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Abstract 
Taste is a complex sensation related to the perception of food flavours, acting as a key control 

mechanism to defend the organism from poisons or noxious substances: the five basic taste 

sensations, namely bitter, sour, salty, sweet and umami, evoked either alone or in combination 

by food molecules, may stimulate the intake or rejection of the latter. Sugars (e.g., glucose, 

sucrose) constitute a prominent example of this mechanism, inducing a powerfully motivating 

sensory response toward food in light of their role as one of the primary energy sources for the 

body. On the other hand, the well-known correlation between sugar abuse and diseases 

development, e.g., diabetes, obesity or cardiovascular problems, is driving the tendency to 

substitute natural sugars with low-calorie sweeteners, to promote an overall healthier lifestyle. 

This consideration is spiking the interest in the development of artificial sweet molecules with 

a low calorie content but a strong sweetening ability, a process that can greatly benefit from the 

molecular-level identification of key chemical and physical features that ultimately result in a 

specific gustatory sensation. 

In this context, machine learning (ML) models can represent fast and readily deployable tools 

for the discovery of novel sweet compounds. With this goal in mind, in the present work, a 

novel set of both open-source and proprietary relevant molecular descriptors were extracted, 

starting from a database of 316 sweet molecules. After a thorough assessment of the state of the 

art, two ML models were constructed for the evaluation of the level of sweetness of a given 

query molecule. Given the importance of assuring the reliability of the predicted result, which 

can be jeopardized by the limited number of available molecules with known sweetness levels 

used to construct the models, an applicability domain of the sweetness predictor was also 

developed and is reported, taking the specific usage scenario into account. Overall, the present 

work provides a solid starting point for the future refinement of regressors as molecular 

predictors of the sweetness level of novel chemical compounds. 

 

  



 

 

1 Introduction 

 

As previously mentioned, the increasingly important role of the search for new molecules in 

the food industry has led to the increased use of molecular predictors. A sweet predictor can be 

used not only in the food field to discover new molecules, but for example, it can be shown to 

be helpful, in conjunction with other methods, to map the organoleptic characteristics of an 

ingredient. Currently, this situation is facilitated by the increasing computational power 

available and the greater tendency to implement artificial intelligence (AI) models to solve 

complex problems. The following thesis work is based on using a predictor that can determine 

the sweetness of any organic molecule and evaluate the applicability and reliability of the result 

obtained in the context of use.  

The present thesis work is organized in 4 main Chapters 

Chapter 1 is the present introductory section  

Chapter 2  is dedicated to explaining the prior biological knowledge behind this work. It will 

mention how the taste sensor is made up, briefly review the sweetness ligands, and how the 

level of sweetness is measured in the lab. 

Chapter 3  focuses on methods regarding data analysis, specifically the construction of the sweet 

database, feature selection, the machine learning models used and their optimization. Last but 

not least, the study of the applicability domain defines whether the predictor obtained value it's 

possible to apply to a given circumstance and how reliable the predicted value is. 

Chapter 4 focuses on the development of the machine learning driven algorithms to predict 

sweet taste. In this section, employed methods and obtained results will be discussed. A 

conclusion will point out main findings, limitations of the work and further future 

developments. 

 

  



 

 

2 Biological and chemical background 

 

2.1 Sweet taste receptor 

The five primary basic tastes are umami, bitter, salty, sour, and sweet. The sensation of sweet, 

umami and bitter tastes are determined by organic molecules called G protein-coupled receptors 

(GPCRs), while sour and salty are determined by ion channels. In the following, we will briefly 

mention the receptor that provides the sensation of sweetness and then focus on the molecules 

that cause the phenomenon. 

The receptor that recognizes sweet substances such as sugars is a heterodimer composed of two 

subunits TAS1R2 and TAS1R3 which are encoded in our genes: tas1R2 and tas1R3. Looking 

at Figure 1 from the bottom, we can see the following composition: a secondary structure with 

7 transmembrane helices (TMD), an extracellular N-terminus composed of a Venus flytrap 

module (VFTM), and a cysteine-rich domain (CRD) attached to the transmembrane domain. 

 

 

Figure 1 – Sweet receptor 1 

 

This receptor responds to many natural and artificial compounds (e.g., Cyclamate, Monellin, 

Glucose, Sucrose). Therefore, the sweet receptor contains different active sites within a single 

VFTM (usually binding small sugars) and sites formed using the VFTMs of both TAS1R2 and 

TAS1R3 subunits (glucose is an example of a molecule using such a site). Finally, we can find 

allosteric binding sites within the transmembrane core of the TAS1R3 subunit that activate the 

sweet receptor (for example, the site is activated by cyclamate). It is also important to note that 

VFTM

CRD

TMD

TAS1R2 TAS1R3



 

 

some binding molecules can play an antagonistic role to the sweet molecules (lactisol is one 

such molecule). 

These examples are intended to show how there are many specific activatable sites that are 

activated by molecules with as many specific characteristics. This work will aim to extrapolate 

the chemical characteristics of the stimulating molecules through molecular descriptors and 

construct a predictor capable of determining whether a molecule under consideration possesses 

the properties necessary to activate the receptor mentioned above. 

 

2.2 Sweet ligands and their sweetness level  

Since the first classifications of molecules in 1976, the sweet molecules database has expanded 

very quickly to include several proteins recently 2. This situation makes us realize that there are 

many compounds that can have a sweet taste from different categories. 

The Figure 2 shows some sweet molecules and their structure: from elementary molecules on 

the top to more complex compounds on the bottom.  



 

 

 

Figure 2 - examples of structures of sweet molecules 3 

 

Before proceeding further, it would be helpful to briefly understand how the level of sweetness 

is assessed in the laboratory. At present, the results obtained are considered to be actual and are 

the benchmark for all other measurement methods. 

We will briefly explain the process used in the laboratory. The first step is to obtain cells 

expressing the sweet human receptor. This detailed procedure is described by Poirier et al. 4 

and we will mention it briefly. The cDNA encoding TAS1R2 and TAS1R3 subunits are taken 



 

 

and inserted into two vectors, pcDNA3 and pcDNA5, respectively. Using HEK293T cells 

stably expressing the chimeric G protein subunit Gα16gust44, which is first treated and 

subsequently cotransfected with previously mentioned plasmids encoding the human sweet 

taste receptor subunits hTAS1R2 (in pcDNA5/FRT, Invitrogen) and hTAS1R3 (in pcDNA3, 

Invitrogen). After obtaining a cell culture expressing a human receptor, the calcium level is 

measured, which correlates with the intensity of the stimulus received by the cell. A 

luminescence assay is used to assess the stimulus level.  

In Figure 3, a possible spectrum of stimulation and emission is shown.  

 

 

Figure 3 – Spectrum Flu4-am 5 

 

The fluorophores we mentioned are molecules that show an increase in fluorescence when they 

bind to Ca2 up to 100 times. This behaviour leads to a concentration/response curve similar to 

a sigmoid. To measure the trend, two extreme values must first be measured. The first is value 

in the absence of stimuli, and the second is value in saturation. Figure 4 below shows the 

behaviour obtained in the laboratory by Bouysset and his collaborators for sucrose (a) and 

arctiin (b) 6. 

 



 

 

 

Figure 4 – Example of sweet level measurement in the laboratory 

 

The black line corresponds to the control sample, where the cells were transfected with an 

empty plasmid (no gene encoding TAS1R2 and TAS1R3 subunits were inserted).  

Finally, to assess the level of sweetness, we take the concentration value that produces a 

stimulus equal to 50% of the maximum stimulation (EC50). The equation below shows the 

calculation performed:  

𝑓(𝑥) = 𝑚𝑖𝑛 +
𝑚𝑎𝑥 −𝑚𝑖𝑛

1 + - 𝑥
𝐸𝐶!"

0
#	%&''(')*+ 

  



 

 

3 Materials and Methods 

 

3.1 Database construction  

3.1.1 Sweet molecules 

A sweet molecule is defined as a molecule capable of stimulating sweetness. At first, it was 

thought that molecules belonging to this category must have very similar structures, but as 

shown in Figure 5 this is not true. 

 

Figure 5 - Examples of different sweet structures 

 

However, the molecular conformation is not the only factor to be considered to explain the 

biochemical activity. Another aspect to consider is the bonds that molecules and receptors 

create. In 1963, Shallenberger formulated the "AH-B model" theory. It was one of the first 

developed, attempting to explain why molecules with different structures were all  

sweeteners 7.  

Briefly, the model highlights that receptors are characterized by two functional groups: a 

hydrogen donor (-AH) while the second is a hydrogen acceptor (-B). Similarly, there must be 

two functional groups in the sweet molecule having the same characteristics as those present in 

the receptor. This combination leads to the creation of a bond, as shown in Figure 6. 

 



 

 

 

Figure 6 - Bonds in the AH-B model 

 

Currently, with the wide use of computational technologies, there has been a shift from creating 

a single prediction model to extrapolating a set of molecular features that would allow them to 

be correlated to the output.  

Therefore, a fundamental step for the creation of a prediction model is the collection of a 

database containing molecules of which the level of sweetness is calculated in the laboratory, 

using the method of a cellular luminescence assay briefly mentioned in chapter 2.2. Currently, 

this process represents the state of the art, so these values are considered the actual sweetness 

values and taken as a reference point.  

Given the complexity and the cost of a luminescence analysis process, not to mention the 

previous knowledge needed to carry out such a process, very few databases (DB) are available, 

and one of these is the one generated by Cheron's work called SweetenersDB 8. The DB has 

been updated in the following years, introducing new compounds (Ruiz-Aceituno et al., 2018). 

to a total of 316 molecules.  

The DB has, for each element, the name of the compound, its graphical representation and 

finally, the level of sweetness expressed in logarithmic form. Figure 7 shows the characteristics 

of 2 molecules: 

 



 

 

 

Figure 7 - Two molecules belonging to SweetenersDB are shown  

 

 

Molecules are classified by name, while the calculation of the sweetness value is relative to the 

sweetness value of sucrose. So the latter, in our case, is given a sweetness level of 0. In other 

molecules, the relative sweetness value is defined as the ratio of the concentration of a sucrose 

solution to the concentration of a solution of the molecule under consideration. 

In the literature, other databases are created by the collection of molecules, such as the work of 

Ahmed et al. 10 called SuperSweet, which has about 8000 items and is the most extensive current 

collection of sweet molecules. However, this database is not downloadable, and Chéron et al. 8 

conclude that 99% of the molecules present in SuperSweet are close to those in the 

SweetenersDB database. Moreover, the DB created by Chéron (Chéron et al., 2017). is widely 

employed in other works, thus facilitating an immediate comparison. 



 

 

For all these reasons, we have chosen a database that provides us with a solid starting point 

despite the not too high number of molecules.  

 

3.1.2 Molecular descriptors 

Another component underlying our research is to find a relationship between the structures of 

a molecule and its chemical properties. About the latter, we generally mean all properties that 

can affect a molecule: these can be physical, chemical or even biological such as the evaluation 

of the pharmacological activity. 

The mathematical objects can usefully and unambiguously describe the chemical structure of a 

compound; these are the descriptors. The use of the latter is important because they allow one 

to predict a priori whether a molecule can have a specific characteristic without actually having 

to synthesize the structure of the molecule. 

A first distinction of the molecular descriptors, being mathematical objects, is made based on 

the spatial order of the structure from which they are derived so that we can have different 

descriptors such as 1D, 2D and 3D. The 1D descriptors are obtained starting from the brute 

formula while, as it can be guessed from the word name itself, the other two (2D and 3D) from 

the representation of the structure in two- and three-dimensional format, respectively. 

In this section, we will discuss descriptors extracted from open-source modules and MOE 

software. 

The first open-source module we are going to analyze is Chemopy 11, freely accessible and 

written in Python. It consists of 19 categories and includes 1135 descriptors; in the table present 

Appendix 1we can see the categories to which the descriptors belong. For the complete list, see 

the link in the work of Cao 11. Remember that this module requires the installation of the 

following external packages: RDKit, Openbabel, MOPAC and Pybel. 

The second open-source module is Rdkit 12. It consists of 208 descriptors belonging to different 

categories listed in the table in Appendix 2. This module is written in Python and C++, whose 

strength is the speed of execution of programs. Please note that Rdkit is not only a module for 

descriptors, but it is an entire ecosystem composed of several packages to manipulate 

molecules. In fact, the creation of molecular structures starting from Simplified Molecular Input 

Line Entry System (SMILES) in molecular structures is done using one of these packages. 



 

 

Mordred 13 is the latest open-source module used for extraction; it can extract up to 1826 

descriptors. The entire module is written in Python and is available with the Conda environment 
14 environment and is the most extensive collection of descriptors. Appendix 3 is also provided 

for the latter, listing the category to which all descriptors belong.  

Turning to the MOE software provides the possibility of extracting up to 440 descriptors. Note 

that the MOE software before extracting the descriptors allows to perform an energy 

minimization of the structure. As we will see later, it can be an advantage in terms of 

performance. The list of the family of descriptors extracted by MOE is available in Appendix 

4. 

 

3.1.3 The use of molecular descriptors to extract sweet molecules properties 

“Data pre-processing involves transforming raw data into well-formed datasets so that a type 

of analysis can be applied. Raw data is often incomplete and has inconsistent formatting. The 

adequacy or inadequacy of data preparation has a direct correlation to the success of any 

project involving data analysis.” 

Starting from the definition of pre-processing, we can immediately understand how 

fundamental the antecedent processing of the data is. We start from the database with the 

molecules saved in SMILES format. 15. In fact, to have a compact database, it is chosen to use 

the Simplified Molecular Input Line Entry System (SMILES) format because it allows a 

considerable saving of memory. It is constituted by a string essentially formed by characters 

codified in the American Standard Code for Information Interchange (ASCII) format. This 

ensures the saving of memory and interoperability between different systems (software, 

operating systems).  

The conversion from SMILES to molecular structure and vice versa follows precise rules found 

in Anderson’s work 15. We will briefly mention them below.  

The first rule deals with Atoms and Bonds and states how a molecule should be represented in 

string form, the letters for each atom, and the symbols representing the different types of bonds. 

The second rule deals with simple chains, providing guidance on how bonds between structures 

should be represented, considering the suppression of hydrogen atoms (the latter are not 

represented). The last three rules concern the representation of branches, rings and atoms along 

the chains.  



 

 

 

After obtaining the confirmation, it is necessary to uniform the structure, applying 

Standardisers. The last ones are a set of operations that filter and transform the molecules to 

agree with a well-defined set of rules. We report below in Table 1 the rules used in general by 

Standardisers, both Flatkinson and MOE. 

 

Table 1 - Standardization rules applied by Flatkinson and MOE 

APPLIED RULES 
Number rules Flatkinson MOE 

1 
Bond breaks between 

molecule and group I and 
II metals 

Bond breaks between 
molecule and group I and 

II metals 

2 
Removal of salt 

molecules not belonging 
to the structure 

Removal of salt molecules 
not belonging to the 

structure 

3 Neutralization of the 
structure itself 

Neutralization of the 
structure itself 

4  Energy minimization is 
possible 

 

At this point, it is possible to calculate the descriptors. 

 

3.2 Machine learning models and their optimization 

The machine learning models that we are going to analyze are called ensemble methods. In 

particular, we will explain the amplification method called Boosting. These are different from 

the methods called Bagging, where at the end of the implementation of the various models, a 

majority vote is performed to obtain the result. Instead, in Boosting, the concept is to focus on 

samples challenging to classify to improve overall performance. However, these methods bring 

a disadvantage, the tendency to have high variance and consequently overfitting on the training 

data. 16. 

 

 

 

 



 

 

 

Adaptive Boosting (AB) 17 and the Gradient Boosting Regressor (GB) 18 are two models that 

we will discuss in the following the steps of the Boosting method are shown in Figure 8. Then 

the substantial differences between the two chosen networks are analyzed. 

 

 

Figure 8 - Boosting process 19 

 

 

Figure 8 highlights that each step corresponds to the training of a model, which focuses on the 

data whose prediction was incorrect (red box). 

The differences among the chosen networks concentrate above all on how the weights 

associated with every created model are updated. The difference resides above all in the 

function of Loss that is possible to choose in the GB, while in the AB, it is exponential.  

 

 

 



 

 

As far as network optimization is concerned, first of all, one has to agree on the function 

(scoring) to evaluate performance. One way is to use the regression formula found in the work 

of Golbraikh and colleagues 20 reported below: 

 

𝑅 =
Σ(𝑦& − 𝑦4)(𝑦5& − 𝑦54)

6Σ(𝑦& − 𝑦4),Σ(𝑦5& − 𝑦54),
 

 

where 𝑦 and 𝑦" represent the observed (the actual) and predicted values, respectively. 

To optimize grids, we need to search for the parameters that provide the best performance. One 

possible function that performs this search is the Grid Search, a Scikit-learn module 21 to which 

a parameter space must be provided. The Grid Search performs an exhaustive search of all 

combinations of parameters (estimators, laerning_rate) in the network until it obtains the one 

that gives it the best performance. 

Note that Grid Search being an exhaustive search, the computational cost can be high, so using 

a search space with as few parameters as possible is preferred. It is discarding all features that 

have little impact on the performance of the networks. 

  



 

 

3.3 Features selection  

Feature selection allows choosing among the total features, a subset that can improve the 

accuracy and efficiency of the predictor. The methods for feature selection are divided into 

three main categories: filters, wrapper and embedded, as shown in Figure 9. 

 

 

Figure 9 - Features selection methods 

 

The method in the middle of Figure 9, filter,  can be used as a pre-processing method before 

applying techniques belonging to the other two categories.  

The Filters method carries out a pre-processing of the data, which is independent of the 

prediction algorithm used but is based on considerations regarding the general characteristics 

of the training set. Among these are the Bernoulli filter and the cross-correlation. Both are very 

versatile methods, not complex and very effective. 

 



 

 

The Bernoulli filter, in particular, analyzes the variance present among the values of a feature. 

After setting a threshold value, this filter removes a feature if it has a higher variance. Below is 

an example with binary features Figure 10 where the probability is calculated using this formula: 

 

𝑉𝑎𝑟[𝑥] = 𝑝(1 − 𝑝) 

 

 
Figure 10 - Bernoulli filter 

 

The example shows a feature with a probability p= of 5/6 (feature "a") higher than the threshold 

value and is discarded. 

This filter removes all the properties with low information content. However, it would also be 

interesting to remove those properties that are very similar to other features despite having 

information content. In this case, the implementation of another filter, the cross-correlation 

filter, can help us. The Pearson correlation formula is used: 

 

𝑟 =
∑ (𝑥! − 𝑥̅)(𝑦! − 𝑦1)"
!#$

2∑ (𝑥! − 𝑥̅)%"
!#$ 	2∑ (𝑦 − 𝑦1)%"

!#$
 

 

where x and y are the features under consideration and the summation goes from 1 to the number 

of features (n). 



 

 

The correlation between the features taken in pairs is calculated, and one is discarded if the 

correlation is higher than the threshold value. 

An example of the application of both filters in a series is shown below. On the axes, the 

numbered features are represented. Between Figure 11(a.) and (b.), we can see the removal of 

the features with low variance (grey colour) and the removal of the highly correlated features 

(represented by red). 

 
Figure 11 - Filter application, heatmap before (a.) and after (b.) 

 

After filtering, we could either use the prediction algorithm or further select by choosing one 

of the other two methods (wrapper and embedded).  

The wrapper method uses the construction of a prediction model to evaluate the effectiveness 

of a subset of features. This motive is the reason why this technique is strictly dependent on the 

learning algorithm used. There can be two different types of approaches, the randomized one 

and the deterministic one. In the first one, a set of attributes is chosen randomly (as the Genetic 

Algorithm does). In the second one from an original starting subset, one feature is added, 

removed or substituted (this procedure is used by  RFE and Mlxtend instances).  

Starting with the latter, Mlxtend was created by Raschka. 22, the algorithm can proceed in two 

different ways. The first one, called Backward, starts by analyzing the entire set of features and, 

at each cycle, chooses whether to exclude one. On the contrary, the forward method starts from 

an empty subset and, at each cycle, decides whether to include one.  



 

 

 

They are equivalent methods; we see the steps of the forward process called Sequential Forward 

Floating Selection (SFFS): 

1. you must give him the number of features to select (it can also be a range)  

2. you create an empty set,  

3. the first feature is included, and performance is evaluated. 

4. The performance obtained with the addition of the feature is compared to that obtained 

in the previous step. If the performance with the addition of the feature worsens, the 

feature in question is discarded (obviously, during the first cycle, this step is not 

performed). 

5. We proceed until the desired number of features is reached, and the algorithm has 

evaluated all elements belonging to the initial set. 

The second deterministic wrapper method we see is Recursive feature elimination (RFE). 

(Pedregosa et al., 2011). We start from the complete database of features; a prediction is made. 

The feature importance is calculated in the next step, and the least important recruited feature 

is eliminated. It is possible to choose the minimum subset value to be obtained. 

  



 

 

The third method taken into analysis is the genetic algorithm 23 which, as previously mentioned, 

is a random method. Genetic algorithms are heuristic methods of search and optimization; they 

are inspired by Charles Darwin’s principle of natural selection. The algorithm tries to solve 

problems with changing conditions by following a finite series of standard steps. A flow chart 

with the main steps is depicted in Figure 12. 

 
Figure 12 – Flow chart Genetic Algorithm 

 

The steps outlined above will be briefly explained. For a complete discussion, please see 

Holland's paper ("Genetic Programming and Emergent Intelligence," 2020). The first step is to form 

the initial population. The features are divided into subgroups containing a part of the extracted 

features, and a feature can be included in more than one subgroup. The set of subgroups forms 

the initial population.  

 Then in the second step, the subgroups are evaluated according to a function called the fitness 

function. The function evaluates whether one subgroup is better than another. The third step is 

the selection of subgroups that lead the predictor to have the best performance. The last two 

steps can randomly change the result of selection through mutation and cross-over. These two 



 

 

steps are the fundamental part of the genetic algorithm. The mutation allows to maintain or 

include in a selected subgroup one or more features, while the cross-over allows mixing the 

features belonging to different subgroups (the number of features per subgroup does not vary). 

We return to speak about the main filtering methods; the Embedded algorithm provides a 

middle way between the filter and wrapper methods explained. The peculiarity of this method 

lies in the selection of features that are included in the optimization process of the predictive 

model. 

 

3.4 Applicability domain 

Different methods are proposed to analyze the goodness of a prediction, but all aim to define a 

molecular domain. For example, in the work of Wiener 25, the domain is calculated with PCA, 

while in Tuwani's work, the Euclidean mean distance between molecules is calculated by 

selecting some features (Tuwani et al., 2019). All this makes it very difficult to compare the 

different works; we will analyze, in particular, the work of Hanser 27 where rather than 

providing methods to be used to compute a domain, he gives guidelines.  

The work just mentioned provides an overview of assessing the applicability and reliability of 

an obtained result. Applicability is intended to consider one main issue;  

is the class of my compound supported by the model?  

To answer this question, we attempt to define a domain that is constructed as rigorously as 

possible. One of the methods this can be done is creating a Convex Hull domain, particularly 

using the Quick Hull (QH) algorithm 28. 

The basis of this algorithm is to solve a geometric problem. In other words, given a number of 

points, try to find a convex domain that contains them all. As Figure 13 (a.) shows, the QH 

starts by dividing the number of points into two parts, one upper and one lower, and in the next 

step, Figure 13 (b.), it analyzes both parts separately by constructing two semi-domains. In the 

third step, Figure 13 (c.), the two semi-domains are merged into a total domain.  



 

 

 

Figure 13 - Quick Hull steps  

QH's strong point is its ability to find a convex domain quickly, as in the case on the right in 

Figure 13 (d.). However, in Figure 13 (d. ), an example is shown on the left of a case where it 

is not possible to split the domain into two parts and this to have a more significant number of 

computations, from O(nlog n) to O(n^2) where n is the number of points provided. On the other 

hand, reliability tries to answer how reliable this result is about the context of using a predictor.  

We may have situations where the confidence level must be high to ensure the goodness of the 

outcome, as in human safety assessment, so we set an arbitrary threshold based on experience. 

We take a molecule under examination, and we evaluate the number of molecules of the training 

set that in the domain have a distance lower than the chosen threshold. The density of 

information available within the domain is examined in Figure 14. The higher the density and 

the better the reliability of the result. 

 

Figure 14 - Density of information 

 

  



 

 

4 Machine learning-driven prediction of chemical compound 

sweetness 

 

4.1 Abstract 

The work of building a predictor that is capable of obtaining the sweetness value of chemical 

compounds has been our goal. This goal stems from the exciting applications to which the use 

of a predictor can lead. We started with a database of molecules that we had to standardize to 

be uniform. Then descriptors were calculated to extract the typical properties of a sweet 

molecule.   

The properties were the information base on which to train our Machine Learning based 

predictor. After obtaining the sweetness value, we analyzed the sweetness and how valid the 

obtained result was based on a possible scope of use. And how accurate the obtained value 

could be recruited. To build our model, we took a cue from previous work 6,29,30, placing our 

work within the research landscape and analyzing the strengths and weaknesses in using 

Embedded machine learning techniques as predictors.  

 

4.2 Introduction 

The benefits of building a taste predictor are many. Several fields are touched by this research, 

starting with the food, public health and industrial sectors. In particular, focusing on the taste 

of sweet, we can say that this arouses pleasant sensations and is an instinctive means to find 

sources of energy (carbohydrates, usually known for their sweet taste). The matter is not only 

focused on finding food, but it is interesting to notice how some sweet receptors are also 

expressed in different organs (intestine and pancreas). Exist a strictly correlated to physiological 

processes, such as intestinal absorption, metabolic regulation, and glucose homeostasis 

(remember the primary source of energy for the brain) 31. It is recalled that there are many food 

additives used to replace nutritional sweeteners such as sucrose, as consuming excessive sweet 

foods can lead to high risks for metabolic disorders and even cardiovascular disease. Therefore, 

finding molecules that can preserve sweetness without risk to human health is an ongoing 

challenge. To date, no artificial sweetener can accurately replicate the sweetness profile of 

sucrose. 



 

 

So, performing an in-silico prediction of a sweetener could help quickly identify the best 

candidates (the most promising molecules) before conducting an expensive and time-

consuming lab experiment in synthesizing the molecules. Currently, the main computational 

methods for sweetener prediction are based on molecular structure analysis. In recent years, 

several researchers have studied this field by employing different types of Machine Learning 

(ML) methods, such as Artificial Neural Network (ANN) 30, Adaboost Regressor 6 and 

Multilinear Regressor(MLR) 32. We will analyze the steps involved in constructing the predictor 

and compare the results obtained with the current ML methods mentioned above. 

 

4.3 Materials and methods 

4.3.1 Data collection and data preparation 

 The 316 sweet molecules were imported as Simplified Molecular Input Line Entry System 

(SMILES), which is a method to describe the structure of a molecule using a short ASCII string. 

The molecules were preprocessed using proprietary software, i.e. MOE 33, or another open-

source and recently-developed molecule standardizer tool, namely the Flatkinson Standardisers 
34. The former performs a disconnection of the metals of the first group into simple salts, a 

selection of the largest molecular fragment (elimination of salt molecules), a protonation at pH 

6.9, the same as in the mouth, and the generation of a two- and three-dimensional structures. 

Two different data sets were obtained, one including the two-dimensional structures and one 

representing the three-dimensional structures of the molecules. Using the Flatkinson 

Standardiser, which does not have a setup like MOE but only applies a set of chemical rules, 

allows us to obtain a third starting dataset. The standardization allows us to have a dataset 

composed of molecules congruent to a group of rules. This choice gives us the possibility to 

reconstruct the DB always in the same way and to be able to replicate eventually the results that 

we will obtain. 
 

4.3.2 Molecular descriptors 

Starting from the three above-mentioned databases, the descriptors were calculated using the 

MOE software and the open-source Python modules Rdkit, Chemopy, and Mordred. The 

extracted descriptors were divided into two groups, the first containing those calculated with 

MOE and the second including all three open-source modules. In addition, a third group of 

descriptors was created, containing the 51 descriptors used in previous literature 6. 



 

 

Due to the large number of molecular descriptors to be studied and the different standardisation 

methods that can be used, a comparison and evaluation were carried out between the 51 

Bouysset descriptors (listed in Appendix 5) extracted from different Standardizers. 
 

4.3.3 Models optimization 

Before proceeding with the actual optimization of the model, we made sure to build a predictor 

that had a performance comparable to that currently achieved in state-of-the-art. We took as a 

reference point the work presented by Bouysset and colleagues  6. We ran our two machine 

algorithms AB and GB, using standard parameters with the 51 descriptors from Bouysset's list. 

The database containing the 316 molecules was divided, as described in chapter 3, into 252 

train molecules and 64 test molecules, using a 70:30 partitioning scheme as used in previous 

literature 6.  

The parameters that manage the structure of the AB and GB grids were optimized using the 

Grid Search module of scikit-learn. The optimization concerned for AB the following 

parameters: estimators, learning rate, and Loss function. While in GB, in addition, the Depth of 

the network has been modified. Finally, a prediction is made again using the optimized 

networks.  

Once the optimization of the networks is complete and we observed comparable performance 

with the ones achieved by Bouysset, our two networks were the starting point for the use of 

MOE and open-source descriptors. 
  



 

 

4.3.4 Feature selection 

Starting from the features extracted from MOE and the open-source modules, we applied two 

filters, i.e. Bernoulli and cross-correlation, before applying the feature selection (FS). We 

removed all features with a low variance with the Bernoulli filter due to the slight information 

content of that features. With the cross-correlation filter, it was possible to remove all the 

features that had a high correlation and were therefore similar. The Bernoulli filter is used first. 

Next, the cross-correlation filter is used, setting the threshold value to 0.92. This parameter was 

chosen to obtain a number of features at least equal to the number of molecules in the training 

set (252 features) to limit overfitting problems. In Appendix 6 and Appendix 7, it is possible to 

view the complete lists of selected features.  

The feature selection methods applied to the databases were wrappers: we used recursive 

feature elimination (RFE), genetic algorithm (GA), and machine learning extensions (Mlxtend), 

first with AB and then with GB.  

Regarding the parameters' setting, in the RFE, we set a minimum number of features equal to 

10. In the GA, we chose to start with a population comprising the entire dataset. Finally, 

Mlxtend has been set to start from 0 and add features at each cycle, up to a maximum number 

of 51.  

Finally, as the last step, a finer tuning of the network parameters was performed to adapt them 

to the selected features.  

For each developed model, after extraction of the selected descriptors, an optimization of the 

parameters was performed in the previously mentioned way. Finally, we calculated the 

applicability domain. 
 

4.3.5 Applicability and reliability domains 

We used the QH algorithm to assess applicability, creating a domain formed by the molecules 

within the training set. The choice of not using all the available features, but only the first 10 in 

order of importance, is dictated by the computational cost required to create the domain. After 

the creation, it is possible to evaluate if a molecule under examination is inside or outside the 

domain, which corresponds to say if the predictor is applicable to that molecule or not. 

For reliability, however, we set the KNN threshold value to 10% (arbitrarily modifiable) of the 

2 molecules with maximum distance present in the domain. The distance evaluation was 

performed by calculating the Euclidean distance between the molecules that make up the 

domain. Finally, having found the pair of molecules with maximum distance, this value is taken 



 

 

to set the threshold value of 10%. Starting from the analysis molecule, we consider the number 

of molecules with a distance less than the threshold value; the higher the number of molecules, 

the better the reliability of the result. The agreement is normalised. If the value is 1, all 

molecules in the dataset are less than the threshold distance from the analysis molecule.  

 

 

 

 

 

 

 

 

 

 

 

  



 

 

=  STEP 1 

=  STEP 2 

=  STEP 0     

A flowchart of all the steps performed is shown below. 
 

 
 
 
 
 
 
 

  



 

 

 

4.4 Results 

 

4.4.1 STEP 0: Comparison of standardization methods 

The effects of the two different standardization methods, i.e. MOE Wash procedure and 

Flatkinson standardizer, performed on the computation of the descriptors were initially 

evaluated. The frequencies of distribution of two different features, one representing the atomic 

mass (BCUTm2) and the other representing the valence of electrons (AATSC2dv), are shown 

in Figure 15. These two features were chosen to show that in some cases the standardization 

process affects the distribution of features. There are some differences in the distribution of 

descriptors extracted using the MOE and Flatkinson Standardisers, while there is no evidence 

for descriptors extracted using MOE 2D vs 3D. 

 

 

 

 

Figure 15 – Representation of Bcut2m feature distribution frequency (a.) and Representation of AATSC2dv 
feature distribution frequency (b.) 

 

 

 

 

In order to quantify these differences, we calculated the regression values of the 51 descriptors 

obtained with both standardisers (MOE and Flatkinson). In Figure 16, we can observe the 



 

 

regressions of the two descriptors taken as examples (bcutm2 and AATSC2dv). R^2 very close 

to 1 indicate the similarity between the trends of the descriptors obtained with the 

standardization of MOE and Flatkinson. 

 

 

Figure 16 - Regressors representing the comparison between MOE and Bouysset Standardizers 

 
 
Therefore, we chose to keep only the Flatkinson Standardiser and the descriptors extracted from 

it since the other Standardisers (MOE 2D and 3D) did not lead to relevant differences in the 

calculation of the descriptors.  
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4.4.2 STEP 1: Matching literature performance 

 

The performance in Table 2, obtained by 51 Bouysset's descriptors, obtained  shows the 

comparison between the Bouysset network and the networks formed using AB and GB.  We 

can observe that the squared regression value and the root-mean-square error (RMSE) are 

shown to get an idea of the prediction quality and, at the same time, quantify the errors made. 

We can consider the values obtained as compared to those of Bouysset. Finally, Figure 17 (a.) 

and (b.) show the predictions with the AB and GB algorithms respectively. In Appendix 9, 

Appendix 10 and Appendix 11, you can see the complete metrics of the networks. 
 

 

Table 2 – The performance of the test, validation and training set, and the error, in AB, GB and Bouysset 
networks are shown 

Performance  
Model R^2 RMSE mean_train_score mean_validation_score 

AB 0.731 0.685 0.894 0.777 
GB 0.713 0.709 0.974 0.796 

Bouysset predictor 0.737 0.666 0.995 0.737 
 

 

 

Figure 17 – Comparison of the results of the prediction models with the AB algorithm (a.) and the GB algorithm 
(b.). As the legend suggests, the red line represents the Bouysset trend, while the blue line represents the trend of 

our descriptor under consideration. The green dots represent the actual values.  

 



 

 

4.4.3 STEP 2: Sweetness prediction using open-source and proprietary descriptors 

 

Data preprocessing: removing less informative and correlated features  

 

We performed the Bernoulli filter and then the cross-correlation from the obtained open-source 

and MOE descriptors, respectively 2102 and 422. At the end of the process, we got a number 

of features equal to 252 to avoid having a dataset that would bring the network into overfitting 

during the training. 

The number of desired features was obtained by setting the threshold value of the cross-

correlation in the two cases in the first is 0.92 while the second is 0.89. We see in Table 3 the 

results obtained from the single filtering passages. 

 

Table 3 - Table shows the features selected during the individual filtering steps 

Source 
descriptors 

Start 
Program 

After 
Bernoulli 

After 
Correlation 

OpenSource 2102 1684 252 
MOE 422 295 252 

 

 

Choice of the best feature selection method 

We obtained three databases: one with the list of 51 descriptors used by Bouysset, the second 

with 422 descriptors from MOE, and the last with 2102 features from the open-source modules. 

These values were obtained by discarding descriptors whose value could not be extracted for 

each molecule. 

Using the open-source features with the feature selection methods, we obtained the results in 

Table 4 that compare the selection methods applied using both AB and GB.  

 
 

Table 4 -  Number of features selected with AB and GB using RFE, GA, Mlxtend features selection methods and 
open-source descriptors 

Regressor Source 
descriptors 

After 
RFE 

After 
GA 

After 
Mlxtend 

AB OpenSource 240 38 27 
GB OpenSource 200 33 30 

 



 

 

The same steps were performed using the features selected by the MOE, and the Table 5 

shows the results obtained using the 3 feature selections methods. 
 

Table 5 -  The number of features selected with AB and GB using RFE, GA, Mlxtend features selection methods 
and MOE descriptors 

Regressor Source 
descriptors 

After 
RFE 

After 
GA 

After 
Mlxtend 

AB MOE 32 36 19 
GB MOE 34 29 21 

 

 



 

 

 Performance achieved with feature selection methods 

we show the results of feature selection in Table 6 

 

Table 6 - The performance obtained with AB and GB using RFE, GA, Mlxtend features selection methods and 
open-source descriptors 

Regressor Source 
descriptors 

𝑅,𝑠𝑐𝑜𝑟𝑒 
RFE 

𝑅,𝑠𝑐𝑜𝑟𝑒 
GA 

𝑅,𝑠𝑐𝑜𝑟𝑒 
Mlxtend 

AB OpenSource 0.715 0.667 0.724 
GB OpenSource 0.694 0.608 0.655 

 
 
The same steps were performed using the features selected by the MOE, and the Table 7 

shows the results obtained using the 3 feature selection methods. 

 

Table 7 - The performance obtained with AB and GB using RFE, GA, Mlxtend features selection methods and 
MOE descriptors. 

Regressor Source 
descriptors 

𝑅,𝑠𝑐𝑜𝑟𝑒 
RFE 

𝑅,𝑠𝑐𝑜𝑟𝑒	 
GA 

𝑅,𝑠𝑐𝑜𝑟𝑒 
Mlxtend 

AB MOE 0.695 0.731 0.711 
GB MOE 0.707 0.680 0.710 

 

 

Looking at the results of using open-source descriptors, we can infer that the RFE algorithm 

provides good performance but uses too many features. The genetic algorithm provides fewer 

features and takes less time. However, the performance obtained is not among the best. Finally, 

although the Mlxtend algorithm requires a higher computational cost and takes more time, it 

selects fewer features, and the networks achieve the best performance. Using MOE descriptors, 

we obtained good results using all 3 feature selection methods. In this context, the GA algorithm 

provided the best results and a short time, while Mlxtend, compared to the others, continues to 

use fewer features. The performance obtained using the two different descriptors is comparable. 

Although the MOE descriptors received the best results, the use of proprietary software that is 

not freely accessible led us to opt for the open-source descriptors and the Mlxtend method of 

feature selection. 

 

  



 

 

Optimisation of best models 

 

From the choices made previously, we end up with the two models AB and GB with the 

following structures (Table 8) 

 

Table 8 - Parameters of optimized models with AB and GB algorithms 

 
Parameters of optimized models 

AB GB 
Flatkinson Standardiser Flatkinson Standardiser 
Mlxtend Features Selection Mlxtend Features Selection 

Open-source database with 27 
descriptors 

Open-source database with 30 
descriptors 

AB algorithm  GB algorithm  
 
 
 
The list of 27 and 30 descriptors can be found in Appendix 8. 

 

The results obtained with the two previously trained models are shown below. These models 

are composed of the AB and GB algorithm. The respective starting feature DBs were extracted 

using Mlxtend and obtained 27 and 30 features, respectively. Table 9 shows the relative 

performance obtained using the test, validation and training set. Finally, Figure 18(a.) and (b.) 

show the two   predictors' trends compared with Bouysset. 
 

 

Table 9 – The performance of the test, validation and training set, and the error, in AB, GB and Bouysset 
networks are shown 

Performance 

Model R^2 RMSE mean_train_score mean_validation_score 

AB 0.737 0.673 0.897 0.847 

GB 0.685 0.732 0.923 0.862 

Bouysset predictor 0.737 0.666 0.995 0.737 

 
 
 
 



 

 

 
Figure 18 - Comparison of the results of the prediction models with the AB algorithm (a.) and the GB algorithm 
(b.). As the legend suggests, the red line represents the Bouysset trend, while the blue line represents the trend of 

our descriptor under consideration. The green dots represent the actual values. 

 

 

 

 

 

 

 

Applicability and Reliability Domains 
 

After optimizing the models, the top 10 features of each model were selected to calculate the 

applicability and reliability of the prediction. This selection was made by taking the features in 

descending order of importance. From which the applicability domain and its size were 

calculated. 

Figure 19 (a.) shows the list of features selected from AB, while Figure 19 (b.) shows those 

obtained from GB. 

Without going into too much detail, we would still like to point out the nature of the most 

important descriptors. In Figure 19, we can see that descriptors are calculated based on 

properties such as polarizability (AATS0p), the correlation between electronegativity values 

(GATS1se), mass (bcutm4), and topological charge (JGI4). We can see that all categories focus, 

albeit on different properties, on calculating the charges present in the molecular structure and 

the mass of the compound. 
 

 



 

 

 
Figure 19 - List of features sorted by the importance of the AB (a.) and GB (b.). 

 
 
After selecting the features with which to construct the domain, in Table 10, we show an 

example of an analysis performed using two molecules. The first row of the table shows the α-

L-Rhamnopyranose molecule that belongs to the training domain, while the second row shows 

the caffeine molecule. 

Looking at the results in the column of applicability, we can say that only in the first case the 

predictor is applicable. In other words, it provides an indication of possible use. 

In the last column is examined the reliability, the function calculates the number of molecules 

that are less than the threshold distance (in this case 1.51) from the molecule of examination. 

For the first case, we find a normalized value of 0.143 to the number of molecules present in 

the train DB (252). This means that 36 molecules are present within the threshold distance. On 

the contrary, for caffeine not being inside the train DB, there are no molecules close to it. 
 

Table 10 – It shows an example of two molecules on which the applicability domain is evaluated 

 



 

 

 

 

 

4.5 Discussion 

 

From the first results obtained, we can infer that the two MOE Standardizers (2D and 3D) did 

not provide differences in the calculation of descriptors Figure 16 compared to Flatkinson's. 

However, the test was based on comparing the 51 descriptors mentioned in Bouysset's work 6; 

it would be interesting to compare a more extensive set of descriptors, perhaps all available 

open-source ones.  

Now, analyzing the performance of our source network compared to Bouysset's, which can be 

found in Table 2, we observe that the performance values are comparable to Bouysset's. 

Furthermore, Figure 17 shows that the AB and GB networks perform very similarly to Bouysset's 

predictor using the test set consisting of 64 molecules. Looking carefully at the graph, it can be 

seen for the GB network Figure 17 on the right, especially in the range from 30 to 40 it shows a 

much more similar performance to Bouysset's instead of the corresponding AB network. 

Despite this, it obtains a worse result. The reason is due to some predictions with high error, 

similar to spikes, for some molecules. 

In Table 4 and Table 5 show a substantial difference in descriptor selection depending on the DB 

used (MOE or open-source). In particular, the RFE method starts with the same number of 

descriptors, 252 after the cross-correlation filter, but with the MOE DB, it selects fewer 

descriptors. Comparing the results, we have 240 and 200 with the open-source DB down to 32 

and 34 with the MOE database. It can be observed that, albeit slightly, the performance (Table 

6 and Table 7) when switching between the two DBs makes the AB network worse and the GB 

network better. This effect is also marked with the Mlxtend selection method. Moreover, we 

want to point out that even if this method has performances slightly lower than the RFE, it 

arrives to select 19 and 21 descriptors.  

The exception is made by GA, where the decrease in AB's performance and increase in GB's 

performance is not there. When changing descriptors, we have a significant performance 

improvement, and slightly fewer descriptors are selected.  



 

 

Turning to the results provided by optimized AB and GB, Table 9, where we used Mlxtend as 

the feature selection method and open-source descriptors (27 and 30) as DB, we see comparable 

performance to Bouysset. However, these models use fewer descriptors. Looking at Table 2 and 

Table 9, we can tell that our AB and GB networks have a minor performance degradation by 

moving from the train set to the validation set. This difference becomes even less pronounced 

in optimized AB and GB using the open-source descriptors, Table 9. 

However, we can see in both Table 2 and  Table 9 that the GB network tends to overfit more than 

the AB network. From the analysis in Figure 18, we do not notice a consistent deviation of the 

predicted values from the actual values. This leads us to infer that there is no Bias in our 

networks. 

 

4.6 Conclusions 

 

The idea behind this work was to create a predictor of sweetness molecules from the most 

common machine learning techniques currently adopted, as in the work of Wiener and 

colleagues 25. 

In this work, we took a database of molecules whose sweetness was measured in the laboratory 
8. The molecules within it were subsequently standardized before extracting features. This 

process was made possible by the use of three Standardizers, which were then compared. Once 

the molecular descriptors were extracted, methods (RFE, GA, and Mlxtend) were used to 

choose some features and discard those that did not improve predictor performance.  

After a parameter optimization, the created subset of features was used in our predictors (AB 

and GB). At the end of these steps, we obtained a model capable of evaluating the sweetness of 

a molecule under investigation. Additionally, using the domain definition functions, we 

assessed whether the predictor result is applicable and reliable. 

Creating the final two models using AB and GB with open-source descriptors leads us to have 

excellent performance with fewer features than those used in other works such as Bouysset and 

Goel 6,30. The results lead us to say that the feature selection phase currently has significant 

room for improvement.  



 

 

As observed, the same models with MOE descriptors achieve even higher performance. Being 

the use of MOE only as a standardizer reductive and observing the work, for example of 

Kotsampasakou 35, we can think of an interesting development for the future, namely the 

application of the Flatkison standardizer and MOE in series to better standardize the starting 

DB. 

An additional improvement for the future would be to have a more extensive database. The DB 

should also include molecules that are not sweet or have low sweetness. This would help the 

predictor, in addition to learning the level of sweetness from specific characteristics, penalize 

the result in the presence of properties that characterize non-sweet molecules (e.g., caffeine). 

Zheng also proposed this procedure in his work 36. 

In conclusion, we are satisfied with the results obtained from this study, which aims to provide 

interesting insights and a solid starting point for the creation of a machine learning model that 

predicts sweet taste. 

  



 

 

5 Appendix 

 
Appendix 1 -Category descriptors Chemopy 

Molecular descriptor category: 
Molecular descriptors Constitutional descriptors 
Topological descriptors 
Connectivity descriptors  
Kappa descriptors 
Basak descriptors  
E-state descriptors 
Burden descriptors  
Autocorrelation descriptors 
Charge descriptors 
Molecular property descriptors 
MOE-type descriptors 
Geometric descriptors 
CPSA descriptors 
WHIM descriptors  
MoRSE descriptors  
RDF descriptors  

 

  



 

 

Appendix 2 - Category descriptors Rdkit 

Descriptor Family 
Gasteiger/Marsili Partial Charges 
BalabanJ 
BertzCT 
Ipc 
HallKierAlpha 
Kappa1 - Kappa3 
Phi 
Chi0, Chi1 
Chi0n - Chi4n 
Chi0v - Chi4v 
MolLogP 
MolMR 
MolWt 
ExactMolWt 
HeavyAtomCount 
HeavyAtomMolWt 
NHOHCount 
NOCount 
NumHAcceptors 
NumHDonors 
NumHeteroatoms 
NumRotatableBonds 
NumValenceElectrons 
NumAmideBonds 
Num{Aromatic,Saturated,Aliphatic}Rings 
Num{Aromatic,Saturated,Aliphatic}{Hetero,Carbo}cycles 
RingCount 
FractionCSP3 
NumSpiroAtoms 
NumBridgeheadAtoms 
TPSA 
LabuteASA 
PEOE_VSA1 - PEOE_VSA14 
SMR_VSA1 - SMR_VSA10 
SlogP_VSA1 - SlogP_VSA12 
EState_VSA1 - EState_VSA11 
VSA_EState1 - VSA_EState10 
MQNs 
Topliss fragments 
Autocorr2D 
BCUT2D 

 

  



 

 

Appendix 3 - Category descriptors Mordred 

Descriptor Family 
ABCIndex InformationContent 
AcidBase KappaShapeIndex 
AdjacencyMatrix Lipinski 
Aromatic LogS 
AtomCount McGowanVolume 
Autocorrelation MoRSE 
BCUT MoeType 
BalabanJ MolecularDistanceEdge 
BaryszMatrix MolecularId 
BertzCT MomentOfInertia 
BondCount PBF 
CPSA PathCount 
CarbonTypes Polarizability 
Chi RingCount 
Constitutional RotatableBond 
DetourMatrix SLogP 
DistanceMatrix TopoPSA 
EState TopologicalCharge 
EccentricConnectivityIndex TopologicalIndex 
ExtendedTopochemicalAtom VdwVolumeABC 
FragmentComplexity VertexAdjacencyInformation 
Framework WalkCount 
GeometricalIndex Weight 
GravitationalIndex WienerIndex 
HydrogenBond ZagrebIndex 

 

 

  



 

 

 

Appendix 4 - Category descriptors MOE 

Descriptor Family 
Physical Properties 
Subdivided Surface Areas 
Atom Counts and Bond Counts 
Kier&Hall Connectivity and Kappa Shape Indices 
Adjacency and Distance Matrix Descriptors 
Pharmacophore Feature Descriptors 
Partial Charge Descriptors 
Surface Area, Volume and Shape Descriptors 
MOPAC Descriptors 
Conformation Dependent Charge Descriptors 

 

  



 

 

Appendix 5 – List of 51 Bouysset descriptors 

List of 51 Bouysset descriptors 
BertzCT  MATS1s  
EState_VSA10  GATS1dv  
HallKierAlpha  GATS1s  
MaxAbsEStateIndex  GATS1se  
MaxPartialCharge  GATS1p  
MinEStateIndex  GATS2p  
ATS0Z  GATS2i  
AATS4d  BCUTc-1h  
AATS0p  AXp-1d  
AATS1p  AXp-2d  
AATS5p  AETA_alpha  
ATSC2c  ETA_dAlpha_B  
ATSC3c  ETA_dEpsilon_D  
ATSC1dv  ETA_psi_1  
ATSC2s  AMID_O  
AATSC2c  RotRatio  
AATSC3c  GATSp2  
AATSC1dv  IC1  
AATSC2dv  MATSm2  
AATSC2s  MATSm5  
AATSC3s  MATSp2  
AATSC1Z  bcute1  
AATSC0v  bcute2  
AATSC0p  bcutm2 
AATSC0i  MATS1c 
AATSC2i   

 
  



 

 

Appendix 6 – List of selected features from open-source database. 

List of selected features 

‘SpMAD_A_M’  ‘ATSC5s_M’  ‘GATS1v_M’ 
 
‘AETA_beta_ns_d_M’  ‘QHmin_P’  ‘Hy_P’ 

 ‘VE1_A_M’  ‘ATSC6s_M’  ‘GATS3v_M’  ‘AETA_eta_M’  ‘Qomax_P’  ‘SIC1_P’ 
 ‘nSpiro_M’  ‘ATSC1v_M’  ‘GATS4v_M’  ‘AETA_eta_F_M’  ‘Qcmax_P’  ‘SIC2_P’ 
 
‘nBridgehead_M’  ‘ATSC3v_M’  ‘GATS5v_M’  ‘ETA_eta_B_M’  ‘Qhmax_P’  ‘SIC3_P’ 
 ‘nS_M’  ‘ATSC4v_M’  ‘GATS1se_M’  ‘AETA_eta_BR_M’  ‘Chiv6ch_P’  ‘IC1_P’ 
 ‘AATS0dv_M’  ‘ATSC5v_M’  ‘GATS2se_M’  ‘ETA_dAlpha_A_M’  ‘Aweight_P’  ‘IC4_P’ 
 ‘AATS1dv_M’  ‘ATSC7v_M’  ‘GATS3se_M’  ‘ETA_dAlpha_B_M’  ‘Smax8_P’  ‘bcutm5_P’ 
 ‘AATS2dv_M’  ‘ATSC8v_M’  ‘GATS1p_M’  ‘ETA_epsilon_5_M’  ‘Smax12_P’  ‘bcutm4_P’ 
 ‘AATS3dv_M’  ‘ATSC1se_M’  ‘GATS3p_M’  ‘ETA_dEpsilon_B_M’  ‘Smax15_P’  ‘bcutm1_P’ 

 ‘AATS4dv_M’  ‘ATSC5se_M’  ‘GATS2i_M’ 
 
‘ETA_dEpsilon_D_M’  ‘Smax16_P’  ‘bcute2_P’ 

 ‘AATS5dv_M’  ‘ATSC6se_M’  ‘GATS3i_M’  ‘fMF_M’  ‘Smax18_P’  ‘MinAbsEStateIndex_R’ 
 ‘AATS4d_M’  ‘ATSC0p_M’  ‘BCUTc-1h_M’  ‘IC1_M’  ‘Smax33_P’  ‘qed_R’ 
 ‘AATS5d_M’  ‘ATSC3p_M’  ‘BCUTc-1l_M’  ‘BIC0_M’  ‘Smin8_P’ ‘NumRadicalElectrons_R’ 
 ‘AATS1s_M’  ‘ATSC5p_M’  ‘BCUTdv-1h_M’  ‘MIC0_M’  ‘Smin12_P’  ‘FpDensityMorgan3_R’ 
 ‘AATS2s_M’  ‘ATSC8p_M’  ‘BCUTdv-1l_M’  ‘MIC1_M’  ‘Smin15_P’  ‘BCUT2D_MWLOW_R’ 

 ‘AATS4s_M’  ‘ATSC2i_M’  ‘BCUTd-1h_M’  ‘ZMIC3_M’  ‘Smin16_P’ 
 
‘BCUT2D_LOGPLOW_R’ 

 ‘AATS5s_M’  ‘ATSC3i_M’  ‘BCUTd-1l_M’  ‘Lipinski_M’  ‘Smin18_P’  ‘BCUT2D_MRHI_R’ 
 ‘AATS1v_M’  ‘ATSC5i_M’  ‘BCUTs-1h_M’  ‘GhoseFilter_M’  ‘Smin33_P’  ‘BCUT2D_MRLOW_R’ 
 ‘AATS4se_M’  ‘ATSC6i_M’  ‘BCUTs-1l_M’  ‘FilterItLogS_M’  ‘Scar_P’  ‘BalabanJ_R’ 
 ‘AATS5se_M’  ‘ATSC8i_M’  ‘BCUTZ-1h_M’  ‘piPC1_M’  ‘Shal_P’  ‘HallKierAlpha_R’ 
 ‘AATS0p_M’  ‘AATSC1c_M’  ‘BCUTv-1l_M’  ‘piPC10_M’  ‘Save_P’  ‘NHOHCount_R’ 

 ‘AATS4i_M’ 
 
‘AATSC0dv_M’  ‘BCUTare-1l_M’  ‘RotRatio_M’  ‘DS_P’  ‘fr_C_O_noCOO_R’ 

 ‘AATS5i_M’  ‘AATSC0d_M’  ‘BCUTi-1h_M’  ‘JGI1_M’  ‘GATSm1_P’  ‘fr_N_O_R’ 
 ‘ATSC2c_M’  ‘AATSC2s_M’  ‘BCUTi-1l_M’  ‘JGI2_M’  ‘GATSm2_P’  ‘fr_aldehyde_R’ 
 ‘ATSC3c_M’  ‘AATSC0p_M’  ‘C3SP2_M’  ‘JGI3_M’  ‘GATSm3_P’  ‘fr_allylic_oxid_R’ 
 ‘ATSC4c_M’  ‘AATSC5p_M’  ‘C1SP3_M’  ‘JGI4_M’  ‘GATSm4_P’  ‘fr_amide_R’ 
 ‘ATSC5c_M’  ‘AATSC0i_M’  ‘C3SP3_M’  ‘JGI5_M’  ‘GATSm5_P’  ‘fr_aniline_R’ 
 ‘ATSC6c_M’  ‘MATS1s_M’  ‘Axp-2d_M’  ‘JGI6_M’  ‘GATSm8_P’  ‘fr_aryl_methyl_R’ 
 ‘ATSC7c_M’  ‘MATS5p_M’  ‘Axp-3d_M’  ‘JGI7_M’  ‘GATSv1_P’  ‘fr_bicyclic_R’ 
 ‘ATSC8c_M’  ‘GATS2c_M’  ‘Axp-1dv_M’  ‘JGI8_M’  ‘GATSe1_P’  ‘fr_ester_R’ 
 ‘ATSC1dv_M’  ‘GATS3c_M’  ‘Axp-2dv_M’  ‘JGI9_M’  ‘GATSp3_P’  ‘fr_ketone_R’ 
 ‘ATSC2dv_M’  ‘GATS4c_M’  ‘Axp-3dv_M’  ‘JGI10_M’  ‘GATSp4_P’  ‘fr_ketone_Topliss_R’ 
 ‘ATSC3dv_M’  ‘GATS5c_M’  ‘MZ_M’  ‘JGT10_M’  ‘GATSp5_P’  ‘fr_lactone_R’ 
 ‘ATSC4dv_M’  ‘GATS2dv_M’  ‘NsCH3_M’  ‘TopoShapeIndex_M’  ‘GATSp8_P’  ‘fr_methoxy_R’ 
 ‘ATSC5dv_M’  ‘GATS3dv_M’  ‘NdCH2_M’  ‘SRW05_M’  ‘MATSm1_P’  ‘fr_para_hydroxylation_R’ 
 ‘ATSC6dv_M’  ‘GATS4dv_M’  ‘NssCH2_M’  ‘TSRW10_M’  ‘MATSm2_P’  ‘fr_sulfone_R’ 
 ‘ATSC7dv_M’  ‘GATS1d_M’  ‘NdsCH_M’  ‘phi_P’  ‘MATSm3_P’  ‘fr_unbrch_alkane_R’ 
 ‘ATSC8dv_M’  ‘GATS2d_M’  ‘NddssS_M’  ‘LDI_P’  ‘MATSv1_P’  ‘ATSm4_P’ 

 ‘ATSC2d_M’  ‘GATS3d_M’ 
 
‘ETA_shape_p_M’  ‘Mnc_P’  ‘MATSe1_P’  ‘Getov_P’ 

 ‘ATSC5d_M’  ‘GATS4d_M’ 
 
‘ETA_shape_y_M’  ‘Mpc_P’  ‘MATSe3_P’  ‘LogP2_P’ 

 ‘ATSC6d_M’  ‘GATS5d_M’ 
 
‘ETA_shape_x_M’  ‘QCss_P’  ‘ATSC8d_M’  ‘GATS5s_M’ 

 ‘ATSC7d_M’  ‘GATS3s_M’  ‘AETA_beta_M’  ‘Qmax_P’ 
 
‘AETA_beta_s_M’  ‘QCmin_P' 

 
  



 

 

Appendix 7- List of selected features from MOE database. 

List of selected features 
AM1_dipole' 'chi1v' 'lip_don' 'SlogP' 'vsurf_D2' 'vsurf_W1' 
'ast_fraglike' 'chi1v_C' 'lip_druglike' 'SlogP_VSA0' 'vsurf_D3' 'vsurf_W2' 
'ast_fraglike_ext' 'chi1_C' 'lip_violation' 'SlogP_VSA1' 'vsurf_D4' 'vsurf_W3' 
'ast_violation' 'dens' 'logP(o/w)' 'SlogP_VSA2' 'vsurf_D5' 'vsurf_W4' 
'ast_violation_ext' 'density' 'logS' 'SlogP_VSA3' 'vsurf_D6' 'vsurf_W5' 
'a_acc' 'diameter' 'MNDO_dipole' 'SlogP_VSA4' 'vsurf_D7' 'vsurf_W6' 
'a_base' 'E_ang' 'mutagenic' 'SlogP_VSA5' 'vsurf_D8' 'vsurf_Wp1' 
'a_don' 'E_ele' 'opr_brigid' 'SlogP_VSA6' 'vsurf_DD12' 'vsurf_Wp2' 
'a_donacc' 'E_oop' 'opr_leadlike' 'SlogP_VSA7' 'vsurf_DD13' 'vsurf_Wp3' 
'a_hyd' 'E_sol' 'opr_nrot' 'SlogP_VSA8' 'vsurf_DD23' 'vsurf_Wp4' 
'a_IC' 'E_str' 'opr_violation' 'SlogP_VSA9' 'vsurf_DW12' 'vsurf_Wp5' 
'a_ICM' 'E_tor' 'PEOE_PC+' 'SMR' 'vsurf_DW13' 'vsurf_Wp6' 
'a_nBr' 'FCharge' 'PEOE_PC-' 'SMR_VSA0' 'vsurf_DW23' 'vsurf_Wp7' 
'a_nC' 'GCUT_PEOE_0' 'PEOE_RPC+' 'SMR_VSA1' 'vsurf_EDmin1' 'vsurf_Wp8' 
'a_nCl' 'GCUT_PEOE_1' 'PEOE_RPC-' 'SMR_VSA2' 'vsurf_EDmin2' 'Weight' 
'a_nF' 'GCUT_PEOE_2' 'PEOE_VSA+0' 'SMR_VSA3' 'vsurf_EDmin3' 'weinerPath' 
'a_nH' 'GCUT_PEOE_3' 'PEOE_VSA+1' 'SMR_VSA4' 'vsurf_EWmin1' 'weinerPol' 
'a_nI' 'GCUT_SLOGP_0' 'PEOE_VSA+2' 'SMR_VSA5' 'vsurf_EWmin2' 'b_single' 
'a_nN' 'GCUT_SLOGP_1' 'PEOE_VSA+3' 'SMR_VSA6' 'vsurf_EWmin3' 'b_triple' 
'a_nO' 'GCUT_SLOGP_2' 'PEOE_VSA+4' 'SMR_VSA7' 'vsurf_G' 'chi0' 
'a_nS' 'GCUT_SLOGP_3' 'PEOE_VSA+5' 'std_dim1' 'vsurf_HB1' 'chi0v' 
'balabanJ' 'GCUT_SMR_0' 'PEOE_VSA+6' 'std_dim2' 'vsurf_HB2' 'chi0v_C' 
'BCUT_PEOE_0' 'GCUT_SMR_1' 'PEOE_VSA-0' 'std_dim3' 'vsurf_HB3' 'vsurf_HB4' 
'BCUT_PEOE_1' 'GCUT_SMR_2' 'PEOE_VSA-1' 'TPSA' 'vsurf_ID1' 'vsurf_HB5' 
'BCUT_PEOE_2' 'GCUT_SMR_3' 'PEOE_VSA-2' 'VAdjEq' 'vsurf_ID2' 'vsurf_HB6' 
'BCUT_PEOE_3' 'glob' 'PEOE_VSA-3' 'VAdjMa' 'vsurf_ID3' 'vsurf_HL1' 
'BCUT_SLOGP_0' 'h_ema' 'PEOE_VSA-4' 'VDistEq' 'vsurf_ID4' 'vsurf_HL2' 
'BCUT_SLOGP_1' 'h_emd' 'PEOE_VSA-5' 'VDistMa' 'vsurf_ID5' 'vsurf_A' 
'BCUT_SLOGP_2' 'h_emd_C' 'PEOE_VSA-6' 'vol' 'vsurf_ID6' 'vsurf_CP' 
'BCUT_SLOGP_3' 'h_logD' 'PEOE_VSA_FPNEG' 'VSA' 'vsurf_ID7' 'vsurf_CW1' 
'BCUT_SMR_0' 'h_logP' 'PEOE_VSA_FPPOS' 'vsa_acc' 'vsurf_ID8' 'vsurf_CW2' 
'BCUT_SMR_1' 'h_logS' 'PEOE_VSA_HYD' 'vsa_base' 'vsurf_IW1' 'vsurf_CW3' 
'BCUT_SMR_2' 'h_log_dbo' 'PEOE_VSA_NEG' 'vsa_don' 'vsurf_IW2' 'vsurf_IW6' 
'BCUT_SMR_3' 'h_log_pbo' 'PEOE_VSA_PNEG' 'vsa_hyd' 'vsurf_IW3' 'vsurf_IW7' 
'bpol' 'h_pavgQ' 'PEOE_VSA_POL' 'vsa_other' 'vsurf_IW4' 'vsurf_IW8' 
'b_1rotN' 'h_pKa' 'PEOE_VSA_POS' 'vsa_pol' 'vsurf_IW5' 'vsurf_R' 
'b_1rotR' 'h_pKb' 'PEOE_VSA_PPOS' 'KierA2' 'vsurf_CW4' 'vsurf_S' 
'b_double' 'h_pstates' 'petitjean' 'pmi1' 'vsurf_CW5' 'vsurf_V' 
'b_max1len' 'h_pstrain' 'petitjeanSC' 'pmiY' 'vsurf_CW6' 'vsurf_D1' 
'b_rotN' 'Kier1' 'PM3_dipole' 'pmiZ' 'vsurf_CW7' 'reactive' 
'b_rotR' 'Kier2' 'KierFlex' 'radius' 'vsurf_CW8' 'rgyr' 
'KierA1' 'Kier3' 'lip_acc' 'rsynth' 'chi0_C' 'KierA3' 

 
  



 

 

 

Appendix 8 - List of 27 and 30 descriptor selections with I and II model  

Model I (with AB) Model II (with GB) 
AATS0p_M MATSm2_P 
GATS1se_M ETA_dEpsilon_D_M 

bcutm4_P GATS1se_M 
BCUTare-1l_M ATSC5c_M 
BCUTi-1h_M AATSC1c_M 
BCUTd-1l_M Scar_P 

NHOHCount_R LogP2_P 
GATSm5_P MinAbsEStateIndex_R 

BCUT2D_MRLOW_R AETA_beta_M 
JGI4_M Smin16_P 

ATSC8d_M fr_unbrch_alkane_R 
QCmin_P C3SP3_M 

GATS5c_M NHOHCount_R 
fr_amide_R fr_N_O_R 

BCUTc-1h_M fr_para_hydroxylation_R 
ATSC6d_M GhoseFilter_M 

AATS1dv_M fr_aniline_R 
ETA_eta_B_M fr_sulfone_R 

QCmax_P fr_lactone_R 
QHmax_P fr_ketone_Topliss_R 

ATSC2d_M fr_ketone_R 
Smax18_P fr_aryl_methyl_R 

BCUTs-1h_M fr_aldehyde_R 
GATS5d_M fr_allylic_oxid_R 

AETA_beta_M Lipinski_M 
GhoseFilter_M NumRadicalElectrons_R 

NdsCH_M nBridgehead_M 
nSpiro_M NdsCH_M 
NddssS_M  

 
 
 
  



 

 

Appendix 9 – AB prediction performance 

Performance with StandardScaler 
R: 0.855 

 
  

R^2: 0.731 
 

  
|R^2-R_0_elev2|/R^2: 0.210 
k: 0.981 

 
  

R_0_elev2: 0.577   
|R^2-R_0_primo_elev2|/R^2: 0.011 
k_primo: 0.928   
R_0_primo_elev2: 0.722   
RMSE: 0.685   
MAE: 0.568   

 
 
 
 

Appendix 10 - GB prediction performance 

Performance with StandardScaler 
R: 0.855 

 
  

R^2: 0.731 
 

  
|R^2-R_0_elev2|/R^2: 0.210 
k: 0.981 

 
  

R_0_elev2: 0.577   
|R^2-R_0_primo_elev2|/R^2: 0.011 
k_primo: 0.928   
R_0_primo_elev2: 0.722   
RMSE: 0.685   
MAE: 0.568   

 
 

Appendix 11 – Bouysset prediction performance 

 Performance of Bouysset predict 

R: 0.858 
R^2: 0.737   
|R^2-R_0_elev2|/R^2: 0.082 

k: 0.989 

R_0_elev2: 0.660   
|R^2-R_0_primo_elev2|/R^2: 0.015 

k_primo: 0.925   
R_0_primo_elev2: 0.7369   
RMSE: 0.666   
MAE: 0.496   
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