially on the ap-
plication and will be analysed in details for our case-study in the next chapter.

3.2 Populations Dynamics
In the last section we analysed how every individual evolves. We here focus on the
population dynamics. Recall that an underlying assumption is that every individual has
an independent evolution. Moreover, since we incorporate age and gender in the state
space, every individual has in principle the same transition matrix P. Let the vector π(k)
describe the probability distribution at time k of an individual sampled with a uniform
probability distribution from the population. The evolution of π is of course governed by
the equation

π(k + 1) = Pπ(k), k ∈ N. (3.1)
In particular the component πi(k) describes the probability for a random individual of
being in state i ∈ S at time k. Given the probability distribution π(k), the expected
value of number of people in every state, denoted by N(k), is exactly N(k) = Ntotπ(k),
where Ntot is the total number of people in the cohort in the initial state. Thus, it evolves
according to

N(k + 1) = PN(k), k ∈ N,
where each entry of N represents the expected number of people in the corresponding
state. All the considerations above hold for a closed cohort, i.e., a setting where we
follow the evolution of people that are in the cohort at the beginning. A more realistic
assumption is that new individuals may enter in the system at every time step. In such a
case the system is said "open", and the evolution of the population reads

N(k + 1) = PN(k) + b(k + 1), k ∈ N, (3.2)

where b is the input of new people entering in the system. Remember that since we are not
considering death states into S, the matrix P is sub-stochastic. The input b(k) in (3.2)

15



3 – Theoretical Model

is not stationary in general, i.e. it can change year by year depending on the time-step
k. The input’s structure is the same as that of N and each entry of b(k) represents the
number of people entering the system in the corresponding state in year k. Assuming,
for example, that the population can only age and die from certain causes, the non-zero
elements of b are those corresponding to minimum age states. The model does not de-
scribe the evolution of people with age less than Emin but it must be considered that these
people become part of the system when reaching turning that age. Hence the necessity
of the input. More generally, migration phenomena could also be tracked. This implies
additional non-zero terms in b, relating also to other ages and if necessary these terms
could also be negative.

We note that N(k) can be written in a more explicit way, highlighting dependence
from the initial condition and the input of the system. Iterating (3.2) we get

N(k) = PkN(0) +
k−1∑
τ=0

Pτ b(k − τ) ∀k ∈ N. (3.3)

For simplicity, from now on we assume b homogeneous in time. So, (3.2) now reads

N(k + 1) = PN(k) + b, k ∈ N. (3.4)

If N admits stationary state, denoting it by N∗, it would be the solution of the following
equation:

N∗ = PN∗ + b. (3.5)
Since P is sub-stochastic, we can observe that the existence of N∗ is guaranteed. Indeed,
from Equation (3.5) results that

N∗ = (I−P)−1b, (3.6)

with I ∈ Rn×n identity matrix. N∗ is well defined because from sub-stochasticity of P
follow that (I−P) is invertible.
Remark. If we had taken death states into account the matrix P would have been stochas-
tic, therefore (I−P) not invertible and no steady state would have existed. Intuitively in
fact, it turns out that in presence of input, the death states keep on increasing in number
never reaching a condition of equilibrium.

Remark. Note that N∗ does not depend on the initial condition, but it only depends on
b.

Moreover, some consideration for the transient can be done. Indeed, with the input’s
homogeneity from (3.3) we have

N(k) = PkN(0) +
k−1∑
τ=0

Pτ b ∀k ∈ N+
0 . (3.7)

It can be easily proved that thanks to sub-stochasticity of P, the limit of (3.7) equals to
(3.6).
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3.3 – Sensitivity Analysis

3.3 Sensitivity Analysis
In this section we present the tools useful for a sensitivity analysis. In general, such anal-
ysis can be justified for several reasons. Firstly, the model parameters may be affected by
uncertainty, so it is good to understand which of these may create the greatest distortions
in the predictions. Secondly, understanding what are the key parameters to influence the
outcome of the population is interesting for a planner that aims at minimizing some cost,
e.g., the number of sick people, or the number of died people. So, we want to understand
with respect to which parameter the model is more sensitive. To this aim, it is necessary
to study the derivatives of quantities of interest with respect to P. This can be done for
both the steady state and the transient.

For this purpose we start defining a scalar quantity of interest given by

v :=
∑
i

N∗i . (3.8)

Recalling that the death is not included in the states, v represents the number of alive
people in the stationary state.

Theorem 1. Let be x a parameter such that P = P(x). Then,
∂v

∂x
=
∑
i,j

Y ∗i N
∗
j

∂Pij
∂x

. (3.9)

where Y ∗ is solution of Y ∗ = P′Y ∗ + 1.

Remark. Note that Y ∗ may be interpreted as a Bonacich centrality measure of the graph
described by the normalized weighted matrix P′.

Proof. We want to evaluate the quantity ∂v
∂x where x is a generic model’s parameter. In

particular it holds the following, where the chain rule for derivatives is applied:
∂v

∂x
=
∑
i,j

∂v

∂Pij

∂Pij
∂x

. (3.10)

Focusing now on ∂v
∂Pij

, fixing i and j, the following considerations apply:

∂v

∂Pij
= ∂

∂Pij

(∑
h

N∗h

)
=
∑
h

(∂N∗h
∂Pij

)
.

Reasoning for fixed h:
∂N∗h
∂Pij

= ∂

∂Pij

[(
I−P

)−1
b
]
h

=
( ∂T
∂Pij

b
)
h

=
∑
c

∂Thc
∂Pij

bc,

(3.11)
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3 – Theoretical Model

where we denote T =
(
I−P

)−1. Hence, we want to calculate the derivative of the inverse
of a matrix. Let M = M(Pij) invertible matrix. Since it holds I = MM−1, for any matrix
M(Pij) the following applies:

0 = ∂I
∂Pij

= ∂

∂Pij

(
MM−1

)
= ∂M
∂Pij

M−1 + M
∂M−1

∂Pij
.

(3.12)

We finally get:
∂M−1

∂Pij
= −M−1 ∂M

∂Pij
M−1.

Therefore, returning to Equation (3.11) and reasoning about the term ∂Thc

∂Pij
, so considering

h and c fixed, we have that:

∂Thc
∂Pij

= −
∑
a,t

Tha
∂
(
I−P

)
at

∂Pij
Ttc

= −
∑
a,t

Tha
(
− ∂Pat
∂Pij

)
Ttc

=
∑
a,t

ThaδaiδtjTtc

= ThiTjc

(3.13)

where δai = 1 if a = i and δai = 0 otherwise, Then, finally we get:
∂N∗h
∂Pij

=
∑
c

(∂Thc
∂Pij

bc
)

=
∑
c

ThiTjcbc,
(3.14)

that leads to:
∂v

∂Pij
=
∑
h,c

ThiTjcbc

=
(∑

h

Thi
)(∑

c

Tjcbc
)

=
(∑

h

Thi
)
N∗j ,

(3.15)

where the last equality follows from the definition of T and Equation (3.6). We now aim
at giving an interpretation to

∑
h Thi. Let we consider the auxiliary system described from

the following equation:

Y (k + 1) = P′Y (k) + 1, k ∈ N, (3.16)
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with Y (k) ∈ Rn. In this case, in stationary conditions it holds:
Y ∗ = P′Y ∗ + 1. (3.17)

Note that if one interpretes P′ as the adjacency matrix of a graph, comparing Equation
(3.17) with (2.9) it can be observed that Y ∗ is a Bonacich centrality with (1− ξ)Q = P′
and ξµ = 1. The steady state for (3.17) is expressed by the following relationship:

Y ∗ = (I−P′)−11 (3.18)
assuming matrix (I−P′) is invertible . Observe that such condition holds because (I−P)
is invertible and then the inversion and transposition operators commute:

(I−P′)−1 = [(I−P)′]−1 = [(I−P)−1]′. (3.19)
The inverse matrix of (I−P′) is well defined. Combining (3.18) and (3.19) we get

Y ∗ = T′1
from which finally it can be observed

Y ∗i =
∑
h

(T ′ih) =
∑
h

Thi. (3.20)

So, (3.15) becomes:
∂v

∂Pij
= Y ∗i N

∗
j . (3.21)

Thus, the derivative of v with respect an element of P can be seen as the product of a
centrality measure and the steady state. Finally given x generic model’s parameter we
get:

∂v

∂x
=
∑
i,j

∂v

∂Pij

∂Pij
∂x

=
∑
i,j

Y ∗i N
∗
j

∂Pij
∂x

. (3.22)

Giving an interpretation to Y ∗ as a centrality proves complex because of the size of the
state space, which corresponds to the cardinality of the nodes of the graph. Still, this
observation could be of interest for some applications. Also, note by (3.5) that N∗ can
be seen as a centrality measure as well, but the interpretation as the unperturbed steady
state is the most natural.

In the final part of this section we study the sensitivity of the transient, with v =
v(k) =

∑
hNh(k) as quantity of interest. For a given k i holds:

∂v

∂x
(k) = ∂

∂x

∑
h

Nh(k)

=
∑
h

[∑
j

(∂Pt

∂x

)
hj
Nj(0) +

k−1∑
τ=0

(∑
j

(∂Pτ

∂x

)
hj
bj
)] (3.23)

where (3.7) is used. This formula is more complicated, but still can be used to obtain
analytical results on the sensitivity.

In the last chapter we apply this tools to the sensitivity analysis of our case-study.
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Chapter 4

Case Study: Description

In this chapter we apply the population models introduced in the previous chapter to
study how two risk factor (smoke and sedentary lifestyle) influence the evolution of a
population sample. In particular, the goal of this study is to evaluate the effects of some
prevention policies on the population.

The work is fundamentally based on two purposes. The first consists in the definition
and the formulation of the model and in the calibration of its parameters. This includes
the derivation of the parameters and the initialization of the model. Then we present
some prevention interventions. Their efficiency is evaluated on the variations of YLD and
YLL parameters which are defined in the following section.

4.1 Quantities of Interest
From the comparison of the different simulations we will be interested in evaluating the
differences between some output parameters. For their definition it is useful to clarify
that with the term prevalence of a disease we intend to refer to the number of individuals
affected by that disease and with incidence we intend to indicate the number of individuals
who contract the disease in a given year. We can thus define:

• YLD (years lived with disability) which can also be described as years lived in less
than ideal health. This includes conditions such as influenza, which may last for
only a few days, or epilepsy, which can last a lifetime. Disability weights reflect
the severity of different conditions and are developed through surveys of the general
public. At year k it holds

YLD(k) = Pm(k) · ωm
where Pm(k) is the prevalence of disease m at that year and ωm ∈ [0, 1] is the dis-
ability weight for that condition.

• YLL (years of life lost) are years lost due to premature mortality. YLLs are calcu-
lated by subtracting the age at death from the life expectancy for a person at that
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4 – Case Study: Description

age. For an individual who dies at age e it holds

YLL = v(e)− e

where v(e) denotes the life expectancy of a person of age e (actually, this quantity
depends also on the gender [14]).

• DALY (disability-adjusted life year) is a universal metric that allows to compare
different populations and health conditions across time. The definition of the DALY
is.:

DALY = YLD + YLL. (4.1)

One DALY equals one lost year of healthy life. DALYs allow us to estimate the total
number of years lost due to specific causes and risk factors at the country, regional,
and global levels.

4.2 States Description
In this subsection we refer to population models that were treated in previous sections.
Modelling the individual’s evolution through the Markov chains we need to define its
states space, the initial distribution π(0) and the transition matrix P. So, our state space
includes all the combinations of these characteristic that we denote by (e, g, f, a,m). In
particular, we define the space of states S as a Cartesian product of five spaces of minor
cardinality:

S = Sg × Se × Sf × Sa × Sm
relating respectively to gender, age, smoking, sedentary lifestyle and disease. As already
discussed in the last section, we here decide to not include death states into the state
space. The probability of dying in a given year will be represented by the probability of
exiting from the system.

For the purpose of model’s formulation, certain assumptions had to be made, some of
them to simplify the model and some of them for lack of data. From now on the term
lifestyle will be understood as being related to sedentary lifestyle/physical activity.

Assumption 1. The population considered is composed of individuals aged e ≥ 25. In
order to reduce the complexity of the model and to consider a finite Markov chain it is
assumed that for e ≥ 90 the individuals always belong to the same age class defined as
e = 90+.

Assumption 2. The relation with smoke is described through 18 states two of which are
non-smoker NF and smoker F and the others 16 states are considered for former smokers.
Each of these includes ex-smokers who have quit smoking for i years with i ∈ 1,2, .....15
plus one state that considers ex-smokers who have quit for at least 16 years.

Assumption 3. The relation with sedentary lifestyle is expressed through 4 different states
in descending order of physical activity. These states are denoted by a1, a2, a3, a4.

22



4.3 – Model Initialization

This assumption derives from the fact that Istat data are stratified according to 4 levels
of sedentariness.

Assumption 4. The model includes the tracking of the five most important diseases
related to smoke and lifestyle (as it can be found in GBD [15]), called tracer diseases and
indicated as follows:

• Lung cancer CP;

• Stroke (or cerebral ischaemia) STR;

• Myocardial infarction (or coronary heart disease) MC;

• Chronic obstructive pulmonary disease BP;

• Diabetes DIA.

Assumption 5. An individual can contract several diseases.

In previous studies [4] it has been seen that this assumption is necessary to avoid
modelling errors. Indeed, if one assumes that any individual can get only one of the
disease, some distortions in the model are introduced, e.g., an individual that is ill from
a not severe disease is "protected" from more serious diseases and has therefore a higher
life expectancy compared to healthy individuals. Hence, based on previous assumptions,
each state space is defined as follow:

• Sg = {male, female};

• Se = {25, 26, 27, ...89, 90+};

• Sf = {NF,F,Ex1, Ex2....Ex15, Ex16+};

• Sa = {a1, a2, a3, a4};

• Sm = {S,CP, SRT,MC,BP,DIA} ∪ Sc.

As provided by Assumpion 1, Se includes ages between 25 and 89, plus a state in-
cluding all ages greater than or equal to 90. Sf contains the states for non-smokers (NF)
and smokers (F) and different states to describe different former smokers as provided by
Assumption 2. Sa include states as detailed in Assumption 3, and Sm include all the
combinations of tracer diseases (including the health state with no diseases).

4.3 Model Initialization
In this section we descibe how the population is initialized and the structure of the input.

For the distribution of the initial population, data were obtained from Istat referring
to the Italian population in 2019. The population is stratified by gender and by age and
individuals from 25 onwards are considered. Istat also provides a joint distribution of
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smoking, lifestyle, age and gender. However, about exposition to smoke, Istat divides the
population in only three categories: smokers, non-smokers, and former smokers. Without
going through details, we refer to [4] to obtain a distribution in terms of the 18 states
used in this dissertation.

For the initial health status, data for the Italian population in 2019 were obtained from
GBD. In particular we get informations regarding the incidences and prevalences of each
tracer disease. Let pe,gm = N e,g

m /N e,g
tot be the probability that a random individual of the

initial population, of age e and gender g, is affected by the disease m. N e,g
m denotes the

total number of individuals with that same disease, including those with more than one
disease but among which m is included. Let N e,g

tot be the total number of individuals of
age e and gender g. Due to lack of data on joint probabilities of having more diseases, we
make the following assumption.

Assumption 6. It is assumed that the probability of a random individual in the initial
population having a tracer disease is independent of the probability of having one or more
of the others.

Then, it follows that the probability of being in a disease state sm ∈ Sm, remembering
that sm may be a combination of different disease, is the following:

pe,gsm =
∏
i∈sm

pe,gi
∏
i/∈sm

(1− pe,gi ),

where i runs over the tracer disease {CP, SRT,MC,BP,DIA}, while the probability of
being healthy is

pe,gS =
∏
i

(1− pe,gi ),

where i always runs over the tracer disease {CP, SRT,MC,BP,DIA}. Let P e,g
f,a,sm

denote the number of people in the state (e, g, f, a, sm), with the convention that if
any of the index is missing we are implicitly marginalizing on the missing indexes, i.e.,
P e,g
sm =

∑
f,a P

e,g
f,a,sm. So, we get the number of individuals of age e and gender g in state

sm and the number of healthy individuals is

P e,g
sm = pe,gsmN

e,g
tot , P e,g

S = pe,gS N e,g
tot .

Now let us analyse the initialisation of a complete state defined by (e, g, f, a,m). Is-
tat provides the joint distribution of smoke state and activity state, remembering that
concerning former smokers the distribution was created ad hoc. On the other hand, the
distribution of tracer pathology patients was found by GBD. We do not have a joint dis-
tribution between risk factors and diseases. So, for lack of data we need the following
assumption:

Assumption 7. Risk factors distribution and disease distribution are independent.
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Let pe,gf,a,sm the probability for an individual of age e and gender g of being in (e, g, f, a, sm)
state, hence from Assumption 7 follows:

pe,gf,a,sm = pe,gf,a · p
e,g
sm,

where pe,gf,a and pe,gsm are respectively the probability of being in state (e, g, f, a) and
(e, g, sm) for an individual given that it has age e and gender g. This completes the
initial population initialisation.

As described in Section 3.2, we consider an input, which represents the amount of
individuals turning 25 that year.

Assumption 8. A constant number of 25-years-old whose stratification is consistent with
the population initialization are introduced into the system each year.

Note that the fact that the input is constant is an approximation which does not hold in
reality. To have a more realistic model, one should consider an input that is function of
the composition of the population. This could be an interesting direction for the future.
In the next section we focus on the details of the calibration of the transition matrix.

4.4 Model Structure and Parameters Calculation
Now that we have defined the state space S and we saw how we initialized the population
and the input, we need to clarify which transitions are possible between the several states
defined before. In this section state diagrams for each characteristic subspace are presented
and transition matrix pattern are discussed when of particular interest. Recall from
Chapter 3 that the probability distribution of an individual evolves according a discrete
time Markov chain where the time-step considered is of one year, whereas the expectation
of the number of people in every state evolves according to

N(k + 1) = PN(k) + b(k + 1), (4.2)

where P is the transition matrix of an arbitrary individual. It is therefore crucial to char-
acterize the structure of P. The ordering of the elements of N is completely arbitrary as
long as the transition matrix P is constructed consistently and vice versa. Each compo-
nent of N(k) describes the expected number of individuals in state (e, g, f,m, a) at time
k. During individual’s evolution, as seen in Section 3.1, gender remains unchanged while
age advances from year to year except for the last age state. Therefore, for the construc-
tion of the transition matrix the probability of transition from a state (f1, a1,m1) to a
state (f2, a2,m2) must be defined, where the age and gender are neglected for simplicity
of notation, despite being still part of the state. We make the following assumption.

Assumption 9. The probability of transition between two smoking states and two activity
states are independent of the current disease state, whereas this is not true for the proba-
bility of transition between disease states. In fact, we consider transitions in the space of
healths states to depend on the current smoking and activity states.
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From such assumption follows:
P{(f, a, sm)→ (f ′, a′, sm′)} = P{(f → f ′} · P{a→ a′} · P{(f, a, sm)→ sm′},

i.e. the transition probability from state (f, a, sm) to (f ′, a′, sm′) is given from the product
of three independent transition probabilities. In particular smoking and activity transition
are independent from other transitions while disease transition depende on exposition
to smoke and sedentary lifestyle. This allows us to treat transitions within individual
subspaces separately but it should not be forgotten that the model actually involves at
each time-step a transition from one quintuple to another,

(e, g, f, a,m)→ (e′, g, f ′, a′,m′),
as discussed previously, except if the individual leave the system (i.e. if individual die).
Note that in our case e′ = e+ 1 except when e = 90+, in whose case e′ = e.

Let us now turn to the description of the risk factors. For the smoke the following
assumption have been made:
Assumption 10. A non-smoker cannot start smoking. A smoker can always quit smok-
ing, in such case he is considered as a former smoker [5].
Assumption 11. The probability of restarting smoking for former smoker depend on the
years since smoking cessation [16].
Then, smoking transition are based on the following rules:

• non-smokers may not start smoking (Assumption 10);

• smokers can quit smoking every year, thus becoming ex-smokers by 1 year, with a
probability of α = 0.02 [17].

• former smokers of i years are likely to relapse up smoking again with probability
φi = ABe−12iB

where for males the following values [16] are used
A = 1.177;B = 0.150;

and for females
A = 1.197;B = 0.113.

The corresponding state diagram is in Figure 4.1:

NF

Ex1 Ex2 ... Ex16+

F

Figure 4.1. State diagram for smoking transition.
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Note that the population of non-smokers evolves completely separately from the rest
because of Assumption 10. Moreover every former smoker can always restart smoking.
Assuming that the states are ordered this way Sf = {NF,F,Ex1, Ex2....Ex15, Ex16+},
the transition matrix stratified by smoking states and including also a representative death
state has the following structure:

QF =



1 0 0 0 · · · 0
0 1− α φ1 φ2 · · · φ16+
0 α 0 0 · · · 0
0 0 1− φ1 0 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 1− φ16+


.

The non-negative elements in the second row, from the third column to second-to-last,
represent the probability for each former smoker of restarting smoking otherwise they may
evolve to the next former smoker state. Note that transitions in smoking space do not
depend on age and gender. This completes the definition of transitions between smoking
states.

Concerning physical activity we make the following assumption.

Assumption 12. Transitions are only allowed between adjacent states, assuming that the
states in Sa are ordered in descending order of physical activity.

a1 a2 a3 a4

Figure 4.2. State diagram for physical activity transition.

Hence, as anticipated by Assumption 3 we describe four activity states and as Figure
4.2 shows, transitions between activity states are allowed only if these states are related
to adjacent levels of physical activity. Due to lack of data about the transitions among
activity levels, we have defined a transition matrix QAe,g, for each gender g and age e,
with the following ideas in mind:

• we impose that the prevalences of physical activities remain stationary for each age
and gender;

• we impose that the total number of transitions is minimized.

Let ae,g ∈ N4 be the activity distribution vector describing the distribution of the preva-
lences in all different activity states for individuals of age e and gender g. Then, defining
QAe,g the transition matrix for the physical activity evolution, it must be true that:

ae+1,g = A′ae,g, (4.3)
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where QAe,g written explicitly is:

QAe,g =


1−QA21 QA12 0 0
QA21 1−QA12 −QA32 QA23 0

0 QA32 1−QA23 −QA43 QA34
0 0 QA43 1−QA34

 , (4.4)

where for simplicity the quotation marks eand g have been omitted. The stationary of
the prevalences reads:

ae+1,g
1 = (1−QA21)ae,g1 +QA12a

e,g
2

ae+1,g
2 = QA21a

e,g
1 + (1−QA12 −QA32)ae,g2 +QA23a

e,g
3

ae+1,g
3 = QA32a

e,g
2 + (1−QA23 −QA43)ae,g3 +QA34a

e,g
4

ae+1,g
4 = QA43a

e,g
3 + (1−QA43)ae,g4 ,

(4.5)

where the unknowns are QA12, QA21, QA23, QA32, QA34, QA43, for which the following
constraints apply:

QA12, QA21, QA23, QA32, QA34, QA43 ≥ 0,
QA12 +QA32 ≤ 1, QA23 +QA43 ≤ 1,

QA21, QA34 ≤ 1.
(4.6)

The constraints of the second row follow from imposing QA22, QA33 ≥ 0. The system is
undetermined, so arbitrarily, it was decided to choose the transition matrix that minimises
transitions between different states and maximises the probability of remaining in the
current state. This leads to the resolution of a linear program defined as follows:

min QA12 +QA21 +QA23 +QA32 +QA34 +QA43

subject to (4.5), (4.6).
(4.7)

This should be repeated for each age and gender to complete the definition of transitions
between activity states.

Now, we discuss how disease transitions were treated. Let us therefore introduce some
model assumptions concerning diseases.

Assumption 13. Individuals cannot recover from any diseases that occur, i.e. diseases
are chronic.

This is because we consider diseases with symptoms from which an individual does not
recover over time. In addition, for computational simplicity, a severity scale is established
a priori for tracer diseases so that a dominant disease can be associated with each health
status, i.e. the disease that will determine the individual’s evolution. It follows then:

Assumption 14. The evolution of an individual suffering from several pathologies is
described by the most severe pathology present. The pathologies are ordered as follows
from most severe to least severe in order of lethality: CP, STR, MC, BP, DIA.
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For simplicity, we also make the following assumption.

Assumption 15. An individual cannot fall ill with two or more diseases in the same
year.

Healthy

MC CP STR BP DIA

MC-CP MC-STR MC-BP MC-DIA CP-STR CP-BP CP-DIA STR-BP STR-DIA BP-DIA

Figure 4.3. Simplified state diagram for disease with only transitions from one disease
state to a different one from healthy state to one with two disease.

Figure 4.3 shows a simplification of the possible evolution within the subspace Sm. As
expressed in Assumption 13, individuals can not recover from a disease, so once they are
affected by a disease they may remain in that state for a certain number of years, they may
fall ill with another disease or they can die. Consistently with Assumption 15, individuals
may get sick with one disease per year, i.e. per time-step of evolution. Sm includes 32
different states, taking into account all possible combinations of diseases. For this reason
we do not report the corresponding transition matrix. Let us now define the probability
transitions. The onset of a disease must depend on gender, age and risk factors. So, we
define some useful quantities.

• Let βe,gm be the probability of falling ill for a healthy non-smoking individual of given
gender g and age e with level of activity a1 (i.e. the healthiest level of physical
activity). These parameters are not known a priori;

• Let RRe,gf,a,m be the relative risk for an individual of gender g and age e in smoking
state f and activity state a in relation to disease m. Relative risks are a multi-
plicative factor that describe how the exposition to certain risk factors increase the
probability of contracting the diseases. We shall also denote RRe,gf,m the relative risk
for an individual in smoke state f that is in activity state a1, and RRe,ga,m the relative
risk for an individual in activity state a that is in smoking state NF [18, 19];

• Let Ie,gm be the incidence during one year of disease m between individuals of gender
g and age e [15].

Hence, for a generic individual in the smoking state f and activity state a, the probability
of falling ill with the disease m is

βe,gf,a,m = βe,gm ·RR
e,g
f,a,m. (4.8)
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Then, relative risk is therefore a multiplicative factor for the probability of becoming ill
for a smoker or ex-smoker in a low activity state compared to a non-smoker in state a1.
For a non-smoker in activity state a1 it is RRe,gNF,a1,m

= 1, i.e., we assume that the state of
non-exposition to both the risk factors has a unitary relative risk, so that all the relative
risks are no less than 1. The relative risks are calculated in an additive way from the
individual relative risks RRe,ga,m and RRe,gf,m (taken from the CPS [19] and [16],[20]) as
follow:

RRe,gf,a,m = 1 + (RRe,ga,m − 1) + (RRe,gf,m − 1). (4.9)
Putting all together, the expected value for the incidences of each disease relatively to
each age and gender:

E[Ie,gm ] =
∑
sm

m/∈sm

∑
f

∑
a

P e,g
f,a,smβ

e,g
m RRe,gf,a,m, sm ∈ Sm, (4.10)

where the first sum runs over all the health states sm such that the disease m is not in the
state sm (so that the individual can get sick of the disease m). Since joint prevalences are
given (Istat), as well as relative risks and incidences, the only unknown variable is βe,gm .
The idea underlying this method is that we set the parameter βe,gm in such a way that in
expectation the number of incidences predicted by our model for every age, gender and
disease, equals exactly the number of incidences according to the GBD. From (4.10) we
can derive:

βe,gm = Ie,gm∑
sm:
m/∈sm

∑
f

∑
a P

e,g
f,a,smRR

e,g
f,a,m

. (4.11)

Having βe,gm for each age and gender, βe,gf,a,m follows from (4.8).

We now discuss the transition to death states. Recall that the model itself does not
directly describe death states but takes them into account through a certain probability
of exit from the system. Thus, the probability of remaining within the system is obtained
by complementarity. For the probability of dying because of disease, a method similar to
that of the probability of becoming sick is considered. We distinct the tracer disease in two
categories: fatal or non-fatal. The fatal disease include stroke and myocardial infarction,
and are characterized by the fact that a fraction of the population dies immediately at
the onset of the disease. Therefore the probability of fulminant death is also considered.
This does not apply to other diseases (lung cancer, bronchopneumonia and diabetes). Let
us now define death parameters. We use the following notation:

• νe,gm indicates the probability that an individual of age e and gender g, affected by
disease m, will die in the same year in which the disease occurs. For fatal disease
this term indicates the probability of fulminant death.

• δe,gf,a,m indicates the probability that an individual in smoking status f , activity status
a1, and in a health state sm such that m is the most severe disease of the state sm,
will die in any year (other than the year of diagnosis) from disease m;

Due to lack of data, ν it is treated as an independent parameter and in particular it does
not depend on smoking and activity status. Hence, follows the assumption:
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Assumption 16. We assume that every year the person has an equal probability of dying
for a given disease, except in the year of onset of the disease. For fatal diseases, we assume
that νe,gf,a,m is independent from smoking and lifestyle (this is due to lack data). For non-
fatal diseases, we consider that the probability of dying in the first year is νe,gf.a,m = βe,gf,a,m/2.

The underlying assumption is that, on average, people fall ill in the middle of the year,
and therefore may die from the disease only in the following six months. Hence, the
probability of dying in the year of diagnosis is considered to be half that of any other
year, for non fatal diseases.
Remark. Note that from Assumption 14, an individual suffering from several diseases may
die from less severe ones only at the time of their occurrence (if the new disease is fatal),
or until the occurrence of a more serious disease. For instance, consider an individual sick
from lung cancer. If he gets a stroke and does not die immediately due to the event, he
shall be sick from both stroke and lung cancer. However, since lung cancer is considered
more severe than stroke, the individual will be in first approximation treated as he had
only lung cancer, and cannot die from stroke anymore Although with this assumption the
model loses descriptive capacity of the events it is necessary in order to have a simplified
individual evolution.
Then, we can write the expected deaths for pathology m fixed age and gender:

E[M e,g
m ] =

∑
sm:

m=dom(sm)

∑
f

∑
a

P e,g
f,a,smδ

e,g
m +

∑
sm:
m/∈sm

∑
f

∑
a

P e,g
f,a,smβ

e,g
f,a,mν

e,g
m , (4.12)

with sm ∈ Sm and where with dom(sm) we indicate the dominant disease in sm state,
i.e. the most severe disease associated to the state sm, chosen according to Assumption
14. In this equation the first term takes into account deaths due to disease m of the state
sm such that m is the dominant disease of the state sm while the second term considers
the deaths of individuals in sm health states that do not contain the m disease and who
in the same year fall ill with m and die of m. Given the M e,g

m deaths (from GBD), the
parameters ν and β (calculated above) we derive the δe,gm . In particular, for non fulminant
diseases, in which νe,gm = δe,gf,a,m/2 it holds that:

δe,gm = M e,g
m∑

sm:
m=dom(sm)

∑
f

∑
a P

e,g
f,a,sm +

∑
sm:
m/∈sm

∑
f

∑
a P

e,g
f,a,smβ

e,g
f,m/2

(4.13)

For fulminant diseases, where the parameters ν and δ are independent:

δe,gm =
M e,g
m −

∑
sm:m/∈sm

∑
f

∑
a P

e,g
f,smβ

e,g
f,mν

e,g
m∑

sm:m=dom(sm)
∑
f

∑
a P

e,g
f,a,sm

. (4.14)

Remark. Note that Assumption 5 solves the main problem in the first version of the model,
namely the excessive life expectancy of patients with low incidence diseases. With the
new assumption a BP patient can have a myocardial infarction or stroke, unlike in the
previous model.
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For the sake of descriptive completeness, the model must also consider the possibility
of death not due to tracing diseases. For this purpose we consider also the fact that an
individual may die from other causes, thus introducing an additional probability of death
(for other causes OC).

Assumption 17. An individual can always die from other causes (OC) not related to
tracer diseases with some probability. This death groups together deaths from other causes,
i.e. other diseases that are not tracked by the model.

Similar reasoning as for deaths due to tracer diseases is applied here. A relative risk
factor is defined, which is more generic than in the previous cases because it is linked to
all possible deaths excluding those due to the five tracer diseases (such a relative risk is
obtained from CPS), This relative risk is derived from estimates made of the aggregated
relative risks for all diseases and the risks for the five tracers. We then write an equation
for expected deaths from other causes. First we obtain the deaths from other causes from
GBD by subtracting the deaths for the five tracers from the total deaths, i.e.,

M e,g
oc = M e,g

tot −
∑
m

M e,g
m . (4.15)

Let then:

• γe,g be the mortality from other causes of a healthy non-smoker in activity status a1
of age e and gender g;

The mortality from other causes of an individual with pathology m exposed to the risk
factors of smoke and sedentary lifestyle is:

γe,gf,a = γe,g ·RRe,gf,a,oc. (4.16)

Ultimately, the expectancy of deaths from other causes fixed age and gender is:

E[M e,g
oc ] =

∑
f

∑
a

P e,g
f,aγ

e,g
f,a, (4.17)

Given the risk factors RRe,gf,a,oc, using (4.16) and deaths from other causes from (4.15), we
obtain γe,g and consequently the γe,gf,a for each age and gender. In particular,

γe,g = M e,g
oc∑

f

∑
a P

e,g
f,aRR

e,g
f,a,oc

. (4.18)

4.5 Prevention Policies
This section is dedicated to the possible prevention policies and how they have been imple-
mented. Since we are considering two risk factors, we can distinguish between prevention
policies that aim to reduce exposure to the smoking risk factor or the sedentary lifestyle
risk factor.
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Apart from the risk factor they act on, preventions policies may be distinguished in
two categories. The simplest case concerns interventions that act only on the current
population and specifically on particular age groups. From a modelling point of view, this
kind of intervention results in a different initialisation of the population in relation to the
age groups on which the prevention intervention acts. This is the case with interventions
such as: short counselling (by general practitioner, GP) practicable for both risk factors
[21][22] and physical activity prescription [22]. In Table 4.1 are shown the corresponding
data.

Risk factor Policy individual cost
(€)

theoretical ef-
ficiency

target (age)

smoke counselling 14 2% 25-90+
lifestyle counselling 30 10% 25-69
lifestyle prescription 7 9.7% 25-69

Table 4.1. This table shows the main data of some prevention policies.

The other case concerns those prevention policies that not only act on the current
population but also on the input of the system. This is the case of the tobacco price
increase. A 20% increase in the price of cigarettes leads to [23]:

• a 6.8% reduction in smoking prevalence over the initial population. It is assumed
that these people have stopped smoking because of the campaign are initialised as
ex-smokers for 1 year;

• 6.8% lower prevalence in smokers of 25-year-olds entering the system. This time,
these are initialised to non-smokers as it is assumed that due to the prevention
intervention they never started smoking.

Increasing the price of tobacco causes changes in input prevalence because it is assumed
that as a result of this intervention a fraction of individuals under the age of 25 will never
start smoking. As it shall be emphasised in the next chapter, this distinction has an
implication from the theoretical perspective. In fact, as it can be noted from (3.6), the
two types of policies differ because in the second type the equilibrium that the population
reaches in the intervention scenario differs from the baseline, whereas in the first type of
policy the two scenario converge each other asymptotically.
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Chapter 5

Case Study: Results

This chapter is focused on the evaluation and description of the results obtained by the
model. In particular, in the first part results are discussed by making comparisons between
baseline and prevention policy for each risk factor. In the second part we validate the
demographic evolution of the model by comparing the trends with Istat forecasting and
with trends obtained by a simplified model. Finally, we conduct a sensitivity analysis on
a simplified model.

5.1 Case Study: Results
We now present results of the model. At the beginning model’s projections for the baseline
are discussed, then such results are compared to those obtained from different prevention
interventions. To evaluate the effects of a prevention policy we compare the baseline
predictions with those obtained with the prevention intervention. In particular, these
effects are measured in terms of DALYs gained, or possibly lost, compared to the baseline.

5.1.1 Baseline
Let us now introduce the results for the baseline. The model was initialized as discussed
in Section 4.3. We consider 30 years of time evolution and initialize the population with
the actual size of over-25 in 2019, i.e., 4.6536737 · 107 individuals. Figure 5.1 shows the
initial distribution of the population by age and the stratification in terms of smoking
habits, considering all former smokers of several years grouped together. Note that the
class age 90 actually contains all individuals that are at least 90 years old. Figure 5.2
instead shows the initial distribution of the activity state by age.

In Figure 5.3 prevalences and incidences for each disease over the 30 years of evolution
are shown. With regard to the incidences, which were set at zero at the beginning, we
can see that a roughly constant number is expected over the years, indeed no significant
variations are observed. This is in contrast with the prevalences, which instead grow
significantly in the first twenty years. This means that people get sick faster from these
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Figure 5.1. Initial distribution of non-smokers, smokers and former smokers
by age taken from Istat.

Figure 5.2. Initial distribution of activity state by age taken from Istat.

diseases than they die from them. As we have seen, the growth of the prevalences cannot
be explained by an increase of incidences. However, this can be explained by observing
the trend of the average age of the population (shown in Fig. 5.4 ), which increases during
the simulations. Indeed, both the average age and the prevalences seem to reach a peak
around the 30th year of simulations and seem in general strongly correlated, as confirmed
also by other simulations over a longer time horizon. We can thus motivate the growth of
the prevalences by observing that the rate of death among the sick individuals grows with
the age, which implies that as long as incidences are constant, the prevalences are driven
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from the average age of the cohort. Also, Fig. 5.4 shows that the size of the population
decreases as time grows. One could wonder whether the increase of the prevalences is a
distortion of our model, and whether the decrease of the population size is driven by this
trend. In the next subsection we will show that the trend of average age and population
size are compatible with the demographical structure of Italian population in 2019, con-
cluding therefore that this trend causes the trend of the prevalences, and not the opposite.

Figure 5.3. On the left evolution of prevalences for each disease. On the right evolution
of the incidences for each disease.

From Figure 5.5 we can see that the number of deaths related to the various tracer
diseases is growing slowly affecting more individuals exposed to the smoking risk factor.
This statement is justified by the right plot in Figure 5.4 as well as by the fact that this is
intrinsically predicted by the model construction. Death from other causes has a greater
impact on the total number of deaths (as we will see in more detail in Section 5.3). This
is reasonable because the probability of death from other causes is a more general model
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parameter that considers all causes except tracer diseases.

Figure 5.4. On the left the trend of the population mean age, on the right the trend of
the total population, both referring to the baseline over 30 years of evolution.

Finally, the trends for each disease of YLL and YLD defined in 4.1 are shown in Figure
5.6. Remembering 4.1, trends of DALYs can also be observed. Fatal and higher mortality
diseases such as myocardial infarction, stroke and lung cancer have a higher number
of YLL and very low YLD. These diseases affect an individual’s lifespan more than its
quality. On the other hand, for diseases with lower mortality such as chronic obstructive
pulmonary and diabetes we can see higher YLD compared to YLL. As death from other
causes is a more general class, the corresponding YLDs have not been considered, since
we do not take into account prevalences of other diseases. Overall, the model predicts a
slight increase in DALYs for each disease in the baseline consistently with the expected
growth in prevalence and deaths related to tracer diseases.

Figure 5.5. Model projection of deaths for each tracer disease.
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Figure 5.6. YLL and YLD foreseen by the model for every year of evolution.

5.1.2 Prevention Policy: Tobacco Price Increase

In this section we present the results in case a tobacco price increase is implemented. The
details of this policy are reported in Section 4.5. Again, for comparison with the baseline,
the results reported were obtained from the same initial number of individuals and for
the same time period, i.e. over 30 years. To start with, however, we report results for a
longer time period which is of 100 years. This is done in order to highlight some specific
behaviours of the model, as well as to highlight the benefits induced by a prevention
intervention.

Figure 5.7 shows the evolution of the annual difference of deaths between the base-
line and policy and the cumulative evolution of the same quantity. The left plot shows
an oscillating trend for the gain, which initially increases and is positive, immediately
highlighting the positive effects of the policy. However, in the following years, the instan-
taneous positive effect of the intervention starts to decrease, becoming null around the
35th year of evolution and then becoming negative. From there on, the instantaneous
effect of the policy vanishes, which means that the annual amount of death in the baseline
and in the prevention scenarios are equivalent. However, the cumulative number of deaths
is much less in the intervention scenario (about 50000 lives saved), as expected. Of course,
this implies that at the equilibrium, the cohort in the intervention scenario includes 50000
individuals more than in the baseline scenario. Thus, in terms of proportions, the deaths
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Figure 5.7. On the left the annual difference in deaths between baseline and policy. On
the right cumulative difference in deaths between baseline and policy .

in the policy steady state are less than in the baseline, as can be seen from the figure
on the right. However, the right plot, which shows the development of the total gain
allows us to understand that the model predicts positive effects as a result of the policy.
The fact that the trend of the instant gain tends to vanish may be explained by theory
(see Chapter 3). Recall indeed that in both the scenarios an asymptotic equilibrium is
reached from the system, and in particular this steady state depends from the input. In
equilibrium, the number of people entering in the system equals the number of people
dying every year. Since the input in the two scenarios differs from the composition of in-
dividuals (in terms of smoker and non-smokers) but not on the cardinality, the number of
deaths in the two scenarios is expected to be the same at the equilibrium. The campaign
undoubtedly induces benefits in terms of the instantaneous gain of deaths, but this will
tend to decrease later as the system tends towards equilibrium, and in particular there
will be a time window whereby the net benefits of the intervention are negative. However,
this can be easily explained by the fact that the policy induces fewer people to die in the
early years of evolution causing an increase in the gain of living people, which in turn
implies that at some point the number of annual death may be larger than in the baseline
scenario. We note that the effect of the prevention campaign can be quantified by the
area subtended by the instantaneous gain curve. This quantity is actually the total gain
in terms of death, which of course is related to YLL.

In figure 5.8 we can see the effects of the prevention intervention in terms of the dif-
ference between baseline and prevention scenarios in terms of prevalences and incidences
for each disease over 30 years. It is observed that the gain in smoking-related diseases
increases over time and then in some cases decreases towards the end of the time interval.
This effect can be motivated by same arguments used for the trend of deaths. On the
other hand, a loss in prevalence and incidence is observed for diabetes. This is due to the
fact that no correlation between smoke and diabetes exists (i.e. relative risk equal to 1),
and this prevention intervention acts on the stratification of the population with respect
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Figure 5.8. On the left there are the trends of the difference between baseline and policy
prevalences for each disease. On the right there are the trends of the difference between
baseline and policy incidences for each disease.

to the smoking risk factor and not with respect to the sedentary risk factor. So no gain
on diabetes-related features is expected. However, in the intervention scenario the total
number of individuals grow, and therefore also the number of individuals with diabetes,
thus explaining this apparently weird behaviour. The loss in terms of diabetes prevalence
is not only justified by the latter observation but also by the fact that a fraction of the
additional living individuals already had diabetes, further contributing to the negative
gain.

Finally, Figure 5.9 shows the cumulative gain in terms of YLL,YLD and DALYs ob-
tained from the difference of the same cumulative amounts referred to baseline and cam-
paign. It is observed that overall the prevention campaign induces a return in years of life
gained for the population in the short/medium term from the intervention. In fact, the
Figure 5.9 shows an increasing trend over the period considered of 30 years. It should be
specified, however, that these positive effects do not involve all pathologies. Recalling in
fact from Figure 5.8, the tobacco intervention induces a loss in terms of prevalences and
annual incidences of diabetes. This also means a loss in terms of diabetes-related DALYs.
Overall, however, the campaign brings a considerable gain.
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Figure 5.9. Cumulative gain in YLL,YLD and DALYs due to tobacco price increase.

5.1.3 Prevention Policy: Counselling for Physical Activity
Finally, we discuss some results obtained for the physical activity counselling. When
modelling physical activity, it must be taken into account that there are few studies in
the literature and therefore our representation is still uncertain. However, for the sake
of completeness we report the relative results, recalling that the choice of modelling the
activity space with four states is a consequence of the stratification of the data provided
by Istat.

Diseases related to this risk factor are myocardial infarction, stroke and diabetes.
As before, the model is initialised as described in 4.5. In particular, the effect of the
intervention is to move a fraction of individuals from states a3 and a4 to state a2, and
a fraction of individuals from a2 to state a1. Unlike the previous case, this prevention
intervention does not involve any change in the system input. Since the steady state,
as we have already seen, depends only on the input and its composition, baseline and
policy tend to the same equilibrium condition for numerosity and composition. What
is expected, consistent with the model’s predictions, is that the instantaneous gain of
DALYs vanishes in the long term and consequently the cumulative gain stabilises at a
positive value. The positive effects of this policy are appreciable in the transient. Thanks
to the policy, deaths of many individuals are delayed and total prevalences are decreased,
resulting in a gain in total YLL and total YLD.

Figure 5.10 shows the trends in the instantaneous differences between baseline and
policy of prevalences and incidences for each disease. A positive gain is observed for the
diseases related to sedentary lifestyle. It can already be observed within 30 years that
the incidence gain begins to decrease towards the zero gain of the steady state as antic-
ipated. On the other hand, a loss for these quantities is observed in relation to diseases

42



5.1 – Case Study: Results

Figure 5.10. Cumulative gain in YLL,YLD and DALYs due to short counselling
for physical activity .

Figure 5.11. Cumulative gain in YLL,YLD and DALYs due to short counselling
for physical activity.
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not correlated to the risk factor. It should be noted, however, that this loss is negligi-
ble when compared to the orders of magnitude of the same quantities seen for the baseline.

Finally, the cumulative trends of YLD, YLL and DALY over 30 years of evolution are
shown in Figure 5.11. As expected, the cumulative gain for these quantities increases as
the first 30 years of evolution are still part of the transient. In contrast with the previous
campaign where YLD’s earnings were a smaller proportion than YLL’s, in this situation
they are comparable. A large part of the gain on YLD relates to diabetes, a disease with
a lower mortality rate and therefore a longer period of disability.

5.2 Demographic Analysis
In this section we validate the demographic trends observed in Fig. 5.4. The purpose is to
show that those trends are not due to assumptions of our model, but depend intrinsically
on the composition of the Italian population. To this end, we construct a simplified model.

Regarding the simplified model we consider the Italian population in 2019 stratified
only by age groups from Istat. Then this data were smoothed to obtain the individual ages.
The probability of death was calculated from GBD data, also stratified by individual age.
As input for the system Italian population of 25 years old in 2019 is consider, assuming
it to be homogeneous in time.

25 26 .... 90+

death

Figure 5.12. State diagram describing the simplified evolution for an individual.

The state diagram in figure 5.12 describes the evolution of an individual. The relative
transition probabilities depend on gender and age. In Figure 5.13 are shown mean age
trend and total population trend provided by the main model and simplified model. We
can see that the two versions of the model predict the same qualitative trends. In particular
the main model predicts a lower mean age and a lower total population. This discrepancy
can be explained by recalling the results in 5.1.1. Indeed in the simplified model we
assume that the rate of mortality for a given age is fixed in time. On the other hand,
we have observed in the main model that the prevalences are expected to grow, so that a
more accurate assumption is that the mortality for a given age increases over time. This
influences both the size of the population and the average age, since the missing deaths of
the simplified models are expected to occur mostly for old people. However, despite these
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small differences, this model confirms the qualitative trends obtained by the main model.

Figure 5.13. On the left the trend of the mean age and on the right the trend of the
total population predicted by the main model and the simplified model.

Finally, the trend have been validated by comparison with Istat forecasts 5.14. The
reported trends concern Istat data and forecasts, from 2018 to 2067. We can observe that
in the first 40 years the population is expected to age, thus justifying the results of the
models implemented. The same applies to the total population, which is expected to grow
slightly in the first 20 years, followed by a rapid decrease after that. Considering that the
models group all individuals over the age of 90 into a single state and therefore consider
them to be 90 years old when calculating the average, this explains the underestimation in
the average age compared to the Istat data. In addition, the Istat total population trend
also takes migration into account, which is not the case with the implemented models.
However, these data show that these trends are due to the initial composition of the
population and not to any particular model assumptions.

Figure 5.14. On the left the trend of the mean age, on the right the trend of the
total population of Istat forecasts.
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5.3 Sensitivity Analysis
The conducted studies included a sensitivity analysis for the model. The reason for this
is that all model parameters, both those found in the literature and those calculated from
other data, are affected by uncertainty. Hence it is necessary to identify for which pa-
rameters the model is most sensitive in order to provide a useful instrument for the error
estimation.

Two equally effective approaches can be followed for this purpose. The first, more prac-
tical, simply requires to run several simulations by modifying the values of the parameters
in question. The second approach, based on analytical methods, involves the implemen-
tation of the method discussed in Section 3.3 leading to a first-order approximation of
the variations caused by a perturbation of the parameters. The substantial advantage of
the first approach is based on being able to obtain information in the short term without
the need for further calculation algorithms. On the other hand the second approach is
analytical, in contrast with the first one which is simply based on simulations. Both the
methods may be used for a sensitivity analysis on both the transient or the asymptotic
state of the dynamics. Since the model has a lot of parameters that can be affected by
uncertainty, running a lot of simulations with different values of the parameters can be in
practice unfeasible. The analytical method may be used on top of numerical simulations
to capture what parameters the model is the most sensitive to, allowing for numerical
simulations sampling in a reduced set of parameters’ values.

Unfortunately, the analytical approach presents an issue: every parameter (e.g., the
probability of getting sick, or stopping smoking) enters in many elements of the transition
matrix. Thus, computing the derivative with respect to (wrt) a single parameter involves
in practice the derivative wrt many elements of the transition matrix. For this reason, in
this section we analyze a simplified model, in the spirit of what done for the demography,
which however tries to capture the role of any parameter. The aim is to understand which
parameters should be given more attention in case of uncertainty and how parameters’
variation affect the results.

We first investigate the sensitivity of the baseline wrt to the parameters. Then, we
shall study how the difference between the baseline and the prevention scenario depend
on the parameters. This is in practice very important, because we are more interested in
the impact of the prevention policy than the baseline independently. A parameter that
affects equally the baseline and the prevention scenario would not affect the impact of the
prevention policy, and its uncertainty will result in practice negligible for our estimations.

5.3.1 Case Study
It is intended to consider a model of minimum complexity that allows the main features
of the main model to be described. For this reason, the considered states are as follows:

• no distinction for age status;
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• no distinction for gender status;

• no risk factor related to physical activity;

• 2 states for smoke, Sf = {NF,F} (no-smoker, smoker);

• 2 states for disease, Sm = {S,M} (health, sick).

In this case the Markov chain for an individual has four different states, excluding death
|S| = 4, ordering as follows:

S = Sf × Sm = {S − F, S −NF,M − F,M −NF}. (5.1)

We arbitrary decided to focus on one risk factor only, i.e., smoke, and on a smoking-
related disease, that for completeness we decided to choose among the fatal ones, i.e.,
stroke. More generally, there are 3 exit states in the system representing three causes of
death for an individual, each characterised by a probability of realization:

• ν probability to have sudden death at the onset of the disease;

• δ probability to die from disease;

• γ probability to die from other causes.

The model simulates the evolution of a population of 107 individuals. Prevalences for
smokers and ill people are derived from Istat and GBD data to initialize the population.
In line with the main model, these prevalences are assumed to be independent of each
other:

Prevsmokers = 0.1 Prevsick = 0.015.

For the prevention intervention an efficiency of 9% is expected on the population of smok-
ers. In particular this results in a variation of the system input and of the initial condition.
The following values are assumed for the model parameters corresponding to 80-year-old
males:

α φ β RR ν γ δ
0.02 0.02 0.0082 1.4 0.53 0.09 0.226

It follows from the above that the transition matrix A ∈ R4×4 and its definition is as
follows:

A =

 (1 − α)(1 − γ − β ·RR) φ(1 − γ − β) 0 0
α(1 − γ − β ·RR) (1 − φ)(1 − γ − β) 0 0

(1 − α)β ·RR(1 − ν) φβ(1 − ν) (1 − α)(1 − γ − δ) φ(1 − γ − δ)
αβ ·RR(1 − ν) (1 − φ)β(1 − ν) α(1 − γ − δ) (1 − φ)(1 − γ − δ)

 .
The input of the system is initialised from the prevalences. For example, assuming a
population of 106 individuals we have

bS,F = 106 ·Prevsmokers · (1−Prevsick).
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Here is the value of the input obtained from the data considered:

b =


98500
886500
1500
13500

 , 4∑
i=1

bi = 106.

In Figure 5.15 it is shown the state diagram of this simplified model. In this case, for
the sake of completeness, Assumption 10 does not holds because we want to consider also
parameter φ and for simplicity former smoker’s states are not described.

S − F

S −NF

M − F

M −NF

dν dγ dδ

Figure 5.15. State diagram of the model.

5.3.2 Baseline Sensitivity
We here refer to the results discussed in Section 3.3. As in Section 3.3, we now consider v
as quantity of interest, with v =

∑4
j=1 N

∗
j , i.e. the number of alive individuals in steady

condition (another quantity of interest could be the number of sick people). In Figure
5.16, the time-dependent trends of the derivatives of v with respect to each parameter
are shown. These describe, to first-order approximation, how the sensitivity of the model
evolves over time with respect to each parameter. The range considered for the time
step is T = 60 years. In this particular case, for initial condition introduced above, all
these trends are monotonic. In particular, the sensitivity of the model with respect of
every parameter grows monotonically in time. However, this is not always true in general.
Moreover, one can observe the effect, to first order approximation, that each parameter
would have on the total population if it were affected by 25% of relative error. In particu-
lar this is visible for k = {20,40,60}. To explain the meaning of these trends, consider for
example an increase in α, i.e. the probability of stopping smoking. The derivative with
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respect to this parameter is always positive, would induce an increase in the total popu-
lation and this growth increases as the years progress. This can be explained by the fact
that an increase in the probability of quitting smoking would result in fewer individuals
being subjected to the risk factor of smoking and a consequent decrease in the incidence
of sickness, which ultimately result in fewer deaths. In other words, fewer deaths. The
opposite is true for the other parameters to which corresponds a negative derivative, hence
their increase would induce a decrease in the total population. This because the other
parameters induce or describe a relation with the risk factor or just describe the possibility
of dying for an individual. Finally, note that the although the parameters are modified,
the system still converges to an asymptotic equilibrium, which in turn implies that the
derivative of v with respect of the parameters as a function of time tends to stabilize over
time.

On the other hand, it is interesting to observe how the trend of the total population
can change as the initial total population changes. Again, note that given a constant
input, the stationary state does not depend on the initial state of the population, and
thus on its size. Fixing the input also fixes the equilibrium state. The population trend
instead will depend on two things: the first is the size of the initial population, while
the second is the composition in terms of states. It is interesting to observe from Figure
5.17 two different situations. For an initial total population below a certain threshold in
the first years of evolution there is an increase in the population, which may continue to
grow or begin to decrease in relation to the equilibrium point. Choosing an initial popu-
lation equal to steady state in numerosity, we see this behaviour that means that initial
population is healthier than the one at equilibrium. For an initial total population above
this threshold, on the other hand, there is only a decrease that then leads to the state of
equilibrium. The number of deaths is related to the composition of the population but re-
mains proportional to the total number of individuals. So starting from a sufficiently large
number of individuals the deaths outweigh the input despite the healthier composition of
the population. We can state that this threshold is linked to the initial composition of the
population. For example, if the composition of the initial population were equal to that
of the equilibrium, this threshold would coincide precisely with the number of individuals
in the steady state.

The reason why we investigated the steady state instead of the transient is two-fold:
first reason is that the derivative of the asymptotic show a similar behaviour compared to
the transient; also, since the analytical expression of the asymptotic state is much easier
than the transient, we decided to focus on the asymptotic state without loss of generality.
Figure 5.18, 5.19 and 5.20 show the dependencies of the steady state on each parameter.
For each pair of plots, the first shows the local trend of the equilibrium, i.e. the trend
around the value of the parameter used in the study. The second shows the steady-state
trend over a larger range. These figures highlight the fact that for almost all the parame-
ters, except for ν, the steady-state depends non-linaerly on the parameters, while a linear
approximation may be applied locally in good approximation for all of them, and thus a
first order approximation works well. The changes in the individual states at equilibrium
are consistent with what might be expected. For example, an increase in the parameter
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Figure 5.16. In order from left to right and from top to bottom all derivatives of v with
respect each parameter: α, φ, β,RR, ν, γ, δ.

β, which models the probability of becoming sick induces a reduction in the number of
healthy individuals and an increase in the number of sick individuals.
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Figure 5.17. Evolution of the total population for different initial total populations.

We note that v is much more sensitive to γ than to other parameters. This is not
surprising at all, since γ, related to deaths for other causes, is responsible for the most of
the deaths of the cohort. This is easy to understand because γ is a probability of death
(from other causes) and a change in it directly affects the number of deaths. This should
be combined with the fact that death from other causes involves the whole system of living
people, and is not directed only to a "small" portion of the system, in contrast with δ that
instead affects only sick people. The fact that the steady state has local linear behaviour
allows to consider in such a study only positive (or alternatively negative) increments of
the parameters since in both cases the induced variations would be of the same order.

Figure 5.22 shows the induced changes in the number of sick individuals in the steady
state. Studying the sensitivity of the number of sick people is relevant for two reasons:
first, sick people constitute a small fraction of the total cohort, thus a large relative
variation of sick people may result in a small variation of total individuals; second, the
number of sick individuals is proportional to the YLD, which is a key output of our model.
As expected, this quantity is more sensitive to β, ν and δ, that describe respectively the
rate at which individuals get sick, the probability of fulminant death, and the probability
of death in other years than the first one, However, still this quantity is very sensitive to
γ. The increase in β causes an increase in the number of sick individuals of more than
16%. This means that an increase by 25% on this parameter, compared to the actual
value, would lead to significant errors in the estimate of the number of sick individuals in
the system, and thus in the YLD (which we recall are proportional to prevalences in the
population).Similar arguments apply for ν and δ. An increase in
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Figure 5.18. Steady-state as α, φ, β varies.
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Figure 5.19. Steady-state as RR, ν, γ varies.
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Figure 5.20. Steady-state as δ varies.

these two parameters would lead to an increase in the number of deaths due to illness
and therefore to a consequent decrease in the number of sick individuals. An estimation
error on these parameters would therefore induce wrong estimates first of all on the deaths
due to disease than on the actual number of sick individuals.

Figure 5.21. Percentage variation of v induced by a 25% increment in each parameter.

5.3.3 Prevention Policy
The same analysis can be carried if a prevention intervention is implemented. We here
decided aribitrarly to implement a prevention policy on smoke with effectiveness 9% that
affects also the input. We expect the policy scenario to have a similar sensitivity to the
baseline. It is convenient to define Z, a quantity which describes the difference between
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Figure 5.22. Percentage variation of sick people induced by a 25% increment
in each parameter.

prevention intervention and baseline, and studying its sensitivity. Let be

Z(k) := N̂(k)−N(k), for k ∈ N, (5.2)

denoting by N̂(k) ∈ Rn, vector of the expected population for each state of the model in
case the prevention intervention is considered. Note that such analysis on the asymptotic
states makes sense only for a prevention policy that modifies the input (as for instance
the increase of tobacco price). Indeed, as discussed in Section 5.1.3, any prevention policy
that does not affect the input will result in limk→∞ Z(k) = 0, invalidating the analysis.
However, based on previous observations, we expect that the qualitative results obtained
by this analysis may still considered valid for the transient of a generic prevention policy
on smoke. As done with N , it is useful to define a quantity of interest. Hence, let

vz =
n∑
j=1

Z∗j , (5.3)

where Z∗ is the the difference of alive individuals between the baseline and the intervention
scenario at the equilibrium. vz represents the balance of people alive among the different
states in the Markov chain. Z∗ thus indicates how many additional living people there will
be at the equilibrium in the case of a prevention intervention compared to the baseline case.
Also for this quantity locally a linear parameter dependence holds in good approximation.
Now, it is possible to see how perturbation in parameters can induce changes in this gain.
Figure 5.23 highlights the parameters to which vz is most sensitive, in particular these are
β,RR and γ. Note that vz is much more sensitive to RR than v. This is not unexpected,
since the higher is the relative risk, the higher is the benefit of stopping smoking, which is
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exactly the effect associated to the prevention policy. On the other hand, parameters like
γ affect similarly the baseline and the prevention scenario, resulting in a smaller effect on
the difference between the two scenarios. A similar argument can be made for β: indeed, β
influences the incidences of the disease for both smokers and non-smokers, but an increase
of it still enlarges the difference between the rate at which people get sick in the two
scenarios. considering two differences with respect to RR. However, the gain is more
sensitive to RR than β. It can also be seen from the figure that an increase in mortality
due to other causes has a negative impact on the gain that a prevention intervention
can bring. This is because the whole population, but particularly individuals who have
stopped smoking through the intervention, are more likely to die from other causes, which
in turn implies that the campaign has a smaller effect. Thus there is a smaller effect of
the campaign. This shows how errors in the parameters can lead to considerable over-
or under-estimates of the gain. Another observation involves the risk of non-smokers. If
one consider non-smokers to include also former smokers, it is natural to assume that
the relative risk associated to this state is greater than 1 and estimate the sensitivity to
this parameter as well. As expected, vz is negatively correlated to this parameter, since
vz is expected to be proportional to the difference between the two relative risks, which
measures the benefits associated to stopping smoking.

Figure 5.23. Percentage variation of the gain of alive people by a 25% incre-
ment in each parameter.

56



Chapter 6

Conclusions

In this work we define a Markovian model for the evolution of a sample of individuals
exposed to the risk factors smoking and sedentary lifestyle. Our model keeps track of five
tracer pathologies (lung cancer, stroke, myocardial infarction, chronic obstructive pul-
monary disease and diabetes) positively correlated to the risk factors. We exploited this
model to evaluate the effects induced by some prevention campaigns for the mentioned risk
factors in the Italian population, where the effects are measured in terms of DALYs. After
defining and calibrating the model, we validated the results by comparing our prediction
with Istat forecasting, and conducted a sensitivity analysis to highlight what parameters
the model is more sensitive to. Our analysis relates the sensitivity with respect to the
parameters to Bonacich centrality in a appropriately defined graph. Not surprisingly, the
analysis shows that the mortality for other causes is the parameter that affects more the
number of alive people in a baseline scenario. Instead, the impact of a prevention policy
is more sensitive to the relative risk related to the diseases.

Future research lines include, but are not limited to: give more interpretation to the
centrality in the network, in such a way to exploit more our theoretical results; estimate
the YLD due to other causes apart from our tracer diseases; improve the details of the
model, for instance considering the correlation between pathologies and the correlation
between the exposition to risk factors and the evolution of the disease (so far, the risk
factor only affects the probability of getting the disease); extend the sensitivity analysis
also to the lifestyle; consider a non-homogeneous input in time; extend our model to other
risks, e.g., pollution, or excess of sugar in diet.
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