

Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Biomedica

A.a. 2020/2021

Sessione di Laurea dicembre 2021

A hybrid deep learning framework for

segmentation of crowded objects on medical

images: application to digital pathology

image analysis

Relatori: Candidati:

Molinari Filippo

Salvi Massimo

 Costa Luca

1

Index
List of figures 3

Abstract 5

1. Introduction 6

1.1. Aim of the thesis……..6

1.2. Histological imaging……..7

1.2.1. Slide preparation and acquisition…………………………………………………………………………….7

1.2.2. Challenges for image processing………………………………………………………………………………8

1.3. Introduction to Deep Learning………………………………………………………………………………………….10

1.3.1. Artificial Neural Networks………………………………………………………………………………………11

1.3.1.1. Neurons and activation functions……………………………………………………………….11

1.3.1.2. Learning process and optimization methods……………………………………………….12

1.3.2. Application to Image Processing – CNNs………………………………………………………………..14

1.3.3. 2D Convolution……………………………………………………………………………………………………..14

1.3.4. Basic architecture of a CNN……………………………………………………………………………………15

2. Materials and methods 18

2.1. Dataset……….18

2.2. Previous work……….19

2.3. Pre-processing………20

2.3.1. Color Normalization………………………………………………………………………………………………20

2.3.2. Patch extraction……………………………………………………………………………………………………21

2.4. Object Detection………..22

2.4.1. Computer Vision Tasks………………………………………………………………………………………….22

2.4.2. One-stage and two-stage object detectors…………………………………………….………………23

2.4.3. Common datasets and evaluation metrics…………………………………………………………….24

2.4.4. Non-Maximum Suppression…………………………………………………………………………………..26

2.4.5. YOLO architecture…………………………………………………………………………………………………28

2.4.6. Evolution of YOLO…………………………………………………………………………………………………32

2.4.6.1. YOLOv2………………………………………………………………………………………………………32

2.4.6.2. YOLOv3………………………………………………………………………………………………………34

2.4.6.3. YOLOv4………………………………………………………………………………………………………36

2.4.6.4. YOLOv5………………………………………………………………………………………………………37

2.4.7. Training of the YOLO5 model……………………………………………………………………….………..38

2.4.8. Model inference and post-processing……………………………………………………………………44

2.5. Active Contours…….47

2.5.1. Parametric active contours…………………………………………………………….……………………..48

2.5.2. Contours initialization……………………………………………………………………………………..……49

2.5.3. Contours evolution and mask generation……………………………………………………………..50

2.6. Validation metrics………52

2.6.1. Detection metrics………………………………………………………………………………………………….52

2

2.6.2. Segmentation metrics…………………………………………………………………………………………..54

2.6.2.1. Pixel-based metrics………………………………………………………………….....…………….54

2.6.2.2. Object-based metrics………………………………………………………………………….………55

2.6.2.3. Aggregated Jaccard Index (AIJ)…………………………………………………………….……..56

3. Results 58

3.1. Detection performance……………………………………………………………………………………………………58

3.2. Final segmentation performance……………………………………………………………………………………..60

3.2.1. Statistical analysis of benefits………………………………………………………………………………..64

3.2.2. Potential maximum performance increase……………………………………………………………65

3.2.3. Algorithm steps visualization………………………………………………………………………………….66

4. Conclusions and further work 68

4.1. Conclusions……….….68

4.2. Further work……69

Acknowledgements 70

Bibliography 71

3

List of figures
1.1 Workflow for the proposed framework……………………………………………………………………….………… 6

1.2 MoticTM EasyScan WSI scanner………………………………………………………………………………………………. 8

1.3 Same portion of H&E stained tissue acquired through two different WSI scanners……………….. 9

1.4 DL vs ML techniques scaling……………………………………………………………………………………………………10

1.5 Differences in feature extraction for ML and DL methods………………………………………………………11

1.6 Typical Feed-Forward NN architecture………………………………………………………………………………….. 11

1.7 Typical CNN architecture…………... 17

2.1 An example of 1000x1000 image from the dataset with associated ground truth annotations 18

2.2 Fused nuclei in the softmax probability map…………………………………………………………………………. 19

2.3 An image from the second test set before and after color normalization……………………………….21

2.4 Patch extraction from the full image (on the left 250x250, on the right 1000x1000……………….22

2.5 Examples of different computer vision tasks…………………………………………………………………………..23

2.6 One-stage and two-stage object detectors……………………………………………………………………………..23

2.7 Precision-Recall curve - the blue area yields the AP value……………………………………………………….25

2.8 IoU definition…… 26

2.9 Typical NMS shortcomings……………………………………………………………………..……………………………...27

2.10 Working principle of YOLO detector………………………………………………………………....................30

2.11 Darknet-19 architecture……………………………………………………………………………………………………32

2.12 Bounding box regression…………………………………………………………………………………………….…… 33

2.13 YOLOv2 full architecture with highlighted passthrough…………………………………………………….34

2.14 YOLOv3 backbone Darknet-53…………………………………………………………………………………………..35

2.15 YOLOv3 full architecture………………………………………………………………………………………………….. 36

2.16 A training example with mosaic augmentation………………………………………………………………… 37

2.17 A training batch with 250x250 patches (batch size = 16)…………………………………,,…………….. 40

2.18 A typical confusion matrix…………………………………………………………………………………………………41

2.19 CM with 640x640 patches……………………………………………………………………………………………….. 41

2.20 CM with 1000x1000 patches…………………………………………………………………………………………… 41

2.21 P-R curve with 640x640 patches……………………………………………………………………………………….42

2.22 P-R curve with 1000x1000 patches……………………………………………………………………………………42

2.23 F1-score vs confidence (640x640)……………………………………………………………………………………. 43

2.24 F1-score vs confidence (1000x1000)………………………………………………………………………………… 43

2.25 Training results (640x640)…………………………………………………………………………………………………43

2.26 Training results (1000x1000)…………………………………………………………………………………………….44

2.27 Full image detection on a test set example……………………………………………………………………….45

2.28 NMS and heuristic cleaning……………………………………………………………………………………………….46

2.29 A graphical representation of level sets…………………………………………………………………………….47

2.30 Initialized snakes on the softmax map………………………………………………………………………………49

2.31 Evolution of snakes through the iterations………………………………………………………………………. 52

2.32 Intersection vs IoU comparison…………………………………………………………………………………………53

2.33 Hausdorff distance of two curves……………………………………………………………………………………..56

4

2.34 AJI pseudocode………57

2.35 AJI comparison to traditional metrics………………………………………………………………………………..57

3.1 F1-score computed on the bounding boxes……………………………………………………………………….58

3.2 Precision computed on the bounding boxes………………………………………………………………………59

3.3 Recall computed on the bounding boxes…………………………………………………………………………. 60

3.4 Pixel-level metrics………..61

3.5 Object-level metrics…… 62

3.6 AJI…… 63

3.7 AJI with a perfect detector……………………………………………………………………………………………… 65

5

Abstract
Deep learning (DL) has brought great benefits to the whole medical imaging field, allowing for

unprecedented performance in tasks that proved to be prohibitive to traditional image processing

techniques. In particular, the introduction of Convolutional Neural Networks, with their great

feature extraction and generalization capabilities, marked a great advance in segmentation

problems, which are one of the most common and relevant challenges when dealing with medical

images. Despite the various benefits that these kind of techniques carry, deep learning algorithms

are still mostly seen as black-box systems, making it hard to understand the factors controlling their

performance and to tune them without delving into architectural changes, which ultimately requires

high expertise in the field. Recently, more and more researchers are hence focusing on trying to

leverage on existing models by introducing additional pre/postprocessing steps to the pipeline, with

the purpose of improving the baseline performance of the model. In this optic, this work aims to

develop a hybrid framework, combining DL methods with traditional image processing techniques

to segment medical images. In particular, semantic segmentation operated by CNNs usually shows

very high pixel-level accuracy, but is prone to merging different objects that are close to each other

or even intersecting. For this reason, the possibilities of such a framework are here explored on

histopathological images. Moreover, Whole Slide Images (WSIs), a digital representation of a whole

slide of tissue taken from a patient in a surgical environment during a biopsy, are becoming the

primary source of observation for pathologists over direct observation of the tissue samples.

Therefore, researchers are currently addressing the increasing need for automatic quantitative

analysis tools that can lead to faster and more evidence-based diagnosis. The proposed method is

built on a synergic combination of a deep segmentation network and an object detection model, to

take advantage of the pixel-level segmentation accuracy of the former and of the higher spatial

localization of whole instances of the latter. The information coming from both is then used to

initialize and evolve Active Contours on the softmax probability map generated by the segmentation

network and a repulsive interaction term is introduced to correctly handle the segmentation of

those nuclei that were otherwise fused in the original segmentation, solely based on the network.

The method is benchmarked on a standard dataset, specifically proposed for the evaluation of

nuclear segmentation tasks, in terms of several pixel-level and object-level metrics and particular

focus is put on evaluating the results in terms of Aggregated Jaccard Index, a comprehensive

indicator for segmentation quality. The proposed approach shows statistically significant

improvements over the performance baseline consisting of a common threshold-based

segmentation of the softmax, suggesting the method’s suitability for crowded images segmentation.

Further work may include exploring the framework applicability and usefulness to other medical

imaging domains: the inherent generality of the pipeline should however make the transfer

relatively easy. Other possible improvements involve carrying a combined optimization of the two

DL models to maximize performance returns and addressing potential scalability problems in the

application of this framework to large amounts of data such as in entire WSI segmentations.

6

Introduction
1.1 Aim of the thesis

The application of digital processing techniques to images in the medical field have seen a constant

growth in the recent years, mostly due to increasing computing capabilities, which enabled the

development of more complex algorithms and their use in real-time application [1]. Nowadays, most

of these techniques do not aim to have a direct diagnostic value, but configure themselves as a

support to clinicians by addressing inherent problems such as repetitive manual tasks, inter-

operator and intra-operator variability [2]. In particular, one of the research area that has recently

gained a lot of interest is deep learning, which achieved state of the art performance in many

medical imaging tasks [3]. The aim of this thesis is to develop and explore the potential benefits of

a hybrid framework for medical image segmentation, combining some of the most recent deep

learning algorithms with more traditional and established image processing techniques. More in

depth, the developed method can be briefly summarised in the following steps:

 Training of a segmentation network and an object detection network on the same input

data.

 Softmax probability map generation (as the segmentation network output) and centroid

extraction (from the object detection bounding boxes).

 Initialization of non-parametric Active Contour models (commonly known as “snakes”) on

the previously calculated centroids.

 Evolution of the active contours on the softmax.

 Final segmentation, obtained as the binary mask of each fully developed contour.

Figure 1.1: Workflow for the proposed framework

7

This approach should allow to take advantage of the outstanding generalization capabilities of deep

learning, as well as the high shape adaptability of deformable models. Moreover, the combined

segmentation and object detection networks can help overcoming the problem of fused

segmentations of close objects. On these premises, this framework should therefore yield the

highest benefit when used for the segmentation of images with a high density of close, possibly

overlapping, objects. For this reason, the technique has been first developed and evaluated on

digital histological images, even though its high generality should allow a reasonably simple transfer

to any other medical imaging domain. This proposed approach follows the philosophy of an

increasing number of recent studies, which are concentrating on increasing the baseline

performance of classical deep learning techniques through the application of alternative post-

processing techniques [4].

1.2 Histological imaging

Histology is a branch of biology that aims to study the microanatomy of biological specimens trough

a microscope at different organization levels, ranging from the single cells to tissue and whole organ

level [5]. Sometimes separate terms are used to indicate the study at each of those level (cytology

for cells, histology for tissues and organology for organs), but more frequently the word histology is

used to include them all.

1.2.1 Slide preparation and acquisition

Before a tissue specimen is ready for microscopic evaluation or image acquisition through dedicated

digital scanners, it has to face a number of standard steps that ensure an optimal slide preparation

[6]:

1. Fixation: through appropriate chemical fixatives, the tissue is locked in its current state. This

makes it possible to preserve and maintain the structure of tissues and cells and to avoid

autolysis and degradation of the sample with time. Moreover, fixation aids the subsequent

process of cutting by hardening the tissue. The most widely employed agent for light

microscopy is 10% neutral buffered formalin, used in a ratio of about 10:1 with the specimen

volume.

2. Trimming: after choosing the portion of the sample that will be relevant for future

investigation, the tissue is cut through a scalpel so that the resulting section can fit into a

labelled tissue cassette.

3. Tissue processing: several steps to make the sample ready for sectioning in thin slices. First,

the specimen is dehydrated (removal of water and fixation agent) by dipping it into

increasing concentrations of alcohol. After cleaning through an organic solvent, the

specimen is infiltrated with an embedding agent, most commonly molten paraffin wax,

which provides a tough support matrix after solidification.

4. Sectioning: after a brief exposure to low temperatures to harden the waxed block, the

specimen is ready to be sectioned in thin slices. The cuts are carried out by a microtome at

an average thickness of 5 µm for light microscopy applications or even less for the electron

counterpart.

5. Staining: at this stage most cells and other tissue structures of the specimen are transparent

and show relatively low contrast when scanned through any microscope. Staining is hence

8

applied to enhance the contrast as well as to highlight structures of interest. There are

several staining techniques available for use, but the typical general-purpose choice is the

hematoxylin and eosin staining (H&E). Hematoxylin marks cell nuclei in blue, whereas eosin

stains cytoplasm, extracellular matrix and different other structures in various shades of

pink. Eventually, an optical glue is applied on top of each slide to protect the underlying

specimen.

Thanks to current availability of quick and high-resolution whole-slide scanners, the prepared

specimens are almost always digitized to whole-slide images (WSIs) and the anatomopathologists

often analyse the samples directly on those stored digital images. The advantage in terms of space

given by the storage of all samples in digital form is apparent, but as of today clinical histological

laboratories are still required to conserve the physical slides for at least 10 years [7].

Another direct consequence of using WSIs is that the operator is naturally enabled to use any

available automatic algorithm or CAD at will during his diagnostic operations. Completely manual

histological images analysis is, indeed, a very time consuming and potentially repetitive task which

could benefit in several ways from the use of automated systems. For instance, roughly 80% of the

biopsies analysed each year in the US are benign [8] and even in the case of pathologic slides, a vast

portion of tissue can bring little diagnostic importance: an automatic identification of regions of

interest can thus significantly reduce the time spent by operators reviewing healthy slides. Besides

this time-saving aspect, researchers and pathologists agree on the importance of quantitative

analysis in the diagnostic process: characteristics such as nuclei shape, spatial arrangement and size

are correlated to tissue condition or sometimes can even help predict therapeutic response and

they are all weighted during the educated decisions taken by pathologists [9][10].

1.2.2 Challenges for Image Processing

Despite all these benefits that digital image processing can bring to the histopathology field, there

are several challenges which any algorithm dealing with histological images has to face [11]:

 Data density of histopatology images can be extremely high [12]: typical WSI scanners

acquire images at up 40x magnification, resulting in 15000x15000 WSIs with a spatial

resolution of 0,25 µm per pixel. Considering a 24 bits color depth, the total amount of data

for a 1 mm2 area is roughly 48 MB. Comparing these numbers to the average radiological

image (CT or MRI scans), which is 512x512 pixels and color-coded on 2 bytes, it is clear that

any automatic method working on this kind of images needs to be as efficient and optimized

as possible to be able to run in a practical use case. Viewing software usually handles this

Figure 1.2: MoticTM EasyScan WSI scanner

9

problematic by adopting a multi-resolution approach (pyramid representation): the fully

magnified image is embedded in a single file with copies (typically three or four) of the same

image, downsampled to lower magnification levels. At loading time, the software retrieves

the portion of image requested by the user at the most suitable resolution level, depending

on the zoom level relative to the whole image and taking into consideration that, at any time,

the highest resolution that can actually be appreciated is limited by the screen resolution in

use. Of course this approach results in an increased storage requirement, but it also makes

the loading much faster at higher FOV values, as shown in the picture below.

 WSIs show a high inter-laboratory and inter-slide variability. In the first place, this is linked

to the inherent heterogeneity of histological samples, which can be extracted from virtually

any body part and contain a variety of different structures. This is one of the reason why

deep learning, with its high generalization capabilities, has outperformed any traditional

technique when it comes to histological classification and segmentation tasks. However,

even when the same tissue type is considered, variations can be significant. This is mainly

due to two factors: the previously described process of slides preparation, which can

introduce variations between laboratories even when adopting the same protocols and

staining, and digitization of the slide through different scanners [11]. The very same WSI

acquired by two scanning equipment can show variations in both lightning and coloration.

 Relevant information in histological images can be spread through different scales:

depending on the diagnostic query, pathologists may be looking at single cells appearance,

arrangement of groups of nuclei or higher-level structures like glands. An effective and

complete CAD should therefore integrate information from all the needed levels, or combine

single methods working at different scales.

 Lack of labelled data. While a good amount of publicly accessible unlabelled data is available,

the lack of consistent training data represents a significant barrier to the development of

performing and well-generalizing machine learning frameworks. Moreover, most labelled

data available only contains whole-slide information regarding the condition of the sample

(e.g. healthy/tumour) and is hence only useful for methods approaching classification tasks

[13].

Figure 1.3: Same portion of H&E stained tissue acquired through two different WSI scanners

10

1.3 Introduction to Deep Learning

Deep learning is a subset of machine learning methods based on artificial neural networks, where

information is passed and processed sequentially by a large number of layers [14]. One of the most

relevant differences between traditional algorithms and machine learning techniques (and as such,

DL) is the use they make of data they are applied on: while the former simply take data as an input

and apply a set of rules (as complex as they might be), machine learning algorithms are designed to

learn directly from data [15]. In other words, in traditional workflows data only represents the

starting point of the entire pipeline, whereas it is the core element for any machine learning

approach. As a direct consequence, the performance of ML implementations increases along with

the quantity and quality of data available, as they get closer to be a representative sample for the

specific problem considered. This concept is also linked to one of the first dissimilarities between

general ML and DL: the graph below shows a qualitative estimation of the performance of both

against the amount of data available [16]. By looking at the two curves, one can easily assert that

DL potentially shows a much higher scalability than ML. In fact, even though ML performance may

even be higher for small sized datasets, it eventually reaches a plateau, which results in negligible

benefits for further increasing amounts of data; this does not happen to DL for which more data,

paired with bigger (deeper) models, results in increased performance. This is perhaps the main

reason why DL has only seen heavy adoption in the last decade, although the concepts behind it

existed since the second half of the previous century: the sheer increase of publicly available digital

data made it possible to build systems that fall in the right part of the graph, while the amount

previously available could not exploit the full potential of DL [17].

Another import factor that sets DL apart from ML is the nature of the input data. ML algorithms

usually rely on feature extraction, starting from the raw data, to craft specific features to be given

as input to the system. On the other hand, DL is most often fed with raw data (eg. a full signal or

image), as feature extraction is carried out internally by the network itself, with information

processed by each layer into increasingly complex and high level features [14].

Figure 1.4: DL vs ML techniques scaling

11

1.3.1 Artificial Neural Networks

Artificial Neural Networks are the core of most deep learning methods. As its name suggests, an

ANN is a system that tries to mimic the inner working of the animal brain, which as a first

approximation is made up of multiple neurons linked together by synapses [18].

1.3.1.1 Neurons and activation functions

Indeed, the basic unit of every ANN is the artificial neuron, which in its most common form is simply

composed by a linear regression model and an activation function. Given a set of inputs {x1,x2,…,xn}

(the input to the system or the outputs of a previous layer neurons), the output of the neuron z is:

𝑧 = 𝑤1 ∗ 𝑥1 +𝑤2 ∗ 𝑥2 +⋯+ 𝑤𝑛 ∗ 𝑥𝑛 + 𝑏 = ∑𝑤𝑖 ∗ 𝑥𝑖

𝑛

𝑖=1

+ 𝑏

where {w1,w2,…,wn} are the weights of the input connections to the neuron (also called synapses to

keep the biological analogy) and b is a constant bias term. In most cases, this result is then passed

through a specific function to generate the final output a as: 𝑎 = 𝑓(𝑧). The first and simplest

Figure 1.5: Differences in feature extraction for ML and DL methods

Figure 1.6: Typical Feed-Forward NN architecture

12

attempt to create and train a neural network, known as perceptron, actually consist of this single

neuron block with a hard limiter activation function and dates back to 1958; it is hence only suitable

for binary linear classification problems. There is a great number of activation functions employed

in the literature [19], ranging from the identity function, that simply transfer the input to the output,

to more complex non-linear ones; the table below shows some of the most common among them.

The requisite for a generic function to be used as an activation is differentiability, as its derivatives

are calculated during the training process. The main advantage of using an activation function that

differs from the linear ones is that it makes the network more capable of learning highly non-linear

relationship in the input data. Historically, the most used function has been the sigmoid function,

whose mathematical expression is given by:

𝜎(𝑧) =
1

1+𝑒−𝑧
.

The sigmoid function has the advantage of being limited between 0 and 1, which ensures that any

neuron output in the network cannot reach extremely high values, thus making the training process

more stable; it is also particularly useful for output neurons as it easily correlates to the probability

of classification. However, for deep networks the so called ReLu (Rectified Linear Unit) function is

most often preferred for a number of reasons: it is computationally simple while maintaining a

sufficient grade of non-linearity and has proved to perform generally better.

𝑅𝑒𝐿𝑢(𝑧) = {
0, 𝑧 < 0
𝑧, 𝑧 ≥ 0

A slightly modified version of this activation is the leaky ReLu, which introduces a low positive slope

for negative values of input z; the derivative of the function is hence never zero, which can be

beneficial for the learning algorithms that will be discussed below.

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢(𝑧) = {
𝑠 ∗ 𝑧, 𝑧 < 0
𝑧, 𝑧 ≥ 0

where s is a small positive slope, usually set to 0.01.

1.3.1.2 Learning process and optimization methods

The idea behind the learning process of an ANN is to iteratively feed labelled data as input, calculate

the resulting output (ŷ) and its deviation (quantified through a loss function L) from the desired

output (y) and adjust the network weights and biases in a way that minimizes this deviation. A

generic cost function used for training is usually written as:

𝐽(𝑊, 𝑏) =
1

𝑀
∑𝐿(𝑦, �̂�)

𝑀

𝑖=1

where M is the number of training example inputted to the network in a single pass. This is known

as batch size and the single forward/backward pass is a training iteration; the presentation of the

entire dataset constitutes a training epoch. Among many others, the most commonly employed cost

functions are cross entropy (CE) and mean squared error (MSE) for classification and regression

problems respectively.

13

𝐽𝐶𝐸 = − log(ŷ) 𝑦 𝐽𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦 − ŷ)2𝑁
𝑖=1

The algorithm at the core of the training process is known as backpropagation and, in its original

formulation, is based on the gradient descent optimization method [20]. After each forward pass in

the network, the loss function is evaluated and its gradient is propagated back through the network,

updating the parameters by the following rules:

𝑤 ∶= 𝑤 − 𝜖
𝜕𝐽

𝜕𝑤
 𝑏 ∶= 𝑏 − 𝜖

𝜕𝐽

𝜕𝑏

Parameter ϵ, known as the learning rate, is used to control the entity of the parameters adjustment

at each backpropagation: a higher value results in faster training, but may bring up problems as far

as the convergence of the method is concerned, whereas a value too low could leave the training

process stuck into a shallow local minimum. When the batch size is set to one (loss and

backpropagation are computed after each example), this method is known as Stochastic Gradient

Descent (SGD), while the case where batch size equals the size of the whole training dataset (loss

and backpropagation are computed after one full epoch) is referred as Batch Gradient Descent: in

practice an intermediate number is generally chosen, as a trade-off between the computing

efficiency of the batched version that leverages vectorization and the frequent updates of the loss

value of SGD. This last case is also frequently named Mini-batch Gradient Descent. A number of

different optimization algorithms have been proposed as alternatives to GD [21], trying to achieve

faster and/or more precise convergence, including the following:

 Gradient descent with momentum: it attempts to make the descent faster by factoring the

gradient values from previous steps in the parameters update criteria during

backpropagation, as shown below:

{
𝑤 ∶= 𝑤 − 𝜖𝑣𝑑𝑤
𝑏 ∶= 𝑏 − 𝜖𝑣𝑑𝑏

 , where {
𝑣𝑑𝑤 = 𝛽𝑣𝑑𝑤 + (1 − 𝛽)

𝜕𝐽

𝜕𝑤

𝑣𝑑𝑏 = 𝛽𝑣𝑑𝑏 + (1 − 𝛽)
𝜕𝐽

𝜕𝑏

This is basically equivalent to using an exponential moving average of the latest gradients (which

assigns an exponentially decaying weight to each averaged element, starting from the most recent)

instead of the current value like the SGD did. This way, the optimization will be less prone to move

in directions with oscillating gradients. The 𝛽 hyperparameter controls how wide the moving

average window actually is, and with the commonly used value of 0.9, roughly the most recent ten

records in the average have a non-negligible effect.

 RMSprop: the concept is similar to that introduced by momentum, but instead of simply

accounting for the average gradient, it introduces a damping factor, reducing the effect of

oscillating gradients on the update rule. It is formalised as:

{
𝑤 ∶= 𝑤 − 𝜖

𝜕𝐽

𝜕𝑤

1

√𝑆𝑑𝑤

𝑏 ∶= 𝑏 − 𝜖
𝜕𝐽

𝜕𝑏

1

√𝑆𝑑𝑏

 , where {
𝑆𝑑𝑤 = 𝛽𝑆𝑑𝑤 + (1 − 𝛽)(

𝜕𝐽

𝜕𝑤
)2

𝑆𝑑𝑏 = 𝛽𝑆𝑑𝑏 + (1 − 𝛽)(
𝜕𝐽

𝜕𝑏
)2

14

 Adam: its name stands for Adaptive moment estimation and it combines the two EMA terms

of the previously described methods into one single update rule. However, instead of directly

using the averages as computed above, it also applies bias correction that accounts for the

effect of missing values in the first few iterations of computation. The final form of the

update criterion is hence:

{

 𝑤 ∶= 𝑤 − 𝜖

𝑣𝑑𝑤
𝑐𝑜𝑟𝑟

√𝑆𝑑𝑤
𝑐𝑜𝑟𝑟

𝑤 ∶= 𝑤 − 𝜖
𝑣𝑑𝑏
𝑐𝑜𝑟𝑟

√𝑆𝑑𝑏
𝑐𝑜𝑟𝑟

Here, the generic bias-corrected EMA is calculated as:

𝑎𝑣𝑔𝑐𝑜𝑟𝑟 =
𝑎𝑣𝑔

1 − 𝛽𝑡

where t is the current iteration number. As expected, the bias correction has a diminishing

effect as t increases.

Considering all the topics above, the basic elements making up any ANN can be summed up in:

1. Neurons and their associated activation function.

2. Learning algorithm and optimization method.

3. Architecture, which defines the network size (number of layers, neurons per layer) and

neurons interconnectivity.

1.3.2 Application to Image Processing

In principle, the most basic architecture described above, usually known as feed-forward

architecture, where each neuron is connected to every other unit of the previous and following

layers, could be applied directly in computer vision tasks by using the image pixels as features for

the input layer. However, such an approach easily leads to an unsustainable increase in the number

of learnable parameters (weights and biases) and it is hence viable only for low-resolution images.

For example, a simple 512x512 RGB picture contains 786432 input features: considering a single

hidden layer with 1000 neurons, the total number of parameters for this simple network already

approaches one billion. As a consequence, a network like this is prone to overfitting without a

consistent amount of training data, while still being too shallow to learn the complex patterns that

are often part of imagery data (this brings to high bias, high variance models). The architecture that

managed to solve these problems and first enabled to apply deep learning to computer vision with

great success is the Convolutional Neural Network (CNN).

1.3.3 2D Convolution

As suggested by its name, the basic concept behind this architecture is the 2D convolution, an

operator commonly used in many traditional image processing algorithms and whose mathematical

formulation is usually written as:

15

𝑦[𝑖, 𝑗] = ℎ[𝑚, 𝑛] ∗ 𝑥[𝑖, 𝑗] = ∑ ∑ ℎ[𝑚, 𝑛]𝑥[𝑖 − 𝑚, 𝑗 − 𝑛]

𝑁

𝑛=−𝑁

𝑀

𝑚=−𝑀

where x is the input image, h is a [2M+1; 2N+1] matrix called “kernel” and y is the output image

after convolution. Intuitively, convolution can be seen as the sliding of the kernel over the whole

image, during which the value of the output image at the current position is calculated as the sum

of the input pixels, weighted with the corresponding kernel values. There are two main approaches

for handling the calculation when the kernel is centred near the border of the input image:

1. Compute the convolution only for the positions where the kernel is completely contained

inside the input image. This is also called “valid” convolution. For an input size of [w; h] and

a kernel size of [m; n], it generates an output of lower size [w-m+1; h-n+1].

2. Compute the convolution for all the input pixels, by adding p pixels, usually set to the value

of 0, along the border of the input image (zero padding). When applying convolution on one

image of size [w; h], padded with p pixels, and a kernel of size [m; n], the output size is

[w+2p’-m+1; h+2p’’-n+1]. The number of padding pixels is usually chosen so that the

convolution operation leaves the image size untouched, which means:

{
𝑤 = 𝑤 + 2𝑝′ −𝑚+ 1

ℎ = ℎ + 2𝑝′′ − 𝑛 + 1

→ {

𝑝′ =
𝑚 − 1

2

𝑝′′ =
𝑛 − 1

2

When these conditions are met, this is also called “same” convolution.

For deep learning applications, another very common parameter that controls the convolution

behaviour is the stride, which sets the step for the kernel sliding over the image. Factoring in the

stride s, the general output size becomes [
𝑤+2𝑝′−𝑚

𝑠
+ 1;

ℎ+2𝑝′′−𝑛

𝑠
+ 1].

1.3.4 Basic architecture of a CNN

The main difference between traditional convolutional filters used in image processing and those

used in CNNs is that the kernel coefficients are not set beforehand, but they are part of the learnable

parameters during training. A general CNN architecture is usually composed of two main macro

blocks [22]. The first one takes an image as input and sequentially processes it into higher-level,

lower-sized feature maps. For this reason, this part of the network can be seen as a feature

extractor. The most common layers found in this block are:

 Convolutional (conv) layer: the core layer of any CNN, it applies convolution as described

above between its input and a certain number of kernels. Its operation depends on four

tuneable hyperparameters: kernel size, padding, stride and number of filters to apply. The

output of a convolutional layer is a collection of feature maps, whose size in the first two

dimensions depends on the combination of kernel size, padding and stride as formulated

above, and a size in the third dimension corresponding to the number of filters of the layer.

With a kernel size of [n; m] and a number of filters f, the number of learnable parameters is

given by nxm weights and a bias term for each filter, for a total of (𝑛 ∙ 𝑚 + 1) ∙ 𝑓 parameters,

16

irrespective of input volume size. The advantage of using convolutional layers in place of

fully-connected layers of parameters needed is thus clear. Usually, the output volume of any

conv layer is fed into a common activation function, typically ReLu.

 Batch normalization layer [23]: although not born in the context of convolutional networks

and not being a standard block ubiquitously found in any CNN, this layer is an important

component of many architectures. Its job is to normalize the batch of data outputted by a

given layer; however, instead of computing a hard-coded normalization, this layer tries to

learn the most suitable normalization directly from data. To do this, it brings two learnable

parameters, γ and β, which are used to calculate the transform the input features as follows:

𝑥′ = 𝛾 ∙ 𝑥𝑛𝑜𝑟𝑚 + 𝛽, where 𝑥𝑛𝑜𝑟𝑚 is the normalized input batch

 𝑥𝑛𝑜𝑟𝑚 =
𝑥−µ

√𝜎2+𝜖
 𝜇 =

1

𝑀
∑ 𝑥𝑖
𝑀
𝑖=1 𝜎2 =

1

𝑀
∑ (𝑥𝑖 − 𝜇)
𝑀
𝑖=1 .

Basically, this layer first transforms the input batch into a zero mean and unitary standard

deviation distribution, then it adds a new mean and variance that is adjusted as the training

process advances. In addition, it also store the value of the moving averages of these two

parameters through the iterations, making up two additional non-learnable parameters.

Their value is used to apply batch normalization at inference time, when each input example

is processed separately. When present, batch normalization can be placed both before and

after the activation function of a convolutional layer; while there is no clear advantage of an

approach over the other, this layer is most often placed before applying the non-linearity, as

suggested by its introduction paper.

 Pooling layer: the main purpose of this layer is to reduce the spatial size of the input feature

volume, to lower the parameters and computational effort needed for the deeper layers.

This layer operates independently on every slice of the input volume and its behaviour is

controlled by two hyperparameters: pooling region size (f) and stride (s). For an input volume

of size [w’; h’; d’], a pooling layer outputs a volume of size

{

 𝑤′′ =

𝑤′ − 𝑓

𝑠
+ 1

ℎ′′ =
ℎ′ − 𝑓

𝑠
+ 1

𝑑′′ = 𝑑′

These two hyperparameters are usually chosen equal with a value of 2, which yields 2x2 non-

overlapping pooling regions, with the effect of downsampling by a factor of two. For each

pooling region, the output value is chosen by using one of the following pooling methods:

1. Max pooling: the output is set to the maximum value in the pooling region. This is by

far the most used alternative.

2. Average pooling: the output is set to the average of the pooling region values.

Historically, this was the first pooling method used, but nowadays it is almost always

replaced with max pooling.

3. L2-norm pooling: the output is set to the computed L2 norm of the values inside the

pooling region.

17

Pooling layers do not introduce any learnable parameter in the network. The most recent

CNN architectures have seen a reduced use of pooling layers in favour of convolutions with

higher stride values.

The second block of a CNN takes the feature maps computed by the first block, flattens them to a

feature vector and feeds it to a fully connected section for classification. The main layer types of this

second block are:

 Fully-connected (FC) layer: the main component of non-convolutional feed-forward neural

networks, where each neuron is connected to all units of the following layer. The only

hyperparameter of this layer is the number of neurons. The total learnable parameters for

one of this layer are: (𝑛𝑖 + 1) ∙ 𝑛𝑖+1, where ni is the number of neurons in the ith FC layer

and ni+1 the one of the following FC layer. The number of units of the first layer must be

equal to the length of the flattened feature vector coming from the feature extracting block,

while last layer units depend on the number of classes for the classification problem

considered.

 Softmax layer: transform the last FC layer output vector 𝑥 = (

𝑥1
⋮
𝑥𝑛
) into a vector of

probabilities 𝑝 = (

𝑝1
⋮
𝑝𝑛
), where each element 𝑝𝑖 =

𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

 is the probability of classification

in the corresponding class.

 Classification layer: this layer defines the classification result as the class with the highest

classification probability.

Figure 1.7: Typical CNN architecture

18

Materials and methods
2.1 Dataset

The image data used in this thesis work consists in a dataset proposed by Kumar et al. [24] as a

standard to develop and validate nuclear segmentation algorithms on histological images. The

dataset is composed by thirty 1000x1000 images, carefully extracted from TGCA (The Cancer

Genomic Atlas) WSIs to contain a representative selection of different organs and structures. The

original WSIs are H&E stained slides, captured at 40x magnification factor. To enhance the variability

of nuclear appearance, the following criteria were used to extract any of the 30 images:

 Each image comes from a different patient biopsy, to include inter-subject variability.

 The biopsies are extracted from one of these seven organs: breast, liver, kidney, prostate,

bladder, colon and stomach. This ensures the presence of different phenotypic traits.

 The biopsies used are prepared in 18 different hospitals, to account for variation due to

different staining protocols.

The ground-truth is represented by the separate segmentation of each nucleus, for a total of 21623

objects, and the manual annotations quality has been reviewed by an expert pathologist; the

authors report the number of incorrect annotations for any given image to be lower than 1% of the

total. Following the authors suggestion, the dataset was split as follows:

 Training set (13 images, from four of the seven organs): used for the training of both the

segmentation and detection networks.

 Validation set (3 images, same organs of the train set): used to compute the training metrics

at each epoch of the training process.

 Test set 1 (8 images, same organs of the train set): used to assess the framework ability to

generalize learned tasks to images never seen by network during training.

 Test set 2 (6 images, from three different organs): used to further benchmark generalization

by using nuclei from organs that were excluded from training.

Figure 2.1: An example of 1000x1000 image from the dataset with its associated ground truth annotations

19

In addition to the dataset described above, the starting material for this work already includes the

softmax probability maps generated by a U-Net like segmentation network. This network was

trained on a 3 classes segmentation problem (nucleus, nucleus border and background) on the

above mentioned training set, as already proposed by Kumar. In particular, the softmax is coded as

a 3-channels RGB image, where for each pixel the red value is the probability of being part of the

background, the green value is the probability of constituting a nuclear border and the blue one the

likelihood of being part of a nuclear body. Being a graphical representation of probabilities, the sum

over the three channels for any given pixel always amounts to one. The introduction of the border

class should make it easier for the network to learn to separate close distinct nuclei from each other,

however many instances where two or more nuclei segmentations are fused without any border

are still observable.

This dataset was the subject of the MoNuSeg 2018 Challenge [25], whose results are reported in

[article]. In this case, though, all 30 images of this dataset were used as training data, while a

separate test set of 14 images was provided to participants after the submissions deadline.

2.2 Previous work

To the best of my knowledge, no available published work tries to combine deep learning

frameworks with traditional post-processing techniques in the same way explored in this thesis

(evolution of active contours on softmax probability maps and their initialization through an object

detection model). Outside of the medical imaging field, the integration of deep learning methods

with active contours has been recently addressed by the work of Rupprecht et al., who developed

an interactive segmentation method that they named “Deep Active Contours” [26]. Given an

evolving geometrical active contour, a class-specific convolutional neural network is trained to

predict, for each point of the contour, a vector pointing to the closest point on the boundary of the

object to be segmented. The vector field originated from all the contour points is subsequently used

to iteratively evolve the contour. The authors also demonstrate the potential applicability of their

method to the medical field by successfully segmenting the left ventricular cavity of MRI

Figure 2.2: Fused nuclei in the softmax probability map

20

acquisitions. More recently, Marcos et al. developed and end-to-end trainable framework for the

segmentation of buildings on aerial images [27]. This framework, named DSAC (Deep Structured

Active Contours), aims to combine the typically high detection rate of CNNs with the geometric

correctness of snakes. In contrast with the previously described paper and the approach used in this

thesis (using deep learning initialized snakes as a post-processing step for the segmentation

network), the authors managed to integrate the contour evolution into a loss term, thus making it

a central part of the CNN training process.

In the histological imaging field, Kumar et al. presented a segmentation framework based on their

own proposed dataset [24], the same used for this thesis. Their method is based on a CNN with

three cascaded convolutional/pooling blocks and two FC layers, that classifies each pixel in one of

three classes (inside/outside of a nucleus and nuclear border). To reach the nuclear segmentation

starting from the three-class softmax map outputted by the network, the “inside probability” is

thresholded to obtain nuclear seeds which are then expanded using region growing. The proposed

idea of explicitly introducing a separate class for the nuclear border helps with the segmentation of

crowded and touching nuclei.

2.3 Pre-processing

2.3.1 Color normalization

The images provided already went through a pre-processing step of color normalization, to minimize

the color variations that purposely affect the dataset. This is a standard pre-processing step when

dealing with histological image analysis, as the strong color variability could otherwise excessively

bias the algorithm learning process. Color normalization includes a wide set of techniques, all aimed

at compensating the color variations on a given group of input images to make them as coherent as

possible with a reference image. The choice of the normalization technique to implement is quiet

important, as it can significantly influence the performance of any classifier or detector later applied

and it should be evaluated considering a number of factors: impact on the overall image quality and

details, degree of coherence with the original coloration, presence of artefacts, computation

complexity and others. Due to the importance of this step on the whole histopathological image

analysis process, a great number of techniques have been proposed in the recent years [28].

Although now mainly outdated, some of the most historically important among the others are:

 Histogram Specification [29]: one of the first attempt to color normalization on histological

images. It can be rather limited and yield unsatisfactory results when the statistics of source

and target images are highly dissimilar.

 Color Deconvolution: known as the first methods to successfully separate stains in a

histology image. This can be particularly interesting because each stain usually highlights

particular biological structures.

 Spectral Decomposition [30]: employs Non-negative matrix factorization to decompose the

input image, but it presents scaling ambiguities, as the solution to NMF is not closed.

 Macenko [31]: it is a fast and automatic method to perform stain separation, but a consistent

amount of information from source image can be lost, which can be unacceptable for certain

analyses.

21

In more recent times, some deep learning related techniques have also been proposed [28] and

evaluated; the most promising approaches are based on Generative Adversarial Networks (GANs)

and Cycle-GANs.

2.3.2 Patch extraction

First of all, bounding box information is extracted from the annotation data structure associated

with the dataset. Each bounding box is expressed with its centre coordinates, its width and height,

all normalized between 0 and 1 in respect of the total image (or patch) length. Afterwards, before

proceeding with the training of an object detection model, the dataset is offline preprocessed to be

divided into square patches through a dedicate Matlab script. Each patch is saved as a separate

image, along with the coordinates of any bounding boxes on the whole image whose centroid lies

in the patch itself and the information needed to correctly reconstruct the original image during

subsequent model inferencing on the patches (coordinates of the higher left pixel and size of the

patch). The parameters that can be set to control the way that the square patches are extracted

are:

1. Patch size (N): when N is selected to any value below half the size of the image (500), the

maximum number of non-overlapping patches of size NxN is extracted to cover up the full

image. On the other hand, when the selected size exceeds this threshold, four patches are

always extracted, one for each corner of the input image.

2. Extraction at grid intersections: optionally, the patches centred on the grid intersections

formed by the borders of the previously included patches can also be extracted. The idea

behind this possibility is to increase the number of training examples, providing a first offline

form of data augmentation.

Figure 2.3: An image from the second test set before and after color normalization

22

Two representative examples of the described patching process are reported below, with a selected

patch size of 250x250 and 640x640 respectively.

2.4 Object Detection

The first step of the proposed method is the training of an object detection model, through the

same 13 training images used for the U-Net training. When the relevant architectures linked to this

work make use of more advanced layers that those discussed in the introduction chapter, those will

be briefly explained in dedicated subparagraphs.

2.4.1 Computer Vision tasks

Object detection is a computer vision task that has seen a very strong growth in the recent past.

Considering the complexities associated with image data and the breadth of the field, computer

vision is rich of challenges that are now approachable through the use of deep learning [32]. Some

of the most common and relevant for this work are:

 Image classification: it consists in assigning a single label to the whole image, based on its

content. This is one of the first addressed and relatively simple computer vision tasks and it

can be attained with the basic CNN structure described in the introduction.

 Classification and localization: this is similar to the previous task, but instead of just

recognizing the main subject of the image and assigning a proper class, it also highlights the

spatial location of the object using a bounding box. This is still limited to a single object per

image.

 Semantic segmentation: the whole input image is segmented by assigning a class to each

pixel. No notion of object is introduced, so this approach may not be suitable for the

segmentation of crowded or overlapping subjects, when distinguishing between instances is

Figure 2.4: Patch extraction from the full image (on the left 250x250, on the right 1000x1000

23

needed. This task can be successfully performed with deep learning segmentation

architectures such as U-Net.

 Object detection: the goal of object detection is to detect every instance of different objects

of interest in a picture, as well as to highlight its spatial localisation with a bounding box.

Considering the need to identify an unknown number of instances of possibly very different

object classes, object detection is an inherently harder task compared to those listed above.

 Instance segmentation: just like object detection, all instances of different objects are

detected, however, in addition to that, each instance is also segmented at pixel level.

Figure 2.5: Examples of different computer vision tasks

2.4.2 One-stage and two-stage object detectors

Object detection models typically fall in two main categories, in respect of their approach to the

detection problem: one-stage and two-stage detectors [33]. One-stage detectors directly treat

detection as a regression problem: starting from the input image, they output a collection of

bounding boxes that can be positioned on any part of the

image, in terms of their coordinates and object class.

During backpropagtion, the coordinates and classes

computed during the forward pass are used along with

ground-truth annotations to compute some kind of paired

regression and classification losses. One-stage detectors

have the distinctive advantage of being very fast at

evaluation time, making real-time inference possible even

on consumer grade hardware. The most representative

models of this object detectors type are YOLO (acronym

for You Only Look Once), SSD (Single Shot Detector) and

RetinaNet. Two-stage detectors on the other hand split up

the detection process in two separate phases:

1. Proposals generation: during this phase, the model identifies regions on the input image that

are most likely to contain an object. These proposal regions (or Regions of Interest; ROI) can

either be performed by specific algorithms (such as selective search) for former detectors or

by a neural network itself (usually called Region Proposal Network; RPN) in more recent

Figure 2.6: One-stage and two-stage object detectors

24

models. Especially when using dedicated algorithms, this stage is usually the weak part of

two stage-detectors when it comes to computational time.

2. Classification: the proposals from the previous step are classified into object classes or

background by a dedicated network. The network may include a regression branch to further

refine the bounding box position in the proposed region.

Due to their indirect nature, two-stage detectors are fairly slower than one-stage solutions, however

they can reach better detection performance on average. Some import two-stage detectors are R-

CNN and its evolutions (Fast and Faster R-CNN) and FPN (Feature Pyramid Network). The above is

just a general principle of working, which may of course vary significantly even between two

detectors of the same family.

2.4.3 Common datasets and evaluation metrics

Just like any other computer vision task, in particular when deep learning methods are involved,

availability of abundant and high quality annotated data is crucial to obtain good performances and,

even more importantly, to fuel and accelerate the development of new relevant techniques and

algorithms in the field. Indeed, even the first detectors with concrete applications only dates back

to the first years of the new century and the time span between new milestones still laid in the order

of several years. These first successful algorithms, such as the Viola James detector and Deformable

Part Models (DPM), are based on the extraction of statistical handpicked features and on traditional

image processing techniques based on sliding window approaches. It was only in the last decade,

with the advent of CNNs and the public availability of large and well balanced general-purpose

datasets, that deep learning could see its first significant adoption in the object detection field, with

an incredible reduction in the time between new detectors setting the bar higher for state-of-the-

art detection. Many datasets have since become a standard benchmark to assess performances of

newly proposed methods in a reproducible way and are easily found in any object detection paper.

In the following list, the most common will be cited, along with their salient peculiarities [33][34]:

 PASCAL Visual Object Classes (VOC): subject of yearly challenges between 2005 and 2012, it

was one of the earliest large bounding box annotated datasets in the computer vision

community. In particular, two versions have become a standard benchmark in object

detection: VOC 2007 and VOC 2012. They feature 5k/11k training images and 12k/27k

annotated instances respectively, belonging to 20 classes. With the release of new and more

challenging datasets, VOC is now mainly used to provide a fair comparison with previous

related works.

 ILSVRC: based on the well-known ImageNet dataset for image classification, it provides a

higher variety than VOC, thanks to its 200 classes, spread through 517k images and 534k

annotations.

 MS-COCO: probably the most challenging general-purpose dataset available as of today for

detection tasks, it offers 80 object categories, which is less than ILSVRC, but with a fairly

higher instances to images ratio (897k annotations over 164k images). Moreover, it contains

more small objects (with an area less than 1% of the whole image), which usually represent

a higher detection challenge. Each annotation also include the complete instance

segmentation of the object, making it ideal for models like Faster RCNN that can also perform

25

this kind of task. Thanks to its peculiarities that make it a good sample of real world images,

COCO has become the current standard of model benchmarking.

 Open Images: released in 2018, it pushes the amount of data in a single dataset to new highs.

In fact, it is composed by almost 2M images, with a number of annotations just below 16M

and 600 separate object classes.

Of course, many other field-specific datasets exist and are insightful to compare proposed works in

that relevant field, just as the dataset used in this thesis is one of the standards for nuclear

segmentation. After introducing the datasets, another important point that needs to be discussed

to achieve truly reproducible comparisons is the evaluation metrics employed to evaluate

performance. In recent times, the most used metric for object detection has undoubtedly been the

mean Average Precision (mAP) [33][34]. It is based on Average Precision, which is defined as the

average value of precision at different levels of recall. Hence, it is computed by estimating the AUC

(area under curve) for the precision-recall curve. All the AP values calculated separately on each

class are then averaged to obtain the final mAP value.

𝑚𝐴𝑃 =
1

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

 ; 𝐴𝑃𝑖 = ∫ 𝑝𝑖(𝑟)𝑑𝑟
1

0

Where p and r indicates precision and recall respectively, computed with their typical formulations:

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ; 𝑟 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Figure 2.7: Precision-Recall curve - the blue area yields the AP value

However, an important factor to consider when performing mAP computation is how a certain

prediction is considered as a TP or a FP. To do this, Intersection over Union (IoU) is employed: it is

defined as the ratio of the area of intersection between a given predicted box and the ground-truth

box and the total union area. Typically, an IoU of 0.5 is considered the minimum threshold for an

accettable localization, while anything under that is considered a miss. In fact, this standard value

has been used to compute mAP since the introduction of VOC challenge and the metric is also

indicated as mAP@0.5. In the last few years though, with the introduction of COCO dataset and

mailto:mAP@0.5

26

justified by the increasing localization capability of detectors, the practice of considering detection

quality at stricter IoU values has been increasingly common and the standard is now to provide a

mAP calculation averaged over multiple IoU threshold values, most often from 0.5 (coarse

localization) to 0.95 (almost perfect localization). This metric is usually reported as mAP@0.5.0.95

and, despite being at first criticized by some researchers, this is now the metric on which state-of-

the-art performance is defined.

Figure 2.8: IoU definition

2.4.4 Non-Maximum Suppression

Non-Maximum Suppression (NMS) is a core algorithm in computer vision, especially for object

detection tasks. Traditionally, it is used as a post-processing step after model inference, but in some

cases it is also applied during training (like in Faster RCNN, where it is applied after RPN to reduce

the number of proposals) and recently some papers pushed further by making it a part of the end-

to-end learning process of the model. Most algorithms and models for detection, especially those

that rely on region proposals (such as two-stage detectors), generate a great number of predictions

even when the number of objects on an image is limited. Each prediction is accompanied by a score,

indicating the confidence of the model that the proposed bounding box corresponds to an actual

object of a particular class in that position. Consequently, a model outputs multiple bounding boxes

in close proximity when trying to predict the localization of a single object. Of course this can be

suboptimal, especially for applications where a good estimation of the number of instances is

important, and it strongly affects the general precision offered by that model. NMS tries to address

this problem and reduce all the duplicate predictions to a single, most representative box. In its

basic form, also referred as “Greedy NMS”, it is an iterative algorithm that takes the predicted

bounding boxes and their associated confidence scores in input and returns a new, reduced set of

predictions. As a first step, predictions are sorted in descending score order; in a single iteration of

the algorithm, the first prediction (highest-scoring, also called maximal prediction) is selected and

moved to the final predictions set. The IoU of this prediction with all the others is then calculated

and any box with an IOU greater than a certain threshold with the selected box is discarded. The

process then repeats by picking a new maximal box from the remaining list and it only stops when

all the original boxes have been either selected or removed. The computational complexity of NMS

mailto:mAP@0.5.0.95

27

for a set of N boxes is O(N2), so all the predictions with a confidence below a minimum value are

usually removed prior to the actual application of the algorithm. The reasoning behind NMS is that

for each object in the input image, the detector is expected to output a cluster of boxes with

different confidence in its surroundings: NMS considers any prediction with enough overlap with

the most confident one to just be a weaker detection of the same object and suppresses it. When

this is the case, NMS can lead to significant precision increments without any impact on the recall.

However, in a general scenario where separate objects can be close and have a partially overlapping

bounding boxes, the choice of the IoU threshold is not trivial: a threshold too high can defeat the

purpose of the algorithm, leaving a significant number of false positives, while a low value starts to

cause the suppression of close true positive detections due to their partial overlap. Therefore, the

possible trade-off between increased precision and lowered recall must always be accounted when

setting the threshold value. Moreover, the highest confidence score box is not guaranteed to be the

most accurate prediction for a given ground-truth object [33].

Figure 2.9: Typical NMS shortcomings: a) The highest confident box is not the most fitting. b) Suppression of close TPs. c) Non
overlapped FPs.

Despite Greedy NMS still being the most generally used post-processing method, many variations

have been developed through the years, trying to overcome the basic implementation limitations;

these can roughly be grouped in three categories:

 Modifications to the greedy approach: these methods apply the same iterative process of

tradition NMS, but try to introduce more solid suppression criteria than the simple IoU

evaluation. A fitting example is represented by an approach called “Soft-NMS” [35]: when a

prediction overlaps with the maximal box for a higher portion than the IoU threshold set, its

confidence is reduced through a rescoring function, instead of being removed directly. The

score decay depends on the entity of the overlap and is computed using a Gaussian penalty

function: 𝑠𝑖 = 𝑠𝑖𝑒
−
𝐼𝑜𝑈(𝑀,𝑏𝑖)

2

𝜎 , where M is the highest-scoring prediction, 𝑏𝑖 and 𝑠𝑖 are a

generic box compared to M and its corresponding score. By doing so, the predictions with a

consistent overlap are heavily penalized, while potential true positives close to each other

28

still have a chance of being maintained if the inference threshold used in model evaluation

is low enough. Despite being a fairly simple variation over traditional NMS, improvements

of about 1% AP@0.5:0.95 are reported on COCO and VOC 2007 datasets, with two-stage

detectors obtaining greater benefits than single-stage solutions.

 Bounding boxes aggregation: instead of keeping only one highest-confident prediction and

removing the others nearby, these methods try to use the information coming from each

bounding box to combine them into one final detection. One of the most recent examples is

represented by Weighted Boxes Fusion (WBS). Predictions given in input to this method are

first clustered by using a simple IoU criterion and for each of them a representative box,

whose confidence score is equal to the mean of the cluster’s confidence scores and

coordinates are computed as a score-weighted average of all the boxes that compose the

cluster. WBS proved to be mostly useful when processing multiple predictions coming from

model ensembling, whereas its application as a direct NMS replacement on a single model

output is usually slightly detrimental [36].

 Integration of NMS into the learning process: considering its importance in almost all object

detection pipelines, NMS is directly integrated in the training workflow of the model, in place

of being used as a post-processing step after model inference. Some approaches follow the

reasoning behind Soft-NMS of decaying confidence scores of close predictions, but instead

of doing that in a predefined way, they introduce a specific convolutional network to

perform this task [37]. In other works, such as in [38], one or more NMS related cost terms

are formulated and added to the loss of a standard detection architecture. The advantage of

these end-to end solutions is that they do not require any tune of parameters after their

training, which is one of the main problems for traditional NMS.

Regardless of its great impact on detection results and of any further enhancement that might be

introduced, NMS remains a final step in the detection pipeline, as it cannot help in the removal of

false positive instances that are not due to double detections, but caused by the model itself

identifying a portion of background as an object.

2.4.5 YOLO architecture

In the context of this thesis, a YOLO object detection model was chosen. Before describing the model

training approach used and its results, a brief introduction to the algorithm is reported. YOLO is a

single stage object detection model proposed by Redmon et al in 2016 [39] and it is the real first

one-stage detector to reach real-time performance (at least 30 fps inference), without a big

performance trade off when compared to contemporary state of the art two-stage detectors. The

distinctive point of YOLO lies in reframing object detection as a single regression problem, which

predicts bounding boxes and their associated class labels directly from the whole input image. This

allows to approach the detection problem using a single standard CNN architecture, consisting of

alternating convolutional and max-pooling layers followed by two FC layers as pictured below.

mailto:AP@0.5:0.95

29

It employs 1x1 convolutional layers, which might at first seem like a meaningless operation, but it is

actually common practice in many modern architectures. In fact, when applied to a 2D matrix it is

nothing more than a multiplication for a constant, but when used on a volume as it is the case for

feature maps, it actually computes an element wise multiplication, thus reducing the volume to a

single 2D output. As any convolutional layer, an arbitrary number of 1x1 filters can be applied, so

for an input of size [W; H; D], the output will be [W; H; D’], where D’ is the number of 1x1 kernels

applied by the layer. 1x1 convolutions can then be seen as a convenient way of shrinking or

expanding the feature map depth-wise without changing the first two dimensions, just like strides

on convolutional layers and max-pooling are used to control height and width of representations

through different network levels. The concept of 1x1 convolutional layers was first introduced by

Lin et al, which referred to it as a “Network in Network” approach [40], as each 1x1 kernel sliding

on the input can be seen as a neuron of a FC layer connected to each 1x1xD portion of the volume.

Figure 2.10 1x1 convolution

The CNN takes a 448x448 RGB image in input and outputs a volume of size 7x7x30 containing the

bounding boxes predictions. The basic steps followed by YOLO to generate such predictions are:

 Divide the input image into a grid containing SxS cells. Each grid cell will be responsible for

the detection of one object whose center lies inside the cell.

30

 For each cell, predict B bounding boxes and associated conficidence scores. That score

factors the detector’s confidence that the box actually contains an object as well as the

confidence in the box localization accuracy; it is formulated as the product of the probability

of containing an object with the intersection over union of the prediction with the

corresponding ground-truth box: 𝑐𝑜𝑛𝑓 = Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∙ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ. Each bounding box is

made up of five predictions (x, y, w, h, conf): the pair of coordinates (x, y) is the centre of the

box, relative to the grid cell borders, w and h are box width and height, normalized by the

whole image size, and 𝑐𝑜𝑛𝑓 is the confidence score as above. This way all the box predictions

for any given cell are normalized in the range [0; 1], which make the optimization of the

regression loss easier.

 Prediction of C conditional class probabilities for each grid cell. These probabilities are

conditioned on the cell containing an object and are hence expressed as Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡).

 During test time, the conditional class probabilities are multiplied with the individual

confidence score of boxes inside the same grid cell to obtain the final class-specific

confidence scores for each box.

𝑐𝑜𝑛𝑓𝑓𝑖𝑛𝑎𝑙 = Pr(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∙ Pr(𝑂𝑏𝑗𝑒𝑐𝑡) ∙ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = Pr(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑜𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ

 All the predictions from the last FC layer are thus rearranged into an SxSx(5B+C) tensor: the

first two dimensions come from the grid cell subdivision, while the third depends on the five

predictions of each box (center coordinates, box size and confidence score) and the

classification scores of the grid cells. In the original paper implementation, evaluated on VOC

dataset, the input image is divided in 49 cells (S = 7), each predicting two bounding boxes (B

= 2) to detect object of twenty separate classes (C = 20). As a consequence, the final tensor

yielded by the described CNN architecture is 7x7x30.

 At the end of the inference phase, NMS is applied to remove possible double detections, due

to big objects extending over more than one grid cell.

Figure 2.11: Working principle of YOLO detector

31

The loss function used by YOLO is a multi-part sum squared error function, which is naturally suited

for regression problems and easily optimized. It consist of a localization and classification

contribute, so that the total loss can be written as: 𝐿 = 𝐿𝑙𝑜𝑐 + 𝐿𝑐𝑙𝑠, with:

𝐿𝑙𝑜𝑐 = 𝜆𝑐𝑜𝑜𝑟𝑑∑∑1𝑖𝑗
𝑜𝑏𝑗 [(𝑥𝑖 − �̂�𝑖)

2 + (𝑦𝑖 − �̂�𝑖)
2 + (√𝑤𝑖 −√�̂�𝑖)

2
+ (√ℎ𝑖 −√ℎ̂𝑖)

2

]

𝐵

𝑗=0

𝑆2

𝑖=0

𝐿𝑐𝑙𝑠 =∑∑(1𝑖𝑗
𝑜𝑏𝑗 + 𝜆𝑛𝑜𝑜𝑏𝑗1𝑖𝑗

𝑛𝑜𝑜𝑏𝑗)(𝐶𝑖 − �̂�𝑖)
2
+∑∑1𝑖

𝑜𝑏𝑗(𝑝𝑖(𝑐) − �̂�𝑖(𝑐))
2

𝑐∈𝐶

𝑆2

𝑖=0

𝐵

𝑗=0

𝑆2

𝑖=0

In the equations above:

 1𝑖𝑗
𝑜𝑏𝑗, 1𝑖𝑗

𝑜𝑏𝑗and 1𝑖𝑗
𝑜𝑏𝑗 are indicator functions that can only assume 0 and 1 values: 1𝑖𝑗

𝑜𝑏𝑗 and its

complement 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗 indicate whether the j-th bounding box in i-th grid cell contains an

object, 1𝑖
𝑜𝑏𝑗

 whether the i-th grid cell includes any object.

 The first term of the classification loss accounts for the model’s ability to distinguish an actual

object from the background, while the second one evaluates the objects classification into

the correct classes.

 The multiplicative constants 𝜆𝑐𝑜𝑜𝑟𝑑 and 𝜆𝑛𝑜𝑜𝑏𝑗, set to 5 and 0.5 respectively, are used to

increase the localization term impact on the total loss and to reduce the weight of boxes

that does not contain any object on the first term of the classification loss, considering that

the number of grid cells that does not contain any instance is fairly high for a generic image.

 All the terms inside summations except the indicator functions are not indexed over the j

index (bounding box number inside a specific grid cell), because during training only the box

with the highest IOU in each grid cell (I index) is used in the cost function computation.

 The square root of the box width and height is used in the localization term so that the

penalization accounts for box size (small errors have a higher impact when the true box is

small).

All the innovations introduced by YOLO enabled it to be both faster and much more performant

than any previous window-based single stage detector, reaching more than 63% mAP at 45 FPS

inference on VOC 2007 dataset, using a Titan X GPU. Compared to state of the art two-stage

detectors like Faster RCNN, YOLO shows better generalization thanks to its ability to factor in the

whole image context when making predictions, reducing the number of background false positives

and making it a reasonable choice for tasks involving a high degree of variability, like that addressed

in this thesis. Despite the numerous upsides, this original implementation still has different

limitations, some of which make it unideal for the purpose of this work. To the high model precision

corresponds a recall generally lower than two-stage models, along with a higher error associated

with boxes spatial localization. The model can only locate two bounding boxes with a shared class

per grid cell, so its performance is greatly reduced in case of small, grouped objects, which is the

reason that lead to the introduction of an object detection model within the proposed framework

in the first place.

32

2.4.6 Evolution of YOLO

Following the publication of the first YOLO paper and its great impact in the field of computer vision,

many new research works were published in a relatively short span of time in relation to one-stage

detection, be they brand-new takes on the detection problem, such as SSD and RetinaNet, or

improvements on the first YOLO algorithm. The same author of the original implementation

published two new versions, YOLOv2 and YOLOv3, in 2017 and 2018 respectively. Other two newer

implementations, YOLOv4 and YOLOv5, were released during 2020 and, while not officially linked

with the original work, they maintain the name and its philosophy. A description of the most

significant differences between the successive versions of YOLO is now reported.

2.4.6.1 YOLOv2

YOLOv2 was proposed to address the main shortcomings of the original implementation, namely

the low number of detectable instances per image (49), the high number of localization error on TP

boxes and the lower recall compared to contemporary two-stage detectors, all this while

maintaining the great computational simplicity at its core [41]. The be able to make YOLO even

faster despite the modifications discussed below, the authors replaced the original architecture with

a whole new custom backbone called Darknet-19. This architecture, whose structure is summarised

in the table below, is again based on alternating convolutional (19 in total) and max-pooling layers.

It only requires 5.5 billion floating operations per single image as compared to 8.5 billion for the

previous YOLO network, still reaching better classification accuracy on ImageNet.

Figure 2.11: Darknet-19 architecture

During the forward pass, the architecture performs a total downsampling of 32, so YOLO’s original

input size of 448x448 is reduced to 416x416 to yield an odd size of 13x13 for the output feature

map.

33

The main components that were added or modified to increase performance concerning the

detection task are:

1. Batch normalization: the addition of batch normalization layers after each convolutional

layer of the architecture helps reaching convergence during training, without the need of

supplementary forms of regularization and allows removing any dropout without incurring

in overfitting problems.

2. Introduction of anchor boxes: taking inspiration from successful detectors like RCNN [42],

YOLOv2 removes the terminal FC layers and uses the concept of anchor boxes. Anchors are

predefined box shapes that are selected to be a good representation of the training dataset

annotation shapes. The idea behind anchor boxes is that the majority of objects in a given

training dataset and, more in general, in the real world can be grouped in a set of typical

height-width ratios. This significantly simplify the training phase, as the detector only has to

refine the coordinates of the predictions starting from those of the anchors, instead of

starting with random guesses placed anywhere on the image. In addition, prior boxes also

naturally enhance the detection at multiple scales, providing improved recall. Instead of

hand-picking them, YOLOv2 uses k-means clustering to generate the most suitable anchors

for the dataset in use. For VOC and COCO datasets, k = 5 clusters were used.

3. Instead of predicting unconstrained offsets from anchors coordinates like many region

proposals based detectors, YOLOv2 keeps following the original idea of directly predicting

bounding box coordinates, relative to the location of the grid cell. To obtain bounded

predictions a logistic activation is used in the last convolutional layer. The model predicts k

bounding boxes per grid cell, where k is the number of anchor boxes used and 5 coordinates

(tx, ty, tw, th, to) plus class scores for each bounding box; a bounding box is also assigned to

the anchor sharing the highest IoU with it. For a given prediction the final box coordinates

are given by:

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 ; 𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 ; 𝑏𝑤 = 𝑝𝑤𝑒
𝑡𝑤 ; 𝑏ℎ = 𝑝ℎ𝑒

𝑡ℎ

 𝑐𝑥 and 𝑐𝑦 are the position of the grid cell on the output feature map that contains

the centre of the anchor responsible for the current detection.

 𝜎 is the sigmoid function.

 𝜎(𝑡𝑥) and 𝜎(𝑡𝑦) the offsets of the centre of the prediction from the grid cell border.

 𝑡𝑤 and 𝑡ℎ control the adjustment of the prediction in respect of the anchor’s width

and height.

 𝑝𝑤 and 𝑝ℎ are the anchor’s width and height.

Figure 2.12: Bounding box regression

34

Finally, the last prediction to (objectness score) is used to calculate the box score as:

Pr(𝑜𝑏𝑗𝑒𝑐𝑡) ∙ 𝐼𝑜𝑈(𝑏, 𝑜𝑏𝑗𝑒𝑐𝑡) = 𝜎(𝑡𝑜)

4. Multi-scale training: the absence of FC layers enables the architecture to be easily resized

during training iterations, enhancing the robustness of the detector to different input image

sizes.

5. Use of fine-grained features: the localization of small objects can usually benefit from the

integration of higher resolution feature maps, as already proved by SSD detector. To take

advantage of this, the second to last layer 26x26x512 feature map is fed into a pass-through

layer, where it is reshaped to 13x13x2048 and concatenated to the original 13x13x1024

feature map from the last convolutional layer.

The final concatenated volume is eventually passed to a 1x1 convolutional layer that changes its

depth, for a final shape of 13x13x125 encoding the predicted boxes when a standard VOC dataset

is used. To sum it all up, YOLOv2 works on input RGB images of size 416x416 and returns a volume

with shape SxSx[Kx(B+C)], where S defines the grid cell number (input size divided by 32), K is the

number of boxes per grid cell (equal to the number of anchors), B the coordinates defining a box

and C the number of classes (20 for VOC). Looking at the numbers, it is clear how YOLOv2 overcame

the strict limitation on the number of detectable instances: the original paper implementation can

in fact localize up to five objects per grid cell, for a maximum of 845 boxes, although this value can

be increased by changing the number of clusters when performing k-means on the training dataset.

At native resolution, this version provided performances in line with state-of-the-art at almost 70

FPS, whereas higher resolution inputs outperform it with 78.6% mAP@0.5, still maintaining real

time inference.

1Figure 2.13: YOLOv2 full architecture with highlighted passthrough

2.4.6.2 YOLOv3

As already mentioned, YOLOv3 is the last official release by Joseph Redmon. As admittedly stated

by its author, this is an all-round update integrating many new valid ideas proposed in the deep

learning scenario after the previous release, on top of another new and deeper backbone feature

extractor, called Darknet-53 [43]. Unsurprisingly, this architecture is composed by 53 convolutional

layers and it merges the approach already followed by Darknet-19 with the introduction of skip

connections: it is a concept introduced by He et al. in their paper [44] about the use of residual

networks for image recognition, which consists in feeding a layer activation further in the network

by adding it to the computation of a successive layer activation. Formally, a basic skip connection

can be written as:

𝑎𝑙+2 = 𝑓(𝑧𝑙+2 +𝑤𝑠𝑎
𝑙)

where, following the notation already seen in the introductive chapter on neural networks, 𝑎 is the

output of a layer after the activation is applied. F is the activation function of the current layer and

mailto:mAP@0.5

35

𝑧 is the output of a neuron prior to activation. The multiplicative term 𝑤𝑠 is a matrix of learnable

parameters to make the skip connection feasible even when the two layers have different output

size, otherwise the two terms inside the parenthesis could not be summed. This is most often not

the case though, as “same” type of convolution is generally used in any residual CNN. The

combination of the skip connection and the two layers that it connects is known as a residual block

and it is the basic element of any residual network architecture (ResNet). The use of skip connections

makes it possible to successfully train very deep networks, reason why the authors decided to

exploit them in a very deep architecture like Darknet-53.

Figure 2.14: YOLOv3 backbone Darknet-53

For performing detection, several other convolutional layers are added to the base feature

extractor, for a total of 106 layers. The encoding of predictions is not different from the previous

version of YOLO, except for the classification part: this difference is due to the fact that newer

datasets such as Open Images features non mutually exclusive classes (for instance, “person” and

“woman”). Instead of using a softmax-like approach, where only one class is assigned to a given

bounding box, YOLOv3 runs independent logistic classifiers for each class, allowing for multi-label

classification. As a consequence, the classification term in the total loss is switched from the

previous sum-error formulation to binary cross entropy. The most influential change for YOLOv3 is

performing separate detections at three different scales, corresponding to downsampling factors of

32, 16 and 8; as already explained for YOLOv2, the finer-grained features combined with the more

abstract ones from deeper maps should help with the detection of small objects on the input image.

The input image in the paper description is still 416x416, but it can be adjusted as long as it is a

multiple of 32. First detections come from layer 82 in the network, on a 13x13 feature map. Then,

the map from two layers prior is upsampled with a factor of 2 and concatenated with the map of a

36

shallower layer (61) and this 26x26 map is used to perform prediction at the second scale. This exact

aggregation process, which adopts ideas behind Feature Pyramid Networks (FPN) [45], is repeated

another time to get detections from the third and last scale, where a 52x52 map is outputted. Given

the increased complexity of the architecture, a useful schematic is reported below. For YOLOv3,

authors started to use COCO dataset to carry out evaluation (which has 80 separate class categories)

and in the paper implementation they chose to use three anchor boxes for each scale. As a

consequence, any given grid cell predicts three bounding boxes, encoded by using 255 numbers (3

x (5+80)); considering the size of the feature maps used to perform detection at the three scales

(13x13, 26x26, 52x52), YOLOv3 can localize up to 10647 instances on the input image, finally make

it suitable for applications with a high density of objects. Due the rather deep and more complex

backbone and detection head, YOLOV3 traded part of its unrivalled speed for a greater performance

return: at standard 416x416 input resolution, it reaches 55.3% mAP@0.5 on the challenging COCO

dataset, while still running at the edge of real-time inference and shows comparatively higher

improvements in the correct localization of small objects.

Figure 2.15: YOLOv3 full architecture

2.4.6.3 YOLOv4

YOLOv4 saw its release in the first half of 2020 and, as already hinted in this chapter introduction, it

represents the first independent implementation since Joseph Redmon left computer vision

research. As authors declare in the first part of their proposal paper, YOLOv4 is the result of

extensive experimental evaluation on the impact of various new emerging concepts, which showed

promising results in the deep learning field, when they are integrated with the YOLO base structure

[46]. As a consequence, YOLOv4 is a fairly complex detector and an in-depth description of all the

additions would require much more than a single subparagraph as this one and only the most

impactful novelties regarding different aspects of the model will be discussed below. As far as the

architecture is concerned, the key modifications are:

mailto:mAP@0.5

37

 Backbone: YOLOv4 is based on a modified version of the previous Darknet-53 feature

extractor, called CSPDarknet-53. The introduction of Cross-stage partial connections (CSP)

makes the CNN architecture computationally more efficient, while also increasing its base

performance in classification tasks [47].

 Feature aggregation method: as discussed in its subparagraph, YOLOv3 used a concept

similar to FPNs to combine the features from different levels in the network. Instead, YOLOv4

relies on a newer approach called PANet [48].

 Spatial Pyramid Pooling (SPP) [49]: this block performs pooling in a different manner than

classical pooling layers by outputting a fixed length feature vector irrespective of the size of

the input. The introduction of a SPP block after backbone’s last convolutional layer increase

the robustness of the architecture to input image size variations.

 Mish activations: Mish is a relatively new activation function that proved to outperform ReLu

in many experimental settings [50]. Its mathematical definition is:

𝑀𝑖𝑠ℎ(𝑥) = 𝑥 ∙ tanh(ln(1 + 𝑒𝑥))

YOLOv4 doesn’t introduce any change concerning the detection head from YOLOv3, so predictions

still come from three different scales and their encoding is unchanged. On contrast, new techniques

were introduced to improve training process effectiveness:

 Mosaic augmentation: at each iteration, input images

in the batch are created as a combination of four

separate training images, arranged in random

proportions. This increase the model generalization,

helping to correctly detect objects even when they

are out of their typical context.

 Self-Adversarial Training (SAT): during training, SAT

identifies portions in the input images that are

particularly critical to the model when taking

predictions and alters them in an attempt to reduce

this reliance that could possibly undermine the

overall model generalization capability.

 DropBlock regularization: it shares a similar aim with SAT, but this regularization method

simply obscures a portion of the image directly in the input layer of the model.

Thanks to the integration of the described methods among others, YOLOv4 outperforms the

previous version both in terms of inference speed and mAP on COCO, with about 64% mAP@0.5

and 44% mAP@0.5:0.95.

2.4.6.4 YOLOv5

Just a few months after the release of the previous version, another independent team published

its contribution on making YOLO faster and more robust. The official paper is still due to be

published, while the complete code is open-sourced and already available for use in a dedicated

GitHub repository [51]. YOLOv5 doesn’t feature a high number of changes to the base architecture

and can be seen like a parallel set of different optimizations when compared to YOLOv4 (indeed,

their releases are only a few months apart). The backbone is in fact still a CSP based CNN with PANet

Figure 2.16: A training example with mosaic
augmentation

mailto:mAP@0.5
mailto:mAP@0.5:0.95

38

feature aggregation and the detection head is not different to that of YOLOv3. Concerning the loss

for box regression, YOLOv5 employs Complete IoU loss (CIoU) [52] for the localization term of the

total loss, which gives a much more comprehensive context on the correctness of localization,

compared to both squared error and classical IoU losses. The latter is simply computed as 𝐿𝐼𝑜𝑈 =

1 − 𝐼𝑜𝑈, but such a formulation lacks any awareness on bounding box shape and amounts to zero

for any isolated predictions, irrespective of the distance from the nearest GT box; this can also cause

slower convergence due to vanishing gradients issues. A first improvement on this matter is

obtained by adding a term penalizing distance between the two centres; this is usually called

Distance IoU loss.

𝐿𝐷𝐼𝑜𝑈 = 𝐿𝐼𝑜𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2

In the formulation above, 𝜌2(𝑏, 𝑏𝑔𝑡) is the Euclidean distance between the two bounding boxes

centre point and c is the diagonal length of the smallest bounding box enclosing the two boxes.

Another factor that can bring useful information about prediction quality is its aspect ratio: a

prediction showing inaccurate size, but an aspect ratio that is close to that of the ground-truth

should not be penalized as heavily as any other random prediction. Complete IoU loss takes this into

consideration by adding a term related to consistency of aspect ratios; this is hence the final

formulation that replaces the original localization loss term in YOLOv5.

𝐿𝑙𝑜𝑐 = 𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 = 𝐿𝐷𝐼𝑜𝑈 + 𝛼𝑣

Above, 𝛼 and 𝑣 are a positive weighting parameter and the aforementioned consistency factor. They

are formulated as:

{

𝑣 =

4

𝜋2
[atan (

𝑤𝑔𝑡

ℎ𝑔𝑡
) − 𝑎𝑡𝑎𝑛 (

𝑤

ℎ
)]

2

𝛼 =
𝑣

(1 − 𝐼𝑜𝑈) + 𝑣

Considering the training process, this version incorporates Mosaic Augmentation as YOLOv4 already

did and uses a fully automatic, k-means based method (named “auto-anchors”) for the definition of

optimal anchor boxes (number and aspect ratios) for the dataset in use, whereas all previous

versions relied on predefined settings or needed manual tuning. It is also possible to run a generic

algorithm optimization to get a set of optimal hyperparameters for the data in use. One step back

from YOLOv4 relates to activation functions: the authors found no performance gains when using

Mish activations on their model, so they decided to stick to the computationally simpler ReLu

activation for all the layers, except the last detection layer which uses sigmoid functions (this is

needed to bound predictions, as explained in the YOLOv3 subparagraph). At an input resolution of

640x640, YOLOv5 is capable of reaching 69% mAP@0.5 and 51% mAP@0.5:0.95 on COCO dataset,

while running at 80 FPS on a single V100 GPU.

2.4.7 Training of the YOLOv5 model

To implement the object detection step inside the proposed framework, a YOLOv5 detector was

chosen, due to its current state-of-the-art performances in general purpose object detection and its

mailto:mAP@0.5
mailto:mAP@0.5:0.95

39

simplicity of use, which renders it easily adaptable to custom tasks without significant tweaks. All

the code used is open sourced and is part of the official YOLOv5 GitHub repository by Glenn Jocher.

The model is fully implemented in Python, using PyTorch deep learning library and the training

process was deployed on the Google Colab environment to take advantage of the provided GPU

power and keep training time as low as possible. A total of four increasingly deeper models are

available for use, allowing to select the desired compromise of detection accuracy and

computational complexity.

Model Learnable parameters
(million)

Floating point
operations (billion)

Inference time @ 640
[V100 GPU-CPU] (ms)

YOLOv5s 7.2 16.5 6.4 – 98

YOLOv5m 21.2 49 8.2 – 224
YOLOv5l 46.5 109.1 10.1 – 430

YOLOv5x 86.7 205.7 12.1 - 766

All models are pre-trained on COCO dataset for 300 epochs at an input resolution of 640 pixels. To

leverage on the general feature extraction capabilities learned on the thousands images of COCO,

transfer learning training was performed, starting from the provided weights (in .pt format): to do

so, all the layers’ weights were initialized using the pre-trained values to be fine-tuned on the

custom dataset images, except for the YOLO detection head, responsible of bounding regression

and classification. Given the objective of this step to localize the presence of nuclei in the input

image, the problem is configured as a single-class detection task. Input data for training is composed

by the patched dataset coming from the pre-processing step described a few paragraphs back. After

a series of experimental runs, YOLOv5l model was chosen as the most suitable alternative: smaller

architectures yielded, as expected, reduced performance whilst YOLOv5x suffered of early

overfitting, probably due to the limited quantity of input data. Anyway, to contain overfitting

problems to the minimum, extensive online (directly performed during the training process)

augmentation was employed; the transformation applied are summarised with their respective

probabilities in the table below.

Transformation Probability

Mosaic augmentation 1
Translation 0.1

Rotation 0.1

Scale variation 0.3

Shear 0.05
Flipping (up-down/lateral) 0.25

No kind HSV color augmentation is used, as that would just revert the advantages obtained through

color normalization. Mosaic augmentation, already explained in YOLOv4 section, was set to a

probability of one, so that any input image is actually a pseudo-random mix-up of four patches in

the dataset. This is because it proved to be the most influential parameter in reducing generalization

problems among those listed. As far as the training hyperparameters are concerned, they were set

as follows for the experiments with the most satisfying results:

40

 Input image resolution: set to the same value of the extracted patches size. For the reasons

listed in the YOLOv3 section, input size must be a multiple of 32. If this is not the case the

input image is automatically upscaled or downscaled to the nearest acceptable value.

 Epochs: maximum of 350, with an early stopping patience of 100 epochs when performance

stops increasing on the validation set. For the purpose of this check, performance value is

computed as an adjustable weighted average of precision, recall, mAP@0.5 and

mAP@0.5:0.95. The weights of each of those were set to [0, 0.2, 0.8, 0]. The focus is hence

on mAP@0.5 and recall, as the aim of this object detection step is to obtain at least a rough

localization of the highest possible number of nuclei. On the other hand, very accurate

matching of bounding boxes with GT is not as important, because the final segmentation

shape will only depend on the quality of the softmax and the characteristics of evolved active

contours. In addition, false positives that does not have a correspondence on the softmax

can be easily removed during the contours initialization step.

 Optimization algorithm: SGD (optionally, Adam is also available)

 Learning rate: YOLOv5 uses a cosine annealing learning rate scheduler, with a base learning

rate of 0.01. With this setting, the learning rate starts at very low values, to avoid altering

pretrained weights in the first iterations, when the gradients can have high values, then it

increases quickly until reaching a plateau, after which it decays linearly to zero in the

remaining final iterations.

Figure 2.17: A training batch with 250x250 patches (batch size = 16)

mailto:mAP@0.5
mailto:mAP@0.5:0.95

41

 Figure 2.20: CM with 1000x1000 patches

After training procedure, YOLOv5 returns the performances on both train and validation data in the

form of different plots and metrics. Here are reported the training results for the two input sizes

that have shown the best detection quality in the subsequent inference step (640x640, 1000x1000).

All the following metrics are computed by considering the typical IoU threshold of 0.5 to define a

given prediction as a TP of FP and they represent average metrics calculated only on the single

patches, not on the full original image (of course there is no difference for the 1000x1000 case).

One very common and compact way to summarize prediction results for a supervised machine

learning method of any kind is the Confusion Matrix (CM), which is a table where columns contain

the number of instances of an actual class, while rows represent predicted instances classes (or vice

versa, depending on the convention adopted).

Figure 2.18: A typical confusion matrix

The CMs outputted by the model for the two training runs are reported below. The single-class

detection problem does not involve the proper definition of True Negative, as the background is not

a class by itself and does not have any associated detection. This is the reason why all the FP are

associated with the only used class and the upper right section of any CM is set to unity. All in all,

CMs are hence not the best instrument to express performance for object detection tasks, and other

methods are usually preferred.

 Figure 2.19: CM with 640x640 patches

True

cell
True

Background FP

0.78 1

0.22

0.75 1

0.25

ce
ll

P
re

d
ic

te
d

B

ac
kg

ro
u

n
d

 F
N

cell Background FP

42

 Figure 2.22: P-R curve with 1000x1000 patches

A more suitable way of determining performance, as discussed in the introduction to object

detection, is computing the precision-recall curve, which is then used to compute the relevant mAP

metric. In our case of single-class detection, the concepts of AP (AUC of the P-R curve, as previously

explained) calculated on the nuclear class and mAP are coincident; cyan and blue lines reported in

the legend are indeed perfectly overlapped. 640x640 case shows slightly higher mAP on the patches

compared to 1000x1000 case.

 Figure 2.21: P-R curve with 640x640 patches

Another insightful plot to consider can be the value of F1-score with the confidence score. This is

computed by:

 Taking all predictions in output from the model.

 Applying a threshold on confidence score: all boxes less confident than this value are

excluded from the computation.

 Computing the F1-score for the remaining boxes.

This process is repeated several times, increasing the confidence threshold up to the value of 1, and

for each repetition a point is added to the plot. The analysis of these graphs can give a hint on a

suitable confidence value to choose when performing the successive step of inferencing with the

model. For example, a value sligthly above 0.5 could be a good choice to maximize the F1-score of

the patch predictions for both models.

43

 Figure 2.24: F1-score vs confidence (1000x1000)

 Figure 2.23: F1-score vs confidence (640x640)

To complete this analysis on training performance, the actual performance metrics and loss values

computed by the network at each epoch is included.

The first notable detail is the lack of classification loss. Again, this is due to the simplified single-class

nature of this work detection problem: it is important to remember that since its third version, YOLO

employs BCE loss, instead of the previous SSE term. The term relative to localization (CIoU) shows a

steady decreasing trend, whereas the one relative to objectness has a less clear and oscillating

behaviour, in particular on the validation set, where overfitting starts to be apparent after about

150 epochs. Hence, the models show a good capability in localizing the position of objects and

optimizing it, while it faces higher challenges, as expected, when trying to tell apart what constitute

Figure 2.25: Training results (640x640)

44

an instance rather than just background. However, the various performance metrics, all computed

on the validation set, still show a clean increase with the number of epochs, suggesting an effective

continuation of the training process.

Figure 2.26: Training results (1000x1000)

2.4.8 Model inference and post-processing

Inference of the trained models is performed by inputting all the extracted patches that compose

the dataset to the detector and, starting from the patch based detections, reconstructing the full

1000x1000 image. The main parameters of influence in any object detection inferencing process are

the minimum confidence score and the IoU threshold for performing NMS. In addition to this, a

change was operated to two constants inside the code for the dedicated NMS function

(“general.py”), as their default values were too low for this detection problem, leading to

performance degradation. These two values are the maximum number of boxes to be given as input

to NMS and the maximum number of boxes to be kept after its application: they defaulted to 300

and 1000, which are not sufficient for the high number of nuclei in the input images, and they

consequently led to a reduction in recall. The values used for the inference are included in the table

below:

 Resolution
 640x640 1000x1000

Confidence 0.4 0.5

IoU_th 0.35 0.35
Max_NMS (# boxes) 10500 25000

Max_out (# boxes) 1050 2000

The confidence scores used for both models is lower than those corresponding to the maximum of

F1 in the plots previously analysed: this is done to maximize detection recall, which is generally more

important than precision for the localization of close nuclei, which is the aim of the object detection

45

step this framework. Moreover, both curves still show a plateau around the selected values of

confidence, so F1 is not heavily affected by this choice. With this step, the model outputs separate

predictions for each of the patches that compose the initial dataset. Those predictions are then

aggregated together using the information on patch localization saved during their extraction in the

preprocessing stage. An additional NMS is applied to all the predictions after their joining, to address

for possible double detections due to the overlap of the extracted patches. Finally, a supplementary

cleaning of the detections through two ad-hoc developed methods is performed.

The first of those heuristic algorithms serves the purpose of removing residual multiple detections

caused by nuclei on the edge of patches: if the extension of such a nucleus on two or more

patches is relevant enough, it could easily be detected more than one time by the model. This kind

of repeated detection cannot be eliminated by standard NMS, as the bounding boxes predicted

from two different patches are completely disjoint. The main steps of this first cleaning method

are listed below:

 Predicted bounding boxes are first sorted by area in ascending order. This is to ensure that

smaller boxes that are part of a double border detection are removed first, as it is reasonable

to suppose that a smaller box is associated with the least representative portion of an object

extending over more than one patch.

 Evaluate whether the currently considered box can be considered to be “on the border”: this

is the case when at least one of the box coordinates is closer than a threshold to the patch

border. A value of 3 pixels was used.

Figure 2.27: Full image detection on a test set example

46

 If the prediction is on the border, search for the presence of another prediction on the same

border.

 When a pair is found, compute the Euclidean distance between the pair centroids. If the

distance value is lower than a second threshold, remove the first (smaller) box of the pair

from the predictions list. A default of 27 pixels was used for this second threshold: a value

too high can cause the removal of detections that are on the border, but doesn’t represent

a double detection, while one too low reduces the effectiveness of the cleaning.

Obviously, the impact of the application of this method is inversely proportional to patch size, as

the number of nuclei as the border to area ratio rapidly increase for small patches. The second

cleaning step is responsible for the elimination of residual multiple detections that may still be

present after the application NMS on the full image. These are mainly due to partially overlapping

patches (like in the 640x640 case), when a nucleus is detected more than one time with bounding

boxes of significantly different area or aspect ratio (e.g. a small bounding box totally contained

inside a bigger one), or when a group of nuclei is correctly identified with their respective boxes,

along with a bigger box enclosing them all. In fact, in those cases the IoU value can be low and the

NMS algorithm does not consider the presence of a double detection. The main steps for this second

algorithm are:

 Predicted bounding boxes are first sorted by area in ascending order. Again, this supposes

that smaller bounding boxes contains less information about the detected object than bigger

ones.

 Compute the intersection between all bounding boxes (for M predictions, this is a [MxM]

symmetric matrix).

 Find the pairs with non-zero intersections, excluding self-intersections.

 If the intersection of a given pair is higher than a consistent portion of the smaller box area

(90% is used by default), remove it from the list of predicted boxes.

The use of these two heuristic methods gives reduced, positive benefits to the detection results,

with an increment in precision in the face of almost unaltered recall for the 640x640 case and lower

patch sizes, whereas their use for the 1000x1000 case is totally irrelevant, since there is no real

concept for the images in use.

Pre NMS Post NMS NMS + cleaning
Figure 2.28: NMS and heuristic cleaning

47

2.5 Active Contours

Active contours, also commonly known as deformable models, are a set of image processing and

computer vision techniques where a generic profile evolves directly on an image to segment starting

from a pre-existing shape, usually by minimising a cost functional. Given this definition, they can be

considered as another of the many ways of solving a minimization problem, but considering their

formulation, they are naturally suitable and applied in the image domains. Their birth dates back to

1987 with Kass et al. work [53], where for the first time the terms “active contours” and “snakes”.

Before proceeding with the description of mathematical formulations and implementation details,

its due to introduce a first wide categorisation of these kind of models, which is based on their

approach to the problem [54] [55].

 Parametric active contours: also known as “snakes”, the contour is modelled as a curve with

fixed parametrization. This is the first approach to develop and it is a direct evolution of

original Kass’ work. The main advantages over their counterpart lie in their computational

simplicity, ease of control and in the possibility to consider the contemporary evolution of

multiple instances and their interaction. On the other hand, their formulation makes them

unsuitable for the segmentation of sharp concavities and they show a high sensitivity to

noise, initialization (this can undermine the development of fully automatic methods) and

image complexity; as a result, they can easily get stuck into local minima and eventually

reach suboptimal convergence shapes.

 Geometric active contours: also known as “level-sets”, they were proposed in 1988 [56] to

address the main problems encountered when applying snakes. They have a far more

complex mathematical formulation compared to parametric models, in which the contour is

seen as the zero-level of a curve in a higher order space, as intuitively represented in the

picture below. As a consequence of this formulation, they can dynamically change their

topology to adapt to any arbitrarily complex shape and they are even suitable for the

segmentation of 3D volumes. However, this also renders them computationally heavier and

makes it really hard to reframe the evolution process to keep into consideration multiple

contours as separate entities.

Figure 2.29: A graphical representation of level sets

48

2.5.1 Parametric active contours

Weighting together the considerations above, which outline the clear advantages and downsides of

each approach, with the specific context of this work, the use of parametric active contours was

chosen. In fact, the extremely simplified 2D evolution environment offered by a softmax reduces

the challenges represented by local minima when snakes are evolved on actual images; moreover,

the necessity of handling a great number of contours (one for each detected nucleus) and their

mutual interactions makes the choice almost forced.

In the rest of this paragraph, a classical analytical formulation of parametric contours will be

exposed [53] [57]. Starting from the representation of the snake in planar curvilinear coordinates,

𝑣(𝑠) = [𝑥(𝑠), 𝑦(𝑠)]

the basic cost functional to minimize is usually written as:

𝐸 = ∫
1

2
[(𝛼|𝑣′(𝑠)|2 + 𝛽|𝑣′′(𝑠)|2) + 𝐸𝑒𝑥𝑡(𝑣(𝑠))]𝑑𝑠

1

0

In Kass’ work, E is referred as total energy, while the pair of terms inside the integral are called

internal and external energy respectively. Internal energy only depends on the geometrical state of

the curve and imposes regularity to the snake: this regularity is controlled by the two coefficients 𝛼

and 𝛽, which weight both derivative terms. In particular, 𝛼 controls snake’s internal tension

(curvature term), whilst 𝛽 is responsible for snake’s rigidity (elasticity term). On the other hand,

external energy factors in the contribution of experimental data (the image pixels) on the total

energy of the curve. As such, it only depends on some characteristics of the image. Which can be

different depending on the specific implementation, but in principle it can be considered dependant

on the discontinuities of the image and on its local pixel values and it can thus be written as:

𝐸𝑒𝑥𝑡 = 𝑤𝑙𝑖𝑛𝑒𝐸𝑙𝑖𝑛𝑒 +𝑤𝑏𝑜𝑟𝑑𝑒𝑟𝐸𝑏𝑜𝑟𝑑𝑒𝑟 = 𝑤𝑙𝑖𝑛𝑒𝐼(𝑥, 𝑦) − 𝑤𝑏𝑜𝑟𝑑𝑒𝑟|𝛻[𝑘𝜎 ∗ 𝐼(𝑥, 𝑦)|]

The “line” term only depends on the local value of the image and can be used to push the minimum

of energy towards bright/dark regions of the image. The “border” term is instead used to create

energy minimums across image discontinuities and it is calculated as the gradient of the convolution

between the image and a 2D Gaussian kernel with standard deviation 𝜎. 𝑤𝑙𝑖𝑛𝑒 and 𝑤𝑏𝑜𝑟𝑑𝑒𝑟 are

simply two weighting constants to balance the contribution of each term on the total energy. Using

Euler-Lagrange equation, it is possible to reframe the energy minimization problem into a balance

relation between an internal force, which tries to maintain the snake’s shape regularity, and an

external one that opposes it by adapting the contour to the image shapes.

𝐹𝑖𝑛𝑡(𝑠) + 𝐹𝑒𝑥𝑡(𝑠) = 𝛼𝑣
′′(𝑠) − 𝛽𝑣′′′(𝑠) − 𝛻𝐸𝑒𝑥𝑡 = 0

So in the end, the snake that verifies this relation is also the one that minimizes the energetic cost

function and it is the solution obtained after convergence of the algorithm. This basic

implementation can be quiet effective, but it suffers from poor convergence problems and it is

heavily reliant on a proper contour initialization. Trying to solve these problems, in particular the

one linked to initialization, Cohen [58] proposed a model that could also continuously shrink or

extend, instead of only evolving from its initial state towards the contours of the image under the

only effect of the internal regularizing force. For this purpose, a constant pressure force, oriented

49

towards the local normal vector of the curve, reason why this formulation is commonly called

“balloon snakes”. In this case, the total external energy is written as:

𝐹𝑏𝑎𝑙𝑙𝑜𝑜𝑛(𝑠) = 𝑘1 �⃗� (𝑠) −𝑘
𝛻𝑃

||𝛻𝑃||

where 𝑘1 is the amplitude of the inflation/deflation (depending on the constant sign and curve

orientation), whereas the second term is the gradient related force that stops the contour. Active

contours used for the purpose of this thesis are loosely based on this balloon snakes’

implementation, with all the simplifications related to evolving active contours on a probability map,

that takes away most of the problems of convergence to suboptimal minima or even divergence.

2.5.2 Contours initialization

After obtaining the final bounding box for each nucleus in the previous detection step, contours are

initialized on the softmax probability using each box centroid. All the steps concerning snakes and

the subsequent evaluation of segmentation were implemented in Matlab. Detections that have no

corresponding segmentation on the softmax are first removed, as they don’t have any possibility of

evolving, regardless of their correctness (in fact, this unmatching could be both due to a detection

false positive, as well as a segmentation network false negative). To do this, all boxes whose centroid

lies on a region with a prevalent background probability (red channel), higher than 0.5, are removed

and will not generate any contour initialization. Afterwards, contours for the remaining boxes are

initialized: to enhance the starting position, instead of directly initializing a contour on the bounding

box centre, the centroid of the portion of nuclear segmentation inside the box (obtained by simply

thresholding the softmax on a low blue channel value) is computed and the contour is initialized on

this point.

The main parameters set to define a given contour initialization are listed here:

Figure 2.30: Initialized snakes on the softmax map

50

 Circular shape: this is a simple initialization and it is well related to the actual average nuclear

shape.

 Radius: set to 3 pixels, to account for the presence of tiny nuclei on many images of this

dataset (as clearly visible in the image below).

 Number of points: 40; this represents a good compromise of computation complexity and

shape adaptivity.

Considering the uniform nature of the softmax, initialization should not have a sensible impact on

the final segmentation results.

2.5.3 Contours evolution and mask generation

After initialization, snakes are finally evolved on the softmax: the evolution of all contours in a given

iteration is treated simultaneously, to exploit vectorization of the code and increase performance.

Evolution loop is controlled by these two stopping criteria:

1. All the snakes on the image can be considered as successfully converged, using a specific

convergence criterion based on the average evolution rate in the last few iterations. In

particular, when the average movement of all N points composing a given contour in the last

M iterations is lower than a minimum threshold, the contour is frozen in its current state

and is not evolved in the remaining iterations. For the computation of the criterion, M was

chosen equal to 40 iterations, while the threshold was set to a value of 0.3 pixels.

2. The maximum number Nmax of overall iterations, set to 1500, is reached. Unless the

oscillations due to the mutual interaction between contours are high for at least a contour

on the image, this criterion should normally not be triggered.

The evolution of contours at each step is regulated by four coordinates updating rules, two of which

are modulated by local softmax probability values. These terms are now listed and their role in

controlling the contour evolution is explained.

 Expansion contribute (balloon): this term controls the radial inflation of the contour. The

only difference with a classical term of this kind is that it is modulated on the local nuclear

(blue) probability, so that the expansion can spontaneously be reduced as the contour

approaches the border. It is formulated as:

𝑥𝑛𝑒𝑤 = 𝛼1 ∙ 𝑝𝑛𝑢𝑐(𝑥) ∙
𝑥 − 𝑥𝑏

max(𝑥 − 𝑥𝑏)

term controls the radial inflation of the contour. It is modulated on the local nuclear (blue)

probability, where 𝑝𝑛𝑢𝑐 is the probability of classification as a nucleus of the pixel at the actual

coordinate and 𝑥𝑏 is the barycentre of the contour 𝑥𝑏 =
∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
⁄ .

 Smoothness contribute: this term tries to maintain a regular shape for the contour during

evolution. A such, it only depends on the internal snake coordinates at the current

iteration:

𝑥𝑛𝑒𝑤 = 𝛼2[
1

2
(𝑥𝑙𝑒𝑓𝑡 + 𝑥𝑟𝑖𝑔ℎ𝑡) − 𝑥]

51

where 𝑥𝑙𝑒𝑓𝑡 and 𝑥𝑟𝑖𝑔ℎ𝑡 are the coordinates of the previous and following contour points in

respect of the currently considered one.

 Border contribute: it acts as a typical “line” term, that attracts contour points to high green

intensity values (nuclear border probability). This term only depends on the local softmax

values, like the typical external energy term.

𝑥𝑛𝑒𝑤 = 𝛽1[𝑝𝑏𝑜𝑟𝑑𝑒𝑟(𝑥 + 1) − 𝑝𝑏𝑜𝑟𝑑𝑒𝑟(𝑥 − 1)]

Here, 𝑝𝑏𝑜𝑟𝑑𝑒𝑟 is the probability of classification of the pixel as a nuclear boundary.

 Mutual interaction contribute: this last term regulates the repulsive interactions between

two or more interacting snakes, so that segmentation of previously fused nuclei can

properly stop. Two given snakes are considered as interacting when at least one of their

points intersect the other contour. Any point that interacts with a second contour is

pushed back towards the centre of its own contour, following the relation:

𝑥𝑛𝑒𝑤 = 𝛽2 ∙
1

𝑑

where 𝑑 = ||𝑥 − 𝑥′|| is the Euclidean distance between the considered point and the

centroid of the interacting contour.

𝑎1, 𝑎2, 𝛽1 and 𝛽2 are constant weighting parameters that set the relative impact of each of those

term in controlling contours evolution. Again, to the simplified nature of the confronted evolution

problem, the set of values chosen for these constants cannot cause divergence of the algorithm,

although their tuning can be useful to reach quicker and slightly better overall shape convergence.

The values used for the evolution of the object detection initialized contours, for both 640x640

and 1000x1000 cases are indicated in the dedicated table below.

Parameter Value

𝑎1 (expansions) 0.1
𝑎2 (smoothness) 0.05

𝛽1 (nuclear borders) 0.2

𝛽2 (repulsive interaction) 1

The snake evolution process performed on the whole dataset takes an average time of 38.9 ± 5

seconds per image on an Intel i3-9100F CPU, with images with a high number of close nuclei taking

the most time due to the high number of interactions to be handled. In fact, at the actual state, the

function responsible for the computation of the mutual interaction term makes up for almost half

of the entire evolution runtime and it is hence the critical part to optimize performance-wise to

achieve a first speed up of the whole segmentation framework.

52

As a last step to obtain the final image segmentation, the binary mask is generate starting from the

fully evolved snakes. Each contour is considered on its own, so that a per instance segmentation

that enables a subsequent easy and correct evaluation is possible. To generate its associated mask

a built-in Matlab function is employed, which simply consider each contour as a closed polygon

composed by N points.

2.6 Validation metrics

In this chapter, the main metrics used to evaluate the yielded results, for both the detection and

contour segmentation steps, will be listed and briefly described. The metrics for object detection

here described have nothing to do with the ones returned by the model code during training, as

those were patch-based as opposed to the full image context here considered. When a particular

choice is made regarding the way a metric is computed, it will be justified in the relevant subchapter.

2.6.1 Detection metrics

The final quality of the detection step has been evaluated on the cleaned predictions on the full

image, using three typical metrics used for classification tasks: precision, recall and F1-score. In the

context of the considered problem, recall is particularly important as it scores the ability of the

model in correctly identifying the most part of the GT nuclei on the input image. A low recall on the

detection step can indeed offset all the benefits given by the separate segmentation of fused

objects, as any missed nucleus won’t have an associated segmentation on the final output, even

when the segmentation network correctly identified it on its softmax. On the other hand, precision

is associated to the model ability at correctly suppressing background boxes; it is less critical than

recall in our framework, as false positives that does not have a corresponding softmax match are

Figure 2.31: Evolution of snakes through the iterations

53

easily eliminated during snake’s initialization step. The only detrimental false positives are those

coming from double detections of the same object, as this is much harder to identify and remove

and it leads to an overestimation of the number of instances on the image and, consequently, to a

fragmented segmentation after snakes are evolved.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ; 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1-score gives instead a rounder estimation of the overall detection quality, without however giving

insights on the main causes of a possibly low performance value. It is computed as the harmonic

mean of precision and recall:

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

To compute the metrics for an image, each predicted box is compared to all remaining GT boxes: if

a match is found, the predicted box added to the TPs counter and the corresponding annotation is

removed from the GT list, while in case of no matching it is added to the FPs counter. The

computation stops when all predictions have been considered and the number of residual

unmatched annotation boxes is used to get the FNs value. In the computation of all the metrics in

this section, an intersection criterion was used in place of the more typical IoU, to decide whether

a given predicted box is to be considered a true positive rather than a false negative. To explain the

reason for this choice, two effective graphical examples are analysed. Intersection was computed

as:

𝐼𝑛𝑡𝑒𝑟 =
𝐵 ∩ 𝐵𝐺𝑇

min (𝑎𝑟𝑒𝑎(𝐵), 𝑎𝑟𝑒𝑎(𝐵𝐺𝑇))

Figure 2.32: Intersection vs IoU comparison

In the image above, blue boxes represent GT annotations and green boxes are possible boxes

predicted by the object detection model. In the case on the left, a single nucleus is erroneously

detected as two adjacent smaller nuclei by the model. In this case, the use of typical IoU with a 0.5

threshold would result in considering both the predictions as FP, with a resulting FN associated to

the GT box, because the value of intersection of both the predicted boxes with the GT is reduced

compared to the union area. On the other hand, by using intersection both the boxes have unitary

intersection and hence one will be considered as a TP and the other a FP. While this is usually an

unwanted behaviour in general object detection tasks, it makes for a better evaluation for the

considered matter, as the GT object will have its segmentation in the final output, considering that

54

the centre of the green boxes still lies inside the object. On the right a similar case is observable,

where two close nuclei are considered as one and enclosed together in a bigger box. Of course this

is not a good scenario, as the primary aim of the detector is to allow the segmentation of fused

objects, but it is more reasonable to consider the detections as one TP and one FN, as the final

segmentation will present one single fused object. From these consideration, all the metrics listed

above are computed using an intersection threshold of 0.7.

2.6.2 Segmentation metrics

All segmentation results, including the raw segmentation directly computed from the softmax are

evaluated on a wide range of metrics. An ideal evaluation criterion used for nuclear segmentation

should take into proper consideration many characteristics of the result, most importantly [24]:

1. Completely missed detection of actual objects

2. Erroneous detection of background

3. Under-segmentation

4. Over-segmentation

It’s not easy to formulate a single criterion to include all aspects that can affect a given

segmentation, as those can even be different from an application to another. For this reason, pixel-

level and object-level metrics will be both considered, to assess the benefits of the proposed

algorithm on different potential applications. Additionally, a comprehensive novel metric for

nuclear segmentation evaluation, Aggregated Jaccard Index, will be detailed. When the relevant

formulation of a metric has already been given in the previous chapter, only its role inside the

evaluation process will be reported.

2.6.2.1 Pixel-based metrics

Pixel-based performance metrics are calculated by considering each pixel on the predicted mask as

a TP or FP on its own. As such, all pixel metrics are computed by simply summing together all the

pixels of a kind and using those values to calculate common classification metrics (or in alternative,

by applying logical operations directly on the predicted and GT binary masks). Pixel-based methods

give a good estimation on the capabilities of the segmentation algorithm in outputting accurate

predictions in terms of shape and size, but lacking any concept of instance, they may not be suitable

for applications where an accurate estimation of the number of objects is central. The list of the

pixel-based metrics used in the evaluation of this thesis results is:

 Accuracy: it is one of the simplest metrics for any classification task. It gives a first estimation

of performance, but lacks any further information on the segmentation quality (under/over-

segmentation, shape…). It is computed as the ratio of all correctly identified pixels and the

total pixel count on the image.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 Precision: it measures the ability of the method to avoid over-segmentation.

 Recall: as opposed to precision, it can be used to evaluate under-segmentation issues.

55

 F1-score: it is computed as the harmonic mean of precision and recall and as such gives a

more general view on performance quality like accuracy, but it is better suited when class

imbalance is considered.

 Jaccard index: it is a good metric to evaluate shape concordance of the segmentation with

the ground truth. It is closely related to the IoU value typically used for object detection, as

it is given by the area of intersection of the predicted and GT masks divided by their union

area, or it can alternatively be formulated in terms of TP, FP and FN as:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
|𝑃 ∩ 𝐺𝑇|

|𝑃 ∪ 𝐺𝑇|
=

|𝑃 ∩ 𝐺𝑇|

|𝑃| + |𝐺𝑇| − |𝑃 ∩ 𝐺𝑇|
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

 Dice similiarity coefficient (DSC) = this metric mostly gives the same kind of information of

Jaccard and evaluates the overall overlap between the predicted segmentation and the

annotated one. The only difference in computation with Jaccard is that it considers twice the

intersection value at the numerator, instead of substracting it from the denominator.

𝐷𝑆𝐶 =
2|𝑃 ∩ 𝐺𝑇|

|𝑃| + |𝐺𝑇|
=

2𝐽

1 + 𝐽
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

2.6.2.2 Object-based metrics

The computation of instance-based metrics prerequires the definition of a criterion that makes it

possible to define whether a given GT object can be associated with any of the segmented objects,

obtaining a counter for FPs, TPs and FNs. All reported indicators define a ground-truth as matched

if it is overlapped for more than 50% of its area with a predicted box, as in []. This approach has a

better generality in respect of the mask size compared to other common distance-based criteria[].

As opposed to pixel metrics, object-based evaluation is used to quantify the capability of the

segmentation algorithm in reliably detecting the presence of an instance in any region of the input

image, but it gives limited information, if any (depending on the specific metrics employed), on the

morphological quality of that detection. The list of the object-based metrics used in the evaluation

of this thesis results is:

 F1-score: in this case, F1 is computed using the already introduced formula, directly using

the number of correctly identified GT/predicted boxes and it consequently does not contain

information at pixel-level of any kind. It is however a good indicator if the application

considered requires an accurate estimate of separate instances that make the image up.

 Jaccard index: in this case Jaccard is calculated on each matching GT/predicted instance pair

and the final value is obtained as the average over each considered object. As such, this

object-based metric mixes detection quality with average pixel level information about the

extent of the overlap between the two masks, typical of Jaccard.

 DSC: the same considerations expressed for Jaccard apply.

56

 Hausdorff distance (HD): HD is another common metric, often used in problems of shape

matching. Given two set of points A and B, one for the predicted mask contour and the other

associated to the GT, HD between A and B is computed by first finding the minimum distance

from B of each point of A. Afterwards HD is defined as the maximum value among those. The

use of Jaccard or DSC is usually preferred as the computational complexity of HD is higher.

2.6.2.3 Aggregated Jaccard Index

As already hinted in the introductive chapter, in the analysis of histopathological images a great

number of heterogeneous factors are weighted by expert clinicians to take their decisions. These

include both morphological considerations like shape and distribution as well as more quantitative

measurements such as number or relative localization. As a consequence, focusing solely on one

type of evaluation metric, be it pixel-based or object-based, can lead to misleading interpretation

of the results or incomplete evaluation. To address this problematic, the focus during evaluation

will be shifted on a supplementary performance indicator, named Aggregated Jaccard Index. AJI,

formulated by Kumar et. al in the same proposal paper of the dataset used in this work [24], is a

more comprehensive and general metric specifically thought for the evaluation of nuclear

segmentation techniques. AJI is a particularly strict indicator, as it jointly penalizes both object-level

and pixel-level errors, effectively bringing together segmentation with detection. It is a modification

of the traditional Jaccard index, where, instead of the simple intersection and union of predicted

and GT masks, two different pixel sets are used. The main steps towards computing AJI are now

explained:

1. First, initialize a correct pixels counter C and a union pixels counter U.

2. For each ground truth annotation, compute the Jaccard index with each segmented object.

3. If the Jaccard is non-zero with at least one prediction, find the pair with the highest Jaccard.

4. Update C and U by adding all intersection pixels to the first counter and all union pixels to

the second. Then remove the used shape from the list of predictions and segmentation

mask.

5. Otherwise, when GT is not matched to any shape, add all its pixels to U counter.

6. Repeat point 2 to 5 until all GT annotations have been considered.

7. Add the residual pixels on the predicted mask to U.

8. Compute the final AJI value by taking the ratio of C and U.

Figure 2.33: Hausdorff distance of two curves

57

Pseudocode from the original paper is included for further clarification of the described steps.

Figure 2,34: AJI pseudocode

Thanks to its mixed approach, AJI is capable of penalizing whole missed and ghost predictions, as

well as pixel-wise under-segmentation and over-segmentation. In particular, the steps above show

how AJI can rapidly decrease as the number of missed or fused objects increase: in those cases, in

fact, all the pixels from the missed GT, along with the eventual over-segmentation part of the fused

detection are added to the denominator in the calculation. For this reason, the proposed framework

should carry a sensible advantage in terms of this indicator when applied to any baseline softmax

segmentation.

Figure 2.35: AJI comparison to traditional metrics

The image above, directly taken from the AJI proposal paper, shows how two images with an evident

segmentation quality discrepancy may actually feature similar performance value as far as both

pixel-level (F1-score) and instance-level (HD) performances are considered individually, whereas

their evaluation through AJI correctly express this quality difference.

58

Results
In this chapter the most meaningful experimental data that can be useful to characterize the

proposed framework general performance, advantages and criticalities are reported. All the results

have been computed according to formulations and steps reported at the end of the Materials and

methods chapter. All the results are relative to the use of patches of size 640x640 and equal to the

whole 1000x1000 image, as they yielded the best performance through the various steps. This might

be unexpected at first, considering that smaller patch sizes provide the detection model with more

training examples (the total number of input images are 52 for the first case and just 13 for the

latter) and reduce the number of detections to be outputted per image; however this can be due to

the fact that all YOLOv5 models are pre-trained at exactly 640 square input resolution, and the

features learned by the backbone may hence perform better around those value of resolution and

above.

3.1 Detection performance

First, the performance of the object detection model on the full images is reported. It is crucial to

make sure that the values obtained at this stage are acceptable before selecting a model to use for

the subsequent initialization of the snakes, otherwise the whole segmentation process and the main

idea behind the developed framework will be hindered by the poor detection performance. The bar

graphs that follow summarize the average performance in the three detection metrics, which were

computed using the ideas in paragraph 2.6.1, on all the four splits of the dataset.

 Figure 3.1: F1-score computed on the bounding boxes

59

The graph above shows good F1-score values, always above 0.85. This suggests that both the models

are likely to bring a useful contribution when later used to initialize the active contours on the

softmax probability map. There is a non-negligible performance gap when comparing performance

on the training and validation set, which suggests that a certain degree of overfitting is still present,

in spite of the attempts to contain it (e.g. through the extensive data augmentation applied).

However, the results on both the test sets are a confirmation of the good generality and

representativeness of the validation set used to monitor the training process, as they feature

performance in alignment with or even better than it, especially for the 1000x1000 model. In

general, the detector trained with 1000x1000 images boasts slightly higher and more uniform values

of F1-score across the four sets and it is thus less affected by the aforementioned overfitting

tendency.

The precision metric is perhaps the least insightful when trying to define whether the trained object

detection model is good enough to be carried over in the framework. In fact, most of the false

positives are either eliminated during initialization as explained in chapter 2.5.2 or were already

erroneously segmented by the segmentation network itself and as such they should not represent

a source of performance degradation. As already noted, the only kind of FP that can weaken the

purpose of the object detection model are multiple detections, but the aggregated precision metric

does not allow to differentiate among those cases. For both detectors, the lowest value of precision

is associated with the validation set and it is higher for both the test sets.

 Figure 3.2: Precision computed on the bounding boxes

60

The average values of recall show an acceptable capability of the detectors in localizing a good

part of the nuclei on the dataset images. Recall values on train, validation and test 1 are all higher

than those of precision, which is an ideal situation. Unfortunately, in this case the lowest

performance is found on the second test set; this is unsurprising, considering that it contains

tissues from organs that the model never saw during training, even though such a low value,

especially for the 640x640 case, may start to significantly reduce the benefits given by the

introduction of the object detection model in the pipeline. Considering however that test 2 have

fairly high precision values (even the highest one among all sets for the 1000x1000 model), there

is room for improvement if some of its precision is traded in for a comparable or slightly lower

recall increase.

3.2 Final segmentation performance

All the segmentation metrics here reported have been computed following the considerations

discussed in paragraph 2.6.2. The baseline performance values have been obtained by applying a

simple thresholding segmentation on the softmax, following an approach commonly used by deep

learning frameworks without a post-processing step. In particular, the steps to generate the raw

binary mask are:

1. Apply a thresholding on the softmax green channel (nuclear border probability) with a

threshold value of 0.35.

2. Apply a thresholding on the softmax blue channel (nuclear “inside” probability) with a

threshold value of 0.5.

3. Substract the border mask from the “inside” nuclear mask.

4. Remove negative values from the final logical mask.

Figure 3.3: Recall computed on the bounding boxes

61

For compactness and better visualization purposes, in all the evaluations presented in this section

the validation set was merged with the training set; its explicit presence was anyway more

important for detection evaluation, as it had a specific role during the training phase of the models.

First of all, the pixel-based segmentation metrics are reported and discussed. While they do not

represent the main focus of this evaluation, they can be useful to start understanding the effects of

the proposed framework on the general segmentation quality.

Figure 3.4: Pixel-level metrics

62

The bar graphs report the average value of the six pixel based indicators on all the three sets, along

with the associated standard error. A consistent increase in performance can be observed for the

accuracy (which actually already had a value higher than 0.8 on the baseline), recall, and F1-score:

this confirms how the use of active contours can lead to a better convergence of the segmentation

towards the nuclear borders, increasing the net number of correctly classified pixels. The metric

with the lowest values is Jaccard and it shows a comparatively lower increase when compared to

other indicators: this is not unexpected, as Jaccard is related to overall shape and the final overall

shape of each nuclear segmentation ultimately depend on the one found by the segmentation

network and the convergence of snakes cannot significantly alter it. The only metric that shows a

decline, although reduced in magnitude, is precision: this is most probably due to some FP

detections that are not correctly removed from softmax during contour initialization. Although they

do not evolve if initialized on a prevalently red region due to the lack of energy terms, their final

segmentation still consists in their initial circular shape and those pixels all contribute to the

observed reduction of precision. Comparing the baseline average recall with baseline average

precision, a general tendency of the segmentation network to under-segment nuclear regions when

the raw segmentation is applied can be highlighted. For all pixel-level metrics no difference between

the two models is observable. In addition, as opposed to the previous detection graphs, the

behaviour among the three sets is more homogeneous.

 Figure 3.5: Object-level metrics

63

As far as the object based indicators are concerned, an in increment in performance is observed on

all calculated metrics. Among the four, the most important to look at is probably F1-score, as the

way it is calculated makes it a fully instance-based metrics, whereas all the other ones still inegrate

some pixel-level information, despite being averaged on the single objects. It is hence the most

useful to underline a second time the detection model performance. There, an average 7% to 15%

increment is noticeable, with standard error values conserved or reduced compared to the baseline.

This suggests that the detection network is indeed helping in the localization of a higher number of

nuclei in the dataset: this effect has to be in the most part due to the now separate segmentation

of previously fused instances, because the detection model cannot segment by itsef an identified

nucleus, even when it’s correctly placed, if the segmentation network missed it during softmax

generation. Again, the effect of overfitting that affects the detection model can be here noted again

with a similar, comparatively reduced increment of F1-score. DSC and Jaccard mainly bring

redundant information to their pixel-level counterparts, with Jaccard again showing the lowest

values in percentage term, for the same reasons previously stated. In addition, they show very

consistent values across the dataset splits. HD metric shows an average decrement of around 3

pixels (the lower the better, in this case), with significantly higher standard error on the second test

set, both for the baseline and the proposed results. This is probably a direct consequence of the

intrinsic higher variability of this set, featuring nuclei with highly different sizes and shapes through

its six images. This reduction in HD means that, on average, the maximal point-wise error between

the final segmented instance and its ground truth is lower when the segmentation is obtained

through the proposed active contours evolution.

Figure 3.6: AJI

64

Finally, the results as computed by AJI are presented. The baseline values of AJI are in line or already

marginally better than those reported by Kumar in his paper (dashed black line on the bar graph,

computed on the two test sets). This proves that the softmax maps, that served as a starting point

for this work, are already of good quality even when considered by themselves. The additional

proposed framework steps grant an increase in AJI of about 0.16 for the training/validation set and

about 0.10 on the two test sets, reaching an average value of 0.627. Once again, it can be observed

that the detection network overfitting is carried over on the final segmentation, as the diffrence in

performance between training and the two test sets is increased compared to the baseline. In spite

of this, considering the strict nature of AJI indicator, which quickly stops increasing as even one of

the four main errors listed in the introduction to paragraph 2.6.2 becomes prevalent over the others,

the proposed framework still significantly improve the segmentation quality on the whole dataset.

Surprisingly, the data split that receives the least amount of performance increase from the method

is the first test set, whereas test set 2 starts from a lower baseline and reach comparable

performance. Overall, the model trained on the full 1000x1000 images seems to feature marginally

higher performances and to be less affected by overfitting, as its results are slightly more balanced

through the training and test sets.

3.2.1 Statistical analysis of benefits

To further validate the proposed framework significancy, a brief statistical analysis was performed.

This was done by applying a paired Student’s t-test to the performance distributions prior and after

the application of the pipeline. This is a common technique to test two given, assumed normal,

distributions against a null hypothesis of equal means, within a predefined significance threshold

level α (almost always set to 5% for standardisation and comparability purposes). In our specific

case in exam, we test against the null hypothesis that the AJI performance calcualted after the

framework application is part of the same dsitrbution of the baseline performance. In that case, the

performance variations could not be fully credited to the proposed method, but they could simply

be the result of intrinsic variability that lies in the distribution. The results for such a test are

reported in the table below.

 p-value

 640x640 1000x1000
TRAIN 0 0

TEST 1 0.023 0.011

TEST 2 0.052 0.03

The results hint at how the performance variations from the baseline can be considered as

statistically significant in all cases except for the second test set when using the detector trained on

640x640 patches, where a p-value just above the significance level of 0.05 is obtained. This is

probably due to the more variable results scored on the images composing the set (indeed, the

standard error on most previosly commented bar graphs is higher for this set if compared to all the

others). All in all, the t-test thus confirm the primary role of the introduced segmentation procedure

in increasing the performance, at least on the employed dataset.

65

3.2.2 Potential maximum performance increase

To assess the peak potential benefits that could be brought by the proposed framework, in

particular regarding the idea of integrating a second deep learning method in the form of an object

detector in parallel to the pre-existing segmentation network, the performance in terms of AJI are

recomputed after introducing a theoretically perfect object detector on top of the pipeline. This

kind of evaluation also makes it possible to estimate the degree of feasible improvement that can

be attained by acting on the object detection block of the pipeline. The results shown below are

hence obtained by initializing the snakes directly on the bounding box centroid of each annotated

region, which is exactly what a good detector is expected to do in this framework. The contours are

then normally evolved using the same parameters and all the metrics are computed. Here, only AJI

is reported as the most comprehensive indicator of performance.

Figure 3.7: AJI with a perfect detector

The results show how there is still a good room for improvement as far as the object detector is

concerned, reaching an average value around 0.7 AJI for the two test sets when using an ideal

detection model. Considering that the values on the training set are already around that level for

both trained detectors, the main front of further work in this context should be increasing the

generalization capability of the model. It is important to keep in mind though that the results above

are only asympotically reachable as they are based on a non-existing ideal model and to actually

have a chance to push the results of the proposed framework to those performance values or

beyond, simultaneous improvemenst would have to be introduced on the segmentation network

that outputs the baseline softmax.

66

3.2.3 Algorithm steps visualization

With the intent of recapping the main blocks involved in the proposed framawork and better

visualize the whole process, a step by step visual representation of the workflow will be inluded as

the final part of this chapter. For a better understanding, a zoomed-in portion of one histological

image from the dataset is used. The process starts from the color normalized version of the image

and ends with the final comparison of the segmentation obtained from the application of the full

pipeline versus the raw segentation. The intermediate processes of object detection, snake

inizialization and contour convergence are also included. The steps below are numerated as follows:

1a) Ground truth annotations

1b) Color noramlized image

2a) Segmntation network output

2b) Object detection network

3) Active contours initialization

4) Contours evolution and convergence

5a) Proposed method segmentation

5b) Raw segmentation

1b) 1a)

2a) 2b)

67

The portion of image presents many close nuclei that are fused together in the raw segmentation,

whereas they are correctly segmented by the proposed framework.

5b)

4)

3)

5a)

68

Conclusions and further work
4.1 Conclusions

This thesis project consisted in the proposal and development of a complete framework for the

automatic segmentation of histological images. In particular, the focus was put on improving

segmentation performance of crowded regions, such as those containing a high number of nuclei,

where the typical CNN based deep learning algorithms tend to fuse together close or overlapping

objects. This framework is hence based on the integration of deep learning techniques, consisting

in one deep segmentation network and one object detection model, with a more traditional post-

processing block based on parametric active contours. The introduction of the detection model is

responsible of correctly localizing the presence of multiple close nuclei in the histological image,

whilst the post-processing step performs the actual segmentation by evolving the contours on the

softmax probability map. The proposed pipeline shows promising performance by scoring an

average of 62.7% Aggregated Jaccard Index on the two test sets in use, with an increment of more

than 10% on the segmentation baseline, obtained through a common softmax thresholding. The

method thus proves to be beneficial in the improvement of pre-existing softmax segmentations. It

does not reach the performance of 0.69 AJI of the top scoring participant of a competition based on

the same dataset that was used on this thesis, but the results are not directly comparable as some

of the training examples and all the testing images are different. Moreover, the main purpose of

this work is not pushing state-of-the-art in nuclear segmentation tasks, as much as building a

versatile framework to improve the output of traditional and established deep learning techniques.

The pipeline is easily adapted to other medical imaging segmentation tasks, thanks to the high

generality of the deep learning methods that were used. The additional computational time due to

the object detection step is under 500 ms inference per image for the object detection step on a

single Tesla K80 GPU (thanks to the use of one of the fastest one-stage architectures available),

while the subsequent snakes’ evolution step for segmentation takes 38.9 ± 5 seconds running on an

Intel i3-9100F CPU. The best performances are obtained by giving the full 1000x1000 images of the

dataset as input to the detection model: while this might seem counterintuitive at first, it is

important to consider that such a resolution still represents a rather narrow FOV, when compared

to the total size of a single WSI. As a consequence, the application of this framework at a higher

scale on histopathological images would still require the adoption of a patch-based approach. All in

all, the developed framework can offer and generalizable performance improvements when applied

to any segmentation task featuring a high density of objects, without significantly slowing down the

process. However, in spite of the highlighted potentiality, an eventual integration of the algorithm

into a full digital pathology analysis tool requires further work on several fronts, ranging from

performance improvements to computational optimizations.

69

4.2 Further work

In the future, several factors could be considered when trying to improve the proposed hybrid

framework. These improvements should cover all the three main blocks that compose the

segmentation pipeline:

1. Object detection

2. Softmax generation through deep CNNs

3. Active contours initialization and evolution

As far as object detection is concerned, the main improvements should point towards increasing

the model generalization ability, to reduce the observed overfitting. To some extent, along with

increasing the general performance, this could be addressed by a more in-depth tuning of the model

hyperparameters used during training. Another viable option to explore is the implementation of a

different and more sophisticated patch extraction mechanism during the pre-processing step. For

example, the extraction could be denser around regions where a high number of nuclei are present,

or it could in alternative simply include more examples that proved to pose a challenge for the model

to learn. Eventually, other models outside of the YOLO family can be evaluated, in particular two-

stage object detectors which should sport higher peak performance when properly optimized. At

the current state, inference time of the model does represent only a small part of the total method

runtime (provided that a GPU is used), so the additional computational burden of two-stage

solutions may not be concerning.

Regarding the active contours step, their implementation has to be furtherly optimized to minimize

computational complexity. As matter of fact, the current implementation makes up for the majority

of the framework runtime (excluding the one-time training of the DL models and the evaluation of

performance), and half of this time is used by the function computing the mutual interactions

between snakes. This represent the biggest bottleneck in the current workflow and it must hence

be the starting point for this code optimization process. The interaction term should also be tuned

to allow for more natural segmentation when interaction between more than two snakes are

involved.

Considering the nature of the proposed method, the individual optimization of only one aspect

quickly leads to diminished performance returns. Indeed, a limited detection model causes the

initialization of a wrong number of contours, effectively wasting the quality of the underlying

softmax. In a similar way, the segmentation network poses a limit on the highest performance

benefit that the framework can yield, as underlined in chapter 3.2.2, because the contours evolution

is guided by the softmax itself. It follows that an effective optimization process has to consider the

enhancement of the segmentation network in parallel to the object detection improvements hinted

above.

Additional work may include the application of the current method to full WSIs and the experimental

evaluation of the pipeline on different medical imaging domains. In the first case, some scalability

problems are likely to arise without further modifications to the pipeline, due to the huge amount

of data to segment. On the other hand, given the substantial generality of the framework, the

extension to most domains should not carry particular challenges: it is in fact sufficient to retrain

both the deep learning models with enough relevant data from the new domain, without the need

to introduce particular modifications to downstream blocks.

70

Acknowledgements
Now that I’m eventually at the end of this journey, which gave me the possibility to grow up

both personally and professionally, I would like to thank all the people with whom I shared

a valuable part of my life and who helped me to reach this accomplishment. My first

acknowledgements go to Prof. Filippo Molinari for introducing me to the contents of this

thesis and for sparkling my interest on the topics of image processing during his teaching

activity. A special thanks to my co-supervisor Ing. Massimo Salvi for all the support and for

patiently guiding me through the writing of this work. Thanks to my sister and my closest

friends that supported me outside of the academic world for their constant presence and

helping hand during rough times. My biggest gratitude undoubtedly goes to my parents:

their encouragement through the years has kept me motivated and I could not have

undertaken this path without their unconditioned support and love.

71

Bibliography
[1] Subramanian, Muthukumar & Kumar, S N. (2017). A voyage on medical image segmentation

algorithms. Biomedical Research. 2018.

[2] Yanase, Juri & Triantaphyllou, Evangelos. (2019). A Systematic Survey of Computer-Aided

Diagnosis in Medicine: Past and Present Developments. Expert Systems with Applications. 138.

112821. 10.1016/j.eswa.2019.112821.

[3] Kim M, Yun J, Cho Y, et al. Deep Learning in Medical Imaging [published correction appears in

Neurospine. 2020 Jun;17(2):471-472]. Neurospine. 2019;16(4):657-668.

doi:10.14245/ns.1938396.198

[4] Salvi, Massimo & Acharya, U Rajendra & Molinari, Filippo & Meiburger, Kristen. (2020). The

impact of pre- and post-image processing techniques on deep learning frameworks: A

comprehensive review for digital pathology image analysis. Computers in Biology and Medicine.

128. 104129. 10.1016/j.compbiomed.2020.104129.

[5] Maximow, Alexander A.; Bloom, William (1957). A textbook of Histology (Seventh ed.).

Philadelphia: W. B. Saunders Company.

[6] https://bitesizebio.com/13398/how-histology-slides-are-prepared/ (online)

[7] Mark D. Zarella, Douglas Bowman;, Famke Aeffner, Navid Farahani, Albert Xthona;, Syeda Fatima

Absar, Anil Parwani, Marilyn Bui, Douglas J. Hartman; A Practical Guide to Whole Slide Imaging: A

White Paper From the Digital Pathology Association. Arch Pathol Lab Med 1 February 2019; 143 (2):

222–234.

[8] Silverstein MJ, Recht A, Lagios MD, Bleiweiss IJ, Blumencranz PW, Gizienski T, et al. Special report:

consensus conference III. Image-detected breast cancer: state-of-the-art diagnosis and treatment. J

Am Coll Surg 2009;209:504–520.

[9] Bussolati G. Proper detection of the nuclear shape: ways and significance. Rom J Morphol

Embryol. 2008;49(4):435-9. PMID: 19050790.

[10] Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological

image analysis: a review. IEEE Rev Biomed Eng. 2009;2:147-171. doi:10.1109/RBME.2009.2034865

[11] Daisuke Komura, Shumpei Ishikawa, Machine Learning Methods for Histopathological Image

Analysis, Computational and Structural Biotechnology Journal, Volume 16, 2018, Pages 34-42, ISSN

2001-0370.

[12] Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological

image analysis: a review. IEEE Rev Biomed Eng. 2009;2:147-171. doi:10.1109/RBME.2009.2034865.

[13] Tizhoosh HR, Pantanowitz L. Artificial Intelligence and Digital Pathology: Challenges and

Opportunities. J Pathol Inform. 2018;9:38. Published 2018 Nov 14. doi:10.4103/jpi.jpi_53_18

72

[14] X. Du, Y. Cai, S. Wang and L. Zhang, Overview of deep learning, 2016 31st Youth Academic

Annual Conference of Chinese Association of Automation (YAC), 2016, pp. 159-164, doi:

10.1109/YAC.2016.7804882.

[15] Wehle, Hans-Dieter. (2017). Machine Learning, Deep Learning, and AI: What’s the Difference?.

[16] Christian Janiesch, Patrick Zschech, Kai Heinrich, Machine learning and deep learning,

arXiv:2104.05314

[17] https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/ (online)

[18] Grossi, Enzo & Buscema, Massimo. (2008). Introduction to artificial neural networks. European

journal of gastroenterology & hepatology. 19. 1046-54. 10.1097/MEG.0b013e3282f198a0.

[19] Johannes Lederer, Activation Functions in Artificial Neural Networks: A Systematic Overview,

arXiv:2101.09957.

[20] Hecht-Nielsen, "Theory of the backpropagation neural network," International 1989 Joint

Conference on Neural Networks, 1989, pp. 593-605 vol.1, doi: 10.1109/IJCNN.1989.118638.

[21] Arshak, Yousif. (2021). Optimization Algorithms in Neural Network: A Review.

[22] Keiron O'Shea, Ryan Nash, An Introduction to Convolutional Neural Networks,

arXiv:1511.08458

[23] Ioffe, Sergey & Szegedy, Christian. (2015). Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, arXiv:1502.03167.

[24] Kumar N, Verma R, Sharma S, Bhargava S, Vahadane A, Sethi A. A Dataset and a Technique for

Generalized Nuclear Segmentation for Computational Pathology. IEEE Trans Med Imaging. 2017

Jul;36(7):1550-1560. doi: 10.1109/TMI.2017.2677499. Epub 2017 Mar 6. PMID: 28287963.

[25] Kumar, Neeraj & Verma, Ruchika & Sharma, Sanuj & Bhargava, Surabhi & Vahadane, Abhishek

& Sethi, Amit. (2017). A Dataset and a Technique for Generalized Nuclear Segmentation for

Computational Pathology. IEEE Transactions on Medical Imaging. 36. 1-1.

10.1109/TMI.2017.2677499.

[26] Rupprecht, C. et al. (2016), Deep Active Contours. ArXiv abs/1607.05074.

[27] Diego Marcos, Devis Tuia, Benjamin Kellenberger, Lisa Zhang, Min Bai, Renjie Liao, Raquel

Urtasun, Learning deep structured active contours end-to-end, arXiv:1803.06329.

[28] Roy S, Kumar Jain A, Lal S, Kini J. A study about color normalization methods for histopathology

images. Micron. 2018 Nov;114:42-61. doi: 10.1016/j.micron.2018.07.005. Epub 2018 Aug 1. PMID:

30096632.

[29] Thomas, Gabriel & Flores-Tapia, Daniel & Pistorius, Stephen. (2011). Histogram Specification: A

Fast and Flexible Method to Process Digital Images. Instrumentation and Measurement, IEEE

Transactions on. 60. 1565 - 1578. 10.1109/TIM.2010.2089110.

[30] Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal

Quant Cytol Histol. 2001 Aug;23(4):291-9. PMID: 11531144.

73

[31] Macenko, Marc & Niethammer, Marc & Marron, J. & Borland, David & Woosley, John & Guan,

Xiaojun & Schmitt, Charles & Thomas, Nancy. (2009). A Method for Normalizing Histology Slides for

Quantitative Analysis.. Proceedings - 2009 IEEE International Symposium on Biomedical Imaging:

From Nano to Macro, ISBI 2009. 9. 1107-1110. 10.1109/ISBI.2009.5193250.

[32] Sinha, Rajat & Pandey, Ruchi & Pattnaik, Rohan. (2018). Deep Learning For Computer Vision

Tasks: A review.

[33] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, Jieping Ye, Object Detection in 20 Years: A Survey,

arXiv:1905.05055

[34] L. Jiao et al., "A Survey of Deep Learning-Based Object Detection," in IEEE Access, vol. 7, pp.

128837-128868, 2019, doi: 10.1109/ACCESS.2019.2939201.

[35] Navaneeth Bodla, Bharat Singh, Rama Chellappa, Larry S. Davis, Improving Object Detection

With One Line of Code (2017), arXiv:1704.04503.

[36] Solovyev, Roman & Wang, Weimin & Gabruseva, Tatiana. (2021). Weighted boxes fusion:

Ensembling boxes from different object detection models. Image and Vision Computing. 107.

104117. 10.1016/j.imavis.2021.104117.

[37] Jan Hosang, Rodrigo Benenson, Bernt Schiele, Learning non-maximum suppression (2017),

arXiv:1705.02950. NMS-Loss: Learning with Non-Maximum Suppression for Crowded Pedestrian

Detection

[38] Zekun Luo, Zheng Fang, Sixiao Zheng, Yabiao Wang, Yanwei Fu, NMS-Loss: Learning with Non-

Maximum Suppression for Crowded Pedestrian Detection (2021), arXiv:2106.02426.

[39] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You Only Look Once: Unified, Real-

Time Object Detection (2016), arXiv:1506.02640.

[40] Min Lin, Qiang Chen, Shuicheng Yan, Network In Network (2014), arXiv:1312.4400.

[41] Joseph Redmon, Ali Farhadi, YOLO9000: Better, Faster, Stronger (2017), arXiv:1612.08242.

[42] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on Computer Vision (ICCV), 2015,

pp. 1440-1448, doi: 10.1109/ICCV.2015.169.

[43] Joseph Redmon, Ali Farhadi, YOLOv3: An Incremental Improvement (2018), arXiv:1804.02767.

[44] He, Kaiming & Zhang, Xiangyu & Ren, Shaoqing & Sun, Jian. (2016). Deep Residual Learning for

Image Recognition. 770-778. 10.1109/CVPR.2016.90.

[45] Lin, Tsung-Yi & Dollar, Piotr & Girshick, Ross & He, Kaiming & Hariharan, Bharath & Belongie,

Serge. (2017). Feature Pyramid Networks for Object Detection. 936-944. 10.1109/CVPR.2017.106.

[46] Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao, YOLOv4: Optimal Speed and

Accuracy of Object Detection (2020), arXiv:2004.10934.

[47] Wang, Chien-Yao & Liao, Hong-yuan & Yeh, I-Hau & Wu, Yuen-Hua & Chen, Ping-Yang & Hsieh,

Jun-Wei. (2019). CSPNet: A New Backbone that can Enhance Learning Capability of CNN.

74

[48] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, Jiaya Jia, Path Aggregation Network for Instance

Segmentation (2018), arXiv:1803.01534.

[49] He K., Zhang X., Ren S., Sun J. (2014) Spatial Pyramid Pooling in Deep Convolutional Networks

for Visual Recognition. In: Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds) Computer Vision – ECCV

2014. ECCV 2014. Lecture Notes in Computer Science, vol 8691. Springer, Cham, 10.1007/978-3-

319-10578-9_23.

[50] Diganta Misra, Mish: A Self Regularized Non-Monotonic Activation Function (2019),

arXiv:1908.08681.

[51] https://github.com/ultralytics/yolov5 (online)

[52] Zheng, Zhaohui & Wang, Ping & Liu, Wei & Li, Jinze & Ye, Rongguang & Ren, Dongwei. (2020).

Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Proceedings of the AAAI

Conference on Artificial Intelligence. 34. 12993-13000. 10.1609/aaai.v34i07.6999.

[53] Kass, M., et al. (1988) Snakes: Active contour models. International Journal of Computer Vision,

1, 321-331 http://dx.doi.org/10.1007/BF00133570.

[54] Duan, Dingna & Zhang, H. & Qiu, C. & Xia, S.. (2015). A review of active contour model based

image segmentation algorithms. Chinese Journal of Biomedical Engineering. 34. 445-454.

10.3969/j.issn.0258-8021.2015.04.009.

[55] S. S. Makhanov, "Active contours in medical image processing. Theory and applications," 2013

5th International Conference on Knowledge and Smart Technology (KST), 2013, pp. xviii-xxv, doi:

10.1109/KST.2013.6512772.

[56] Osher, S. and Sethian, J.A., Fronts Propagating with Curvature Dependent Speed: Algorithms

Based on Hamilton-Jacobi Formulations, J. Comput. Phys. 79, 12-49 (1988).

[57] Molinari F., Teaching slides from the course: “Medical image processing”.

[58] Cohen, Laurent D.. “On active contour models and balloons.” CVGIP Image Underst. 53 (1991):

211-218.

