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Abstract 
Deep learning (DL) has brought great benefits to the whole medical imaging field, allowing for 

unprecedented performance in tasks that proved to be prohibitive to traditional image processing 

techniques. In particular, the introduction of Convolutional Neural Networks, with their great 

feature extraction and generalization capabilities, marked a great advance in segmentation 

problems, which are one of the most common and relevant challenges when dealing with medical 

images. Despite the various benefits that these kind of techniques carry, deep learning algorithms 

are still mostly seen as black-box systems, making it hard to understand the factors controlling their 

performance and to tune them without delving into architectural changes, which ultimately requires 

high expertise in the field. Recently, more and more researchers are hence focusing on trying to 

leverage on existing models by introducing additional pre/postprocessing steps to the pipeline, with 

the purpose of improving the baseline performance of the model. In this optic, this work aims to 

develop a hybrid framework, combining DL methods with traditional image processing techniques 

to segment medical images. In particular, semantic segmentation operated by CNNs usually shows 

very high pixel-level accuracy, but is prone to merging different objects that are close to each other 

or even intersecting. For this reason, the possibilities of such a framework are here explored on 

histopathological images. Moreover, Whole Slide Images (WSIs), a digital representation of a whole 

slide of tissue taken from a patient in a surgical environment during a biopsy, are becoming the 

primary source of observation for pathologists over direct observation of the tissue samples. 

Therefore, researchers are currently addressing the increasing need for automatic quantitative 

analysis tools that can lead to faster and more evidence-based diagnosis. The proposed method is 

built on a synergic combination of a deep segmentation network and an object detection model, to 

take advantage of the pixel-level segmentation accuracy of the former and of the higher spatial 

localization of whole instances of the latter. The information coming from both is then used to 

initialize and evolve Active Contours on the softmax probability map generated by the segmentation 

network and a repulsive interaction term is introduced to correctly handle the segmentation of 

those nuclei that were otherwise fused in the original segmentation, solely based on the network. 

The method is benchmarked on a standard dataset, specifically proposed for the evaluation of 

nuclear segmentation tasks, in terms of several pixel-level and object-level metrics and particular 

focus is put on evaluating the results in terms of Aggregated Jaccard Index, a comprehensive 

indicator for segmentation quality. The proposed approach shows statistically significant 

improvements over the performance baseline consisting of a common threshold-based 

segmentation of the softmax, suggesting the method’s suitability for crowded images segmentation. 

Further work may include exploring the framework applicability and usefulness to other medical 

imaging domains: the inherent generality of the pipeline should however make the transfer 

relatively easy. Other possible improvements involve carrying a combined optimization of the two 

DL models to maximize performance returns and addressing potential scalability problems in the 

application of this framework to large amounts of data such as in entire WSI segmentations. 
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Introduction 
1.1 Aim of the thesis 

The application of digital processing techniques to images in the medical field have seen a constant 

growth in the recent years, mostly due to increasing computing capabilities, which enabled the 

development of more complex algorithms and their use in real-time application [1]. Nowadays, most 

of these techniques do not aim to have a direct diagnostic value, but configure themselves as a 

support to clinicians by addressing inherent problems such as repetitive manual tasks, inter-

operator and intra-operator variability [2]. In particular, one of the research area that has recently 

gained a lot of interest is deep learning, which achieved state of the art performance in many 

medical imaging tasks [3]. The aim of this thesis is to develop and explore the potential benefits of 

a hybrid framework for medical image segmentation, combining some of the most recent deep 

learning algorithms with more traditional and established image processing techniques. More in 

depth, the developed method can be briefly summarised in the following steps:  

 Training of a segmentation network and an object detection network on the same input 

data. 

  Softmax probability map generation (as the segmentation network output) and centroid 

extraction (from the object detection bounding boxes). 

 Initialization of non-parametric Active Contour models (commonly known as “snakes”) on 

the previously calculated centroids. 

 Evolution of the active contours on the softmax. 

 Final segmentation, obtained as the binary mask of each fully developed contour.  

Figure 1.1: Workflow for the proposed framework 
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This approach should allow to take advantage of the outstanding generalization capabilities of deep 

learning, as well as the high shape adaptability of deformable models. Moreover, the combined 

segmentation and object detection networks can help overcoming the problem of fused 

segmentations of close objects. On these premises, this framework should therefore yield the 

highest benefit when used for the segmentation of images with a high density of close, possibly 

overlapping, objects. For this reason, the technique has been first developed and evaluated on 

digital histological images, even though its high generality should allow a reasonably simple transfer 

to any other medical imaging domain. This proposed approach follows the philosophy of an 

increasing number of recent studies, which are concentrating on increasing the baseline 

performance of classical deep learning techniques through the application of alternative post-

processing techniques [4]. 

1.2 Histological imaging 

Histology is a branch of biology that aims to study the microanatomy of biological specimens trough 

a microscope at different organization levels, ranging from the single cells to tissue and whole organ 

level [5]. Sometimes separate terms are used to indicate the study at each of those level (cytology 

for cells, histology for tissues and organology for organs), but more frequently the word histology is 

used to include them all. 

1.2.1 Slide preparation and acquisition 

Before a tissue specimen is ready for microscopic evaluation or image acquisition through dedicated 

digital scanners, it has to face a number of standard steps that ensure an optimal slide preparation 

[6]: 

1. Fixation: through appropriate chemical fixatives, the tissue is locked in its current state. This 

makes it possible to preserve and maintain the structure of tissues and cells and to avoid 

autolysis and degradation of the sample with time. Moreover, fixation aids the subsequent 

process of cutting by hardening the tissue. The most widely employed agent for light 

microscopy is 10% neutral buffered formalin, used in a ratio of about 10:1 with the specimen 

volume. 

2. Trimming: after choosing the portion of the sample that will be relevant for future 

investigation, the tissue is cut through a scalpel so that the resulting section can fit into a 

labelled tissue cassette. 

3. Tissue processing: several steps to make the sample ready for sectioning in thin slices.  First, 

the specimen is dehydrated (removal of water and fixation agent) by dipping it into 

increasing concentrations of alcohol. After cleaning through an organic solvent, the 

specimen is infiltrated with an embedding agent, most commonly molten paraffin wax, 

which provides a tough support matrix after solidification. 

4. Sectioning:  after a brief exposure to low temperatures to harden the waxed block, the 

specimen is ready to be sectioned in thin slices. The cuts are carried out by a microtome at 

an average thickness of 5 µm for light microscopy applications or even less for the electron 

counterpart. 

5. Staining: at this stage most cells and other tissue structures of the specimen are transparent 

and show relatively low contrast when scanned through any microscope. Staining is hence 
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applied to enhance the contrast as well as to highlight structures of interest. There are 

several staining techniques available for use, but the typical general-purpose choice is the 

hematoxylin and eosin staining (H&E). Hematoxylin marks cell nuclei in blue, whereas eosin 

stains cytoplasm, extracellular matrix and different other structures in various shades of 

pink. Eventually, an optical glue is applied on top of each slide to protect the underlying 

specimen. 

Thanks to current availability of quick and high-resolution whole-slide scanners, the prepared 

specimens are almost always digitized to whole-slide images (WSIs) and the anatomopathologists 

often analyse the samples directly on those stored digital images. The advantage in terms of space 

given by the storage of all samples in digital form is apparent, but as of today clinical histological 

laboratories are still required to conserve the physical slides for at least 10 years [7]. 

Another direct consequence of using WSIs is that the operator is naturally enabled to use any 

available automatic algorithm or CAD at will during his diagnostic operations. Completely manual 

histological images analysis is, indeed, a very time consuming and potentially repetitive task which 

could benefit in several ways from the use of automated systems. For instance, roughly 80% of the 

biopsies analysed each year in the US are benign [8] and even in the case of pathologic slides, a vast 

portion of tissue can bring little diagnostic importance: an automatic identification of regions of 

interest can thus significantly reduce the time spent by operators reviewing healthy slides. Besides 

this time-saving aspect, researchers and pathologists agree on the importance of quantitative 

analysis in the diagnostic process: characteristics such as nuclei shape, spatial arrangement and size 

are correlated to tissue condition or sometimes can even help predict therapeutic response and 

they are all weighted during the educated decisions taken by pathologists [9][10]. 

1.2.2 Challenges for Image Processing 

Despite all these benefits that digital image processing can bring to the histopathology field, there 

are several challenges which any algorithm dealing with histological images has to face [11]: 

 Data density of histopatology images can be extremely high [12]: typical WSI scanners 

acquire images at up 40x magnification, resulting in 15000x15000 WSIs with a spatial 

resolution of 0,25 µm per pixel. Considering a 24 bits color depth, the total amount of data 

for a 1 mm2 area is roughly 48 MB. Comparing these numbers to the average radiological 

image (CT or MRI scans), which is 512x512 pixels and color-coded on 2 bytes, it is clear that 

any automatic method working on this kind of images needs to be as efficient and optimized 

as possible to be able to run in a practical use case. Viewing software usually handles this 

Figure 1.2: MoticTM EasyScan WSI scanner 
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problematic by adopting a multi-resolution approach (pyramid representation): the fully 

magnified image is embedded in a single file with copies (typically three or four) of the same 

image, downsampled to lower magnification levels. At loading time, the software retrieves 

the portion of image requested by the user at the most suitable resolution level, depending 

on the zoom level relative to the whole image and taking into consideration that, at any time, 

the highest resolution that can actually be appreciated is limited by the screen resolution in 

use. Of course this approach results in an increased storage requirement, but it also makes 

the loading much faster at higher FOV values, as shown in the picture below. 

 WSIs show a high inter-laboratory and inter-slide variability. In the first place, this is linked 

to the inherent heterogeneity of histological samples, which can be extracted from virtually 

any body part and contain a variety of different structures. This is one of the reason why 

deep learning, with its high generalization capabilities, has outperformed any traditional 

technique when it comes to histological classification and segmentation tasks. However, 

even when the same tissue type is considered, variations can be significant. This is mainly 

due to two factors: the previously described process of slides preparation, which can 

introduce variations between laboratories even when adopting the same protocols and 

staining, and digitization of the slide through different scanners [11]. The very same WSI 

acquired by two scanning equipment can show variations in both lightning and coloration. 

 Relevant information in histological images can be spread through different scales: 

depending on the diagnostic query, pathologists may be looking at single cells appearance, 

arrangement of groups of nuclei or higher-level structures like glands. An effective and 

complete CAD should therefore integrate information from all the needed levels, or combine 

single methods working at different scales. 

 Lack of labelled data. While a good amount of publicly accessible unlabelled data is available, 

the lack of consistent training data represents a significant barrier to the development of 

performing and well-generalizing machine learning frameworks. Moreover, most labelled 

data available only contains whole-slide information regarding the condition of the sample 

(e.g. healthy/tumour) and is hence only useful for methods approaching classification tasks 

[13]. 

 

 

Figure 1.3: Same portion of H&E stained tissue acquired through two different WSI scanners 
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1.3 Introduction to Deep Learning 

Deep learning is a subset of machine learning methods based on artificial neural networks, where 

information is passed and processed sequentially by a large number of layers [14]. One of the most 

relevant differences between traditional algorithms and machine learning techniques (and as such, 

DL) is the use they make of data they are applied on: while the former simply take data as an input 

and apply a set of rules (as complex as they might be), machine learning algorithms are designed to 

learn directly from data [15]. In other words, in traditional workflows data only represents the 

starting point of the entire pipeline, whereas it is the core element for any machine learning 

approach. As a direct consequence, the performance of ML implementations increases along with 

the quantity and quality of data available, as they get closer to be a representative sample for the 

specific problem considered. This concept is also linked to one of the first dissimilarities between 

general ML and DL: the graph below shows a qualitative estimation of the performance of both 

against the amount of data available [16]. By looking at the two curves, one can easily assert that 

DL potentially shows a much higher scalability than ML. In fact, even though ML performance may 

even be higher for small sized datasets, it eventually reaches a plateau, which results in negligible 

benefits for further increasing amounts of data; this does not happen to DL for which more data, 

paired with bigger (deeper) models, results in increased performance. This is perhaps the main 

reason why DL has only seen heavy adoption in the last decade, although the concepts behind it 

existed since the second half of the previous century: the sheer increase of publicly available digital 

data made it possible to build systems that fall in the right part of the graph, while the amount 

previously available could not exploit the full potential of DL [17]. 

Another import factor that sets DL apart from ML is the nature of the input data. ML algorithms 

usually rely on feature extraction, starting from the raw data, to craft specific features to be given 

as input to the system. On the other hand, DL is most often fed with raw data (eg. a full signal or 

image), as feature extraction is carried out internally by the network itself, with information 

processed by each layer into increasingly complex and high level features [14]. 

Figure 1.4: DL vs ML techniques scaling 
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1.3.1 Artificial Neural Networks 

Artificial Neural Networks are the core of most deep learning methods. As its name suggests, an 

ANN is a system that tries to mimic the inner working of the animal brain, which as a first 

approximation is made up of multiple neurons linked together by synapses [18]. 

1.3.1.1 Neurons and activation functions 

Indeed, the basic unit of every ANN is the artificial neuron, which in its most common form is simply 

composed by a linear regression model and an activation function. Given a set of inputs {x1,x2,…,xn} 

(the input to the system or the outputs of a previous layer neurons), the output of the neuron z is: 

𝑧 = 𝑤1 ∗ 𝑥1 +𝑤2 ∗ 𝑥2 +⋯+ 𝑤𝑛 ∗ 𝑥𝑛 + 𝑏 = ∑𝑤𝑖 ∗ 𝑥𝑖

𝑛

𝑖=1

+ 𝑏 

where {w1,w2,…,wn} are the weights of the input connections to the neuron (also called synapses to 

keep the biological analogy) and b is a constant bias term. In most cases, this result is then passed 

through a specific function to generate the final output a as:  𝑎 = 𝑓(𝑧). The first and simplest 

Figure 1.5: Differences in feature extraction for ML and DL methods 

Figure 1.6: Typical Feed-Forward NN architecture 
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attempt to create and train a neural network, known as perceptron, actually consist of this single 

neuron block with a hard limiter activation function and dates back to 1958; it is hence only suitable 

for binary linear classification problems. There is a great number of activation functions employed 

in the literature [19], ranging from the identity function, that simply transfer the input to the output, 

to more complex non-linear ones; the table below shows some of the most common among them. 

The requisite for a generic function to be used as an activation is differentiability, as its derivatives 

are calculated during the training process. The main advantage of using an activation function that 

differs from the linear ones is that it makes the network more capable of learning highly non-linear 

relationship in the input data. Historically, the most used function has been the sigmoid function, 

whose mathematical expression is given by:  

𝜎(𝑧) =  
1

1+𝑒−𝑧
. 

The sigmoid function has the advantage of being limited between 0 and 1, which ensures that any 

neuron output in the network cannot reach extremely high values, thus making the training process 

more stable; it is also particularly useful for output neurons as it easily correlates to the probability 

of classification. However, for deep networks the so called ReLu (Rectified Linear Unit) function is 

most often preferred for a number of reasons: it is computationally simple while maintaining a 

sufficient grade of non-linearity and has proved to perform generally better.  

𝑅𝑒𝐿𝑢(𝑧) = {
0, 𝑧 < 0
𝑧, 𝑧 ≥ 0

 

A slightly modified version of this activation is the leaky ReLu, which introduces a low positive slope 

for negative values of input z; the derivative of the function is hence never zero, which can be 

beneficial for the learning algorithms that will be discussed below.  

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢(𝑧) = {
𝑠 ∗ 𝑧, 𝑧 < 0
𝑧,         𝑧 ≥ 0

 

where s is a small positive slope, usually set to 0.01. 

1.3.1.2 Learning process and optimization methods 

The idea behind the learning process of an ANN is to iteratively feed labelled data as input, calculate 

the resulting output (ŷ) and its deviation (quantified through a loss function L) from the desired 

output (y) and adjust the network weights and biases in a way that minimizes this deviation. A 

generic cost function used for training is usually written as:  

𝐽(𝑊, 𝑏) =
1

𝑀
∑𝐿(𝑦, �̂�)

𝑀

𝑖=1

 

where M is the number of training example inputted to the network in a single pass. This is known 

as batch size and the single forward/backward pass is a training iteration; the presentation of the 

entire dataset constitutes a training epoch. Among many others, the most commonly employed cost 

functions are cross entropy (CE) and mean squared error (MSE) for classification and regression 

problems respectively.  
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𝐽𝐶𝐸 = − log(ŷ) 𝑦      𝐽𝑀𝑆𝐸 = 
1

𝑁
∑ (𝑦 − ŷ)2𝑁
𝑖=1  

The algorithm at the core of the training process is known as backpropagation and, in its original 

formulation, is based on the gradient descent optimization method [20]. After each forward pass in 

the network, the loss function is evaluated and its gradient is propagated back through the network, 

updating the parameters by the following rules:  

𝑤 ∶= 𝑤 − 𝜖
𝜕𝐽

𝜕𝑤
         𝑏 ∶= 𝑏 − 𝜖

𝜕𝐽

𝜕𝑏
 

Parameter ϵ, known as the learning rate, is used to control the entity of the parameters adjustment 

at each backpropagation: a higher value results in faster training, but may bring up problems as far 

as the convergence of the method is concerned, whereas a value too low could leave the training 

process stuck into a shallow local minimum. When the batch size is set to one (loss and 

backpropagation are computed after each example), this method is known as Stochastic Gradient 

Descent (SGD), while the case where batch size equals the size of the whole training dataset (loss 

and backpropagation are computed after one full epoch) is referred as Batch Gradient Descent: in 

practice an intermediate number is generally chosen, as a trade-off between the computing 

efficiency of the batched version that leverages vectorization and the frequent updates of the loss 

value of SGD. This last case is also frequently named Mini-batch Gradient Descent. A number of 

different optimization algorithms have been proposed as alternatives to GD [21], trying to achieve 

faster and/or more precise convergence, including the following: 

 Gradient descent with momentum: it attempts to make the descent faster by factoring the 

gradient values from previous steps in the parameters update criteria during 

backpropagation, as shown below: 

{
𝑤 ∶= 𝑤 − 𝜖𝑣𝑑𝑤
𝑏 ∶= 𝑏 − 𝜖𝑣𝑑𝑏

 ,    where    {
𝑣𝑑𝑤 = 𝛽𝑣𝑑𝑤 + (1 − 𝛽)

𝜕𝐽

𝜕𝑤

𝑣𝑑𝑏 = 𝛽𝑣𝑑𝑏 + (1 − 𝛽)
𝜕𝐽

𝜕𝑏

 

This is basically equivalent to using an exponential moving average of the latest gradients (which 

assigns an exponentially decaying weight to each averaged element, starting from the most recent) 

instead of the current value like the SGD did. This way, the optimization will be less prone to move 

in directions with oscillating gradients. The 𝛽 hyperparameter controls how wide the moving 

average window actually is, and with the commonly used value of 0.9, roughly the most recent ten 

records in the average have a non-negligible effect.  

 RMSprop: the concept is similar to that introduced by momentum, but instead of simply 

accounting for the average gradient, it introduces a damping factor, reducing the effect of 

oscillating gradients on the update rule. It is formalised as: 

 

{
𝑤 ∶= 𝑤 − 𝜖

𝜕𝐽

𝜕𝑤

1

√𝑆𝑑𝑤

𝑏 ∶= 𝑏 − 𝜖
𝜕𝐽

𝜕𝑏

1

√𝑆𝑑𝑏

 ,    where    {
𝑆𝑑𝑤 = 𝛽𝑆𝑑𝑤 + (1 − 𝛽)(

𝜕𝐽

𝜕𝑤
)2

𝑆𝑑𝑏 = 𝛽𝑆𝑑𝑏 + (1 − 𝛽)(
𝜕𝐽

𝜕𝑏
)2
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 Adam: its name stands for Adaptive moment estimation and it combines the two EMA terms 

of the previously described methods into one single update rule. However, instead of directly 

using the averages as computed above, it also applies bias correction that accounts for the 

effect of missing values in the first few iterations of computation. The final form of the 

update criterion is hence: 

{
 
 

 
 𝑤 ∶= 𝑤 − 𝜖

𝑣𝑑𝑤
𝑐𝑜𝑟𝑟

√𝑆𝑑𝑤
𝑐𝑜𝑟𝑟

𝑤 ∶= 𝑤 − 𝜖
𝑣𝑑𝑏
𝑐𝑜𝑟𝑟

√𝑆𝑑𝑏
𝑐𝑜𝑟𝑟

 

 

Here, the generic bias-corrected EMA is calculated as:  

𝑎𝑣𝑔𝑐𝑜𝑟𝑟 =
𝑎𝑣𝑔

1 − 𝛽𝑡
 

 

where t is the current iteration number. As expected, the bias correction has a diminishing 

effect as t increases. 

Considering all the topics above, the basic elements making up any ANN can be summed up in: 

1. Neurons and their associated activation function. 

2. Learning algorithm and optimization method. 

3. Architecture, which defines the network size (number of layers, neurons per layer) and 

neurons interconnectivity. 

1.3.2 Application to Image Processing 

In principle, the most basic architecture described above, usually known as feed-forward 

architecture, where each neuron is connected to every other unit of the previous and following 

layers, could be applied directly in computer vision tasks by using the image pixels as features for 

the input layer. However, such an approach easily leads to an unsustainable increase in the number 

of learnable parameters (weights and biases) and it is hence viable only for low-resolution images. 

For example, a simple 512x512 RGB picture contains 786432 input features: considering a single 

hidden layer with 1000 neurons, the total number of parameters for this simple network already 

approaches one billion. As a consequence, a network like this is prone to overfitting without a 

consistent amount of training data, while still being too shallow to learn the complex patterns that 

are often part of imagery data (this brings to high bias, high variance models). The architecture that 

managed to solve these problems and first enabled to apply deep learning to computer vision with 

great success is the Convolutional Neural Network (CNN). 

1.3.3 2D Convolution 

As suggested by its name, the basic concept behind this architecture is the 2D convolution, an 

operator commonly used in many traditional image processing algorithms and whose mathematical 

formulation is usually written as:  
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𝑦[𝑖, 𝑗] = ℎ[𝑚, 𝑛] ∗ 𝑥[𝑖, 𝑗] = ∑ ∑ ℎ[𝑚, 𝑛]𝑥[𝑖 − 𝑚, 𝑗 − 𝑛]

𝑁

𝑛=−𝑁

𝑀

𝑚=−𝑀

 

where x is the input image, h is a [2M+1; 2N+1] matrix called “kernel” and y is the output image 

after convolution. Intuitively, convolution can be seen as the sliding of the kernel over the whole 

image, during which the value of the output image at the current position is calculated as the sum 

of the input pixels, weighted with the corresponding kernel values. There are two main approaches 

for handling the calculation when the kernel is centred near the border of the input image: 

1. Compute the convolution only for the positions where the kernel is completely contained 

inside the input image. This is also called “valid” convolution. For an input size of [w; h] and 

a kernel size of [m; n], it generates an output of lower size [w-m+1; h-n+1]. 

2. Compute the convolution for all the input pixels, by adding p pixels, usually set to the value 

of 0, along the border of the input image (zero padding). When applying convolution on one 

image of size [w; h], padded with p pixels, and a kernel of size [m; n], the output size is 

[w+2p’-m+1; h+2p’’-n+1]. The number of padding pixels is usually chosen so that the 

convolution operation leaves the image size untouched, which means: 

 

{
𝑤 = 𝑤 + 2𝑝′ −𝑚+ 1

ℎ = ℎ + 2𝑝′′ − 𝑛 + 1

             
→   {

𝑝′ =
𝑚 − 1

2

𝑝′′ =
𝑛 − 1

2

 

 

When these conditions are met, this is also called “same” convolution. 

For deep learning applications, another very common parameter that controls the convolution 

behaviour is the stride, which sets the step for the kernel sliding over the image. Factoring in the 

stride s, the general output size becomes [
𝑤+2𝑝′−𝑚

𝑠
+ 1;

ℎ+2𝑝′′−𝑛

𝑠
+ 1]. 

1.3.4 Basic architecture of a CNN 

The main difference between traditional convolutional filters used in image processing and those 

used in CNNs is that the kernel coefficients are not set beforehand, but they are part of the learnable 

parameters during training. A general CNN architecture is usually composed of two main macro 

blocks [22]. The first one takes an image as input and sequentially processes it into higher-level, 

lower-sized feature maps. For this reason, this part of the network can be seen as a feature 

extractor. The most common layers found in this block are: 

 Convolutional (conv) layer: the core layer of any CNN, it applies convolution as described 

above between its input and a certain number of kernels. Its operation depends on four 

tuneable hyperparameters: kernel size, padding, stride and number of filters to apply. The 

output of a convolutional layer is a collection of feature maps, whose size in the first two 

dimensions depends on the combination of kernel size, padding and stride as formulated 

above, and a size in the third dimension corresponding to the number of filters of the layer. 

With a kernel size of [n; m] and a number of filters f, the number of learnable parameters is 

given by nxm weights and a bias term for each filter, for a total of (𝑛 ∙ 𝑚 + 1) ∙ 𝑓 parameters, 
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irrespective of input volume size. The advantage of using convolutional layers in place of 

fully-connected layers of parameters needed is thus clear. Usually, the output volume of any 

conv layer is fed into a common activation function, typically ReLu. 

 Batch normalization layer [23]: although not born in the context of convolutional networks 

and not being a standard block ubiquitously found in any CNN, this layer is an important 

component of many architectures. Its job is to normalize the batch of data outputted by a 

given layer; however, instead of computing a hard-coded normalization, this layer tries to 

learn the most suitable normalization directly from data. To do this, it brings two learnable 

parameters, γ and β, which are used to calculate the transform the input features as follows:  

𝑥′ = 𝛾 ∙ 𝑥𝑛𝑜𝑟𝑚 + 𝛽, where 𝑥𝑛𝑜𝑟𝑚 is the normalized input batch 

 

 𝑥𝑛𝑜𝑟𝑚 =
𝑥−µ

√𝜎2+𝜖
 𝜇 =

1

𝑀
∑ 𝑥𝑖
𝑀
𝑖=1  𝜎2 =

1

𝑀
∑ (𝑥𝑖 − 𝜇)
𝑀
𝑖=1 .  

 

Basically, this layer first transforms the input batch into a zero mean and unitary standard 

deviation distribution, then it adds a new mean and variance that is adjusted as the training 

process advances. In addition, it also store the value of the moving averages of these two 

parameters through the iterations, making up two additional non-learnable parameters. 

Their value is used to apply batch normalization at inference time, when each input example 

is processed separately. When present, batch normalization can be placed both before and 

after the activation function of a convolutional layer; while there is no clear advantage of an 

approach over the other, this layer is most often placed before applying the non-linearity, as 

suggested by its introduction paper. 

 Pooling layer: the main purpose of this layer is to reduce the spatial size of the input feature 

volume, to lower the parameters and computational effort needed for the deeper layers. 

This layer operates independently on every slice of the input volume and its behaviour is 

controlled by two hyperparameters: pooling region size (f) and stride (s). For an input volume 

of size [w’; h’; d’], a pooling layer outputs a volume of size 
 

{
 
 

 
 𝑤′′ =

𝑤′ − 𝑓

𝑠
+ 1

ℎ′′ =
ℎ′ − 𝑓

𝑠
+ 1

𝑑′′ = 𝑑′

 

 

These two hyperparameters are usually chosen equal with a value of 2, which yields 2x2 non-

overlapping pooling regions, with the effect of downsampling by a factor of two. For each 

pooling region, the output value is chosen by using one of the following pooling methods: 

1. Max pooling: the output is set to the maximum value in the pooling region. This is by 

far the most used alternative. 

2. Average pooling: the output is set to the average of the pooling region values. 

Historically, this was the first pooling method used, but nowadays it is almost always 

replaced with max pooling. 

3. L2-norm pooling: the output is set to the computed L2 norm of the values inside the 

pooling region. 
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Pooling layers do not introduce any learnable parameter in the network. The most recent 

CNN architectures have seen a reduced use of pooling layers in favour of convolutions with 

higher stride values. 

The second block of a CNN takes the feature maps computed by the first block, flattens them to a 

feature vector and feeds it to a fully connected section for classification. The main layer types of this 

second block are: 

 Fully-connected (FC) layer: the main component of non-convolutional feed-forward neural 

networks, where each neuron is connected to all units of the following layer. The only 

hyperparameter of this layer is the number of neurons. The total learnable parameters for 

one of this layer are: (𝑛𝑖 + 1) ∙ 𝑛𝑖+1, where ni is the number of neurons in the ith FC layer 

and ni+1 the one of the following FC layer. The number of units of the first layer must be 

equal to the length of the flattened feature vector coming from the feature extracting block, 

while last layer units depend on the number of classes for the classification problem 

considered. 

 Softmax layer: transform the last FC layer output vector 𝑥 = (

𝑥1
⋮
𝑥𝑛
)  into a vector of 

probabilities 𝑝 = (

𝑝1
⋮
𝑝𝑛
), where each element 𝑝𝑖 =

𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

 is the probability of classification 

in the corresponding class. 

 Classification layer: this layer defines the classification result as the class with the highest 

classification probability. 

 

 

 

Figure 1.7: Typical CNN architecture 
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Materials and methods 
2.1 Dataset 

The image data used in this thesis work consists in a dataset proposed by Kumar et al. [24] as a 

standard to develop and validate nuclear segmentation algorithms on histological images. The 

dataset is composed by thirty 1000x1000 images, carefully extracted from TGCA (The Cancer 

Genomic Atlas) WSIs to contain a representative selection of different organs and structures. The 

original WSIs are H&E stained slides, captured at 40x magnification factor. To enhance the variability 

of nuclear appearance, the following criteria were used to extract any of the 30 images: 

 Each image comes from a different patient biopsy, to include inter-subject variability. 

 The biopsies are extracted from one of these seven organs: breast, liver, kidney, prostate, 

bladder, colon and stomach. This ensures the presence of different phenotypic traits. 

 The biopsies used are prepared in 18 different hospitals, to account for variation due to 

different staining protocols. 

The ground-truth is represented by the separate segmentation of each nucleus, for a total of 21623 

objects, and the manual annotations quality has been reviewed by an expert pathologist; the 

authors report the number of incorrect annotations for any given image to be lower than 1% of the 

total. Following the authors suggestion, the dataset was split as follows: 

 Training set (13 images, from four of the seven organs): used for the training of both the 

segmentation and detection networks. 

 Validation set (3 images, same organs of the train set): used to compute the training metrics 

at each epoch of the training process. 

 Test set 1 (8 images, same organs of the train set): used to assess the framework ability to 

generalize learned tasks to images never seen by network during training. 

 Test set 2 (6 images, from three different organs): used to further benchmark generalization 

by using nuclei from organs that were excluded from training. 

Figure 2.1: An example of 1000x1000 image from the dataset with its associated ground truth annotations 
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In addition to the dataset described above, the starting material for this work already includes the 

softmax probability maps generated by a U-Net like segmentation network. This network was 

trained on a 3 classes segmentation problem (nucleus, nucleus border and background) on the 

above mentioned training set, as already proposed by Kumar. In particular, the softmax is coded as 

a 3-channels RGB image, where for each pixel the red value is the probability of being part of the 

background, the green value is the probability of constituting a nuclear border and the blue one the 

likelihood of being part of a nuclear body. Being a graphical representation of probabilities, the sum 

over the three channels for any given pixel always amounts to one. The introduction of the border 

class should make it easier for the network to learn to separate close distinct nuclei from each other, 

however many instances where two or more nuclei segmentations are fused without any border 

are still observable.  

  

This dataset was the subject of the MoNuSeg 2018 Challenge [25], whose results are reported in 

[article]. In this case, though, all 30 images of this dataset were used as training data, while a 

separate test set of 14 images was provided to participants after the submissions deadline. 

2.2 Previous work 

To the best of my knowledge, no available published work tries to combine deep learning 

frameworks with traditional post-processing techniques in the same way explored in this thesis 

(evolution of active contours on softmax probability maps and their initialization through an object 

detection model). Outside of the medical imaging field, the integration of deep learning methods 

with active contours has been recently addressed by the work of Rupprecht et al., who developed 

an interactive segmentation method that they named “Deep Active Contours” [26]. Given an 

evolving geometrical active contour, a class-specific convolutional neural network is trained to 

predict, for each point of the contour, a vector pointing to the closest point on the boundary of the 

object to be segmented. The vector field originated from all the contour points is subsequently used 

to iteratively evolve the contour. The authors also demonstrate the potential applicability of their 

method to the medical field by successfully segmenting the left ventricular cavity of MRI 

Figure 2.2: Fused nuclei in the softmax probability map 
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acquisitions. More recently, Marcos et al. developed and end-to-end trainable framework for the 

segmentation of buildings on aerial images [27]. This framework, named DSAC (Deep Structured 

Active Contours), aims to combine the typically high detection rate of CNNs with the geometric 

correctness of snakes. In contrast with the previously described paper and the approach used in this 

thesis (using deep learning initialized snakes as a post-processing step for the segmentation 

network), the authors managed to integrate the contour evolution into a loss term, thus making it 

a central part of the CNN training process. 

In the histological imaging field, Kumar et al. presented a segmentation framework based on their 

own proposed dataset [24], the same used for this thesis. Their method is based on a CNN with 

three cascaded convolutional/pooling blocks and two FC layers, that classifies each pixel in one of 

three classes (inside/outside of a nucleus and nuclear border). To reach the nuclear segmentation 

starting from the three-class softmax map outputted by the network, the “inside probability” is 

thresholded to obtain nuclear seeds which are then expanded using region growing. The proposed 

idea of explicitly introducing a separate class for the nuclear border helps with the segmentation of 

crowded and touching nuclei. 

2.3 Pre-processing 

2.3.1 Color normalization 

The images provided already went through a pre-processing step of color normalization, to minimize 

the color variations that purposely affect the dataset. This is a standard pre-processing step when 

dealing with histological image analysis, as the strong color variability could otherwise excessively 

bias the algorithm learning process. Color normalization includes a wide set of techniques, all aimed 

at compensating the color variations on a given group of input images to make them as coherent as 

possible with a reference image. The choice of the normalization technique to implement is quiet 

important, as it can significantly influence the performance of any classifier or detector later applied 

and it should be evaluated considering a number of factors: impact on the overall image quality and 

details, degree of coherence with the original coloration, presence of artefacts, computation 

complexity and others. Due to the importance of this step on the whole histopathological image 

analysis process, a great number of techniques have been proposed in the recent years [28]. 

Although now mainly outdated, some of the most historically important among the others are:  

 Histogram Specification [29]: one of the first attempt to color normalization on histological 

images. It can be rather limited and yield unsatisfactory results when the statistics of source 

and target images are highly dissimilar. 

 Color Deconvolution: known as the first methods to successfully separate stains in a 

histology image. This can be particularly interesting because each stain usually highlights 

particular biological structures. 

 Spectral Decomposition [30]: employs Non-negative matrix factorization to decompose the 

input image, but it presents scaling ambiguities, as the solution to NMF is not closed. 

 Macenko [31]: it is a fast and automatic method to perform stain separation, but a consistent 

amount of information from source image can be lost, which can be unacceptable for certain 

analyses.  



21 
 

In more recent times, some deep learning related techniques have also been proposed [28] and 

evaluated; the most promising approaches are based on Generative Adversarial Networks (GANs) 

and Cycle-GANs. 

2.3.2 Patch extraction 

First of all, bounding box information is extracted from the annotation data structure associated 

with the dataset. Each bounding box is expressed with its centre coordinates, its width and height, 

all normalized between 0 and 1 in respect of the total image (or patch) length. Afterwards, before 

proceeding with the training of an object detection model, the dataset is offline preprocessed to be 

divided into square patches through a dedicate Matlab script. Each patch is saved as a separate 

image, along with the coordinates of any bounding boxes on the whole image whose centroid lies 

in the patch itself and the information needed to correctly reconstruct the original image during 

subsequent model inferencing on the patches (coordinates of the higher left pixel and size of the 

patch). The parameters that can be set to control the way that the square patches are extracted 

are: 

1. Patch size (N): when N is selected to any value below half the size of the image (500), the 

maximum number of non-overlapping patches of size NxN is extracted to cover up the full 

image. On the other hand, when the selected size exceeds this threshold, four patches are 

always extracted, one for each corner of the input image. 

2. Extraction at grid intersections: optionally, the patches centred on the grid intersections 

formed by the borders of the previously included patches can also be extracted. The idea 

behind this possibility is to increase the number of training examples, providing a first offline 

form of data augmentation. 

Figure 2.3: An image from the second test set before and after color normalization 
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Two representative examples of the described patching process are reported below, with a selected 

patch size of 250x250 and 640x640 respectively.  

 

2.4 Object Detection 

The first step of the proposed method is the training of an object detection model, through the 

same 13 training images used for the U-Net training. When the relevant architectures linked to this 

work make use of more advanced layers that those discussed in the introduction chapter, those will 

be briefly explained in dedicated subparagraphs. 

2.4.1 Computer Vision tasks 

Object detection is a computer vision task that has seen a very strong growth in the recent past. 

Considering the complexities associated with image data and the breadth of the field, computer 

vision is rich of challenges that are now approachable through the use of deep learning [32]. Some 

of the most common and relevant for this work are: 

 Image classification: it consists in assigning a single label to the whole image, based on its 

content. This is one of the first addressed and relatively simple computer vision tasks and it 

can be attained with the basic CNN structure described in the introduction. 

 Classification and localization: this is similar to the previous task, but instead of just 

recognizing the main subject of the image and assigning a proper class, it also highlights the 

spatial location of the object using a bounding box. This is still limited to a single object per 

image. 

 Semantic segmentation: the whole input image is segmented by assigning a class to each 

pixel. No notion of object is introduced, so this approach may not be suitable for the 

segmentation of crowded or overlapping subjects, when distinguishing between instances is 

Figure 2.4: Patch extraction from the full image (on the left 250x250, on the right 1000x1000 
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needed. This task can be successfully performed with deep learning segmentation 

architectures such as U-Net. 

 Object detection: the goal of object detection is to detect every instance of different objects 

of interest in a picture, as well as to highlight its spatial localisation with a bounding box.  

Considering the need to identify an unknown number of instances of possibly very different 

object classes, object detection is an inherently harder task compared to those listed above. 

 Instance segmentation: just like object detection, all instances of different objects are 

detected, however, in addition to that, each instance is also segmented at pixel level. 

 

Figure 2.5: Examples of different computer vision tasks 

2.4.2 One-stage and two-stage object detectors 

Object detection models typically fall in two main categories, in respect of their approach to the 

detection problem: one-stage and two-stage detectors [33]. One-stage detectors directly treat 

detection as a regression problem: starting from the input image, they output a collection of 

bounding boxes that can be positioned on any part of the 

image, in terms of their coordinates and object class. 

During backpropagtion, the coordinates and classes 

computed during the forward pass are used along with 

ground-truth annotations to compute some kind of paired 

regression and classification losses. One-stage detectors 

have the distinctive advantage of being very fast at 

evaluation time, making real-time inference possible even 

on consumer grade hardware. The most representative 

models of this object detectors type are YOLO (acronym 

for You Only Look Once), SSD (Single Shot Detector) and 

RetinaNet. Two-stage detectors on the other hand split up 

the detection process in two separate phases: 

1. Proposals generation: during this phase, the model identifies regions on the input image that 

are most likely to contain an object. These proposal regions (or Regions of Interest; ROI) can 

either be performed by specific algorithms (such as selective search) for former detectors or 

by a neural network itself (usually called Region Proposal Network; RPN) in more recent 

Figure 2.6: One-stage and two-stage object detectors 
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models. Especially when using dedicated algorithms, this stage is usually the weak part of 

two stage-detectors when it comes to computational time. 

2. Classification: the proposals from the previous step are classified into object classes or 

background by a dedicated network. The network may include a regression branch to further 

refine the bounding box position in the proposed region. 

Due to their indirect nature, two-stage detectors are fairly slower than one-stage solutions, however 

they can reach better detection performance on average. Some import two-stage detectors are R-

CNN and its evolutions (Fast and Faster R-CNN) and FPN (Feature Pyramid Network). The above is 

just a general principle of working, which may of course vary significantly even between two 

detectors of the same family. 

2.4.3 Common datasets and evaluation metrics 

Just like any other computer vision task, in particular when deep learning methods are involved, 

availability of abundant and high quality annotated data is crucial to obtain good performances and, 

even more importantly, to fuel and accelerate the development of new relevant techniques and 

algorithms in the field. Indeed, even the first detectors with concrete applications only dates back 

to the first years of the new century and the time span between new milestones still laid in the order 

of several years.  These first successful algorithms, such as the Viola James detector and Deformable 

Part Models (DPM), are based on the extraction of statistical handpicked features and on traditional 

image processing techniques based on sliding window approaches. It was only in the last decade, 

with the advent of CNNs and the public availability of large and well balanced general-purpose 

datasets, that deep learning could see its first significant adoption in the object detection field, with 

an incredible reduction in the time between new detectors setting the bar higher for state-of-the-

art detection. Many datasets have since become a standard benchmark to assess performances of 

newly proposed methods in a reproducible way and are easily found in any object detection paper. 

In the following list, the most common will be cited, along with their salient peculiarities [33][34]: 

 PASCAL Visual Object Classes (VOC): subject of yearly challenges between 2005 and 2012, it 

was one of the earliest large bounding box annotated datasets in the computer vision 

community. In particular, two versions have become a standard benchmark in object 

detection: VOC 2007 and VOC 2012. They feature 5k/11k training images and 12k/27k 

annotated instances respectively, belonging to 20 classes.  With the release of new and more 

challenging datasets, VOC is now mainly used to provide a fair comparison with previous 

related works. 

 ILSVRC: based on the well-known ImageNet dataset for image classification, it provides a 

higher variety than VOC, thanks to its 200 classes, spread through 517k images and 534k 

annotations. 

 MS-COCO: probably the most challenging general-purpose dataset available as of today for 

detection tasks, it offers 80 object categories, which is less than ILSVRC, but with a fairly 

higher instances to images ratio (897k annotations over 164k images). Moreover, it contains 

more small objects (with an area less than 1% of the whole image), which usually represent 

a higher detection challenge. Each annotation also include the complete instance 

segmentation of the object, making it ideal for models like Faster RCNN that can also perform 
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this kind of task. Thanks to its peculiarities that make it a good sample of real world images, 

COCO has become the current standard of model benchmarking. 

 Open Images: released in 2018, it pushes the amount of data in a single dataset to new highs. 

In fact, it is composed by almost 2M images, with a number of annotations just below 16M 

and 600 separate object classes. 

Of course, many other field-specific datasets exist and are insightful to compare proposed works in 

that relevant field, just as the dataset used in this thesis is one of the standards for nuclear 

segmentation. After introducing the datasets, another important point that needs to be discussed 

to achieve truly reproducible comparisons is the evaluation metrics employed to evaluate 

performance. In recent times, the most used metric for object detection has undoubtedly been the 

mean Average Precision (mAP) [33][34]. It is based on Average Precision, which is defined as the 

average value of precision at different levels of recall. Hence, it is computed by estimating the AUC 

(area under curve) for the precision-recall curve. All the AP values calculated separately on each 

class are then averaged to obtain the final mAP value. 

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

        ;        𝐴𝑃𝑖 = ∫ 𝑝𝑖(𝑟)𝑑𝑟
1

0

 

Where p and r indicates precision and recall respectively, computed with their typical formulations: 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     ;      𝑟 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Figure 2.7: Precision-Recall curve - the blue area yields the AP value 

However, an important factor to consider when performing mAP computation is how a certain 

prediction is considered as a TP or a FP. To do this, Intersection over Union (IoU) is employed: it is 

defined as the ratio of the area of intersection between a given predicted box and the ground-truth 

box and the total union area. Typically, an IoU of 0.5 is considered the minimum threshold for an 

accettable localization, while anything under that is considered a miss. In fact, this standard value 

has been used to compute mAP since the introduction of VOC challenge and the metric is also 

indicated as mAP@0.5. In the last few years though, with the introduction of COCO dataset and 

mailto:mAP@0.5
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justified by the increasing localization capability of detectors, the practice of considering detection 

quality at stricter IoU values has been increasingly common and the standard is now to provide a 

mAP calculation averaged over multiple IoU threshold values, most often from 0.5 (coarse 

localization) to 0.95 (almost perfect localization). This metric is usually reported as mAP@0.5.0.95 

and, despite being at first criticized by some researchers, this is now the metric on which state-of-

the-art performance is defined. 

 

Figure 2.8: IoU definition 

2.4.4 Non-Maximum Suppression 

Non-Maximum Suppression (NMS) is a core algorithm in computer vision, especially for object 

detection tasks. Traditionally, it is used as a post-processing step after model inference, but in some 

cases it is also applied during training (like in Faster RCNN, where it is applied after RPN to reduce 

the number of proposals) and recently some papers pushed further by making it a part of the end-

to-end learning process of the model. Most algorithms and models for detection, especially those 

that rely on region proposals (such as two-stage detectors), generate a great number of predictions 

even when the number of objects on an image is limited. Each prediction is accompanied by a score, 

indicating the confidence of the model that the proposed bounding box corresponds to an actual 

object of a particular class in that position. Consequently, a model outputs multiple bounding boxes 

in close proximity when trying to predict the localization of a single object. Of course this can be 

suboptimal, especially for applications where a good estimation of the number of instances is 

important, and it strongly affects the general precision offered by that model. NMS tries to address 

this problem and reduce all the duplicate predictions to a single, most representative box. In its 

basic form, also referred as “Greedy NMS”, it is an iterative algorithm that takes the predicted 

bounding boxes and their associated confidence scores in input and returns a new, reduced set of 

predictions. As a first step, predictions are sorted in descending score order; in a single iteration of 

the algorithm, the first prediction (highest-scoring, also called maximal prediction) is selected and 

moved to the final predictions set. The IoU of this prediction with all the others is then calculated 

and any box with an IOU greater than a certain threshold with the selected box is discarded. The 

process then repeats by picking a new maximal box from the remaining list and it only stops when 

all the original boxes have been either selected or removed. The computational complexity of NMS 

mailto:mAP@0.5.0.95


27 
 

for a set of N boxes is O(N2), so all the predictions with a confidence below a minimum value are 

usually removed prior to the actual application of the algorithm. The reasoning behind NMS is that 

for each object in the input image, the detector is expected to output a cluster of boxes with 

different confidence in its surroundings: NMS considers any prediction with enough overlap with 

the most confident one to just be a weaker detection of the same object and suppresses it.  When 

this is the case, NMS can lead to significant precision increments without any impact on the recall. 

However, in a general scenario where separate objects can be close and have a partially overlapping 

bounding boxes, the choice of the IoU threshold is not trivial: a threshold too high can defeat the 

purpose of the algorithm, leaving a significant number of false positives, while a low value starts to 

cause the suppression of close true positive detections due to their partial overlap. Therefore, the 

possible trade-off between increased precision and lowered recall must always be accounted when 

setting the threshold value. Moreover, the highest confidence score box is not guaranteed to be the 

most accurate prediction for a given ground-truth object [33].  

 

Figure 2.9: Typical NMS shortcomings: a) The highest confident box is not the most fitting. b) Suppression of close TPs. c) Non 
overlapped FPs. 

Despite Greedy NMS still being the most generally used post-processing method, many variations 

have been developed through the years, trying to overcome the basic implementation limitations; 

these can roughly be grouped in three categories: 

 Modifications to the greedy approach: these methods apply the same iterative process of 

tradition NMS, but try to introduce more solid suppression criteria than the simple IoU 

evaluation. A fitting example is represented by an approach called “Soft-NMS” [35]: when a 

prediction overlaps with the maximal box for a higher portion than the IoU threshold set, its 

confidence is reduced through a rescoring function, instead of being removed directly. The 

score decay depends on the entity of the overlap and is computed using a Gaussian penalty 

function: 𝑠𝑖 = 𝑠𝑖𝑒
−
𝐼𝑜𝑈(𝑀,𝑏𝑖)

2

𝜎 , where M is the highest-scoring prediction, 𝑏𝑖 and 𝑠𝑖 are a 

generic box compared to M and its corresponding score. By doing so, the predictions with a 

consistent overlap are heavily penalized, while potential true positives close to each other 
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still have a chance of being maintained if the inference threshold used in model evaluation 

is low enough. Despite being a fairly simple variation over traditional NMS, improvements 

of about 1% AP@0.5:0.95 are reported on COCO and VOC 2007 datasets, with two-stage 

detectors obtaining greater benefits than single-stage solutions. 

 Bounding boxes aggregation: instead of keeping only one highest-confident prediction and 

removing the others nearby, these methods try to use the information coming from each 

bounding box to combine them into one final detection. One of the most recent examples is 

represented by Weighted Boxes Fusion (WBS). Predictions given in input to this method are 

first clustered by using a simple IoU criterion and for each of them a representative box, 

whose confidence score is equal to the mean of the cluster’s confidence scores and 

coordinates are computed as a score-weighted average of all the boxes that compose the 

cluster. WBS proved to be mostly useful when processing multiple predictions coming from 

model ensembling, whereas its application as a direct NMS replacement on a single model 

output is usually slightly detrimental [36]. 

 Integration of NMS into the learning process: considering its importance in almost all object 

detection pipelines, NMS is directly integrated in the training workflow of the model, in place 

of being used as a post-processing step after model inference. Some approaches follow the 

reasoning behind Soft-NMS of decaying confidence scores of close predictions, but instead 

of doing that in a predefined way, they introduce a specific convolutional network to 

perform this task [37]. In other works, such as in [38], one or more NMS related cost terms 

are formulated and added to the loss of a standard detection architecture. The advantage of 

these end-to end solutions is that they do not require any tune of parameters after their 

training, which is one of the main problems for traditional NMS. 

Regardless of its great impact on detection results and of any further enhancement that might be 

introduced, NMS remains a final step in the detection pipeline, as it cannot help in the removal of 

false positive instances that are not due to double detections, but caused by the model itself 

identifying a portion of background as an object. 

2.4.5 YOLO architecture 

In the context of this thesis, a YOLO object detection model was chosen. Before describing the model 

training approach used and its results, a brief introduction to the algorithm is reported. YOLO is a 

single stage object detection model proposed by Redmon et al in 2016 [39] and it is the real first 

one-stage detector to reach real-time performance (at least 30 fps inference), without a big 

performance trade off when compared to contemporary state of the art two-stage detectors. The 

distinctive point of YOLO lies in reframing object detection as a single regression problem, which 

predicts bounding boxes and their associated class labels directly from the whole input image. This 

allows to approach the detection problem using a single standard CNN architecture, consisting of 

alternating convolutional and max-pooling layers followed by two FC layers as pictured below.  

mailto:AP@0.5:0.95


29 
 

It employs 1x1 convolutional layers, which might at first seem like a meaningless operation, but it is 

actually common practice in many modern architectures. In fact, when applied to a 2D matrix it is 

nothing more than a multiplication for a constant, but when used on a volume as it is the case for 

feature maps, it actually computes an element wise multiplication, thus reducing the volume to a 

single 2D output. As any convolutional layer, an arbitrary number of 1x1 filters can be applied, so 

for an input of size [W; H; D], the output will be [W; H; D’], where D’ is the number of 1x1 kernels 

applied by the layer. 1x1 convolutions can then be seen as a convenient way of shrinking or 

expanding the feature map depth-wise without changing the first two dimensions, just like strides 

on convolutional layers and max-pooling are used to control height and width of representations 

through different network levels. The concept of 1x1 convolutional layers was first introduced by 

Lin et al, which referred to it as a “Network in Network” approach [40], as each 1x1 kernel sliding 

on the input can be seen as a neuron of a FC layer connected to each 1x1xD portion of the volume. 

 

Figure 2.10 1x1 convolution 

The CNN takes a 448x448 RGB image in input and outputs a volume of size 7x7x30 containing the 

bounding boxes predictions. The basic steps followed by YOLO to generate such predictions are: 

 Divide the input image into a grid containing SxS cells. Each grid cell will be responsible for 

the detection of one object whose center lies inside the cell. 
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 For each cell, predict B bounding boxes and associated conficidence scores. That score 

factors the detector’s confidence that the box actually contains an object as well as the 

confidence in the box localization accuracy; it is formulated as the product of the probability 

of containing an object with the intersection over union of the prediction with the 

corresponding ground-truth box: 𝑐𝑜𝑛𝑓 = Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∙ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ. Each bounding box is 

made up of five predictions (x, y, w, h, conf): the pair of coordinates (x, y) is the centre of the 

box, relative to the grid cell borders, w and h are box width and height, normalized by the 

whole image size, and 𝑐𝑜𝑛𝑓 is the confidence score as above. This way all the box predictions 

for any given cell are normalized in the range [0; 1], which make the optimization of the 

regression loss easier. 

 Prediction of C conditional class probabilities for each grid cell. These probabilities are 

conditioned on the cell containing an object and are hence expressed as Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡). 

 During test time, the conditional class probabilities are multiplied with the individual 

confidence score of boxes inside the same grid cell to obtain the final class-specific 

confidence scores for each box. 

𝑐𝑜𝑛𝑓𝑓𝑖𝑛𝑎𝑙 = Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∙ Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∙ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = Pr(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ 

 All the predictions from the last FC layer are thus rearranged into an SxSx(5B+C) tensor: the 

first two dimensions come from the grid cell subdivision, while the third depends on the five 

predictions of each box (center coordinates, box size and confidence score) and the 

classification scores of the grid cells. In the original paper implementation, evaluated on VOC 

dataset, the input image is divided in 49 cells (S = 7), each predicting two bounding boxes (B 

= 2) to detect object of twenty separate classes (C = 20). As a consequence, the final tensor 

yielded by the described CNN architecture is 7x7x30. 

 At the end of the inference phase, NMS is applied to remove possible double detections, due 

to big objects extending over more than one grid cell.  

 

Figure 2.11: Working principle of YOLO detector 
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The loss function used by YOLO is a multi-part sum squared error function, which is naturally suited 

for regression problems and easily optimized. It consist of a localization and classification 

contribute, so that the total loss can be written as: 𝐿 = 𝐿𝑙𝑜𝑐 + 𝐿𝑐𝑙𝑠, with: 

𝐿𝑙𝑜𝑐 = 𝜆𝑐𝑜𝑜𝑟𝑑∑∑1𝑖𝑗
𝑜𝑏𝑗 [(𝑥𝑖 − �̂�𝑖)

2 + (𝑦𝑖 − �̂�𝑖)
2 + (√𝑤𝑖 −√�̂�𝑖)

2
+ (√ℎ𝑖 −√ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

 

𝐿𝑐𝑙𝑠 =∑∑(1𝑖𝑗
𝑜𝑏𝑗 + 𝜆𝑛𝑜𝑜𝑏𝑗1𝑖𝑗

𝑛𝑜𝑜𝑏𝑗)(𝐶𝑖 − �̂�𝑖)
2
+∑∑1𝑖

𝑜𝑏𝑗(𝑝𝑖(𝑐) − �̂�𝑖(𝑐))
2

𝑐∈𝐶

𝑆2

𝑖=0

𝐵

𝑗=0

𝑆2

𝑖=0

 

In the equations above: 

 1𝑖𝑗
𝑜𝑏𝑗, 1𝑖𝑗

𝑜𝑏𝑗and 1𝑖𝑗
𝑜𝑏𝑗 are indicator functions that can only assume 0 and 1 values: 1𝑖𝑗

𝑜𝑏𝑗 and its 

complement 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗 indicate whether the j-th bounding box in i-th grid cell contains an 

object, 1𝑖
𝑜𝑏𝑗

 whether the i-th grid cell includes any object. 

 The first term of the classification loss accounts for the model’s ability to distinguish an actual 

object from the background, while the second one evaluates the objects classification into 

the correct classes. 

 The multiplicative constants 𝜆𝑐𝑜𝑜𝑟𝑑 and 𝜆𝑛𝑜𝑜𝑏𝑗, set to 5 and 0.5 respectively, are used to 

increase the localization term impact on the total loss and to reduce the weight of boxes 

that does not contain any object on the first term of the classification loss, considering that 

the number of grid cells that does not contain any instance is fairly high for a generic image. 

 All the terms inside summations except the indicator functions are not indexed over the j 

index (bounding box number inside a specific grid cell), because during training only the box 

with the highest IOU in each grid cell (I index) is used in the cost function computation. 

 The square root of the box width and height is used in the localization term so that the 

penalization accounts for box size (small errors have a higher impact when the true box is 

small). 

All the innovations introduced by YOLO enabled it to be both faster and much more performant 

than any previous window-based single stage detector, reaching more than 63% mAP at 45 FPS 

inference on VOC 2007 dataset, using a Titan X GPU. Compared to state of the art two-stage 

detectors like Faster RCNN, YOLO shows better generalization thanks to its ability to factor in the 

whole image context when making predictions, reducing the number of background false positives 

and making it a reasonable choice for tasks involving a high degree of variability, like that addressed 

in this thesis. Despite the numerous upsides, this original implementation still has different 

limitations, some of which make it unideal for the purpose of this work. To the high model precision 

corresponds a recall generally lower than two-stage models, along with a higher error associated 

with boxes spatial localization. The model can only locate two bounding boxes with a shared class 

per grid cell, so its performance is greatly reduced in case of small, grouped objects, which is the 

reason that lead to the introduction of an object detection model within the proposed framework 

in the first place. 
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2.4.6 Evolution of YOLO 

Following the publication of the first YOLO paper and its great impact in the field of computer vision, 

many new research works were published in a relatively short span of time in relation to one-stage 

detection, be they brand-new takes on the detection problem, such as SSD and RetinaNet, or 

improvements on the first YOLO algorithm. The same author of the original implementation 

published two new versions, YOLOv2 and YOLOv3, in 2017 and 2018 respectively. Other two newer 

implementations, YOLOv4 and YOLOv5, were released during 2020 and, while not officially linked 

with the original work, they maintain the name and its philosophy. A description of the most 

significant differences between the successive versions of YOLO is now reported. 

2.4.6.1 YOLOv2 

YOLOv2 was proposed to address the main shortcomings of the original implementation, namely 

the low number of detectable instances per image (49), the high number of localization error on TP 

boxes and the lower recall compared to contemporary two-stage detectors, all this while 

maintaining the great computational simplicity at its core [41]. The be able to make YOLO even 

faster despite the modifications discussed below, the authors replaced the original architecture with 

a whole new custom backbone called Darknet-19. This architecture, whose structure is summarised 

in the table below, is again based on alternating convolutional (19 in total) and max-pooling layers. 

It only requires 5.5 billion floating operations per single image as compared to 8.5 billion for the 

previous YOLO network, still reaching better classification accuracy on ImageNet.  

 
Figure 2.11: Darknet-19 architecture 

During the forward pass, the architecture performs a total downsampling of 32, so YOLO’s original 

input size of 448x448 is reduced to 416x416 to yield an odd size of 13x13 for the output feature 

map. 
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The main components that were added or modified to increase performance concerning the 

detection task are: 

1. Batch normalization: the addition of batch normalization layers after each convolutional 

layer of the architecture helps reaching convergence during training, without the need of 

supplementary forms of regularization and allows removing any dropout without incurring 

in overfitting problems. 

2. Introduction of anchor boxes: taking inspiration from successful detectors like RCNN [42], 

YOLOv2 removes the terminal FC layers and uses the concept of anchor boxes. Anchors are 

predefined box shapes that are selected to be a good representation of the training dataset 

annotation shapes. The idea behind anchor boxes is that the majority of objects in a given 

training dataset and, more in general, in the real world can be grouped in a set of typical 

height-width ratios. This significantly simplify the training phase, as the detector only has to 

refine the coordinates of the predictions starting from those of the anchors, instead of 

starting with random guesses placed anywhere on the image. In addition, prior boxes also 

naturally enhance the detection at multiple scales, providing improved recall. Instead of 

hand-picking them, YOLOv2 uses k-means clustering to generate the most suitable anchors 

for the dataset in use. For VOC and COCO datasets, k = 5 clusters were used. 

3. Instead of predicting unconstrained offsets from anchors coordinates like many region 

proposals based detectors, YOLOv2 keeps following the original idea of directly predicting 

bounding box coordinates, relative to the location of the grid cell. To obtain bounded 

predictions a logistic activation is used in the last convolutional layer. The model predicts k 

bounding boxes per grid cell, where k is the number of anchor boxes used and 5 coordinates 

(tx, ty, tw, th, to) plus class scores for each bounding box; a bounding box is also assigned to 

the anchor sharing the highest IoU with it. For a given prediction the final box coordinates 

are given by: 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥       ;       𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦    ;     𝑏𝑤 = 𝑝𝑤𝑒
𝑡𝑤     ;     𝑏ℎ = 𝑝ℎ𝑒

𝑡ℎ  

 𝑐𝑥 and 𝑐𝑦 are the position of the grid cell on the output feature map that contains 

the centre of the anchor responsible for the current detection. 

 𝜎 is the sigmoid function. 

  𝜎(𝑡𝑥) and 𝜎(𝑡𝑦) the offsets of the centre of the prediction from the grid cell border. 

 𝑡𝑤 and 𝑡ℎ control the adjustment of the prediction in respect of the anchor’s width 

and height. 

 𝑝𝑤 and 𝑝ℎ  are the anchor’s width and height. 

Figure 2.12: Bounding box regression 
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Finally, the last prediction to (objectness score) is used to calculate the box score as: 

Pr(𝑜𝑏𝑗𝑒𝑐𝑡) ∙ 𝐼𝑜𝑈(𝑏, 𝑜𝑏𝑗𝑒𝑐𝑡) =  𝜎(𝑡𝑜) 

4. Multi-scale training: the absence of FC layers enables the architecture to be easily resized 

during training iterations, enhancing the robustness of the detector to different input image 

sizes. 

5. Use of fine-grained features: the localization of small objects can usually benefit from the 

integration of higher resolution feature maps, as already proved by SSD detector. To take 

advantage of this, the second to last layer 26x26x512 feature map is fed into a pass-through 

layer, where it is reshaped to 13x13x2048 and concatenated to the original 13x13x1024 

feature map from the last convolutional layer. 

The final concatenated volume is eventually passed to a 1x1 convolutional layer that changes its 

depth, for a final shape of 13x13x125 encoding the predicted boxes when a standard VOC dataset 

is used. To sum it all up, YOLOv2 works on input RGB images of size 416x416 and returns a volume 

with shape SxSx[Kx(B+C)], where S defines the grid cell number (input size divided by 32), K is the 

number of boxes per grid cell (equal to the number of anchors), B the coordinates defining a box 

and C the number of classes (20 for VOC). Looking at the numbers, it is clear how YOLOv2 overcame 

the strict limitation on the number of detectable instances: the original paper implementation can 

in fact localize up to five objects per grid cell, for a maximum of 845 boxes, although this value can 

be increased by changing the number of clusters when performing k-means on the training dataset. 

At native resolution, this version provided performances in line with state-of-the-art at almost 70 

FPS, whereas higher resolution inputs outperform it with 78.6% mAP@0.5, still maintaining real 

time inference. 

 

1Figure 2.13: YOLOv2 full architecture with highlighted passthrough 

2.4.6.2 YOLOv3 

As already mentioned, YOLOv3 is the last official release by Joseph Redmon. As admittedly stated 

by its author, this is an all-round update integrating many new valid ideas proposed in the deep 

learning scenario after the previous release, on top of another new and deeper backbone feature 

extractor, called Darknet-53 [43]. Unsurprisingly, this architecture is composed by 53 convolutional 

layers and it merges the approach already followed by Darknet-19 with the introduction of skip 

connections: it is a concept introduced by He et al. in their paper [44] about the use of residual 

networks for image recognition, which consists in feeding a layer activation further in the network 

by adding it to the computation of a successive layer activation. Formally, a basic skip connection 

can be written as:  

𝑎𝑙+2 = 𝑓(𝑧𝑙+2 +𝑤𝑠𝑎
𝑙) 

where, following the notation already seen in the introductive chapter on neural networks, 𝑎 is the 

output of a layer after the activation is applied. F is the activation function of the current layer and 

mailto:mAP@0.5
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𝑧 is the output of a neuron prior to activation. The multiplicative term 𝑤𝑠 is a matrix of learnable 

parameters to make the skip connection feasible even when the two layers have different output 

size, otherwise the two terms inside the parenthesis could not be summed. This is most often not 

the case though, as “same” type of convolution is generally used in any residual CNN. The 

combination of the skip connection and the two layers that it connects is known as a residual block 

and it is the basic element of any residual network architecture (ResNet). The use of skip connections 

makes it possible to successfully train very deep networks, reason why the authors decided to 

exploit them in a very deep architecture like Darknet-53.  

 

Figure 2.14: YOLOv3 backbone Darknet-53 

For performing detection, several other convolutional layers are added to the base feature 

extractor, for a total of 106 layers. The encoding of predictions is not different from the previous 

version of YOLO, except for the classification part: this difference is due to the fact that newer 

datasets such as Open Images features non mutually exclusive classes (for instance, “person” and 

“woman”). Instead of using a softmax-like approach, where only one class is assigned to a given 

bounding box, YOLOv3 runs independent logistic classifiers for each class, allowing for multi-label 

classification. As a consequence, the classification term in the total loss is switched from the 

previous sum-error formulation to binary cross entropy. The most influential change for YOLOv3 is 

performing separate detections at three different scales, corresponding to downsampling factors of 

32, 16 and 8; as already explained for YOLOv2, the finer-grained features combined with the more 

abstract ones from deeper maps should help with the detection of small objects on the input image. 

The input image in the paper description is still 416x416, but it can be adjusted as long as it is a 

multiple of 32. First detections come from layer 82 in the network, on a 13x13 feature map. Then, 

the map from two layers prior is upsampled with a factor of 2 and concatenated with the map of a 



36 
 

shallower layer (61) and this 26x26 map is used to perform prediction at the second scale. This exact 

aggregation process, which adopts ideas behind Feature Pyramid Networks (FPN) [45], is repeated 

another time to get detections from the third and last scale, where a 52x52 map is outputted. Given 

the increased complexity of the architecture, a useful schematic is reported below. For YOLOv3, 

authors started to use COCO dataset to carry out evaluation (which has 80 separate class categories) 

and in the paper implementation they chose to use three anchor boxes for each scale. As a 

consequence, any given grid cell predicts three bounding boxes, encoded by using 255 numbers (3 

x (5+80)); considering the size of the feature maps used to perform detection at the three scales 

(13x13, 26x26, 52x52), YOLOv3 can localize up to 10647 instances on the input image, finally make 

it suitable for applications with a high density of objects. Due the rather deep and more complex 

backbone and detection head, YOLOV3 traded part of its unrivalled speed for a greater performance 

return: at standard 416x416 input resolution, it reaches 55.3% mAP@0.5 on the challenging COCO 

dataset, while still running at the edge of real-time inference and shows comparatively higher 

improvements in the correct localization of small objects. 

 

Figure 2.15: YOLOv3 full architecture 

2.4.6.3 YOLOv4 

YOLOv4 saw its release in the first half of 2020 and, as already hinted in this chapter introduction, it 

represents the first independent implementation since Joseph Redmon left computer vision 

research. As authors declare in the first part of their proposal paper, YOLOv4 is the result of 

extensive experimental evaluation on the impact of various new emerging concepts, which showed 

promising results in the deep learning field, when they are integrated with the YOLO base structure 

[46]. As a consequence, YOLOv4 is a fairly complex detector and an in-depth description of all the 

additions would require much more than a single subparagraph as this one and only the most 

impactful novelties regarding different aspects of the model will be discussed below. As far as the 

architecture is concerned, the key modifications are: 

mailto:mAP@0.5
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 Backbone: YOLOv4 is based on a modified version of the previous Darknet-53 feature 

extractor, called CSPDarknet-53. The introduction of Cross-stage partial connections (CSP) 

makes the CNN architecture computationally more efficient, while also increasing its base 

performance in classification tasks [47]. 

 Feature aggregation method: as discussed in its subparagraph, YOLOv3 used a concept 

similar to FPNs to combine the features from different levels in the network. Instead, YOLOv4 

relies on a newer approach called PANet [48]. 

 Spatial Pyramid Pooling (SPP) [49]: this block performs pooling in a different manner than 

classical pooling layers by outputting a fixed length feature vector irrespective of the size of 

the input. The introduction of a SPP block after backbone’s last convolutional layer increase 

the robustness of the architecture to input image size variations. 

 Mish activations: Mish is a relatively new activation function that proved to outperform ReLu 

in many experimental settings [50]. Its mathematical definition is:  

𝑀𝑖𝑠ℎ(𝑥) = 𝑥 ∙ tanh(ln(1 + 𝑒𝑥)) 

YOLOv4 doesn’t introduce any change concerning the detection head from YOLOv3, so predictions 

still come from three different scales and their encoding is unchanged. On contrast, new techniques 

were introduced to improve training process effectiveness: 

 Mosaic augmentation: at each iteration, input images 

in the batch are created as a combination of four 

separate training images, arranged in random 

proportions. This increase the model generalization, 

helping to correctly detect objects even when they 

are out of their typical context. 

 Self-Adversarial Training (SAT): during training, SAT 

identifies portions in the input images that are 

particularly critical to the model when taking 

predictions and alters them in an attempt to reduce 

this reliance that could possibly undermine the 

overall model generalization capability. 

 DropBlock regularization: it shares a similar aim with SAT, but this regularization method 

simply obscures a portion of the image directly in the input layer of the model. 

Thanks to the integration of the described methods among others, YOLOv4 outperforms the 

previous version both in terms of inference speed and mAP on COCO, with about 64% mAP@0.5 

and 44% mAP@0.5:0.95. 

2.4.6.4 YOLOv5 

Just a few months after the release of the previous version, another independent team published 

its contribution on making YOLO faster and more robust. The official paper is still due to be 

published, while the complete code is open-sourced and already available for use in a dedicated 

GitHub repository [51]. YOLOv5 doesn’t feature a high number of changes to the base architecture 

and can be seen like a parallel set of different optimizations when compared to YOLOv4 (indeed, 

their releases are only a few months apart). The backbone is in fact still a CSP based CNN with PANet 

Figure 2.16: A training example with mosaic 
augmentation 

mailto:mAP@0.5
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feature aggregation and the detection head is not different to that of YOLOv3. Concerning the loss 

for box regression, YOLOv5 employs Complete IoU loss (CIoU) [52] for the localization term of the 

total loss, which gives a much more comprehensive context on the correctness of localization, 

compared to both squared error and classical IoU losses. The latter is simply computed as 𝐿𝐼𝑜𝑈 =

1 − 𝐼𝑜𝑈, but such a formulation lacks any awareness on bounding box shape and amounts to zero 

for any isolated predictions, irrespective of the distance from the nearest GT box; this can also cause 

slower convergence due to vanishing gradients issues. A first improvement on this matter is 

obtained by adding a term penalizing distance between the two centres; this is usually called 

Distance IoU loss. 

𝐿𝐷𝐼𝑜𝑈 = 𝐿𝐼𝑜𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
 

In the formulation above, 𝜌2(𝑏, 𝑏𝑔𝑡) is the Euclidean distance between the two bounding boxes 

centre point and c is the diagonal length of the smallest bounding box enclosing the two boxes. 

Another factor that can bring useful information about prediction quality is its aspect ratio: a 

prediction showing inaccurate size, but an aspect ratio that is close to that of the ground-truth 

should not be penalized as heavily as any other random prediction. Complete IoU loss takes this into 

consideration by adding a term related to consistency of aspect ratios; this is hence the final 

formulation that replaces the original localization loss term in YOLOv5. 

𝐿𝑙𝑜𝑐 = 𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 = 𝐿𝐷𝐼𝑜𝑈 + 𝛼𝑣 

Above, 𝛼 and 𝑣 are a positive weighting parameter and the aforementioned consistency factor. They 

are formulated as: 

{
 
 

 
 
𝑣 =

4

𝜋2
[atan (

𝑤𝑔𝑡

ℎ𝑔𝑡
) − 𝑎𝑡𝑎𝑛 (

𝑤

ℎ
)]

2

𝛼 =
𝑣

(1 − 𝐼𝑜𝑈) + 𝑣

 

Considering the training process, this version incorporates Mosaic Augmentation as YOLOv4 already 

did and uses a fully automatic, k-means based method (named “auto-anchors”) for the definition of 

optimal anchor boxes (number and aspect ratios) for the dataset in use, whereas all previous 

versions relied on predefined settings or needed manual tuning. It is also possible to run a generic 

algorithm optimization to get a set of optimal hyperparameters for the data in use. One step back 

from YOLOv4 relates to activation functions: the authors found no performance gains when using 

Mish activations on their model, so they decided to stick to the computationally simpler ReLu 

activation for all the layers, except the last detection layer which uses sigmoid functions (this is 

needed to bound predictions, as explained in the YOLOv3 subparagraph). At an input resolution of 

640x640, YOLOv5 is capable of reaching 69% mAP@0.5 and 51% mAP@0.5:0.95 on COCO dataset, 

while running at 80 FPS on a single V100 GPU. 

2.4.7 Training of the YOLOv5 model 

To implement the object detection step inside the proposed framework, a YOLOv5 detector was 

chosen, due to its current state-of-the-art performances in general purpose object detection and its 

mailto:mAP@0.5
mailto:mAP@0.5:0.95
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simplicity of use, which renders it easily adaptable to custom tasks without significant tweaks. All 

the code used is open sourced and is part of the official YOLOv5 GitHub repository by Glenn Jocher. 

The model is fully implemented in Python, using PyTorch deep learning library and the training 

process was deployed on the Google Colab environment to take advantage of the provided GPU 

power and keep training time as low as possible. A total of four increasingly deeper models are 

available for use, allowing to select the desired compromise of detection accuracy and 

computational complexity. 

Model Learnable parameters 
(million) 

Floating point 
operations (billion) 

Inference time @ 640 
[V100 GPU-CPU] (ms) 

YOLOv5s 7.2 16.5 6.4 – 98 

YOLOv5m 21.2 49 8.2 – 224 
YOLOv5l 46.5 109.1 10.1 – 430 

YOLOv5x 86.7 205.7 12.1 - 766 

 

All models are pre-trained on COCO dataset for 300 epochs at an input resolution of 640 pixels. To 

leverage on the general feature extraction capabilities learned on the thousands images of COCO, 

transfer learning training was performed, starting from the provided weights (in .pt format): to do 

so, all the layers’ weights were initialized using the pre-trained values to be fine-tuned on the 

custom dataset images, except for the YOLO detection head, responsible of bounding regression 

and classification. Given the objective of this step to localize the presence of nuclei in the input 

image, the problem is configured as a single-class detection task. Input data for training is composed 

by the patched dataset coming from the pre-processing step described a few paragraphs back. After 

a series of experimental runs, YOLOv5l model was chosen as the most suitable alternative: smaller 

architectures yielded, as expected, reduced performance whilst YOLOv5x suffered of early 

overfitting, probably due to the limited quantity of input data. Anyway, to contain overfitting 

problems to the minimum, extensive online (directly performed during the training process) 

augmentation was employed; the transformation applied are summarised with their respective 

probabilities in the table below. 

Transformation Probability 

Mosaic augmentation 1 
Translation 0.1 

Rotation 0.1 

Scale variation 0.3 

Shear 0.05 
Flipping (up-down/lateral) 0.25 

 

No kind HSV color augmentation is used, as that would just revert the advantages obtained through 

color normalization. Mosaic augmentation, already explained in YOLOv4 section, was set to a 

probability of one, so that any input image is actually a pseudo-random mix-up of four patches in 

the dataset. This is because it proved to be the most influential parameter in reducing generalization 

problems among those listed. As far as the training hyperparameters are concerned, they were set 

as follows for the experiments with the most satisfying results: 
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 Input image resolution: set to the same value of the extracted patches size. For the reasons 

listed in the YOLOv3 section, input size must be a multiple of 32. If this is not the case the 

input image is automatically upscaled or downscaled to the nearest acceptable value. 

 Epochs: maximum of 350, with an early stopping patience of 100 epochs when performance 

stops increasing on the validation set. For the purpose of this check, performance value is 

computed as an adjustable weighted average of precision, recall, mAP@0.5 and 

mAP@0.5:0.95. The weights of each of those were set to [0, 0.2, 0.8, 0]. The focus is hence 

on mAP@0.5 and recall, as the aim of this object detection step is to obtain at least a rough 

localization of the highest possible number of nuclei. On the other hand, very accurate 

matching of bounding boxes with GT is not as important, because the final segmentation 

shape will only depend on the quality of the softmax and the characteristics of evolved active 

contours. In addition, false positives that does not have a correspondence on the softmax 

can be easily removed during the contours initialization step. 

 Optimization algorithm: SGD (optionally, Adam is also available) 

 Learning rate: YOLOv5 uses a cosine annealing learning rate scheduler, with a base learning 

rate of 0.01. With this setting, the learning rate starts at very low values, to avoid altering 

pretrained weights in the first iterations, when the gradients can have high values, then it 

increases quickly until reaching a plateau, after which it decays linearly to zero in the 

remaining final iterations. 

 

Figure 2.17: A training batch with 250x250 patches (batch size = 16) 

mailto:mAP@0.5
mailto:mAP@0.5:0.95
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              Figure 2.20: CM with 1000x1000 patches 

After training procedure, YOLOv5 returns the performances on both train and validation data in the 

form of different plots and metrics. Here are reported the training results for the two input sizes 

that have shown the best detection quality in the subsequent inference step (640x640, 1000x1000). 

All the following metrics are computed by considering the typical IoU threshold of 0.5 to define a 

given prediction as a TP of FP and they represent average metrics calculated only on the single 

patches, not on the full original image (of course there is no difference for the 1000x1000 case). 

One very common and compact way to summarize prediction results for a supervised machine 

learning method of any kind is the Confusion Matrix (CM), which is a table where columns contain 

the number of instances of an actual class, while rows represent predicted instances classes (or vice 

versa, depending on the convention adopted). 

 

Figure 2.18: A typical confusion matrix 

The CMs outputted by the model for the two training runs are reported below. The single-class 

detection problem does not involve the proper definition of True Negative, as the background is not 

a class by itself and does not have any associated detection. This is the reason why all the FP are 

associated with the only used class and the upper right section of any CM is set to unity. All in all, 

CMs are hence not the best instrument to express performance for object detection tasks, and other 

methods are usually preferred.  

 

                     Figure 2.19: CM with 640x640 patches 
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                 Figure 2.22: P-R curve with 1000x1000 patches 

A more suitable way of determining performance, as discussed in the introduction to object 

detection, is computing the precision-recall curve, which is then used to compute the relevant mAP 

metric. In our case of single-class detection, the concepts of AP (AUC of the P-R curve, as previously 

explained) calculated on the nuclear class and mAP are coincident; cyan and blue lines reported in 

the legend are indeed perfectly overlapped. 640x640 case shows slightly higher mAP on the patches 

compared to 1000x1000 case. 

 

                Figure 2.21: P-R curve with 640x640 patches 

 

Another insightful plot to consider can be the value of F1-score with the confidence score. This is 

computed by: 

 Taking all predictions in output from the model. 

 Applying a threshold on confidence score: all boxes less confident than this value are 

excluded from the computation. 

 Computing the F1-score for the remaining boxes. 

This process is repeated several times, increasing the confidence threshold up to the value of 1, and 

for each repetition a point is added to the plot. The analysis of these graphs can give a hint on a 

suitable confidence value to choose when performing the successive step of inferencing with the 

model. For example, a value sligthly above 0.5 could be a good choice to maximize the F1-score of 

the patch predictions for both models.  
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             Figure 2.24: F1-score vs confidence (1000x1000) 

 

                     Figure 2.23: F1-score vs confidence (640x640) 

 

To complete this analysis on training performance, the actual performance metrics and loss values 

computed by the network at each epoch is included. 

The first notable detail is the lack of classification loss. Again, this is due to the simplified single-class 

nature of this work detection problem: it is important to remember that since its third version, YOLO 

employs BCE loss, instead of the previous SSE term. The term relative to localization (CIoU) shows a 

steady decreasing trend, whereas the one relative to objectness has a less clear and oscillating 

behaviour, in particular on the validation set, where overfitting starts to be apparent after about 

150 epochs. Hence, the models show a good capability in localizing the position of objects and 

optimizing it, while it faces higher challenges, as expected, when trying to tell apart what constitute 

Figure 2.25: Training results (640x640) 
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an instance rather than just background. However, the various performance metrics, all computed 

on the validation set, still show a clean increase with the number of epochs, suggesting an effective 

continuation of the training process. 

 

Figure 2.26: Training results (1000x1000) 

2.4.8 Model inference and post-processing 

Inference of the trained models is performed by inputting all the extracted patches that compose 

the dataset to the detector and, starting from the patch based detections, reconstructing the full 

1000x1000 image. The main parameters of influence in any object detection inferencing process are 

the minimum confidence score and the IoU threshold for performing NMS. In addition to this, a 

change was operated to two constants inside the code for the dedicated NMS function 

(“general.py”), as their default values were too low for this detection problem, leading to 

performance degradation. These two values are the maximum number of boxes to be given as input 

to NMS and the maximum number of boxes to be kept after its application: they defaulted to 300 

and 1000, which are not sufficient for the high number of nuclei in the input images, and they 

consequently led to a reduction in recall. The values used for the inference are included in the table 

below: 

 Resolution 
 640x640 1000x1000 

Confidence 0.4 0.5 

IoU_th 0.35 0.35 
Max_NMS (# boxes) 10500 25000 

Max_out (# boxes) 1050 2000 

 

The confidence scores used for both models is lower than those corresponding to the maximum of 

F1 in the plots previously analysed: this is done to maximize detection recall, which is generally more 

important than precision for the localization of close nuclei, which is the aim of the object detection 
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step this framework. Moreover, both curves still show a plateau around the selected values of 

confidence, so F1 is not heavily affected by this choice. With this step, the model outputs separate 

predictions for each of the patches that compose the initial dataset. Those predictions are then 

aggregated together using the information on patch localization saved during their extraction in the 

preprocessing stage. An additional NMS is applied to all the predictions after their joining, to address 

for possible double detections due to the overlap of the extracted patches. Finally, a supplementary 

cleaning of the detections through two ad-hoc developed methods is performed.  

The first of those heuristic algorithms serves the purpose of removing residual multiple detections 

caused by nuclei on the edge of patches: if the extension of such a nucleus on two or more 

patches is relevant enough, it could easily be detected more than one time by the model. This kind 

of repeated detection cannot be eliminated by standard NMS, as the bounding boxes predicted 

from two different patches are completely disjoint. The main steps of this first cleaning method 

are listed below: 

 Predicted bounding boxes are first sorted by area in ascending order. This is to ensure that 

smaller boxes that are part of a double border detection are removed first, as it is reasonable 

to suppose that a smaller box is associated with the least representative portion of an object 

extending over more than one patch. 

 Evaluate whether the currently considered box can be considered to be “on the border”: this 

is the case when at least one of the box coordinates is closer than a threshold to the patch 

border. A value of 3 pixels was used. 

Figure 2.27: Full image detection on a test set example 
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 If the prediction is on the border, search for the presence of another prediction on the same 

border. 

 When a pair is found, compute the Euclidean distance between the pair centroids. If the 

distance value is lower than a second threshold, remove the first (smaller) box of the pair 

from the predictions list. A default of 27 pixels was used for this second threshold: a value 

too high can cause the removal of detections that are on the border, but doesn’t represent 

a double detection, while one too low reduces the effectiveness of the cleaning. 

Obviously, the impact of the application of this method is inversely proportional to patch size, as 

the number of nuclei as the border to area ratio rapidly increase for small patches. The second 

cleaning step is responsible for the elimination of residual multiple detections that may still be 

present after the application NMS on the full image. These are mainly due to partially overlapping 

patches (like in the 640x640 case), when a nucleus is detected more than one time with bounding 

boxes of significantly different area or aspect ratio (e.g. a small bounding box totally contained 

inside a bigger one), or when a group of nuclei is correctly identified with their respective boxes, 

along with a bigger box enclosing them all. In fact, in those cases the IoU value can be low and the 

NMS algorithm does not consider the presence of a double detection. The main steps for this second 

algorithm are: 

 Predicted bounding boxes are first sorted by area in ascending order. Again, this supposes 

that smaller bounding boxes contains less information about the detected object than bigger 

ones. 

 Compute the intersection between all bounding boxes (for M predictions, this is a [MxM] 

symmetric matrix). 

 Find the pairs with non-zero intersections, excluding self-intersections. 

 If the intersection of a given pair is higher than a consistent portion of the smaller box area 

(90% is used by default), remove it from the list of predicted boxes. 

The use of these two heuristic methods gives reduced, positive benefits to the detection results, 

with an increment in precision in the face of almost unaltered recall for the 640x640 case and lower 

patch sizes, whereas their use for the 1000x1000 case is totally irrelevant, since there is no real 

concept for the images in use. 

Pre NMS Post NMS NMS + cleaning 
Figure 2.28: NMS and heuristic cleaning 
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2.5 Active Contours 

Active contours, also commonly known as deformable models, are a set of image processing and 

computer vision techniques where a generic profile evolves directly on an image to segment starting 

from a pre-existing shape, usually by minimising a cost functional. Given this definition, they can be 

considered as another of the many ways of solving a minimization problem, but considering their 

formulation, they are naturally suitable and applied in the image domains. Their birth dates back to 

1987 with Kass et al. work [53], where for the first time the terms “active contours” and “snakes”. 

Before proceeding with the description of mathematical formulations and implementation details, 

its due to introduce a first wide categorisation of these kind of models, which is based on their 

approach to the problem [54] [55]. 

 Parametric active contours: also known as “snakes”, the contour is modelled as a curve with 

fixed parametrization. This is the first approach to develop and it is a direct evolution of 

original Kass’ work. The main advantages over their counterpart lie in their computational 

simplicity, ease of control and in the possibility to consider the contemporary evolution of 

multiple instances and their interaction. On the other hand, their formulation makes them 

unsuitable for the segmentation of sharp concavities and they show a high sensitivity to 

noise, initialization (this can undermine the development of fully automatic methods) and 

image complexity; as a result, they can easily get stuck into local minima and eventually 

reach suboptimal convergence shapes. 

 Geometric active contours: also known as “level-sets”, they were proposed in 1988 [56] to 

address the main problems encountered when applying snakes. They have a far more 

complex mathematical formulation compared to parametric models, in which the contour is 

seen as the zero-level of a curve in a higher order space, as intuitively represented in the 

picture below. As a consequence of this formulation, they can dynamically change their 

topology to adapt to any arbitrarily complex shape and they are even suitable for the 

segmentation of 3D volumes. However, this also renders them computationally heavier and 

makes it really hard to reframe the evolution process to keep into consideration multiple 

contours as separate entities. 

 

Figure 2.29: A graphical representation of level sets 
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2.5.1 Parametric active contours 

Weighting together the considerations above, which outline the clear advantages and downsides of 

each approach, with the specific context of this work, the use of parametric active contours was 

chosen. In fact, the extremely simplified 2D evolution environment offered by a softmax reduces 

the challenges represented by local minima when snakes are evolved on actual images; moreover, 

the necessity of handling a great number of contours (one for each detected nucleus) and their 

mutual interactions makes the choice almost forced. 

In the rest of this paragraph, a classical analytical formulation of parametric contours will be 

exposed [53] [57]. Starting from the representation of the snake in planar curvilinear coordinates, 

𝑣(𝑠) = [𝑥(𝑠), 𝑦(𝑠)]  

the basic cost functional to minimize is usually written as: 

𝐸 = ∫
1

2
[(𝛼|𝑣′(𝑠)|2 + 𝛽|𝑣′′(𝑠)|2) + 𝐸𝑒𝑥𝑡(𝑣(𝑠))]𝑑𝑠

1

0

 

In Kass’ work, E is referred as total energy, while the pair of terms inside the integral are called 

internal and external energy respectively. Internal energy only depends on the geometrical state of 

the curve and imposes regularity to the snake: this regularity is controlled by the two coefficients 𝛼 

and 𝛽, which weight both derivative terms. In particular, 𝛼 controls snake’s internal tension 

(curvature term), whilst 𝛽 is responsible for snake’s rigidity (elasticity term). On the other hand, 

external energy factors in the contribution of experimental data (the image pixels) on the total 

energy of the curve. As such, it only depends on some characteristics of the image. Which can be 

different depending on the specific implementation, but in principle it can be considered dependant 

on the discontinuities of the image and on its local pixel values and it can thus be written as: 

𝐸𝑒𝑥𝑡 = 𝑤𝑙𝑖𝑛𝑒𝐸𝑙𝑖𝑛𝑒 +𝑤𝑏𝑜𝑟𝑑𝑒𝑟𝐸𝑏𝑜𝑟𝑑𝑒𝑟 = 𝑤𝑙𝑖𝑛𝑒𝐼(𝑥, 𝑦) − 𝑤𝑏𝑜𝑟𝑑𝑒𝑟|𝛻[𝑘𝜎 ∗ 𝐼(𝑥, 𝑦)|] 

The “line” term only depends on the local value of the image and can be used to push the minimum 

of energy towards bright/dark regions of the image. The “border” term is instead used to create 

energy minimums across image discontinuities and it is calculated as the gradient of the convolution 

between the image and a 2D Gaussian kernel with standard deviation 𝜎. 𝑤𝑙𝑖𝑛𝑒 and 𝑤𝑏𝑜𝑟𝑑𝑒𝑟 are 

simply two weighting constants to balance the contribution of each term on the total energy. Using 

Euler-Lagrange equation, it is possible to reframe the energy minimization problem into a balance 

relation between an internal force, which tries to maintain the snake’s shape regularity, and an 

external one that opposes it by adapting the contour to the image shapes. 

𝐹𝑖𝑛𝑡(𝑠) + 𝐹𝑒𝑥𝑡(𝑠) = 𝛼𝑣
′′(𝑠) − 𝛽𝑣′′′(𝑠) −  𝛻𝐸𝑒𝑥𝑡 = 0 

So in the end, the snake that verifies this relation is also the one that minimizes the energetic cost 

function and it is the solution obtained after convergence of the algorithm. This basic 

implementation can be quiet effective, but it suffers from poor convergence problems and it is 

heavily reliant on a proper contour initialization. Trying to solve these problems, in particular the 

one linked to initialization, Cohen [58] proposed a model that could also continuously shrink or 

extend, instead of only evolving from its initial state towards the contours of the image under the 

only effect of the internal regularizing force. For this purpose, a constant pressure force, oriented 
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towards the local normal vector of the curve, reason why this formulation is commonly called 

“balloon snakes”. In this case, the total external energy is written as: 

𝐹𝑏𝑎𝑙𝑙𝑜𝑜𝑛(𝑠) = 𝑘1 �⃗� (𝑠) −𝑘
𝛻𝑃

||𝛻𝑃||
 

where 𝑘1 is the amplitude of the inflation/deflation (depending on the constant sign and curve 

orientation), whereas the second term is the gradient related force that stops the contour. Active 

contours used for the purpose of this thesis are loosely based on this balloon snakes’ 

implementation, with all the simplifications related to evolving active contours on a probability map, 

that takes away most of the problems of convergence to suboptimal minima or even divergence. 

2.5.2 Contours initialization 

After obtaining the final bounding box for each nucleus in the previous detection step, contours are 

initialized on the softmax probability using each box centroid. All the steps concerning snakes and 

the subsequent evaluation of segmentation were implemented in Matlab. Detections that have no 

corresponding segmentation on the softmax are first removed, as they don’t have any possibility of 

evolving, regardless of their correctness (in fact, this unmatching could be both due to a detection 

false positive, as well as a segmentation network false negative). To do this, all boxes whose centroid 

lies on a region with a prevalent background probability (red channel), higher than 0.5, are removed 

and will not generate any contour initialization. Afterwards, contours for the remaining boxes are 

initialized: to enhance the starting position, instead of directly initializing a contour on the bounding 

box centre, the centroid of the portion of nuclear segmentation inside the box (obtained by simply 

thresholding the softmax on a low blue channel value) is computed and the contour is initialized on 

this point. 

 

The main parameters set to define a given contour initialization are listed here: 

Figure 2.30: Initialized snakes on the softmax map 
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 Circular shape: this is a simple initialization and it is well related to the actual average nuclear 

shape. 

 Radius: set to 3 pixels, to account for the presence of tiny nuclei on many images of this 

dataset (as clearly visible in the image below). 

 Number of points: 40; this represents a good compromise of computation complexity and 

shape adaptivity. 

Considering the uniform nature of the softmax, initialization should not have a sensible impact on 

the final segmentation results.  

2.5.3 Contours evolution and mask generation 

After initialization, snakes are finally evolved on the softmax: the evolution of all contours in a given 

iteration is treated simultaneously, to exploit vectorization of the code and increase performance. 

Evolution loop is controlled by these two stopping criteria: 

1. All the snakes on the image can be considered as successfully converged, using a specific 

convergence criterion based on the average evolution rate in the last few iterations. In 

particular, when the average movement of all N points composing a given contour in the last 

M iterations is lower than a minimum threshold, the contour is frozen in its current state 

and is not evolved in the remaining iterations. For the computation of the criterion, M was 

chosen equal to 40 iterations, while the threshold was set to a value of 0.3 pixels. 

2. The maximum number Nmax of overall iterations, set to 1500, is reached. Unless the 

oscillations due to the mutual interaction between contours are high for at least a contour 

on the image, this criterion should normally not be triggered. 

The evolution of contours at each step is regulated by four coordinates updating rules, two of which 

are modulated by local softmax probability values. These terms are now listed and their role in 

controlling the contour evolution is explained. 

 Expansion contribute (balloon): this term controls the radial inflation of the contour. The 

only difference with a classical term of this kind is that it is modulated on the local nuclear 

(blue) probability, so that the expansion can spontaneously be reduced as the contour 

approaches the border. It is formulated as: 

𝑥𝑛𝑒𝑤 =  𝛼1 ∙ 𝑝𝑛𝑢𝑐(𝑥) ∙
𝑥 − 𝑥𝑏

max(𝑥 − 𝑥𝑏)
 

term controls the radial inflation of the contour. It is modulated on the local nuclear (blue) 

probability, where 𝑝𝑛𝑢𝑐 is the probability of classification as a nucleus of the pixel at the actual 

coordinate and 𝑥𝑏 is the barycentre of the contour 𝑥𝑏 =
∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
⁄ . 

 Smoothness contribute: this term tries to maintain a regular shape for the contour during 

evolution. A such, it only depends on the internal snake coordinates at the current 

iteration:  

𝑥𝑛𝑒𝑤 = 𝛼2[
1

2
(𝑥𝑙𝑒𝑓𝑡 + 𝑥𝑟𝑖𝑔ℎ𝑡) − 𝑥] 

 



51 
 

where 𝑥𝑙𝑒𝑓𝑡 and 𝑥𝑟𝑖𝑔ℎ𝑡 are the coordinates of the previous and following contour points in 

respect of the currently considered one. 

 Border contribute: it acts as a typical “line” term, that attracts contour points to high green 

intensity values (nuclear border probability). This term only depends on the local softmax 

values, like the typical external energy term. 

𝑥𝑛𝑒𝑤 = 𝛽1[𝑝𝑏𝑜𝑟𝑑𝑒𝑟(𝑥 + 1) − 𝑝𝑏𝑜𝑟𝑑𝑒𝑟(𝑥 − 1)] 

 

Here, 𝑝𝑏𝑜𝑟𝑑𝑒𝑟 is the probability of classification of the pixel as a nuclear boundary. 

 Mutual interaction contribute: this last term regulates the repulsive interactions between 

two or more interacting snakes, so that segmentation of previously fused nuclei can 

properly stop. Two given snakes are considered as interacting when at least one of their 

points intersect the other contour. Any point that interacts with a second contour is 

pushed back towards the centre of its own contour, following the relation: 

𝑥𝑛𝑒𝑤 = 𝛽2 ∙
1

𝑑
 

where 𝑑 = ||𝑥 − 𝑥′|| is the Euclidean distance between the considered point and the 

centroid of the interacting contour. 

𝑎1, 𝑎2, 𝛽1 and 𝛽2 are constant weighting parameters that set the relative impact of each of those 

term in controlling contours evolution. Again, to the simplified nature of the confronted evolution 

problem, the set of values chosen for these constants cannot cause divergence of the algorithm, 

although their tuning can be useful to reach quicker and slightly better overall shape convergence. 

The values used for the evolution of the object detection initialized contours, for both 640x640 

and 1000x1000 cases are indicated in the dedicated table below. 

Parameter Value 

𝑎1 (expansions) 0.1 
𝑎2 (smoothness) 0.05 

𝛽1 (nuclear borders) 0.2 

𝛽2 (repulsive interaction) 1 

 

The snake evolution process performed on the whole dataset takes an average time of 38.9 ± 5 

seconds per image on an Intel i3-9100F CPU, with images with a high number of close nuclei taking 

the most time due to the high number of interactions to be handled. In fact, at the actual state, the 

function responsible for the computation of the mutual interaction term makes up for almost half 

of the entire evolution runtime and it is hence the critical part to optimize performance-wise to 

achieve a first speed up of the whole segmentation framework. 
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As a last step to obtain the final image segmentation, the binary mask is generate starting from the 

fully evolved snakes. Each contour is considered on its own, so that a per instance segmentation 

that enables a subsequent easy and correct evaluation is possible. To generate its associated mask 

a built-in Matlab function is employed, which simply consider each contour as a closed polygon 

composed by N points. 

2.6 Validation metrics 

In this chapter, the main metrics used to evaluate the yielded results, for both the detection and 

contour segmentation steps, will be listed and briefly described. The metrics for object detection 

here described have nothing to do with the ones returned by the model code during training, as 

those were patch-based as opposed to the full image context here considered. When a particular 

choice is made regarding the way a metric is computed, it will be justified in the relevant subchapter. 

2.6.1 Detection metrics 

The final quality of the detection step has been evaluated on the cleaned predictions on the full 

image, using three typical metrics used for classification tasks: precision, recall and F1-score. In the 

context of the considered problem, recall is particularly important as it scores the ability of the 

model in correctly identifying the most part of the GT nuclei on the input image. A low recall on the 

detection step can indeed offset all the benefits given by the separate segmentation of fused 

objects, as any missed nucleus won’t have an associated segmentation on the final output, even 

when the segmentation network correctly identified it on its softmax. On the other hand, precision 

is associated to the model ability at correctly suppressing background boxes; it is less critical than 

recall in our framework, as false positives that does not have a corresponding softmax match are 

Figure 2.31: Evolution of snakes through the iterations 
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easily eliminated during snake’s initialization step. The only detrimental false positives are those 

coming from double detections of the same object, as this is much harder to identify and remove 

and it leads to an overestimation of the number of instances on the image and, consequently, to a 

fragmented segmentation after snakes are evolved. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     ;      𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-score gives instead a rounder estimation of the overall detection quality, without however giving 

insights on the main causes of a possibly low performance value. It is computed as the harmonic 

mean of precision and recall: 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

 

To compute the metrics for an image, each predicted box is compared to all remaining GT boxes: if 

a match is found, the predicted box added to the TPs counter and the corresponding annotation is 

removed from the GT list, while in case of no matching it is added to the FPs counter. The 

computation stops when all predictions have been considered and the number of residual 

unmatched annotation boxes is used to get the FNs value. In the computation of all the metrics in 

this section, an intersection criterion was used in place of the more typical IoU, to decide whether 

a given predicted box is to be considered a true positive rather than a false negative. To explain the 

reason for this choice, two effective graphical examples are analysed. Intersection was computed 

as: 

𝐼𝑛𝑡𝑒𝑟 =
𝐵 ∩ 𝐵𝐺𝑇

min (𝑎𝑟𝑒𝑎(𝐵), 𝑎𝑟𝑒𝑎(𝐵𝐺𝑇))
 

 

 

Figure 2.32: Intersection vs IoU comparison 

In the image above, blue boxes represent GT annotations and green boxes are possible boxes 

predicted by the object detection model. In the case on the left, a single nucleus is erroneously 

detected as two adjacent smaller nuclei by the model. In this case, the use of typical IoU with a 0.5 

threshold would result in considering both the predictions as FP, with a resulting FN associated to 

the GT box, because the value of intersection of both the predicted boxes with the GT is reduced 

compared to the union area. On the other hand, by using intersection both the boxes have unitary 

intersection and hence one will be considered as a TP and the other a FP. While this is usually an 

unwanted behaviour in general object detection tasks, it makes for a better evaluation for the 

considered matter, as the GT object will have its segmentation in the final output, considering that 
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the centre of the green boxes still lies inside the object. On the right a similar case is observable, 

where two close nuclei are considered as one and enclosed together in a bigger box. Of course this 

is not a good scenario, as the primary aim of the detector is to allow the segmentation of fused 

objects, but it is more reasonable to consider the detections as one TP and one FN, as the final 

segmentation will present one single fused object. From these consideration, all the metrics listed 

above are computed using an intersection threshold of 0.7. 

2.6.2 Segmentation metrics 

All segmentation results, including the raw segmentation directly computed from the softmax are 

evaluated on a wide range of metrics. An ideal evaluation criterion used for nuclear segmentation 

should take into proper consideration many characteristics of the result, most importantly [24]: 

1. Completely missed detection of actual objects 

2. Erroneous detection of background 

3. Under-segmentation 

4. Over-segmentation 

It’s not easy to formulate a single criterion to include all aspects that can affect a given 

segmentation, as those can even be different from an application to another. For this reason, pixel-

level and object-level metrics will be both considered, to assess the benefits of the proposed 

algorithm on different potential applications. Additionally, a comprehensive novel metric for 

nuclear segmentation evaluation, Aggregated Jaccard Index, will be detailed. When the relevant 

formulation of a metric has already been given in the previous chapter, only its role inside the 

evaluation process will be reported. 

2.6.2.1 Pixel-based metrics 

Pixel-based performance metrics are calculated by considering each pixel on the predicted mask as 

a TP or FP on its own. As such, all pixel metrics are computed by simply summing together all the 

pixels of a kind and using those values to calculate common classification metrics (or in alternative, 

by applying logical operations directly on the predicted and GT binary masks). Pixel-based methods 

give a good estimation on the capabilities of the segmentation algorithm in outputting accurate 

predictions in terms of shape and size, but lacking any concept of instance, they may not be suitable 

for applications where an accurate estimation of the number of objects is central. The list of the 

pixel-based metrics used in the evaluation of this thesis results is: 

 Accuracy: it is one of the simplest metrics for any classification task. It gives a first estimation 

of performance, but lacks any further information on the segmentation quality (under/over-

segmentation, shape…). It is computed as the ratio of all correctly identified pixels and the 

total pixel count on the image. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 Precision: it measures the ability of the method to avoid over-segmentation. 

 Recall: as opposed to precision, it can be used to evaluate under-segmentation issues. 



55 
 

 F1-score: it is computed as the harmonic mean of precision and recall and as such gives a 

more general view on performance quality like accuracy, but it is better suited when class 

imbalance is considered. 

 Jaccard index: it is a good metric to evaluate shape concordance of the segmentation with 

the ground truth. It is closely related to the IoU value typically used for object detection, as 

it is given by the area of intersection of the predicted and GT masks divided by their union 

area, or it can alternatively be formulated in terms of TP, FP and FN as: 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
|𝑃 ∩ 𝐺𝑇|

|𝑃 ∪ 𝐺𝑇|
=

|𝑃 ∩ 𝐺𝑇|

|𝑃| + |𝐺𝑇| − |𝑃 ∩ 𝐺𝑇|
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

 Dice similiarity coefficient (DSC) = this metric mostly gives the same kind of information of 

Jaccard and evaluates the overall overlap between the predicted segmentation and the 

annotated one. The only difference in computation with Jaccard is that it considers twice the 

intersection value at the numerator, instead of substracting it from the denominator. 

 

𝐷𝑆𝐶 =
2|𝑃 ∩ 𝐺𝑇|

|𝑃| + |𝐺𝑇|
=

2𝐽

1 + 𝐽
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

2.6.2.2 Object-based metrics 

The computation of instance-based metrics prerequires the definition of a criterion that makes it 

possible to define whether a given GT object can be associated with any of the segmented objects, 

obtaining a counter for FPs, TPs and FNs. All reported indicators define a ground-truth as matched 

if it is overlapped for more than 50% of its area with a predicted box, as in []. This approach has a 

better generality in respect of the mask size compared to other common distance-based criteria[]. 

As opposed to pixel metrics, object-based evaluation is used to quantify the capability of the 

segmentation algorithm in reliably detecting the presence of an instance in any region of the input 

image, but it gives limited information, if any (depending on the specific metrics employed), on the 

morphological quality of that detection. The list of the object-based metrics used in the evaluation 

of this thesis results is:  

 F1-score: in this case, F1 is computed using the already introduced formula, directly using 

the number of correctly identified GT/predicted boxes and it consequently does not contain 

information at pixel-level of any kind. It is however a good indicator if the application 

considered requires an accurate estimate of separate instances that make the image up. 

 Jaccard index: in this case Jaccard is calculated on each matching GT/predicted instance pair 

and the final value is obtained as the average over each considered object. As such, this 

object-based metric mixes detection quality with average pixel level information about the 

extent of the overlap between the two masks, typical of Jaccard. 

 DSC: the same considerations expressed for Jaccard apply. 
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 Hausdorff distance (HD): HD is another common metric, often used in problems of shape 

matching. Given two set of points A and B, one for the predicted mask contour and the other 

associated to the GT, HD between A and B is computed by first finding the minimum distance 

from B of each point of A. Afterwards HD is defined as the maximum value among those. The 

use of Jaccard or DSC is usually preferred as the computational complexity of HD is higher. 

2.6.2.3 Aggregated Jaccard Index 

As already hinted in the introductive chapter, in the analysis of histopathological images a great 

number of heterogeneous factors are weighted by expert clinicians to take their decisions. These 

include both morphological considerations like shape and distribution as well as more quantitative 

measurements such as number or relative localization. As a consequence, focusing solely on one 

type of evaluation metric, be it pixel-based or object-based, can lead to misleading interpretation 

of the results or incomplete evaluation. To address this problematic, the focus during evaluation 

will be shifted on a supplementary performance indicator, named Aggregated Jaccard Index. AJI, 

formulated by Kumar et. al in the same proposal paper of the dataset used in this work [24], is a 

more comprehensive and general metric specifically thought for the evaluation of nuclear 

segmentation techniques. AJI is a particularly strict indicator, as it jointly penalizes both object-level 

and pixel-level errors, effectively bringing together segmentation with detection. It is a modification 

of the traditional Jaccard index, where, instead of the simple intersection and union of predicted 

and GT masks, two different pixel sets are used. The main steps towards computing AJI are now 

explained: 

1. First, initialize a correct pixels counter C and a union pixels counter U. 

2. For each ground truth annotation, compute the Jaccard index with each segmented object. 

3. If the Jaccard is non-zero with at least one prediction, find the pair with the highest Jaccard. 

4. Update C and U by adding all intersection pixels to the first counter and all union pixels to 

the second. Then remove the used shape from the list of predictions and segmentation 

mask. 

5. Otherwise, when GT is not matched to any shape, add all its pixels to U counter. 

6. Repeat point 2 to 5 until all GT annotations have been considered. 

7. Add the residual pixels on the predicted mask to U. 

8. Compute the final AJI value by taking the ratio of C and U. 

 

 

Figure 2.33: Hausdorff distance of two curves 
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Pseudocode from the original paper is included for further clarification of the described steps. 

 

Figure 2,34: AJI pseudocode 

Thanks to its mixed approach, AJI is capable of penalizing whole missed and ghost predictions, as 

well as pixel-wise under-segmentation and over-segmentation. In particular, the steps above show 

how AJI can rapidly decrease as the number of missed or fused objects increase: in those cases, in 

fact, all the pixels from the missed GT, along with the eventual over-segmentation part of the fused 

detection are added to the denominator in the calculation. For this reason, the proposed framework 

should carry a sensible advantage in terms of this indicator when applied to any baseline softmax 

segmentation.  

 

Figure 2.35: AJI comparison to traditional metrics 

The image above, directly taken from the AJI proposal paper, shows how two images with an evident 

segmentation quality discrepancy may actually feature similar performance value as far as both 

pixel-level (F1-score) and instance-level (HD) performances are considered individually, whereas 

their evaluation through AJI correctly express this quality difference. 
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Results 
In this chapter the most meaningful experimental data that can be useful to characterize the 

proposed framework general performance, advantages and criticalities are reported. All the results 

have been computed according to formulations and steps reported at the end of the Materials and 

methods chapter. All the results are relative to the use of patches of size 640x640 and equal to the 

whole 1000x1000 image, as they yielded the best performance through the various steps. This might 

be unexpected at first, considering that smaller patch sizes provide the detection model with more 

training examples (the total number of input images are 52 for the first case and just 13 for the 

latter) and reduce the number of detections to be outputted per image; however this can be due to 

the fact that all YOLOv5 models are pre-trained at exactly 640 square input resolution, and the 

features learned by the backbone may hence perform better around those value of resolution and 

above. 

3.1 Detection performance 

First, the performance of the object detection model on the full images is reported. It is crucial to 

make sure that the values obtained at this stage are acceptable before selecting a model to use for 

the subsequent initialization of the snakes, otherwise the whole segmentation process and the main 

idea behind the developed framework will be hindered by the poor detection performance. The bar 

graphs that follow summarize the average performance in the three detection metrics, which were 

computed using the ideas in paragraph 2.6.1, on all the four splits of the dataset. 

                                                          
                                                                 Figure 3.1: F1-score computed on the bounding boxes 
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The graph above shows good F1-score values, always above 0.85. This suggests that both the models 

are likely to bring a useful contribution when later used to initialize the active contours on the 

softmax probability map. There is a non-negligible performance gap when comparing performance 

on the training and validation set, which suggests that a certain degree of overfitting is still present, 

in spite of the attempts to contain it (e.g. through the extensive data augmentation applied). 

However, the results on both the test sets are a confirmation of the good generality and 

representativeness of the validation set used to monitor the training process, as they feature 

performance in alignment with or even better than it, especially for the 1000x1000 model. In 

general, the detector trained with 1000x1000 images boasts slightly higher and more uniform values 

of F1-score across the four sets and it is thus less affected by the aforementioned overfitting 

tendency. 

The precision metric is perhaps the least insightful when trying to define whether the trained object 

detection model is good enough to be carried over in the framework. In fact, most of the false 

positives are either eliminated during initialization as explained in chapter 2.5.2 or were already 

erroneously segmented by the segmentation network itself and as such they should not represent 

a source of performance degradation. As already noted, the only kind of FP that can weaken the 

purpose of the object detection model are multiple detections, but the aggregated precision metric 

does not allow to differentiate among those cases. For both detectors, the lowest value of precision 

is associated with the validation set and it is higher for both the test sets. 

 

 

 

               Figure 3.2: Precision computed on the bounding boxes 
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The average values of recall show an acceptable capability of the detectors in localizing a good 

part of the nuclei on the dataset images. Recall values on train, validation and test 1 are all higher 

than those of precision, which is an ideal situation. Unfortunately, in this case the lowest 

performance is found on the second test set; this is unsurprising, considering that it contains 

tissues from organs that the model never saw during training, even though such a low value, 

especially for the 640x640 case, may start to significantly reduce the benefits given by the 

introduction of the object detection model in the pipeline. Considering however that test 2 have 

fairly high precision values (even the highest one among all sets for the 1000x1000 model), there 

is room for improvement if some of its precision is traded in for a comparable or slightly lower 

recall increase. 

3.2 Final segmentation performance 

All the segmentation metrics here reported have been computed following the considerations 

discussed in paragraph 2.6.2. The baseline performance values have been obtained by applying a 

simple thresholding segmentation on the softmax, following an approach commonly used by deep 

learning frameworks without a post-processing step. In particular, the steps to generate the raw 

binary mask are: 

1. Apply a thresholding on the softmax green channel (nuclear border probability) with a 

threshold value of 0.35. 

2. Apply a thresholding on the softmax blue channel (nuclear “inside” probability) with a 

threshold value of 0.5. 

3. Substract the border mask from the “inside” nuclear mask. 

4. Remove negative values from the final logical mask. 

Figure 3.3: Recall computed on the bounding boxes 
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For compactness and better visualization purposes, in all the evaluations presented in this section 

the validation set was merged with the training set; its explicit presence was anyway more 

important for detection evaluation, as it had a specific role during the training phase of the models. 

First of all, the pixel-based segmentation metrics are reported and discussed. While they do not 

represent the main focus of this evaluation, they can be useful to start understanding the effects of 

the proposed framework on the general segmentation quality. 

 

 

 

Figure 3.4: Pixel-level metrics 
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The bar graphs report the average value of the six pixel based indicators on all the three sets, along 

with the associated standard error. A consistent increase in performance can be observed for the 

accuracy (which actually already had a value higher than 0.8 on the baseline), recall, and F1-score: 

this confirms how the use of active contours can lead to a better convergence of the segmentation 

towards the nuclear borders, increasing the net number of correctly classified pixels. The metric 

with the lowest values is Jaccard and it shows a comparatively lower increase when compared to 

other indicators: this is not unexpected, as Jaccard is related to overall shape and the final overall 

shape of each nuclear segmentation ultimately depend on the one found by the segmentation 

network and the convergence of snakes cannot significantly alter it. The only metric that shows a 

decline, although reduced in magnitude, is precision: this is most probably due to some FP 

detections that are not correctly removed from softmax during contour initialization. Although they 

do not evolve if initialized on a prevalently red region due to the lack of energy terms, their final 

segmentation still consists in their initial circular shape and those pixels all contribute to the 

observed reduction of precision. Comparing the baseline average recall with baseline average 

precision, a general tendency of the segmentation network to under-segment nuclear regions when 

the raw segmentation is applied can be highlighted. For all pixel-level metrics no difference between 

the two models is observable. In addition, as opposed to the previous detection graphs, the 

behaviour among the three sets is more homogeneous. 

 

   

 Figure 3.5: Object-level metrics 
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As far as the object based indicators are concerned, an  in increment in performance is observed on 

all calculated metrics. Among the four, the most important to look at is probably F1-score, as the 

way it is calculated makes it a fully instance-based metrics, whereas all the other ones still inegrate 

some pixel-level information, despite being averaged on the single objects. It is hence the most 

useful to underline a second time the detection model performance. There, an average 7% to 15% 

increment is noticeable, with standard error values conserved or reduced compared to the baseline. 

This suggests that the detection network is indeed helping in the localization of a higher number of 

nuclei in the dataset: this effect has to be in the most part due to the now separate segmentation 

of previously fused instances, because the detection model cannot segment by itsef an identified 

nucleus, even when it’s correctly placed, if the segmentation network missed it during softmax 

generation. Again, the effect of overfitting that affects the detection model can be here noted again 

with a similar, comparatively reduced increment of F1-score. DSC and Jaccard mainly bring 

redundant information to their pixel-level counterparts, with Jaccard again showing the lowest 

values in percentage term, for the same reasons previously stated. In addition, they show very 

consistent values across the dataset splits. HD metric shows an average decrement of around 3 

pixels (the lower the better, in this case), with significantly higher standard error on the second test 

set, both for the baseline and the proposed results. This is probably a direct consequence of the 

intrinsic higher variability of this set, featuring nuclei with highly different sizes and shapes through 

its six images. This reduction in HD means that, on average, the maximal point-wise error between 

the final segmented instance and its ground truth is lower when the segmentation is obtained 

through the proposed active contours evolution. 

 

Figure 3.6: AJI 
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Finally, the results as computed by AJI are presented. The baseline values of AJI are in line or already 

marginally better than those reported by Kumar in his paper (dashed black line on the bar graph, 

computed on the two test sets). This proves that the softmax maps, that served as a starting point 

for this work, are already of good quality even when considered by themselves. The additional 

proposed framework steps grant an increase in AJI of about 0.16 for the training/validation set and 

about 0.10 on the two test sets, reaching an average value of 0.627. Once again, it can be observed 

that the detection network overfitting is carried over on the final segmentation, as the diffrence in 

performance between training and the two test sets is increased compared to the baseline. In spite 

of this, considering the strict nature of AJI indicator, which quickly stops increasing as even one of 

the four main errors listed in the introduction to paragraph 2.6.2 becomes prevalent over the others, 

the proposed framework still significantly improve the segmentation quality on the whole dataset. 

Surprisingly, the data split that receives the least amount of performance increase from the method 

is the first test set, whereas test set 2 starts from a lower baseline and reach comparable 

performance. Overall, the model trained on the full 1000x1000 images seems to feature marginally 

higher performances and to be less affected by overfitting, as its results are slightly more balanced 

through the training and test sets. 

3.2.1 Statistical analysis of benefits 

To further validate the proposed framework significancy, a brief statistical analysis was performed. 

This was done by applying a paired Student’s t-test to the performance distributions prior and after 

the application of the pipeline. This is a common technique to test two given, assumed normal, 

distributions against a null hypothesis of equal means, within a predefined significance threshold 

level α (almost always set to 5% for standardisation and comparability purposes). In our specific 

case in exam, we test against the null hypothesis that the AJI performance calcualted after the 

framework application is part of the same dsitrbution of the baseline performance. In that case, the 

performance variations could not be fully credited to the proposed method, but they could simply 

be the result of intrinsic variability that lies in the distribution. The results for such a test are 

reported in the table below. 

 p-value 

 640x640 1000x1000 
TRAIN 0 0 

TEST 1 0.023 0.011 

TEST 2 0.052 0.03 
 

The results hint at how the performance variations from the baseline can be considered as 

statistically significant in all cases except for the second test set when using the detector trained on 

640x640 patches, where a p-value just above the significance level of 0.05 is obtained. This is 

probably due to the more variable results scored on the images composing the set (indeed, the 

standard error on most previosly commented bar graphs is higher for this set if compared to all the 

others). All in all, the t-test thus confirm the primary role of the introduced segmentation procedure 

in increasing the performance, at least on the employed dataset.  
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3.2.2 Potential maximum performance increase 

To assess the peak potential benefits that could be brought by the proposed framework, in 

particular regarding the idea of integrating a second deep learning method in the form of an object 

detector in parallel to the pre-existing segmentation network, the performance in terms of AJI are 

recomputed after introducing a theoretically perfect object detector on top of the pipeline. This 

kind of evaluation also makes it possible to estimate the degree of feasible improvement that can 

be attained by acting on the object detection block of the pipeline. The results shown below are 

hence obtained by initializing the snakes directly on the bounding box centroid of each annotated 

region, which is exactly what a good detector is expected to do in this framework. The contours are 

then normally evolved using the same parameters and all the metrics are computed. Here, only AJI 

is reported as the most comprehensive indicator of performance. 

 

Figure 3.7: AJI with a perfect detector 

The results show how there is still a good room for improvement as far as the object detector is 

concerned, reaching an average value around 0.7 AJI for the two test sets when using an ideal 

detection model. Considering that the values on the training set are already around that level for 

both trained detectors, the main front of further work in this context should be increasing the 

generalization capability of the model. It is important to keep in mind though that the results above 

are only asympotically reachable as they are based on a non-existing ideal model and to actually 

have a chance to push the results of the proposed framework to those performance values or 

beyond, simultaneous improvemenst would have to be introduced on the segmentation network 

that outputs the baseline softmax. 

 



66 
 

3.2.3 Algorithm steps visualization 

With the intent of recapping the main blocks involved in the proposed framawork and better 

visualize the whole process, a step by step visual representation of the workflow will be inluded as 

the final part of this chapter. For a better understanding, a zoomed-in portion of one histological 

image from the dataset is used. The process starts from the color normalized version of the image 

and ends with the final comparison of the segmentation obtained from the application of the full 

pipeline versus the raw segentation. The intermediate processes of object detection, snake 

inizialization and contour convergence are also included. The steps below are numerated as follows: 

1a) Ground truth annotations 

1b) Color noramlized image 

2a) Segmntation network output 

2b) Object detection network 

3) Active contours initialization 

4) Contours evolution and convergence 

5a) Proposed method segmentation 

5b) Raw segmentation 
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The portion of image presents many close nuclei that are fused together in the raw segmentation, 

whereas they are correctly segmented by the proposed framework. 
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Conclusions and further work 
4.1 Conclusions 

This thesis project consisted in the proposal and development of a complete framework for the 

automatic segmentation of histological images. In particular, the focus was put on improving 

segmentation performance of crowded regions, such as those containing a high number of nuclei, 

where the typical CNN based deep learning algorithms tend to fuse together close or overlapping 

objects. This framework is hence based on the integration of deep learning techniques, consisting 

in one deep segmentation network and one object detection model, with a more traditional post-

processing block based on parametric active contours. The introduction of the detection model is 

responsible of correctly localizing the presence of multiple close nuclei in the histological image, 

whilst the post-processing step performs the actual segmentation by evolving the contours on the 

softmax probability map. The proposed pipeline shows promising performance by scoring an 

average of 62.7% Aggregated Jaccard Index on the two test sets in use, with an increment of more 

than 10% on the segmentation baseline, obtained through a common softmax thresholding. The 

method thus proves to be beneficial in the improvement of pre-existing softmax segmentations. It 

does not reach the performance of 0.69 AJI of the top scoring participant of a competition based on 

the same dataset that was used on this thesis, but the results are not directly comparable as some 

of the training examples and all the testing images are different. Moreover, the main purpose of 

this work is not pushing state-of-the-art in nuclear segmentation tasks, as much as building a 

versatile framework to improve the output of traditional and established deep learning techniques. 

The pipeline is easily adapted to other medical imaging segmentation tasks, thanks to the high 

generality of the deep learning methods that were used. The additional computational time due to 

the object detection step is under 500 ms inference per image for the object detection step on a 

single Tesla K80 GPU (thanks to the use of one of the fastest one-stage architectures available), 

while the subsequent snakes’ evolution step for segmentation takes 38.9 ± 5 seconds running on an 

Intel i3-9100F CPU. The best performances are obtained by giving the full 1000x1000 images of the 

dataset as input to the detection model: while this might seem counterintuitive at first, it is 

important to consider that such a resolution still represents a rather narrow FOV, when compared 

to the total size of a single WSI. As a consequence, the application of this framework at a higher 

scale on histopathological images would still require the adoption of a patch-based approach. All in 

all, the developed framework can offer and generalizable performance improvements when applied 

to any segmentation task featuring a high density of objects, without significantly slowing down the 

process. However, in spite of the highlighted potentiality, an eventual integration of the algorithm 

into a full digital pathology analysis tool requires further work on several fronts, ranging from 

performance improvements to computational optimizations. 
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4.2 Further work 

In the future, several factors could be considered when trying to improve the proposed hybrid 

framework. These improvements should cover all the three main blocks that compose the 

segmentation pipeline: 

1. Object detection 

2. Softmax generation through deep CNNs 

3. Active contours initialization and evolution 

As far as object detection is concerned, the main improvements should point towards increasing 

the model generalization ability, to reduce the observed overfitting. To some extent, along with 

increasing the general performance, this could be addressed by a more in-depth tuning of the model 

hyperparameters used during training. Another viable option to explore is the implementation of a 

different and more sophisticated patch extraction mechanism during the pre-processing step. For 

example, the extraction could be denser around regions where a high number of nuclei are present, 

or it could in alternative simply include more examples that proved to pose a challenge for the model 

to learn. Eventually, other models outside of the YOLO family can be evaluated, in particular two-

stage object detectors which should sport higher peak performance when properly optimized. At 

the current state, inference time of the model does represent only a small part of the total method 

runtime (provided that a GPU is used), so the additional computational burden of two-stage 

solutions may not be concerning.  

Regarding the active contours step, their implementation has to be furtherly optimized to minimize 

computational complexity. As matter of fact, the current implementation makes up for the majority 

of the framework runtime (excluding the one-time training of the DL models and the evaluation of 

performance), and half of this time is used by the function computing the mutual interactions 

between snakes. This represent the biggest bottleneck in the current workflow and it must hence 

be the starting point for this code optimization process. The interaction term should also be tuned 

to allow for more natural segmentation when interaction between more than two snakes are 

involved. 

Considering the nature of the proposed method, the individual optimization of only one aspect 

quickly leads to diminished performance returns. Indeed, a limited detection model causes the 

initialization of a wrong number of contours, effectively wasting the quality of the underlying 

softmax. In a similar way, the segmentation network poses a limit on the highest performance 

benefit that the framework can yield, as underlined in chapter 3.2.2, because the contours evolution 

is guided by the softmax itself. It follows that an effective optimization process has to consider the 

enhancement of the segmentation network in parallel to the object detection improvements hinted 

above. 

Additional work may include the application of the current method to full WSIs and the experimental 

evaluation of the pipeline on different medical imaging domains. In the first case, some scalability 

problems are likely to arise without further modifications to the pipeline, due to the huge amount 

of data to segment. On the other hand, given the substantial generality of the framework, the 

extension to most domains should not carry particular challenges: it is in fact sufficient to retrain 

both the deep learning models with enough relevant data from the new domain, without the need 

to introduce particular modifications to downstream blocks. 
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