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1. Introduction 
 

The real-time monitoring of rotors is used to speed up the identification of damage 

and allows to reduce the risk of failures. The detected vibration signal needs 

algorithms to be analysed and classified, moreover require an accurate placement of 

sensors. It is also possible to create a digital replica of the physical systems to simulate 

the behaviour of the machine and to carry out all the necessary tests. Vibration 

monitoring analysis offers lots of information about anomalies that could be present 

inside rotating machines. These usually generate inside bearings which are critical 

elements for the safety of the entire system. The work of this master’s degree thesis 

focuses on the creation of an analytical-numerical model to describe the behaviour of 

a flexible rotor supported by rolling elements bearings. This model can be adopted to 

perform two kind of monitoring activities: “in-monitoring”, where a continuous 

identification of the operating conditions is performed on the bearing itself, to detects 

the possible presence of defects inside the component through the dynamic firm of 

the system, and “out-monitoring”, as an indirect measurement, which allows to 

identify the defects affecting one part of the machine and to determine the dynamic 

signature of the entire system. In this work the model is studied considering the 

presence of different types of localized defects, that can be located inside the 

bearings: on the inner ring, on the outer ring and on the rolling elements. The mains 

parameters of the system and the defects are described with an analytical approach, 

to obtain a Digital Twin of the real system where the goal is to identify and classify 

damages through the monitoring activity. It is then studied how the vibrations, 

produced by bearings, affects the behaviour of the rotor. The simulation is obtained 

through a complete analysis of the contact between bodies, and the acceleration 

signal, produced by the vibration of the system, is studied in different locations on the 

shaft. The dynamic analysis of the signals is performed considering the presence of 

each defect separately, and obtaining the particular features of the vibration signal, 

both in the time and frequency domain. The work starts describing the bearing model 

created by Giorio in [2]: the assumptions of the model are summarised, and the theory 

of radial ball and roller bearings is reported defining the relation force-deformation of 

the contacts. Finally, it is reported the equations describing the bearing forces of the 

model also considering the presence of localized defect on the different components. 

Then it is reported the theory of a rotor with 4-dof describing the typical forces that 

act on the rotor and obtaining the equations of motion. The work continues describing 
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the statistical parameters useful for the analysis in the time domain of vibration signal 

and the characteristic frequencies of the bearing useful for the analysis in the 

frequency domain together with the main steps that characterize the envelope 

analysis technique. In Chapter 5 is then described the rotor-bearing system adopted in 

the simulation, combining the theory of the 4-dof rotor with the bearing model. After 

the definition of the equations, they are solved in a MATLAB code that is able to 

simulate the system considering also the presence of defects on its components. The 

results obtained by the numerical simulations are then reported and discussed for all 

the different studied cases (presence of localized defect on the outer ring, inner ring or 

rolling element of a bearing, and the presence of eccentricity on the rotor).  
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2. Bearing model 
 

Bearings play an essential role in all rotating machines, allowing the rotational motion 

of the shaft with respect to a fixed structure supporting the system. An incorrect 

behaviour of these components, caused by a rupture of one of their constituent 

elements may lead to the failure of the entire machine. Bearings are subjected to 

dynamic loads that from the machine are transmitted through the components of 

rolling element bearings. Any defect in the bearing’s components increases vibration 

levels significantly and should be identified on time to avoid failure of the machine. 

The individuation of these defects plays an essential role for quality inspection and 

condition monitoring of bearings [1].  

In this work bearings are modelled following the thesis of Giorio [2] where the effect of 

localized defects on the vibrational response of a radial, ball or cylindrical roller 

bearing is analysed. The bearing model, visible in fig. 2.1, highlights the tree main 

element of the system: inner raceway, outer raceway, and spheres. 

 

Figure 2.1: Main components of the bearing model [3]. 
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2.1 Assumptions of the model 

In [2] bearings are modelled with the following assumptions: the outer ring is 

considered fixed, integral with the stator casing, which is considered solid with respect 

to the foundations. The inner ring of the bearing is bounded to the rotor’s shaft and 

has two translational degrees of freedom (𝑋, 𝑌). The motion is due to the stiffness of 

the rolling elements. The radial displacement, indeed, results from the deformation of 

the rolling elements on the raceways under the action of the radial force 𝐹𝑟. The 

deformation of the track is neglected while only the deformation of the rolling 

elements is considered. The angular velocity 𝛺 of the shaft is considered constant and 

it is defined a priori. The rolling elements can be spheres or cylindrical rollers that are 

hypothesized as equally distributed in the circumferential direction, neglecting the 

variations in distance between them during operation. The effect caused by the sliding 

of the rolling elements on the two tracks during contact is also neglected, and the 

interaction that occurs between rolling elements and tracks is pure rolling. At the 

initial time 𝑡1 the position of the rolling element ⅈ = 1 is vertical with respect to the 

centre of the bearing. Furthermore, each rolling element is considered as massless 

with a linear stiffness coefficient and a damping coefficient as it has already been 

studied in other works of literature [4,5,6,7]. The losses due to the viscosity of the 

lubricant inside the bearing are considered depending on the damping coefficient 𝑐𝑏 

that has a range of values depending on the linear stiffness 𝐾𝑙𝑖𝑛 that will be analysed in 

Paragraph 2.4. 

 

2.2 Contact between bodies  

The ideal behaviour of two elastic bodies in contact has been solved by Hertz under 

the following hypotheses [8, 9, 10]:   

• The deformable bodies in contact are linear elastic isotropic material, that 

is they obey Hooke's law. 

• Small deformations when compared with the geometric dimensions of the 

bodies in contact. 

• Shear stresses in the contact area are negligible. 

• The contact area is very small compared with the size of the bodies; in 

particular, the semi-major axis of the elliptical contact area, 𝑎 , must be 

small when compared with the minimal curvature of the bodies on contact: 
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𝑎 ≪  min {ρI , ρII} 

 

• The bodies have a smooth surface and the effect of friction in the contact is 

neglected. 

It is necessary to introduce a parameter that indicate the curvature of a body, which is 

related to his radius. Following the reference planes of fig 2.2 it is possible to write the 

curvatures of the two bodies in their contact points: 

ρ𝑖,1 =
1

𝑟𝑖,1
                    ρ𝑖,2 =

1

𝑟𝑖,2
 

Where “ⅈ” indicate the considered body. 

 

 

Figure 2.2: Definition of the radii of curvature for two bodies in their contact points [11]. 

 

 

It is now possible to evaluate the following parameters: 

Curvature sum:  

∑ρ =
1

𝑟I,1
+
1

𝑟I,2
+

1

𝑟II,1
+

1

𝑟II,1
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Curvature difference: 

𝐹ρ =
(ρI,1 − ρI,2) + (ρII,1 − ρII,2)

∑ ρ
 

Indicating with 𝛿 the relative displacement between the bodies in contact, with 𝑎 

major semiaxis and with 𝑏 the minor ones, the formulas useful for the calculation are 

shown below [11]: 

𝑎 = 𝑎∗ [
3𝑄

2∑ρ
(
1 − νI

2

𝐸I
+
1 − νII

2

𝐸II
)]

1
3

 

𝑏 = 𝑏∗ [
3𝑄

2∑ρ
(
1 − νI

2

𝐸I
+
1 − νII

2

𝐸II
)]

1
3

 

       𝛿 = 𝛿∗ [
3𝑄

2∑ρ
(
1 − νI

2

𝐸I
+
1 − νII

2

𝐸II
)]

1
3∑ρ

2
 

Where 𝜈 is the indicate the Poisson's coefficient, 𝐸 is the Young's modulus and 𝑄 is the 

value of the perpendicular force applied.  

In [11] is explained the theoretical treatment of solving the problem and are reported 

the values of quantities (𝑎∗, 𝑏∗, 𝛿∗) in tabular form or in the form of diagrams, in 

function of the curvatures differences 𝐹(𝜌). In the case of steel bodies, formulas are 

reported in literature [6,9, 11], where it is evaluated the contact area and the relative 

displacement using values of 𝜈 = 0.3,  𝐸 = 206 × 103 MPa for both bodies. 

 

Figure 2.3: Contact area between a spherical rolling element and the two raceways of the 

radial bearing [12]. 
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In the case of cylinders, the bodies in contact are considered as two ideal cylinders 

with same length 𝐿. In this case parameter 𝑎 loses his meaning, and only 𝑏 will be 

considered, with the modified formula:  

𝑏 = [
4𝑄

𝜋𝐿∑ρ
(
1 − νI

2

𝐸I
+
1 − νII

2

𝐸II
)]

1
2

 

 

 

Figure 2.4: Linear contact between two ideal cylinders of equal length (left). Contact area 

showing the contact pressure trend (right) [13]. 

 

In [2] are reported different way to describe the relative displacement 𝛿 of parallel 

cylinders in contact under the action of a perpendicular force 𝑄 described in detail in 

[8,10,14,15]. In this work it will be used the formula presented by Palmgren et al. [14], 

as it has already been used extensively in the scientific literature: 

𝛿 = 3,84 × 10−5
𝑄0.9

𝐿0.8
 

As shown in [11], the rotational speed of rolling elements is not so high, and 

centrifugal forces can be neglected because of the low inertia of the bodies. 

Furthermore, frictions and torque on each rolling element is neglected because their 

effect is not relevant compared with the other loads. The deformation of each rolling 

element 𝛿  is linked to the load 𝑄 throw the following relations: 

Case of cylinder: 

𝑄 = 𝐾𝛿
3
2 

Case of sphere: 
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𝑄 = 𝐾 𝛿
10
9  

Where 𝐾 which is the equivalent contact stiffness, is obtained with the following 

expression: 

Case of cylinder-track: 

𝐾 = [
𝐿0.8

3,84 × 10−5
]

10
9

 

 

Case of sphere-track: 

𝐾 =

{
 
 

 
 

1

𝛿∗ [
3𝑄
2∑ρ

(
1 − νI

2

𝐸I
+
1 − νII

2

𝐸II
)]

1
3∑ρ
2 }
 
 

 
 

3
2

 

 

These formulas describe the relation between force and deformation that occurs, in a 

contact point between two bodies. In bearings, rolling elements have two contact 

points, one with the inner race and one with the outer. The total displacement 

between the two raceways in the radial direction can be expressed with the sum of, 

the approach of the rolling element with the inner race 𝛿𝑖 and the approach of the 

rolling element with the outer race 𝛿𝑜: 

𝛿𝑛 = 𝛿𝑜 + 𝛿𝑖  

 

It can be also found an equivalent stiffness 𝐾 for the two contacts. It is evaluated by 

the formulas for the series coupling of two springs. The Stiffness of the inner 𝐾𝑖 and 

outer 𝐾𝑜 contacts can be evaluated with the previous formulas depending on the 

geometry of the rolling element, and are both necessary to find out the equivalent 

stiffness with the following formula: 

𝐾 =

[
 
 
 
 

1

(
1
𝐾𝑖  
)

1
𝑛
+ (

1
𝐾𝑜 
)

1
𝑛

]
 
 
 
 
𝑛
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Now it is possible to write the expression between the force and deformation, on a 

system composed by a rolling element between two raceways: 

𝑄 = 𝐾𝛿𝑛
𝑛 

 

Respect to fig. 2.5 at each rolling element corresponds an angular displacement ϕ from 

the vertical position. Calling 𝛿φ the radial deformation of the rolling element in that 

position, it can be evaluated as: 

𝛿φ = 𝛿r cos(φ) −
1

2
𝑔 

Where 𝛿r is the displacement between the inner and outer race in the vertical 

direction as it is shown in fig. 2.5, while 𝑔 is the clearance (𝑔 > 0) or interference 

(𝑔 < 0). 

 

 

Figure 2.5: Displacement of the inner ring of a bearing [74]. 
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Furthermore, it is possible to write the radial displacement in function of the maximum 

radial displacement 𝛿max: 

𝛿φ = 𝛿max [1 −
1

2𝜀
(1 − 𝑐𝑜𝑠𝜑)] 

Where 𝜀 depends on 𝛿r with the following relation: 

𝜀 =
1

2
(1 −

𝑔

2𝛿r
) 

 

The external load 𝐹𝑟, applied on the inner ring, distributes on the rolling elements. 

Assuming 𝐹𝑟 applied in the vertical direction, for the balance of the inner ring of the 

bearing, the sum of the vertical components of the forces acting on each rolling 

element must equal the applied load.  

𝐹𝑟 = ∑ 𝑄𝜑 𝑐𝑜𝑠𝜑

𝜑𝑚𝑎𝑥

𝜑=−𝜑𝑚𝑎𝑥

 

Where 𝑄𝜑 is the radial load applied on the body in the angular position 𝜑 which 

multiplied by 𝑐𝑜𝑠𝜑 is projected along the vertical direction. While 𝜑𝑚𝑎𝑥 indicates the 

maximum angle in which rolling bodies are loaded. It depends on the clearance g and 

on the displacement of the inner ring 𝛿r following the equation: 

𝜑𝑚𝑎𝑥 = 𝑎𝑟𝑐𝑜𝑠 (
𝑔

2𝛿r
) 

 

It is also possible to express the radial load 𝑄𝜑 as a function of 𝛿r: 

𝑄𝜑

𝑄𝑚𝑎𝑥
= (

𝛿φ

𝛿max
)

𝑛

 

𝑄𝜑 = 𝑄𝑚𝑎𝑥 [1 −
1

2𝜀
(1 − 𝑐𝑜𝑠𝜑)]

𝑛

 

 

It is finally possible to write the relation between the external force 𝐹𝑟 and the 

displacement of the inner ring of the bearing 𝛿r which is present in the definition of 𝜀. 

Given a value of 𝛿r it is possible to find the correspondent force 𝐹𝑟. 
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𝐹𝑟 = 𝑄𝑚𝑎𝑥 ∑ [1 −
1

2𝜀
(1 −  𝑐𝑜𝑠𝜑)]

𝑛
𝜑𝑚𝑎𝑥

𝜑=−𝜑𝑚𝑎𝑥

 𝑐𝑜𝑠𝜑 

 

In the above equation the relation between the force and the displacement is obtained 

in a discreet way because of the finite number 𝑛 of rolling elements present in the 

bearing, each one with its stiffness. To write the same relation in an integral form it is 

possible to distribute the stiffness along the load zone, in a continuous form, 

introducing the load distribution factor 𝐽𝑟 (𝜀) [11,16]. 

𝐽𝑟 =
1

𝜋
∫ [1 −

1

2𝜀
(1 −  𝑐𝑜𝑠𝜑)]

𝑛𝜑𝑚𝑎𝑥

−𝜑𝑚𝑎𝑥

𝑐𝑜𝑠𝜑 𝑑𝜑 

 

2.3 Bearings of the model 

In this work the bearings implemented in the model are the same used in the thesis of 

Giorio [2] (Single row deep groove ball bearing type 6305). Data of this bearing are 

available online from the SKF website [17]. The geometry of the bearing is reported in 

Tab. 2.1 with all the necessary factors to evaluate the relation Force-deformation 

𝐹𝑟 (𝛿𝑟) such as diameters of rings and balls, number of rolling elements and the value 

of clearance. 

 

Figure 2.6: Geometry of the bearing [17]. 
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Table 2.1: Geometric properties of deep groove ball bearing 6305. 

Bearing Geometry 

Inner ring diameter 𝑑1 32.1 mm 

Outer ring diameter 𝐷2 54.67 mm 

Bore diameter d 25 mm 

Diameter of rolling element 𝑑𝑟 11.274 mm 

Number of rolling element N 7 

Contact angle (assumed) 0° 

Clearance g 22.57 × 10−3 mm 

 

In fig. 2.7 the relationship between the two possible ways to evaluate the radial force 

is compared: discrete and continuous approach. With discrete approach it is possible 

to obtain the value of the radial force for values of the radial displacement, which 

agree with the continuous method: 

 

Figure 2.7: Comparison of the results obtained with the discrete and continuous method for 

the calculation of the bond Fr - δr of a radial bearing [2]. 
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The equivalent linearized stiffness can be defined as [15]: 

𝐾𝑙𝑖𝑛 =
𝑑𝐹𝑟
𝑑δ𝑟

 

This value of stiffness depends on the load as in the following graph: 

 

Figure 2.8: Equivalent linearized stiffness for a 6305 radial bearing in function of δr [2]. 

In this work the value of stiffness is implemented in parametric form, and a tentative 

value of 𝐾𝑙𝑖𝑛 =  10 × 10
4 N

mm
 is used to validate the model. 

 

2.4 Bearing forces  

Applying a load 𝐹𝑟 on the inner ring of a bearing, generates a deflection of the rolling 

elements. In this work bearings are modelled as in fig. 2.9 where each rolling element 

is represented as a system composed by a spring and a damper in parallel. The 

deformation of balls creates a reaction force that depend on the relative displacement 

𝛿𝑟 between the two rings and from its velocity 𝛿�̇�.  
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Figure 2.9: Model of the bearing system adopted, with the chosen reference frame XY and the 

generic rotation of the inner ring 𝜃𝑖 [2]. 

 

2.4.1 Evaluation of deflection in bearings  

To analyse the deformation of each rolling element is necessary to introduce the 

angular coordinate 𝜃 that indicate the rotation of a body from the vertical position. 

Defining the initial position of the body, its rotation 𝜃 can be expressed in function of 

time 𝑡. Knowing the angular velocity of the inner ring 𝜔 it is possible to write the 

velocity of the cage ω𝑐 

ω𝑐  =  2πFTF 

in which FTF indicates the “Fundamental Train Frequency” and can be calculated as  

𝐹𝑇𝐹 =
𝑓𝑠
2
(1 −

𝑑

𝐷
𝑐𝑜𝑠𝛼) 

Where 𝑑 and D, are respectively the diameter of the rolling body and the mean 

diameter of the bearing, fs is the rotational frequency of the shaft and 𝛼 is the contact 

angle that is equal to 0 in a radial, spherical, or cylindrical, roller bearing.  

It is now possible to derive the angular position of each rolling element ⅈ shown also 

graphically in fig 2.10: 
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𝜃𝑖 =
2𝜋 

𝑁
ⅈ + ω𝑐 t 

 

Figure 2.10: Angular position of the rolling element ⅈ [2]. 

The deflection of each ball can be expressed in function of the angle 𝜃𝑖: 

δ𝑖 = 𝑥 𝑐𝑜𝑠𝜃𝑖 + 𝑦𝑠𝑒𝑛𝜃𝑖 −
𝑔

2
 

 

Figure 2.11: Radial displacement of the i-th rolling element at time t, due to the translation of 

the bearing inner ring [2]. 
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If δ𝑖  results positive, it means that the body is subjected to load, while if it is negative, 

it means that the body and the raceway are not in contact, and no force is developed. 

The velocity of deflection of each body can instead be written deriving the 

displacement δ𝑖: 

δ�̇� =  𝑥 ̇ 𝑐𝑜𝑠𝜃𝑖 + �̇�𝑠𝑒𝑛𝜃𝑖  

Elastic force depends on the displacement δ𝑖  and is proportional to the 𝐾𝑙𝑖𝑛 obtained 

in chapter 2.3. Damping force instead is proportional to the damping coefficient 𝑐𝑏 

coming from the losses due to the viscosity of the lubricant inside the bearing. Its 

range values depend on the linear stiffness as it was described by Kong et al. [19] 

according to which the values vary in the range: 

0.25 × 10−5𝐾𝑙𝑖𝑛 ≪ 𝑐𝑏 ≪ 2.5 × 10−5𝐾𝑙𝑖𝑛 

 

2.4.2 Evaluation of deflection in bearings with localized defects 

Defects on bearings can be of different type. They can be divided in two main 

categories, distributed and localized defect: 

• Distributed defect, include abrasive wear of surfaces, surface roughness, 

ripple and misalignment defect, errors of production such as oversize 

raceways or rolling elements [20,21]. 

 

• Localized defects typically indicate defects due to the fatigue phenomenon. 

Rolling element surface fatigue is characterized by pitting and spalling that 

leaves craters on the surfaces. Pitting originates on the surface and occurs 

where surface dents or scratches are present. It initiates as a crack and 

propagates as shallow craters. Spalling is subsurface originated instead and 

occurs when microcracks originate below the surface in correspondence of 

material inhomogeneities and propagates toward the surface. Spalling 

leaves deeper cavities with respect to pitting [20,22,23]. 
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Figure 2.12: Fatigue effect on various elements of a bearing: (a) localized defect on the rolling 

elements, (b) flaking area in the inner raceway, (c) flaking area in the outer raceway, (d) flaking 

area in the outer raceway [22]. 

When rolling element enters in the zone with the localized crack, it undergoes to an 

impulsive contact force which cyclically consumes the edges of the defect, increasing 

the dimension of the crack that could transforms into an extended defect [22]. 

In this work, in order to simulate a possible defect present in a component of the 

bearing (inner ring, outer ring or rolling element), the defect itself is modelled as in [2] 

as a part of a sine wave (instead of using a periodically repeating pulse function). 

Defects are modelled as a local variation of radial displacement of the rolling bodies 

that are in the same zone of the defect. In [18] is defined the angular extension 𝜑𝑗 of a 

j-error. 

𝜑𝑗 = 𝑓𝑓𝑗
𝐻𝑗2𝜋

𝜋𝐷𝑖/𝑜
 

Where 𝑓𝑓𝑗 indicates the relationship between the length of the defect and the 

maximum height 𝐻𝑗 and 𝐷𝑖, 𝐷𝑜 alternatively indicates the diameter of the inner or 

outer race, depending on which of the two is damaged. It is so possible to derive the 

radial displacement variation of the rolling element in the defect zone. This value is 

important because it modifies the force of the bearing that depend on the 

deformation of the rolling elements.  
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∆𝛿𝑗 = −𝐻𝑗 sin [
𝜋

𝜑𝑗
(𝜃𝑡 − 𝜃𝑖𝑛𝑖𝑡)] 

Where 𝜃𝑖𝑛𝑖𝑡  indicate the angle of the defect at time 0, while 𝜃𝑡 depend on the position 

of the defect.  

𝛽𝑖𝑗 is an index adopted to understand if the rolling element ⅈ is in the crack position. Its 

values are: 

𝛽𝑖𝑗 = {
1     ⅈ𝑓 𝑡ℎ𝑒 𝑟𝑜𝑙𝑙ⅈ𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ⅈ𝑠 ⅈ𝑛 𝑡ℎ𝑒 𝑐𝑟𝑎𝑐𝑘 𝑧𝑜𝑛𝑒
0     ⅈ𝑓 𝑛𝑜𝑡                                                                         

 

 

The radial deformation 𝛿𝑖 described in the previous chapter is therefore modified by 

the presence of localized defects as follows: 

δ𝑖 = 𝑥 𝑐𝑜𝑠𝜃𝑖 + 𝑦𝑠𝑒𝑛𝜃𝑖 −
𝑔

2
− ∑ 𝛽𝑖𝑗 ∆𝛿𝑗

𝑗𝑚𝑎𝑥

𝑗=1

 

Where the value ∆𝛿𝑗 depend on the position of the crack because it changes the 

definition of 𝜃𝑡: 
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• Outer ring 

 

Figure 2.13: Parameters for the implementation of a localized defect on the outer track [2]. 

The value of 𝜃𝑡 is expressed as: 

𝜃𝑡 =
2𝜋 

𝑁
ⅈ + ω𝑐 t 

Where N is the number of rolling elements, ω𝑐 is the rotation of the cage, ⅈ indicate 

the rolling element and 𝑡 is time.  

Parameter 𝛽𝑖𝑗 is equal to 1 if: 

𝛼𝑗 ≤ 𝜃𝑖 ≤ 𝛼𝑗 + 𝜑𝑗 

Where 𝛼𝑗 indicate the position of the defect and is equal to 𝜃𝑖𝑛𝑖𝑡  because the outer 

ring is considered as fixed. While 𝜑𝑗 is the defect’s angle.  
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• Inner ring 

 

 

Figure 2.14: Parameters for the implementation of a localized defect on the inner track [2]. 

The inner ring rotates at the angular speed 𝛺 and the equation of 𝜃𝑡 is modified as: 

𝜃𝑡 =
2𝜋 

𝑁
ⅈ + (ω𝑐 − 𝛺) t 

Where N is the number of rolling elements, ω𝑐 is the rotation of the cage, ⅈ indicate 

the rolling element and 𝑡 is time.  

Parameter 𝛽𝑖𝑗 is equal to 1 if: 

𝛼𝑗 ≤ 𝜃𝑖 ≤ 𝛼𝑗 + 𝜑𝑗 

Where 𝛼𝑗 indicate the position of the defect. In this case the inner ring rotates with the 

defect so: 

𝛼𝑗 = 𝜃𝑖𝑛𝑖𝑡 + 𝛺(𝑡 − 𝑡1) 
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• Rolling body 

 

Figure 2.15:  Parameters for the implementation of a localized defect on the rolling element 

[2]. 

 

The radial displacement of the rolling element is modified of the quantity ∆𝛿𝑗 when 

the localized defect lies along the radial direction between the centre of the rolling 

body and rotation axis. When the defect is on the rolling element the displacement ∆𝛿𝑗 

is considered constant along all the angle 𝜑𝑗 . This condition occurs when: 

𝜔𝑏𝑡 − 𝜗𝑖𝑛𝑖𝑡 = 0, 𝜋 

 

Where 𝜗𝑖𝑛𝑖𝑡 is the angle from the vertical direction at 𝑡1, 𝜔𝑏 is the spin speed of the 

body and 𝑡 is the time. Parameter 𝛽𝑖𝑗 is equal to 1 if ⅈ = 𝑗 since the defect on a 

particular rolling element ⅈ only affects that one body. 

 

Defined the deflection 𝛿𝑗 for each case, it is possible to write the equation of the 

elastic force as in Chapter 2.2, considering the presence of localized defects also: 

𝑄𝑒𝑖 = {
0           ⅈ𝑓 𝛿𝑖 ≤ 0 

𝐾𝛿𝑖
𝑛       ⅈ𝑓 𝛿𝑖 > 0
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Furthermore, losses inside bearings generate a damping force that depends on the 

velocity δ�̇� and on the damping factor 𝑐𝑏 already described in previous chapter: 

𝑄𝑑𝑖 = {
0           ⅈ𝑓 𝛿𝑖 ≤ 0 

𝑐𝑏𝛿�̇�       ⅈ𝑓 𝛿𝑖 > 0
 

 

These equations can be written in the two coordinates 𝑋, 𝑌 as: 

𝐹𝑒𝑌 =∑𝑄𝑒𝑖𝑐𝑜𝑠𝜃𝑖

𝑁

𝑖=1

=∑{𝐾𝛿𝑖𝑐𝑜𝑠𝜃𝑖}

𝑁

𝑖=1

 

𝐹𝑒𝑋 =∑𝑄𝑒𝑖𝑠𝑒𝑛𝜃𝑖

𝑁

𝑖=1

=∑{𝐾𝛿𝑖𝑠𝑒𝑛𝜃𝑖}

𝑁

𝑖=1

 

𝐹𝑑𝑌 =∑𝑄𝑑𝑖𝑐𝑜𝑠𝜃𝑖

𝑁

𝑖=1

=∑{𝑐𝑏𝛿�̇�𝑐𝑜𝑠𝜃𝑖}

𝑁

𝑖=1

 

𝐹𝑑𝑋 =∑𝑄𝑑𝑖𝑠𝑒𝑛𝜃𝑖

𝑁

𝑖=1

=∑{𝑐𝑏𝛿�̇�𝑠𝑒𝑛𝜃𝑖}

𝑁

𝑖=1

 

 

The sum of the elastic force and damping force in each direction are the bearing’s 

forces that can be wrote in the vector 𝐹𝑏 : 

𝐹𝑏 = {
𝐹𝑒𝑋 + 𝐹𝑑𝑋
𝐹𝑒𝑌 + 𝐹𝑑𝑌

} 
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3. Theory of a rotor with 4 degrees of 

freedom 
 

“Rotor dynamic is that branch of systems dynamics dealing with mechanical devices in 

which at least one part, usually defined as rotor, rotates with significant angular 

momentum, the parts of the machine that do not rotate are generally referred to with 

the general definition of stator” [24]. 

In this chapter the theory of a rotor with four degrees of freedom is reported by 

reference mainly to the work of Genta [24]. In fig. 3.1 are represented three different 

model that can be used to describe a rotor with four degrees of freedom. They 

represent a rotor that spins on two bearings which are considered rigid fig. 3.1(a) or 

compliant fig. 3.1(b, c). The rotor is considered as a rigid body, outlined as a disc, fixed 

to a massless shaft that can be rigid fig. 3.2(b) or compliant fig. 3.2(a, c). In the Jeffcott 

rotor theory, the rotor is considered as a point mass without account for its moments 

of inertia. Unlike that theory, to study the phenomena that influence the dynamic 

behaviour of rotors, such as the gyroscopic effects, it is necessary to introduce the 

principal moments of inertia about the rotation axis 𝐽𝑝 and the transversal moment of 

inertia 𝐽𝑡 about any axis in the rotation plane. Values of moments of inertia depend on 

the geometry of the rotor: if 𝐽𝑝 is higher than 𝐽𝑡 the body can be seen as a disc, 

otherwise with 𝐽𝑡 > 𝐽𝑝 the body is usually referred to as a long rotor. In the limiting 

case with 𝐽𝑡 = 𝐽𝑝 the ellipsoid of inertia degenerate into a sphere. This system has six 

degrees of freedom, but it is possible to uncouple axial, flexural, and torsional 

behaviour. Indeed, for the study of the flexural behaviour with the hypothesis of 

constant speed and under wide simplifying assumptions, it can be modelled with 4 

coordinates. The goal of this chapter is to obtain the equations that describe the 

motion of the rotor and the procedure to write them follows the theory described by 

Genta in [24].  
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Figure 3.1: Scheme of a Rotor with four degrees of freedom. (a) Compliant shaft on rigid 

bearing. (b) Rigid rotor on compliant bearings. (c) Both bearings and shaft are compliant [24].  

 

3.1 Reference frame 

To describe the motion of the rotor it is defined a reference system. Point C indicates 

the point on the shaft where it is located the rigid disc with its mass and moments of 

inertia. The frame used in this work is in accordance with the one of [24]: 

• O-XYZ is the fixed frame that has its origin in point O and the Z-axis coincides with 

the rotor’s rotation axis. 

• O-ΞHZ is the rotating frame in which O is the origin and axes Ξ and H rotate in the XY 

-plane with angular velocity Ω, during constant speed operation. Z-axis coincides, as 

the previous frame, with the rotation axis of the rotor.  

• C-X’Y’Z’ is the frame that has its origin in C, with all the axes that remain parallel with 

those of frame OXYZ.  

• C-xyz also has the origin in point C, but Its z-axis is the same of the rotation axis of 

the rigid disc in its deformed position. It is obtained from the X’Y’Z’-frame rotating 

about the X’-axis until Y’ is parallel to the rotation plane. That angle is called 𝜙𝑥′ and Y’ 

became y. Than from the new configuration, the frame is rotated of the angle 𝜙𝑦 

around the new y-axis until X’ will lies on the rotation plane. After these two rotations 

the new z-axis correspond apart from χ error to the symmetry axis of the rotor. 

• C-ξηz is the frame obtained rotating C-xyz frame of the rotation angle 𝜃 of the rotor 

that in case of constant spin-speed is equal to Ωt.  
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• Frame P-123 is obtained from C-ξηz frame considering the effect of unbalance χ that 

will be described in 3.2. In the new reference system, the principal axis of inertia, 

corresponding to the polar moment of inertia of the rotor 𝐽𝑝, lies in a plane parallel to 

ξz-plane.  

 

 

 

Figure 3.2: Reference frames of a 4-dof rotor with. Letter in boxes indicate respectively axis 

and plane [24]. 

 

3. 2 Equation of the system with four degrees of freedom 

Several simplifications are needed to obtain and correctly describe a linearized model. 

The rotation axis of the rotor in its undeformed configuration is considered equal with 

the barycentric principal axes of inertia. This condition is true if the rotor is considered 
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perfectly balanced and this is only an approximation. Indeed, in many cases, the 

unbalance can be considered small. Displacements and velocities can be assumed 

small, excluding the rotation angle and the angular velocity about the spin axis, that 

can be considered as imposed by the driving system, as described in many works in 

literature. Following these considerations, the equations of the centre of the rotor C 

are obtained with the Lagrange approach: 

considering the uncoupling between axial, flexural and torsional movement and with 

the small displacement assumptions, point P, which indicates the centre of mass of the 

disc, will move on the same xy-plane. Firstly, the position of point P is found and 

integrated to obtain the velocity. then through kinetic and potential energy, the 

Lagrange equations are obtained. To study the flexural behaviour, four degrees of 

freedom are enough if spin speed is considered as constant. The forces on point C are 

produced by the shaft, which is considered elastic. Assuming the behaviour of the shaft 

as linear, reaction forces of the shaft depend to its stiffness matrix. Matrix, respect to 

the two planes 𝐾𝑥𝑧 , 𝐾𝑦𝑧 , are similar. Considering the axial symmetry of the shaft they 

can be written as:  

𝐾𝑦𝑧 = [
𝐾11 −𝐾12
−𝐾21 𝐾22

]                      𝐾𝑥𝑧 = [
𝐾11 𝐾12
𝐾21 𝐾22

] 

 

Values of K can be obtained inverting the compliance matrix: 

𝐾 = 𝐵−1 = [
𝛽11 −𝛽12
−𝛽21 𝛽22

]
−1

 

Where the values 𝛽 is the coefficients of influence of the system and each element are 

obtained as: 𝛽11 is equal to the displacement of C with a unit force applied on it. 

𝛽21, 𝛽12 indicates the rotation of C caused by a unit force and 𝛽22  is the rotation 

produced by a unit torque. 

The resultant equations, written with the four generalized coordinates (X, Y, φ𝑥′ , φ𝑦)  

are obtained, considering the force of the shaft as the only force acting on C, without 

external forces: 

{
 
 

 
 
𝑚�̈� + 𝐾11𝑋 + 𝐾12φ𝑦 = 0

𝑚�̈� + 𝐾11𝑌 − 𝐾12φ𝑥′ = 0
                                  

   𝐽𝑡�̈�𝑥′ + 𝐽𝑝𝛺φ̇𝑦 − 𝐾12𝑌 − 𝐾22φ𝑥′ = 0               

𝐽𝑡�̈�𝑦 − 𝐽𝑝𝛺φ̇𝑥′ + 𝐾12𝑋 + 𝐾22φ𝑦  = 0            
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3.2.1 Forces generated by the imperfection of the shaft 

The motion of point C is influenced also by the imperfection of the shaft that can be of 

different types: 

• Shaft bow in fig. 3.3, happens when the shaft in its undeflected configuration is 

slightly bent. The angular misalignment χ 𝑏 of the shaft is defined as the 

tangent to the deflected configuration when no forces are applied to it. Point 

O’ in fig. 3.3 indicates the new centre of the shaft C considering bow 𝑏. The 

direction of deformation is usually different from the eccentricity 𝜀 and the 

bow with the angular misalignment lie in a plane that differ from the 𝜉z-plane 

of angles 𝛼𝑏 and 𝛽𝑏. In complex coordinates the force can be described as: 

 

𝑓𝑏𝑜𝑤 = 𝐾 {
𝑏𝑒𝑖𝛼𝑏𝑒𝑖𝜔𝑡

 χ 𝑏𝑒
𝑖𝛽𝑏     

} 𝑒𝑖𝛺𝑡 

  

 

Figure 3.3: Undeflected configuration of the shaft considering the presence of shaft-bow [24]. 

 

• Static and couple unbalance are caused by two errors of the shaft: the centre of 

gravity of the rotor is moved from the axis of a distance 𝜀, and the axis of 

symmetry of the rigid body does not coincide exactly with the rotation axis but 

differs of a small angular error χ. Static unbalances lie in a plane parallel to ξη-
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plane and lead the couple unbalance of a phase angle α as shown in fig. 3.2. 

These errors of the rotor introduce the two whirling modes in fig. 3.4 if the 

translational degrees of freedom are elastically uncoupled from the rotational 

ones [26,27,28]. Translational motion occurs with the axis of the rotor parallel 

to itself and is called cylindrical whirling, rotational motion occurs about the 

centre of mass and is called conical whirling. 

 

 

Figure 3.4: Cylindrical and conical whirling produced by static and couple unbalance of the 

rotor [24]. 

 

The vector of the force and moment, in complex coordinate, caused by unbalance then 

becomes: 

 

𝑓𝑢𝑛𝑏 = {
𝑚𝜀𝑒𝑖𝛼

𝜒(𝐽𝑡 − 𝐽𝑝)𝑒
𝑖𝛽} 

 

The following differential equations, written for the point C of the model, are obtained 

considering static and couple unbalance as generalized forces, and neglecting the 

effect of shaft bow. 
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{
 
 

 
 
𝑚�̈� + 𝐾11𝑋 + 𝐾12φ𝑦 = 𝑚𝜀𝛺2cos (𝛺𝑡 + 𝛼)

𝑚�̈� + 𝐾11𝑌 − 𝐾12φ𝑥′ = 𝑚𝜀𝛺2 sin(𝛺𝑡 + 𝛼)
                                  

   𝐽𝑡�̈�𝑥′ + 𝐽𝑝𝛺φ̇𝑦 − 𝐾12𝑌 − 𝐾22φ𝑥′ = −𝜒𝛺
2(𝐽𝑡 − 𝐽𝑝)sin (𝛺𝑡 + 𝛽)

𝐽𝑡�̈�𝑦 − 𝐽𝑝𝛺φ̇𝑥′ + 𝐾12𝑋 + 𝐾22φ𝑦  = 𝜒𝛺2(𝐽𝑡 − 𝐽𝑝)cos (𝛺𝑡 + 𝛽)

 

 

That can be also written in matrix form as: 

[

𝑚 0
0 𝐽𝑡

0 0
0 0

0 0
0 0

𝑚 0
0 𝐽𝑡

]

{
 

 
�̈�
𝜑�̈�

�̈�
𝜑𝑥′̈ }

 

 

= 𝛺 [

0 0
0 0

0 0
0 0

0 0
0 𝐽𝑝

0 −𝐽𝑝
0 0

]

{
 

 
�̇�
𝜑�̇�

�̇�
𝜑𝑥′̇ }

 

 

 

+[

𝐾11 𝐾12
𝐾21 𝐾22

0        0
0        0

0    0
0     𝐽𝑝

𝐾11 −𝐾12
−𝐾21 𝐾22

]{

𝑋
𝜑𝑦
𝑌
𝜑𝑥′

} =

{
 
 

 
 𝑚𝜀𝛺

2 cos(𝛺𝑡 + 𝛼)              

𝜒𝛺2(𝐽𝑡 − 𝐽𝑝)cos (𝛺𝑡 + 𝛽)

𝑚𝜀𝛺2 sin(𝛺𝑡 + 𝛼)              

−𝜒𝛺2(𝐽𝑡 − 𝐽𝑝)sin (𝛺𝑡 + 𝛽)}
 
 

 
 

 

 

To write these equations in a more compact form, complex coordinates are 

introduced, considering the coordinate −φ𝑥′ to obtain all positive terms and 

symmetric matrices: 

{
𝑚�̈� + 𝐾11𝑟 + 𝐾12ϕ = 𝑚𝜀𝛺

2e𝑖(𝛺𝑡+𝛼)                     

   𝐽𝑡ϕ̈ − ⅈ𝐽𝑝𝛺ϕ̇ + 𝐾12𝑟 + 𝐾22ϕ = 𝜒𝛺2(𝐽𝑡 − 𝐽𝑝)𝑒
(𝑖𝛺𝑡+𝛽) 

where: 

{
𝑟 = 𝑋 + ⅈ𝑌      
ϕ = φ𝑦 − iφ𝑥′

 

These equations can be written in matrix form to obtain an even compact equation as 

described in many works in literature [24,28,29]: 

𝑀�̈� − ⅈ𝛺𝐺�̇� + 𝐾𝑞 = 𝛺2𝑓𝑒𝑖𝛺𝑡 

Where all the matrices are symmetric: 

𝑞 = {
𝑟
ϕ}      𝑀 = [

𝑚 0
0 𝐽𝑡

]       𝐺 = [
0 0
0 𝐽𝑝

]       𝐾 = [
𝐾11 𝐾12
𝐾21 𝐾22

]       𝑓 = {
𝑚𝜀𝑒𝑖𝛼

𝜒(𝐽𝑡 − 𝐽𝑝)𝑒𝑖𝛽
} 
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3.2.2 Forces generated by damping 

Damping can be introduced in the equation as a generalized force on the right-hand 

side of the equation. It can be divided in rotating and non-rotating damping, both 

proportional to the speed of the centre of the rotor, seen respectively from the fixed 

frame XY, and from the rotational frame 𝜉𝜂. The energy losses that reduce the spin 

speed, caused for example by aerodynamic drag or bearing drag, do not affect the 

behaviour of the rotor, indeed with the assumption of constant spin speed it is 

supplied from the driving system. In the case of viscous damping the equation of the 

system become: 

𝑀�̈� + (𝐶𝑛 + 𝐶𝑟 − ⅈ𝛺𝐺)�̇� + (𝐾 − ⅈ𝛺𝐶𝑟)𝑞 = 𝛺
2𝑓𝑒𝑖𝛺𝑡 

𝐶𝑛 is the non-rotating damping matrix which has the same shape of the stiffness 

matrix K and can be expressed as: 

𝐶𝑛 = [
𝐶11 𝐶12
𝐶21 𝐶22

] 

The force produced is proportional to the speed of the rotor �̇�. 

𝐶𝑟 is the rotating damping matrix that, in the equation, is multiplied by the 

displacement 𝑞 and velocity �̇�. The force generated is proportional to the speed seen 

from the rotating reference frame, which written in the fixed frame is equal to: 

𝑉𝑃 = �̇� − ⅈ𝛺𝑟 

Generally, in rotors, this force is produced by the deflection of the shaft combined with 

its rotation and acts when the whirl speed 𝜔 is different with respect to the spin speed 

𝛺. This effect is produced by the energy dissipated by the hysteretic cycle of materials 

as shown in fig. 3.5(a), where it is represented the elliptical hysteresis cycle on the 

stress-strain plane. In fig. 3.5(c) and 3.5(d) are shown the points correspondent to the 

hysteresis cycle in two different configurations, depending on the spin speed of the 

rotor: if the spin speed is lower than the whirl speed, the force opposes the motion of 

the shaft, stabilizing the system; if the spin speed is higher, then it excites the whirl 

motion with a destabilizing effect [30]. 
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Figure 3.5: (a)Hysteresis cycle in stress-strain plane. (b) Scheme of a bent rotor during whirling. 
(c), (d) Trajectory of point C during whirling in the two configurations with whirling speed 

lower than spin speed and whirling speed higher than spin speed [24]
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4. Vibration Condition Monitoring  
 

Condition-Based Maintenance, CBM, is used to make maintenance actions thanks to 

the different signs present in many machines indicating that a failure is going to occur. 

This technique is adopted to predict the failure of a system through the information 

obtained monitoring its operating conditions, which can be of different type such as 

vibrations, noises, contaminants, or lubricating oil. Condition Monitoring collects the 

condition of the system and give a better knowledge of the failure causes and effects 

[31]. Machinery Condition Monitoring, MCM, can be considered as one of the best 

methods to perform monitoring activities and it is used in many industries to prevent 

the failure of the machines [32]. 

Preventive Maintenance was a first solution, according to which maintenance 

interventions must be carried out between time intervals such that the probability of a 

breakdown of the system is low probable. It is difficult to evaluate the optimal level of 

preventive maintenance such that the overall cost of manufacturing, or the cost of 

providing a certain customer service, is minimized. Furthermore, excessive 

maintenance involves work - and at the same time a cost - higher and unjustified. 

Condition-Based Maintenance, (CBM), is a better solution, with which the 

maintenance activities are carried on only when a functional failure is detected [33, 34, 

35]. The vibration analysis is particularly interesting: each mechanical component in 

nominal operation has a certain vibration signature [35], the appearance of damage in 

the component modifies this signature and allows to recognize the warning signs of a 

defect. Such a technique is characterized also by the possibility of being applied 

remotely on the machine, without the need for direct observation of the component. 

In offline condition monitoring system, the analysis is carried out later in the 

laboratory or directly on site, while in online condition monitoring system the signal 

containing the information of the component of interest is acquired continuously and 

constantly analysed [32]. When applying the vibration analysis for the monitoring of 

rolling bearings, it is possible to adopt the lubricant analysis, indeed lubricant carries 

information from inside the machinery in the form typically of suspended particles due 

to possible wear of components and chemical contaminants. This system can only be 

of a periodic type, as many days pass between collection and analysis of the lubricant 

[32]. To identify the origin of the main operating defects of the bearings in time it is so 

necessary to collect vibration signals during operations. 
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4.1 Sources of vibration in a rotor-bearing system 

Bearings are critical components of rotating machines and generate different 

vibrations both with and without the presence of defects. Identifying the possible 

defects and the associated vibrations under operating condition can avoid 

malfunctioning and breakdown of machines. The sources of vibrations that came from 

a bearing can be divided in [1, 2]: 

• Variable compliance: these types of vibrations are present also in geometrically 

perfect bearings due to the discrete number of balls. It can be reduced 

increasing the number of rolling elements. 

• Geometrical imperfections: the vibrations came from the geometrical error 

produced during the manufacturing process. Surface roughness produces 

vibrations at frequencies higher than about sixty times bearing rotational 

speed. They therefore appear in the high-frequency part of the frequency 

spectrum of the signal. Waviness instead produces vibrations that have the 

main frequencies below sixty times the rotation speed. 

• Localised defects: these defects, already described in chapter 2.4.2 are 

generally caused by fatigue phenomenon, corrosion and by abrasive particles in 

the lubricant. The produced vibrations depend on the position of the crack. A 

defect in the inner race generates high-energy pulses at the frequency that 

rolling elements pass through the inner race, referred to, in literature, as BPFI 

(Ball Pass Frequency Inner Race). Defects indeed enter and exit the loaded area 

and produce vibrations. Defects on the outer race are produced with the same 

mechanism, but with a frequency equal to BPFO (Ball Pass Frequency Outer 

Race) because the outer ring is fixed. Defected rolling elements produce 

frequency values multiple of the BSF (Ball Spin Frequency spin), with a vibration 

signal energy that depend on the position of the ball with respect to the 

loading area. Cage can generate random vibrations instead, due to the sliding 

between cage and rolling body, with a wide range of frequencies. 

Imbalance forces are the main source of vibration in rotating machines and their 

values may change in time due to depositions or wear. Obtaining a perfect balancing is 

almost impossible and expensive, so the most common way to solve the problem is to 

increase the damping, in order to dissipate greater dynamic energy [36]. The sources 

of vibrations that came from a rotor can be divided in [37, 38]: 
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• Unbalance: the presence of the eccentricity in a rotor already explained in 

chapter 3.2.1 produce a vibration due to the centrifugal force acting on the 

centre of mass of the shaft with a sinusoidal waveform in the time domain. In 

spectral data Frequency of the signal is equal to the rotational speed of the 

rotor 1xRPM (1x rotational speed).  

• Angular and parallel misalignments: it is generated when the shaft and bearings 

are not aligned. The two types of misalignments are angular and parallel, or a 

combination of both. They occur when the shaft centrelines of two mating 

components meet at angles or are offset from one another. They typically 

produce high axial and radial amplitudes with a phase difference of 180-degree 

across the couplings. Dominant frequencies produced are at 1xRPM and/or 

2xRPM, depending upon the degree of misalignment and on the type and 

design of the couplings. 

• Mechanical looseness: possible causes can be that the machine has some 

components that came loose from the mounting process. This can generate 

random and unorganized vibrations that generate high running speed 

amplitude followed by multiples, in the spectrum analysis. 

To analyse the raw vibration signal obtained monitoring the system in is necessary to 

process this information to obtain specific features, which can be used to categorize 

the status of operation of components. It is than possible to extrapolate the 

characteristics of the signal in time or frequency domain. 

 

4.2 Characteristics of the signal in the time domain 

Time domain parameters are usually adopted to recognise bearing damage [39]. This 

kind of analysis can estimate the conditions of the machine through temporal 

vibrational signal data. The following parameters will be used to analyse the signals in 

the time domain and are the same described in many works in literature [2, 23, 39, 40, 

41]: 

Range: 

Range = max (𝑥𝑘) − min (𝑥𝑘) 

where 𝑥𝑘 is the generic value of the analysed variable 𝑥.  

This parameter is than adopted to find out the peak value.  
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Peak Value: 

𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 =
1

2
× 𝑅𝑎𝑛𝑔𝑒 

This statistic parameter is often adopted to recognise the damage level inside rolling 

elements bearings. It is evaluated with different formulation in literature, but in this 

work, it is decided to follow the definition of works [39, 42] as the half of the range 

value previously described. 

 

Root Mean Square: 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑘

2

𝑁

𝐾=1

 

Where 𝑁 is the number of examined elements of the signal 𝑥 within the considered 

time domain. 

This parameter describes the intensity of the signal. If a component is damaged, it 

produces a higher variation of intensity increasing the RMS value [43, 44]. 

 

Standard deviation: 

𝑆𝐷 = √
1

𝑁
∑(𝑥𝑘 − �̅�)2
𝑁

𝐾=1

 

Where 𝑁 is the number of examined elements of the signal 𝑥 within the considered 

time domain, �̅� is the mean value of the signal equal to  

�̅� =
1

𝑁
∑ 𝑥𝑘

𝑁

𝐾=1

 

This parameter is equal to the root mean square (RMS) if the mean value �̅� is equal to 

0.  The standard deviation can be considered as the value of energy of the signal [41].  
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Skewness: 

𝑆𝐾 =

1
𝑁
∑ (𝑥𝑘 − �̅�)

3𝑁
𝐾=1

𝜎3
 

Where 𝑁 is the number of examined elements of the signal 𝑥 within the considered 

time domain, 𝜎 is the standard deviation of the signal. 

The skewness is a statistical measure of lack of symmetry in the distribution of 

statistical data. Positive values indicates that the data present mostly higher values 

than the mean �̅�, while a negative value indicates that the data are mostly below the 

mean �̅� of the signal [45]. 

 

Kurtosis value: 

𝐾𝑉 =

1
𝑁
∑ (𝑥𝑘 − �̅�)

4𝑁
𝐾=1

𝜎4
 

Where 𝑁 is the number of examined elements of the signal 𝑥 within the considered 

time domain, 𝜎 is the standard deviation of the signal. 

Kurtosis measure how the data are flat or peaked with respect to a normal 

distribution. It indicates the presence of defects inside bearings components. With the 

presence of defects inside bearings its value increases because of the peak generated 

by the damage. However, if the damage has wide dimensions, it generates a near flat 

signal that decreases the value of KV until it reaches the value of 𝐾𝑉 = 3, that typically 

characterise a healthy bearing [46]. 

 

Crest factor: 

𝐶𝑟𝑓 =
𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒

𝑅𝑀𝑆
 

The Crest factor links the two values 𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒 and 𝑅𝑀𝑆 and it is property linked to 

the peak value of the signal under examination. The Crest Factor can be a useful 

indicator for detecting damage at the beginning of their development. Indeed, it 

detect an instantaneous acceleration even if the RMS doesn’t vary significantly [47]. 

 



4. Vibration Condition Monitoring 

 
 37    
 

 

 

Clearence factor: 

𝐶𝑙𝑓 =
𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒

(
1
𝑁
∑ √|𝑥𝑘

2|𝑁
𝐾=1 )

2 

Where 𝑁 is the number of examined elements of the signal 𝑥 within the considered 

time domain. 

The clearance factor is an impulsive factor that is rarely used to analyse the wear of 

mechanical systems [48]. 

 

Shape factor 

𝑆ℎ𝑓 =
𝑅𝑀𝑆

1
𝑁
∑ |𝑥|𝑁
𝐾=1

 

Where 𝑁 is the number of examined elements of the signal 𝑥 within the considered 

time domain. 

The impulse factor links the RMS and the mean of the absolute values of the signal, 

and it is often adopted to detect the presence of defect in mechanical system. 

 

Impulse factor: 

𝐼𝑚𝑓 =
𝑃𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒

1
𝑁
∑ |𝑥|𝑁
𝐾=1

 

Where 𝑁 is the number of examined elements of the signal 𝑥 within the considered 

time domain. 

The impulse factor links the Peak value and the mean of the absolute values of the 

signal, and it is an impulse indicator. 
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4.3 Characteristics of the signal in the frequency domain 

The frequency domain refers to the analysis of signals with respect to frequency, 

rather than time [56]. This technique is widely adopted for predictive diagnostics of 

rolling bearing and take advantage of the Fast Fourier Transform FFT that can turn a 

signal from the time domain, as the one produced by an accelerometer sensor, to the 

frequency one [49, 50]. Fourier transform is found to be very useful and efficient tool 

to analyse vibration signals, able to detect most of the common vibration problems. 

The digital signature of a healthy bearing produces vibrations mainly caused by the 

variable compliance, due to the discrete number of balls present in the bearing, as it 

has been already described in chapter 4.1. The characteristic excited frequencies came 

from the passage of the rolling elements in the loaded area that generate peaks in the 

signal. If localized defects are present inside the components, particularly in the inner 

ring of the bearing, they excite the characteristic frequency of the bearing. Distributed 

defect, as surface roughness or waviness instead doesn’t produce impulsive signal but, 

on the contrary, it has a randomly distributed phase, and the frequencies are no longer 

useful assuming more complicated characteristics with a high content of non-

stationary contributions [51]. As described in [52] the raw signal describing the 

acceleration of the bearing doesn’t contain many interesting information about the 

possible presence of defect inside its component. It is so often performed the study of 

the envelope of the acceleration (EA, “Envelope Analysis”) which allows the 

individuation of the signal indicating the state of health of the bearing [2, 53]. The 

envelope may be defined as the outer shape of the signal and envelope detection is 

widely applied in roller bearing analyses. It is a method that intensify the repetitive 

components of a dynamic signal, and for bearing vibration envelope detection is 

adopted to identify the pulses intensity and finding the repetition rate of these pulses. 

Repetition rate is related to the bearing characteristics frequencies which will be 

described later as (BPFI, BPFO, BSP and FTF) and can be found by spectrum analysis of the 

demodulated signal. The analysis of the envelope of the signal is performed following 

the steps described in fig. 4.1. 

 

 

https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Frequency
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Figure 4.1: Scheme of the envelope analysis applied to a vibration signal [49]. 
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• The acceleration signal can be obtained in the time domain, from accelerometer 

located on a real machine. The acceleration is so a typical parameter chosen to 

study the behaviour of a system containing bearings. 

 

• The raw signal obtained from the accelerometer, appropriately amplified, is 

filtered by using a band-pass filter removing the low-frequency content usually 

related to common machinery problems. The typical frequencies adopted from the 

Band Pass Filter depends on the shaft rotational speed with the values described in 

the following table: 

 

 

 

Table 4.1:  Typical values for the band pass filter in the envelope analysis [49]. 

Angolar velocity Band Pass Filter Range 

0 – 50 RPM 5 – 100 Hz 0 – 10 Hz 

25 – 500 RPM 50 – 1000 Hz 0 – 100 Hz 

250 – 5000 RPM 500 – 10000 Hz 0 – 1000 Hz 

2500 - … RPM 5000 – 40000 Hz 0 – 10000 Hz 
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• The signal is demodulated through an envelope detector (envelope sensor), which 

can operate as described in fig. 4.2, rectifying the signal and obtaining the envelope 

through a low-pass filter. 

 

 Figure 4.2: Envelope Analysis by Jaafar Alsalaet [49]. 

 

It is also possible to operate in a different way through the Hilbert transform of the 

filtered signal. After the signal is bandpass filtered, the FFT is performed, and the 

negative spectrum is cancelled doubling the positive spectrum. Finally, the inverse 

of the FFT is taken to obtain the Hilbert transform. It is than possible to evaluate 

the envelope evaluating the modulus of the “analytical signal” obtained, filtering 

the single-sided spectrum using a FIR (Finite Impulse Response) filter. 

 

• The demodulated signal, which corresponds to the envelope of the raw signal, is 

finally analysed in the frequency domain through the application of the Fast 

Fourier Transform. 

 

Some of the parameters useful for the study of the excited frequencies of a bearing are 

so reported afterwards, considering all the assumption already described in chapter 2 

[51, 55]. 
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Rotation frequency of the shaft  

𝑓𝑠 =
𝜔

60
 

Where 𝜔 indicate the rotational speed of the shaft in RPM.  

The Rotation frequency of the shaft indicate the rotational speed of the rotor. The 

eccentricity in a rotor already explained in chapter 3.2.1 produce a vibration due to the 

centrifugal force acting on the centre of mass of the shaft that. In spectral data 

frequency of the signal is equal to the 𝑓𝑠. 

 

Fundamental Train Frequency 

𝐹𝑇𝐹 =
𝑓𝑠
2
(1 −

𝑑

𝐷
𝑐𝑜𝑠𝛼) 

where 𝑑 is the diameter of the rolling element and 𝐷 the mean diameter of the 

bearing, 𝑓𝑠 is the frequency of rotation of the shaft and 𝛼 is the contact angle of the 

bearing in the case of an angular bearing (for a radial bearing with balls or rollers is 

equal to 𝛼 =  0°). 

The Fundamental Train Frequency indicates the rotational speed of the centre of the 

rolling elements with respect to the centre of the shaft and is equal to the rotating 

speed of the cage of the bearing. A defect present in the cage can excite the FTF, 

though the presence of the FTF in the spectre of the signal usually indicate a bad 

mounting of the bearing system.  

 

Ball Pass Frequency Outer Race 

𝐵𝑃𝐹𝑂 = 𝑁
𝑓𝑠
2
(1 −

𝑑

𝐷
𝑐𝑜𝑠𝛼) 

Where N is the number of rolling elements in the bearing, 𝑑 is the diameter of the 

rolling element and 𝐷 the mean diameter of the bearing, 𝑓𝑠 is the frequency of 

rotation of the shaft and 𝛼 is the contact angle of the bearing in the case of an angular 

bearing (for a radial bearing with balls or rollers is equal to 𝛼 =  0°). 

The Ball Pass Frequency Outer Race indicate the frequency at which the rolling 

elements pass through a point located on the outer race. This frequency is usually 

excited by the vibrations produced with the Variable compliance of a healthy bearing 

due to the passage of the rolling bodies through the loading zone. Peaks will be much 

more accentuated with the presence of a defect on the outer ring. 
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Ball Pass Frequency Inner Race 

𝐵𝑃𝐹𝐼 = 𝑁
𝑓𝑠
2
(1 +

𝑑

𝐷
𝑐𝑜𝑠𝛼) 

Where N is the number of rolling elements in the bearing, 𝑑 is the diameter of the 

rolling element and 𝐷 the mean diameter of the bearing, 𝑓𝑠 is the frequency of 

rotation of the shaft and 𝛼 is the contact angle of the bearing in the case of an angular 

bearing (for a radial bearing with balls or rollers is equal to 𝛼 =  0°). 

The Ball Pass Frequency Inner Race is a frequency excited especially with the presence 

of a defect on the inner ring of the bearing. Indeed, the passage of the rolling bodies 

on the defect generate an impulse at time laps equal to 1/BPFI when the defect is on 

the loading area. The defect rotates at a frequency equal to the Fundamental Train 

Frequency generating in the frequency domain side bands around the various 

harmonics of the BPFI due to the modulation process, which distance themselves from 

the peaks (BPFI) at the various harmonics of integer multiples of the rotation 

frequency of the shaft 𝑓𝑠. 

 

Ball Spin Frequency 

𝐵𝑆𝐹 =
𝐷

2𝑑
[(1 −

𝑑

𝐷
𝑐𝑜𝑠𝛼)

2

] 

Where N is the number of rolling elements in the bearing, 𝑑 is the diameter of the 

rolling element and 𝐷 the mean diameter of the bearing, 𝑓𝑠 is the frequency of 

rotation of the shaft and 𝛼 is the contact angle of the bearing in the case of an angular 

bearing (for a radial bearing with balls or rollers is equal to 𝛼 =  0°). 

The Ball Spin Frequency indicates the frequency at which each rolling element rotates 

around its centre. The presence of a defect on a rolling element generates an impulse 

when the defect encounter both the outer and the inner ring of the bearing at time 

laps equal to 1/2BSF when the defect is in the loading zone. The rotation of the defect 

with respect to the bearing centre also generate side bands around the various 

harmonics of the BSF due to the modulation process, which distance themselves from 

the peaks (BSF) at the various harmonics of integer multiples of the rotation frequency 

of the shaft 𝑓𝑠. 
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5. Rotor-Bearing model  
 

Predictive maintenance is used to detect anomalies in operations and possible defects 

in the components to address them before they result in failure. Maintenance 

intervention in Predictive Maintenance can be scheduled periodically, monitoring 

mechanical operating parameters during the operating use of the system to identify 

typical signal characteristics of damaged component but not yet faulty; the machine 

can be stopped at a time that is most convenient and the damaged component 

replaced. [58, 59] 

The analysis of the fracture conditions in the bearings is extremely important in 

industrial context to predict the rupture of the bearings and consequentially of the 

machinery [57]. As an early analysis, it is essential to predict and consequently avoid 

damage to the machinery. In this work, the acceleration signal produced by the 

vibration of the rotor-bearing system, is studied in different locations on the shaft, and 

it is used for the detection of defects in bearings. The detection and analysis of faults 

play a vital role in highly reliable operations. Using vibration analysis, the condition of a 

machine can be periodically monitored. In [58] there is an interesting analysis of the 

dynamic behaviour of a real coupled rotor-bearing system. Results show that excessive 

vibrations on the bearings have different sources such as mechanical looseness and 

misalignment. Tiwari et al. [60] studied the behaviours and the dynamic response of a 

balanced rotor supported by ball bearings that present radial internal clearance. Liew 

et al. [61] also introduce the effect of ball centrifugal force, analysing the effect on the 

resulting vibration of the bearing. In [62] are investigated contact force, displacement 

and vibration frequencies of the bearing also considering the gyroscopic moment of 

balls and the waviness of the rings, modelled by using sinusoidal function. Al-Bedoor 

[63] has considered a model with the coupled torsional and lateral vibrations of the 

simple Jeffcott rotor demonstrating the existence of inertial coupling and interaction 

between lateral and torsional vibrations. 
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5.1 Rotor-bearing system 

 

 

Figure 5.1: Rotor bearing system: Elastic rotor with stiffness K, mass m, inertia J, eccentricity ε 

rotating at constant spin speed Ω and supported by the two bearings at points A and B [58]. 

 

In this work the shaft of the rotor is supported at its ends by two, ball or roller 

bearings, that are modelled with the same assumption of Chapter 2. The bearings 

support radial forces, while rotational motion of the shaft ends is left free. In fig. 5.1, 

the shaft is modelled as massless and flexible with length L. The rotor is otherwise 

considered as a rigid disc rotating with a constant angular speed 𝛺 and with mass m. 

The principal moments of inertia of the rigid body will be referred to as the polar 

moment of inertia 𝐽𝑝 about the rotation axis and transversal moment of inertia 𝐽𝑡 

about any axis in the rotation plane. One of the principal axes of inertia coincides, in 

the undeformed position, with Z-axis and its ellipsoid of inertia has axial symmetry 

with respect to the same axis. Furthermore, the rotor is attached to the shaft at a 

distance 𝑎 from the left bearing and the system is assumed axially symmetrical. 

To analyse the motion of this system, it is introduced the inertial system of coordinate 

XYZ and the rotational frame ξηz already described in Chapter 3. Y-direction is parallel 

to the ground and perpendicular to the rotor axle, while X-axle is perpendicular to the 

ground as in fig. 5.2. The imperfection of the shaft considered in this model are the 

static and couple unbalance, while the shaft bow is neglected. It is also considered the 

moment generated by the Gyroscopic effect of the rotor, due to the change in 

direction of its angular speed as already described in Chapter 3. 
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Figure 5.2: Rotor reference frame [64]. 

 

Coupling the model of the rotor with the one of the bearings, the degrees of freedom 

of the system increase. This is caused by the relative movement of the two ends of the 

shaft 𝐴, 𝐵 with respect to the outer ring of the bearing. The shaft ends are indeed fixed 

to the inner rings of the bearings and can move with respect to the outer rings that are 

considered integral with the stator casing fixed to the XYZ-frame. The system has than 

8 degrees of freedom, that include the translation (𝑋, 𝑌) and rotation (𝜑𝑥′, 𝜑𝑦) of the 

centre of the rotor 𝐶, and two degrees of freedom for each shaft end 

(𝑋𝐴, 𝑌𝐴, 𝑋𝐵, 𝑌𝐵) [65]. 

 

5.2 Equations of the system 

Forces generated by the rotor are the same already described in Chapter 3. Moreover, 
it is also considered the weight of the rotor, positive along the X coordinate. Equations 
of a rotor with 4 degrees of freedom, that have been described in Chapter 3 can be 
written for this model introducing the constant weight force 𝑓𝑤 on the right-hand side 
of the equation, acting on the centre C of the disc. The damping force of the rotor is 
considered of the viscous type and depend on the velocity �̇� of the centre of the rotor 
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Figure 5.3: Degree of freedom of the system: on the sides bearing A and B with coordinates 
respectively XA, YA and XB, Yb. In the middle the Centre of the shaft with coordinate X, Y, 

𝜑𝑥′, 𝜑𝑦. 

with respect to the fixed frame. The structural damping caused by the deflection of the 

shaft is neglected. Elastic forces of the shaft depend on the relative displacement 

between the centre of mass 𝐶 and the shaft ends 𝐴 and  𝐵. To obtain the value of the 

force the stiffness matrix 𝐾 must be multiplied by the vector (𝑞 − 𝑞𝑏) that indicates 

the deflection of the shaft [24, 65, 66]. 

𝑀�̈� + (𝐶𝑛 − ⅈ𝛺𝐺)�̇� + 𝐾(𝑞 − 𝑞𝑏) = 𝛺2𝑓𝑒𝑖𝛺𝑡 + 𝑓𝑤 

 

The degree of freedom of the system increase with respect to the 4-dof model because 

of the motion of the shaft ends. The problem has now 8 degrees of freedom as was 

described previously in fig. 5.3:  

• 4 describe the motion of the centre of mass 𝐶: 𝑋, 𝑌, 𝜑𝑥′, 𝜑𝑦 which indicates 

respectively displacements and rotation of the centre of gravity of the shaft. 

• 4 indicate the motion of the shaft ends that are fixed to the inner rings of the 

bearings and can translate with respect to the outer rings. Each inner ring has 2 

degrees of freedom that indicate the translation of the ring perpendicular to 

the axle of the rotor along X and Y direction: 𝑋𝐴, 𝑌𝐴, 𝑋𝐵, 𝑌𝐵. 

To solve the system, it is necessary to find the relation between the coordinate of the 

centre of mass and the shaft ends. Internal forces of bearings depend on the 

displacement and velocity of points A and B with respect to the fixed frame XYZ. 

Bearing forces act to the rotor centre through the shaft which has the following 

stiffness matrix, depending on the Young modulus of the material E: 

𝐾 = [
𝐾11 𝐾12
𝐾21 𝐾22

] 
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Figure 5.3: Scheme of the rotor-bearing system where Fb are the bearing forces and 𝑘𝑒𝑞 are 

the equivalent stiffness of the shaft represented as rigid supported by two springs [65, 68]. 

 

Consequently, the stiffness of the shaft can be seen as two springs, located between 

bearings and points 1 and 2 as in fig. 5.3.  

The internal force of bearings is so transmitted through the shaft with the same 

modulus. Forces of the bearings (𝐹𝑏𝐴𝑥, 𝐹𝑏𝐴𝑦, 𝐹𝑏𝐵𝑥, 𝐹𝑏𝐵𝑦) are directed along direction 

X and Y. They follow the relations of Section 2.4 and depends on the displacement and 

velocity of both the shaft ends (A, B). The equivalent vector of forces written in 

function of the coordinate of the centre of the rotor C is obtained through the transfer 

matrix T with the following operations [69, 70]:  
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Figure 5.4: Bearing forces applied to the rotor ends. 

 

𝐹𝑏𝑥 = 𝐹𝑏1𝑥 + 𝐹𝑏2𝑥         

𝑀𝑏𝑋 = −𝐹𝑏1𝑦𝑎 + 𝐹𝑏2𝑦𝑏 

𝐹𝑏𝑌 = 𝐹𝑏1𝑦 + 𝐹𝑏2𝑦          

𝑀𝑏𝑦 = 𝐹𝑏1𝑥𝑎 − 𝐹𝑏2𝑥𝑏    

 

These equations can be written in matrix form: 

[
 
 
 
𝐹𝑏𝑥
𝑀𝑏𝑦
𝐹𝑏𝑦
𝑀𝑏𝑥]

 
 
 

= 𝑇

[
 
 
 
𝐹𝑏1𝑥
𝐹𝑏1𝑦
𝐹𝑏2𝑥
𝐹𝑏2𝑦]

 
 
 

 

Where T indicates the transfer matrix that it is equal to: 

𝑇 = [

1    0
𝑎    0

1    0
−𝑏    0

0    1
0   −𝑎

   0    1
   0  +𝑏

] 
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It is also possible to write these equations with complex notation to obtain the 

complex force vector 𝑓𝑏. Forces and moments of bearings are written as: 

𝐹𝑏 = 𝐹𝑏𝑋 + ⅈ𝐹𝑏𝑦      

Mb = Mb𝑦 − iMb𝑥′
 

Written in matrix form these equations became: 

𝑓𝑏 = {
𝐹𝑏
𝑀𝑏

} = 𝑇 {
𝐹𝑏1
𝐹𝑏2

} 

Where the transfer matrix in complex notation became: 

𝑇 = [
1 1
𝑎 −𝑏

] 

The external points 1 and 2 shown in fig. 5.3 are related to the centre of the rotor 

through the same transfer matrix already described and follows these formulas: 

{
 

 
𝑋1 = 𝑋𝐶 + 𝜑𝑦𝑎

𝑌1 = 𝑌𝐶 − 𝜑𝑥′𝑎
𝑋2 = 𝑋𝐶 − 𝜑𝑦𝑏

𝑌2 = 𝑌𝐶 + 𝜑𝑥′𝑏

 

Introducing the two complex vectors: 

{
𝑟1 = 𝑋1 + ⅈ𝑌1
𝑟2 = 𝑋2 + ⅈ𝑌2

 

It is possible to write the relation between points 1 and 2 in a compact form 

introducing the transpose of the transfer matrix T: 

{
𝑟1
𝑟2
} = 𝑇𝑇 {

𝑟

ϕ
} 

Where T indicates the transfer matrix and the vectors r and 𝜙 are the same already 

described in Chapter 3: 

{
𝑟 = 𝑋 + ⅈ𝑌      
ϕ = φ𝑦 − iφ𝑥′

 

With the introduction of the vector 𝑓𝑏, which indicates the forces of the bearing acting 

on the point C of the shaft, it is possible to write 4 additional equations that link the 

displacement of the bearings to the one of the centres of mass. Bearings forces 

depend on the displacements and velocity of the inner rings with respect to the fixed 

reference frame and they are transmitted through the shaft with the same modulus. In 

fig. 5.4 the scheme of the end of the shaft is represented with the displacement along 

X coordinate. 𝑋𝐴 indicates the coordinate of the centre of the inner ring of the bearing  
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Figure 5.5: Scheme of the shaft end with the equivalent stiffness 𝐾𝐴𝑒𝑞 and the bearing force 

𝐹𝑏𝐴𝑋 along X direction [68].  

 

that is fixed to the shaft end. Displacement (𝑋1 − 𝑋𝐴) instead indicates the 

deformation of the shaft represented as a spring with stiffness 𝐾𝐴𝑒𝑞. 

(𝑋1 − 𝑋𝐴) 𝑘𝐴𝑒𝑞 = 𝐹𝑏𝐴𝑋 

(𝑌1 − 𝑌𝐴) 𝑘𝐴𝑒𝑞 = 𝐹𝑏𝐴𝑌 

(𝑋2 − 𝑋𝐵) 𝑘𝐵𝑒𝑞 = 𝐹𝑏𝐵𝑋 

(𝑌2 − 𝑌𝐵) 𝑘𝐵𝑒𝑞 = 𝐹𝑏𝐵𝑌 

 
Where values of forces 𝐹𝑏 are obtained from displacement and velocity of points A 

and B, depending also on the configuration of the rolling elements inside the bearings 

as explained in Chapter 2.4. Values of 𝑘𝑒𝑞 are obtained with the following formula 

from matrix 𝐾: 
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{
 

 𝐾𝐴𝑒𝑞 = 𝐾(2,2)
1

𝑎2 − 𝑏2
− 𝐾(1,1)

𝑏2

𝑎2 − 𝑏2 

𝐾𝐵𝑒𝑞 = 𝐾(2,2)
1

𝑏2 − 𝑎2
− 𝐾(1,1)

𝑎2

𝑏2 − 𝑎2 

 

 

The 4 equations that link the displacement of the bearings to the one of the centre of 

mass, written in matrix form and in complex coordinate with respect to the centre of 

mass, became: 

𝐾(𝑞 − 𝑞𝑏) = 𝑓𝑏 

These equations, with the four equations of the rotor are so enough to solve the 

problem: 

{
𝑀�̈� + (𝐶𝑛 − ⅈ𝛺𝐺)�̇� + 𝐾(𝑞 − 𝑞𝑏) = 𝛺2𝑓𝑒𝑖𝛺𝑡 + 𝑓𝑤            
𝐾(𝑞 − 𝑞𝑏) = 𝑓𝑏                                                                            

 

 

5.3 Implementation of the numerical model in  

MATLAB code 

The equations of motions of the system are then solved through a MATLAB code. The 

code is divided in different scripts and functions that are recalled from the principal 

script “Rotor_bearing_model.m”. The code is divided in the following scripts and 

reported in fig. 5.6: 

 

“Data” Script:   

It contains all the inputs of the model. Regarding each bearing, the inputs are the same 

of the thesis of Giorio [2] and are summarized in tab. 5.1. It is introduced the possibility 

to change the initial configuration of the rolling elements inside the two bearings, as 

will be described in Chapter 6. In the script are present also the inputs containing the 

information about the geometry of the rotor (summarized in tab. 5.2) and the 

parameters to start the numerical integration, where the time step is chosen in order 

to allow each rolling bodies to lie inside the damaged area at least for one time step 

(summarized in tab. 5.3).  

Inside this script it is possible to implement the size of defects present in the different 

component of the system: 
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Figure 5.6: Flow chart of the implemented model. 

 

- Bearing rings: both for bearing A and bearing B defects can be introduced in 

the model as a raw vector. The parameters that can be modified are the depth 

𝐻, the initial angle 𝜃𝑖𝑛𝑖𝑡, the form factor 𝑓𝑓 for each of the defects. There is 

than to choose the respective raceway. 

 

- Bearing rolling element: both for bearing A and bearing B, defects can be 

introduced in the model as a raw vector. The parameters that can be modified 

are the depth 𝐻, the rolling element and the initial angle 𝜃𝑖𝑛𝑖𝑡. 

 

- Rotor: it is possible to choose the value of the eccentricity ε and the angle error 

χ of the rotor. 
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Table 5.1: Bearings Data 

Bearings A and B 

Inner ring diameter 𝑑1 32.1 mm 

Outer ring diameter 𝐷2 54.67 mm 

Bore diameter d 25 mm 

Type of rolling element Sphere 

Length of rolling elements (if cylinder) / 

Ratio between race and sphere diameters 1.08 

Diameter of rolling element 𝑑𝑟 11.274 mm 

Number of rolling element N 7 

Contact angle (assumed) 0° 

Clearance g 22.57 × 10−3 mm 

Poisson coeff. ν 0.3 

Young modulus E 2 × 105 MPa 

Linear stiffness 𝐾𝑙𝑖𝑛 105 𝑁 mm 

Local damping coeff. 𝑐𝑏 𝐾𝑙𝑖𝑛 × 10
−5 

Initial configuration bearing A 25.7 deg 

Initial configuration bearing B 0 deg 

  

 

Table 5.2: Rotor data 

Rotor 

Mass m 5 × 10−3 ton 

Polar moment of inertia 𝐽𝑝 2 × 103 ton mm2 

transversal moment of inertia 𝐽𝑡 1.2 × 103 ton mm2 

Length L 0.8 × 10^3 mm 

Distance between disc and left bearing  0.4 × 10^3 mm 

Diameter D 25 mm 

Viscous damping coeff. 𝑐𝑛 
200 × 10−3  

Ns

mm
 

Rotor spin speed Ω  1000 RPM 

Young modulus E 2 × 105 

Weight force along X dir. W 100 N 
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Table 5.3: Integration input 

Integration 

Initial time 𝑡1 0 s 

Final time 𝑡2 2 s 

Angular increment 𝑑𝜃 0.05\0.1 deg 

Cage rotation before stationary signal 1 

 

Table 5.3: Initial conditions 

Initial conditions    

𝑋0 = 𝑔/2 �̇�0 = 0 𝑋𝐴 = 𝑔/2 �̇�𝐴 = 0 

 𝜑𝑦0
= 0  �̇�𝑦0

= 0 𝑌𝐴 = 0 �̇�𝐴 = 0 

𝑌0 = 0 �̇�0 = 0 𝑋𝐵 = 𝑔/2 �̇�𝐵 = 0 

𝜑𝑥′0 = 0 �̇�𝑥′0 = 0 𝑌𝐵 = 0 �̇�𝐵 = 0 

 

Furthermore, the input data for the analysis of the signal are the name of the variable 

to analyse, the maximum frequency to be represented in the frequency spectra, the 

width of the window for the envelope detector and the band of the band-pass filter. 

Initializations scripts: 

After the definition of data, the program evaluates the contact parameters depending 

on the type of rolling elements and define the lengths of the selected defects following 

the theory described in Chapter 2. From the input it generates all the matrices needed 

to write the equations of the system previously described: the mass matrix M, the 

damping matrix D, the stiffness matrix K, the gyroscopic matrix G and the unbalance 

force vector 𝑓𝑒. 

“Implementation” script: 

The integration of the differential equations of the rotor is performed through the 

fourth order Runge-Kutta method with respect to point C (fig. 5.6). The equations are 

written in matrix form adopting the complex notation already described. As a first step 

matrix A is defined as [71, 72]: 

𝐴 = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
] 

Where 𝐼 indicates the identity matrix. 
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Then the 𝑍0 vector is introduced defined as: 

𝑍0 = {
𝑞𝑡1
𝑞𝑡1̇
} 

Where 𝑞𝑡1 is the complex vector already defined in Chapter 3 at the initial time 𝑡1. 

The external forces evaluated at the initial time 𝑡1 are concentrated in the 𝑃0 vector 

that is defined as the sum of the external forces 𝐹𝑒 , representing the weight force and 

the unbalance force in the model, and the nonlinear forces which in the model is 

represented by the bearing force 𝑓𝑏: 

𝑃0(𝑧0) = {
0

𝑀−1 (𝐹𝐸,0 + 𝐹𝑏,0(𝑍0)) 
} 

Four coefficients 𝐾𝑖 are obtained from these matrices, following the scheme in fig. 5.7 

and are adopted to find the displacement and velocity vector 𝑞, �̇� at the next time step 

𝑡 = 𝑡1 + 𝑑𝑡. It is then possible to evaluate vector 𝑍1 at time (𝑡1 + 𝑑𝑡) repeating the 

cycle until the final time 𝑡 = 𝑡2 defined in the input. 

 

 

Figure 5.7: Fourth order Runge-Kutta method.  



5. Rotor-Bearing Model 
 

 
 57    
 

The bearing force 𝐹𝑏 is obtained from the function called “Bearing_force.m” that 

presents as inputs the displacement and the velocity of the inner ring of a bearing and 

the time. The output is the force due to the deformation of the rolling elements, along 

X and Y directions. The values of the displacements of points A and B can be found 

iteratively following the flowchart in fig. 5.8: knowing the coordinate of point C, 

position 1 and 2 are obtained through the transfer matrix T. Than the value of the 

bearing force is obtained through the “fsolve” MATLAB function which numerically 

solve the following equations: 

(𝑋1 − 𝑋𝐴) 𝑘𝐴𝑒𝑞 − 𝐹𝑏𝐴𝑋 = 0 

(𝑌1 − 𝑌𝐴) 𝑘𝐴𝑒𝑞 − 𝐹𝑏𝐴𝑌 = 0 

(𝑋2 − 𝑋𝐵) 𝑘𝐵𝑒𝑞 − 𝐹𝑏𝐵𝑋 = 0 

(𝑌2 − 𝑌𝐵) 𝑘𝐵𝑒𝑞 − 𝐹𝑏𝐵𝑌 = 0 

 

The “Bearing_force” function evaluate the reaction forces of bearings due to the 

deformation and velocity deformation of the rolling elements. It considers the 

presence of defects inside bearings which can be defined in the “Data” script. It follows 

the flow chart in fig. 5.9. 

 

 

Figure 5.8: Evaluation of the Bearing force from the coordinate of the centre C. 
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Figure 5.9: Bearing function of the code. 

 

“Plot” script: 

The initial transient equal to a multiple of the cage rotation, which can be chosen by 

the user as input data for the analysis is eliminated. Then the results in time domain 

are plotted: the displacement, trajectory, velocity, and acceleration of the rotor in the 

centre C and at its ends A, B. 

“Analysis” script: 

The script that performs the signal analysis calculates the statistical parameters in the 

domain of time useful for the analysis, evaluates the characteristic frequencies of the 

bearings, obtains the spectrum of the amplitude of the raw vibration signal and the 

spectrum in frequency of the amplitude of the envelope of the vibration signal chosen 

in the “Data” script for the analysis. 
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6. Numerical simulation and analysis 

of the system 
 

The numerical simulations of the model are performed in the following cases: 

• Model with healthy bearings. 

• Model with a bearing damaged in the internal ring. 

• Model with a bearing damaged in the external ring. 

• Model with damaged rolling element of the bearing. 

• Model with eccentricity on the rotor. 

The considered bearings are radial ball bearings SKF 6305, with the input data selected 

from the catalogue [17]. The data of the rotor are the same described in Chapter 5 as 

all the other input of the simulations. The output of the code gives the displacement, 

velocity, and acceleration of the shaft in point C (translations and rotations) and of the 

external points of the shaft A, B (translations). The values of acceleration are than 

analysed after a complete rotation of the bearing cage, to eliminate the initial 

transient. The output of the analysis are the frequency spectrum, the envelope, and 

the frequency spectrum of the envelope of the vibration signal, and it is performed for 

the acceleration signal of all the three points A, B, C of the rotor because the 

acquisition of the signals in real machines is usually performed through accelerometer. 

 

6.1 Healthy bearings 

Firstly, the rotor is considered rigid, imposing a high value of the young’s modulus 𝐸. 

The rotor’s eccentricity is considered equal to 0 and the centre of mass is in the middle 

of the shaft length. Furthermore, balls position of both the bearings, at the initial 

condition are considered equal. This condition is not general but can be compared to a 

single bearing model that appears in many works in literature. Results in term of 

acceleration of centre of mass C along X and Y directions are shown in fig. 6.1. 
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Figure 6.1: Acceleration of point C along X and Y direction 

 

Accelerations of points A and B are the same of point C both in X and Y directions 

while the shaft never rotates along  𝜙𝑥 and 𝜙𝑦. It is clearly visible in fig. 6.1 that in case 

of non-defective bearing it is in any case present one vibration due to the periodic 

variation of the contact stiffness between tracks and rolling elements. This 

phenomenon is called Varying Compliance Vibration and it is confirmed also in other 

works in literature [73]. In the X direction, the acceleration signal presents a peak value 

equal to 𝑃𝑉 =  1857
𝑚𝑚

𝑠2
 that is quite near to 𝑅𝑀𝑆 =  604

mm

s2
  confirming the 

integrity of the bearing. The two signals (acceleration on X and Y) are comparable in 

terms of range of amplitude and therefore can be used to obtain the survey features 

to be used. The one in the direction of the applied load (X direction) is used as 

reference vibration signal: 

with the application of the FFT to the raw signal it is obtained the frequency spectrum 

of the acceleration of C along X coordinate fig. 6.2. 
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Figure 6.2: Frequency spectrum of the acceleration of C along X coordinate  

 

With this type of frequency analysis harmonics are excited at higher frequencies with 

respect to the characteristic frequencies of the bearing, which makes this type of 

display not particularly suitable for recognition of defects within rolling bearings. It is 

so adopted the acceleration envelope analysis in direction X whose proceedings were 

presented in Chapter 3. In fig 6.3 it is shown the acceleration signal in X direction after 

being filtered by applying a band-pass filter with: 

 

[𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥  ] = [500,10000 ] Hz 

 

according to the indications reported in the literature in [49] for the subsequent 

extraction of the signal envelope.  

The envelope of the signal is shown in red, obtained by means of the Hilbert 

transform, following the application of a generated FIR filter starting from an ideal 

“brick-wall” filter through a Kaiser window of amplitude 200 Hz and shape parameter 

β= 8. 
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Figure 6.3: Acceleration of C filtered by band-pass filter in (blue) and envelop in (red). 

 

The frequency spectrum of the envelope of the vibration signal, fig. 6.4, is useful for 

monitoring through the technique of the EA, in which the average value of the signal is 

subtracted to eliminate the amplitude of oscillation corresponding to a zero frequency. 

In fig. 6.4 is shown how the peak of greater amplitude correspond to the frequency of 

43.3676 Hz. This value is quite equal to the 𝐵𝑃𝐹𝑂 = 43,1749 Hz that indicates the 

frequency at which the rolling elements go through the loading area.   It differs of 

0.1157 Hz that is a value lower than the resolution of the frequency spectrum used: 

0.939 Hz. 

This means that the peak lies within the uncertainty interval. The harmonics of higher 

order are also present in the results with smaller amplitude. In the following chapters 

signals are analysed with the same procedure and only the frequency spectrum of the 

envelope of the vibration signal is shown because it gives much information about the 

system condition. 

 



6. Numerical simulation and analysis of the system 
 

 
 63    
 

 

Figure 6.4: Frequency spectrum of the envelope of the vibration signal (accel. along X). 

 

6.1.1 Case with rigid shaft 

To produce a more realistic simulation, the initial positions of balls, in the two bearings 

are considered different as in fig. 6.5.  

 

 

Figure 6.5: Initial configuration of a bearing with 𝜃 = 0 (left) and with variable 𝜃 (right) [49]. 
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In particular, in the following simulations, at time 𝑡 = 0 in bearing B at the initial time 

there is always a ball at the angle theta 𝜃 = 0 from the vertical position as in fig. 6.5 

(left). The initial position of balls in bearing A is chosen in different configurations fig. 

6.5 (right). The angle ∆𝜃 between two balls of the selected bearings is obtained as:  

∆𝜃 =
360°

7
= 51.4° 

Where 7 is the number of balls in the bearing. 

The considered initial angles 𝜃𝑖𝑛𝑖𝑡  for bearing A are 𝜃𝑖𝑛𝑖𝑡,𝐴 = 
∆𝜃

4
= 12.85 deg and 

𝜃𝑖𝑛𝑖𝑡,𝐴 =
∆𝜃

2
= 25.7 deg The resultant signal of the acceleration of the three points A, B 

and C have the same order of magnitude in both cases, so it is reported only the signal 

of C: 

 

 

 

 

 

Figure 6.6: Acceleration of point C along the four coordinates X, Y, PhiY and PhiX with initial 

angle equal to 𝜃𝑖𝑛𝑖𝑡,𝐴 =
∆𝜃

4
= 12.85 𝑑𝑒𝑔. 
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Figure 6.7: Acceleration of point C along the four coordinates X, Y, PhiY and PhiX with initial 
angle equal to 𝜃𝑖𝑛𝑖𝑡,𝐴 = 25.7 𝑑𝑒𝑔. 

In fig. 6.6 and fig. 6.7 it is also shown the value of angular acceleration that in the 

condition of 𝜃𝑖𝑛𝑖𝑡,𝐴 = 0 is equal to 0, while with 𝜃𝑖𝑛𝑖𝑡,𝐴 = 12.85 deg and 𝜃𝑖𝑛𝑖𝑡,𝐴 =

25.7 deg increases. The Peak Value of the acceleration signal along X, instead 

decreases from 3403.9 
mm

s2
  with 𝜃𝑖𝑛𝑖𝑡,𝐴 = 0, to 1856.5 

mm

s2
  with 𝜃𝑖𝑛𝑖𝑡,𝐴 = 12.85 deg 

until 648.9111 
mm

s2
  with 𝜃𝑖𝑛𝑖𝑡,𝐴 = 25.7 deg.  

In fig 6.8 is represented the frequency spectrum of the envelope of the vibration signal 

of the acceleration of point C along X, obtained with the same procedure of Chapter 

5.1. It is visible that the peak of greater amplitude corresponds to frequencies of 

2𝐵𝑃𝐹𝑂 = 86,3498 Hz. The other peaks have lower amplitude values and are at 

frequencies multiple of BPFO. Furthermore, the amplitude of each peak is decreased 

from the case of fig. 6.4. When the rotor is supported by the two bearings with the 

same balls position, their signal is equal, with the same sign and is summed up 

obtaining an equivalent signal like that of a single bearing already studied in work [2]. 

present one vibration due to the periodic variation of the contact stiffness between 

tracks and rolling elements. These peaks demonstrate the presence of the so-called 



6. Numerical simulation and analysis of the system 
 

 
 66    
 

Varying Compliance Vibration that is a vibration due to the periodic variation of the 

contact stiffness between races and rolling elements which is present also in the case 

of a healthy bearing. The same considerations also apply in the case with the 

frequency spectrum of the envelope of the vibration signal of points A and B.  

 

 

Figure 6.8: Frequency spectrum of the envelope of the vibration signal of the acceleration of 
point C along X with 𝜃𝑖𝑛𝑖𝑡,𝐴 = 12.85 𝑑𝑒𝑔    

 

 

Figure 6.9: Frequency spectrum of the envelope of the vibration signal of the acceleration of 
point C along X with 𝜃𝑖𝑛𝑖𝑡,𝐴 = 25.7 𝑑𝑒𝑔 
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6.1.2 Case with elastic shaft. 

The stiffness of the shaft is now considered assuming a young modulus equal to 𝐸 =

25 MPa . To obtain a more realistic simulation the balls position in the two bearings 

differs of 
∆𝜃

2
= 25.7 deg.  The rotor is still considered balanced with null eccentricity 

and symmetric with respect to the two bearings. acceleration’s signal of points A, B 

and C are analysed along X direction because it gives more information about the 

presence of defects. In fig. 6.10 are shown the result of the three accelerations and it is 

possible to observe that with respect to the case with the rigid shaft, signal of point C 

has lower amplitude with a lower Peak Value 𝑃𝑉 = 291.4 
mm

s2
 while points A and B 

present higher peaks of accelerations. In this configuration the shaft act as a spring 

that attenuate vibrations coming from bearings as it can be observed also looking at 

the trajectory, without the initial transient, of the three points in fig 6.11.  

 

 

 

 

Figure 6.10: Acceleration of points C, A and B along X direction of an elastic shaft with young 

modulus 𝐸 = 25 𝑀𝑃𝑎. 
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Figure 6.11: Trajectory of points A, B and C of an elastic shaft with young modulus 𝐸 =

25 𝑀𝑃𝑎. 

 

Also, from the frequency spectrum of the envelope of the vibration signals fig. 6.12 it is 

observable that the amplitude of the peaks with respect to point C are lower than 

point B. The spectrum of point A is not reported because it has a behaviour like point 

B. Furthermore, peaks in both signals are in correspondence to frequencies values that 

are multiple of 𝐵𝑃𝐹𝑂 = 43.17Hz equal to  𝑛 × 𝐵𝑃𝐹𝑂 (𝑤ⅈ𝑡ℎ 𝑛 = 1, 2, … ) confirming 

the presence of Varying Compliance Vibration as in the case of rigid shaft.  
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Figure 6.12: Frequency spectra of the envelope of the vibration signals of the acceleration of 

points B and C along X of an elastic shaft with young modulus 𝐸 = 25 𝑀𝑃𝑎. 
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6.2 Bearing damaged in the external ring. 

Bearing A is now considered with a localized defect on the outer race, of maximum 

depth 𝐻 =  0.1 mm with the form factor 𝑓𝑓=1 and positioned at 𝜃𝑖𝑛𝑖𝑡 = 0°. The 

position of the balls in the two bearings is always considered different of the angle 
∆𝜃

2
= 25.7 deg and are analysed the case of rigid and elastic shaft.  

 

6.2.1 Case with rigid shaft. 

In fig 6.13 is shown the acceleration signal with the defect located in bearing A in 

the case of a rigid rotor: 

 

 

Figure 6.13:  Acceleration of point A and B along X direction with a defect on the external ring.  
(Rotor length 𝐿 = 0.2 × 103𝑚𝑚) 

It is possible to observe that the peaks of the acceleration signal are a bit lower in 

bearing B if the defect is on the outer ring of bearing A. To underline this behaviour, it 

is decided to increase the length of the rotor to 𝐿 = 0.8 × 103mm. 

Compared to the case of a healthy bearing, the acceleration along Y is practically 

unchanged. Along X direction instead it is possible to observe the periodic peaks 

caused by the defect (fig. 6.14). The peak value is higher on bearing A with the value 

𝑃𝑉𝐴 = 13360
mm

s2
 that is about 10 times higher than the 𝑅𝑀𝑆 𝑣𝑎𝑙𝑢𝑒 =  1437.1

mm

s
 

indicating an impulsive nature of the time-domain signal at work the presence of the 

localized defect. It decreases moving away from it: 𝑃𝑉𝐶 = 7.0201 × 10
3 mm

s2
  and 

𝑃𝑉𝐵 = 2.0937 × 10
3 mm

s2
. The defect localized in bearing A induce a shock in the  
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Figure 6.14:  Acceleration of point A, C and B along X direction with a defect on the external 
ring.  (Rotor length 𝐿 = 0.8 × 103𝑚𝑚) 

 

system that moves from it to the other end of the shaft decreasing its intensity. This 

behaviour can be shown also from the spectrum of the envelope of the vibration signal 

(fig 6.15). Peaks on point A have higher amplitude than on points C and B confirming 

the presence of a defect on the bearing in that position. The effect is however visible 

on the spectra of all the three points considering that the peaks present amplitude 

evidently higher than the case of a system with both healthy bearings. A localized 

defect in the outer race of the bearing generates pulses in the acceleration’s signals 

with a frequency equal to the passing frequency of rolling elements on the outer race 

The excited frequencies are multiple of the BPFO=43.1749 Hz and the amplitude values 

are higher than the case of not defected bearing on chapter 6.1.2. Also, the amplitude 

of the successive harmonics is increased, and the amplitude decay is delayed, 

indicating a greater impulsive nature of the signal in the time domain.  
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Figure 6.15: Frequency spectra of the envelope of the vibration signals of the acceleration of 

point A, C and B along X direction with a defect on the external ring of bearing A. 



6. Numerical simulation and analysis of the system 
 

 
 73    
 

6.1.2 Case with elastic shaft 

The stiffness of the shaft is now considered assuming a young modulus equal to 𝐸 =

25 MPa. To obtain a more realistic simulation the balls position in the two bearings 

differs of 
∆𝜃

2
= 25.7 deg. The rotor is still considered balanced with null eccentricity 

and symmetric with respect to the two bearings. Acceleration’s signal of points A, B 

and C are analysed along X direction because it gives more information about the 

presence of defects. In fig. 6.16 are shown the three acceleration signals of points A, C 

and B and it is possible to observe that peaks on bearing A, which defected, have a 

greater amplitude than the case of healthy bearing. As in the case of rigid rotor bearing 

A induce a shock in the system that propagate until bearing B each time that a sphere 

enters in the defected area. Compared to the rigid rotor bearing B is hardly affected by 

each shock in this configuration because the elasticity of the shaft absorbs the impulse 

generated by the defect and decrease its effect on the other end of the rotor B. So, to 

also underline the effect on bearing B the length of the shaft is reduced to 𝐿 =

0.1 × 103mm as in fig. 6.17 and it is possible to observe that decreasing the length of 

the rotor, despite the elasticity of the shaft, the effect of the defect is visible also on 

point B. In this configuration it is evaluated the frequency spectrum of the envelope of 

the vibration signal for each of the three points in fig. 6.18. It is possible to observe 

peaks at the same frequencies of the case with rigid shaft equal to 𝑛 × 𝐵𝑃𝐹𝑂 (with 

n=1, 2, …) with decreasing amplitude from point A to point C until point B.  

 

 

Figure 6.16:  Acceleration of point A, C and B along X direction with a defect on the external 
ring.  (Rotor length 𝐿 = 0.2 × 103𝑚𝑚). 
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Figure 6.17:  Acceleration of points A, C and B along X direction with a defect on the outer ring.  
(Rotor length 𝐿 = 0.1 × 103𝑚𝑚). 
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Figure 6.18: Frequency spectra of the envelope of the vibration signals of the acceleration of 

points A, C and B along X direction with a defect on the outer ring of bearing A. 

 

6.3 Bearing damaged in the inner ring 

Bearing A is now considered with a localized defect on the inner race, of maximum 

depth 𝐻 =  0.1 mm with the form factor 𝑓𝑓=1 and positioned at 𝜃𝑖𝑛𝑖𝑡 = 0°. The 

position of the balls in the two bearings is always considered different of the angle 
∆𝜃

2
= 25.7 deg and are analysed the case of rigid and elastic shaft.   
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6.3.1 Case with rigid shaft 

In fig 6.19 is shown the acceleration signal with the defect located in bearing A in 

the case of a rigid rotor considering the length of the rotor equal to 𝐿 =

0.8 × 103mm to underline the differences between the results.  

Compared to the case of a healthy bearing, the acceleration along Y doesn’t change 

relevantly. The amplitude of the acceleration peaks along the X direction, is modulated 

in amplitude because the inner race rotates integrally with the shaft, and consequently 

the defect-rolling element interactions occur in different positions with respect to the 

load area. Peak value is higher on bearing A with the value 𝑃𝑉𝐴 = 13627
mm

s2
. It 

decreases moving away from it: 𝑃𝑉𝐶 = 8425.6
mm

s2
  and 𝑃𝑉𝐵 = 4065.6

mm

s2
. The defect 

localized in bearing A induce a shock in the system that move from it to the other end 

of the shaft decreasing its intensity. This can be shown also from the spectrum of the 

envelope of the vibration signal in fig 6.20 where the excited frequencies are more 

than the case with the defect on the outer ring. The interaction between a rolling 

element and the defected area generates peaks on the spectra in correspondence of 

the pass frequency of the rolling elements with respect to a determined point of the 

inner race BPFI. The defect rotates with the same frequency of the shaft fs and the 

resulting vibration signal is modulated in amplitude generating side bands around the 

various harmonics of the BPFI, distanced from the peaks of integer multiples of the 

rotation frequency of the shaft fs. In the spectrum regarding point A the highest peak 

corresponds to the frequency equal to the rotational frequency of the shaft 𝑓𝑠 =

16.6 Hz which is also the frequency of the inner ring of the bearing with the defect. 

Peaks are present also at values of frequencies multiple of the 𝑓𝑠 with decreasing 

amplitude. The second highest peak correspond to the 𝐵𝑃𝐹𝐼 = 73.49 Hz and the 

lateral band are also present with values of BPFI + fs = 90.16 Hz, BPFI − fs = 56.82 Hz 

and with decreasing amplitude BPFI - 2fs, BPFI + 2fs. In point C are present the same 

peaks all with lower amplitude. Point B, instead, present as higher peak the 

BPFO=43.17 Hz, but are also evident all the peaks described for point A with amplitude 

lower than the two points A and C. In this configuration It is so possible to detect the 

presence of the defect also monitoring the other end of the shaft. 
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Figure 6.19: Acceleration of point A, C and B along X direction with a defect on the inner ring of 
bearing A.  (Rotor length 𝐿 = 0.8 × 103𝑚𝑚). 
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Figure 6.20: Frequency spectra of the envelope of the vibration signals of the acceleration of 

points A, C and B along X with a defect on the inner ring of bearing A.  

 

6.3.2 Case with elastic shaft 

The stiffness of the shaft is now considered assuming a young modulus equal to 𝐸 =

25 MPa. To obtain a more realistic simulation the balls position in the two bearings 

differs of 
∆𝜃

2
= 25.7 deg. The rotor is still considered balanced with null eccentricity 

and symmetric with respect to the two bearings. acceleration’s signal of points A, B 

and C are analysed along X direction because it gives more information about the 

presence of defects. The length of the shaft is considered as in the case of defected 

outer ring 𝐿 = 0.1 × 103mm to underline the effect of the defect on all the three 

points. In fig. 6.21 are shown the three acceleration signals of points A, C and B. Also, 

in this case, the presence of the defect creates a shock in the system that propagate 
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until bearing B each time that the inner ring enters in the defected area in contact with 

a sphere. As for the rigid case the amplitude of the acceleration peaks along the X 

direction, is modulated in amplitude because the inner race rotates with the shaft, and 

consequently the defect-rolling element interactions occur in different positions with 

respect to the load area.  

 

 

 

 

Figure 6.21:  Acceleration of point A, C and B along X direction with a defect on the internal 
ring.  (Rotor length 𝐿 = 0.1 × 103𝑚𝑚). 

In fig. 6.22 are represented the frequency spectra of the envelope of the vibration 

signals of the acceleration of points A, C and B along X direction. Point A present many 

peaks at high amplitude confirming the presence of a localized defect. The fist peak on 

the left correspond to the shaft frequency equal to 𝑓𝑠 = 16.6 Hz which is also the 

rotational frequency of the defect. They are present also the frequency multiple of the 

shaft frequency equal to 𝑛 × 𝑓𝑠 with (n=1, 2, …) with decreasing amplitude. The other 

two peaks on the left that have similar amplitude correspond to 𝐵𝑃𝐹𝐼 = 73.49 Hz and 

his lateral band 𝐵𝑃𝐹𝐼 −  𝑓𝑠 =  56.82 Hz. They are also present with lower amplitude, 

the peaks with frequencies equal to 𝐵𝑃𝐹𝐼 +  𝑓𝑠 =  90.16 Hz and BPFI - 2fs, BPFI + 

2fs. In points C and B, the highest peak corresponds to the shaft frequency 𝑓𝑠 =

16.6 Hz. They are than present the same peaks of point A all with lower amplitude. 

Furthermore, on point B, peaks at frequencies multiple than 𝐵𝑃𝐹𝑂 became relevant 

with respect to the other peaks, but it is also possible to detect the presence of the 

characteristic frequency of the defect. 
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Figure 6.22: Frequency spectra of the envelope of the vibration signals of the acceleration of 

points A, C and B along X direction with a defect on the internal ring of bearing A. 
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6.4 Bearing with damaged rolling element 

Bearing A is now considered with a localized defect on the first rolling element from 

the vertical line, of maximum depth 𝐻 =  0.05 mm with the form factor equal to 1. 

The position of the balls in the two bearings is always considered different of the angle 
∆𝜃

2
= 25.7 deg and are analysed the case of rigid and elastic shaft.   

 

6.4.1 Case with rigid shaft 

In fig. 6.23. is shown the acceleration signal with the defect located in the rolling 

element of bearing A in the case of a rigid rotor considering the length of the rotor 

equal to 𝐿 = 0.8 × 103mm to underline the differences between the results.  

In this condition the amplitude of the acceleration peaks in the direction of the 

external load is modulated, as the interaction between the defect on the rolling 

element and each of the two raceways occurs in different angular positions due to the 

precession of the balls around the axis of rotation of the shaft. Peaks in the direction of 

the load X are of greater amplitude than those in the perpendicular direction. Peak 

value is higher on bearing A with the value 𝑃𝑉𝐴 = 7905.2
mm

s2
. It decreases moving 

away from it: 𝑃𝑉𝐶 = 5312.8
mm

s2
  and  𝑃𝑉𝐵 = 2814.8 

mm

s2
 underlining also in this 

configuration that the defect localized in bearing A induce a shock in the system that 

move from it to the other end of the shaft decreasing its intensity. In the spectrum of 

the envelope of the vibration signal in fig 6.24 it is possible to observe that for the 

three accelerations signals the highest peaks correspond to the BPFO or values 

multiple of it (𝑛 × 𝐵𝑃𝐹𝑂 with n= 1, 2 …). They are also present peaks at frequency 

equal to 2𝑛 × 𝐵𝑆𝐹 (with n=1 ,2 …) indicating the presence of defects in rolling 

elements. Indeed, the BSF indicates the Ball Spin Frequency and represents the 

rotation frequency of each rolling element with respect to its axis and so also of the 

defect. Each ball rotation the defect interacts with the outer and inner race generating 

an impulse each 2 × 𝐵𝑆𝐹 when the defect is in the loaded area of the bearing. 

Furthermore, the rolling element rotate around the bearing axis with the same speed 

of the cage. FTF indicate the rotation frequency of the cage and so of the defect in the 

loaded area, with the effect of modulating the vibration signal. The lateral bands of the 

peaks, present in the in the spectra in the domain of the frequency of the vibration 

signal, are so visible with values integers of the cage rotation frequency FTF. They are 

evident in the spectra of bearing A and bearing C while they have much lower 

amplitude in the spectra of bearing B because of the distance from the defect. 
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Figure 6.23: Acceleration of point A, C and B along X direction with a defect on a rolling 
element.  (Rotor length 𝐿 = 0.8 × 103𝑚𝑚). 
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Figure 6.24: Frequency spectra of the envelope of the vibration signals of the acceleration of 

points A, C and B along X with a defect on a rolling element of bearing A. 

 

6.4.2 Case with elastic shaft 

The stiffness of the shaft is now considered assuming a young modulus equal to 𝐸 =

25 MPa. To obtain a more realistic simulation the balls position in the two bearings 

differs of 
∆𝜃

2
= 25.7 deg.  The rotor is still considered balanced with null eccentricity 

and symmetric with respect to the two bearings. acceleration’s signal of points A, B 

and C are analysed along X direction because it gives more information about the 

presence of defects. The length of the shaft is considered as in the case of defected 

rings 𝐿 = 0.1 × 103mm. In fig. 6.25 are shown the three acceleration signals of points 

A, C and B. As for the rigid case the amplitude of the acceleration peaks along the X 

direction, is modulated in amplitude as the interaction between the defect on the 

rolling element and each of the two raceways occurs in different angular positions due 
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to the precession of the balls around the axis of rotation of the shaft. The defect on the 

ball of bearing A produces a shock in the system that move from it to the other end of 

the shaft decreasing its intensity as it is possible to observe both in the acceleration 

signal and in the frequency spectra of the envelope of the vibration signals of fig. 6.26. 

Defect affects a lot the shape of the spectrum of points A and C where present peaks 

are at frequency equal to 2𝑛 × 𝐵𝑆𝐹 (with n=1 ,2 …) as in the case of rigid rotor with 

the respective lateral band with values integers of the cage rotation frequency FTF. In 

point B instead, it is possible to observe peaks at 2𝑛 × 𝐵𝑆𝐹 (with n=1 ,2 …) with 

amplitude much decreased with respect to point A, and also peaks corresponding to 

the BPFO or values multiple of it (𝑛 × 𝐵𝑃𝐹𝑂 with n= 1, 2 …).  

 

 

Figure 6.25: Acceleration of point A, C and B along X direction with a defect on a rolling 
element.  (Rotor length 𝐿 = 0.8 × 103𝑚𝑚). 
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Figure 6.26: Frequency spectra of the envelope of the vibration signals of the acceleration of 

points A, C and B along X with a defect on a rolling element of bearing A. 
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6.5 Eccentricity on the rotor 

In practice, it never occurs that centre of mass P in which mass is located exactly 

coincides with the elastic centre C of the cross section, point at which the elastic 

reaction of the shaft acts. The distance between the two points C and P is the 

eccentricity 𝜀 of the shaft and causes a static unbalance m𝜀. The position of the balls in 

the two bearings is always considered different of the angle 
∆𝜃

2
= 25.7 deg and are 

analysed the case of rigid and elastic shaft. Only the effect of unbalance on the 

acceleration of point C is reported because it has the same effect in point B and A. 

 

6.5.1 Case with rigid shaft 

Considering the shaft with three different values of unbalance: (0, 0.01, 0.1) fig. 6.27 is 

obtained, and observing the accelerations the peak values increase increasing the 

value of eccentricity: with 𝜀 = 0 mm, 0.01 mm, 0.1 mm peak values became   𝑃𝑉𝐶 =

999.5 
mm

s2
, 1055.7

mm

s2
  and 1613.4  

mm

s2
 . Point C, with the presence of unbalance, 

oscillate on its trajectory as shown in fig. 6.28. In the frequency spectrum of the 

envelope of the vibration signal of the acceleration of point C are present the 

frequency equal to 𝑛 × 𝐵𝑃𝐹𝑂 (with n=1, 2, …) caused by Varying Compliance Vibration 

of both the bearings. The low value of eccentricity produces smaller amplitudes of 

vibrations, while increasing the eccentricity they increase. In the vertical vibration 

along X is showed clearer the effect of the shaft unbalance as compared to the 

vibrations in horizontal direction. Indeed, in the frequency spectrum of the envelope of 

the vibration signal of the acceleration of point C along X, Increasing the value of 

eccentricity, the peak correspondent to the frequency of the shaft 𝑓𝑠 = 16.6 Hz 

increases its amplitude. Fig. 6.29 The low rotational speed produces smaller 

amplitudes of vibrations, with the increase in rotational speed the amplitude of 

vibration also increases. The vertical vibrations showed clearer picture of shaft 

unbalance as compared to the vibrations in horizontal direction. The vibrations 

spectrum of the unbalance shaft revealed that it strongly depends upon the operating 

conditions. 
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Figure 6.27: Acceleration of point C along X direction with increasing unbalance of the rotor 
equal to 𝜀 = 0 𝑚𝑚 (top image), 𝜀 = 0.01 𝑚𝑚 (middle image), 𝜀 = 0.1 𝑚𝑚 (bottom image) 

 

Figure 6.28: Trajectory of point C increasing the value of unbalance 𝜀 =
0 𝑚𝑚, 0.01 𝑚𝑚, 0.1 𝑚𝑚  
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Figure 6.29: Frequency spectra of the envelope of the vibration signal of the acceleration of 
point C with eccentricity 𝜀 = 0.01 𝑚𝑚 𝑎𝑛𝑑 𝜀 = 0.1 𝑚𝑚, respectively. 

 

6.5.2 Case with elastic shaft 

The position of the balls in the two bearings is always considered different of the angle 
∆𝜃

2
= 25.7 deg and are analysed the case of elastic shaft with Young modulus 𝐸 =

25 MPa. In tab. 6.1 are reported the Peak value of the three points C, A and B with 

three different values of eccentricity from 0 mm to 0.1 mm. As it is possible to observe 

also from the relative accelerations in fig. 6.30 the eccentricity value of 0.01 mm 

generates a small amplitude variation, while with 𝜀 = 0.1 mm it peak values increase 
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significantly. The values increase with higher eccentricity for all the three points. The 

trajectory in fig. 6.31 behave similarly to the case of rigid rotor, increasing oscillation 

with the increase of eccentricity.  

 

 

 
Figure 6.30: Acceleration of point C along X direction with increasing unbalance of the rotor 
equal to 𝜀 = 0 mm (top image), 𝜀 = 0.01 mm (middle image), 𝜀 = 0.1 mm (bottom image). 

 

Table 6.1: Peak values of the three points C, A, B considering the eccentricity of the shaft      

𝜀 = 0 mm, 0.01 mm and 0.1 mm. 

Eccentricity 
[𝒎𝒎] 

Peak value(C) 

[
𝒎𝒎

𝒔𝟐
] 

Peak value(A) 

[
𝒎𝒎

𝒔𝟐
] 

Peak value(B) 

[
𝒎𝒎

𝒔𝟐
] 

0 291.4 3433 3312 

0.01 292.7 3561 3556 

0.1 745.8 6018 5878 
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Figure 6.31: Trajectory of point C increasing the value of unbalance 
  𝜀 = 0𝑚𝑚, 0.01𝑚𝑚, 0.1𝑚𝑚. 

 

The frequency spectrum of the envelope of the vibration signal also changes from the 

previous case. The peak at frequencies multiple of BPFO are still present indicating the 

effect of the Varying Compliance Vibration of the two bearings. With the presence of 

the eccentricity, it is also observable the frequency of the shaft 𝑓𝑠 = 16.67 Hz and its 

multiple values with amplitude increasing with higher values of eccentricity. 
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Figure 6.32: Frequency spectra of the envelope of the vibration signals of the acceleration of 
point C with increasing unbalance of the rotor equal to 𝜀 = 0 mm (top image), 𝜀 = 0.01 mm 

(middle image), 𝜀 = 0.1 mm (bottom image) 
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7.  Conclusion and future 

development 
 

In this master’s degree thesis, the numerical model of a rotor-bearing system has been 

developed to be used as a tool for Virtual Condition Monitoring of real systems. The 

work starts from the thesis of Giorio [2] where it is described an analytical-numerical 

model of a radial bearing with 2 degrees of freedom. The bearing model is so included 

in a rotor-bearing system composed by a flexible rotor supported at its ends by rolling 

elements bearings. The analysis of the dynamic of the rotor is performed to detect the 

presence of defects on the system and the study is carried on through a search for 

information already available in the scientific literature. The simulation returns the 

time response of the rotor in three different points which are the centre of the rotor 

and the positions of bearings. It is possible to gives as input any geometry of the rotor 

and bearings (only ball or roller radial bearing type) also considering the presence of 

possible defects on the different components. The signal of the accelerations of the 

three points is then analysed and the frequency spectra is obtained through the 

envelop analysis. The study of the spectra of the three different points is useful to 

detect the condition of the system giving information regarding the possible presence 

of defects. Each studied defect returns peculiar characteristics of the frequency 

spectra showing peaks with different intensity depending on the position of the defect 

and on the point of the rotor from which the signal is studied. The resultant spectra 

depend on the geometry of the defect and from its location and can be used for the 

Predictive Monitoring of the system observing and monitoring the behaviour of data 

points over time. The monitoring activity of the system in correspondence of a chosen 

point can then be adopted to determine the conditions of the entire system (out-

monitoring).  

A future development of the presented work regards a possible improvement of the 

model: it is possible to increase the degrees of freedom of the system adding the 

analysis of the signal along the axial coordinate. It can be introduced the possibility to 

study also different type of bearings such as angular contact bearings. Furthermore, 

the effect on the system of different kind of defects, for example distributed defects, 

can be simulated. It will be useful to decrease the simulation time to speed up the 

analysis of the case studied and to adopt this model with real systems it will be 

necessary to analyse the requirement of real sensors that applied on the rotor will 
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carry on the Vibration Condition Monitoring. Finally, it will be necessary to determine 

the positioning of sensors within the real system to optimize the acquired signal. 
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