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Abstract

Background

Currently, most upper limb prostheses are moved by direct control of every different
joints forming the polyarticulate arm [29]. This strategy has the inherent limitation
that it is not intuitive to control one joint at a time. The problem is more appar-
ent when more joints need to be controlled sequentially. The state of the art offers
numerous prosthetic solutions for the upper limb which differ in their constituent ele-
ments and operating principles [37]. Throughout history, advances in prosthetics have
always sought to follow the needs of amputees, which appear to be more or less the
same from the outset and to which we try to respond as best we can, supported by
scientific and technical progress [41]. There is a long way to go, as indicated by the
extensive literature on both types of prosthesis and control strategies, specifically for
myoelectric prostheses. An element to be considered immediately is the declination of
robotics towards prosthetics. It therefore appears that the basic notions in the design
of prostheses and control systems are to be found in the basic principles of this field. A
prosthesis is nothing more than a serial manipulator, actuated by an energy source that
can be electrical or mechanical and must be controlled to perform a given task [13].
Known notions of kinematic theory, quaternion algebra, have been helpful in pursuing
the objective.

Materials and methods

The thesis is carried out at the Rehab Technologies Laboratory of Istituto Italiano
di Tecnologia (IIT) in Genova. The main objective of this thesis was to develop an
inverse kinematic control to move the Hannes arm in a real and virtual environment.
The control system is able to convert the movements of the end-effector, synthesized
via 3D joystick or keyboard, to joint angles of the upper limb robotic arm, measured by
Encoders or IMU sensors, remotely. The 3D-position of the end-effector (Hannes hand)
must be converted into reference signals for the joint angles of the robotic system.
The validation of the control method would be performed comparing the estimated
joint angles via inverse kinematics with the joint angles measured by the IMUs and
Encoders. The final result will be the control of the entire Hannes arm on a Cartesian
space using the 3D joystick to synthesize the reference of end-effector and convert them
in prosthetic movements.

Three different approaches have been tried to achieve the goal. The three different
algorithms find the roots of their operating principles in different fields. From the use of
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high-level applications such as the Unity virtual reality environment, through Artificial
Neural Networks, to a lower-level and more analytical direction with inverse kinematics
calculations and a recursive approach. The different approaches are evaluated individ-
ually and compared to see if and which one will lead to the goal. The first, geometric,
very intuitive method was abandoned before moving on to peer testing because of the
intrinsic limits it had. Extensive evaluation and study was carried out on the ANFIS
model in order to obtain the functions with the best properties and then to compare
them with the recursive approach algorithm, of which there is a double version, the
standard and the optimised one. The attempt to optimise the recursive approach arose
from the intrinsic limitations of this method, which were known in advance, but did
not prevent it from being used successfully. This is true to such an extent that the
recursive algorithm was used to control the Hannes prosthesis for the execution of two
trajectories chosen as the most useful and elementary in the hypothetical future ap-
plication of the method for patient use. The setup used was a prototype comprising
3 joints: shoulder, elbow and wrist, all in flexion-extension, therefore with the shoul-
der joint in addition, compared to the wider current configuration of the Hannes arm
prosthetic device [24].

Results

The results concern a qualitative assessment of all three approaches, singularly observed
and compared. One of the three was discarded before moving on to the experimental
part, effectively limiting the testing phase to two of them. Both the ANFIS method
and the recursive approach were shown to give a positive answer to the problem with
different degrees of precision but acceptable accuracy overall. Both maintain some
criticalities. The recursive approach in its optimised form also gave a positive response
in the practical attempt to control Hannes arm prepared in a prototype version.

Conclusions

As the results show, both of the most widely studied approaches have potential and are
applicable for achieving the thesis goal. The initial demand was not fully met, it was
not possible to integrate IMUs into the process and the robustness of the algorithm
chosen as the best is still to be improved. Even if the actual Hannes arm does not have
a definitive 3 DoF configuration, the obtained results - in terms of cartesian control
of the system - showed satisfactory performances. A hypothesis for alternative control
strategies has been marked out, the value of which will be investigated in the future.

Keywords

Inverse Kinematics, Cartesian Control, Upper Limb Prosthesis, Artificial Neural Net-
works, Recursive Approach, Virtual Reality, Hannes Hand.
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Introduction

A pivotal element of human evolution is dexterity: a capacity able to produce a direct
connection between the brain and the external word allowing an interaction with them
and manipulate everything for a practical doing. Hands are an afferent and efferent
interface between the human being and the world around him. The loss of an upper
limb or part of it produces a consequent impairment that affect the dexterity as long
as the physiological disorder ought to the acceptance of the new body state decreasing,
consequently, the quality of daily life.

Therefore, from the beginning, man has tried to compensate the loss, using anes-
thetic prosthesis and, with the progress of technologies, they try to improve the ef-
fectiveness and efficiency to perform dexterity tasks in the activities of daily living.
Along with the technology evolution and electronic improvements, prostheses became
complex mechatronic system need to be controlled by means of human intentions [13].
Despite the most advanced upper limb prostheses integrate several active degree of free-
dom controlled by electrical signals of voluntary contraction, they still do not achieve
the complexity, dexterity, and adaptability of the human arm, making them difficult to
be integrated into the body scheme to promote the so called embodiment. Moreover,
the insufficient efficacy of prosthetic devices, the low quality of their integration into
the body scheme, the lack of ownership and, consequently, the absence of embodiment
of this systems are the main reason for high prosthesis abandonment rate. [24] A fun-
damental problem in the realization of a prosthesis is to create an object able to satisfy
the requirements of users, in particular it must perform complex tasks without a huge
mental effort. Balancing these three characteristics in an optimal way is the goal.

The amount of amputations usually has a prevalent percentage at the level of tran-
sradial or transhumeral, while the disarticulation of the shoulder is not so frequent.
The main problem of shoulder prostheses is their incumbrance, weight and size. In
fact, they need to replicate numerous movements lost but the mechanical and the con-
trol is complicated and produce a huge problem for the user acceptance. Shoulder
disarticulation prosthesis are difficult to control. The final device consists in a wrist
in prono supination, a wrist in flexion extension, an elbow in flexion extension and
the shoulder that need to be controlled by the end user. Currently, body-power or
myoelectric signals can only control one function at a time in almost all cases [22].

The master thesis is conducted at the Rehab-Technologies Laboratory of Istituto
Italiano di Tecnologia (IIT) of Genova.

The thesis is organized as follows:

1. The part 1 summarizes the state of the art of upper arm prosthesis and it outlines
the most widespread control strategies. There is also an additional chapter related
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to the kinematic theory and Quaternion theory;

2. The part 2 defines the materials and methods used for the experimental study.
A broad description of the Hannes system is included along with a discussion of
the three developed and studied algorithms of this study;

3. The part 3 reports the results of the evaluation test on the algorithms with an
eye on the single one and then comparing them. Also results of the trial on the
physical setup is reported;

4. The part 4 discusses the study results and the techniques implemented to have
reach the goal comparing the expectations to the effective incomes;

5. The part 5 outlines the conclusions on the research work of this thesis and it
introduces possible future developments.

18



Chapter 1

Background

1.1 Brief history

Over the centuries, prostheses have undergone significant improvements, a long and
complex history from their primitive origins until today’s sophisticated ones, to exciting
visions of the future. As in any research field, some ideas and inventions have been
expanded while others have fallen by the wayside or become obsolete. All of this has
been moved by the attempt of man to fulfill an aesthetic need or to recover functionality
after a mutilation.

(a) Igneous big toe prosthetic, Egypt 1000-600 B.C. (b) PROPRIO FOOT by Ossur, adaptive microprocessor
controlled ankle

Figure 1.1: Foot prosthesis, from the beginning to nowadays

According to our sources [41], the first historical artifact date back to 3000 years
ago, represents an igneous prosthesis used by an Egyptian noblewoman to replace the
missing big toe of her right foot. Even then, the device had an aesthetic but also
a practical purpose, as it was essential for wearing the classic Egyptian footwear of
the time. From that wooden component, we have come to the present day with a
multitude of different prosthetic solutions, suited to the many cases of amputation and
their consequent needs. The more time goes by, the more the process of integrating
the device with the human being is aimed at effectiveness, efficiency in restoring lost
functions, but simultaneously with embodiment and comfort. Remaining in the modern
age, looking at one of the first upper limb prosthesis (1.2a) and comparing with one
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which intends to overcome the limitation of the state of the art (1.2b), it’s clear that a
giant step has been made. Anyway, there is still a long way to go in this respect, the
current upper limit is technology but this is bound to improve with time thanks to the
effort and work of researchers and companies involved in the field.

(a) Eiserne Hand, passive hand prosthesis XVI c. (b) Hannes arm and cosmetic gloves

Figure 1.2: Evolution of prosthetic arm

1.2 State of the art

Outside the world of prosthetics, robotics is finding in the last twenty years [18] more
and more expression and expansion, with continuous improvements on all fronts. Since
the human being can be modelled as a set of kinematic chains, robotic manipulators
and arms are one of the many fields that can be linked to prosthetics. Prostheses, which
are increasingly proximal, advanced and complete in their functionality, are kinematic
chains, specific declinations of mechanical actuators. The challenge solution of the
kinematic and dynamic problems to be solved in order to allow the user to control
the prosthesis must be extremely accurate and respect a calculation rate compatible
with the real time use of the device. As a result, in some time-critical applications, the
capacity to identify an accurate solution for a human model at a suitable rate might still
be a bottleneck [35]. Solving the kinematics for a human model might be challenging
compared to industrial manipulators since people can be depicted as highly articulate
kinematic chains. Human kinematics is redundant, has a high number of degrees of
freedom and should also account for musculoskeletal restrictions to provide realistic
motion. Furthermore, a moving human in space is a floating base system, implying
that the configuration space is based on a differentiable manifold.[42]

1.2.1 Upper limb prosthesis

The upper limb, in particular the hand, is the most important part of the body to
explore and interact with the external world, performing a wide range of tasks in a
daily life scenario as well as work and sport. The primary functions of a hand are
grasping and manipulation. However, considering its proprioceptive sensitivity, it can
be compared to a true sense organ capable of preventing injury, defining object con-
tours, and sensing temperature, as well as being one of the most refined effectors of
psycho-emotional expression, along with the rest of the upper limb. In the field of body
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language, of course, it is an element of the gestures [37]. It is certain that the loss of an
upper limb will have physical and psychological consequences. It has a direct impact
on dexterity and motility, making it difficult for a person to walk or balance correctly.
The body’s biomechanics changes in an attempt to compensate for the lost limb. Ex-
cessive usage of the rest of the body, as well as inappropriate body postures, result in
significant weariness [36]. Furthermore, phantom-limb pain is a common occurrence
[12]. Losing a limb has been shown to have a significant impact on a person’s sense of
body image and, as a result, self-image, affecting life satisfaction, social life, and the
nature of social interactions [4].

There is no evidence or study that might say that upper limb loss is more disabling
than the loss of a lower limb but it’s certain that abandonment rate is higher for upper
limb prostheses. According to some studies [14] abandonment of lower limb prosthesis
is infrequent, from 4% to 11%. On the other hand, Sugawara et al. estimated an
abandonment rate of 33.87%, namely one user out of three decides to renounce on the
prosthesis use [39]. Contrary to this, according to several studies completed over the
last two decades, substantial rejection rates of all types of upper limb prosthetic devices
across a wide range of users continue to be reported. Rejection rates for myoelectric
devices range from 25% to more than 50%, and rejection rates for body-powered de-
vices might reach 35%, depending on the research group [43]. A lower limb prosthesis
is always used to return to walking when the stump allows it, however many upper
limb amputees do not utilize active prostheses and compensate by overworking the
remaining limb. This is also true in the event of a double amputation at birth, when
the subject begins to use his feet for tasks that would typically be done with his hands,
whereas a subject without lower limbs begins to utilize prosthesis.
Certainly, walking is fundamental for the correct maintenance of the physiological pro-
cesses of the organism in the long term and has a substantial effect on the fruition
of countless aspects of life [26]. So the lower rates of abandonment for lower limb
prostheses are to be explained by the essentiality of the movement which they restore.
However, in my opinion, it also should be mentioned that nowadays lower limb prosthe-
ses respond quite well to the amputee’s needs on several fronts: restoring movement
but also comfortable conditions of use of the device, practicality and intuitiveness.
Therefore, on my view, the problem of the high rate of abandonment of upper limb
prostheses lies not only in a reduced need to remedy the impairment compared to lower
limb amputation, but also and above all in the benefit/cost ratio, perhaps still too low
in terms of motor skills regained in the face of discomfort or having to perform move-
ments through controls which are not very intuitive and not immediate.
Upper limb amputation has an incidence of 3.9 per 100,000, with fingers being the most
affected site (3.2 per 100,000). Trauma is the main cause of amputation, with a clear
male predominance, followed by neoplasms, vascular diseases, infectious diseases and
tumours. Congenital malformations, divided into longitudinal and transverse, include
Ameliae, which consist of the absence of one or more limbs due to the stunting of
embryonic development [37].

The definition of upper limb prosthesis, found in the norm, is: “orthopaedic aid
that compensate or substitute, although partially the missing limb both on a functional
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and aesthetic aspect (. . . ) An upper limb prosthesis is a combination of compatible
components, usually produced by a single producer and commercially available. The
components might be integrated with any other component individually fabricated, to
produce a range of different upper limb prosthesis” [4].

Figure 1.3: Levels of upper limb amputation [7]

The norm provides two different methods of classification:

1. Depending on the level of amputation.

2. Depending on the construction features, the functional characteristics and the
method of control.

“The levels of upper limb loss can be classified as transcarpal, wrist disarticulation,
transradial, elbow disarticulation, transhumeral, shoulder disarticulation and forequar-
ter” [13] Fig.1.3
As a result, the second classification separates the prosthetics world into two major
groups Fig. 1.4. The ability to generate force distinguishes active prostheses from pas-
sive prostheses and this force can be used to accomplish grip tasks in active prosthetics,
making them functional. Passive prosthesis, on the other hand, are unable to move
because to a lack of active power. A more detailed explanation of the classification is
based on technological characteristics.

The aim of active prosthesis is to replace and restore the functionality and key
movements of the lost limb. The method used to apply the external force generated
by the gripping mechanism differs between active prostheses.
There are three types of active prosthesis [4]:

1. Body-powered/intra-corporeal energy prostheses
The residual muscles of the stump, as well as muscles from other regions of the
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Figure 1.4: Classification of upper-limb prostheses depending by their functionalities

body, are used in body-powered prostheses Fig.1.5. These prostheses are able
to move thanks to the mechanical energy generated by cables that are actuated
by braces. These kinematic prostheses have reduced functionality and comfort,
allowing only few movements. They consume more phisical energy and can only
generate a limited amount of prehensile strength. Nonetheless, their relative
lightness, reliability, robustness, mobility in any context, and sensory input pro-
vided by cables and bracing make them popular. In fact cable-driven systems
account for around half of the present market for upper limb prosthesis [30].

Figure 1.5: Body powered prosthesis with two different terminal devices

2. Externally powered/Extra-corporeal energy prostheses
The movements of externally powered prostheses, also known as electromechani-
cal prostheses, are operated by electrical motors fed by batteries, whose rotational
verse dictates the movement’s verse. They can increase grip strength while re-
ducing electrical energy consumption and improving comfort, albeit their weight
and design complexity may be significant.

According to the control method, they are defined as:

(a) Myoelectric prostheses
Precise groups of muscles are voluntarily activated in an isolate way by the
subject. Surface electromyographic (EMG) signals, generated by isometric

23



Figure 1.6: Externally powered myoelectric prosthesis

contraction of the residual muscles of the limb and collected through surface
electrodes, actuate the control.

(b) Electronic prostheses
These prostheses are typically employed when there are clear-cut bone zones
that can trigger pressure sensors. Specific switches or slider-type inputs
activate the control method.

3. Hybrid prostheses
They are designed for trans-humeral amputees and combine the externally pow-
ered and kinematic prosthesis, usually consisting of a myoelectrically controlled
hand and a body-powered elbow controlled by cables and braces.

Figure 1.7: Hybrid prosthesis: a body powered elbow with a myoelectric hand

1.2.2 Control strategies

The EMG signals generated in skeletal muscles, which reflect the user’s intention,
are used to control the myoelectric prosthetic hand. Various decoding scheme, as
proportional control, on–off control, direct myoelectric control, pattern recognition,
and postural control, are utilized to actuate the prosthetic hand using the EMG signals
according with the user intention [46].
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The first and most widespread method of control, mostly due to its robustness is
the on-off control [43], which is based on the alternating or simultaneous contraction
of antagonistic muscle groups. Depending on the proximity of the amputation, mutu-
ally exclusive movements of each joint replaced by the prosthesis (flexion/extension,
pronation/supination, opening/closing) are activated one at a time by two electrodes
placed in two loci on the stump which detect one or both contractions of the residual
muscle and activate the associated movement. By the co-contraction of the residual
muscles of both mentioned two loci, it is possible to switch from a joint to another and
select the one to control. The single contraction activate one of the mutually exclusive
movement of the joint (exemple: flession). This method suffers from being counter
intuitive and requires the amputee to learn a new control scheme, the mental effort
required is considerable at least in the first instance. A lot of training is needed to
reach a good level of dexterity.
This control technique is clearly not natural due to the switching phase to select the
joint controlled that introduce a time delay between user intention and prosthesis
action. The usual control has had problems in expanding the available DoF in the
prosthetic device due to the difficulties in known the actual joint controlled and the
time consuming during the switching between joints. The implanted myoelectric sensor
control approach has the same features as sEMG control [33], but it is more reliable
since the signals received through the needles are less noisy. Moreover an advantage is
having a stable implant, anchored to the nerve, which solves the problem of electrode
shifting which is one of the main causes of degradation of control, also in the case of
pattern recognition.

”Proportional control is exhibited by a prosthesis system if and only if the user can
control at least one mechanical output quantity of the prosthesis (e.g., force, velocity,
position, or any function thereof) within a finite, useful, and essentially continuous
interval by varying his/her control input within a corresponding continuous interval.”

A system in which the electromyogram (EMG) from the flexors and extensors of the
user’s forearm is monitored, amplified, filtered, and smoothed by two active electrodes
is a simple example of proportional myoelectric control. This gives EMG amplitude
estimations to send to a hand controller. The controller sets a voltage provided to the
motor that is proportionate to the contraction intensity after applying thresholds to
reduce ambiguity at low contraction levels [17]. Several commercial prosthesis makers
provide this feature.

Direct myoelectric control share features with proportional control and needs inde-
pendent EMG sites to allow control of single finger movements. However, crosstalk in
EMG signals is a barrier in achieving independent control of hand. As already said this
might be partially solved with implant-able myoelectric sensor wich give intramuscular
EMG signals [28].

One promising solution that is increasingly being developed because of its excel-
lent results and great future potential is Targeted Muscle Reinnervation (TMR). This
consists of transferring nerve of the residual part into healthy muscle to be used as
amplifier (usually chest) In fact, even after amputation, the nerves remain active and
able to transport information from the brain in an efferent manner. ”The innervated
muscles then serve as biological amplifiers of the amputated nerve motor signals. By
transferring multiple nerves, TMR myoelectric signals allow intuitive, simultaneous
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control of multiple joints in an advanced prosthesis” [5]. After surgery, the nerves grow
into the new target muscles and can induce their contraction. As a result, the amputee
moves selected muscles, but thinks he is moving the limb that is no longer present,
the so called phantom limb. These chosen muscles are usually residual muscles of the
amputated limb or chest, which are big muscles with a few number of movements. The
signals are then picked up by EMG sensors and used to activate the prosthesis. The big
step forward is that with this technique it is possible to allow the subject to perform
a given movement by performing the same contraction as he/she would perform with
the limb no longer present. In addition, TMR allows additional control sites to be
generated, so that the subject no longer has to be limited to two as in the on-off case.

Complex control strategies take into account a huge number of information useful
to decode user intention in a more reliable way, so the control can be more intuitive
than the dual-site. Feature extraction and feature classification of segmented data in
signal processing are commonly used in pattern recognition-based myoelectric control
to provide commands to the motor controller. Depending on the amount of features,
some signal processing may entail feature reduction or feature selection (FS) between
extraction and classification. To determine the information content of the MES, sev-
eral characteristics in time, frequency, and time–frequency are extracted in general.
Pattern-based recognition for myoelectric control involves a reliable approach for ex-
tracting information from retrieved features [15].
This approach requires the application of several electrodes, from 6 to 10. In more ad-
vanced control strategies, a specific sEMG pattern is mapped and assigned to a specific
movement. The classifier then associates a certain number and type of muscle signals
with the corresponding movement.The fundamental concept behind this method is to
examine these patterns and develop a model that can determine if the replicated signals
are comparable to those collected during the training phase using a likelihood function.
Because the model accuracy is directly connected to the input data used to train the
algorithm, the training phase is crucial. To allow the classifier to discriminate between
different gestures, it is critical to supply meaningful signals with distinct patterns for
each intended movement[10].

1.3 Kinematic theory

A mechanical structure is made up of a set of bodies, called links, which are assumed
to be rigid, and joints. Robots are driven by means of actuators, that could be placed
in all joints (full actuated systems) or in some of that (under actuated systems), which
determine their configuration. The configuration of a joint is defined as the angle
for rotational joints joints and the elongation for prismatic joints. The knowledge of
the configuration of a joint is made possible by special sensors ( angular sensors such
as encoders or elongation sensors). A distinction is therefore made between actuated
and non-actuated, sensorised and non-sensorised joints. An actuated and sensorised
coupling is defined as active. A non-actuated and non-sensorised coupling is defined as
passive. A multibody system can be organised in a structure called a kinematic chain,
which can belong to two different categories: serial or parallel.

A robot can be described analytically through its kinematic model. A serial kine-
matic robot can be defined as a series of reference frames, located at actuated joints
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(DoF), in relative motion to each other. The analytical description concerns the re-
lationships between the positions of the joints (angles and/or elongations) and the
configuration or positioning of a particular member of the structure, typically the end
effector, or the body bearing the end organ.
In serial manipulators, the end effector is placed at the end of the chain and at the
other end is the base, which is usually integral with the environment. It is precisely
with respect to the environment that the end effector is usually described, using a
homogeneous matrix. The kinematic description of a robot, or kinematic problem, can
be approached in two ways, depending on the known elements in one’s possession and
the unknown ones. The two possibilities are:

• Direct kinematic problem: It concerns the determination of the end effector
pose, when the configurations of the sensed joints (qs) are known. Qs is the
set of values that can be assumed by the configurations of the sensed joints.
Mathematically, it is a question of obtaining an explicit expression of the direct
kinematic map.

• Inverse kinematic problem: It consists in determining the configurations to
be assumed by the actuated joints in order to make the end effector position an
assigned one.

Some useful definitions:

• Joint space (or configuration space) is the space in which the vector q of joint
variables is defined. Its dimension is indicated by n.

• Operational space (or Cartesian space) is the space in which the vector x =
[p,Φ]T is defined. Its dimension is indicated with m. p is the vector of Cartesian
coordinates of the position of the end effector. In general it has dimension 3× 1
(coordinates x, y, z). Φ is the vector representing the orientation of the end
effector. In general it has dimension 3× 1. The actual dimensions of the vectors
p and θ depend on the workspace and the task to be performed by the robot.

• Workspace: within the operational space, to evaluate the performance of a
robot, the workspace is defined as the region including all the possible reachable
position of the end effector resulting from all the possible joint configuration
depending on the DoF of the kinematic chain. Reachable workspace: region
that the tool backhoe origin can reach in at least one orientation. Right-hand
working space: region that the origin of the tool reference frame can reach with
different orientations. It is a subset of the first.

A serial arm is intended as an open kinematic chain. The procedure can be summarised
as follows:

1. each member is associated with a reference frame integral with it, which describes
its configuration;

2. by means of homogeneous transformations, the position of an orientation axes
tern with respect to the previous one is described starting from the base orien-
tation axes tern to the end effector one;

27



Figure 1.8: Workspace of a 3DoF planar arm

3. this description represents the posture of the end effector with respect to the
base.

The direct kinematic model is more readily understood and easier to resolve. There
are general and automatic techniques for calculating the space of transformations A(q)
to arrive at the configuration of the end effector and the solution is univocal.

In the inverse kinematic model, the aim is to determine the joint variables once the
position and orientation of the end effector have been assigned. There is no general
technique which, if applied systematically, provides a solution. The solution sought
may not be unique. One can have:

• no solution (one is required to be outside the workspace);

• a finite set of solutions (one or more);

• infinite solutions.

Closed-form and non-numerical solutions are sought for computational reasons and
because expressing solutions in analytical form allows one to select a particular solution
(if one has more than one solution). To obtain a solution in closed form to the problem
of inverse kinematics, there are essentially two techniques:

• Algebric, which consists of manipulations of the kinematic equations until we
obtain a set of equations that allow us to invert the equations.

• Geometric, which is based, when and if possible, on geometric considerations,
depending on the structure of the manipulator, which help in the solution.

Redundancy

A manipulator is said to be redundant from a kinematic point of view when it has more
degrees of freedom than the number of variables required to characterise a given task.
In terms of joint and operational spaces, a manipulator is intrinsically redundant if
m < n. Redundancy is however a concept related to the type of task to be performed.
Even if m = n a manipulator can be functionally redundant if only h components of
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Figure 1.9: 3DoF planar arm

the operating space are involved. For example, observing Fig. 1.9, for 3-arm planar
m = 3, n = 3 . If the orientation of the end organ is also affected h = m = n = 3,
the manipulator is not redundant. If orientation is not involved then h = 2;m =
n = 3, thus leaving one degree of redundancy. Since in R3 space a maximum of 6
Dof are possible (sum of 3 translational DoF and 3 rotational DoF), m = 6 at most.
Consequently, a robot with n = 6 is non-redundant if h = 6 because h = n = m, r =
n−m = 0, e.g.the human arm has 7 DoFs (1 time redundant).

1.4 Quaternions

In mathematics, quaternions are extensions of complex numbers, they satisfy all the
properties of fields, such as real or complex numbers, except for the commutative
property of the product [6]. Complex numbers form a 2-dimensional space, i.e. a plane.
Quaternions contain the complex numbers and form a real vector space of dimension
4. The two properties of body and vector space give quaternions a non-commutative
division algebra structure. Quaternions are frequently employed in theoretical physics
and more applicable disciplines such as 3D computer graphics and robotics (to find
the spatial position of multi-joint mechanical arms) because they have a significant
applicability in the modeling of spatial rotations.

Quaternions were formalised by Irish mathematician William Rowan Hamilton in
1843. He needed a way to extend complex numbers across a larger number of spatial
dimensions. After failing to find a three-dimensional extension, he devised a four-
dimensional one: quaternions. In a broader sense, Hamilton is credited with inventing
the vector product and scalar product in vector spaces. A quaternion is an ordered
quadruple of real numbers, with the first coordinate being the ’scalar’ component and
the remaining three being the ’vector’ part, according to Hamilton. The scalar portion
of the product is the scalar product of the vector component modified by a sign, and
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the vector part of the product is the vector product when two quaternions with zero
scalar part are multiplied.

Quaternions are most commonly used to represent rotations and directions in three-
dimensional space today. As a result, 3D computer graphics, control theory, signal
processing, attitude control, physics, and astrodynamics may all benefit from their
usage [38].

1.4.1 Definition

The simplest way to express a quaternion (q) is its vectorial form:

q = t+ u · i+ vj + wk (1.1)

The resemblance to the structure of complex numbers is clear. The imaginary
dimension of the quaternion space is increased by adding two ”components” j and
k. Quaternions are defined by the set-theoretic form, which considers them to be
extensions of complex numbers. As a result, the set H can be defined as follows:

H = {q = a+ bi+ cj + dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1} (1.2)

1.4.2 Basic Opertions

In this set we can define two operations, sum and product, which give H, as already
mentioned, an algebraic structure of vector space of dimension 4: dim(H) = 4, having
base: {1, i, j, k}. Considering two quaternions q1 = a1 + b1i + c1j + d1k and q2 =
a2 + b2i+ c2j + d2k, the following elementary operations apply:

q1 + q2 = (a1 + b1i+ c1j + d1k) + (a2 + b2i+ c2j + d2k)

= (a1 + a2) + (b1 + b2)i+ (c1 + c2)j + (d1 + d2)k
(1.3)

q1 − q2 = (a1 + b1i+ c1j + d1k)− (a2 + b2i+ c2j + d2k)

= (a1 − a2) + (b1 − b2)i+ (c1 − c2)j + (d1 − d2)k
(1.4)

i2 = j2 = k2 = ijk = −1 (1.5)

The quaternions form a non-commutative entity. They satisfy all the usual proper-
ties of fields, such as real numbers, complex numbers, except the commutative property
of the product. The product between quaternions is therefore anti-commutative with
reference to the following figure 1.10

q1q2 = (a1 + b1i+ c1j + d1k)(a2 + b2i+ c2j + d2k)

= (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 + c2 + d1)i

+ (a1c2 + c1a2 + d1b2 − b1d2)j + (a1d2 + d1a2 + b1c2 + c1b2)k

(1.6)
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Figure 1.10: Product between quaternion components

q−1 =
q∗

|q2|
→ qq−1 = q

q∗

|q|2
=
|q|2

|q|2
= 1 (1.7)

One property of quaternions is that they can be expressed in ’b-complex’ form, i.e.
as the sum of two complex numbers:

q = (a+ bi) + (c+ di)j (1.8)

ascribed in a compact form as:

H = C⊕ Cj (1.9)

1.4.3 Conjugate and Norm

It is defined as a conjugate quaternion of q and it’s written q∗ the following element of
H:

q∗ = a− bi− cj − dk (1.10)

The following properties apply to the conjugate:

(q1q2)
∗ = q∗1q

∗
2 (1.11)

(q1 + q2)
∗ = q∗1 + q∗2 (1.12)

(q∗)∗ = q (1.13)

For each quaternion q ∈ R the norm is defined by the following expression:

‖q‖ =
√
qq∗ =

√
a2 + b2 + c2 + d2 ∈ R (1.14)

The set q ∈ H of the quaternions is a vector space on R
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1.4.4 Matrix Representation

Quaternions have multiple representations, it is possible to express the quaternion in
the so-called matrix form. The following complex matrices are associated with the
quaternion q = a+ bi+ cj + dk

1 =

(
1 0
0 1

)
, I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
, K =

(
0 i
i 0

)
(1.15)

1.4.5 Rotations

The most important property of a quaternion is that it represents a rotation in R3.
Any three-dimensional rotation can be represented by the so-called axis-angle notation
R = eθû. If we want to represent this rotation as a quaternion, we can write:

q = eθû =

[
cos( θ

2
)

ûsin( θ
2
)

]
(1.16)

where θ is the angle of rotation and û a three-dimensional verse. In this example,
the rotation of an angle θ around û has been described.
A quaternion q = q1 + q2i+ q3j + q4k can be transformed and/or converted into a real
rotation matrix [38]: q21 + q22 − q33 − q44 2q2q3 − 2q1q4 2q2q4 + 2q1q3

2q2q3 + 2q1q4 q21 − q22 + q23 − q24 2q3q4 + 2q1q2
2q2q4 − 2q1q3 2q3q4 + 2q1q2 q21 − q22 − q23 + q24

 (1.17)
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Chapter 2

Materials and methods

This section describes all the materials and methods used for the development of the
project. The chapter is focused on the is on the description of the activities carried out
and the used hardware and software. While respecting all commercial and proprietary
secrets, the Hannes system is described in its current configuration with a view to its
future developments. The Hannes system consists of the Hannes hand [24], a prosthetic
device that can perform finger movements (grasping), the two DoFs of the wrist (wrist
pronation/supination - WPS, wrist flexion/extension - WFE) and the DoF of the elbow
(elbow flexion/extension - EFE). Each DoF is driven by a different electric motor.
Hannes hand is a prosthetic device realised by the collaboration between the IIT Rehab
Technologies department and the INAIL Prosthesis Centre of Vigorso di Budrio.

In order to allow a better reading and understanding the part 2 is divided into
several paragraphs. Section 2.1 describes the Hannes prosthesis concerning the me-
chanical design, something about the electronic design and the software including its
version in virtual reality. The study protocol is outlined in sec. 2.2 explaining the eval-
uation made for every method individually and compared with the others. In sec.2.3
the description of all the algorithms used and developed in the study.

2.1 Hannes arm

The Hannes prosthesis, the result of a long-standing collaboration between IIT and
INAIL, is a polyarticulated hand capable of restoring 90% of the functionality lost
to transradial amputees [24]. An active elbow has recently been developed for trans-
humeral patients and the shoulder is currently under development. The latter is one
of the team’s challenges, in order to include shoulder disarticulation amputees among
the possible users of this device.
The prosthetic design was guided by the study of anthropometry, as well as structural
and aesthetic characteristics, in order to make the prosthesis perceived as an integral
part of the body for the user. The prosthesis has key biometric properties that make
it uniquely similar to a human hand.
In figure 2.1 it is possible to observe the result of the iterative design process with the
previous prototypes in the background and the last model in the foreground, decidedly
the most accurate for anthropometric shape. As shown in Fig.2.2a, Hannes systems
used in the study consists of 4 main interacting physical components:
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Figure 2.1: Evolution of Hannes hand

1. Hannes hand;

2. An active flexion-extension (F/E) wrist module and an active pronation-supination
(P/S) wrist module;

3. A housing resembling the anthropometric shape of the forearm, containing the
battery and the control electronics with an active flexion-extension elbow module
attached;

4. A component with a length proportional to the anthropometric model to repli-
cate a humerus, attached to motor with a brake with to reproduce the flexion-
extension movement of the shoulder in the experimental phase.

2.1.1 Hardware

Hand

The differential mechanism behind the Dynamic Adaptive Grasp (DAG) system Fig.
2.3, which provides the prosthesis its unique capacity to adjust to the form of the item
and to any sort of external force, is a crucial feature of Hannes’ hand. The conducting
wire is driven by the DC motor (Faulhaber CR 2642 connected with a 19:1 planetary
gearbox), which transmits the force to the cable-based mechanism located in the palm.
The lead wire runs from the motor shaft to the thumb, passing via two differential
elements placed on linear guides, each of which has a special bushing bearing and two
rails for the bushing to travel along. Each bushing has two idler pulleys: one holds the
follower wire, while the other drives two neighboring fingers.
To replicate distinct grasping actions, the thumb can take three alternative positions:
pinch, power, and lateral configurations. In one of the foregoing arrangements, the
thumb is manually moved. The lateral posture is appropriate for handling thin objects
like credit cards, the power position is appropriate for gripping and hauling large goods,
and the pinch position is appropriate for holding tiny objects with the thumb and index
finger.
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(a) Physical setup used for experiment with the Bluetooth
Dongle for communication

(b) Simple scheme of arm configuration: a) minimum ROM
- b) rest ROM - c) maximum ROM pose

Figure 2.2: Hannes arm

Wrist

The active FE wrist is composed of a BLDC motor integrated with a custom 240:1
gearbox. It is designed to have the same rotation axis, size, and speed and torque of the
healthy limb. Another important achievement is to have a non back-driveable mech-
anism to support high static loads. The electric motor for the pronation-supination
movement is located in the socket next to the connection interface. The design allows
the patient to easily attach and detach the hand prosthesis and FE wrist actuator while
maintaining a secure electrical connection between the two portions of the prosthesis
system while in operation. The motor deputed to the FE is part of body of the hand
while the PS motor is proximally located in the forearm as in the human physiology.

Elbow

Hannes’ myoelectric elbow module has an active component for lifting objects con-
trolled by the user, as well as a passive gravity compensation device and a user-
controllable clutch that allows the elbow prosthesis to enter a passive free-swing mode
with a natural range of motion for walking. For active movement and lifting of pros-
thetic weights, Hannes’ elbow features a non-backdriveable, low-noise powertrain. This
technology allows the device’s battery life to be extended by lowering the motor’s re-
quired current consumption, as well as reducing the device’s total size by lowering the
powertrain torque needs.
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Figure 2.3: Transmission mechanism based on DAG system

Shoulder Prototype

The Hannes Arm doesn’t natively include a shoulder module yet so a prototype joint
was developed. It consist of a hollow shaft resembling the anatomical dimension of a
human humerus attached to a BLDC motor that actuates the shoulder FE.

Range of Motion

The Hannes arm setup used in the study was set to have certain ROM for each joint. As
rest position, consider the polyarticulate stretched downwards as a single arm stretched
across the body in a resting position. This should be taken into account principally for
the zero position of the shoulder joint. The rest of each joint has been set as the angular
position so that the two links, the one preceding and the one following the joint, lie
on the same line. The result of this choice leads to a configuration whereby all joints
in the rest position lead to the arm being straight and extended along the vertical.
The zero position for the shoulder and elbow joints corresponds to the rest one, while
the zero position for Wrist FE joint corresponds to a fully flexed wrist. Analysing the
individual joints, they have the following ROMs:

• Shoulder: 0◦ : 120◦

• Elbow: 0◦ : 120◦

• Wrist FE: −33◦ : 54◦

• Wrist PS: 0◦ : 360◦

Electronic architecture

The Hannes system’s electronic architecture consists of:

• Scheda Controllo Motore Mano (SCMM): consisting of a DC motor driver to
actuate the grasping movement, a position encoder, a microcontroller for com-
munication and an IMU to sense the orientation of the hand in space. It also
includes:

– Scheda Controllo Motore Wrist FE (SCMWFE): The electronic components
consist of a BLDC motor drive, a position encoder and current sensor;
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– Scheda Controllo Motore Wrist PS (SCMWPS): The electronic components
consist of a DC motor drive.

• Scheda Controllo Motore Gomito (SCMG): consisting of a BLDC motor driver, a
position encoder, a microcontroller for communication and an IMU to sense the
orientation of the forearm in space;

• Scheda Controllo Motore Spalla (SCMS): consisting of a BLDC motor driver, a
position encoder, a microcontroller for communication and an IMU to sense the
orientation of the arm in space;

• The EMG-Master (EMGM): This electronic board houses the firmware that con-
verts the electromyographic signals or angle values to be attained for each joint
into the class of movement necessary to accomplish the kinematic chain’s intended
configuration. The EMGM feeds the SCM boards the synthesised position refer-
ence, which in turn generate the PWM needed to control the electric motors;

• Battery Management System (BMS): is a dedicated electronic board that moni-
tors the battery state and ensures that the system operates safely. With a voltage
of 12V, the rechargeable battery pack can power the full Hannes system through
two independent cables (VSYS and GROUND).

These major components communicate through the CAN bus. For position-controlled
joints, the Hannes arms requires normalised reference inputs in position that are
mapped to their respective ROM. For the Wrist PS due to the mechanical imple-
mentation of the joint the reference input is interpreted as a speed reference. So the
required inputs from each board is a number between 0 and 100 interpreted as percent-
age o the full-scale ROM previously defined. 2.1.1 External information is delivered to
the EMGM via Bluetooth, as shown in figure 2.2a. The three IMU sensors Fig.?? also
located on each of the three SCM boards, giving information on the relative orientation
of the three joints via their respective quaternions (chapter 1.4).

Figure 2.4: IMU sensor

2.1.2 Software: Virtual reality

The software applications Blender and Unity are used to create virtual reality. Virtual
reality was employed in the thesis to build the control algorithm and to provide visible
feedback on the control algorithm’s outcomes, as well as to move the virtual version
of the prosthetic polyarticulate. VR might be employed as a training or rehabilitation
aid for amputees in the future. By operating the virtual Hannes first, and later the
actual device, the patient may learn to move the prosthesis. Furthermore, the definition
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of relative mobility between the skeleton linkages allows the object’s pieces to move
around the specified joint, such as the wrist or elbow. It is possible to provide an
initial and ultimate attitude (position and orientation) to each joint in the Blender 3D
environment, resulting in a movement trajectory between the two poses. It is feasible
to create the required motion, such as wrist, elbow, or shoulder flexion/extension,
by combining all of the independently specified trajectories. To allow virtual reality
control through Bluetooth® connection with the EMG-Master, the body motions are
described in Blender, while the animation is handled in Unity.

Figure 2.5: Hannes arm in Blender virtual environment

Blender [3] is a free open-source 3D computer graphics program which can be used
for virtual reality, visual effects, interactive 3D applications, and computer games. In
the context of this thesis Blender was used to create a humerus and shoulder adjoint
component [3], provisionally up to the CAD transposition of what is still a project.
It was also utilized to add and improve the model’s repeatable motions. The Hannes
system 2.5 is created using a simpler structure (called a skeleton) made up of links
and joints. Furthermore, the Vertex Paint tool, which may group specific portions of
the body and define all deformation regions, is used to define all deformation areas of
the body.Furthermore, the Vertex Paint tool, which can group particular portions of
the object and have them move concurrently with a given deformation parameter, is
used to specify all deformation areas of the body. The Blender model is then imported
into the Unity environment, which allows the physical item to be animated. Unity is
a cross-platform game engine for making virtual reality and augmented reality games
in 3D and 2D [16]. The Animator is applied to the virtual prosthesis in Unity and is
defined with five separate layers: the first is related to hand closing/opening, the second
is related to wrist pronation/supination, the third is related to wrist flexion/extension,
the fourth is related to elbow flexion/extension, and the fifth is related to shoulder
flexion/extension. Only the three layers relating to the three joints’ flexion/extension
motions were used in the thesis. prono-supination of the wrist was examined only at
first but then abandoned. The animator’s three layers can be active at the same time
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to produce a sequence of motions that must belong to separate joints.

(a) 3DConnexion Space-
Mouse®Compact

(b) SpaceMouse enabled DoF

Figure 2.6: 3D mouse used for prosthesis control in Virtual Reality

Each layer therefore has its own corresponding animation. In order to translate the
activation of the animations into movement of Hannes Arm, what is done is to give to
Animator, as input, numbers between 0 and 1, corresponding, instant by instant, to the
desired percentage of each animation, that is the desired percentage of each movement
of each joint. All of this considering the minimum value of the ROM of the joint as zero
percentage and the maximum as 100. The three joints of virtual Hannes Arm in the
Unity world, based on the animations created in Blender, have the following ROMs:

• Shoulder: 0◦ : 135◦

• Elbow: 0◦ : 130◦

• Wrist: −60◦ : 60◦

Some C# scripts have been built to manage the Hannes virtual system using input
commands provided by the keyboard directional arrows or Mouse3D Fig.2.6a. The
class number is created at the firmware level and is the result of the classifier model.
Each layer is linked to a numbered motion class.

(a) 50% of EFE trajectory (b) 100% of EFE trajectory

Figure 2.7: Frames of elbow flexion/extension movement in Blender
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(a) perspective view (b) side view

Figure 2.8: virtual Hannes Arm un Unity environment

2.2 Study Protocol

The aim of this thesis project is to develop a control system that allows the Hannes arm
to be controlled in Cartesian space by acting directly on the end effector. Specifically,
the aim is to idealise the end effector as a point in Cartesian space, ideally corresponding
to a point on the hand, approximately on the knuckle of the middle finger, to be moved
in a plane parallel to the sagittal plane. In Unity plane XY was chosen as seeable in
Fig. 2.8b. The result is a movement in two dimensions that can be controlled with
4 inputs, from the keyboard using the arrow keys and associating each one with a
direction in space (↑ for up movement, ↓ for down movement, ← for backwards, →
for forwards) or, alternatively, by control with a joystick. The SpaceMouse®Compact
from 3DConnexion was chosen for this purpose Fig. 2.6a.
With this second method, it was possible to maintain a correspondence between mouse
movement and generated input; in fact, the 3D mouse has 12 DoFs, of which only
the two required were used Fig.2.6b. Then the movement in Cartesian space of the
end effector must be translated into the achievement of a suitable configuration of the
robotic arm, all to be realised in real time.

The first step consisted in studying the Unity platform and the asset already par-
tially developed previously, the CAD and the communication protocols to be used.
Three ideas followed one another to achieve the objective, two calculation algorithms
implemented through scripts on Unity and the use of the ANFIS method on Matlab
with the subsequent attempt to transpose it into the virtual environment of Unity.
Depending on the results given by these three algorithms, one of them was chosen for
its evident better features and high potential for future developments.

Before describing the three ideas for the control system, it is necessary to take a
look at the type of output required for the algorithm to serve as an instruction for the
movement of each motor of the three joints of interest. Once the ROMs of each joint
are known, the reference angle value to which the joint is to be brought must be input
as a percentage value of the range of motion, i.e. of the entire executable span. For
example on a ROM like [0◦ : 120◦] the reference angle 90◦ is sent as 70 out of 100.

Except for the first experimented sec. 2.3.1, the ANFIS and Recursive algorithms
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sec.2.3.2 and 2.3.3 have been tested in Matlab environment in order to evaluate the
properties, compare them and be able to exercise a choice of the best one evaluating
the theoretical base and the performances of the single ones on an analytical basis. The
analytical comparison between ANFIS method and recursive approach (in its standard
and optimized version) was performed by generating three trajectories of 100 points
each. These trajectories reproduce two basic movements (vertical trajectory, e.g., to
lift an object, and horizontal trajectory, e.g., to direct an object forward or bring an
object to the mouth) and a more complex trajectory, an arc of circumference. Each
trajectory, which is nothing more than a set of coordinates of an end effector, was
fed to the three algorithms that for each one have calculated, with differing degrees of
precision, the respective angles for each joint so that the chosen kinematic chain could
perform the different trajectories. Once the angle values relative to each of the points
were obtained, through direct kinematics calculations the positions of the end effector
forming the trajectories predicted by each different algorithm were calculated. The
angle data for each joint and the position (x, y) of the end effector were then collected.
In addition calculated parameters to evaluate the effectiveness of the algorithms. As

(a) (b)

(c)

Figure 2.9: Tested trajectories and respective starting configuration of the robot

far as practical applicability is concerned, the evaluations on the various methods have
been done working in Unity environment because the future direction of the project
is to make full use of virtual reality and explore its potential for control and training
with Hannes arm. In this sense, the efforts were aimed at obtaining the three angle
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values, one for each joint, derived from inverse kinematics calculations performed on
the coordinates of an end effector controlled in virtual environment, to obtain the right
configuration of the joints and the consequent laying of Hannes arm.

Once the most valid and promising algorithm was chosen, for results obtained and
applicability to virtual reality, a test was performed with the real setup described
previously (reference to the chapter) to observe its behavior and a first example of
application. In this case the three values calculated were the inputs sent to each motor
of each different joint to modify the configuration in real time. A qualitative evaluation
of this phase was performed on the trajectory results obtained since the purpose of this
thesis is not concerned with.

The test consisted in executing in a virtual environment two trajectories, first a ver-
tical and then a horizontal one similar to those with which the algorithms are tested on
matlab, on which the chosen algorithm (recursive approach with optimization) calcu-
lated in real time the inverse kinematics obtaining the three angle values, one for each
joint, to be sent as a reference to the physical set up that performed the movement
accordingly.

2.3 Algorithms

Three algorithms have been tested since the start of the study:

1. Fast IK

2. Recursive approach

3. ANFIS

The first one, an extremely intuitive approach to solving the kinematic problem, was
soon abandoned because it was partial and crude, with little potential for development,
to the extent that it was not necessary to carry out quantitative tests. The second
and third solutions alternated several times in being the preferred candidate. Both
with strengths and weaknesses showed great potential for solving the question this
thesis project attempts to answer. All of them are listed below with conceptual and
operational descriptions.

2.3.1 Fast IK fabric

This algorithm is based on a reinterpretation of an inverse kinematics algorithm avail-
able on Unity’s asset store [11] rearranged for the case study. An armature is created
on blender, composed of a certain number of bones equal to the number of joints, plus
one. The goal is that, in Unity, the armature follows a target (which is actually acted
on with keyboard inputs or 3D mouse), pointing to the target and if this enters the
sphere of radius equal to the length of the arm it bends so that the position of its end
effector coincides with the target. Substantially, inverse kinematics.
Some known parameters are needed to develop the algorithm. One of them is the total
length of the kinematic chain (TL). It is also necessary to know whether the distance
between target and origin (OT) is greater or less than the total length of the chain.
The origin is defined as the base of the kinematic chain, i.e. its most proximal joint
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that is integral in position with the environment. In the case where OT > TL it is very
simple because the vector connecting the base to the target is calculated and the chain
is arranged along the direction of the vector. The direction is obtained by subtracting
the positions of the two points (base bone and target) and normalising.
Another necessary parameter to set is the length of the chain intended as the num-
ber of bones composing the chain. Other parameters are: the number of iterations
of the algorithm, the distance (Delta) between target and end effector beyond which
the solver stops because it has already reached the target with a satisfactory degree of
approximation. In our case the chain is composed of 4 bones and 3 links. A loop is

(a) simple scheme
(b) Kinematic chain resembling an arm in Unity
environment

Figure 2.10: Kinematic chain schemes for FAST IK method

used to generate a virtual skeleton that makes it possible to display the relationship
between one bone and another according to the set length 2.10b. The 4 bones are ar-
ranged at an initial distance which reproduces the anthropometric measurements and
the average distance between shoulder-elbow-wrist-knuckle.
As mentioned above, for a chain of 3 links, as in our case, 4 bones are needed, numbered
from 0 to 3, going from the most proximal to the most distal. Therefore, translating
to a human arm, bone 4 corresponds to the knuckle, bone 3 to the wrist, bone 2 to the
elbow and bone 0 to the shoulder Fig. 2.10. With a loop, each bone is associated with
a length equal to the distance between itself and the next bone, it follows that the last
bone has zero length. The total length is equal to the sum of all the lengths of every
bone.

The algorithm is based on an iterative process, a loop whereby for each bone the
position is detected, mathematics is performed on it and it is reset after the calculations
made, starting from the most distal segment to the most proximal and vice versa. It
does not act directly on the bone, but calculations are made on its position, which is
then set to the new calculated value. The first step is to find out if the target distance
is greater than the total length. If so, the new position of each bone is calculated,
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starting with the most proximal. The nth bone is placed at a distance equal to the
length of the previous bone from the previous bone along the direction connecting the
target to the bone 0.
In the case where TL < OT the procedure is different. The process is divided into two
phases, firstly a backward phase and then a forward phase, repeated iteratively until
the chosen number of iterations or until the Delta parameter is reached.

Figure 2.11: Backward and forward phases of FaST IK algorithm

Backward phase: Given the target position, this will be the new position (p0(i+1)
)

of the most distal zero-length bone, bone 4, the knuckle. Then the direction starting
from the position of bone 3 is calculated and bone 3 is placed along that direction at
a distance equal to the length of bone 3. This is the new position of bone 3. One
proceeds up to bone 0 always considering for the calculation of the vector connecting
bone n − 1 to bone n, the position of bone n resulting from the calculation at the
previous step pn(i+1)

. This leads to a bending of the arm towards the target but there
is the problem that, stopping here, the base of the arm is displaced from its starting
position and this must not happen. To overcome this, the same procedure is repeated
but in reverse, from the base to the target, from bone 0 to bone 3, the forward phase.

Forward phase: place bone 0 in its starting position (new p0i) and orientate it
according to the direction that connects the point where it is with the new position of
bone 1 (now p1(i−1)

and place bone 1 at a distance equal to bone 0 length. Then, in a
reverse way than before, the position of bone n is defined by the direction that connects
bone n − 1 in its new correct position (p(n−1)i

) with the position of bone n resulting
from the previous calculation (pn(i−1)

) that is updated with the method described for
the case of bone 0 and 1.
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This two-phases process must be repeated a number of times to correctly estimate the
proper position. This parameter has been chosen as 10 but can be modified. The
backward part is more complex because you start with the highest index bone, the
most distal and decrease the index until you get to the most proximal. The forward
part is easier because it is not set on the target but on the base, which is fixed; the
code is the same but in the opposite direction, from the most proximal to the most
distal Fig.2.11.

With these lines the model bends following an inverse kinematics without any con-
strain on the DoF of the bones, moving in space the target the chain bends without any
criterion inherent to ROM of the joints that are vaguely similar to those of a human
arm. In order to overcome this problem, a pole can be inserted, i.e. a body towards
which the chain can be extended when bending. Apparently this may not be necessary
in this case because the movement of the target in a plane naturally rotates all the
bones around its axis perpendicular to the plane on which the motion of the target lies.
The absence of a z-component in the movement of the target reduces the whole thing
to a 2D problem. The logic of the ”pole” in this algorithm consists in making sure
that, given a body defined as a pole, movable in space, the bones maintain a minimised
distance from the pole. As far as rotations are concerned, the bone corresponding to
the end effector will have the same rotation as the target if it should rotate as well
as translate (in the experimented case it was limited to translating), the other bones
will have a rotation consequent to the position of the bone following them. In this the
model replicates the functioning of a human limb. (For the algorithm see Appx.A.1)

Once the algorithm is ready to move the kinematic chain the next step was getting,
during the real time simulation, the istantaneous z-euler angle of every joint. theese
three angles correspond to θ1 , θ2 and θ3. The three values were converted in a per-
centage of the relative joint ROM so they could be fit the mathematical configuration
(2.1.1) to be interpretated by the animator wich shows, instant-by-instant, the three
animations combined to forming the real time changing configuration of Virtual Hannes
Arm that moover following the target movement

2.3.2 Recursive approach

In the calculation of direct kinematics, the solution of the problem is unambiguous.
Given a kinematic chain with n joints and n DoF, knowing the angular position of
each joint gives the position of the end effector sec.1.3. The direct kinematic problem
is even easier in the case under study, a manipulator that can be modelled as a planar
3DoF manipulator Fig. 1.9 .

For the inverse kinemtic problem the situation changes. In fact, in order to pass
from the position/orientation of the end effector to the joint angle values, there is no
technique which, when applied, gives a unique solution.
The solution obtained is not unique, it is possible to have:

• No solution if you start from a point outside the working space;

• A finite set of solutions;

• Infinite solutions
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In addition, since the manipulator is redundant (with redundancy r = m−n = 1 with
m = 2 and n = 3) it is not possible to invert the Jacobian to go from the formulation
∆q = J∆p to ∆p = J−1∆q. In the non-redundant case the Jacobian matrix is a 2× 2
and therefore invertible. In the present case, the Jacobian is 2× 3.
The pseudo-inverse method was used to solve this problem:

∆q = (JJT )−1JT∆p = J ]∆p (2.1)

This method allows a formulation of the type: ∆q = J ]∆p where ∆q is 3× 1, J ] is
3× 2 and ∆p is 2× 1. It allows to obtain through easy calculations the angle values,
starting from a known initial configuration of the robot, depending on the varying
position of the end effector.

The advantage of this method is the very low computational weight and that it
follows the least squares method, so that when passing from a configuration Ci to one
Ci+1 the joints will change their angular co-ordinate by the minimum necessary to
perform the movement. This characteristic satisfies the problem of infinite solutions,
in fact, after imposing an initial configuration known at the beginning of the process,
from then on, the kinematic chain moves in relation to the end effector according to the
calculations and we have the certainty that, among the infinite solutions to pass from
the configuration Ci to Ci+1, the algorithm will give an output of only one. The starting
point of the algorithm is a known configuration to be imposed on the kinematic chain
so that the initial position of the end effector can be calculated by direct kinematics.
In the development phase the initial configuration is chosen arbitrarily with the care
that this falls within the working space. In the future, when the algorithm would have
practical application with the prosthesis, the initial configuration will be taken as input
by reading the angular values provided by the encoders or by the IMU at the moment
of switching on the prosthesis.

From theory (sec. 1.3) it is known that the Jacobian formula is:

J =

[
∂xp
∂θ1

∂xp
∂θ2

∂xp
∂θ3

∂yp
∂θ1

∂yp
∂θ2

∂yp
∂θ3

]
(2.2)

Specifically in this case:

J =

[
−l1 sin θ1 − l2 sin (θ1 + θ2)− l3 sin (θ1 + θ2 + θ3) −l2 sin (θ1 + θ2)− l3 sin (θ1 + θ2 + θ3) −l3 sin (θ1 + θ2 + θ3)
l1 cos θ1 + l2 cos (θ1 + θ2) + l3 cos (θ1 + θ2 + θ3) +l2 cos (θ1 + θ2) + l3 cos (θ1 + θ2 + θ3) +l3 cos (θ1 + θ2 + θ3)

]
(2.3)

At this point, the pseudoinverse J ] = (JJT )−1JT is calculated . Once the pseudoin-
verse is obtained, in order to obtain the vector ∆q, containing the angular increments
of the joints, it is necessary to know the increments of x and y coordinates.
As well known, the algorithm was developed in the Unity environment, where every-
thing is controlled via C] scripts sec.A.2. Virtual Hannes is positioned in virtual space.
The shoulder joint is not prone to translational but only rotational motion and is con-
sidered as the reference for the movement of the end effector. The end effector, in the
virtual environment, is nothing more than an object (red dot in the Fig. 2.8a) whose
position is known, iteration by iteration. Once the initial configuration has been set,
the object is moved by the user using the keyboard or 3Dmouse. The successive posi-
tions of the end effector are memorised and the distance travelled between one moment
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and the next is calculated, thus obtaining the ∆xp and ∆yp required to calculate the
angle values, which are then updated. The problem is apparently solved because with
the position of the end effector as input, the angle values at each joint are obtained as
output.

This method has two main limitations:

• It has no control over whether the end effector remains within the working space;

• Even when the end effector would be within the workspace, it is not possible to
predict the joint configuration and constrain it within the ROMs of the Hannes
arm joints sec. 2.1.2.

In addition there would be non-conservativity but this is not a major limitation for
the objective of the study and possible future application to a prosthetic poly-articulate.

To solve the first limitation, the idea is to create a zone outside which the end
effector cannot go. On the basis of the ROMs of the three joints the whole working
space was calculated, then the curves delimiting the boundaries of the working space
were obtained. The resulting curve Fig.2.8b was inserted in the plane parallel to the
sagittal plane in which the end effector is moved. The curve is pruned coherently with
the position of the shoulder, defined before as the origin of the reference system. By
means of a Unity function it is possible to know whether the end effector is inside or
outside the curve. By setting flags, the movement of the end effector is allowed as long
as it is inside the curve. When the end effector leaves the curve, it is repositioned to
the last position inside the curve, stored in a vector containing the last 5 positions of
the end effector. In fact, this acts as a positional control for the end effector that does
not move from the shoulder beyond the allowed limits.
Even remaining within the working space, the Jacobian pseudo-inverse does not al-
low the single joint configuration to be controlled. In order to meet this need, the
optimisation of the recursive method was implemented.

From the literature study [44][20][27][32] the optimised form was formulated:

∆q = J ]∆p− α(I − J ]J)∇H (2.4)

The α coefficient varies between 0 and 0.5 and allows to modulate how much to
make the optimisation weigh, how much to make it affect the result. The core of the
additional component is the ∇H, whose formulation is expressed as follows:

H(θ) =
n∑
i=1

(θ̄max − θ̄min)2

4(θ̄max − θi)(θi − θ̄min)
(2.5)

∇H(θ) =
[
∂H
∂θ1
, ∂H
∂θ2
, . . . , ∂H

∂θn

]T
(2.6)

where θmax and θmin are the upper and lower limits of the ROM of the individual
joint. The introduction of this factor ensures that, in the calculation of the solution,
the limits are avoided by redistributing the weights of the three joints movement if one
of them approaches to a limit configuration.

Compared to the recursive approach, the optimisation consists in adding a corrective
factor to the previous calculation of angle increment Eq. 2.4.
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2.3.3 ANFIS

Introduction to ANN

ANN (Artificial Neural Network) are usefull for the analysis of different systems pa-
rameters. These kind of networks try to mimic the human reasoning and are inspired to
the human biological nervous system [36]. Human’s brain can recognize and elaborate
data in an easy way, making it possible to classify objects by analysing, for istance, the
amount of visual information available. The human brain performs task by exploit-
ing the potentiality of nerve cells called neurons that works together by exchanging
information. Artificial network’ aim is to resemble this kind of structure so to make
it easier to automate processes involving difficult tasks and that requires the imple-
mentation of an intelligence [2]. ANN structure is organized in multiple layers, each
layer is composed by processing units called neurons. The neurons are the core of the
information-processing learning algorithm, they collect the input data and provide to
compute the output. The networks can have different characteristics settable through
some parameters: the type of functions used to evaluate the performances, the applied
rules, the type of computation. All of these are different aspects of the mathematical
model of an ANN [2]. The network also needs a training phase that is done by us-
ing known input-output data pairs, after the training it can be used to estimate and
evaluate unknown parameters.

ANNs may be used to analyse the parameters of many systems; these networks are
based on the biological nervous system of humans [2] and attempt to emulate human
thinking. The human brain has the ability to detect and construct data in a simple
manner that allows it to categorise things by analysing, for example, the quantity of
visual information available. The human brain accomplishes tasks by utilising the po-
tential of nerve cells known as neurons, which communicate and exchange information.

Introduction to Fuzzy logic

ANNs can learn from a training data set automatically and discover a fair approxima-
tion to link a given input to a projected output [8]. The Fuzzy Inference System is
an adaptable intelligent decision-making system (FIS). Fuzzy logic is a type of logic
that attempts to replicate the human ability to ascribe a level of truth to propositions.
Fuzzy logic proposes to make judgments in an environment of uncertainty and impreci-
sion, thanks to its brief structure, which allows it to capture the imprecise patterns of
thinking that are typical of humans [34]. If-then rules are used in fuzzy logic to estab-
lish the input-output relationship. This logic allows to assign a value to the assertion
to be evaluated, different levels of truth that ranges from 0 and 1.

If-then rules are the heart of the FIS, and they can take many forms. A member-
ship function is a graph that shows how to translate a point in the input space to a
membership value between 0 and 1. The FIS structure is made up of several blocks,
and a schematic 2.12 is provided to explain how the input is elaborated to produce the
final output. Each block of the FIS serves a specific purpose:

• The database identifies the membership functions to be used in the fuzzy rules;

• The rule base contains a certain number of fuzzy if-then rules;
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• The decision-making unit performs the operations of inference on the rules;

• The fuzzification interface computes the degrees of match between the crisp inputs
and linguistic values;

• The defuzzification interface elaborates and aggregates the qualified consequents
of the inference fuzzy results to obtain the crisp output;

Figure 2.12: Fuzzy inference system block diagram [34]

Adaptive-Network-Based Fuzzy Inference System

By merging ANN and FIS techniques and taking use of both, adaptive neuro-fuzzy
inference systems (ANFIS) are created. ANFIS is a multilayer feedforward network
[34], in which each of the network’s nodes performs a separate action on the input. To
forecast the output with the least amount of error, ANFIS employs fuzzy if-then rules,
which are implemented inside a neural network-like structure, as well as a learning
algorithm. The ANFIS learning method is divided into two phases: the first is termed
off-line learning and is a mechanism; this phase is a forward pass with least square
error evaluation; and the second is a gradient descent approach that uses mathematical
techniques such as back propagation [8][9]. To obtain information on the data set, a
fuzzy based approach is applied. The ideal parameters for the membership functions
may be identified using neuro-adaptive learning approaches to acquire the best FIS
tracking for the supplied inputoutput data. A network structure like the ANN [40] can
be used to understand the resulting input-output map. Following sufficient training, the
layered structure is capable of mapping the system’s inputs to the projected outputs.
This predictive system may be utilised in a variety of applications (control systems,
image processing, decision making), but we’re particularly interested in using it to solve
the inverse kinematic issue.

ANFIS application for inverse kinematic

ANFIS may be used to analyze robotic kinematic chains and produce the appropriate
joint configurations to achieve the manipulator’s intended behaviour [1]. In terms of the
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significant amount of calculation required, neural networks can be used to overcome the
fundamental limits of analytic and geometric solutions [23]. To produce an accurate and
repeatable estimated solution, the predictive techniques may be employed to discover
an approximation mapping function that can link the posture of the end-effector with
the joints configuration [19].

So, after a first attempt with the recursive approach, the ANFIS method has been
tested. Carried out in the MatLab environment, the procedure consists of the following
steps. Initial parameters were set for the creation of the dataset and the training of
the networks. These parameters include:

• three lengths L1, L2 and L3 of the three links of the 2D robot reproducing Hannes
Arm, set equal to the lengths taken from the virtual model of Unity;

• the ROMs of the three links equal to those of Hannes Arm in the Unity environ-
ment; [Reference earlier]

• vector containing three step options with which to increase the angles of the three
joints for the creation of the dataset;

• vector containing the initial FIS values for training;

• vector containing the number of epochs for training;

1 step =[10 5 2];

2 infis =[8];

3 epoch =[10 50 100 200 300];

4 %dimensioni hannes virtuale

5 l1=12 .74508; %arm length

6 l2=12 .04653; %forearm length

7 l3=4 .355566; %hand length

Once the initial parameters have been set, the creation of the dataset.Through a loop
a data pool is made (this procedure has been performed three times, one for each
different step of variation of the angles). All the possible configurations are calculated
by varying, according to the step, the angles of the three joints between the limits of the
respective ROMs 2.1.1. Then, by means of direct kinematics calculations, the x and y
positions attainable by the end effector are calculated, given those joint configurations.
Then three three-dimensional matrices are formed containing each possible x and y
coupling and its associated θ1, θ2 or θ3 value.

Once the dataset is created, the networks are trained to obtain 3 different vectors
containing an ANFIS network for each of the three joints. Consequently, having 7
possible values of initial fis, 6 possible values of number of epochs and 3 steps of
angle, leading to 3 datasets, from the training come out 126 tris (one for each joint)
of ANFIS functions. This means 126 cases resulting from different combinations of
factors (dataset, initial fis and number of epochs) for the calculation of the ANFIS
networks.

Next, the trajectory on which to test the networks is created. A curved trajectory
of 100pt was chosen, calculated using direct kinematics, which is therefore certain to be
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within the working space. Then, for each of the 126 combinations, inverse kinematics
is performed starting from the known X and Y values of the trajectory and feeding
them to the ANFIS networks to calculate θ1, θ2 and θ3 values and the three resulting
angular trajectories. Given the estimated angles, saved as vectors, direct kinematics
is performed again to display the trajectory composed of the estimated end effector
positions. The two trajectories are compared by calculating 15 parameters chosen to
evaluate the goodness of fit of the ith ANFIS network. These parameters are:

1. Maximum end effector x position error

2. Minimum end effector x position error

3. Maximum end effector y position error

4. Minimum end effector y position error

5. Maximum θ1 error

6. Minimum θ1 error

7. Maximum θ2 error

8. Minimum θ2 error

9. Maximum θ3 error

10. Minimum θ3 error

11. RMSE of x

12. RMSE of y

13. RMSE of θ1

14. RMSE of θ2

15. RMSE of θ3

Observing the comparison of the evaluation quality parameters of all the different
ANFIS function a choice has been made of the best and worst ANFIS function above
all sec. 3.2

In order to provide an instant-by-instant visualisation of the configuration of the
arm whose end effector was executing the calculated trajectory, a 2D robot was created
with the same proportions as the virtual Hannes Arm. The robot was made to traverse
the trajectory by imposing, instant by instant, the configuration of the three joints.
This was done to observe that the angles contributing to the formation of the trajectory
of the end effector were also consistent with a human like movement.

Once the algorithm was developed in the MatLab environment for trajectory esti-
mation, the next step was an attempt to bring it into the virtual environment of Unity.
In Unity, unlike MatLab, there are no open source libraries or functions that allow
one to build ANFIS networks, and creating them from scratch immediately seemed a
major obstacle. During the attempts in this direction, the continuation of the study of
the recursive approach 3.2 led to go back to that path.
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Chapter 3

Results

The results of the experiments described in section 2.2 are reported in this chapter.
The three algorithms described were evaluated individually and then compared.

3.1 Fast IK

There are no analytical results of the first (Fast IK) because the method was discarded
almost immediately for obvious limitations related to the impossibility of setting cos-
trains of any kind and because the consequent movement strategy was profoundly
different from a human like. As can be seen in Fig. 2.11 the first segment which moves
in reaching a target is the most distal one. The most distal joint is the one that per-
forms greater angular excursions. In human movements, considering the three joints
(shoulder, elbow and wrist) the two more proximal joints are the ones to move more
in the cinematic of the arm [31][45].

3.2 ANFIS

The ANFIS method required a preprocessing phase of tens of hours of calculation to
study all the combinations of parameters (see sec. 2.3.3) in order to extract the best
ANFIS functions. These parameters can be viewed in Tab. from B.1 to B.6. Are shown
all parameters combinations for each ANFIS network tested and the relative results. An
overall assessment was made of all 126 ANFIS rules and the calculated parameters, as
said in sec. 2.3.3, for the comparison between them, some more significant parameters
were chosen, the trends of which can be seen when the three characteristics of each anfis
function (angle step, initial fis and number of epochs) vary. The following figures show
the trends of maximum error of the x-coordinate, maximum error of the y-coordinate,
RMSE of the x-coordinate and RMSE of the y-coordinate of the predicted trajectory
with respect to the desired one. As the best ANFIS network from the performance
point of view, number 117 was identified, which was then used to be compared to the
recursive approach. In the following figure is shown the comparison between trajectories
predicted by the ANFIS rules with best and worst performances upon the calculated
ones. In the following tables are shown the quality parameters to evaluate the quality
of the ANFIS rules appeard as the best and worst one. Parameters relative to three
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trajectories predicted by the ANFIS rules.

Figure 3.1: Max error on X coordinate in ANFIS evaluation

Figure 3.2: Max error on Y coordinate in ANFIS evaluation
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Figure 3.3: RMSE on X coordinate in ANFIS evaluation

Figure 3.4: RMSE on Y coordinate in ANFIS evaluation

3.3 Comparison between ANFIS and recursive

In the following figures it is possible to observe the results obtained by the three
methods (ANFIS, Recursive and Optimized Recursive) in the attempt to reproduce
the three trajectories given as input through the calculation of the inverse kinematics,
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RMSE x [cm] RMSE y [cm] MaxError x [cm] MaxError y [cm]
ANFIS best 0.552 0.404 0.856 0.636
ANFIS worst 1.432 0.582 1.968 1.173

Table 3.1: Quality parameters in ANFIS comparison - curve case

RMSE x [cm] RMSE y [cm] MaxError x [cm] MaxError y [cm]
ANFIS best 0.502 0.351 0.649 0.616
ANFIS worst 0.909 0.649 1.507 0.840

Table 3.2: Quality parameters in ANFIS comparison - vertical case

RMSE x [cm] RMSE y [cm] MaxError x [cm] MaxError y [cm]
ANFIS best 0.594 0.307 0.948 0.515
ANFIS worst 0.776 0.545 1.428 1.112

Table 3.3: Quality parameters in ANFIS comparison - horizontal case

Figure 3.5: Comparison between best and worst ANFIS function - curve case

obtaining the three joint angles and subsequent calculation of the position of the end
effector of the kinematic chain schematized Fig.2.9. In Fig.3.8 we observe the results for
the curved trajectory. The image on the top represents a comparison between different
algorithm predicted trajectories, more easily observable in Fig.3.11. The following 9
images show the trends of the angles of the three joints, in the three different algorithm
cases, which resulted in the tracking of the predicted trajectories.

In Fig.3.9 we observe the results for the curved trajectory. The image on the top
represents a comparison between different algorithm predicted trajectories, more easily
observable in Fig. 3.12. The following 9 images show the trends of the angles of the
three joints, in the three different algorithm cases, which resulted in the tracking of
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Figure 3.6: Comparison between best and worst ANFIS function - vertical case

Figure 3.7: Comparison between best and worst ANFIS function - horizontal case

the predicted trajectories.

In Fig.3.10 we observe the results for the curved trajectory. The image on the top
represents a comparison between different algorithm predicted trajectories, more easily
observable in Fig.3.13. The following 9 images show the trends of the angles of the
three joints, in the three different algorithm cases, which resulted in the tracking of
the predicted trajectories.

Tables 3.4, 3.5, 3.6 lists the parameters calculated to evaluate the characteristics of
the different methods. The parameters chosen are RMSE of the x-coordinate, RMSE
of the y-coordinate, span of the shoulder, elbow and wrist angle in flexion-extension.
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RMSE x [cm] RMSE y [cm] θ1 span [deg] θ2 span [deg] θ3 span [deg]
ANFIS 0.552 0.404 69.734 54.297 5.414
Rec 0.223 0.050 67.324 57.986 11.387
Rec Opt 0.479 0.146 65.373 50.773 50.486

Table 3.4: Quality parameters in algorithms comparison - case curve

RMSE x [cm] RMSE y [cm] θ1 span [deg] θ2 span [deg] θ3 span [deg]
ANFIS 0.502 0.351 46.228 48.894 1.463
Rec 0.113 0.005 46.116 41.821 14.636
Rec Opt 0.067 0.078 44.807 45.045 16.112

Table 3.5: Quality parameters - case vertical

RMSE x [cm] RMSE y [cm] θ1 span [deg] θ2 span [deg] θ3 span [deg]
ANFIS 0.594 0.307 56.238 89.313 14.241
Rec 0.025 0.012 50.373 74.562 23.633
Rec Opt 0.024 0.015 50.440 74.185 25.476

Table 3.6: Quality parameters - case horizontal

3.4 Experiment with physical setup

Below are shown the trends of the trajectories imposed by the controlled end effector
in the virtual environment and that performed in the real world by the physical setup.
Figure 3.9 concerns the results for the vertical trajectory. On the left side of the figure
are the two trajectories, the one resulting from the three angles from the inverse kine-
matics calculations with the optimised recursive method imposed as input and the one
resulting from the three angle values read by the encoders placed on each Hannes arm
joint. The encoder values represent the real configuration reached by the Hannes arm
during the test
Under the xy trajectory are presented the angular trajectory, one for each joint, with
the comparison between the reference sent to the joint and the value read from the
encoder explaining how much the motor accomplish the task imposed by the reference.
Figure 3.10 concerns the results for the vertical trajectory. At the top of the figure
are the two trajectories, the one resulting from the three angles from the inverse kine-
matics calculations with the optimised recursive method imposed as input and the one
resulting from the three angle values read by the encoders placed on each Hannes arm
joint, also in this case the orange trajectory is the one executed by deh physical setup
in dependence of the angle reached by each joint. On the right of the xy trajectory,
also in this case, are presented the angular trajectories, one for each joint, with the
comparison between the reference sent to the joint and the value read from the encoder
explaining how much the motor accomplish the task imposed by the reference.
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Figure 3.8: Results for curve trajectory
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Figure 3.9: Results for vertical trajectory
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Figure 3.10: Results for horizontal trajectory
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Figure 3.11: Focus on desired and calculated trajectories - curve case

10 15 20 25 30

x-axis [cm]

-20

-15

-10

-5

0

5

10

y
-a

x
is

 [
c
m

]

Vertical trajectories

ROM Borders

Desired

ANFIS

Recursive

Recursive Opt

Figure 3.12: Focus on desired and calculated trajectories - vertical case
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Figure 3.13: Focus on desired and calculated trajectories - horizontal case
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Figure 3.14: Fuzzy inference system block diagram [34]

64



Figure 3.15: Fuzzy inference system block diagram [34]
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Chapter 4

Discussion

As already mentioned, the first algorithm tested was the FAST IK, sec.2.3.1. The
name given is not a coincidence since, at the beginning of the study, the approach was
very intuitive, looking for a method that would allow bodies to be moved easily in the
Unity virtual environment, paying less attention to the analytical part of the problem.
The convenience of a high level environment, like Unity virtual reality, was inherently
a limitation in the development of the first method because the high level, while allow-
ing immediate use and graphical rendering, did not permit to delve into the analytical
part of the kinematics and define the calculations. Having a profound knowledge and
control above the math behind the algorithm is the real need for enriching it with
specificity and robustness.
FAST IK is a geometric approach based on the characteristics and possibilities of ma-
nipulation and use of virtual objects in Unity. The abandonment of this method is
also probably due to the lack of familiarity with the Unity world during the first weeks
of work. In fact, we turned towards analytical solutions, whose basic principles were
better known, such as the kinematic theory of serial manipulators [25][21], for the rea-
sons just explained but also to work in a more known field; this due to the notion
background coming from university study. A window remains open for higher level
approaches to kinematics, since future developments of the project will make use of
Unity Assets for modelling serial arms and their kinematics, born to be used for the
development of video game material but with a good margin of applicability for the
goal of study.

For other approaches, there is certainly more data to discuss. Regarding the evalu-
ation of the 126 triplets of ANFIS functions created (App.B), it is indicative to observe
the comparison between the one considered worst and the one chosen as best. In all
three cases of trajectory studied (Tab. 3.1, 3.2, 3.3) the position error of x and y co-
ordinates is approximately double for the worst case compared to the best case. It can
be seen that in the horizontal trajectory there is less precision over the y-coordinate
while for the vertical trajectory there is less precision over the x-coordinate among the
various positions of the end effector. Also for the RMSE values there is a substantial
difference between the best and the worst case. The best solution returns quite good
results, which are then compared with those of the other algorithms, on the same tra-
jectories.
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As mentioned above, the choice of the best ANFIS function was made by assessing
quality parameters. The trend of these values, as the three parameters describing the
characteristics of the ANFIS network (size of the dataset, Initial FIS and number of
epochs of the train), change and can be observed in the figures Fig.3.1, 3.2, 3.3, 3.4. It
can be seen that as the number of initial FIS, the number of epochs and the number of
elements in the dataset increase as the parameters quality improves. In every graph,
each surface shows the values of the parameter under consideration, relative to the train
on a different dataset. It can be seen that for the same number of INFIS and number of
epochs, a larger dataset corresponds to better parameters (lower maximum errors on x
and y and lower RMSE values). The same is true for the other two parameters, but note
that the most influential is the number of epochs in the first phase. In the transition
from a few tens to a little more than 100 epochs the improvement is substantial, above
150 epochs, with the same dataset and INFIS the parameters continue their trend but
slowly. Considering the INFIS number parameteer, it can be said that after 5 INFIS
there is no longer a substantial progressive trend in the quality of the ANFIS functions.

With reference to the results that the different algorithms given in the estimation of
the three trajectories studied, it can be said that the recursive approach and the opti-
mized recursive give the best results in terms of accuracy. The optimization introduces
a worsening in this sense but it is a datum coherent with the expectations because as
explained in the section sec.2.3.2 its objective was to comply with the problem of the
recursive approach of not allowing the control on the single joint and even less to set a
priori a range within which the solution of the inverse kinematics must give the values
of each angle. This therefore results in a slight inaccuracy with respect to the pure
recursive method, an acceptable inaccuracy given the introduced benefit of being able
to mediate the joint motion weights in such a way as to remain far from the limit con-
figurations (ROM edges). It can be seen that (Tab. 3.1, 3.2, 3.3) ANFIS and Recursive
approach present angle spans for each joint more consistent with a human like motion,
with the shoulder and elbow joints much more involved than the wrist in reaching
movements [31]. The results obtained are consistent with expectations confirming the
validity of the approaches tested for the calculation of the inverse kinematics of the
prosthetic serial polyarticulate for the purpose of a Cartesian control. All this at least
in theory, in virtual reality with a whole series of approximations and ideals set as
for example the reduction of the problem to purely kinematic and not dynamic, as
differently is in the real case of control of a robot.

The next step is the evaluation of the applicability of such algorithms to the real
case. With regard to the analysis of the trajectories of the end effector, resulting from
giving input angles to the joints, Fig. 3.14 and 3.15 both vertical and horizontal, it
appears that there are discrepancies between the ideal trajectory of an end effector of
a ideal kinematic chain that would follow the imposed angular trajectories and the one
actually followed. This according to the angular measurements of the encoders that
recorded the actual angular configurations reached by the joints. These discrepancies,
however, are reasonable and more than acceptable considering the fact that we are
talking about a prosthetic robot (a prototype in this setup Fig.2.2a) that has lengths
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in the order of tens of centimeters chained together through the active joints in a
polyarticulate of more than 80 cm. So a discrepancy of about 10cm is more than
acceptable. One more reason for this acceptability is the fact that, analyzing the
plots of the angular trajectories, it is possible to notice that there are propagation
errors due to intrinsic errors in the control of the single joint; because everything
depends on how the dynamics of the single joint is at a mechanical level and how
the control makes sure that the reference is followed on each single joint (mechatronic
side). In fact, analyzing the angular trajectories of the vertical study case Fig. 3.14,
it emerges that for the shoulder the reference (IK) and the measurement (Encoder)
are consistent. Slightly inferior thing happens for the elbow in terms of performance
goodness of the reference control and the Proportional-Integrative-Derivative (PID)
that runs underneath, because in the elbow it’s observable how there is a saturation,
probably due to the poles and zeros of the system that make it unable to deliver all
the force necessary to follow the trajectory imposed by the inverse kinematics. In fact,
we can see a saturation around 80-90 degrees, angle at maximum excursion in terms
of torque, the most unfavorable configuration in terms of leverage considering that the
elbow also perceives the weight of the hand. The elbow, as it is designed, has adjusters
for gravity compensation that are not perfectly optimised for the case studied. This
can justify why the engine can not accomplish the performance for which the reference
is followed. Another relevant aspect is considering that the battery pack with which
the system was powered was the standard battery pack for Hannes arm, optimized for
wrist and hand control and here instead used to move also shoulder and elbow. So even
if mechanically or in an ideal condition the motor could have followed the trajectories,
with a battery pack not performing at its maximum, it cannot deliver the necessary
torque. Regarding the wrist in flex-extension, in the vertical trajectory Fig. 3.14 the
profile is not followed in an optimal way but it seems to be respected enough even
if with the same evaluation criterion as before. Battery in trouble and unfavorable
leverage.In the vertical case it can be noted that even the trajectory given as input
is not perfectly vertical and repeated identical to itself although the input given in
the trajectory calculation phase was. This aspect can be traced back to the problem
of the non-conservativeness of the control algorithm sec.A.2, which is not a problem
in the field of prosthetic control in which the robot (the prosthesis) is not asked to
replicate trajectories precise to the millimetre but rather to be easily usable for the
patient whose feedback is the visual one on the basis of which it controls the prosthetic
limb. It is not important that a given point in space is reached by the end effector in
exactly the same way every time. there is a certain tolerance, and in any case any such
constrain is at a much later stage in the development of the control system.

In the horizontal trajectory Fig. 3.15, it can be seen that the situation is very similar
to the one above with regard to the shoulder and elbow, with the added advantage
that in the horizontal movement the joints have the convenience of not having to move
against gravity. It can be noticed how the measured angle values (Encoder) of elbow
and shoulder follow well those given as input (IK). The wrist joint in FE is a different
matter. This joint is always in an unfavourable configuration since it has to go against
gravity in the flexion phase. As said before, a non-optimal PID setting and energy
distributed over three joints in parallel with a reduced input at the wrist, probably
means that, with the unfavourable kinematic mechanism at the reduction level, this
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has such a low efficiency that it sometimes fails to follow the reference as it appears in
the final iteration of the trial movement. All this leads us to say that the trajectories
are followed with sufficient confidence. We are talking about an error that even in the
horizontal trijectory is around ten centimetres, which on Hannes arm’s ROM is more
than reasonable.
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Chapter 5

Conclusions

The main objective of this thesis project is to develop a Cartesian control system for
the Hannes upper limb prosthesis by controlling three degrees of freedom. The pros-
thetic device considered is Hannes, a polyarticulated hand currently designed to restore
over 90% of lost functionality in people with transradial amputations. The device has
already been improved adding first an active elbow joint for transhumeral amputees,
which is currently in the trial phase, and secondly an active shoulder flexion joint. The
aim of the developed control strategy is to be used for the complete full-arm Hannes
configuration, including the three joints (shoulder, elbow, wrist), and it is intended for
use by subjects who have undergone disarticulation of the shoulder. Three methods
have been tried out, different in terms of mathematical approach, intuitiveness, ana-
lytical modelling, level of action (low/high). These three methods are the Fast Inverse
Kinematic, the ANFIS method and the recursive approach in its standard and opti-
mised version. All methods showed good potential. The first one seemed too generic
and difficult to develop due to lack of expertise in the virtual world of Unity but, in
the continuation of the study, space will be given to the possibility of focusing the
work by exploiting the potential of this virtual reality world. The two more analyti-
cal approaches found more space in the testing phase and showed their strengths and
limitations.

The ANFIS method is the representation of machine learning in this study. In the
face of a very long preprocessing it offers the possibility of creating known functions,
robust and on whose performance one can easily investigate. It allows the ROMs of the
joints and all the necessary boundary conditions to be set a priori, thus ensuring that
the robot, i.e. the prosthetic arm, remains inside the workspace. The first limitation
of this approach is that the results obtained by the ANFIS method were found to
be slightly less accurate than the recursive method. Moreover, it turned out to be
difficult to transpose in the Unity universe. This second limitation results from the
choice to orient the development efforts - concerning Hannes control systems and future
implementation - in a direction including Unity virtual reality.

The recursive method is the approach that has been preferred and brought to the
practical level for a first attempt to control the prosthesis. The reasons for this choice
are to be found in the fact that it combined - better than the others - adjustability, ease
of use, a simple transposition to the Unity world and needed a very clear theoretical
basis of easy interpretation. It can be said that it is the method that best combines
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the advantage of easy analytical methods for calculation of the three angles parameters
needed for the prosthesis control with the use of a high-level environment such as Unity.

Obviously, the algorithm still has some criticalities linked to the non-conservativeness
and imperfect robustness of the implementation of the constraints. In addition, it was
not possible to complete the purpose of integrating IMUs into the process. One of the
objectives was to ensure that the IMUs acted as a validator of the algorithm in the de-
velopment phase and were subsequently an integral part of the system so that it could
independently receive the angle values for the initial configuration, whatever the posi-
tion of the prosthesis at the ignition was. The aim is to overcome these shortcomings
in future developments of the study.

In any case, as indicated by the collected results, the total overview of the study is
positive as it was possible, with a sufficient degree of precision, to control the Hannes
prototype in the execution of movements such as linear trajectories. Due to the few
control sites available, in fact, these trajectories are the essential and most common
ones that an amputee with that degree of proximity can perform in the attempt to
execute the primary tasks for the recovery of lost motor functions.
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Appendix A

Code Scripts

A.1 FAST IK FABRIC

1 using System.Collections;

2 using System.Collections.Generic;

3 #if UNITY_EDITOR

4 using UnityEditor;

5 #endif

6 using UnityEngine;

7 using System;

8 using SpaceNavigatorDriver;

9

10 namespace DitzelGames.FastIK

11 {

12 /// Fabrik IK Solver

13 public class FastIKFabric : MonoBehaviour

14 {

15 // Chain length of bones

16 public int ChainLength = 3;

17 // Target the chain should bent to

18 // </summary >

19 public Transform Target;

20 public Transform Pole;

21 // Solver iterations per update

22 [Header("Solver Parameters")]

23 public int Iterations = 10;

24 // Distance when the solver stops

25 public float Delta = 0.05f;

26 // Strength of going back to the start position.

27 [Range(0, 1)]

28 public float SnapBackStrength = 1f;

29

30 protected float [] BonesLength; // Target to Origin

31 protected float TotalLength;

32 protected Transform [] Bones; //array contenente i bones

33 protected Vector3 [] Positions; //array contenente le ...
posizioni dei bones

34 protected Vector3 [] StartDirectionSucc;

35 protected Quaternion [] StartRotationBone;
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36 protected Quaternion StartRotationTarget;

37 protected Transform Root;

38

39 public Transform shoulder , elbow , wrist;

40

41 public static float SFEangle , EFEangle , WFEangle , PSangle;

42 // public float wristcontrolvalue =0;

43 void Init()

44 {

45 // initial array

46 Bones = new Transform[ChainLength + 1];

47 Positions = new Vector3[ChainLength + 1];

48 BonesLength = new float[ChainLength ];

49 StartDirectionSucc = new Vector3[ChainLength + 1];

50 StartRotationBone = new Quaternion[ChainLength + 1];

51

52 //find root

53 Root = transform;

54 for (var i = 0; i ≤ ChainLength; i++)

55 {

56 if (Root == null)

57 \\ throw new UnityException("The chain value is ...
longer than the ancestor chain!");

58 Root = Root.parent;

59 }

60 //init target

61 if (Target == null)

62 {

63 Target = new GameObject(gameObject.name + " ...
Target").transform;

64 SetPositionRootSpace(Target , ...
GetPositionRootSpace(transform));

65 }

66 StartRotationTarget = GetRotationRootSpace(Target);

67

68 var current = transform;

69 TotalLength = 0;

70 for (var i = Bones.Length - 1; i ≥ 0; i--)

71 {

72 Bones[i] = current;

73 StartRotationBone[i] = ...
GetRotationRootSpace(current);

74

75 if (i == Bones.Length - 1)

76 {

77 //leaf

78 StartDirectionSucc[i] = ...
GetPositionRootSpace(Target) - ...
GetPositionRootSpace(current);

79 }

80 else

81 {

82 //mid bone

83 StartDirectionSucc[i] = ...
GetPositionRootSpace(Bones[i + 1]) - ...
GetPositionRootSpace(current);
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84 BonesLength[i] = ...
StartDirectionSucc[i]. magnitude;

85 TotalLength += BonesLength[i];

86 }

87 current = current.parent;

88 }

89 }

90 // Start is called before the first frame update

91 void Awake()

92 {

93 Init();

94 }

95 // Update is called once per frame

96 void LateUpdate ()

97 {

98 if ((Mover.KeyROM == false))

99 {

100 ResolveIK ();

101 }

102 EFEangcalc ();

103 WFEangcalc ();

104 PSangcalc ();

105 SFEangcalc ();

106 }

107 private void ResolveIK ()

108 {

109 if (Target == null)

110 return;

111 if (BonesLength.Length != ChainLength)

112 Init();

113

114 // root

115 // (bone0) (bonelen 0) (bone1) (bonelen 1) (bone2)...

116 // x--------------------x--------------------x---...

117

118 for (int i = 0; i < Bones.Length; i++)

119 Positions[i] = GetPositionRootSpace(Bones[i]);

120

121 var targetPosition = GetPositionRootSpace(Target); ...
// posizione del target rispetto al bone radice ...
(spalla)

122 var targetRotation = GetRotationRootSpace(Target); ...
// orientazione del target rispetto al bone ...
radice (spalla)

123

124 //is the target reachable?

125 if (( targetPosition - ...
GetPositionRootSpace(Bones [0])).sqrMagnitude ≥ ...
TotalLength * TotalLength)

126 {

127 //just strech it

128 var direction = (targetPosition - ...
Positions [0]).normalized;

129 //set everything after root

130 for (int i = 1; i < Positions.Length; i++)

131 Positions[i] = Positions[i - 1] + direction ...
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* BonesLength[i - 1];

132 }

133 else

134 {

135 for (int i = 0; i < Positions.Length - 1; i++)

136 Positions[i + 1] = Vector3.Lerp(Positions[i ...
+ 1], Positions[i] + ...
StartDirectionSucc[i], SnapBackStrength);

137 for (int iteration = 0; iteration < Iterations; ...
iteration ++)

138 {

139 //back

140 for (int i = Positions.Length - 1; i > 0; i--)

141 {

142 if (i == Positions.Length - 1)

143 Positions[i] = targetPosition; ...
// attach the end effector to the ...
target

144 else

145 Positions[i] = Positions[i + 1] + ...
(Positions[i] - Positions[i + ...
1]).normalized * BonesLength[i]; ...
//set in line on distance

146 }

147 // forward

148 for (int i = 1; i < Positions.Length; i++)

149 {

150 Positions[i] = Positions[i - 1] + ...
(Positions[i] - Positions[i - ...
1]).normalized * BonesLength[i - 1];

151 }

152 // close enough?

153 if (( Positions[Positions.Length - 1] - ...
targetPosition).sqrMagnitude < Delta * ...
Delta)

154 break;

155 }

156 }

157

158 //set position & rotation

159 for (int i = 0; i < Positions.Length; i++)

160 {

161 if (i == Positions.Length - 1)

162 SetRotationRootSpace(Bones[i], ...
Quaternion.Inverse(targetRotation) * ...
StartRotationTarget * ...
Quaternion.Inverse(StartRotationBone[i]));

163 else

164 SetRotationRootSpace(Bones[i], ...
Quaternion.FromToRotation(StartDirectionSucc[i], ...
Positions[i + 1] - Positions[i]) * ...
Quaternion.Inverse(StartRotationBone[i]));

165 SetPositionRootSpace(Bones[i], Positions[i]);

166 }

167 }

168
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169 private Vector3 GetPositionRootSpace(Transform current)

170 {

171 if (Root == null)

172 return current.position;

173 else

174 return Quaternion.Inverse(Root.rotation) * ...
(current.position - Root.position);

175 }

176 private void SetPositionRootSpace(Transform current , ...
Vector3 position)

177 {

178 if (Root == null)

179 current.position = position;

180 else

181 current.position = Root.rotation * position + ...
Root.position;

182 }

183

184 private Quaternion GetRotationRootSpace(Transform current)

185 {

186 // inverse(after) * before => rot: before -> after

187 if (Root == null)

188 return current.rotation;

189 else

190 return Quaternion.Inverse(current.rotation) * ...
Root.rotation;

191 }

192

193 private void SetRotationRootSpace(Transform current , ...
Quaternion rotation)

194 {

195 if (Root == null)

196 current.rotation = rotation;

197 else

198 current.rotation = Root.rotation * rotation;

199 }

200 void OnDrawGizmos ()

201 {

202 #if UNITY_EDITOR

203 var current = this.transform;

204 for (int i = 0; i < ChainLength && current != null ...
&& current.parent != null; i++)

205 {

206 var scale = Vector3.Distance(current.position , ...
current.parent.position) * 0.1f;

207 Handles.matrix = ...
Matrix4x4.TRS(current.position , ...
Quaternion.FromToRotation(Vector3.up, ...
current.parent.position - current.position), ...
new Vector3(scale , ...
Vector3.Distance(current.parent.position , ...
current.position), scale));

208 Handles.color = Color.green;

209 Handles.DrawWireCube(Vector3.up * 0.5f, ...
Vector3.one);

210 current = current.parent;
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211 }

212 #endif

213 }

214 public float EFEangcalc ()

215 {

216 float unityEFEangle = elbow.localEulerAngles.x;

217

218 if ((0f ≤ unityEFEangle) && (unityEFEangle ≤ 90f))

219 {

220 EFEangle = 90f - unityEFEangle;

221 }

222 else if ((315f ≤ unityEFEangle) && (unityEFEangle ≤ ...
360f))

223 {

224 EFEangle = 450f - unityEFEangle;

225 }

226 else

227 {

228 Mover.AngleFlag = true;

229 }

230 return EFEangle;

231 }

232 public float WFEangcalc ()

233 {

234 float unityWFEangle = wrist.localEulerAngles.x;

235 if ((300f ≤ unityWFEangle) && (unityWFEangle ≤ ...
360f))

236 {

237 WFEangle = 360f - unityWFEangle;

238 }

239 else if ((0f ≤ unityWFEangle) && (unityWFEangle ...
≤ 60f))

240 {

241 WFEangle = -unityWFEangle;

242 }

243 else

244 {

245 Mover.AngleFlag = true;

246 }

247 return WFEangle;

248 }

249 float PSangcalc ()

250 {

251 float unityPSangle = ...
rollicchio.transform.eulerAngles.x;

252 PSangle = unityPSangle;

253 return PSangle;

254 }

255 float SFEangcalc ()

256 {

257 float unitySFEangle = shoulder.localEulerAngles.x;

258

259 if ((0f ≤ unitySFEangle) && (unitySFEangle ≤ 5f)) ...
// tolleranza di 5 gradi ma dovrebbe bloccarsi a 0

260 {

261 SFEangle = -unitySFEangle;
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262 }

263 else if ((225f ≤ unitySFEangle) && (unitySFEangle ≤ ...
360f))

264 {

265 SFEangle = 360f - unitySFEangle;

266 }

267 else

268 {

269 Mover.AngleFlag = true;

270 }

271 return SFEangle;

272 }

273 }

274 }

A.2 Recursive Approach

1 public class JacobianMethod : MonoBehaviour

2 {

3 private int e = 0; // serve per traiettoria

4 private string CurrentDirectory;

5 private string FileSession;

6 private string FilePath;

7 private string FileIK = "IK.txt";

8 static StreamWriter writeIK;

9 static string specifier = "N7";

10

11 //i 4 joint formanti il ghost , ovvero la catena cinematica ...
semplificata

12 public Transform shoulder , elbow , wrist , knuckle;

13

14 // parametri per pinverse

15 public static float L1 , L2 , L3;

16 public static double alfa1 , alfa2 , alfa3;

17 public static float th1 , th2 , th3;

18

19 public float th1_H_MAX , th1_H_MIN , th2_H_MAX , th2_H_MIN , ...
th3_H_MAX , th3_H_MIN;

20 public static float th1_H_MAXs , th1_H_MINs , th2_H_MAXs , ...
th2_H_MINs , th3_H_MAXs , th3_H_MINs;

21 public static double t1max , t1min , t2max , t2min , t3max , t3min;

22

23 public float th1maxOpt , th1minOpt , th2maxOpt , th2minOpt , ...
th3maxOpt , th3minOpt;

24 public float th1_H_maxOpt , th1_H_minOpt , th2_H_maxOpt , ...
th2_H_minOpt , th3_H_maxOpt , th3_H_minOpt;

25

26 double[,] jac;

27 double[,] jactras;

28 double[,] jacperjactras;

29 double[,] invdijacperjactras;

30 double[,] pinv;
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31 double[,] id;

32 double[,] pinvperjac;

33 double[,] idmenopinvperjac;

34 double[,] gradH;

35 double[,] gradHperidmenopinvperjac;

36

37 double sinth1 , costh1;

38 double th1plusth2 , sinth1plusth2 , costh1plusth2;

39 double th1plusth2plusth3 , sinth1plusth2plusth3 , ...
costh1plusth2plusth3;

40

41 public double ALFA;

42 private double ∆time = 0.02; // ATTENZIONE A QUESTO ...
PARAMETRO

43

44 double Xinc=0, Yinc =0;

45

46 // Start is called before the first frame update

47 void Awake ()

48 {

49

50 // parametri per pinverse

51 L1 = Vector3.Distance(shoulder.position , elbow.position);

52 L2 = Vector3.Distance(elbow.position , wrist.position);

53 L3 = Vector3.Distance(wrist.position , knuckle.position);

54

55 //nella r e a l t saranno forniti dagli IMU

56 alfa1 = -75.0;// shoulder.localEulerAngles.x;

57 alfa2 = 90.0; // elbow.localEulerAngles.x;

58 alfa3 = 10.0; // wrist.localEulerAngles.x;

59

60 jac = new double[2, 3];

61 jactras = new double[3, 2];

62 jacperjactras = new double[2, 2];

63 invdijacperjactras = new double[2, 2];

64 pinv = new double[3, 2];

65 id = new double[3, 3];

66 pinvperjac = new double[3, 3];

67 idmenopinvperjac = new double[3, 3];

68 gradH = new double[3, 1];

69 gradHperidmenopinvperjac = new double[3, 1];

70

71 id[0, 0] = (double) 1;

72 id[0, 1] = (double) 0;

73 id[0, 2] = (double) 0;

74 id[1, 0] = (double) 0;

75 id[1, 1] = (double) 1;

76 id[1, 2] = (double) 0;

77 id[2, 0] = (double) 0;

78 id[2, 1] = (double) 0;

79 id[2, 2] = (double) 1;

80

81 th1 = (float)(Math.PI * alfa1 / 180.0);

82 th2 = (float)(Math.PI * alfa2 / 180.0);

83 th3 = (float)(Math.PI * alfa3 / 180.0);

84
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85 t1max = 45* Math.PI /180.0;

86 // t1avg = -22.5 * Math.PI / 180.0;

87 t1min = -90 * Math.PI / 180.0;

88 t2max = 130 * Math.PI / 180.0;

89 // t2avg = (130 / 2) * Math.PI / 180.0;

90 t2min = 0 * Math.PI / 180.0;

91 t3max = 60 * Math.PI / 180.0;

92 // t3avg = 0 * Math.PI / 180.0;

93 t3min = -60 * Math.PI / 180.0;

94

95

96

97 ALFA = 0.05;

98 }

99

100 // Update is called once per frame

101 void Update ()

102 {

103 th1_H_MAXs = th1_H_MAX;

104 th1_H_MINs = th1_H_MIN;

105 th2_H_MAXs = th2_H_MAX;

106 th2_H_MINs = th2_H_MIN;

107 th3_H_MAXs = th3_H_MAX;

108 th3_H_MINs = th3_H_MIN;

109 //if (e ≤ 99)

110 {

111 //Debug.Log("L1 is:" + L1);

112 //Debug.Log("L2 is:" + L2);

113 //Debug.Log("L3 is:" + L3);

114

115 //Debug.Log("th2 is:" + th2 * 180.0 / Math.PI);

116 //Debug.Log("th3 is:" + th3 * 180.0 / Math.PI);

117

118 Xinc = (Mover.Targetposition [1].x - ...
Mover.Targetposition [0].x); // incremento di X ...
istante per istante //CHE SIA LA ...
POSIZIONE GIUSTA PER GLI INCREMENTI?

119 Yinc = (Mover.Targetposition [1].y - ...
Mover.Targetposition [0].y); // incremento di Y ...
istante per istante

120

121 //CONTI MATRICI

122 // MATRICI

123 sinth1 = Math.Sin(th1);

124 costh1 = Math.Cos(th1);

125 th1plusth2 = th1 + th2;

126 sinth1plusth2 = Math.Sin(th1plusth2);

127 costh1plusth2 = Math.Cos(th1plusth2);

128 th1plusth2plusth3 = th1 + th2 + th3;

129 sinth1plusth2plusth3 = Math.Sin(th1plusth2plusth3);

130 costh1plusth2plusth3 = Math.Cos(th1plusth2plusth3);

131

132 // calcolo delle rotation dei tre giunti

133 jac[0, 0] = (double)(-L1 * sinth1 - L2 * sinth1plusth2 ...
- L3 * sinth1plusth2plusth3);

134 jac[0, 1] = (double)(-L2 * sinth1plusth2 - L3 * ...
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sinth1plusth2plusth3);

135 jac[0, 2] = (double)(-L3 * sinth1plusth2plusth3);

136

137 jac[1, 0] = (double)(L1 * costh1 + L2 * costh1plusth2 + ...
L3 * costh1plusth2plusth3);

138 jac[1, 1] = (double)(L2 * costh1plusth2 + L3 * ...
costh1plusth2plusth3);

139 jac[1, 2] = (double)(L3 * costh1plusth2plusth3);

140

141 jactras[0, 0] = jac[0, 0];

142 jactras[0, 1] = jac[1, 0];

143 jactras[1, 0] = jac[0, 1];

144 jactras[1, 1] = jac[1, 1];

145 jactras[2, 0] = jac[0, 2];

146 jactras[2, 1] = jac[1, 2];

147

148 jacperjactras [0, 0] = jac[0, 0] * jactras[0, 0] + ...
jac[0, 1] * jactras[1, 0] + jac[0, 2] * jactras[2, 0];

149 jacperjactras [0, 1] = jac[0, 0] * jactras[0, 1] + ...
jac[0, 1] * jactras[1, 1] + jac[0, 2] * jactras[2, 1];

150 jacperjactras [1, 0] = jac[1, 0] * jactras[0, 0] + ...
jac[1, 1] * jactras[1, 0] + jac[1, 2] * jactras[2, 0];

151 jacperjactras [1, 1] = jac[1, 0] * jactras[0, 1] + ...
jac[1, 1] * jactras[1, 1] + jac[1, 2] * jactras[2, 1];

152

153 double determinante = 1 / (jacperjactras [0, 0] * ...
jacperjactras [1, 1] - jacperjactras [0, 1] * ...
jacperjactras [1, 0]);

154

155 invdijacperjactras [0, 0] = determinante * ...
jacperjactras [1, 1];

156 invdijacperjactras [0, 1] = determinante * ...
-jacperjactras [0, 1];

157 invdijacperjactras [1, 0] = determinante * ...
-jacperjactras [1, 0];

158 invdijacperjactras [1, 1] = determinante * ...
jacperjactras [0, 0];

159

160 pinv[0, 0] = jactras[0, 0] * invdijacperjactras [0, 0] + ...
jactras[0, 1] * invdijacperjactras [1, 0];

161 pinv[1, 0] = jactras[1, 0] * invdijacperjactras [0, 0] + ...
jactras[1, 1] * invdijacperjactras [1, 0];

162 pinv[0, 1] = jactras[0, 0] * invdijacperjactras [0, 1] + ...
jactras[0, 1] * invdijacperjactras [1, 1];

163 pinv[1, 1] = jactras[1, 0] * invdijacperjactras [0, 1] + ...
jactras[1, 1] * invdijacperjactras [1, 1];

164 pinv[2, 0] = jactras[2, 0] * invdijacperjactras [0, 0] + ...
jactras[2, 1] * invdijacperjactras [1, 0];

165 pinv[2, 1] = jactras[2, 0] * invdijacperjactras [0, 1] + ...
jactras[2, 1] * invdijacperjactras [1, 1];

166

167 pinvperjac [0, 0] = pinv[0, 0] * jac[0, 0] + pinv[0, 1] ...
* jac[1, 0];

168 pinvperjac [0, 1] = pinv[0, 0] * jac[0, 1] + pinv[0, 1] ...
* jac[1, 1];

169 pinvperjac [0, 2] = pinv[0, 0] * jac[0, 2] + pinv[0, 1] ...

82



* jac[1, 2];

170 pinvperjac [1, 0] = pinv[1, 0] * jac[0, 0] + pinv[1, 1] ...
* jac[1, 0];

171 pinvperjac [1, 1] = pinv[1, 0] * jac[0, 1] + pinv[1, 1] ...
* jac[1, 1];

172 pinvperjac [1, 2] = pinv[1, 0] * jac[0, 2] + pinv[1, 1] ...
* jac[1, 2];

173 pinvperjac [2, 0] = pinv[2, 0] * jac[0, 0] + pinv[2, 1] ...
* jac[1, 0];

174 pinvperjac [2, 1] = pinv[2, 0] * jac[0, 1] + pinv[2, 1] ...
* jac[1, 1];

175 pinvperjac [2, 2] = pinv[2, 0] * jac[0, 2] + pinv[2, 1] ...
* jac[1, 2];

176

177 idmenopinvperjac [0, 0] = id[0, 0] - pinvperjac [0, 0];

178 idmenopinvperjac [0, 1] = id[0, 1] - pinvperjac [0, 1];

179 idmenopinvperjac [0, 2] = id[0, 2] - pinvperjac [0, 2];

180 idmenopinvperjac [1, 0] = id[1, 0] - pinvperjac [1, 0];

181 idmenopinvperjac [1, 1] = id[1, 1] - pinvperjac [1, 1];

182 idmenopinvperjac [1, 2] = id[1, 2] - pinvperjac [1, 2];

183 idmenopinvperjac [2, 0] = id[2, 0] - pinvperjac [2, 0];

184 idmenopinvperjac [2, 1] = id[2, 1] - pinvperjac [2, 1];

185 idmenopinvperjac [2, 2] = id[2, 2] - pinvperjac [2, 2];

186

187

188 // HANNES SREAL

189 if (CartesianMotion.HANNES_REALstatus ==true)

190 {

191 gradH[0, 0] = (( th1_H_MAX - th1_H_MIN) * (th1_H_MAX ...
- th1_H_MIN)) * (2 * th1 - th1_H_MAX - ...
th1_H_MIN) / (4 * (( th1_H_MAX - th1) * ...
(th1_H_MAX - th1) * (th1 - th1_H_MIN) * (th1 - ...
th1_H_MIN)));

192 gradH[1, 0] = (( th2_H_MAX - th2_H_MIN) * (th2_H_MAX ...
- th2_H_MIN)) * (2 * th2 - th2_H_MAX - ...
th2_H_MIN) / (4 * (( th2_H_MAX - th2) * ...
(th2_H_MAX - th2) * (th2 - th2_H_MIN) * (th2 - ...
th2_H_MIN)));

193 gradH[2, 0] = (( th3_H_MAX - th3_H_MIN) * (th3_H_MAX ...
- th3_H_MIN)) * (2 * th3 - th3_H_MAX - ...
th3_H_MIN) / (4 * (( th3_H_MAX - th3) * ...
(th3_H_MAX - th3) * (th3 - th3_H_MIN) * (th3 - ...
th3_H_MIN)));

194

195 gradHperidmenopinvperjac [0, 0] = ...
idmenopinvperjac [0, 0] * gradH[0, 0] + ...
idmenopinvperjac [0, 1] * gradH[1, 0] + ...
idmenopinvperjac [0, 2] * gradH[2, 0];

196 gradHperidmenopinvperjac [1, 0] = ...
idmenopinvperjac [1, 0] * gradH[0, 0] + ...
idmenopinvperjac [1, 1] * gradH[1, 0] + ...
idmenopinvperjac [1, 2] * gradH[2, 0];

197 gradHperidmenopinvperjac [2, 0] = ...
idmenopinvperjac [2, 0] * gradH[0, 0] + ...
idmenopinvperjac [2, 1] * gradH[1, 0] + ...
idmenopinvperjac [2, 2] * gradH[2, 0];
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198

199 if ((th1 ≥ (th1_H_MAX - 0.5f) * Math.PI / 180f) | ...
(th1 ≤ (th1_H_MIN + 0.5f) * Math.PI / 180) | ...
(th2 ≥ (th2_H_MAX + 0.5) * Math.PI / 180) | (th2 ...
≤ (th2_H_MIN + 0.5) * Math.PI / 180) | (th3 ≥ ...
(th3_H_MAX - 0.5) * Math.PI / 180) | (th3 ≤ ...
(th3_H_MIN + 0.5) * Math.PI / 180))

200 {

201 Debug.Log("Hannes real is OUT of rom");

202 Mover.AngleFlag = true;

203 transform.position = Mover.Targetposition [0];

204 Mover.Targetposition [1] = Mover.Targetposition [0];

205 Mover.Targetposition [2] = Mover.Targetposition [0];

206 Mover.Targetposition [3] = Mover.Targetposition [0];

207 Mover.Targetposition [4] = Mover.Targetposition [0];

208 }

209 else

210 {

211 Debug.Log("Hannes real is IN rom");

212

213 Xinc = (Mover.Targetposition [1].x - ...
Mover.Targetposition [0].x)/10; // incremento ...
di X istante per istante //CHE ...
SIA LA POSIZIONE GIUSTA PER GLI INCREMENTI?

214 Yinc = (Mover.Targetposition [1].y - ...
Mover.Targetposition [0].y)/10; // incremento ...
di Y istante per istante

215

216 if ((th1 ≥ (th1_H_maxOpt * Math.PI / 180)) | ...
(th1 ≤ (th1_H_minOpt * Math.PI / 180)) | ...
(th2 ≥ (th2_H_maxOpt * Math.PI / 180)) | ...
(th2 ≤ (th2_H_minOpt * Math.PI / 180))) //| ...
(th3 ≤ th3_H_minOpt * Math.PI / 180) | (th3 ≥...
th3_H_maxOpt * Math.PI / 180))

217 {

218 //con ottimizzazione

219 th1 = (float)((th1 + (pinv[0, 0] * Xinc + ...
pinv[0, 1] * Yinc)) - ∆time * (ALFA * ...
gradHperidmenopinvperjac [0, 0]));

220 th2 = (float)((th2 + (pinv[1, 0] * Xinc + ...
pinv[1, 1] * Yinc)) - ∆time * (ALFA * ...
gradHperidmenopinvperjac [1, 0]));

221 th3 = (float)((th3 + (pinv[2, 0] * Xinc + ...
pinv[2, 1] * Yinc)) - ∆time * (ALFA * ...
gradHperidmenopinvperjac [2, 0]));

222 }

223 else

224 {

225 // senza ottimizzazione

226 th1 = (float)(th1 + (pinv[0, 0] * Xinc + ...
pinv[0, 1] * Yinc));

227 th2 = (float)(th2 + (pinv[1, 0] * Xinc + ...
pinv[1, 1] * Yinc));

228 th3 = (float)(th3 + (pinv[2, 0] * Xinc + ...
pinv[2, 1] * Yinc));

229 }
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230 }

231 }

232 else if (CartesianMotion.HANNES_REALstatus == false)

233 {

234

235 gradH[0, 0] = ((t1max - t1min) * (t1max - t1min)) * ...
(2 * th1 - t1max - t1min) / (4 * (( t1max - th1) ...
* (t1max - th1) * (th1 - t1min) * (th1 - t1min)));

236 gradH[1, 0] = ((t2max - t2min) * (t2max - t2min)) * ...
(2 * th2 - t2max - t2min) / (4 * (( t2max - th2) ...
* (t2max - th2) * (th2 - t2min) * (th2 - t2min)));

237 gradH[2, 0] = ((t3max - t3min) * (t3max - t3min)) * ...
(2 * th3 - t3max - t3min) / (4 * (( t3max - th3) ...
* (t3max - th3) * (th3 - t3min) * (th3 - t3min)));

238

239 gradHperidmenopinvperjac [0, 0] = ...
idmenopinvperjac [0, 0] * gradH[0, 0] + ...
idmenopinvperjac [0, 1] * gradH[1, 0] + ...
idmenopinvperjac [0, 2] * gradH[2, 0];

240 gradHperidmenopinvperjac [1, 0] = ...
idmenopinvperjac [1, 0] * gradH[0, 0] + ...
idmenopinvperjac [1, 1] * gradH[1, 0] + ...
idmenopinvperjac [1, 2] * gradH[2, 0];

241 gradHperidmenopinvperjac [2, 0] = ...
idmenopinvperjac [2, 0] * gradH[0, 0] + ...
idmenopinvperjac [2, 1] * gradH[1, 0] + ...
idmenopinvperjac [2, 2] * gradH[2, 0];

242

243 //if ((th2 ≥ (t2max - 0.5* Math.PI/180)) | (th2 ≤ ...
(t2min + 0.5 * Math.PI / 180)) | (th3 ≤ (t3min + ...
0.5 * Math.PI / 180)) | (th3 ≥ (t3max - 0.5 * ...
Math.PI / 180)) | (th1 ≥ (t1max - 0.5 * Math.PI ...
/ 180)) | (th1 ≤ (t1min + 0.5 * Math.PI / 180)))

244 if ((th2 ≥ (119f * Math.PI / 180)) | (th2 ≤ (1f * ...
Math.PI / 180)) | (th3 ≤ (-54f * Math.PI / 180)) ...
| (th3 ≥ (29 * Math.PI / 180)) | (th1 ≥ (29f * ...
Math.PI / 180)) | (th1 ≤ (-89f * Math.PI / 180)))

245 {

246 Debug.Log("VIRTUAL is OUT of rom");

247 Mover.AngleFlag = true;

248

249 transform.position = Mover.Targetposition [0];

250 Mover.Targetposition [1] = Mover.Targetposition [0];

251 Mover.Targetposition [2] = Mover.Targetposition [0];

252 Mover.Targetposition [3] = Mover.Targetposition [0];

253 Mover.Targetposition [4] = Mover.Targetposition [0];

254 }

255 else

256 {

257 // Debug.Log(" VIRTUAL is IN of rom");

258

259 Xinc = (Mover.Targetposition [1].x - ...
Mover.Targetposition [0].x); // incremento di ...
X istante per istante //CHE ...
SIA LA POSIZIONE GIUSTA PER GLI INCREMENTI?

260 Yinc = (Mover.Targetposition [1].y - ...

85



Mover.Targetposition [0].y); // incremento di ...
Y istante per istante

261

262 if ((th1 ≥ (th1maxOpt * Math.PI / 180)) | (th1 ≤...
(th1minOpt * Math.PI / 180)) | (th2 ≥ ...

(th2maxOpt * Math.PI / 180)) | (th2 ≤ ...
(th2minOpt * Math.PI / 180))) //| (th3 ≤ ...
th3minOpt * Math.PI / 180) | (th3 ≥ ...
th3maxOpt * Math.PI / 180))

263 {

264 //con ottimizzazione

265 th1 = (float)((th1 + (pinv[0, 0] * Xinc + ...
pinv[0, 1] * Yinc)) - ∆time * (ALFA * ...
gradHperidmenopinvperjac [0, 0]));

266 th2 = (float)((th2 + (pinv[1, 0] * Xinc + ...
pinv[1, 1] * Yinc)) - ∆time * (ALFA * ...
gradHperidmenopinvperjac [1, 0]));

267 th3 = (float)((th3 + (pinv[2, 0] * Xinc + ...
pinv[2, 1] * Yinc)) - ∆time * (ALFA * ...
gradHperidmenopinvperjac [2, 0]));

268 }

269 else

270 {

271 // senza ottimizzazione

272 th1 = (float)(th1 + (pinv[0, 0] * Xinc + ...
pinv[0, 1] * Yinc));

273 th2 = (float)(th2 + (pinv[1, 0] * Xinc + ...
pinv[1, 1] * Yinc));

274 th3 = (float)(th3 + (pinv[2, 0] * Xinc + ...
pinv[2, 1] * Yinc));

275 }

276 }

277

278 }

279

280 }

281 e = e+1;

282 //Debug.Log ("\ nth1 is:" + th1 * 180.0 / Math.PI + "\nth2 ...
is:" + th2 * 180.0 / Math.PI + "\nth3 is:" + th3 * 180.0 ...
/ Math.PI);

283

284 }

285 }

A.3 ANFIS

1 % SCRIPT TO CREATE SEVERAL ANFIS NETWORKS

2 step =[5]; %angles step [deg]

3 infis =[8];

4 epoch =[10 50 100 200 300];

5
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6 totnum=length(infis)*length(epoch)*length(step);

7

8 % Index definition

9 i=1; % index for the resolution values vector

10 j=1; % index for InitialFIS vector

11 k=1; % index for EpochNumber vector

12 m=1; % index to fill the anfis vector structure

13 n=1;

14 counter = 1;

15 T = 0;

16

17 %virtual hannes dimension

18 l1=12 .74508;

19 l2=12 .04653;

20 l3=4 .355566;

21

22 theta1 = -90:step(i):45; % all possible theta1 values

23 theta2 = 0:step(i):130; % all possible theta2 values

24 theta3 = -60:step(i):60; % all possible theta3 values

25

26 [THETA1 ,THETA2 ,THETA3] = ...

meshgrid(theta1 ,theta2 ,theta3); % generate a grid ...

of theta1 , theta2 and theta3 values

27

28 X = l1*cosd(THETA1)+l2*cosd(THETA1+THETA2)+...

29 l3*cosd(THETA1+THETA2+THETA3); % compute x coordinates

30 Y = l1*sind(THETA1)+l2*sind(THETA1+THETA2)+...

31 l3*sind(THETA1+THETA2+THETA3) ; % compute y coordinates

32

33 data1 = [X(:) Y(:) THETA1 (:)]; % create x-y-theta1 ...

dataset

34 data2 = [X(:) Y(:) THETA2 (:)]; % create x-y-theta2 ...

dataset

35 data3 = [X(:) Y(:) THETA3 (:)]; % create x-y-theta3 ...

dataset

36

37 %plot del ROM

38 plot(X(:),Y(:),'.','Color ' ,[50/256 ,205/256 ,50/256]);
39 axis equal;

40 grid on;

41 hold on

42 xlabel('X','fontsize ' ,10)
43 ylabel('Y','fontsize ' ,10)
44 title('X-Y coordinates for all theta1 , theta2 and ...

theta3 combinations - step 10 deg','fontsize ' ,12)
45 axis ([-20 40 -30 30]);
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46

47 %% Training delle ANFIS

48 for j=1: length(infis)

49 for k=1: length(epoch)

50 tic

51 opt = anfisOptions;

52 opt.InitialFIS =infis(j) ;

53 opt.EpochNumber = epoch(k);

54 opt.DisplayANFISInformation = 0;

55 opt.DisplayErrorValues = 0;

56 opt.DisplayStepSize = 0;

57 opt.DisplayFinalResults = 1;

58 %opt.OptimizationMethod ??

59

60 disp('--> Training first ANFIS network. ')
61 anfisvector1{m}=anfis(data1 ,opt);

62 disp('--> Training second ANFIS network. ')
63 anfisvector2{m}=anfis(data2 ,opt);

64 disp('--> Training third ANFIS network. ')
65 anfisvector3{m}=anfis(data3 ,opt);

66

67 Line = '/n THE GROUP OF THREE nr %4.2d of ...

%8.3d IS DONE /n';
68 fprintf(Line ,m,totnum)

69 if counter 6= 1

70 T_LEFT = (totnum - counter)*T;

71 fprintf('\t>> Extimated time left: %d ...

secs <<\n',T_LEFT);
72 end

73 m=m+1;

74 T = (T+toc)/counter;

75 counter = counter + 1;

76 end

77 end

78

79 save anfisvector1;

80 save anfisvector2;

81 save anfisvector3;

82

83 %% TRAJECTORY DEFINITION

84 theta1_tj = linspace (-50,0,100);

85 theta2_tj = linspace (45 ,90 ,100);

86 theta3_tj = linspace (-60,15 ,100);

87 xtg= l1*cosd(theta1_tj)+l2*cosd(theta1_tj+theta2_tj)+...

88 l3*cosd(theta1_tj+theta2_tj+theta3_tj); %x coord

89 ytg = l1*sind(theta1_tj)+l2*sind(theta1_tj+theta2_tj)+...
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90 l3*sind(theta1_tj+theta2_tj+theta3_tj) ; %y coord

91 XYtg = [xtg(:) ytg(:)]

92

93 plot(xtg ,ytg ,'.b','MarkerSize ' ,15), grid on

94 Xd = xtg(:);

95 Yd = ytg(:);

96

97 ErrorMatrix = zeros(length(anfisvector1) ,16);

98

99 for n=1: length(anfisvector1)

100

101 anfis1=anfisvector1{n};

102 anfis2=anfisvector2{n};

103 anfis3=anfisvector3{n};

104

105 THETA1P = evalfis(anfis1 ,XYtg); % theta1 predicted

106 THETA2P = evalfis(anfis2 ,XYtg); % theta2 predicted

107 THETA3P = evalfis(anfis3 ,XYtg); % theta3 predicted

108

109 Xp = l1*cosd(THETA1P)+l2*cosd(THETA1P+THETA2P)+...

110 l3*cosd(THETA1P+THETA2P+THETA3P);

111 Yp = l1*sind(THETA1P)+l2*sind(THETA1P+THETA2P)+...

112 l3*sind(THETA1P+THETA2P+THETA3P) ;

113

114 MaxPositionErrorX=max(abs(Xd -Xp));

115 MaxPositionErrorY=max(abs(Yd -Yp));

116 MinPositionErrorX=min(abs(Xd -Xp));

117 MinPositionErrorY=min(abs(Yd -Yp));

118 MaxTheta1error=max(abs(theta1_tj -THETA1P '));
119 MaxTheta2error=max(abs(theta2_tj -THETA2P '));
120 MaxTheta3error=max(abs(theta3_tj -THETA3P '));
121 MinTheta1error=min(abs(theta1_tj -THETA1P '));
122 MinTheta2error=min(abs(theta2_tj -THETA2P '));
123 MinTheta3error=min(abs(theta3_tj -THETA3P '));
124 XRMSE = sqrt(mean((Xd-Xp).^2));

125 YRMSE = sqrt(mean((Yd-Yp).^2));

126 Theta1RMSE = sqrt(mean((theta1_tj -THETA1P ').^2));
127 Theta2RMSE = sqrt(mean((theta2_tj -THETA2P ').^2));
128 Theta3RMSE = sqrt(mean((theta3_tj -THETA3P ').^2));
129

130 info=[n MaxPositionErrorX MinPositionErrorX ...

131 MaxPositionErrorY MinPositionErrorY ...

132 MaxTheta1error MinTheta1error ...

133 MaxTheta2error MinTheta2error ...

134 MaxTheta3error MinTheta3error ...

135 XRMSE YRMSE ...
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136 Theta1RMSE Theta2RMSE Theta3RMSE ];

137 ErrorMatrix(n,:)=info;

138 end

139 hold on

140 plot(Xp(:),Yp(:),'.c','MarkerSize ' ,15), grid on

141

142 ANFISn=ErrorMatrix (:,1);

143 MaxPositionErrorX= ErrorMatrix (:,2) ;

144 MinPositionErrorX=ErrorMatrix (:,3);

145 MaxPositionErrorY=ErrorMatrix (:,4);

146 MinPositionErrorY=ErrorMatrix (:,5);

147 MaxTheta1error=ErrorMatrix (:,6);

148 MinTheta1error=ErrorMatrix (:,7);

149 MaxTheta2error=ErrorMatrix (:,8);

150 MinTheta2error=ErrorMatrix (:,9);

151 MaxTheta3error=ErrorMatrix (:,10);

152 MinTheta3error=ErrorMatrix (:,11);

153 XRMSE = ErrorMatrix (:,12);

154 YRMSE =ErrorMatrix (:,13) ;

155 Theta1RMSE =ErrorMatrix (: ,14) ;

156 Theta2RMSE =ErrorMatrix (: ,15);

157 Theta3RMSE =ErrorMatrix (: ,16);

158

159 T=table(ANFISn , MaxPositionErrorX , MinPositionErrorX ,...

160 MaxPositionErrorY , MinPositionErrorY ,...

161 MaxTheta1error , MinTheta1error ,...

162 MaxTheta2error , MinTheta2error ,...

163 MaxTheta3error , MinTheta3error ,...

164 XRMSE , YRMSE ,...

165 Theta1RMSE , Theta2RMSE ,Theta3RMSE)

166 writetable(T,'ANFISerrorComparison.txt ','Delimiter ','\t');
167 type ANFISerrorComparison.txt

168

169 xlswrite('ErrorMatrixProvan5deg.xlsx ',ErrorMatrix);
170

171 %% definizione del robot per visualizzare esiti

172 robot = ...

rigidBodyTree('DataFormat ','column ','MaxNumBodies ' ,3);
173

174 L1=12 .74508;

175 L2=12 .04653;

176 L3=4 .355566;

177

178 %spalla

179 body = rigidBody('link1 ');
180 joint = rigidBodyJoint('joint1 ', 'revolute ');
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181 setFixedTransform(joint ,trvec2tform ([0 0 0]));

182 joint.JointAxis = [0 0 1];

183 body.Joint = joint;

184 addBody(robot , body , 'base');
185 %gomito

186 body = rigidBody('link2 ');
187 joint = rigidBodyJoint('joint2 ','revolute ');
188 setFixedTransform(joint , trvec2tform ([L1 ,0,0]));

189 joint.JointAxis = [0 0 1];

190 body.Joint = joint;

191 addBody(robot , body , 'link1 ');
192 %polso

193 body = rigidBody('link3 ');
194 joint = rigidBodyJoint('joint3 ','revolute ');
195 setFixedTransform(joint , trvec2tform ([L2 ,0,0]));

196 joint.JointAxis = [0 0 1];

197 body.Joint = joint;

198 addBody(robot , body , 'link2 ');
199 %end effector

200 body = rigidBody('tool');
201 joint = rigidBodyJoint('fix1','fixed ');
202 setFixedTransform(joint , trvec2tform ([L3, 0, 0]));

203 body.Joint = joint;

204 addBody(robot , body , 'link3 ');
205

206 showdetails(robot);

207 show(robot);

208 view (2)

209 ax = gca;

210 ax.Projection = 'orthographic ';
211

212 %% cinematica inversa

213 syms t1;

214 syms t2;

215 syms t3;

216

217 qs(:,1)=THETA1P;

218 qs(:,2)=THETA2P;

219 qs(:,3)=THETA3P;

220 qs=deg2rad(qs);

221 t = (0:0 .01 :10); % Time

222 count = length(t);

223

224 framesPerSecond = 100000;

225 r = rateControl(framesPerSecond);

226 for i = 1:count
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227 show(robot ,qs(i,:) ','PreservePlot ',false);
228 view (2)

229 ax = gca;

230 ax.Projection = 'orthographic ';
231 drawnow

232 hold on

233 waitfor(r);

234 disp('--> point')
235 end
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Appendix B

ANFIS evaluation parameters

Step [deg] Infis n epoch Th1RMSE Th2RMSE Th3RMSE MaxTh1Err [cm] MinTh1Err [cm] MaxTh2Err [deg] MinTh2Err [deg] MaxTh3Err [deg] MinTh3Err [deg]
10 2 10 5.409 13.705 27.441 9.992 0.034 18.539 0.019 54.972 0.292
10 2 50 5.098 13.192 27.578 9.337 0.056 17.073 0.181 55.332 0.270
10 2 100 3.527 12.290 28.273 5.532 0.082 16.589 0.060 55.595 0.278
10 2 200 3.463 11.198 28.400 5.359 0.076 15.447 0.158 55.511 0.272
10 2 300 3.448 11.114 28.405 5.330 0.069 15.329 0.064 55.516 0.275
10 2 400 3.443 11.040 28.410 5.320 0.062 15.219 0.085 55.521 0.280
10 3 10 3.923 10.459 30.104 6.129 0.095 17.736 1.929 56.403 0.400
10 3 50 3.661 10.041 29.831 5.656 0.120 16.719 1.224 56.315 0.371
10 3 100 2.896 9.342 29.487 4.668 0.052 14.540 0.145 56.878 0.041
10 3 200 2.943 9.241 28.933 5.673 0.025 14.002 0.040 55.038 0.202
10 3 300 2.949 9.233 29.148 5.674 0.020 13.930 0.041 55.240 0.187
10 3 400 2.950 9.235 29.152 5.667 0.016 13.926 0.071 55.238 0.188
10 4 10 2.665 8.929 28.590 4.639 0.003 13.539 0.096 55.747 0.332
10 4 50 2.635 8.810 28.734 4.979 0.061 13.104 0.004 55.955 0.418
10 4 100 2.643 8.675 29.365 5.393 0.017 12.699 0.008 53.755 0.010
10 4 200 2.635 8.688 29.874 5.186 0.022 12.650 0.004 54.589 0.229
10 4 300 2.571 8.700 29.958 4.985 0.102 12.695 0.007 54.591 0.250
10 4 400 2.559 8.705 29.994 4.958 0.080 12.691 0.010 54.611 0.252
10 5 10 2.607 8.444 29.084 4.994 0.003 13.022 0.016 55.815 0.379
10 5 50 2.587 8.438 29.041 4.908 0.086 12.721 0.044 55.792 0.432
10 5 100 2.624 8.553 30.812 5.953 0.060 12.314 0.020 54.854 0.210
10 5 200 2.521 8.567 30.670 6.110 0.057 12.374 0.019 55.609 0.233
10 5 300 2.516 8.538 30.740 6.096 0.044 12.357 0.063 55.547 0.217
10 5 400 2.510 8.448 30.793 6.050 0.048 12.095 0.044 55.483 0.248
10 6 10 2.460 8.205 29.712 4.755 0.084 12.305 0.073 55.576 0.050
10 6 50 2.445 8.290 30.166 4.871 0.113 12.497 0.025 56.113 0.009
10 6 100 2.417 8.242 30.382 5.438 0.097 12.432 0.100 55.886 0.337
10 6 200 2.478 8.250 30.265 5.313 0.022 12.369 0.025 55.024 0.454
10 6 300 2.501 8.253 30.189 5.343 0.078 12.308 0.036 54.126 0.151
10 6 400 2.523 8.248 30.159 5.380 0.039 12.323 0.105 53.841 0.097
10 7 10 2.541 8.200 29.924 5.278 0.012 11.810 0.067 55.623 0.436
10 7 50 2.517 8.174 30.045 5.320 0.093 12.116 0.051 55.833 0.288
10 7 100 2.470 8.185 30.178 5.252 0.025 12.750 0.013 56.484 0.128
10 7 200 2.451 8.183 30.528 5.564 0.018 11.914 0.033 57.472 0.198
10 7 300 2.441 8.171 30.494 5.556 0.055 11.942 0.210 56.957 0.296
10 7 400 2.440 8.230 30.609 5.556 0.041 12.039 0.147 56.880 0.314
10 8 10 2.457 8.134 30.513 5.112 0.114 12.285 0.091 55.001 0.298
10 8 50 2.525 8.039 30.617 5.477 0.064 12.134 0.064 55.879 0.049
10 8 100 2.609 7.879 30.389 6.541 0.061 11.943 0.132 55.417 0.250
10 8 200 2.675 7.952 30.355 6.755 0.149 11.712 0.002 54.938 0.083
10 8 300 2.707 7.992 30.412 6.901 0.051 11.737 0.019 54.594 0.226
10 8 400 2.720 8.009 30.447 7.113 0.083 11.810 0.034 54.424 0.492

Table B.1: ANFIS quality evaluation parameters - about θ1, θ2andθ3 - step 10 deg
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Step [deg] Infis n epoch MaxErrorX [cm] MinErrorX [cm] MaxErrorY [cm] MinErrorY [cm] XRMSE YRMSE
10 2 10 1.984 0.852 1.225 0.009 1.449 0.615
10 2 50 1.759 0.796 1.171 0.018 1.368 0.639
10 2 100 1.694 0.030 1.552 0.011 1.198 0.936
10 2 200 1.483 0.024 1.157 0.003 1.106 0.786
10 2 300 1.462 0.008 1.133 0.007 1.097 0.772
10 2 400 1.441 0.004 1.130 0.010 1.086 0.759
10 3 10 1.469 0.008 1.449 0.005 0.916 0.640
10 3 50 1.384 0.002 1.334 0.009 0.880 0.619
10 3 100 1.165 0.042 0.926 0.018 0.801 0.477
10 3 200 1.109 0.146 0.760 0.013 0.769 0.523
10 3 300 1.104 0.146 0.765 0.005 0.768 0.515
10 3 400 1.105 0.153 0.759 0.004 0.768 0.512
10 4 10 1.187 0.018 0.830 0.016 0.771 0.493
10 4 50 1.113 0.001 0.739 0.003 0.746 0.475
10 4 100 1.030 0.010 0.709 0.002 0.706 0.468
10 4 200 0.998 0.007 0.653 0.007 0.690 0.471
10 4 300 0.987 0.010 0.652 0.015 0.693 0.453
10 4 400 0.991 0.007 0.654 0.009 0.692 0.451
10 5 10 1.050 0.012 0.817 0.008 0.704 0.450
10 5 50 1.061 0.004 0.794 0.003 0.698 0.454
10 5 100 1.096 0.010 0.881 0.009 0.672 0.512
10 5 200 1.116 0.008 0.975 0.001 0.672 0.469
10 5 300 1.115 0.014 0.972 0.012 0.671 0.467
10 5 400 1.107 0.005 0.879 0.004 0.666 0.461
10 6 10 1.068 0.003 0.719 0.000 0.664 0.441
10 6 50 1.043 0.015 0.707 0.012 0.660 0.451
10 6 100 0.972 0.000 0.714 0.021 0.651 0.448
10 6 200 0.997 0.004 0.681 0.025 0.648 0.460
10 6 300 1.025 0.025 0.736 0.004 0.648 0.474
10 6 400 1.031 0.001 0.785 0.014 0.648 0.486
10 7 10 1.061 0.065 0.731 0.010 0.658 0.460
10 7 50 1.059 0.074 0.724 0.019 0.654 0.463
10 7 100 1.069 0.002 0.667 0.002 0.643 0.464
10 7 200 1.059 0.004 0.738 0.005 0.644 0.460
10 7 300 1.059 0.006 0.776 0.001 0.634 0.476
10 7 400 1.067 0.013 0.791 0.002 0.643 0.473
10 8 10 1.038 0.008 0.761 0.011 0.636 0.463
10 8 50 1.098 0.013 0.770 0.001 0.620 0.471
10 8 100 1.039 0.055 0.751 0.032 0.590 0.510
10 8 200 0.970 0.012 0.745 0.031 0.592 0.525
10 8 300 0.949 0.002 0.791 0.016 0.595 0.525
10 8 400 0.978 0.004 0.832 0.011 0.598 0.521

Table B.2: ANFIS quality evaluation parameters - about XandY values - step 10 deg
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Step [deg] Infis n epoch Th1RMSE Th2RMSE Th3RMSE MaxTh1Err [cm] MinTh1Err [cm] MaxTh2Err [deg] MinTh2Err [deg] MaxTh3Err [deg] MinTh3Err [deg]
5 2 10 4.993 12.802 27.461 9.397 0.072 17.329 0.027 55.084 0.289
5 2 50 4.688 12.264 27.600 8.738 0.099 15.810 0.115 55.435 0.282
5 2 100 3.301 11.566 28.339 5.194 0.061 16.018 0.025 55.652 0.234
5 2 200 3.093 11.047 28.465 4.750 0.028 15.387 0.196 55.555 0.300
5 2 300 3.096 10.921 28.471 4.771 0.015 15.214 0.075 55.580 0.299
5 2 400 3.081 10.877 28.476 4.747 0.007 15.149 0.027 55.586 0.299
5 3 10 3.636 9.896 30.228 5.621 0.066 17.037 0.837 56.739 0.133
5 3 50 3.374 9.479 30.056 5.164 0.024 16.028 0.436 56.672 0.429
5 3 100 2.570 8.511 29.485 5.354 0.095 12.616 0.037 56.487 0.370
5 3 200 2.724 7.931 29.276 6.380 0.017 11.605 0.009 56.404 0.311
5 3 300 2.707 7.913 29.253 6.351 0.004 11.559 0.117 56.386 0.275
5 3 400 2.712 7.897 29.256 6.359 0.023 11.511 0.012 56.384 0.273
5 4 10 2.549 8.246 28.979 5.500 0.115 12.557 0.018 56.315 0.016
5 4 50 2.517 8.088 29.079 5.825 0.104 12.121 0.085 56.475 0.102
5 4 100 2.538 7.880 29.837 6.165 0.109 11.645 0.016 54.879 0.117
5 4 200 2.496 7.908 30.766 5.967 0.000 11.712 0.041 56.109 0.079
5 4 300 2.458 7.912 30.854 5.884 0.069 11.700 0.132 56.185 0.023
5 4 400 2.447 7.913 30.859 5.867 0.079 11.707 0.125 56.199 0.009
5 5 10 2.510 7.631 29.852 5.514 0.009 11.896 0.095 56.228 0.278
5 5 50 2.486 7.619 29.903 5.512 0.055 11.538 0.083 55.898 0.304
5 5 100 2.514 7.740 30.950 6.143 0.026 11.225 0.034 55.429 0.330
5 5 200 2.438 7.724 31.113 6.194 0.068 11.149 0.058 55.531 0.154
5 5 300 2.436 7.712 31.151 6.188 0.070 11.083 0.033 55.889 0.240
5 5 400 2.436 7.695 31.081 6.189 0.068 11.014 0.024 56.280 0.322
5 6 10 2.447 7.492 29.818 5.540 0.065 11.048 0.007 56.047 0.248
5 6 50 2.449 7.580 30.109 5.598 0.040 10.976 0.156 56.234 0.231
5 6 100 2.471 7.596 30.875 5.933 0.077 11.070 0.103 55.838 0.327
5 6 200 2.495 7.533 30.828 6.068 0.030 10.950 0.045 57.182 0.006
5 6 300 2.491 7.495 30.844 6.104 0.010 10.850 0.019 57.155 0.054
5 6 400 2.474 7.472 30.856 6.142 0.013 10.752 0.016 57.225 0.058
5 7 10 2.554 7.524 30.584 6.139 0.011 10.454 0.046 57.751 0.352
5 7 50 2.539 7.528 30.719 6.126 0.038 10.658 0.005 57.610 0.379
5 7 100 2.505 7.572 30.766 6.211 0.007 10.917 0.022 57.996 0.313
5 7 200 2.551 7.316 30.901 6.268 0.038 10.319 0.097 58.647 0.358
5 7 300 2.542 7.229 30.916 6.071 0.012 10.241 0.099 58.657 0.364
5 7 400 2.527 7.235 30.933 5.954 0.029 10.168 0.120 58.538 0.362
5 8 10 2.449 7.470 30.864 6.025 0.030 10.724 0.156 56.190 0.082
5 8 50 2.485 7.423 30.845 5.884 0.006 10.600 0.109 56.622 0.047
5 8 100 2.541 7.546 30.950 5.953 0.044 10.810 0.066 57.627 0.110
5 8 200 2.628 7.501 31.049 6.007 0.008 10.660 0.088 58.229 0.205
5 8 300 2.629 7.498 31.113 5.889 0.041 10.609 0.120 58.659 0.298
5 8 400 2.635 7.504 31.142 5.853 0.051 10.600 0.103 58.836 0.347

Table B.3: ANFIS quality evaluation parameters - about θ1, θ2andθ3 - step 5 deg
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Step [deg] Infis n epoch MaxErrorX [cm] MinErrorX [cm] MaxErrorY [cm] MinErrorY [cm] XRMSE YRMSE
5 2 10 1.872 0.713 1.179 0.008 1.359 0.605
5 2 50 1.633 0.640 1.135 0.003 1.269 0.638
5 2 100 1.605 0.027 1.655 0.021 1.131 1.022
5 2 200 1.464 0.018 1.335 0.024 1.062 0.877
5 2 300 1.428 0.030 1.290 0.032 1.045 0.854
5 2 400 1.417 0.009 1.270 0.033 1.038 0.837
5 3 10 1.407 0.002 1.337 0.005 0.872 0.575
5 3 50 1.319 0.007 1.232 0.001 0.835 0.554
5 3 100 0.993 0.076 0.728 0.008 0.709 0.396
5 3 200 0.947 0.002 0.731 0.000 0.669 0.428
5 3 300 0.950 0.006 0.719 0.001 0.669 0.420
5 3 400 0.947 0.024 0.720 0.008 0.667 0.418
5 4 10 1.054 0.007 0.794 0.014 0.702 0.453
5 4 50 0.981 0.007 0.713 0.003 0.672 0.437
5 4 100 0.934 0.003 0.596 0.003 0.620 0.428
5 4 200 0.890 0.011 0.598 0.018 0.601 0.423
5 4 300 0.879 0.013 0.599 0.012 0.606 0.399
5 4 400 0.884 0.018 0.599 0.008 0.608 0.394
5 5 10 0.941 0.012 0.773 0.002 0.614 0.408
5 5 50 0.944 0.011 0.757 0.005 0.611 0.411
5 5 100 0.892 0.008 0.707 0.006 0.591 0.432
5 5 200 0.914 0.002 0.650 0.001 0.589 0.404
5 5 300 0.930 0.010 0.645 0.009 0.593 0.397
5 5 400 0.931 0.016 0.643 0.017 0.592 0.397
5 6 10 0.995 0.003 0.708 0.002 0.597 0.419
5 6 50 0.959 0.007 0.690 0.003 0.599 0.430
5 6 100 0.888 0.000 0.638 0.004 0.570 0.441
5 6 200 0.871 0.003 0.628 0.009 0.568 0.429
5 6 300 0.864 0.002 0.619 0.011 0.564 0.425
5 6 400 0.877 0.001 0.611 0.022 0.564 0.418
5 7 10 0.915 0.041 0.697 0.008 0.583 0.425
5 7 50 0.899 0.074 0.677 0.011 0.577 0.426
5 7 100 0.901 0.000 0.661 0.004 0.582 0.418
5 7 200 1.002 0.018 0.673 0.002 0.557 0.434
5 7 300 0.943 0.001 0.671 0.010 0.549 0.435
5 7 400 0.917 0.010 0.663 0.005 0.550 0.429
5 8 10 0.936 0.014 0.706 0.006 0.568 0.431
5 8 50 0.927 0.000 0.694 0.000 0.562 0.442
5 8 100 0.895 0.070 0.676 0.001 0.571 0.431
5 8 200 0.908 0.006 0.720 0.009 0.564 0.433
5 8 300 0.947 0.005 0.715 0.015 0.563 0.435
5 8 400 0.958 0.002 0.701 0.026 0.563 0.439

Table B.4: ANFIS quality evaluation parameters - about XandY values - step 5 deg
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Step [deg] Infis n epoch Th1RMSE Th2RMSE Th3RMSE MaxTh1Err [cm] MinTh1Err [cm] MaxTh2Err [deg] MinTh2Err [deg] MaxTh3Err [deg] MinTh3Err [deg]
2 2 10 4.717 12.224 27.522 8.954 0.049 16.724 0.023 55.218 0.020
2 2 50 4.414 11.696 27.643 8.283 0.065 15.249 0.163 55.527 0.126
2 2 100 3.199 10.146 28.367 4.971 0.034 14.158 0.031 55.577 0.091
2 2 200 3.029 9.881 28.470 4.629 0.019 13.773 0.127 55.461 0.146
2 2 300 3.023 9.671 28.473 4.624 0.028 13.452 0.067 55.462 0.150
2 2 400 2.971 9.485 28.477 4.518 0.061 13.120 0.007 55.474 0.150
2 3 10 3.478 9.432 30.347 5.377 0.060 16.371 0.879 57.048 0.043
2 3 50 3.230 9.007 30.177 4.941 0.031 15.363 0.366 56.969 0.351
2 3 100 2.515 7.976 29.583 5.750 0.082 11.969 0.039 56.577 0.387
2 3 200 2.661 7.501 29.481 6.737 0.048 10.725 0.012 56.675 0.284
2 3 300 2.654 7.505 29.461 6.733 0.057 10.689 0.035 56.687 0.278
2 3 400 2.651 7.498 29.462 6.728 0.060 10.732 0.023 56.659 0.293
2 4 10 2.489 7.788 29.273 5.953 0.100 11.915 0.085 56.584 0.201
2 4 50 2.472 7.628 29.348 6.274 0.075 11.458 0.112 56.453 0.056
2 4 100 2.522 7.436 29.938 6.588 0.102 11.001 0.060 56.885 0.330
2 4 200 2.489 7.474 31.015 6.401 0.071 11.107 0.013 56.186 0.256
2 4 300 2.468 7.475 31.031 6.355 0.045 11.112 0.000 56.179 0.288
2 4 400 2.461 7.475 31.038 6.360 0.040 11.115 0.013 56.161 0.309
2 5 10 2.532 7.207 30.253 5.896 0.102 11.288 0.101 56.461 0.459
2 5 50 2.510 7.191 30.462 5.950 0.035 10.920 0.069 56.446 0.279
2 5 100 2.530 7.309 31.386 6.420 0.007 10.555 0.028 56.161 0.323
2 5 200 2.534 7.288 30.934 6.551 0.006 10.552 0.081 55.582 0.281
2 5 300 2.521 7.281 30.808 6.516 0.011 10.534 0.026 55.090 0.417
2 5 400 2.515 7.273 30.777 6.526 0.014 10.495 0.044 55.359 0.386
2 6 10 2.498 7.082 30.060 6.029 0.035 10.229 0.227 56.398 0.004
2 6 50 2.507 7.158 30.543 6.154 0.043 10.137 0.101 56.115 0.089
2 6 100 2.531 7.185 31.146 6.513 0.067 10.447 0.155 56.436 0.013
2 6 200 2.563 7.202 31.033 6.624 0.030 10.471 0.033 57.490 0.034
2 6 300 2.563 7.194 31.025 6.627 0.039 10.483 0.031 57.426 0.110
2 6 400 2.563 7.184 31.015 6.628 0.040 10.465 0.025 57.391 0.170
2 7 10 2.594 7.155 30.902 6.599 0.076 10.003 0.069 58.419 0.358
2 7 50 2.586 7.148 31.170 6.622 0.006 10.154 0.020 58.242 0.412
2 7 100 2.558 7.167 30.800 6.583 0.008 10.310 0.104 58.731 0.343
2 7 200 2.571 6.954 30.944 6.424 0.018 9.771 0.033 59.044 0.019
2 7 300 2.574 6.942 30.953 6.424 0.017 9.710 0.020 59.005 0.085
2 7 400 2.578 6.936 30.960 6.444 0.016 9.675 0.090 59.066 0.118
2 8 10 2.502 7.138 31.119 6.425 0.032 10.078 0.025 57.237 0.103
2 8 50 2.535 7.104 31.096 6.433 0.018 9.949 0.029 57.931 0.004
2 8 100 2.597 7.148 30.986 6.638 0.058 10.190 0.022 58.281 0.080
2 8 200 2.613 7.085 31.164 6.715 0.007 9.793 0.033 58.173 0.092
2 8 300 2.615 7.071 31.199 6.708 0.032 9.863 0.045 58.130 0.180
2 8 400 2.628 7.060 31.211 6.647 0.022 9.879 0.032 58.139 0.293

Table B.5: ANFIS quality evaluation parameters - about θ1, θ2andθ3 - step 2 deg
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Step [deg] Infis n epoch MaxErroXr [cm] MinErrorX [cm] MaxErrorY [cm] MinErrorY [cm] XRMSE YRMSE
2 2 10 1.795 0.632 1.113 0.001 1.294 0.563
2 2 50 1.570 0.560 1.060 0.020 1.209 0.582
2 2 100 1.340 0.027 1.169 0.006 0.988 0.785
2 2 200 1.283 0.024 1.040 0.001 0.970 0.695
2 2 300 1.240 0.002 1.055 0.007 0.956 0.669
2 2 400 1.210 0.014 1.021 0.003 0.940 0.624
2 3 10 1.341 0.001 1.285 0.003 0.823 0.553
2 3 50 1.252 0.007 1.179 0.003 0.784 0.532
2 3 100 0.923 0.068 0.699 0.011 0.656 0.377
2 3 200 0.888 0.003 0.698 0.008 0.619 0.405
2 3 300 0.886 0.000 0.694 0.006 0.621 0.401
2 3 400 0.886 0.008 0.690 0.005 0.620 0.399
2 4 10 0.994 0.018 0.759 0.009 0.649 0.433
2 4 50 0.913 0.010 0.681 0.010 0.616 0.424
2 4 100 0.863 0.000 0.564 0.000 0.576 0.400
2 4 200 0.834 0.007 0.545 0.006 0.553 0.395
2 4 300 0.815 0.004 0.546 0.009 0.552 0.377
2 4 400 0.813 0.003 0.550 0.011 0.554 0.372
2 5 10 0.876 0.013 0.744 0.011 0.566 0.388
2 5 50 0.872 0.005 0.729 0.015 0.563 0.389
2 5 100 0.797 0.002 0.691 0.011 0.536 0.403
2 5 200 0.797 0.002 0.645 0.001 0.528 0.395
2 5 300 0.815 0.000 0.639 0.003 0.537 0.386
2 5 400 0.823 0.008 0.637 0.001 0.539 0.383
2 6 10 0.933 0.002 0.680 0.002 0.554 0.403
2 6 50 0.905 0.001 0.669 0.006 0.554 0.416
2 6 100 0.907 0.010 0.629 0.007 0.543 0.419
2 6 200 0.815 0.000 0.618 0.001 0.535 0.396
2 6 300 0.814 0.004 0.617 0.005 0.535 0.397
2 6 400 0.813 0.009 0.616 0.003 0.535 0.397
2 7 10 0.852 0.047 0.664 0.005 0.540 0.403
2 7 50 0.830 0.057 0.640 0.003 0.534 0.408
2 7 100 0.821 0.003 0.618 0.002 0.541 0.384
2 7 200 0.850 0.005 0.636 0.001 0.528 0.380
2 7 300 0.851 0.007 0.643 0.001 0.531 0.379
2 7 400 0.850 0.019 0.643 0.001 0.531 0.382
2 8 10 0.880 0.008 0.669 0.003 0.531 0.411
2 8 50 0.867 0.016 0.658 0.007 0.526 0.419
2 8 100 0.835 0.014 0.629 0.012 0.536 0.402
2 8 200 0.850 0.004 0.630 0.010 0.544 0.386
2 8 300 0.857 0.002 0.629 0.034 0.543 0.383
2 8 400 0.865 0.012 0.624 0.009 0.542 0.387

Table B.6: ANFIS quality evaluation parameters - about XandY values - step 2 deg
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[27] A. Liégeois. “Automatic Supervisory Control of the Configuration and Behav-
ior of Multibody Mechanisms”. In: IEEE Transactions on systems, man, and
cybernetics SMC - 7 (1977).

[28] D. S. McKenzie. “THE RUSSIAN MYO-ELECTRIC ARM”. In: J Bone Joint
Surg Br 47 (1965), pp. 418–20. issn: 0301-620X (Print) 0301-620x.

[29] M Merad et al. “Intuitive prosthetic control using upper limb inter-joint coordina-
tions and IMU-based shoulder angles measurement: a pilot study”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (2016).

[30] D. R. Merrill et al. “Development of an implantable myoelectric sensor for ad-
vanced prosthesis control”. In: Artif Organs 35.3 (2011), pp. 249–52. issn: 1525-
1594 (Electronic) 0160-564X (Linking). doi: 10.1111/j.1525- 1594.2011.

01219.x. url: https://www.ncbi.nlm.nih.gov/pubmed/21371058.

[31] Ingram Andrew Murray. “Determining upper limb kinematics and dynamics dur-
ing everyday tasks”. PhD thesis. Newcastle University, 1999.

[32] Y. Nakamura, H. Hanafusa, and T. Yoshikawa. “Task-Priority Based Redundancy
Control of RObot Manipulators”. In: The International Journal of Robotics Re-
search 6 (1987).

[33] Max Ortiz-Catalan et al. “On the viability of implantable electrodes for the natu-
ral control of artificial limbs: Review and discussion”. In: BioMedical Engineering
OnLine 11.1 (2012), p. 33. issn: 1475-925X. doi: 10.1186/1475-925x-11-33.
url: https://dx.doi.org/10.1186/1475-925x-11-33.

[34] Jang J.-S. R. “ANFIS: adaptive-network-based fuzzy inference system”. In: IEEE
Transactions on Systems, Man, and Cybernetics 23(3) (1993), pp. 665–685.

[35] Lorenzo Rapetti et al. “Model-Based Real-Time Motion Tracking Using Dynam-
ical Inverse Kinematics”. In: Algorithms 13.10 (2020), p. 266. issn: 1999-4893.
doi: 10.3390/a13100266. url: https://dx.doi.org/10.3390/a13100266.

[36] A. Saradjian, A. R. Thompson, and D. Datta. “The experience of men using
an upper limb prosthesis following amputation: positive coping and minimizing
feeling different”. In: Disabil Rehabil 30.11 (2008), pp. 871–83. issn: 0963-8288
(Print) 0963-8288 (Linking). doi: 10.1080/09638280701427386. url: https:
//www.ncbi.nlm.nih.gov/pubmed/17852212.

[37] E. Soldati. Stato dell’arte delle protesi di arto superiore. Generic. 2015. doi:
10.13140/RG.2.1.1017.2565.

[38] G. Sottile. H come Hamilton: Quaternioni, Ipercomplessi e rotazioni. url: https:
//assetstore.unity.com/packages/tools/animation/fast-ik-139972.
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