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1 INTRODUCTION  

1.1 FATIGUE FAILURE AND EXISTING ASSESSMENT METHODS 

Many mechanical components are subjected to vibrations. When they are applied, the material is 

loaded by a certain level of stress, depending on their amplitude and their frequency. If those 

vibrations endure for long time, a possible structural failure could occur. Such type of failure, called 

also fatigue failure, happens as a result of accumulated damage. The fatigue failure could happen 

even if the maximum level of stress is lower than the maximum stress range the material could bear.  

So, the aim of the designer is to compute the damage of the component subject to vibrations and to 

predict its useful life to avoid a dangerous failure. 

In the case of deterministic and harmonic vibration, estimation fatigue damage methods are widely 

described in literature. Actually, most vibrations are non-deterministic vibrations or, so called, 

random vibrations. They are non-deterministic excitations, a type of oscillation whose behavior is 

non predictable and non-repeatable. The unpredictable behavior of those vibration makes the work 

of the designer complicated. Fortunately, many methods of predicting the vibration response of 

mechanical and structural systems to random vibrations have grown rapidly in importance over the 

last century. The methods allow to compute the fatigue damage both in the time-domain and in the 

frequency domain. In time domain, Rainflow Cycle Counting and linear damage rule are used, while 

in the frequency domain several methods are available. Working in frequency domain is an easier 

way for calculating the damage. In fact, thanks to Fourier transform, it is possible to split a time signal 

in several harmonic signals, each one with its own frequency. So, it is enough to consider a certain 

range of frequency for representing several time-signals. In frequency domain the load is described 

by a function called Power Spectral Density (PSD), which represents the distribution of power into 

frequency components composing the time-signal.  

However, the results of available methods are approximated, and for a reliable estimation of the 

residual life of the specimen, large and expensive testing campaigns are required. The drawback of 

the tests are the costs they need for being executed. That is the reason for which the simulation models 

are a helpful tool nowadays. 



1.2 OBJECTIVES AND CONTENTS OF THIS WORK 

The purpose of this work is to create a Finite Element Method (FEM)-model whose goal is to predict 

with a reliable accuracy the fatigue damage and the residual useful life of a AISI 304 specimen loaded 

with a stress-PSD.  

A FEM dynamic model was implemented on ABAQUS to simulate the response of the specimen to 

a unitary force over a frequency range (Frequency response). 

Another FEM model was implemented on nCode, to estimate the damage on the specimen tue to a 

random loading. 

Experimental tests have been conducted with the aim of calibrating and validating the simulations 

with the help of an electrodynamic shaker.  

 



 

2 DYNAMIC SIGNALS 

Signals can be classified according to different criteria. A popular distinction is about a 
deterministic vibrations and non-deterministic vibrations (Figure 1). 
 

 
Figure 2.1 Classification of signals [1] 

A signal is said to be deterministic if its behaviour is predictable and it could be described by a 

mathematical expression as 𝑥(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜑)  

Non-deterministic signals are a phenomenal whose behaviour is unpredictable and cannot be 

described by means of mathematical equations due to their lack of repeatability, they are also called 

Random vibrations. 

To verify if a vibration is deterministic or not, it is enough to test if an experiment is able to reproduce 

the vibration or not. If an experiment generating a defined signal can be replicated with identical 

results (within the limits of experimental error), then the vibrations can generally be considered 

deterministic. Instead, if an experiment cannot replicate the results, then the signal must usually be 

considered random.  

Deterministic signals could be classified as either periodic or non-periodic. 

Periodic signals are events that repeat in a constant time period, and they can be harmonic or not 

harmonic. They are sinusoidal when they are described by one frequency (f1 ), complex periodic when 

they are the results of a linear combination of two or more harmonic signals, whose frequencies are 

multiple of f1. [1] 
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Instead, non-periodic signals can be almost-periodic signals, made by the sum of two or more 

harmonic whose frequencies are not multiple of fundamental frequency, and transient signals, that 

can be described by some suitable time-varying function  

2.1 RANDOM SIGNALS 

Random signals are non-deterministic vibrations (Figure 2.2). They represent a physical phenomenon 

that cannot be described by meaningful mathematical expression because each observation of the 

phenomenon will be unique.  

They are characterized by many frequency components present over a wide range of frequencies 

A single time history representing a random phenomenon is called a sample function. The entire 

collection of all possible sample functions that the random phenomenon might have produced is 

called a random process. So, the sample function may be consideration as one physical realization of 

random process. [1] 

As said before, lack of repeatability makes difficult to analyze the signal, and to get a suitable way 

for describing the process is in term of statistics and probability [1]. In fact, predicting the exact values 

of the function is not easy, but thanks to statistical and probabilistic analysis, it is possible to predict 

the probability that a signal with a certain amplitude occurs (acceleration, speed, displacement) [1]. 

2.1.1 Statistical Definition 

A random process consisting in n sample function xk (t) (k = 1, 2…) is taken into consideration. The 

mean value of the random process at a certain time instant t1  is obtained by the ratio between the sum 

Figure 2.2 Random process [1] 
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Figure 15.4     Vibration aléatoire 

15.3   Vibrations aléatoires - Propriétés statistiques des 
signaux 

 
Nous ne pouvons pas prévoir les valeurs exactes de la fonction, mais grâce à 
l'analyse statistique, nous avons accès à des paramètres globaux.  Il nous est 
toujours donné de déterminer les propriétés statistiques du signal, c'est-à-dire que 
nous pouvons prévoir  la probabilité d'obtenir l'amplitude du signal (accélération, 
vitesse ou déplacement). Si ces paramètres globaux sont indépendants du temps, 
le signal est alors qualifié de stationnaire.  Dans la majorité des cas, nous 
admettrons que cette propriété est vérifiée au moins pendant le temps d'analyse 
des signaux. Pour les signaux stationnaires nous établissons les paramètres 
suivants : 
 
¾ Une loi de répartition : 

� � � �� �F x ob x t x0 0 dPr et                          (15.2) 
 



of all the xk (t1) values of all the individual sample function and the number of all the n sample 

functions. 

 

Another relevant statistical parameter is Autocorrelation function. It is a correlation between the 

values of the random process at two different times, computed by taking the ensemble average of 

the product of instantaneous values at two different times t=t1  and t=t2 = t1 + t 

  

If µ(t1) and R(t1, t1 + t ) vary as t1 varies, the random process is said to be non-stationary. In the 

case where µ(t1) and R(t1, t1 + t ) do not vary as time t1 varies, the random process is said to be 

stationary. For stationary random processes, the mean value is a constant and the auto- correlation 

function dependent only on the time displacement τ.  

 

 𝜇!(𝑡") = 	𝜇! = 𝑐𝑜𝑛𝑠𝑡								𝑅(𝑡", 𝑡" + 𝜏) = 𝑅(𝜏) = 𝑐𝑜𝑛𝑠𝑡 (3) 

 

In most cases, the computation of the mean value and auto-correlation of all ensembles requires a 

large number of calculations. So, it is possible to describe the properties of a stationary random 

process by means of a temporal mean value and temporal autocorrelation of a single sample function 

of the ensemble. For a specific kth sample function, the expression of the temporal mean value and 

temporal autocorrelation are [1]: 
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If the random process is stationary, and µ(k) and R(t1, k )  don’t differ when computed over different 

sample functions, the random process is said to be ergodic [1][2] and so: 

 

 

Those expressions mean that all properties of ergodic random processes can be determined by 

performing time averages over a single sample function [1][2]. Indeed, thanks to this simplification, 

only stationary ergodic random vibrations will be taken in consideration. 

Others useful statistical parameters for characterizing a random variable are: 

 

• mean square value [2] 

 

• variance [2] 

 

The square of mean square value and variance are called respectively root mean square (or rms) and 

standard deviation. 

From (8) we can obtain 

 

2.1.2 Probability Distribution  

The quantities defined earlier are not yet sufficient to completely characterize a random signal 

It is also necessary to define a function expressing the probability distribution related to the 

amplitude of the signal.  

For any random value x(t), probability distribution function P(x), defined as the probability that  x(t) 

is smaller than a given value x, is written as  

 𝜇!(𝑘) = 	𝜇!							𝑅(𝑡", 𝑘) = 𝑅(𝜏) (6) 
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 𝑃(𝑥) = 𝑃𝑟𝑜𝑏[𝑥(𝑡) ≤ 𝑥] (10) 

  

 

 If the P(x) assumes a continuous range of values, a probability density function is defined as [1]: 

 

 
𝑝(𝑥) = 𝑙𝑖𝑚

,!⟶.
Q
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∆𝑥 T =
𝑑𝑃
𝑑𝑥 (14) 

 

It follows that  

 
𝑝(𝑥) ≥ 0 (15) 

   

 

 
𝑃(𝑥) = 	: 𝑝(𝜉)𝑑𝜉

!

(%
 (16) 

   

 
: 𝑝(𝑥)𝑑𝑥 = 1
/%

(%
 (17) 

Finally, it is possible to express the statistical parameters defined in Section 2.1.1 in terms  

of probability density functions, as shown below. 

The mean value of x(k) (also called expected value or average value) is obtained by multiplied each 

value assumed by x(k) with its probability of occurrence: 

 𝑃(−∞) = 0 (11) 

 

 
𝑃(+∞) = 1 (12) 

 𝑃(𝑎) 	≤ 𝑃(𝑏)	𝑠𝑒	𝑎 ≤ 𝑏 (13) 

Figure 2.3 a) Probability distribution function; b) Probability density 

function [2] 



 
𝜇! = 𝐸[𝑥(𝑘)] = : 𝑥𝑝(𝑥)𝑑𝑥

/%

(%
 (18) 

 

Where E[.] is the operator that computes the expected value of the variable inside the bracket 

Similarly, it is possible to obtain the expected value of mean square value and variance: 

 

 𝜓!' = 𝐸[𝑥'(𝑘)] = : 𝑥'𝑝(𝑥)𝑑𝑥
/%

(%
 (19) 

   

 𝜎!' = 𝐸[(𝑥(𝑘) − 𝜇!)'] = : (𝑥 − 𝜇!)'𝑝(𝑥)𝑑𝑥
/%

(%
 (20) 

There are different types of probability density function:  

• Uniform or rectangular  

• Gaussian distribution (or normal distribution)   

• Sine Wave 

• Rice and Rayleigh distribution 

2.1.3 Gaussian Distribution 

The Gaussian distribution is probably the most known probability distribution. It is characterized by 

a probability density function whose expression is: 

 
𝑝0(𝑥) =

1
𝜎!√2𝜋

𝑒(
"
'1
!(2#
3#

4
"

 (21) 



 

From Figure 2.4 it is possible to understand how the mean value and the variance affects the shape 

and the position of the curve.   

In this research, only Gaussian random signal will be taken into consideration where, for every 

times instant on an ensemble, the random variables x(t) follow a normal distribution as defined by 

(21). It can be proved that if the excitation of a linear system is a Gaussian random process, the 

response is still Gaussian [1]. 

2.1.4 Spectrum Analysis & Power Spectral density 

A random signal is characterized by a series of different frequencies. For this reason, with a non-

deterministic signal, it is advisable to pass in frequency domain [2].  
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représentation spectrale continue. La courbe d'enregistrement telle qu’illustrée à 
la figure 15.6, peut toujours être décomposée en une série de courbes 
harmoniques qui se chevauchent, chaque courbe ayant sa propre fréquence et sa 
propre amplitude. Cela signifie qu'un signal aléatoire excite toutes les fréquences 
à la fois. 
 

 
Figure 15.6     Composition d'un signal aléatoire 

 
¾ Une moyenne quadratique (ou moment du second ordre) 

2
0 0 0q x f x dx                               (15.11) 

 
q a la dimension du carré du signal x(t) et représente une puissance. 
 
 La variance du signal est donnée par :   

³fo
 

T

0

2

T

2 dt)t(x
T
1

limx                          (15.12) 

 
 Si la variable x est centrée, c'est-à-dire si nous nous penchons sur ce qui se 
passe autour de la valeur moyenne x = x0 - m, nous pouvons définir la variance 
comme suit : 

� � � �V 2 0
2

0 0 � ��f
�f
³ x m f x m dx             (15.13) 

 
 Sous sa forme discrète, cette variance est énoncée comme suit : 
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Figure 2.5 Composition of a random signal [2] 

Figure 2.4 Gaussian probability density function  
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It is well known that is possible to write either a periodic signal or a non-periodic signal as the sum 

of harmonic signals each with its own frequency. The operator transforming time domain functions 

to frequency domain is the Fast Fourier Transform.  

 

 
𝐹(𝜔) = : 𝑓(𝑡)𝑒(*56𝑑𝑡

/%

(%
 (22) 

 

The transformation allows to identify and to represent all the frequencies contained in the time-

domain random signal. That representation is called frequency spectrum.  

The autocorrelation provides information concerning characteristic of random signal in time-domain 

but on the other hand, for gathering information in frequency domain, it is used the Power Spectral 

Density (PSD) [2].  It is defined as the Fourier transform of the autocorrelation function  

 

 
𝑆!!(𝜔) ≝ : 𝑅!!(𝜏)	𝑒(*57𝑑𝜏
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(%
								 (23) 

which implies that the autocorrelation function can be obtained from the inverse Fourier transform:  
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The physical meaning of the PSD can be understood by considering Eq. (3) with 𝜏 = 0  
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𝑆!!(𝜔)	describes how power of a signal or time series is distributed over frequency [2]. Indeed the  

𝜓' represent the area under the PSD. PSD provide the information about the shape of random signal.  

From an engineering point of view, it is very useful an alternative definition of PSD, valid only for 

positive frequencies, due to the fact that negative frequencies have no physical sense, and usually 

indicated as Gxx (f), f > 0 and called one-sided auto-spectrum (Figure 2.6) [3]. The relationship 

between the (23) and Gxx (f), is [3] 

 



 𝐺!!(𝑓) = c2𝑆!! , 𝑥 > 0
0, 𝑥 ≤ 0  (26) 

 

The correspondence with the stationary correlation function Rxx is [2] 
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Inversely [2] 

 

So, from (28), (25) can be written in this way [3]: 

 

 𝑅(0) = 𝜓' =
1
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From PSD we can also obtain a spectral moment [6]: 
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Another important classification of signals is related to the frequency range amplitude they are 

characterized. It is possible to distinguish among a narrowband or a wideband process.  

 𝑅!!(𝜏) = : 𝐺!!(𝑓)	𝑐𝑜𝑠2𝜋𝑓𝜏	𝑑𝑓
%
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  (28) 
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.
𝑆!!(𝜔)𝑑𝜔																					𝑚 = 1,2…  (30) 
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The autospectral relations in Equation (5.27) may be simplified to 

Syy(f) 

Conversely, 

^ ( ) cos 2 /  dx — 2 

r o o 

= Ryy 
J O O 

•OO 

.  
: ( r )cos 2nfxdx 

( ) cos 2 /  dx = 2 Ryy(x) cos 2 /  dx 

(5.31) 

RxxW = 2 

Ryy(x) = 2 

Sxx{f)cos2nfxdf 

£„,(/) cos 2 / / / 

(5.32) 

The one-sided autospectral density functions, G^if) and G y ) , ( / ) , where / varies 
only over (0, oo), are defined by 

Gxx{f) = 2Sxx(f) 0 < / < oo otherwise zero 

Gyyif) = 1Syy{f) 0 < / < oo otherwise zero 
(5.33) 

Theoretically, at the exact f r equency /= 0, Gxx(0) = Sxx(G), and Gyy(0) = Syy(0). 
However, this rigorous relationship between one-sided and two-sided spectral density 
functions at zero frequency will be omitted in all equations henceforth for simplicity. 
The one-sided spectral density functions defined in Equation (5.33) are the quantities 
measured by direct filtering procedures in practice. For mathematical calculations, 
however, the use of 5 ^ / ) and Syy(f) defined over (-00,00) and exponentials with 
imaginary exponents often simplifies the analysis. It is important to be able to deal 
properly with both of these representations, and both will be used in this book. See 
Figure 5.3 for a graphical illustration of the relationship. 

In terms of the one-sided autospectral density functions G^if) and Gyy(f), the 
correspondence with the stationary correlation functions / ^ ( ) and / ^ ( ) becomes 

p o o 

Gxx{f) = 4 /?«(T)COS 2 / dx 0 < / < 00 
Jo 

io o 

i? x c (r)cos 2 /  dx 0 < / < 00 

(5.34) 

Figure 5.3 One-sided and two-sided autospectral density functions. Figure 2.6 definition of one side auto spectrum (Gxx ) and power spectral 

density S(f) [1] 



A narrowband process is characterized by a sharp peak power spectral density, that is PSD has 

significant value only in short centered around a frequency value corresponding to the peak. On the 

other hand, in a wideband process the power spectral has significant value in a wide frequency range 

[2].  

At the two extremes of this classification, it could find a sinusoidal sample function whose power 

spectral density is represented just by two symmetrically placed frequencies, and a sample function 

whose power spectral density represents all the frequencies equally.  

The first is a deterministic function, while the second is known as white noise. If the frequency range 

is infinite, it is called ideal white noise (Figure 2.6). 

 

 

To characterize a random signal, some other parameters are used: 

 

• Expecting positive zero crossing rate 

 

 𝜈. = h
𝑚'

𝑚.
  (32) 

The (32) show the number of crossings level x(t) = 0 with positive slopes in a random signal x(t). 

Figure 2.7 Probability density, autocorrelation and PSD function for four sample time histories: (a) sinusoidal, (b) 

narrowband process, (c)wideband process, (d) white noise. [2] 



• Expecting peak  

 

It represents the total numbers of positive peak in a random signal. 

If x(t) is a narrow bandwidth random signal, the total expected number of positive peaks is equal to 

crossing level with positive slope. 

Another important function is the irregularity factor or bandwidth parameter which is given by 

 

 𝛼< =
𝑚*

j𝑚.𝑚'<
 (34) 

 

With m is an index that can take non-integer value too. 

A narrowband process has an irregularity factor close to one and for wideband process it is close to 

zero.  

Rice stated [13] further that for any random stationary Gaussian process, narrowband or wideband, 

the probability density function of the peaks values is [13] 

 

 
𝑝(𝑥) = h

1 − 𝛼''

2𝜋𝑚.
𝑒
=( >"

'<$?"(@""A
B
+ 𝛼'

𝑆
𝑀.

𝑒C(
D"
'<$

E𝑝0 Q
𝛼'𝑆

j(1 − 𝛼'')𝑚.
T (35) 

 

This equation is known as Rice distribution. 

 𝜈F = h
𝑚:

𝑚'
  (33) 

hour, expressing the load level in 2,000 h service as percentage of maximum load
occurring in that time period it turns out a typical flat load spectrum shown in
Fig. 8.9. In a flat spectrum the number of high loads is high and that of low loads is
low. For example, referring to Fig. 8.9, high loads with a peak value exceeding
90 % of the maximum occur about 12,000 times while those below 30 % are
40,000 - 30,000 = 10,000 which is 25 % of all cycles. On the contrary, if lower
amplitude loads prevail over the larger ones that are relatively few, then a steep
load spectrum is obtained, as shown in Fig. 8.9. In this case, high loads with a peak
value exceeding 90 % of the maximum occur only 5 times whereas there are
40,000 - 200 = 39,800 cycles below 20 % of the maximum which is 99.5 % of
the total.
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Figure 2.8 Numbers of positive peaks and numbers of level crossings per 

unit time [4] 



It is possible to note that for an irregularity factor of 1, the shape is a Rayleigh distribution (Figure 

2.8) 

 

For an irregularity factor of zero, the shape is a Gaussian distribution 
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3 FATIGUE  

3.1 INTRODUCTION 

It has been proved that the repetition of time dependent loads on a material sample strongly reduces 

the loads which the material can bear; this phenomenon leads to a damage, with the possible 

consequence of failure. The failure occurs even if the maximum value of the load is lower than both 

the ultimate tensile strength (UTS) Rm and then the yield strength sy of the material. This type of 

damage is called fatigue damage [4]. 

Several mechanical components are affected by fatigue damage (automobiles on road, wings or 

fuselage of airplane, rotating shaft…). It has been estimated that fatigue is the cause of approximately 

90% of the failure cases [4].  

3.2 PHENOMENOLOGICAL DESCRIPTION  

The phases of the mechanism related to the fatigue damage are: 

• Cracks initiation 

• Crack propagation  

• Final fracture of the component 

In most cases, a fatigue fracture starts from the surface of the component, which presents a certain 

level of roughness. Because of that, some points on the surface could result as the	most loaded and 

stressed of the component.  

This localized high load generates local microplastic deformations which accumulate and initiate 

small cracks. This initial event can be submicroscopic in size, much less than one tenth of a micron, 

and contained in a slip line inside a single material grain. The initiation cracks need a large number 

of cycles to propagate, so that the greatest part of the component’s lifetime is spent during this initial 

stage.  

If specimen cyclic loading proceeds, one of the multiple cracks propagates increasing its dimension, 

while the others are stopped by little obstacles in the material. Due to the stress concentration 

generated by the crack tip, a plastic zone forms around the crack tip, causing a small crack tip. In this 

condition the propagation is said to be stable.  

The failure occurs when the stress intensity exceeds a critical value known as the fracture toughness, 

the crack achieves a considerable length, and the propagation is said instable throughout the specimen. 



The amount of energy required to propagate is higher than the resistance of the material. At the end 

the specimen has not enough intact surface to bear the load, and it collapses [5]. 

3.3 S-N CURVE 

The S-N curve, or Wohler diagram is a diagram, obtained by Wohler (1819-1914), which represents 

a statistical model characterizing the fatigue material performance. In this diagram (Figure 3.1) the 

numbers of cycle to failure Nf of a material are plotted versus the stress amplitude sa (or S) of the load 

applied to the specimens.  

The S-N curves are derived from tests on material samples when a regular sinusoidal stress is applied 

by a testing machine. 

This curve is described by the following equation  

 

 

where C and k are material parameters. 

By means of this diagram, it is possible to identify the stress level the material corresponding to 

statistical failure given a number of cycle or how many cycles it can bear before failure occurs for a 

given stress level. 

The higher is the stress level, the higher is the rate of the crack propagation and the lower are the 

cycles to failure.  

If the stress is very low, some material exhibits a fatigue limit. In this case, a limiting number of 

cycles NE, with the S-N curve being almost horizontal. A specimen which survived NE cycles is 

assumed to live infinite life.		Frequently, NE takes values between 2 × 106 and 107, depending on the 

 𝑁&𝑆 = 𝐶 (37) 

Figure 3.1 Example of S-N curve [5] 
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Fig. 10.18. Example of an S-N diagram with data points

quickly, whereas another crack is stopped at a grain boundary because neigh-
bouring grains are less favourably oriented. On the other hand, short cracks
may remain open even under compressive loads because they are embedded
in a plastic deformation field [113]. This explains why crack propagation may
take place even below �Kth.

If a component contains only microcracks or is not cracked at all, da/dN

curves cannot be used to assess the life time. In this case, other methods are
required that are the subject of the next section.

10.6.2 Stress-cycle diagrams (S-N diagrams)

At the beginning of the chapter, we already saw that the complex load-time
curves occurring in real life are usually replaced by simplified curves in the
laboratory e. g., using sinusoidal loading. Frequently, smooth specimens are
used, similar to the tensile specimens discussed in section 3.2. They are loaded
cyclically with a fixed period, prescribing the stress amplitude �a or the strain
amplitude "a, and also the R ratio (R or R", respectively). The advantages
and disadvantages of these two experimental procedures will be discussed at
the end of this section; in the following, we will consider stress-controlled
experiments only.

For each fatigue experiment, the number of cycles to failure15 is measured.
If several fatigue experiments are performed and the number of cycles to
failure Nf is plotted versus the stress amplitude �A or the stress range ��,
the resulting diagram is called a stress-cycle (or S-N) diagram (sometimes also
stress-life or Wöhler diagram, see figure 10.18). We denote the stress values in
the S-N diagram with capitalised subscripts. For example, we denote the stress
amplitude that causes failure after Nf cycles as �A instead of �a. The number
of cycles can also be specified in the subscript, as in �ANf , stating, for example,
15 Failure can be defined as fracture of the specimen or occurrence of a crack.



material. The stress level corresponding to NE in the S-N curve is called endurance limit, or fatigue 

limit σE.  

In many materials, there is not horizontal part of the S-N curve. Although the slope of the S-N curve 

becomes smaller beyond a certain number of cycles, failure can still occur. These materials thus have 

not fatigue limit [5].  

3.4 DAMAGE ASSESSMENT 

The S-N diagram plot the useful life of the material at a constant amplitude stress. In actual specimen 

life, the material is loaded with stress that has variable amplitude, so it results very difficult to estimate 

the lifetime using diagram. 

The most obvious way to estimate specimen and material life is to test the material in laboratory but 

it takes a large number of tests, and it will be very expensive in term of time and money [5]. 

Palmgreen and Miner [29] have developed the hypothesis that the fraction of life spent at a given 

stress amplitude level Si corresponds to the ratio between the ni and the allowable cycle Ni at the same 

stress amplitude Si. This ratio is a fraction of the critical damage Dcr which produces failure by fatigue. 

The failure is assumed to occur when Dcr = 1. 

Furthermore, Palmgreen and Miner stated that the damage progresses linearly with load repetition. 

So, the total damage produced by all load contribution at different amplitude is given by [29]: 

 

 𝐷6H6IJ =@𝐷* =@𝐷KL
𝑛*
𝑁*

 (38) 

Figure 3.2 Block of three step high load sequence S1 > 

S2 > S3 [4] Figure 3.3 Linear damage progression according to 

Palmgreen-Miner rule [4] 



One of the problems with this rule is that the sequence of the load steps is not taken into account. The 

sequence of loading may influence the fatigue life strongly, an effect neglected in Miner’s rule. Even 

if it is the most used method for its mathematical simplicity, it could be stated that Palmgreen and 

Miner’s rule provide an approximative estimation of fatigue life [5]. 

 



4 METHODS FOR ESTIMATING DAMAGE FROM 

RANDOM LOADS 

4.1 TIME-DOMAIN APPROACH  

Fatigue analysis for a random loading could be conducted with a time-series approach.  For this 

approach, a cycle counting method to measure the fatigue damage is needed.  

Once PDF, the rate of occurrence of counted cycles na and the parameter of S-N curve are known, it 

possible to calculate the expected fatigue damage, assuming the linear damage rule. Starting from: 

 

 𝑁 ≈ 𝐶𝑠(& (39) 

 

Miner’s rule can be rewritten as follows: 

 

 𝐸[𝐷] ≈@
𝑛*
𝐶𝑠(&

*

 (40) 

 

The expected number of cycles at a given stress level per unit time can be written as 

 

 𝑛* ≈ 𝜈F ∗ 𝑝(∆𝑠) (41) 

 

Eq. (40) becomes 

 𝐸[𝐷p] ≈ 𝜈F: q
𝑝(∆𝑠)
𝐶𝑠(& r

%

.
𝑑𝑠 (42) 

   

 𝐸[𝐷p] ≈ 	𝜈F𝐶(": 𝑠&
%

.
𝑝(∆𝑠) ∗ ∆𝑠 (43) 

 

Where 𝐷p is the damage per unit time. 

The expecting damage after a given time T is obtained by: 

 

 𝐸[𝐷](𝑇) = 𝑇 ∗ 𝐸[𝐷p] (44) 



In Figure 4.1, the logical flow for time series approach is shown. 

Four counting methods are available: 

• Peak Counting (PC) 

• Level Crossing Counting (LCC) 

• Range Counting (RC) 

• Rainflow Counting (RFC) 

The differences lie the way the peak and the valley are coupled and how the PDF is computed [18].  

The Rainflow method provides the more accurate results and therefore it is considered as the best 

cycle counting method [13].  It consists in describing the time load in terms of peak and valley levels 

or equivalently by its amplitude or mean value [28]. The worst drawback of the method is the long 

computational time required and a long-time history required to make the results reliable.  

4.2 FREQUENCY-DOMAIN APPROACH 

The common way to compute the damage is to use spectral methods based on the PSD of the load 

input with the hypothesis that the load is random, ergodic, stationary and Gaussian [11].  

The methods will be here analysed are: 

• Narrow band approximation (NB) 

• Wirsching-Light Method (WL) 

• Ortiz-Chen (OC) 

• Dirlik method (DK)  

• Zhao-Baker Method (ZB) 

Load Time Series Data

Cycle Counting Method

Damage calculation 

Palmgreen-Miner's rule 

Fatigue Damage

Figure 4.1 Time series approach [13] 



• Lalanne method (LA)  

• Tovo-Benasciutti method (TB) 

• a0.75  method  

• Larsen and Luten’s single moment method (SM) 

Due to the fact that in eq. (43) the only unknown value is 𝑝(∆𝑠), many solutions suggest different 

ways to obtain the Probability Density Function (PDF) like Dirlik, Zao-Baker and Lallane.  

4.1.1 Narrow Band Approximation 

This method is suitable for the case of a narrow-band signal [1]. In this case it has been assumed that 

every peak is coincident with a cycle, and consequently the amplitude of the probability distribution 

function can be approximated by Rayleigh distribution [1]: 
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Thus, the expression of fatigue damage is defined as: 
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Where  Γ(. ) is the Euler gamma function, which is defined as: 
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Figure 4.2 Frequency spectral approaches [13] 
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4.1.2 Wirsching-Light Method 

The estimation of the life in a wide band, using the narrow band method, is very conservative, and 

this brings to underestimate the time to failure [13]. Wirsching and Light proposed [21] to add a 

parameter to correct the narrow band approximation  

 

 𝑝(𝑆)'( = 𝜌'(𝑝(𝑆))* (48) 

 

The 𝜌'( is the correction factor and its expression is the following: 

 

 𝜌'( = 𝑎(𝑘) + [1 − 𝑎(𝑘)](1 − 𝜀)+(-) (49) 

   

 𝑎(𝑘) = 0.926 − 0.033𝑘 (50) 

   

 𝑏(𝑘) = 1.587𝑘 − 2.323 (51) 

   

 𝜀 = �1 − 𝛼// (52) 

 

This method has been investigated and is suitable for k (slope of the S-N curve) values between 3 ÷ 

5. 

4.1.3 Ortiz Chen Method 

Ortiz Chen developed the following correction factor by applying the generalized spectral 

bandwidth to the Rayleigh distribution [22] 

 

 𝑝(𝑆)01 = 𝜌01𝑝(𝑆))* (53) 

 

The Ortiz Chen correction parameter is expressed as, 

 

 
𝜌-01 =

𝛽-2

𝛼/
 (54) 



With 

 
𝛽- = h

𝑚/𝑚-

𝑚&𝑚-3/
 (55) 

 

4.1.4 Dirlik Method 

This is the most famous and known method considered as one of the high accuracy methods [11][12]. 

It is an empirical formula based on a numerical simulation of the time history. Dirlik proposed [23] 

an approximation of rainflow cycle counting method by using an exponential distribution and two 

Rayleigh distribution. The probability distribution is given by: 
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Where Z is the normalized amplitude and Xm is the mean frequency, as fellow: 
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And the other parameters are defined as: 

 

 𝐺# =
2(𝑥2 − 𝛼//)
1 + 𝛼//

 (59) 

   

   

 𝐺/ =
1 − 𝛼/ + 𝐺# + 𝐺#/

1 − 𝑅  (60) 

   

 𝐺; = 1 − 𝐺# − 𝐺/ (61) 

   

 𝑅 =
𝛼/ − 𝑥2 − 𝐺#/

1 − 𝛼/ − 𝐺# + 𝐺#/
 (62) 

   



 𝑄 =
1,25(𝛼/ − 𝐺; − 𝐺/𝑅)

𝐺#
 (63) 

 

The expression of the fatigue life intensity E has been derived in the form 
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One of the problems of this solution is that “even if providing fairly precise damage predictions (as 

already shown by data from the literature has no theoretical framework (i.e. it represents a 

completely approximate formula)” [11]  

4.1.5 Zhao-Baker Method 

W. Zhao and M. Baker propose [24] an expression of PDF obtained by a linear combination of 

Weibull PDF and Rayleigh PDF, corresponding to small stress range and to large stress range 

respectively. The model has been validated by comparing the PDF obtained from the model with that 

obtained by simulation and rainflow counting for a wide range of stress spectra.  

The expression is as follows  
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Where w		is the weighting factor defined as 

 

 0 < 𝑤 =
1 − 𝛼/

1 − �2𝜋 𝛤 �1 +
1
𝑏�𝛼/

"#@

< 1 (66) 

 

And a  e b  are the Weibull parameters 

 

 𝛼 = 8 − 7𝛼/ (67) 

   

 𝛽 = c			−1.1																																	𝛼 < 0.9
		1.1 + 9(𝛼/ − 0.9)										𝛼 ≥ 0.9 (68) 



   

When k=3, the correction factor has a stronger correlation to 𝛼&.MN rather than 𝛼. So, Zhao and Baker 

offered an enhanced method, where: 

 

 𝛼 = 𝑑"@ (69) 

 

With d calculated as a root of 
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And the correction factor is determined by  

 

 𝜌7*|-P; = c−04154 + 1.392𝛼&.MN																		𝛼&.MN ≥ 0.5
0.28																																																				𝛼&.MN < 0.5 (71) 

 

The fatigue damage intensity is calculated as follows: 
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4.1.6 Lalanne Method 

Lalanne proposed [25] to add as PDF into eq (43), for calculating the expected fatigue damage, the 

same of that used by Rice 
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4.1.7 Tovo-Benasciutti Method 

Tovo-Benasciutti derived an expression for estimating the expected rainflow fatigue damage [11, 26]. 

They based on the hypothesis that the damage estimation, from the equivalent loading history 



obtained by Rainflow counting method 𝐷p:[1 , is lower than or equal to the Narrow band expected 

damage 𝐷p)* and higher than or equal to Range counting method 𝐷p:1 .  

 

 𝐷p:1 ≤ 𝐷p:[1 ≤ 𝐷p)* (74) 

  

where  

 

 𝐷p:1 =	𝐷p)*𝛼/-"# (75) 

 

Thus, the solution is proposed as a weighted linear combination of these two bounds as follows 

 

 𝐸(𝐷p\*) = 𝑏𝐷p)* + (1 − 𝑏)𝐷p:1  (76) 

 

Two different ways to determine the factor b are suggested: 

 

The b coefficient requires four spectral moments: 𝑚&, 𝑚#, 𝑚/	𝑎𝑛𝑑	𝑚<, which in combination form 

two parameters, 𝛼#	𝑎𝑛𝑑	𝛼/. 

4.1.8 a 0.75 Method 

It is further method proposed by Benasciutti and Tovo [11, 26]. It states that the correction factor 

depends on spectral parameters 𝛼&.MN. 

 

 𝜌A = 𝛼&.MN/  (79) 
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4.1.9 Larsen and Lutes’s single moment Method 

The Larsen and Lutes’ single moment method was developed after extensive examination of 

simulation data and rainflow analysis [27]  
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𝑖 =

2.0
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Hence the expected damage is calculated estimated as follows 
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The damage estimation needs the calculation of only a single moment, mk.  

4.3 ANALYSIS OF THE METHODS  

Matjaz Mrsnik, Janko Slavic, Miha Boltezar [12] compared the spectral methods to the life 

estimated with the time series approach, using a combination of rainflow cycle counting and 

Palmgren and Miner’s rule. Two methods were not considered: the method proposed by Ortiz and 

Chen and the Single-Moment method. The analysis has been conducted assuming, for experimental 

tests, accelerated vibration tests obtained with an electrodynamic shaker. The acceleration profile 

was 20m/s2 in a frequency range from 10 to 1000 Hz.  In this range, five different PSD were 

applied. As regards material properties, three different value of S-N slope k (3.324, 7.3, 11.76) were 

used.  

The fatigue-life estimations for the frequency-domain methods were compared to the life 

estimations in the time domain using a combination of the rainflow counting and the Palmgren-

Miner hypothesis, which, in this study, is assumed to be the reference value.  

The obtained results have showed that Tovo-Benasciutti give the better damage estimation, followed 

by the improved Zhao-Baker and Dirlik methods. Overall, the results gathered with Dirlik, Zhao-

Baker and Tovo-Benasciutti methods are “all very consistent when the material fatigue parameter k 



is relatively low (k ≈ 3)” [12] but when the slope became steeper, the difference from the reference 

estimation increases. 

Curtis and Irvine conducted the same analysis [15] considering in this case Ortiz and Chen and the 

Single-Moment method. According to their analysis the more reliable methods are: Dirlik method, 

Tovo-Benasciutti method, Ortiz Chen, Single Moment and a 0.75 method (Figure 4.3 and Figure 

4.4). The Dirlik and Tovo-Benasciutti methods underestimate or approach from lower values to the 

rainflow damage estimation, with the Dirlik method being somewhat more accurate. Instead, Ortiz-

Chen and a 0.75 method overestimate the results. As reported in [15], also in this investigation the 

increase of the value of k makes the error bigger.  
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Fig. 1. Relative error of spectral methods compared to rainflow analysis for m=3.324. 

 
Fig. 2. Relative error of best spectral methods compared to rainflow analysis for m=3.324. 
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Figure 4.3 Relative error of best spectral methods compared to rainflow analysis 

for m=3.324 [15] 
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Fig. 3. Relative error of spectral methods compared to rainflow analysis for m=11.76. 
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Quigley, Lee and Wang [13] compared the methods with Rainflow method in term of standard 

deviation and the average error (Figure 4.5 and 4.6). The experiments were conducted using 

Seventy power spectrum densities with varied amplitude, shape, and irregularity factors from 

Dirlik’s dissertation are used to study the accuracies of these methods. The results showed the OC, 

α .75, SM, Dk and BT methods to be significantly more accurate than the others. These five 

methods have a tendency for the error variation to increase as the S-N slope exponent k increases. In 

Figure 4.5 and 4.6, the S-N slope exponent k is expressed with the symbol m 

 

for the mean stress was found by the method described earlier. The 
rainflow cycle count data was grouped into 1200 bins for stress 
amplitude and 60 bins for mean stress. The mean stress for each test 
was verified to be zero and all of the counts for mean stress were 
summed into a single value for each stress amplitude bin.

For all runs, the Basquin material constant used was Ca= 5E08 MPa 
and the fatigue strength coefficient used was Sf'=1000 MPa . These 
constants and the absolute damage results were not important to the 
relative comparisons sought. The fatigue slope exponent was also 
varied to investigate this variable.

The upper bound for integrating Dirlik’s probability density function 
was found assuming Z=8, which was found to be sufficiently high 
based on table 1 and the expected number of peaks. A conversion was 
found to be needed for Dirlik’s spectral values in order to obtain the 
required root mean square value of 176.78 as well as the same 
relative mean Xm or irregularity factor, γ. Dirlik’s spectral parameters, 
A1, A2, f1, f2 , p1, and p2 were used to create new PSD amplitudes B1, 
and B2, that matched Dirlik’s rms value and other spectral moments, 
the following conversion was made:

(61)

(62)

(63)

This resulted in the approximate conversion of 

DISCUSSION
During preliminary tests integrating the Rayleigh probability density 
function, the trapezoidal rule method was found to converge faster 
than the midpoint rule and to be easier than Simpson’s rule to set up 
the formulas. The trapezoidal rule also gave the same results as 
Simpson’s rule for 64 steps and higher. However, when the 
trapezoidal rule was applied to this experiment, it took far more steps 
to converge Dirlik’s density function than the Rayleigh density 
function. To converge to a point where a further doubling of steps 
produced less than 0.5% change, 2048 steps was needed for Dirlik’s 
method and this value was also used for Lalanne’s and Zhao and 
Baker’s methods.

The effect of fatigue slope exponent was studied from m=3 to m=12. 
The error was calculated using Equation 60 for all seventy spectra. 
The standard deviation and mean error of the error for each method 
were then calculated. Results for the standard deviation and average 
error for varied fatigue slope exponent m are tabulated in Table 2 and 
Table 3. For each value of m in Table 2 and Table 3, the best value for 
standard deviation and mean for all the methods is shown in bold.

Table 2. Standard deviation versus fatigue slope exponent m

Table 3. Average error versus fatigue slope exponent m

The standard deviations for all methods for a fatigue slope exponent 
from m=3 to m=12 are plotted in Figure 8. The methods with the 
lowest standard deviations are BT, Dirlik, α .75 , SM and OC with WL 
also fitting in this category except for m=3 to m=8. Standard deviation 
of the errors for all methods, with the exception of Lalanne, NB and 
WL, generally increases as fatigue slope exponent m increases.

Figure 8. Standard deviation of error versus fatigue slope exponent m

The absolute values of the mean error for all methods for fatigue 
slope exponents from m=3 to m=12 are plotted in Figure 9. As the 
exponent increases, the mean error increases for all methods except 
for LaLanne and WL. Note WL reverses slope around m=8 in this 
plot of absolute values but in fact the mean error changes from 
positive to negative above m=8. The least mean error was for OC,  
α .75, SM, Dirlik and BT having 6% or less at m=3.

Quigley et al / SAE Int. J. Mater. Manf. / Volume 9, Issue 3 (August 2016)
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Figure 4.5 Standard deviation versus S-N slope exponent m [13] 

for the mean stress was found by the method described earlier. The 
rainflow cycle count data was grouped into 1200 bins for stress 
amplitude and 60 bins for mean stress. The mean stress for each test 
was verified to be zero and all of the counts for mean stress were 
summed into a single value for each stress amplitude bin.

For all runs, the Basquin material constant used was Ca= 5E08 MPa 
and the fatigue strength coefficient used was Sf'=1000 MPa . These 
constants and the absolute damage results were not important to the 
relative comparisons sought. The fatigue slope exponent was also 
varied to investigate this variable.

The upper bound for integrating Dirlik’s probability density function 
was found assuming Z=8, which was found to be sufficiently high 
based on table 1 and the expected number of peaks. A conversion was 
found to be needed for Dirlik’s spectral values in order to obtain the 
required root mean square value of 176.78 as well as the same 
relative mean Xm or irregularity factor, γ. Dirlik’s spectral parameters, 
A1, A2, f1, f2 , p1, and p2 were used to create new PSD amplitudes B1, 
and B2, that matched Dirlik’s rms value and other spectral moments, 
the following conversion was made:

(61)

(62)

(63)

This resulted in the approximate conversion of 

DISCUSSION
During preliminary tests integrating the Rayleigh probability density 
function, the trapezoidal rule method was found to converge faster 
than the midpoint rule and to be easier than Simpson’s rule to set up 
the formulas. The trapezoidal rule also gave the same results as 
Simpson’s rule for 64 steps and higher. However, when the 
trapezoidal rule was applied to this experiment, it took far more steps 
to converge Dirlik’s density function than the Rayleigh density 
function. To converge to a point where a further doubling of steps 
produced less than 0.5% change, 2048 steps was needed for Dirlik’s 
method and this value was also used for Lalanne’s and Zhao and 
Baker’s methods.

The effect of fatigue slope exponent was studied from m=3 to m=12. 
The error was calculated using Equation 60 for all seventy spectra. 
The standard deviation and mean error of the error for each method 
were then calculated. Results for the standard deviation and average 
error for varied fatigue slope exponent m are tabulated in Table 2 and 
Table 3. For each value of m in Table 2 and Table 3, the best value for 
standard deviation and mean for all the methods is shown in bold.

Table 2. Standard deviation versus fatigue slope exponent m

Table 3. Average error versus fatigue slope exponent m

The standard deviations for all methods for a fatigue slope exponent 
from m=3 to m=12 are plotted in Figure 8. The methods with the 
lowest standard deviations are BT, Dirlik, α .75 , SM and OC with WL 
also fitting in this category except for m=3 to m=8. Standard deviation 
of the errors for all methods, with the exception of Lalanne, NB and 
WL, generally increases as fatigue slope exponent m increases.

Figure 8. Standard deviation of error versus fatigue slope exponent m

The absolute values of the mean error for all methods for fatigue 
slope exponents from m=3 to m=12 are plotted in Figure 9. As the 
exponent increases, the mean error increases for all methods except 
for LaLanne and WL. Note WL reverses slope around m=8 in this 
plot of absolute values but in fact the mean error changes from 
positive to negative above m=8. The least mean error was for OC,  
α .75, SM, Dirlik and BT having 6% or less at m=3.
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Figure 4.6 Average error versus S-N slope exponent m [13] 

for the mean stress was found by the method described earlier. The 
rainflow cycle count data was grouped into 1200 bins for stress 
amplitude and 60 bins for mean stress. The mean stress for each test 
was verified to be zero and all of the counts for mean stress were 
summed into a single value for each stress amplitude bin.

For all runs, the Basquin material constant used was Ca= 5E08 MPa 
and the fatigue strength coefficient used was Sf'=1000 MPa . These 
constants and the absolute damage results were not important to the 
relative comparisons sought. The fatigue slope exponent was also 
varied to investigate this variable.

The upper bound for integrating Dirlik’s probability density function 
was found assuming Z=8, which was found to be sufficiently high 
based on table 1 and the expected number of peaks. A conversion was 
found to be needed for Dirlik’s spectral values in order to obtain the 
required root mean square value of 176.78 as well as the same 
relative mean Xm or irregularity factor, γ. Dirlik’s spectral parameters, 
A1, A2, f1, f2 , p1, and p2 were used to create new PSD amplitudes B1, 
and B2, that matched Dirlik’s rms value and other spectral moments, 
the following conversion was made:

(61)

(62)

(63)

This resulted in the approximate conversion of 

DISCUSSION
During preliminary tests integrating the Rayleigh probability density 
function, the trapezoidal rule method was found to converge faster 
than the midpoint rule and to be easier than Simpson’s rule to set up 
the formulas. The trapezoidal rule also gave the same results as 
Simpson’s rule for 64 steps and higher. However, when the 
trapezoidal rule was applied to this experiment, it took far more steps 
to converge Dirlik’s density function than the Rayleigh density 
function. To converge to a point where a further doubling of steps 
produced less than 0.5% change, 2048 steps was needed for Dirlik’s 
method and this value was also used for Lalanne’s and Zhao and 
Baker’s methods.

The effect of fatigue slope exponent was studied from m=3 to m=12. 
The error was calculated using Equation 60 for all seventy spectra. 
The standard deviation and mean error of the error for each method 
were then calculated. Results for the standard deviation and average 
error for varied fatigue slope exponent m are tabulated in Table 2 and 
Table 3. For each value of m in Table 2 and Table 3, the best value for 
standard deviation and mean for all the methods is shown in bold.

Table 2. Standard deviation versus fatigue slope exponent m

Table 3. Average error versus fatigue slope exponent m

The standard deviations for all methods for a fatigue slope exponent 
from m=3 to m=12 are plotted in Figure 8. The methods with the 
lowest standard deviations are BT, Dirlik, α .75 , SM and OC with WL 
also fitting in this category except for m=3 to m=8. Standard deviation 
of the errors for all methods, with the exception of Lalanne, NB and 
WL, generally increases as fatigue slope exponent m increases.

Figure 8. Standard deviation of error versus fatigue slope exponent m

The absolute values of the mean error for all methods for fatigue 
slope exponents from m=3 to m=12 are plotted in Figure 9. As the 
exponent increases, the mean error increases for all methods except 
for LaLanne and WL. Note WL reverses slope around m=8 in this 
plot of absolute values but in fact the mean error changes from 
positive to negative above m=8. The least mean error was for OC,  
α .75, SM, Dirlik and BT having 6% or less at m=3.
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Figure 4.7 Standard deviation of error versus fatigue slope exponent m [13] 



5 VIBRATIONS CONCEPTS 

In this research, it will be taken into consideration a linear system, that is, “a system where the time 

depended variable x(t) and all its time derivative appear in the equation of motion to the first power 

or zero power only” [2] 

5.1 SINGLE DEGREE OF FREEDOM 

A single degree of freedom system (SDOF) is a system where the motion of all its parts at any instant 

of time is completely defined with just one coordinate, or variable [3].  

A linear SDOF system consists in a mass m, linear viscous damper c, linear springer k and excitation 

force f(t). Let x be the coordinate that locates mass m, the equation of the motion of the system is: 

 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝑓(𝑡)   (84) 

 

if f(t) = 0 the vibration is said to be a free vibration, otherwise if f(t) ≠ 0 the vibration is called forced 

vibration [3].  The solution x(t) (84) changes in function of the value of f(t). 

If f(t) = 0, the response of the system x(t) is [3]: 

 

 𝑥𝑐 = 𝑒−𝜁𝜔𝑛𝑡[𝐴 cos(𝜔𝑑𝑡) + 𝐵𝑠𝑖𝑛(𝜔𝑑𝑡)] (85) 

 

Where 

 

 𝜔𝑛 = !𝑘
𝑚 (86) 

is natural frequency 

 𝜁 =
𝑐
𝑐ef

=
𝑐

√𝑚𝑘
 (87) 

 is defined damping ratio, and   

 
𝜔𝑑 = 𝜔𝑛"1− 𝜁2 (88) 

 



is damped frequency [3]. 

A e B are constant, and they are derived from the value of ẋ and x at the time instant t=0. 

If f(t) is a constant value f0 the solution is the sum of the free vibration response (transient solution) 

and force vibration response (steady-state solution) [3]: 

 

 
𝑥(𝑡) =

𝑓&
𝑘 + 𝑒

"hi*$[𝐴 𝑐𝑜𝑠(𝜔j𝑡) + 𝐵𝑠𝑖𝑛(𝜔j𝑡)] (89) 

 

Instead, if f(t) is a harmonic excitation, only the steady-state solution could be considered, because 

the transient solution has a significant effect just for a limited period of time [3][7].  

Therefore, for a harmonic force, it can be stated that [3] 

 

 𝑓(𝑡) = 𝐹&𝑒"Ei$ (90) 

 

where w is the excitation frequency or driving frequency, and that the solution of (84) is  

 

 𝑥(𝑡) = 𝑥&𝑒"Ei$ (91) 

 

Substitution of (90) and (91) in (84) gives: 

 

 (𝑘 − 𝜔/𝑚 + 𝑖𝜔𝑐)𝑥& = 𝐹& (92) 

 

So 

 

 
𝑥(𝑡) =

𝐹&
(𝑘 − 𝜔/𝑚 + 𝑖𝜔𝑐) 𝑒

"Ei$ (93) 

 
 

The equation (93) could be written in this way 

 

 𝑥0 =
𝐹0

(1 − 𝑟2) + 𝑖(2𝜁𝑟)) (94) 



 

With  

5.2 MULTIPLE DEGREE OF FREEDOM (MDOF) 

In chapter 4.2. a single degree of freedom has been introduced to describe a structure’s dynamic 

behaviour in the simplest possible terms. However, most of real mechanical systems and structures 

are continuous systems that have infinite degree of freedom and so it is not suitable assuming a single 

degree of freedom for a complete description. Therefore, their behaviour is described by more than 

one coordinate for any instant time. The number of N finite number of degrees of freedom used for 

conducting the analysis must be enough to ensure a reliable result [8]. 

The equation (36) became: 

 

 [𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑥} = {𝑓} (96) 

 

Where [M], [C], [K] are NxN mass, damping and stiffness symmetric matrices respectively. The Nx1 

column vector {ẍ}, {ẋ}, {x} and are the acceleration, velocity and displacement respectively and {𝑓}	is 

the Nx1 vector of the external excitation forces [8]. 

The solution of the equation (96) is obtained by a mathematical procedure called modal analysis, 

where it is possible to find the natural frequency and modes of vibration of the system. 

To determine the natural frequencies, it is needed to start from the undamped system and free 

vibration system and to solve the eigenvalue problem. 

It starts from [3][7][8]: 

 [𝑀]{�̈�} + [𝐾]{𝑥} = 0 (97) 

 

Assuming the solution to be harmonic [3][7][8] 

 

 {𝑥(𝑡)} = {𝑋} sin(𝜔𝑡 + 𝜑)   (98) 

 

Eq (97) can be written [3][7][8]: 

 

 �[𝐾] − 𝜔/[𝑀]�{𝑋} = 0 (99) 

 𝑟 =
𝜔
𝜔l

 (95) 



 

One of the solutions of the system is the trivial solution {X}=	0 but there is no interest in that 

because it means that there is no motion at all. As consequence, to have non-trivial solution, 

 

 𝑑𝑒𝑡�[𝐾] − 𝜔/[𝑀]� = 0  (100) 

 

must be satisfied.  

det[.] stands for determinant and (100) is an algebraic equation, known as the characteristic equation 

which concede N possible positive and real solutions 𝜔#/, 𝜔//, …	 , 𝜔)/ 	called eigenvalue of (51). The 

value 𝜔#, 𝜔/, … , 𝜔) are the undamped natural frequencies of our system [8]. 

Substituting each natural frequency value in (100) and solving each of the resulting sets of equations, 

N possible vector solutions {yr} (with r=1…N) called eigenvector or mode shapes are found. At the 

end, two matrices are obtained: eigenvalue matrix, defined as 

 

 
[𝜔f/] = B

𝜔#/ ⋯ 𝑜
⋮ ⋱ ⋮
0 ⋯ 𝜔)/

C (101) 

 

And eigenvector matrix 

 

 [𝛹] = [{𝜓#}, {𝜓/}, … , {𝜓)}] (102) 

 

The physical meaning consists in the description of the synchronous motion of the system. It vibrates 

freely at N particular frequency values wr with a particular shape defined by the {yr}. For each wr is 

associated a unique{yr}. Each pair of wr and{yr} is known as a mode of vibration of the system [3][7]. 

An important property of the modes shapes is orthogonality properties that make both mass and 

stiffness matrix a diagonal matrix. In fact, It can be demonstrated that [3][7][8]:  

 

 [Ψ]\[𝑀][Ψ] = 	 §
𝑚# ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑚f

¨ = 𝑑𝑖𝑎𝑔(𝑚f) (103) 

 [Ψ]\[𝐾][Ψ] = §
𝑘# ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑘f

¨ = 𝑑𝑖𝑎𝑔(𝑘f) (104) 

 



(56) is called modal mass matrix and (57) is called modal stiffness matrix. These properties of the 

matrix are used to find the free vibration solution.   

It is possible to define the direct modal transformation 

{h(t)} is the vector of the modal displacement 

The vector {x(t)} is expressed as the sum of the response of each modal shapes (superposition of the 

normal modes responses). Therefore, eq. (97) can be written in this way: 

 [𝑀][Ψ]{�̈�(𝑡)} + [𝐾][Ψ]{𝜂(𝑡)} = 0 (106) 

 

Considering (86), (103) and (104), it can be simplified [3], [7], [8]. 

 

Thus, through a simple transformation, the MDOF system has been transformed into N independent 

SDOF systems where each equation of motion depends solely on a coordinate hi [3][7][8]. 

For solving (96), the procedure is the same of (105). Thus, (97) became  

 

 [𝑀][Ψ]{�̈�(𝑡)} + [𝐶][Ψ]{�̇�(𝑡)} + [𝐾][Ψ]{𝜂(𝑡)} = {𝑓(𝑡)} (108) 

 

And the solution is given by 

 

 {𝑋&} =@
{𝜓f}\{𝐹&}{𝜓f}

𝑘f − 𝜔/𝑚f + 𝑖𝜔𝑐f

)

fP#

 (109) 

5.3 FREQUENCY RESPONSE FUNCTION (FRF) 
Eq (94) could be expressed in a different way, as well: 

 

 𝑥& = 𝐻(𝜔)𝐹(𝜔) (110) 

 

 {𝑥(𝑡)} = [Ψ]{𝜂(𝑡)} =@{𝜓E}
)

E

𝜂E(𝑡) (105) 

 {�̈�(𝑡)} + [𝜔E/]{𝜂(𝑡)} = 0 (107) 



𝐻(𝜔) is called the frequency response function. It is a transfer function, expressed in the frequency- 

domain. It expres the structural response to an applied force as a function of frequency (Figure 5.1) 

[17]. The system will respond with a harmonic vibration with the same frequency w	but with an 

amplitude and phase shift, with respect to the force determined by the magnitude and the phase of the 

complex quantity x(w). 

 

 

The frequency response is a complex number with real and imaginary part: 

 

The response could be given in term of displacement, velocity and acceleration. 

If the response is in term of displacement, the FRF is called receptance,  

 

 

if it is in term of velocity, FRF is called mobility  

 

 
𝐻(𝜔) =

1
𝑘 − 𝜔/�����
fDHG

+ 𝑖𝑐𝜔¬
E2HJElHfI

 (111) 

 𝑋(𝜔)
𝐹(𝜔) =

1
(𝜔l/ − 𝜔/) + 𝑗2𝜉l𝜔𝜔l

 (112) 

 �̇�(𝜔)
𝐹(𝜔) =

𝑗𝜔
(𝜔l/ − 𝜔/) + 𝑗2𝜉l𝜔𝜔l

 (113) 

while in term of acceleration, FRF is called inertance 

 �̈�(𝜔)
𝐹(𝜔) =

𝜔/

(𝜔l/ − 𝜔/) + 𝑗2𝜉l𝜔𝜔l
 (114) 

Figure 5.1 Frequency response function chart	



 

In Figure 5.2, it is shown the displacement of the structure. It is possible to note that when r » 1 the 

amplitude of the function reaches the maximum point. That point means that the frequency of force 

excitation w coincides with the natural frequency of the system wn and a condition, known as 

resonance, occurs. The amplitude of the resonance depends on the damping on the structure. In these 

conditions, the system has large and dangerous oscillations and the risk of the failure is high.  

In MDOF, the expression of the receptance is given by: 
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Figure 5.2. Amplitude and phase of the harmonic vibration response 
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(115) shows that receptance is a matrix whose element is a two-point relation: Rjk describe the relation 

between the motion response and the excitation force at a coordinates j and k, respectively.   

In contrast to the SDOF, the plot for MDOF show multiple peaks because there are more than one 

receptance (Figure 5.3). 

 

As it said in chapter 2, the information concerning a random process can be obtain by Power 

Spectral density. In the case the input of random vibration is given in term of PSD, the expression 

of the response is as follow 

 𝑆mm = 𝐻(𝜔)/ ∗ 𝑆RR (116) 

 

Where SXX is the PSD in input and SYY is the PSD in output. PSD dimensionally is: 	FlE$
"

o!
. The term 

unit depends on which physical parameter is evaluated. Following the different units of measure for 

the different parameters are listed 

 

• for Acceleration: (m/s2)2/Hz or g2/Hz 
• for Velocity: (m/s)2/Hz 
• for Displacement: (m)2/Hz 

 
𝐻(𝜔)p- =

𝑋p(𝜔)
𝐹-(𝜔)

=@
®𝜓pf¯

\{𝜓-f}
𝑘f + 𝜔/𝑚f + 𝑖𝑐f𝜔

)

fP#

 (115) 

Table 5.3 Amplitude of the response of a MDOF system 
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• for Force: (N)2/Hz 
• for Stress: (MPa)2/Hz 

 

5.4 DAMPING 

In mechanical vibration, damping is an intrinsic characteristic of the material. It is the cause of energy 

loss each time it is transformed from potential to kinetic energy and back, causing a decrease in time 

of the amplitude of free oscillations. The mechanism of the damping is complex to described due to 

his lack of linearities but approximately his effect is proportional to the speed of the vibrations [9]. 

There are many different type of damping (viscous, coulomb..). The damping explained here is called: 

structural or hysteretical damping. 

Structural damping is an internal friction, that many materials exhibit when subjected to cyclic 

loading. This energy losses per cycle of stress is equal to the area inside the hysteresis loop (Figure 

5.3) 

 

In general, this type of damping doesn’t lead to an easy modelling. However, it is possible to describe 

structural damping as viscous damping, making the analysis easier.  

Experiments performed show that the energy loss per cycle by a structural damping is proportional 

to the square of the amplitude [2][3] 

 

 𝐸 = 𝛼𝐴/ (117) 

 

 Where a is a constant independent of the frequency of the harmonic oscillation. 

The energy dissipated by a viscous damping is  

 

 𝐸 = 𝑐𝜋𝜔𝐴/ (118) 

Figure 5.4 Hysteresis loop 



 

Where it follows that the energy dissipated per cycle is directly proportional to the viscous damping 

coefficient c [2]. 

Comparing eqs (117) and (118), it is possible to affirm that the structural damping can be treated as 

viscous damping [3] if  

 

 𝑐Dq =
𝛼
𝜋𝜔 (119) 

 

Substituting in (36), the expression became as follow  

 

Where 

 

 𝜂 =
𝛼
𝜋𝑘 (121) 

 

Is called factor loss, and where 𝑘(1 + 𝑖𝜂) is defined as complex stiffness, whose real part represent 

elastic component, and imaginary part, loss stiffness [3].  

The receptance is given by:  

 

 
𝐻(𝜔) =

1
−𝜔/𝑚 + 𝑘(1 + 𝑖𝜂) 

(122) 

 

The analogy between structural and viscous damping is valid only for harmonic excitations [2]. 

5.5 MOTION OF A BEAM  

The case that will be studied in this research is the motion of a beam subjected to base excitation. 

Thus, in this section all the theoretical equations will be presented. In Figure 4.3 is shown the model 

that will be analysed. Only flexional modes will be considered and studied 

The motion of the beam could be considered as a roto-translation motion: translation, due to the 

base motion, and rotation around the base constraint.  

 𝑚�̈� + 𝑘(1 + 𝑖𝜂)𝑥 = 𝑓&𝑒Ei$	 (120)  



As far as reference system is concerned, w(t) is the relative translation of the shaker, y(x,t) is the 

relative translation of the beam and z(x,t) is the absolute displacement. Instead, x is just the distance 

of a point of the beam from the constrain. 

 

 

The starting equation is the Eulero-Bernoulli equation [7]: 

 

 
𝜇
𝜕/𝑧
𝜕𝑡/ + 𝑐

𝜕𝑧
𝜕𝑡 + 𝐸𝐼

𝜕<𝑧
𝜕𝑥< = 𝑓(𝑥, 𝑡) (124) 

 

With µ is mass per unit length 

Adding (122) in (124), it follows 

 

 
𝜇
𝜕/𝑦
𝜕𝑡/ + 𝐶

𝜕𝑦
𝜕𝑡 + 𝐸

𝜕<𝑦
𝜕𝑥< = −𝜇r

𝜕/𝑤
𝜕𝑤/ (125) 

 

Where, 𝜇 s"I
s$"

 is the inertia of the beam,  𝐶 sI
s$

  is the damping,  𝐸𝐼 s
+I
st+

 is the stiffness of the beam and 

−𝜇r s
"u
su" is the force excitation due to base motion. 

It has been assumed that the major damping contribution comes from internal energy dissipation 

mechanism so we can neglect the term C ¶w/¶ t. 

The natural frequencies and mode shapes of (74) are achieved by means of separation of variable 

approach: the displacement of a generic variable could be express as a product of a function of 

displacement coordinate and a function of temporal coordinate 

 𝑧(𝑥, 𝑡) = 𝑤(𝑡) + 𝑦(𝑥, 𝑡) (123) 

 𝑦(𝑥, 𝑡) = 𝑌(𝑥)𝜂(𝑡) (126) 
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L0.1883m 2,eff U                                                                    (72)        
 

L0.06474m 3,eff U                                                                   (73)        
 

L0.03306m 4,eff U                                                                   (74)        

 
                                                                                    
 
The effective modal mass terms have units of mass. 
 
 
Response to Base Excitation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. 
 
 
The forced response equation for a beam with base motion is taken from Reference 1, page 345.   
 
y(x,t) is the relative displacement. 
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where w is the base displacement. 
 
The term on the right-hand-side is the inertial force per unit length. 

 
 

w(t) 

y(x, t) 

Figure 5.5 Motion of a fixed-free beam subjected to a base excitation 



 

Starting from 

 

Adding (126) in (127) and solving the differential equation the expression of the mode shapes are 

obtained 

 

Where, 

 

(77) is the expression of the mass-normalized mode shapes  

The eigenvalues are:  

n 𝜷𝒏𝑳 

1 1,875 

2 4,69 

3 7,85 

4 10,99 

5 (2n-1) 

 

 And the natural frequencies: 

 

The displacement of the beam in function of the acceleration of the base is  

 

 
𝑦l(𝑥, 𝜔) = �̈�(𝜔)@ ´

−Λl𝑌l(𝑥)
	[(𝜔l/ − 𝜔/) + 𝑗𝜔l𝜂]

¶
=

lP#

 (131) 

 

 
𝜇
𝜕/𝑦
𝜕𝑡/ + 𝐸𝐼

𝜕<𝑦
𝜕𝑥< = 0 (127) 

 
𝑌E(𝑥) = ´

1
j𝜌𝐿

¶ {[cosh(𝛽E𝑥) − cos(𝛽E𝑥)] − 𝐷E[sinh(𝛽E𝑥) − sin(𝛽E𝑥)]}	 (128) 

 
𝐷E =

cos(𝛽E𝐿) + cos(𝛽E𝐿)
sin(𝛽E𝐿) + sin(𝛽E𝐿)

 (129) 

 
𝜔l = 𝛽l/h

𝐸𝐼
𝜇  (130) 



 with 

 

Defined as modal participation factor, that is, a vector Nx1 where each terms defines the 

contribution of each mode to the global displacement when the system is excited in a relevant 

direction

 
Λl = : 𝜌𝑌l(𝑥)𝑑𝑥

(

&
 (132) 



6 SIMULATION & EXPERTIMENTAL TESTS 

In this chapter, the experimental test and numerical model are illustrated. They were carried out in 

INSA Centre Val de Loire in Blois with the supervision of Professor Roger Serra. 

The aim of this chapter is to show which tests were conducted and how they were performed, but 

overall, how the numerical model was built and which results it offers. 

The logical procedures used to achieve the numerical model are shown (Figure 6.1) 
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Figure 6.1Procedures for validation of numerical simulation 



 

6.1 SPECIMEN 

The specimens used for experimental parts, identified by the names A_1 and A_2 is made of AISI 

304, a common stainless steel. The specimen’s geometry (Figure 6.2 and 6.3) was chosen for 

several motivations. The first concerns its thickness which must be small to avoid a high rigidity 

and log time to lead it to failure. The second is about the two notches which are stress concentration 

point and help to speed up the propagation of the crack. The specimens are made for breaking up in 

the Notch 1, highly deformed when excited in the second modal frequency and with the highest 

stress  (Figure 6.3).  

 

 

The physical properties are reported in Table 5.1. 

 

Specification Specimen A_1  Specimen A_2 

Thickness [mm] 1,19 1,19 

Mass [kg] 0,1127 0,113 

Volume [mm3] 14118,38 14118,38 

Density [kg/m3] 7982,50 8003,75 
Table 1 Specimens’s physical properties 

Mass and thickness have been measured experimentally, volume has been extracted by means of 

Solidwork and density has been obtained by the ratio between the mass and the volume  
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6.2 EXPERIMENTAL INSTRUMENTS  

The experimental instruments used are: 

• Impact hammer  
• Piezoelectric Accelerometer 
• Electrodynamic shaker with closed loop control system  

6.2.1 Impact Hammer  

The Impact Hammer (Figure 6.4) is an instrument equipped with a force sensor, made by a material, 

called piezoelectric, that emits an electrical charge in response to an applied stress. This charge is the 

output signal which provides a measurement of the amplitude and frequency content of the energy 

stimulus that is imparted to test object [19]. 

 

Specification Value 

Model IH-02 

Sensitivity [mV/N] 2.5 

Measurement Range  

(Compression) 

200N 

Overload Capacity 120% 

Temperature Range  -54 to +121 °C 

Excitation Voltage  20 to 30 VDC 

Constant Current Excitation 2 to 20 mA 

Output Impedance £ 100 Ohm 

Output Polarity Positive  

Hammer Head Weight 80gm 

Hammer Head Diameter 16mm 

Hammer Length 250mm 
Table 2 Impact Hammer technical data [19] 

Figure 6.4 Impact Hammer 



6.2.2 Piezoelectric Accelerometer 

Piezoelectric Accelerometers (Figure 6.6) are transducers that employ piezoelectric materials to 

measure the acceleration. Those material act as springs connecting the base of the accelerometers to 

a seismic mass. When accelerometer is vibrating, a force, equal to the product of the seismic mass’s 

acceleration and seismic mass itself, is applied on the piezoelectric element. This element produces a 

charge proportional to the force, and as consequence to the acceleration of the seismic mass, given 

that the seismic mass is constant (figure 6.5). 

6.2.3 Electrodynamic shaker 

The Electrodynamic shaker is extremely popular in vibration testing. It is composed by two elements: 

fixed and moving (Figure 6.7). The fixed part, called exciter base, is a permanent magnet and a field 

coil. Instead, the moving element, called armature, is the part that shift axially, transferring the move 

to the specimen attached to the table, the structure’s end. The armature consists in other two parts: 

spider and coil. The spider is the structure that connects the armature’s table with coil. The coils 

consist in copper wire rolled up around a nonmagnetic core made by an aluminum or magnesium thin 

shell. Flexures support the armature impeding any lateral or rotational motion but letting the axial 

motion. A cooling system is usually present for protecting the machine from an overheating  

Figure 6.6 Accelerometer  Figure 6.5 Accelerometer cross section 

Figure 6.7 Electrodynamic shaker cross section 



The operating principle of this machine is based on the Lorentz law. It receives in input a voltage and 

the corresponding I(t) and the interaction between the electrical current and the magnetic flux of 

permanent magnet creates a force that allow the traslation of the armature.  

The model used for the testing is LDS V780 series produced by Bruel & Kjaer (Figure 6.8). 

 

Specification Value 

Body Mass 381.0 kg 

Sine force peak 5.12 kN 

Max. random force RMS 4.23 kN 

Half sine Shock Force 9.5 kN 

Velocity 1.90 m/s 

Max. acceleration sine peak 111 g 

Max. acceleration RMS 490 m/s2 

Displacement continuous peak-peak 25.4 mm 

Moving element mass 4.7 kg 

Armature Resonance 2950 Hz 

Usable frequency range DC- 4 kHz 

Total Heat Dissipation (from body) 3.20 kW 

Total Heat Dissipation (from cooling fan) 4.8 kW 

Ambient working Temperature 0-30 °C 
Table 3 Shaker technical data [16] 

 The entire system is led by a control system in closed loop. The user, by means of a computer, 

generates an output signal which set the acceleration shaker must produce. The aim of the control 

system is to guarantee that acceleration signal emitted by the software coincides with the effective 

Figure 6.8 Electrodynamic shaker used for testing 



shaker’s acceleration and to reduce to lowest value the difference between these two signals. The 

control system used is m+p International. In Fig. 6.7 a general layout of the system is illustrated 

6.3 EXPERIMENTAL ACTIVITY 

The experimental activity is constituted by three parts:  

• Experimental modal analysis (EMA) with impact test: it is a technique which provides a set 

of modal parameters that characterize the dynamic behaviour of a structure: natural 

frequencies, modal damping, and mode shapes of the specimen. The instruments used are 

impact hammer and accelerometer. 

• Steady state dynamic (SSD) analysis (Sine test): It provides the steady-state amplitude and 

phase of the response of a system due to harmonic excitation at a given frequency. The 

instruments used are electrodynamic shaker and accelerometer. 

• Fatigue cycles loads: the specimen has been subjected to random load till its failure in order 

to evaluate the fatigue damage. The instrumentations are the same of SSD analysis 

 

The signals produced by electrodynamic shaker were Ergodic, Gaussian with zero mean value. 

6.3.1 Experimental modal analysis   

The experimental modal analysis has been conducted with the help of LMS Test.lab, a software 

produced by Siemens. It consists in a multichannel data acquisition system connected to the hammer 

and to the accelerometer. The software receives the data of the measures from the hammer and 

accelerometer and elaborate them with the aim of detecting the dynamic behaviour of the specimens 

and extracting the modal parameters. 

Given that the two specimens were made of the same material and had the same geometry, only one 

specimen were used for the test. 
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5. Locati method 

The Locati method was proposed by L. Locati in 1955 to accelerate fatigue experiments and obtain fatigue property 
curves for materials fast (L.Locati, 1955). This method uses a step load to replace a very constant load, which greatly 
reduces the test time and also reduces the number of test pieces required.  

With Locati method, it is possible to approximately estimate the fatigue limit when some fatigue parameters are 
known in advance, e.g. the slope of the S-N curve’s left branch. The Locati method is based on Miner law. 

This method uses the gradual loading of the tested specimen. The initial stress value should not exceed the lowest 
expected value of fatigue limit. The fixed increment of the gradual load amplitude is assumed in the method. Similarly, 
the assumed number of cycles ni=ΔN to be executed at individual levels is also fixed. Three curves are assumed based 
on the slope of the material S-N curve. At the bottom is the minimum estimate, the top is the maximum estimate, and 
the middle is the estimated mean. These three curves will have three intersections with the previous experimental 
plots.  

Record the intersection point S and N, and calculate the damage caused by each load Si (i=1,2,3) when the duration 
is N, and record it as Di (i=1,2,3) . The D-S curve is then plotted based on the Si and Di and S-N curve shapes. When 
D=1, through the curve, the fatigue limit of the structure Sf can be obtained. 

 

Fig. 2. (a) Step-stress applied in Locati method, (b)Damage-Stress curve based on step stress load 

 

6. Experimental random vibration fatigue test 

According to the adapted Locati method, before the simulation, one complete step load fatigue test should be 
performed, the life Le was recorded and used into fatigue analysis. The fatigue experiment of random vibration is 
usually performed by a vibration shaker and o close loop control system. A specific input acceleration signal usually 
expressed by PSD within the specified frequency range. 

In order to speed up the experiment and ensure the damage to appear in the observable position, the specimen is 
designed with two notches and the stress is concentrated at the notch position by changing the cross-sectional area, 
which means that the crack initiation and expansion area has been knowing. Through the CAE design, the length of 
the specimen is adjusted so that the displacement of the second bending mode is at the maximum position in the 
middle of the first notch. 

a b 

 Y.WANG, R.SERRA & P.ARGOUL/ Structural Integrity Procedia 00 (2019) 000–000  6 

 

Fig. 3.Specimen geometry 
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property of material can be found from the material card. According to the measurement of the specimens, the actual 
quality can be obtained, the average of 5 specimens is 113.6g. After the actual material density can be calculated as 
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Fig. 4.Schematic diagram of the test 

Through the modal analysis, the bending mode of the specimen under the clamping-free state can be obtained. 

Table 1. Bending mode of the specimen by experiment 

Mode 1 2 3 

Natural 
frequency (Hz) ����� ����� ������

 
For Gaussian random vibration, PSD used to describe the level of acceleration. This time, the acceleration for a 

constant RMS value within the range of the second bending mode evaluation is selected. According to the modal 
DQDO\VLV�UHVXOWV��ORDG�IUHTXHQF\�UDQJH�FKRRVH��������+]����������+]���VR�WKH�EDQGZLGWK�LV���+]��)RU�WKH�LQLWLDO�ORDG��
choose S0=0.25 g2�+]��FKRRVH�D�VWHS�VL]H�RI�¬=0.05 g2�+]�XQWLO�LWV�IDLOXUH��&KRRVH�WKH�ORDG�VKDSH�DV�IROORZV�DFFRUGLQJ�
to the Fig.5.  

Through PSD calculation, it could obtain the equivalent acceleration with unit g for all the level of the load as 
Table 2, it can be found that these two parameters are linearly related in the sample PSD  (DE.Newland, 1993). 

&losed loop 

Accelemeter 

Figure 6.9 General layout of the system 



To conduct the experimental tests, a numerical model that reproduce the specimen’s geometry on is 

mandatory. 

 

 

The interest of the research concerned just flexional oscillations, therefore, only points on the 

longitudinal axes were hit by the hammer 

The specimens were fixed to on extremity for a length of 32mm, like a cantilever beam and the 

accelerometer was placed on the free extremity of the specimen (Figure 6.11). 

 

The measures were executed hitting six different points with the hammer. The equivalent points on 

the model of those hit on the real specimen are shown in Figure 6.12. 

Figure 6.10 Geometry of the specimen in LMS 

Figure 6.11 Specimen clamped according to the operative condition 

Figure 6.12 Points of the specimen hit by the hammer 



For each measure, the software created an accelerated-frequency response function of the free end of 

the specimen (figure 6.13). 

 

 

Successively, the analysis proceeded with the identification of modal parameters by means of 

stabilization diagram 

Stabilization diagram (Figure. 6.14) is a graph where the frequencies are plotted as the x-axis and the 

model orders as the y-axis. The main purpose using the stabilization diagram for detecting the 

parameter is to distinguish physical modes from spurious modes. Spurious modes are modes that 

don’t match with real vibration modes of the specimen, they are caused by noises or filtering mistakes 

from the software. 

In this diagram, physical and spurious modes are represented by multiple graphical symbols.  

The symbols used in LMS are f, o, s, v. Symbol ‘s’ indicates a, so called, stable pole, that is equivalent 

to a physical mode. Instead, the other symbol represents spurious mode or, so called, unstable pole. 

The stable poles usually appear at a nearly identical frequency, forming a vertical column, while the 

unstable poles tend to scatter around the frequency range.  

The frequencies where the stable points form a column are usually the resonant frequencies. It could 

be the possibility that, in some circumstance, some columns of stable poles are placed in different 

frequencies from that of resonant. For choosing the right stable point, the Mode Indicator Function 

(MIF) is plotted (green line in Fig. 6.14).  

Figure 6.13 Accelerated-FRF of the measures 



 

 

The stable poles in blue are the selected ones. The poles identification required a large user experience 

[20], in fact for choosing the correct poles has relied on the professor’s experience.  

The modal parameters extracted from stabilization diagram are 

Mode Frequency [Hz]  h (%) 

1 14,02 7,75 

2 76,30 2,62 

3 238,10 1,40 
Table 4 Modal Parameters from EMA 

The modes shapes are 

a b 

c 

Figure 6.15 Flexional mode shapes : a) first mode, b) second mode, c) third mode 

Figure 6.14 Stabilization diagram obtained for specimen A_1 



6.3.2 Steady State Dynamic Analysis – Sine test 

Steady-state dynamic analysis, or Sine test, consists in the measure of the amplitude and phase of the 

response of a system due to harmonic excitation at a given frequency, also called, Frequency 

Response Function (Chapter 5.3). Usually, such analysis is a frequency sweep where a force at a 

constant amplitude in a frequency range is applied and the response is recorded. The response can be 

measured as displacement, velocity or acceleration.  

The analysis has been conducted with the help of an electrodynamic shaker. The specimen has been 

clamped on the top of the shaker for a length of 32cm and the accelerometer has been placed on the 

free end of the specimen (Figure 6.16 e 6.17). The frequency range chose for the analysis is 10-300Hz 

and the amplitude of the load is given in terms of acceleration, 1g.  

In Figure 6.18, it is shown the computer’s display after the sine test. In the top, there is the acceleration 

that shaker produced in input, in the middle, the error between the effective shaker’s acceleration 

produced and the target acceleration it should have produced, while in the bottom the specimen’s free 

end acceleration in frequency range.  

Figure 6.17 Experimental setup (top view) 

Figure 6.17 Experimetal setup 

Figure 6.16 Experimental setup (top view) 



In figure 6.19, the free end acceleration for both specimens are shown. In table 4 the value of the 

amplitude and frequency of the peak of accelerated FRF are shown. 

 

Specimen Frequency [Hz] 
Df (Exp-LMS) 

[Hz] 

Relative Error to 

LMS (%) 
Amplitude [g] 

A_25 

15,89 1,87 13,3 24,49 

81,54 5,24 6,9 27,07 

232,043 6,057 2,5 15,92 

A_26 

16,09 2 14,3 24,20 

83,28 6,98 9,2 28,77 

237,16 5,12 2,2 17,85 
Table 5: Amplitude and Frequency of the Accelerated FRF 

It could note that the resonant frequencies obtained with sine test are quite different from those 

extracted from EMA. The explanation of that difference could be found in the application of the 

load (impact and random excitation). 

 

Figure 6.18Sine test: input acceleration (top), error between output acceleration and input acceleration (middle), 

acceleration of specimen's free end(bottom) 



6.3.3 Fatigue cycles loads 

The last experimental part was the fatigue cycle tests. The instrumentation is the same of the previous 

analysis: electrodynamic shaker and accelerometer. For analyzing the fatigue damage, Locati method 

has been used. This method was proposed by L. Locati in 1955 with the aim of accelerating fatigue 

experiments. A step load instead of a constant load is used, this should reduce the test time and the 

number of test pieces required too. The specimen is loaded, for fixed time interval, by an initial stress 

value which should not exceed the lowest expected value of fatigue limit [14]. After that time interval, 

the load is increased of a fixed increment till the specimen has a failure.  

In this analysis, the load is expresses in terms of Power Spectral Density (PSD) in [g2/Hz]. The fixed 

time interval is 1h, the initial load is 0,25 g2/Hz and the fixed increment are 0,05 g2/Hz. 

The specimen A_1 had a failure after 10h42min with a PSD of 0,75 g2/Hz (Figure 6.20). Instead, the 

specimen A_2 had a failure after 11h14min with a PSD of 0,8 g2/Hz (Figure 6.21). The amplitude of 

frequency range was 80 Hz centered on the second frequencies obtained in SSD analysis: for 

specimen A_1, 41-121 Hz while for specimen A_2, 43-123. The decision to have a frequency range 

centered in the second frequency is dictated by the intention of working with a wide frequency band. 

In the case it had worked around the first frequency the band would have not been so wide, because 

it is too close to 0Hz, and the amplitude would have not been higher than 20Hz. 

 In addition to PSD, the value of equivalent acceleration expressed in [g] (gRMS) for all the level of 

load is given by:  
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Figure 6.19 Experimental accelerated-FRF 



 

Test PSD [g2/Hz] RMS [g] Time [s] 

1 0,25 4,472 3600 

2 0,3 4,899 3600 

3 0,35 5,292 3600 

4 0,4 5,657 3600 

5 0,45 6,000 3600 

6 0,5 6,325 3600 

7 0,55 6,633 3600 

8 0,6 6,928 3600 

9 0,65 7,211 3600 

10 0,7 7,483 3600 

11 0,75 7,746 2520 
Table 6 PSD Load and gRMS for specimen A_1 

 

Test PSD [g2/Hz] RMS [g] Time [s] 

1 0,25 4,472 3600 

2 0,3 4,899 3600 

3 0,35 5,292 3600 

4 0,4 5,657 3600 

5 0,45 6,000 3600 

6 0,5 6,325 3600 

7 0,55 6,633 3600 

8 0,6 6,928 3600 

9 0,65 7,211 3600 

10 0,7 7,483 3600 

11 0,75 7,746 3600 

12 0,8 8 876 
Table 7 PSD Load and gRMS for specimen A_2 

 𝑔𝑅𝑀𝑆 = j𝑃𝑆𝐷 ∗ ∆𝑓  



 

  

The fatigue failure for the two specimens occurs in the notch 1, because it is the most deformed and 

most stressed point in the structure when the frequency is close to second resonant (Figure 6.22). 
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Figure 6.20 Cycle Load for specimen A1 
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Figure 6.21 Cycle Load for specimen A2 



6.4 NUMERICAL SIMULATIONS 

All the experimental analysis were reproduced with numerical simulation by means of two software: 

ABAQUS and nCode with the purpose of recreating a precise model of the specimens to analyze the 

fatigue damage  

 

6.4.1 Numerical Modal Analysis  

The numerical modal analysis has been implemented with ABAQUS.  

The first step of the analysis was to create the mesh of the model (Figure 6.22). The mesh was made 

of 4408 hexagonal elements. 

For carrying out the analysis, the software required the mass density value and the Young’ module 

value (E). The first one is obtained by the average of the mass value of the two specimens (112,9 kg), 

instead, as far as the second one is concerned, an iteration has been required. The value of first attempt 

has been extracted from the natural frequencies obtained from EMA (Table 4) with the expression 

 
𝐸 = 	

𝜔l/	𝜇
𝛽l<	𝐼

  

 Figure 6.21 Specimen after the failure 

Figure 6.22 Mesh of the model 

Figure 6.22 Specimen failed 



The frequencies resonant extracted from EMA were considered a little more reliable than those 

obtained from shaker, because they could be affected by a non-perfect clamping. 

Afterward, the value of E has been updated to obtain from simulation natural frequencies values close 

to experimental value. The final value of E was 190MPa. 

As far as boundary condition is concerned, one of the extremities of the model were constrained for 

a length of 32 mm (Figure 6.23), preventing any translations or rotations. 

Successively, the natural frequencies, the participation factor, the effective mass that contribute to the 

single vibration mode (Table 8), and the firsts three flexional modes shapes (Figure 6.24 a, b, and c) 

were extracted.   

 

Mode Frequency [Hz] Participation factor Effective Mass 

1 15,5 0,046 2,11E-03 

2 82,9 0,013 1,80E-04 

3 224,2 0,005 2,48E-05 
Table 8 Natural Frequencies, participation factor, and effective mass from numerical simulation  

The relative errors between the numerical natural frequencies and the experimental ones are shown 

in Table 9. 

 

Mode Df (Sim-

LMS) 

[Hz] 

 Relative 

error to LMS 

(%) 

Df (Sim-

A25) [Hz] 

Relative error 

to A_25 (%) 
Df (Sim-

A26) 

[Hz] 

Relative error to 

A_26 (%) 

1 1,5 10,5 0,3 2,5 0,6 3,7 

2 6,6 8,71 1,4 1,8 0,4 0,3 

3 13,9 5,8 7,8 3,3 13 5,4 

Table 9 Comparison between numerical and experimental results 

Figure 6.23 Boundary condition of the model 



 

In table 8, it is possible to note that the flexional mode 1 has the highest participation factor between 

the three modes and the highest effective mass. It means that the first mode participates more than 

the other modes in the global motion of the specimen but overall, it involves more mass than the 

others.  

6.4.2 Numerical Steady State Dynamic  

In Abaqus such analysis is based on modal superposition technique, considering the modes extracted 

in the step before. The frequency range considered is 0-300 Hz.  

As far as modal damping is concerned, it has been decided to select a structural damping, considered 

as the most precise. As it happened for Young’s module, an iteration for obtaining correct values of 

modal damping has been performed. The first attempt values were those obtained in EMA (Table 4). 

Later, thanks to the experimental value, modal damping values were calibrated and validated, 

obtaining the following results 

 

 Mode  h (%) 
1 6,8 
2 3,1 
3 3 

Table 10 Damping Value Updated 

a b 

c 

Figure 6.24 a) 1^ flexion mode, b) 2^ flexion mode, c) 3^ flexion mode. 



 

The amplitude of the harmonic oscillation, corresponding to 9,81 m/s. In figure 6.25, the acceleration 

of specimen’s free end is shown 

In Table 10 the value of the amplitude and the frequency of the peaks are illustrated 

The simulated acceleration results to be very close to those gathered experimentally, especially in 

the first and second resonant. The displacement of specimen’s free end and the stress distribution 

are shown in figure 6.24 and figure 6.25 

 

Mode Frequency [Hz] Amplitude [g] 

1 15,4924 23,8738 

2 82,945 28,9776 

3 224,505 17,873 
Table 11 Amplitudes and frequencies 
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Figure 6.25 Acceleration of free end: simulation vs experimental 



  

Unlike the acceleration and displacement, the stress distribution was obtained from the notch 1 

(Figure 6.28 & 6.29), considered as the most stressful zone in the specimen and where the failure 

occurs.  
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Figure 6.26 Displacement of the free end 

0 50 100 150 200 250 300
Frequency [Hz]

0

0.5

1

1.5

2

2.5

3

St
re

ss
 [P

a]

108 PSD stress

Figure 6.27 Stress distribution in Notch 1 in frequency range 



To conclude, the ABAQUS model reveals to be very accurate and very representative of the real 

behavior of the specimen. Thus, it has been validated and it has been possible to continue the 

numerical analysis. 

6.4.3 Numerical Fatigue cycles loads 

The fatigue cycle loads numerical simulation is carried out by the software nCode DesignLife. This 

software contains several sets of solvers and advanced methods for predicting structural durability 

and for calculating realistic fatigue lives from finite element analysis (FEA) result files.  

In this research, it was used for reproducing in numerical terms the effect of the experimental loads.   

 

In figure 6.30 it shown the interface of the software. As it shown, for carrying out the analysis, a 

series of boxes are connected between them by means of lines. The boxes from which the lines start 

Figure 6.28 Stress distribution on notch 1 

Figure 6.29 Ncode Display 



containing the information in input (FRF_input and PSD_input), those where the lines finish 

contain the information in output (FE_output and Results) while the only box, where the line start 

and finish, is the one which enable the fatigue calculation to be carried out to simulate vibration 

testing (Electrodynamic shaker).  

The input nCode require are the FRF results file obtained from ABAQUS (FRF_input) and the value 

of PSD (PSD_input).  

The informations in output provide the fatigue damage produced by each cycle (Table 12 & 13) and 

the display of stress distribution in the specimen (Figure 6.31) 

It has been necessary to run as many simulations as the number of load steps. Considering that the 

specimen A_25 failed at 0,75 g2/Hz but specimen A_26 failed at 0,8 g2/Hz, the simulation at load 

level at 0,75 g2/Hz has been done twice, one at time duration of 2520 s and the second for 3600s 

The results of the numerical simulation about the two specimens are illustrated in table () 

 

Test PSD [g2/Hz] gRMS [g] Damage RMS Stress [Pa] Time [s] 

1 0,25 4,472 0,0077 6,85E+07 3600 

2 0,3 4,899 0,0164 7,51E+07 3600 

3 0,35 5,292 0,0292 8,11E+07 3600 

4 0,4 5,657 0,0465 8,66E+07 3600 

5 0,45 6,000 0,0684 9,19E+07 3600 

6 0,5 6,325 0,0951 9,69E+07 3600 

7 0,55 6,633 0,1269 1,02E+07 3600 

8 0,6 6,928 0,1635 1,06E+08 3600 

9 0,65 7,211 0,2055 1,11E+08 3600 

10 0,7 7,483 0,2528 1,14E+08 3600 

11 0,75 7,746 0,1269 1,02E+08 2520 

  Total 1,14   
Table 12 Simulation results of Locati test of specimen A1 

Test PSD [g2/Hz] gRMS [g] Damage RMS Stress [Pa] Time [s] 

1 0,25 4,472 0,0077 6,85E+07 3600 

2 0,3 4,899 0,0164 7,51E+07 3600 

3 0,35 5,292 0,0292 8,11E+07 3600 

4 0,4 5,657 0,0465 8,66E+07 3600 

5 0,45 6,000 0,0684 9,19E+07 3600 



6 0,5 6,325 0,0952 9,69E+07 3600 

7 0,55 6,633 0,1269 1,02E+07 3600 

8 0,6 6,928 0,1635 1,06E+08 3600 

9 0,65 7,211 0,2055 1,11E+08 3600 

10 0,7 7,483 0,2528 1,14E+08 3600 

11 0,75 7,746 0,3057 1,19E+08 3600 

12 0,8 8 0,0886 9,51E+07 876 

  Total 1,40   
Table 13 Simulation results of Locati test of specimen A2 

The stress distribution after a single fatigue cycle load in the specimen is shown in Figure 6.31 

For computing the total fatigue damage, the linear damage accumulation method, according to 

Palmgreen and Miner’s rule, has been used.  

As it can see in the two table, the total fatigue damage after the failure for both the specimen results 

to be slightly bigger than one. In fact, as said previously, the Palmgreen and miner’s rule is just an 

approximation. It has been demonstrated that not always a material has a failure when the critical 

damage is equal to one. In fact, this method doesn’t consider the order of the loads. If the load starts 

from low level, and later it increases, it could be possible that the failure occurs when the damage is 

bigger than 1 [4].  

Therefore, it could conclude by stating that the model reproduces with reliable accuracy the fatigue 

behavior of the specimen. 

 

Figure 6.30 Stress distribution in nCode 



7 CONCLUSION 

To summarize, in this research it has been observed that Random vibrations are a dangerous 

phenomenon. In these cases, instantaneous vibration amplitudes are not highly predictable as the 

amplitude at any point in time is not related to that at any other point in time.  

The unpredictable behavior makes difficult to calculate the useful life and the design of the 

component. Predicting fatigue life under random vibration loads is critical requirement. 

The use of the method proposed in literature could be a good practice, but considering that they offer 

just an approximated result, they don’t appear to be so accurate as required. 

Conducting as many tests as possible could offer a valid solution, but it could result to be very 

expensive, and it could require long time. 

Numerical simulation appears to be a good way for solving the critical problem.  

In this research, a numerical model for calculating fatigue damage has been proposed. The results 

obtained seem to be very accurate and close to experimental values. They give a good representation 

of the resonates frequencies mode shape, and modal damping. The estimation of the fatigue result 

using the linear accumulation theory appear to be representative of experimental evidence.  

This model, purposely, takes into consideration just the uniaxial case. As further step, it could be 

interesting to extend this model to multiaxial case as well or to add the analysis of the crack 

propagation. 
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