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Abstract 
 
The aim of the Master Thesis is to develop, study and validate a path planning 

algorithm that can support the navigation of rovers for planetary exploration. In 

particular, the objective is to develop a global path planning algorithm that could be 

integrated in the rover auto-nav system in order to improve the autonomy and velocity 

of the planetary rover. 

Global path planning using grid-based model of the environment is a well-known 

problem in AI, planning and robotics with a variety of methods and algorithms 

proposed so far.  

This work presents a deep-learning approach to the path planning problem. In particular, 

grid maps, containing information about the traversability of the terrain, are suitable 

input to modern neural networks, such as convolutional neural networks. 

The thesis proposes a modern approach, based on the recent advances in deep learning, 

in order to treat the path planning problem as an Image-to-Image translation problem. 

Specifically, this thesis applies a Generative Adversarial Network (GAN) and reports 

the main, obtained results. 

The GAN network is trained using a wide enough dataset, which contains a set of grid 

maps, start and goal nodes, and feasible set of paths generated by any well-known 

algorithm. This kind of approach allows to generalize the path planning problem. The 

main advantage is that we can use any algorithm, from the simpler to the more complex 

one, for the generation of training dataset and in such a way the deep learning 

architecture, trained properly, replaces the necessity to execute the path-planning on-

board classic algorithm using a mathematical model that works only with tensor 

operations. 

In our tests, in order to generate the paths for the training dataset the well-known and 

effective algorithm A* is used. 

The network used, for our application, is a modified version of the Pix2Pix model, 

introduced by Philip Isola et al. in the paper “Image-to-Image Translation with 
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Conditional Adversarial Networks” (2018) which is a revisitation of the common 

Conditional Adversarial Network. 

Using this kind of architecture allows us to influence the generation of the image in 

such a way that is a plausible translation of the input images, which means having a 

correct path generated given the generator inputs: environment map and start and goal 

nodes. 

We conduct a number of experiments in order to validate the effectiveness of the 

proposed method, and the results demonstrate how the model adapts well to changes in 

the position of obstacles in the environment. 

This work is a part of a research project called SINAV, sponsored by Italian Space 

Agency. The objective of SINAV is the development of High-Speed Autonomous 

Navigation Systems for future missions of robotic planetary exploration.  
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Chapter 1 
 

Introduction 
 
 
Historically, Planetary exploration rovers are initially conceived as surface mobility 

systems to explore safely and efficiently the planetary surface once the man is there. In 

this perspective, the mobile systems are needed to assist the astronauts in the day-to-day 

operations, in order to accomplish many tasks ranging from site preparation, 

construction, and local transportation. This is the idea of the Apollo Lunar Roving 

Vehicle (LRV) that allows the Apollo astronauts to extend their range of surface 

activities.  

Naturally, in these decades, the idea behind the rover exploration is muted. Many efforts 

were done in order to make mobile robots as autonomous as possible. This makes not 

strictly necessary the presence of astronauts for planetary exploration and allows to 

explore space environments where humans cannot yet go. We have numerous examples 

like Mars Exploration Rover (MER) mission involving two Mars rovers, Spirit and 

Opportunity, Mars Science Laboratory (MSL), involving curiosity rover and Mars 2020, 

involving Perseverance rover. 

Improving the level of autonomy of a mobile robot means that the role of humans, in the 

loop of controllability, is less and less important. This improves the navigation robot 

efficiency because the problem of communication delay has a minor impact. It is 

important to note that the level of autonomy strongly impacts the scientific mission 

return. In particular, the higher the level of autonomy the faster the rover can reach the 

selected scientific targets. This allows to minimize the time employed to traverse the 

terrain from one location to another and to increase the time dedicated to perform 

scientific measurements.  
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In order to obtain a detailed planetary exploration, the autonomous mobile robot must 

be capable to move to different locations for a wider exploration area. It must offer 

adaptability and flexibility in order to reach specific targets for scientific analysis. 

Contrary to the traditional terrestrial mobile robots, in the planetary exploration we have 

a series of additional constraints which must be considered:  

o communication problems caused by extensive signal time-of-flight and limited 

communication windows 

o adverse terrain that is characterized by limited features which makes harder the 

self-localization 

o limited power 

o hostile ambient conditions. 

These constraints have a significant impact in the design and in the methodologies 

employed by the planetary rovers. 

Specifically, the core of an exploration rover is the autonomous navigation system that 

permits it to traverse the terrain and reach the specific goal, which is typically a target of 

scientific interest. The navigation system involves four main processes that allow it to 

sense the environment and build a feasible strategy in order to safe traverse the terrain 

and react to eventual unexpected situations: 

o perception of the environment 

o self-localization with respect to landmarks 

o path planning 

o path traversal. 

The rover, through its perception system, is required to construct a geometric map of the 

local environment around it and localize itself with respect to visual landmarks. Fig.1 

shows the general architecture for the autonomous navigation system of a rover. 

 



5 
 

 

Figure 1 – General architecture of rover navigation system [1] 

 

1.1 Path Planning Problem Statement 
 

The purpose of this section is to properly introduce the problem of path planning 

presenting all the factors involved in the definition and solution of it. 

In order to better explain the problem, we can define: 

o the agent (the mobile robot) which is the entity able to perceive the environment 

through a priori or extrapolated information 

o the state as the information which defines the condition of the agent inside the 

environment 

o the action as the operation performed to bring the agent from current state to the 

next one (a simple state can be the agent coordinates in the environment) 

The path planning problem consists in finding a feasible path that allows the agent to 

reach a given state. Specifically, in a typical approach, given a set of possible feasible 

paths the path planning aims to find the optimal path which minimizes a specific cost 

function. So, the latter represents the optimality criterion on the basis of which we 

operate the choice.  

A typical criterion is the obstacle avoidance. The primary objective of a path planning 

algorithm is to find a collision-free path which allows the rover to avoid all obstacles, 

considering their shape, size and orientation. Naturally, the path should be as short as 

possible, and the smoothness of the path should meet dynamics constraints of the 

mobile robot. Other important factors in mission planning are time, operational 
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constraints, optimization of the energy resources and the limited on-board 

computational resources. 

The strategy adopted to solve the path planning problem strongly depends on the 

environment properties. Specifically, the environment could be either completely 

known (static or dynamic), partially known, unknown. In the first case, the agent has a 

prior knowledge of the environment, so the path planner can evaluate an initial path to 

follow, monitoring possible dynamic changes of the environment. If there are changes, 

as dynamic obstacles, it updates the path consequently. In the second case, the agent 

extracts environment features using its perception system and it takes decision based on 

the obtained information. In the third case, having a partial information about the 

environment, the path planner generates an initial path which is corrected during the 

motion of the agent using the detailed information extrapolated by the perception 

system.  

Moreover, in the path planning process, depending on the quantity of information that 

we have about the environment path planning can be divided into two categories: global 

and local path planning. The first solves the path planning problem using a larger, 

almost complete, environmental information. In this case, the planner produces a 

complete path from start location to final location. The second solves the problem while 

the mobile robot is moving, taking local data of the environment from the perception 

sensors and usually is performed in unknown or partially known environments.  

The path planner can also use both approaches, using the global planner to generate a 

first raw path and the local planner to meet dynamic and kinematic constraints. 

In this work of thesis, we focalize our attention on the global path planning strategy 

which is the approach chosen for solving the path planning problem.  

Currently, the global path planning approach is limited by the fact that we have not a 

complete knowledge of the environment. In particular, we have only partial global 

information which are given from satellite images. Considering, HiRISE (High 

Resolution Imaging Science Experiment), which is an acquisition images device 

mounted on the Mars Reconnaissance Orbiter, it gives us sensing data for Mars 

including images with 25 cm/pixel resolution. Although this dataset contains high 

resolution images it gives limited terrain information about the current conditions at the 
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surface. Moreover, small rocks remain undetected, and they could be critical hazards to 

the rovers. 

In future, this limitation could be overcome using additional devices, which are at 

different levels (orbit and flight devices) that allow to explore and capture a larger 

region, which gives a sufficient detailed global information to use a global path planner. 

These devices are conceived to work in close cooperation with the exploration rover 

allowing to have a detailed and always updated global information at different levels. A 

practical example is Ingenuity, which is a small robotic helicopter which operates on 

Mars as part of NASA Mars 2020 mission and cooperates with Perseverance rover [2] 

(Fig. 2). Fig.2 shown rover and copter Ingenuity cooperation whereas Fig. 3 shown a 

possible architecture of global path planning in the future exploration missions. The less 

uncertainty in the global path planning strategy can significantly improve the level of 

autonomy and the rover speed. 

 

 

 

Figure 2 - Rover/copter cooperation for Mars exploration [2] 
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Figure 3 - Global path planning architecture 

 

 

 

1.2 Methods and solutions adopted  
 

In this scenario of application, we propose a new solution for global path planning 

which is based on the new recent developments in deep neural networks. The proposed 

algorithm treats the path planning problem as an image-to-image translation problem. In 

particular, given the image representation of the environment, it evaluates a plausible 

translation of the environment which corresponds to a feasible path to follow. In order 

to perform a plausible translation, the algorithm required a learning process which aims 

to minimize a certain loss function that classify how good the network is to relate input 

(map environment) and output (path).  

In order to train the network, we use a learning dataset which contains a set of 

environments, start and goal locations, and corresponding feasible paths which have 

been computed using a well-known path planning algorithm. So, the proposed approach 

is based on imitation learning. The neural network tries to find a solution path of an 

unknown environment imitating the behaviour of a well-known algorithm. The solution 
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is an approximated and comparable trajectory with respect to the one that the well-

known algorithm would have generated.  

This approach is justified by the fact that the learning-based method presented here tries 

to achieve a behaviour which is effective for exploration. In particular, the proposed 

solution, after the offline training phase, aims to solve  a path planning problem using as 

information only the real-time acquired global information about the environment. This 

allows to instantly find the path without problem of convergence time or local minima 

caused by the complexity of the environment and is advantageous if we have limited 

computational resources because there is no necessity to have an on-board map 

component which updates and store maps in the time. Potentially, the used deep 

learning approach can imitate the behaviour of any well-known algorithm, from the 

simple to the complex one, without having problem of computationally difficult and 

local minima. 

In our specific case, the proposed algorithm works with a grid map model of the 

environment, which can be extrapolated, for instance, by the information acquired by 

the global vision system. The map could be obtained with algorithms capable to 

represent and learn deep features (shape and location of the obstacles). The 

implementation is not covered by the work of thesis. 

Specifically, our contributions include: 

o Proposing as deep learning network a generative adversarial network (GAN) 

capable to imitate the behaviour of a well-known algorithm that in our specific 

case is the A* algorithm 

o Designing a GAN architecture which is able to predict a feasible path for the 

planning 

o Applying and validating the effectiveness of the proposed method for the 

solution of path planning problem 

 

 

1.3 Thesis structure 
 

The work of thesis is organized as follows. In the Chapter 2 we review a wide range of 

path planning techniques trying to define what is the state-of-the-art. In the Chapter 3 

we introduce the theory of the GAN networks and their application in image-to-image 
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tasks. In Chapter 4 we introduce the proposed GAN architecture used for the path 

prediction. In the Chapter 5, we apply the GAN network and conduct a series of 

simulation experiments to show and validate the performance of the GAN-based path 

planning algorithm. In the last Chapter, we talk about the thesis conclusions and 

possible future works. 

 

 

 
 

Figure 4 - Master Thesis Structure 
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Chapter 2 
 

State of the art 
 
 
The development of Autonomous Path Planning Algorithms is fundamental for the 

exploration of planetary rovers. This is required by the fact that there are unavoidable 

communication delays between Earth and other Planets and uncertainty of the 

environment to explore. So, it becomes impractical to provide real-time control and 

decision from Earth. 

During planetary exploration missions, rovers are required to traverse terrain in order to 

reach several targets of interest finding optimal paths. The targets are typically location 

of scientific interest where the rover will acquire and analyse samples. In particular, the 

path to follow has to be collision free because the surface of the planet contains 

dangerous area (e.g. rocks and craters), and energy efficient, because the sources of 

energy are limited [3]. 

The path planning problem can be divided into two different sub-problems by using a 

two-level approach [4]. A high-level rough path is provided by the global path planning 

module. The global path planner finds the optimal path in a larger scale, considering 

obstacles that the mobile robot, locally, cannot perceive. The path length is the 

fundamental evaluation metric for the global path because, typically, the shorter the path 

is the less is the energy consumed. Instead, the local path planner has deep knowledge 

about local and mobile obstacles and terrain features thanks to on-board perception 

system. It generates a path that needs to meet dynamics, kinematics and orientation 

constraints. The combination of the two levels allows the mobile robot to have a high 

level of automation in order to cover larger distance in a given time period [5]. 
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In this chapter, I will review a wide range of path planning algorithms, giving a clear 

explanation of what is the state-of-the-art and motivating the choices made to solve the 

specific path planning problem presented in Chapter 1. 

 
2.1 Local Path Planning 
 
Before the Nasa/JPL Mars 2020 (M2020) mission the state-of-the-art on-board path 

planner is called GESTALT, which has successfully driven Spirit, Opportunity and 

Curiosity rovers.  

It, based on stereo image pairs captured by the rover’s on-board camera, extracts 

geometric properties of the local 3D environment through a grid-based estimation of 

surface traversability. In particular, it generates a set of circular arcs of varying 

curvature to assess the risks of different trajectories. Each arc is evaluated based on 

three criteria (avoiding hazards, minimizing steering time and reaching the goal). So, for 

each arc, a vote, based on these 3 criteria, is generated. The arc which minimizes the 

weighted cost is chosen. This process is repeated until the goal is reached [6]. 

However, Autonomous Navigation, based on GESTALT, in some situation is not able 

to reach the goal [5]. More specifically, it frequently fails to find a feasible path when 

terrain has at least 10% Cumulative Fractional Area (CFA) which is a measure of rock 

abundance on Mars. It has an excessive conservatism in collision-checking which 

results in reduced efficiency or inability to find a solution [7]. 

So, the most recent state-of-the art path planner is called Approximate Clearance 

Evaluation (ACE) which has been studied to improve the autonomous driving capability 

demanded by the Mars 2020 rover mission, where the landing site is the Jezero crater 

with a CFA up to 15-20%. It is significantly less conservative with respect of 

GESTALT approach [7]. 

 

2.2 Global Path Planning 
The global path planning method can generate the path under the completely known 

environment (the position and shape of the obstacle are predetermined). Therefore, the 

global path planner is typically used to improve the local planner metric evaluation and 

strategy because it takes into account all the obstacle in the environment [5]. 
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So, it involves two parts: establishment of the environmental model and the path 

planning strategy. 

Moreover, the path planning algorithm must be fed the environment converted into a 

configuration space (C-space), visibility graph, Voronoi diagram or grid maps [8,9]. In 

mobile robot navigation, the environment is often represented with grid-based approach. 

In line with this, we can use a binary representation where the grid contains either an 

obstacle or free space or traversability representations which reflect the difficulty of 

traversing the respective area of the environment. 

 

2.2.1 Search-based path planning 
 

The environment information is represented in discrete graph form where a specific cost 

of action is associated between nodes in the graph. Most of these algorithms are based 

on the well-known A* algorithm, developed in 1968 [10], which use a heuristic function 

to estimate the cost from any node to the goal one. This allows to reduce the search 

space of the original Dijkstra algorithm on which it is based.  

However, A* neither enables global constraint satisfaction nor efficient re-planning. It 

is forced to plan from scratch when any state transition cost happens. Therefore, in 

dynamic case, where the environment changes, it becomes inefficient because at each 

alteration of the environment, it should plan the whole path again.  

One of the first path-planning algorithm with a replanning capability is Lifelong 

Planning A* (LPA*) [11] which combines the heuristic search of A* and incremental 

search of Dynamic SWSF-FP. LPA* still has limitations because it only allows to 

repeatedly determine optimal path, when the edge costs of the graph change, between a 

fixed start node and goal node.  

So, Koenig and Likhachev use LPA* in order to develop a new algorithm, D* lite [12], 

which implements the same navigation strategy of  [13] but with less complexity and 

allows to determine the shortest path between current vertex of the mobile robot (robot 

is moving towards the goal node) and the goal vertex. 

In [14] we have a comparison of the path planning performance of A*, D*, LPA* and 

D* Lite, in static and dynamic environments with different map sizes and complexity. 

The results show as A* is much faster and more efficient in static environments, 
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whereas D* Lite is the best algorithm in static environments with a high complexity and 

in dynamic environments. 

 

2.2.2 Any-angle path planning 
 

Typically, the above-mentioned algorithms use 4 or 8-connected graph obtained from 

grid-based representation of the environment. Therefore, the paths obtained by these 

algorithms are often suboptimal. In particular, they are not the true shortest paths, since 

the mobile robot’s motion is restricted to a small set of possible headings which are 

multiple of π/4. The path is constrained to pass either from a centre of any grid to the 

centre of the adjacent grid or through the grid edges. 

Field D* [15] extends D* and D* Lite with linear interpolation in order to produce 

globally smooth and low-cost paths. For instance, considering a standard 2D grid, it 

locates each node of the graph at the corners of grid cells and improves the cost 

estimation, from one node to its neighbouring nodes, using interpolation. The results 

presented in [15] show that this algorithm, in general produces less costly path than 

regular grid-based planning, but there are rare occurrences where the interpolation 

assumption is incorrect. 

Joseph Carsten et al. propose an extension of Field D* to 3D grids that is the case of 

robots that navigate in full three-dimensional environments (e.g. aerial vehicles) [16].  

In 2005, in order to overcome the local planner GESTALT problems mentioned in the 

section 2.1 a version of Field D* has been integrated into MER flight software in order 

to enable simultaneous local and global planning during Auto-Nav. A revised version of 

Auto-Nav was uploaded to the rovers during the summer of 2006 [5]. 

Kenny Daniel et al. [17] propose Theta* algorithm which is a variant of A* which 

allows to propagate information along grid edges without constraining paths to grid 

edges. They show that Theta* produce shorter paths with respect to both A* with post 

processing (to obtain smoother paths) and Field D*. Moreover, an incremental version 

of Theta*, called Incremental Phi*, has been implemented for unknown 2D 

environments [18].  
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2.2.3 Path Planning under global constraints 
 
The problem of path planning under global constraints arises from the fact that the path 

should satisfy a number of different criteria. The optimal path generated should consider 

several factors like constraints on the space environment, the optimization of the 

resources of the system, the path length, etc. 

A possible solution, in order to consider multiple criteria, could be defining a cost 

function for each criterion and use as objective function to minimize the weighted sum 

of the single cost functions. This approach has many limitations because is very 

complex to understand the relationship between the weights and the solution produced, 

making hard combining different cost functions to give a desired behaviour. A second, 

more natural, approach consists in defining a set of constraints directly in the path 

planning problem, allowing to generate paths that satisfy the constraints over the path. 

In line with the second approach Logan and Alechina [19] introduce an extension of A* 

algorithm called A* with bounded cost (ABC), which allows to specify the set of 

constraints using inequality constraints. 

Another solution, which can work in dynamic environments is the CD* algorithm, 

introduced by A. Stenz in 2002 [20], that address the combined problem of optimal path 

planning with global constraints with re-planning using a composite function which is a 

weighted sum of an objective function and a constraint function. 

 

Figure 5 - Search-based Path Planning Classification 
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2.2.4 Artificial potential field algorithms 
 

Artificial potential fields algorithms represent the mobile robot state as an electric point 

charge where an attractive field is centred to the global goal and a repulsive field 

surrounds each obstacle in the environment. In this way, the robot is attracted by the 

goal and repelled by the obstacles avoiding eventual collisions. The path is obtained 

simply following the steepest resulting gradient to the goal. This approach allows to 

obtain the trajectory  with little computation, but the main problem is that it is 

vulnerable to local minima. This means that it fails to find a path or find a path which is 

sub-optimal [21]. 

 

 

Figure 6 - Potential Field Representation 

 

2.2.5 Path Planning using Fast Marching Method 
 
The Fast-Marching Method is an evolution of the Level Set Methods introduced by 

Osher and Sethian [22]. Its behaviour takes inspiration from the Fermat’s optic principle 

which describe the propagation of light waves. It claims that: “the path of a beam of 

monochromatic light follows the path of least time”. So, it is an efficient computational 

numerical algorithm which permits to track and model the motion of a physical wave 

interface (front). The FM path planning applies this algorithm in order to solve the 

planning problem. So the path generated corresponds to the path that a wave front  

would follow from a start location (point where start the propagation) to a target 

location  where the travelling speed along the path is the expansion velocity of the 
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wavefront. The travelling speed depends on the medium where the wave is expanding 

according to the Fermat’s principle. 

Gomez et al. [23] claim how the classic FM algorithm generates paths which are the 

shortest in length, but they may not be safe, being close to the obstacles. So the path 

obtained is not the shortest in time because the mobile robot should move slowly in 

proximity of the obstacles. So, in [23] we have a review of possible methods that can 

resolve this problem: 

o The Voronoi Fast Marching (VFM) where Voronoi Diagram is used in order to 

obtain a roadmap of the map. So the FM algorithm is used to search a path over this 

representation. In this case we have that the time spent in the search decreases 

o An improved version, called FM2 (Fast Marching Square), which consider 

additional wave sources centred in the obstacles (FM classical approach considers 

only one source at the target point).  

o A saturated version of FM2 where the map of front propagation speeds resulting 

applying the fast-marching method is saturated to a maximum allowed speed, which 

is the maximum speed the robot may receive 

o Heuristic version of FM2 (FM2*) which tries to reduce the total number of 

expanded cells using heuristic function which estimates the cost from a point to the 

goal.  

Garrido et al. [24] apply the fast-marching method to the path planning considering 

spatial environments. Specifically, the fast marching (FM) has been modified in order to 

consider the effect of an external vectorial field, obtaining the so called FMVF. 

This approach has been chosen mainly to account a series of typical constraints in Mars 

Rover exploration mission: height change, slope and rugosity of the terrain, composition 

of the terrain (proportion of sand) and possible slippage of rover wheel due to sand or 

steep slopes. 

Moreover, algorithms with dynamic replanning function, based on FMM, are E* 

proposed in 2005 by Philippsen and Siegwart [25] based on D* and dynamic fast 

marching (DFM) proposed in 2009 [26], based on LPA* and D* lite, which have no 

heuristic.  

In 2019, Sinyukov and Padir [27], introduce a new wave-propagation algorithm, which 

is a special case of the Fast-Marching Method where the front velocity is constant. 
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Specifically,  it works with two-dimensional grid and uses wave front with circular 

shape.  

 

Figure 7 – C-wave waves propagation where point A is the start source of wave and B,C,D,E,F,G,H are 
secondary sources of waves [27] 

This approach operates directly on the grid geometry of the environment using discrete 

geometric primitives (circular arcs and lines) to represent the wave front instead of 

using individual vertices. Moreover, this algorithm can be classified as any-angle path 

planning previously discussed in the section 2.2.2.  In its basic implementation, CWave 

requires only integer arithmetics (CWaveInt) and this allows to have any-angle path 

planning also on low-cost embedded microcontrollers without floating-point units 

(FPUs). 

 

Figure 8 - Wave-based Algorithm Classification 
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2.2.6 Path Planning using Randomized Techniques 
 

Path planning Randomized Techniques are used in high dimensional C-spaces in order 

to address the motion planning for mobile robots with many degrees of freedom or for 

many robots which must simultaneously coordinate their actions. The randomized 

algorithms use a stochastic approach in order to explore the state space and this allows a 

rapid exploration of the entire space. However, in order to reach a complete optimal 

solution, this kind of approach would need an infinite time. So, in practice, time bounds 

within which the planner process has to finish are defined. As result, the path solutions 

are generally not the optimal ones.  

The most used algorithms, which uses this approach, are Probabilistic Road Maps 

(PRM) and Rapidly-exploring Random Trees (RRT). 

 

2.2.7 Path Planning using Machine Learning 
 

In recent few years, many results have been achieved trying to solve the path planning 

problem using machine learning techniques, whereas most of these approaches solve the 

problem using Neural Networks and Reinforcement Learning [28]: 

o Artificial neural networks consist in computational network models which simulate 

the mechanism of learning in biological organism. The network contains several 

computational units that are referred to as neurons. Each single neuron can have 

several inputs which are scaled with particular weights, which affect the function 

computed by the computational unit. The network can be represented as a graph of 

nodes (computational units) connected by edges, which propagate the computed 

values (activation information)  from one node to another where the weights are the 

intermediate parameters. The behaviour of the network can be influenced by 

changing these parameters. So, the aim is to iteratively train the model adjusting the 

numerous weights, in order to modify the computed function to obtain the desired 

behaviour of the system. 



20 
 

 

Figure 9 - Graph representation of a simple neural network with 3 hidden layers 

In global path planning problem, neural networks are used to represent and learn 

deep features from environment representation (e.g. orbital images). So according to 

extracted deep features a path planning strategy can be determined. 

Specifically, in recent years, a wide attention was given to  Deep Convolutional 

Neural Networks (DCNNs) which have shown a superior capacity in the 

representation and in  learning capability of deep features, in computer vision field,  

for tasks such object and action recognition and image segmentation. 

Nachuan Ma et al. [29] propose an innovative approach to the path planning, based 

on unsupervised learning using Conditional Generative Adversarial Networks 

(CGAN) which uses as input the environment image maps. They claim how A* 

algorithm tends to consume much time and huge memory usage with the increase of 

the size of the configuration space. So, they implement a CGAN heuristic version of 

RRT (rapidly exploring random tree) path planner which allows to overcome the 

critical issues of the randomized path planner above mentioned and to obtain good 

result in terms of computational resources spent. They use an architecture based on 

generator realized with a revisitation of encoder-decoder with skip connections (U-

NET) and discriminator realized with a deep convolutional network. The links in the 

encoder-decoder allow to restore high-resolution details which can be lost during the 

down-sampling phase. In particular, the generative adversarial network is used, after 

training phase, to generate region of interests (ROIs) on the environment map over 

which the well-known RRT can work. In this way, the number of states visited by 

the RRT algorithm radically decreases and we have a speed up of the convergence 

to the optimal path. Results shown as they have a much better performance 
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compared with conventional randomized path planners in terms of time cost, 

number of nodes and path length.  

Tianyi Zhang et al. [30] propose a similar approach with comparable results, using a 

different GAN architecture. The generator is realized with encoder-decoder where 

encoding and decoding blocks include convolutional and residual network layers. 

This is a different method with respect the U-NET to not lose important features 

used from the decoder layers for the ROI generation. Moreover, they propose a 

double discriminator, one for the initial and target points pairs, and the other for the 

region of interest to improve the generator capability to generate feasible region. 

Natalia Soboleva et al. [31] propose a path planner, which works on 2D static 

environments, based on image-to-image translation. The authors claim how classic 

heuristic search algorithms iteratively explore the search space guided by heuristic 

function making unnecessary area exploration around the obstacles. So, they 

propose an alternative method based on state-of-the-art deep learning techniques 

which avoid unnecessary state-space exploration by construction directly generating 

path images in response to context input (environment grid-map input). 

  

o Reinforcement learning consists in teaching a system to take an appropriate action 

using a mechanism of reward and punishment. Specifically, the system is trained to 

modify its policy, which is the probability distribution associated to the execution of 

a particular action at a particular state, in such a way to maximize the “reward 

function”. After the agent executes an action, it receives feedback from the 

environment (immediate reward), which is the evaluation of the action made by the 

environment. The Reinforcement Learning model is shown in Fig. 10. The system 

can also be trained using an “Imitation Learning” approach. So, in the training 

phase, the system tries to modify its policy in order to obtain a behaviour which is 

most like the expert. 

Moreover, the environment in which the system works is typically stated in the form 

of a  Markov Decision Process (MDP) which provides a mathematical framework 

for modelling decision making problems. Through the reward function, obtained 

from the immediate rewards, and value function the MDP realizes the optimal action 

strategy. The global path planning, being a sequential decision-making process, can 
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be formulated as MDP and the optimal path planning policy can be found using 

value function estimation [3]. 

 

Figure 10 - Model of Reinforcement Learning 

 

Penggang Gao et al. [32] show a reinforcement Q-learning approach to find a 

collision-free path from starting point to final point. They propose an innovative 

approach based on random sampling which differs from common Q-learning 

approaches, which use methods based on grid maps. Collision-free points are 

generated randomly on the environment map, whereas a point is deleted if it is 

located on obstacle, until the process reaches the expected number of points. These 

points are used by the Q-learning as states. This method allows to reduce the 

number of states and actions for Q-learning saving computational resources. The 

results show as the algorithm can generate shorter and smoother path compared with 

BFS (Breadth-First Search) algorithm. 

Recently, we have had research progresses in the combined use of Reinforcement 

Learning and deep neural networks since it enables to tackle decision making tasks 

which involve complex environments. Specifically, the neural networks (NN) 

typically consist of CNNs used for feature extraction, and fully connected layers to 

map the features to probability distribution over actions. 

A. Tamar et al. [30] introduce an innovative approach, with respect classic planning 

algorithm based on RL which uses a NN-based policy that can effectively learn to 

plan. In particular, the key of their approach is using a specific type of CNN to 

calculate the value-iteration. Since the value-iteration block is constituted by NN it 

can be trained using standard backpropagation.  

Jiang Zhang et al. [3] propose a combined use of Q-learning Reinforcement 

Learning and Neural Networks. In particular, they implement a deep Q-learning 

approach using double branches convolutional network (DB-CNN) which can 
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obtain optimal paths directly from orbital images of planetary surfaces without 

environment mapping.  

 

 

Figure 11 - Global path planning using orbital images 

Inspired by the Value Iteration Network [30] Jiang Zhang et al. use the double 

branch neural network for the value function estimation in the MDP. The value 

function estimation is obtained from the neural network minimizing the loss 

function trough the gradient descent method. They evaluate the global path planning 

performance using two datasets: 

o The first dataset consists of 64x64 grid maps with random obstacles and 

positions of the rover. The map contains 0 (free grid) and1 (obstacles). This 

approach is widely used to evaluate the path planning  performances. 

o The second dataset consists of 128x128 Martian surface images from 

HiRISE. 

Results show how this approach can achieve global path planning with higher 

efficiency, faster convergence and precision with respect VIN which has low 

training and planning efficiency since it requires, for value function estimation, a 

long iteration time inside the network.  

  
 

2.3 Global Path Planning Algorithm Selection 
 

In this chapter we have tried to provide a clear explanation of what is the state-of-the-art 

of path planning algorithm focalizing our attention on global path planning solutions in 
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line with the goal of our thesis which is finding innovative solutions for global path 

planning, based on the recent developments in deep learning. 

We have seen how typical algorithms need to explore the state space to  pull out a path 

planning strategy. In particular, we have seen different approaches which allow to 

optimize the way in which the algorithms explore the state space: 

o Adopting heuristic functions  which allow to optimize the path considering directly, 

in the search, what is the final target evaluating the cost of each node to the goal 

one. This permit to reduce the search space. 

o Adopting incremental version of the algorithms in order to not explore the state 

space, from the scratch, whenever we have a change in the environment (dynamic 

obstacles). This allows to minimize the number of nodes the algorithm searches 

when it deals with dynamic environments. 

However, using these algorithms, we cannot avoid the unnecessary state space 

exploration around the obstacles because even if they are minimized, they cannot be 

eliminated.  

As we have seen, using a trained deep neural network for path planning would allow, by 

construction, to have a direct generation of path planning strategy in response to context 

inputs (environment maps) with a gain in saved computational resources. Such 

networks are inherently reactive, and in particular, with a lack of explicit planning 

computations since the path planning strategy is obtained using a mathematical model 

which represent the link between input and output. 

In machine learning context, the path planning problems are mainly resolved using RL 

techniques previously mentioned. In particular, we have seen how deep RL is capable of 

solving complicated planning tasks. However, there are few research works which 

focalize their attention to use  the pure neural networks to find a global path planning 

strategy.  

With these premises we propose a new solution for global path planning which is based 

on unsupervised generative models which represent the new recent developments in 

deep neural network in computer vision field. The proposed algorithm treats the path 

planning problem as an image-to-image translation problem. In particular, is based on 

imitation learning. So, the neural network tries to find a solution path of an unknown 

environment imitating the behaviour of a well-known algorithm. 
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The solution is an approximation of the solution that the well-known algorithm would 

have generated in the same conditions. 

This approach is justified by the fact that the learning-based method tries to achieve a 

behaviour which is effective for exploration. We no longer have unnecessary state space 

exploration, but we have a direct mapping between the environment map and the path 

solution saving computational resources.  
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Chapter 3 
 

Generative Adversarial Networks   
 
 
Generative Adversarial Networks (GANs), introduced by Ian Goodfellow et al. [21] in 

2014, is an innovative approach to generative modelling, based on deep learning, which 

uses convolutional neural networks. Generative modelling is a form of unsupervised 

learning which discovers and learns the patterns in input data in order to generate 

plausible distribution of data. Thanks to the outstanding data generation capability   of 

GAN methods, the generative models have gained a considerable attention in the 

unsupervised learning field. This has opened the possibility to new developments in 

unsupervised learning because most of the machine learning techniques were based on 

supervised learning approaches, until the introduction of GAN networks. 

GAN architecture is based on two neural networks, the generator trained to generate 

new samples, and the discriminator trained to classify the samples as real (from target 

domain) or fake (generated). The two networks are trained simultaneously in an 

adversarial game, where the generator aims to fool the discriminator in the classification 

of real and fake data. 

Practically, GAN are used in many applications, most notably in image-to-image 

translation tasks, synthesis of images such as the generation of photorealistic photos of 

people, scenes or objects and computer vision tasks in general [33]. 

In this Chapter we introduce, in details, the basic theory of GAN and we specialize the 

GAN network to accomplish the path planning task, introducing the chosen GAN 

architecture . 
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3.1 Artificial Neural Networks 
 

Artificial Neural Networks (ANNs) are a class of machine learning methods which aims 

to explain the cognitive process in biological organism. They simulate the learning’s 

mechanism of biological organisms representing it through a mathematical model. 

Generally speaking, the ANN is a complex network composed by interconnected 

computational units, that are referred to as neurons, with a parallel/series structure. 

Typically, the network is represented as a graph of nodes (computational units) 

connected by edges, which propagate the computed values (activation information). The 

information, processed within the network, propagates from one node to another 

inspired by the biologic neuron behaviour.  

Specifically, each computational unit is connected to another through the weights. The 

weights can be interpreted as the strengths of synaptic connections in biological 

organism. Each node can have a multiple number of input nodes, which are scaled with 

different weights. The computational unit computes a function of the input, using the 

weights as parameters of the function. Globally, the ANN can influence the network 

behaviour using the weights as intermediate parameters. So, the learning of the network 

occurs changing the values of the weights. 

In recent years, the artificial neural networks have been applied in many research fields 

thanks to their excellent capacity in classification, pattern recognition and prediction. 

Specifically, we would mention a small set  of fields, where neural networks have 

defined a great step forward, like control system (e.g. control of processes and vehicle 

control) , object recognition and medical diagnoses [34]. 

 
3.1.1 Supervised and Unsupervised Learning 
 
 

Machine learning methods are often divided into Supervised and Unsupervised learning 

methods. The idea behind the predictive or supervised learning, is training a 

mathematical model to establish a mapping from inputs x to outputs y. Given a certain 

input, the prediction of the system’s output is done using a training dataset, which 

comprises multiple samples composed by input variables (X) and output class labels (y) 
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pairs. At each training iteration, the model is corrected to obtain outputs more like the 

expected ones. Fig. 12 shows a graphic explanation of supervised learning. 

 

 
Figure 12 – Example of Supervised Learning 

 
Instead, in unsupervised learning, the model is not provided with pre-assigned input 

variables (X) and output class labels (y) pairs. Given certain inputs, the objective is to 

extract “interesting patterns” in the data. In this case the model is not predicting 

anything and there is no correction of the model. Fig. 13 shows a graphic explanation of 

unsupervised learning. 

 

 
Figure 13 - Example of Unsupervised Learning 

A typical application of supervised learning is the classification and regression. In 

classification the model is developed in such a way it can predict a class label given an 

example of input variables (discriminative modelling). For instance, the input can be an 

image which represents a handwritten digit, and the label is a number between zero and 

nine. Instead, a regression model is used to predict a continuous variable. It performs a 

mapping between the input data and continuous variables. 
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Unsupervised models could be used to create or generate new examples in the input 

distribution (generative modelling). The generative model discovers and learns the 

patterns in input data in such a way that the model can be used to generate new samples 

that plausibly could have been drawn from the original dataset. Synthetization of data 

can be used in applications like open world video game production. The algorithm 

based on manually created graphical landscapes could generate new worlds.  

 

3.1.2 The Perceptron 
 

In order to introduce the basic architecture of Neural Networks, we present the simplest 

neural network, the single layer feed-forward network, also known as perceptron, 

introduced by Rosenblatt in 1958 [35]. It consists in a single input layer and a single 

output node. 

 

Figure 14 - Perceptron without bias [36] 

In the basic architecture of perceptron (Fig. 14) the single arrow represents the 

connection between the single input node and the output node, and every single 

connection is associated to a weight with which scaling the input node. 

We  show the Perceptron behaviour in the context of supervised learning because of its 

simplicity. 

We consider a binary classification problem where each training instance (𝑋̅, 𝑦) is 

composed by: 

o 𝑋̅ = [𝑥1, … 𝑥𝑑] that represents the vector containing d feature variables 

o 𝑦 ∈ {−1,+1} that represents the observed value 
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The observed value (binary class variable) is given as a part of the training data. The 

network aims to make a prediction of the class label 𝑦̂ for the cases in which the class 

variable is not observed. 

The overall architecture is composed by input layer, containing d nodes which transmit 

the vector of d features 𝑋̅ = [𝑥1, … 𝑥𝑑], d edges of weight 𝑊̅ = [𝑤1…𝑤𝑑] and output 

node which computes the function of the d features. Specifically, we consider the linear 

function 𝑊̅ ⋅ 𝑋̅ = ∑  𝑑
𝑖=1 𝑤𝑖𝑥𝑖 followed by the sign of the real value computed. The 

predicted output is computed as follows: 

𝑦̂ = sign⁡{𝑊̅ ⋅ 𝑋̅} = sign⁡ {∑  

𝑑

𝑖=1

𝑤𝑖𝑥𝑖} 
 

(3.1) 

 

The sign function allows to map a real value to the binary class +1 or -1. Specifically, 

has the role of activation function. Generally speaking, the most widely known 

activation functions are the following: 

o Identity: Φ(𝑣) = 𝑣 

o Sign function: Φ(𝑣) = sign⁡(𝑣) 

o Sigmoid function: Φ(𝑣) = 1

1+𝑒−𝑣
 

o Tanh function: Φ(𝑣) = 𝑒2𝑣−1

𝑒2𝑣+1
 

o Rectified Linear Unit  (ReLU):  Φ(𝑣) = 𝑚𝑎𝑥{𝑣, 0}  

o Hard tanh: Φ(𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛[𝑣, 1], −1} 
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Figure 15- Various activation functions [36] 

 

The error of the prediction with respect the observed value is given by: 

𝐸(𝑋̅) = 𝑦 − 𝑦̂ (3.2) 

The training of the network is obtained through the backpropagation algorithm which 

includes two main phases: 

o Forward Phase: the inputs from the training instance are fed into neural network 

which computes, using the current set of weights, the predicted output. The latter 

is compared to that of the training instance. 

o Backward Phase: this phase aims to learn the gradient of the loss function with 

respect to the different weights. 

Specifically, the backward phase consists in a gradient-descent method that minimizes 

the loss function 𝐿(𝑊̅). The gradient descent method updates the weights in order to 

produce a step in the negative direction of the gradient (learn the gradient). At the time 

t+1, the generic weight is updated as follows: 

𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

− 𝛼
∂𝐿(𝑊̅(𝑡))

∂𝑤𝑖
(𝑡)

 
(3.3) 

∀𝑖 ∈ {1… , 𝑑}  
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where 𝛼 is the learning rate. 

Considering data set 𝐷 which contains feature-label pairs the loss function is computed 

as follows: 

𝐿 =
1

2
∑ (y − 𝑦̂)2

(𝑋̅,𝑦)∈𝒟

=⁡
1

2
∑(y(𝑗) − 𝑦̂(𝑗))

2

𝑗

  (3.4) 

Imposing that 𝑦 = ⁡∑  𝑑
𝑖=1 𝑤𝑖𝑥𝑖 the backward phase computes the derivative of 𝐿(𝑊̅) 

with respect to the weights: 

∂L

∂𝑤𝑖
=

∂𝐿

∂y(𝑗)
∂y(𝑗)

∂𝑤𝑖
= ∑(y(𝑗) − 𝑦̂(𝑗)) ∗ 𝑥𝑖

(𝑗)

𝑗

 
 (3.5) 

Considering (3.3) and (3.5) the complete expression for the weight update is the 

following: 

𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

− 𝛼∑(y(𝑗) − 𝑦̂(𝑗)) ∗ 𝑥𝑖
(𝑗)

𝑗

 (3.6) 

∀𝑖 ∈ {1… , 𝑑}  

Up to now, we have considered the simplest ANN structure but in general, we can have 

feed-forward neural networks with more and more hidden layers. They are called multi-

layer perceptron (MLP) (Fig. 16). For more details you could consult [36]. 

 

Figure 16 - Example of Multi-Layer Perceptron 
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3.2 Convolutional neural networks 
 

In deep learning field, Convolutional Neural Networks (CNNs) have become 

fundamental to solve problems in image domain, like image-to-image translation or 

image recognition since they are designed to work with grid-structured inputs that 

present strong spatial dependencies in local regions of the grid. Considering a generic 

image, adjacent spatial locations (pixels) often have similar color values.  

The input data of the network is a two-dimensional grid structure where the individual 

grid values are referred as pixels. Each pixels defines a spatial location within the 

image. However, in order to define the number of color channels of the image, an 

additional dimension (depth) is considered (e.g. RGB image has three color channels). 

Therefore, if the two-dimensional image has a dimension of 64x64 pixels and a depth of 

3, corresponding to RGB color channels, the overall dimension of the input 

multidimensional array of the network is 64x64x3.  

Each layer in the CNN is a 3-dimensional grid structure, where each dimension is 

respectively height, width and depth. It is worth noting that the depth of  a layer in 

convolutional neural networks differs from the network depth, which represents the 

number of network layers. 

The CNN parameters are organized into sets of three-dimensional structural units, 

known as kernels or filters. The filter’s depth is always the same of the layer to which 

the kernel is applied whereas the filter’s spatial dimension is typically smaller than 

those of the layer to which is applied.  

So, the main difference between a CNN and an ordinary neural network is the 

convolution operation performed by the network. In particular, the operation places the 

filter at each possible position in the image or the hidden layer and performs 

convolution between the filter’s parameters and the matching grid-structured volume 

computing the filter’s output which defines a feature in the next layer. So, the spatial 

relationships within a layer are inherited from the previous layer because each feature 

value match a local spatial region in the previous layer. The number of filters applied to 

the layer defines the spatial height and width of the next hidden layer. 
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In the training, the values stored in the filters are the parameters that are learned by the 

CNN. Initially, these are random, but at each training iteration the filter adapts its 

parameters to capture interesting features such as edges or color combinations.  

 

Figure 17 - The convolution between an input layer of size 32 × 32 × 3 and a filter of size 5 × 5 × 3 produces an 
output layer with spatial dimensions 28 × 28 [36] 

 

3.2.1 Convolution Operation 
 

In order to define the convolution operation, we consider a pth filter applied to a qth 

layer. The filter has dimension: 𝐹𝑞 × 𝐹𝑞 × 𝑑𝑞. The filter’s parameters are defined by a 

three-dimensional tensor: 

𝑊(𝑝,𝑞) = [𝑤𝑖𝑗𝑘
(𝑝,𝑞)

] 

where the indices i, j, k  define the positions along the height, width and depth of the 

kernel. The three-dimensional tensor 𝐻(𝑞) = [ℎ𝑖𝑗𝑘
(𝑞)
] represents the feature maps in the 

qth layer. So we define the convolutional operation from the qth layer to the (q+1)th 

layer:  

ℎ𝑖𝑗𝑝
(𝑞+1)

= ∑  
𝐹𝑞
𝑟=1

∑  
𝐹𝑞
𝑠=1

∑  
𝑑𝑞
𝑘=1 𝑤𝑟𝑠𝑘

(𝑝,𝑞)
ℎ𝑖+𝑟−1,𝑗+𝑠−1,𝑘
(𝑞)              ∀𝑖 ∈ {1… , 𝐿𝑞 − 𝐹𝑞 + 1} 

∀𝑗 ∈ {1…𝐵𝑞 − 𝐹𝑞 + 1} 

∀𝑝 ∈ {1…𝑑𝑞+1} 
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Figure 18 – Example of convolution between 7x7x1 input and 3x3x3 filter with stride of 1 [36] 

The convolution operation can be seen as a simple dot product over the entire volume of 

the kernel which is repeated over each valid spatial position (i, j) and for each filter 

indexed by p. 

 

3.2.2 Padding 
 

Applying the convolution operation from the qth layer to the (q+1)th layer we obtain a 

size reduction of the (q+1)th layer with respect to the previous layer. This size reduction 

can cause an undesirable effect which consists in  the loss of some relevant information 

along the borders of the image or the feature map (hidden layers). 

This problem can be resolved using a method, called Padding, which consists in the 

addition of (𝐹𝑞 − 1)/2 pixels or feature values around the borders of the input image or 

the feature map. Usually, the value of each padded pixel or feature values is set to 0. 

When the kernel is applied to the extreme spatial position (along the edges) of the image 

or feature map, a portion of the filter “sticks out” from the borders and it is 

superimposed also to the padded portions. These do not contribute, in the convolution, 

to the final dot product because their values are equal to 0. Therefore, only the portion 

of the layer where the values are defined contribute to the final dot product. 
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Figure 19 - an example of padding [36] 

3.2.3 Strides 
 

We have another parameter which influence the spatial footprint of the image or the 

hidden layer. If not specified, the convolution is performed moving the filter at every 

position across the image or feature map (Fig. 20). However, it is not necessary to 

perform convolution moving the kernel along the spatial locations with a step size of 1. 

We can manipulate the step size with the stride parameter. Naturally, increasing the 

stride/step size we reduce the level of granularity of the convolution operation. If not 

specified, the default value is one which corresponds to the previous case (Fig. 20). If a 

stride of 𝑆𝑞 is used in the qth layer, the output has height of (𝐿𝑞 − 𝐹𝑞)/𝑆𝑞 + 1 and a 

width of (𝐵𝑞 − 𝐹𝑞)/𝑆𝑞 + 1 where 𝐿𝑞  and 𝐵𝑞 are the height and width of the input of the 

qth layer, respectively. 

 

 

Figure 20 - A 3x3x1 kernel (grey) being passed over a 5x5x1 input image (blue) with padding and strides = 1 to 
generate the 5x5x1 output (green) [37] 

3.2.4 The problem of Overfitting: Data Augmentation 
 
 

In order to introduce the overfitting problem, we consider the simplest case of a 

classification problem, using a supervised learning approach. In this scenario, the 
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network aims to predict a certain class label given a certain unseen input. To do this, the 

model has to be first trained based on a certain training instance. In the training phase, 

the network adapts its behaviour based on examples of input-label pairs contained in the 

training data set trying to give a prediction of the class label equal to the target one. So, 

we could stop the training phase, when the network predicts the targets on the training 

data set perfectly. However, fitting a model to a particular training data set does not 

always guarantee that the network will provide good prediction performance on unseen 

test data. This creates a gap between training and test data performance which is known 

as overfitting. 

 

Figure 21 - Overfitting problem 

The Fig. 21 shows the training error (blue) and the test error (error). We can see how, 

during the training phase, the training error and test error decrease until the vertical line, 

which means that the training and test performance are improving. After the vertical 

line, we have an overfitting problem, because the test performance starts to degrade, and 

the training performance continue to improve. In the ideal case, the validation error 

should continue to decrease with the training error. In this case, we should stop the 

training before the overfitting starts. 

Intuitively, a larger dataset should improve the performance of the deep learning model 

allowing to resolve the overfitting problem. This technique stands for data 

augmentation. However, an increased dataset size does not always guarantee an 

increased amount of relevant information that can be used to improve the performance. 

Surely, the data set has to be increased trying to increase the diversity in the input data 

distribution. If we enrich the dataset with input-label pairs which are similar to the ones 

contained in the original dataset, we do not obtain any benefit. 
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When we deal with machine learning algorithms designed for image processing, data 

augmentation procedures are usually based on simple operations such as scaling, 

rotation, warping or mirroring. Also more sophisticated approaches can be used. For 

instance, we can use a trained generative model, like Generative Adversarial Networks 

(GANs), to do data augmentation [38].  

 

3.2.5 Residual Networks 
 

In recent few years, Image Networks have improved their performance in image 

classification thanks to the development of deep neural networks. A crucial factor, that 

has contributed to the drastic improvement, is the design of network architectures that 

have an increased number of layers that leads to have deeper networks. Alex 

Krizhevsky  et al. [39] show as the network depth in CNN is of crucial importance. In 

particular, in their case the network’s performance degrades if a single convolutional 

layer is removed. 

However, Kaiming He et al. [40] show that the training of a deeper network can become 

very complex. In particular, when the network depth increases, network accuracy gets 

saturated and degrades rapidly whereas the performance degradation is not caused by 

overfitting problem. Fig. 22 shows how adding the deeper model leads to higher 

training and test error.  

 

Figure 22 -  Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer “plain” 

network[40] 

So, they address the degradation problem introducing an architectural change, the 

residual module. The idea behind the residual module is to create skip-connections 

between layers i and (i + r) for r>1 where the skip connection simply copies the input of 
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the layer i and adds it to the output of layer (i + r). The architecture is illustrated in Fig. 

23. 

                   

Figure 23 - Residual Module [40] 

 

3.2.6 Variational Autoencoder (VAE) 
 

An auto-encoder is a particular neural network composed of two parts (Fig. 24): 

o An encoder which compresses input data in a lower-dimensional representation 

vector.  

o A decoder which decompresses the lower-dimensional representation vector 

returning to the original domain 

 
Figure 24 - Autoencoder Architecture [37] 
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In the training phase, the network’s weights are updated in order to minimize the loss 

between the generated image and the original image.  

Moreover, we can define the latent space as the space which contains the lower-

dimensional representation vectors. Choosing any point from the latent space, the 

trained decoder should be able to  generate novel images, using this point as input. 

 

Figure 25 - Latent Space Representation [37] 

Variational Autoencoders is a method which uses convolutional neural networks to 

generate data. The VAEs, like typical autoencoders, consist of an encoder and a 

decoder. Unlike autoencoders, which map each image to one point in the latent space 

VAEs map each image to a multivariate normal distribution around a point in the latent 

space. 

 

Figure 26 - Difference between autoencoder and variational autoencoder [37] 
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3.3 Generative Adversarial Networks 
 

The first implementation of Generative adversarial network was published by Ian 

Goodfellow et al. [21]. The model consists of two neural network models implemented 

as two multilayer perceptron. The first is a generative model, generator G, and the 

second is a discriminative model, discriminator D. The generator aims to learn a data 

distribution 𝑝𝒈 over the data x, which it synthesizes using input noise 𝑝𝒛(𝒛). The 

mapping between input and data space is indicated as 𝐺(𝒛; 𝜃𝑔) where G is a 

differentiable function (multilayer perceptron) with parameters 𝜃𝑔. Specifically, the 

generator input is a fixed-length random vector, sampled from a predefined latent space 

(e.g. a multivariate normal distribution).  

 

 

Figure 27 - GAN Generator Model 

Also the discriminator is defined as multilayer perceptron 𝐷(𝒙; 𝜃𝑑) with parameters 𝜃𝑑. 

The function estimates the probability that 𝒙 is taken from the data rather than the 

generator’s distribution 𝑝𝒈. So, it takes as input samples from both 𝑝𝒈 and training data 

distribution and aims to maximize the probability to assign the correct label to training 

(real label) and generated samples (fake label). The generator has  the opposite goal, 

trying to fool the discriminator in such a way to classify the synthesized data as real. 

The discriminator and generator networks are trained each training iteration and are 

competing with each other. Usually, after the training phase, the discriminator model is 
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discarded because we are interested in the generator model which generates new 

samples.  

 

Figure 28 - GAN Discriminator Model 

The GAN implemented in [21] was proven on the MNIST handwritten digit dataset. 

MNIST dataset stands for Modified National Institute of Standards and Technology 

dataset. It is a dataset composed of 70,000 28x28 grayscale images of handwritten 

single digits between 0 and 9. The generator G tries to generate numbers using input 

noise and the discriminative model is trained on both real MNIST data and synthesized 

data from generator model. In this case the network task is to classify a given image of 

handwritten digit into a class value, between 0 and 10. From the first publication of 

GAN, the new GAN architectures have mainly focused on creating visually realistic 

images and creating a mapping between different image domains (image-to-image 

translation). 

 

3.3.1 GAN Adversarial Game 
 
The discriminator D and generator G are in adversarial game. Specifically, the two 

models are trained together. The generator produces new samples in order to fool the 

discriminator while the discriminator tries to distinguish between real and fake data. At 

each training iteration the discriminator is updated to improve its capacity in distinguish 

real and fake samples, and the generator is updated based on the capacity of the 

generated samples to fool the discriminator.  

In this way, the two models are competing against each other where: 
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• If discriminator successfully discriminates between real and fake samples, no 

change is needed to the model parameters whereas the generator is penalized 

with a large update of the model parameters. 

• If generator manages to fool the discriminator, no change is needed to the model 

parameters whereas the discriminator is penalized with a large update of the 

model parameters. 

At the beginning of the training, the generator will synthesize data that will be very 

different from the real data distribution. Intuitively, we could think that discriminator 

classification task  (fake/real) is particularly easy at the beginning. However, the 

discriminator is not trained. So, the classification between the two distributions will be a 

rather challenging task. At each training iteration the discriminative capacity will get 

better as more examples are presented as well as the generator’s fooling capacity trying 

to generate a data distribution closer to the real distribution. 

Specifically D and G play the following two-player minmax game [36]: 

 

min𝐺  max𝐷( 𝔼𝒙∼𝑝data (𝒙)
[log𝐷(𝒙)] + 𝔼𝒛∼𝑝𝒛(𝒛) [log (1 − 𝐷(𝐺(𝒛)))]) 

 

Where 𝑝𝒛(𝒛) is a prior distribution on input noise variables and 𝐷(𝒙) represents the 

probability that 𝒙 comes from the data rather than the generator’s distribution 𝑝𝒈 

 
Figure 29 - GAN Model Architecture 
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3.3.2 GAN Training Algorithm 
 

The GAN training process consists in the training of both discriminator and generator 

model according to the GAN adversarial game above-mentioned. The algorithm, which 

allows the network to be trained, is summarized in Algorithm 1. The algorithm is taken 

from the original paper “Generative Adversarial Networks” of Goodfellow et al [21]. 

 
Algorithm 1: Minibatch stochastic gradient descent training of generative adversarial nets. The 
number of steps to apply to the discriminator, k, is a hyperparameter. 

 
 
The discriminator is trained in order to correctly classify real and fake images. In 

particular, this is possible maximizing the log of the probability of predicting real 

images and the log of the inverted probability of fake images, averaged at each batch of 

samples. So, the aim of the discriminator training is to associate a probability close to 

1.0 for real images and a probability close to 0.0 for generated images. 

Instead, the generator loss is defined as minimizing the log of the inverted probability of 

the discriminator’s prediction of fake images, averaged at each batch.  

According to the authors of the original paper “Generative Adversarial Networks” [21] 

the loss function of the generator creates some problems. In particular, when the 

discriminator is good to reject fake images and the generator is not capable to generate 

adequate images, the generator loss saturates. This means that the loss function doesn’t 

give good gradient information in order to improve the generator weights. Rather than 
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training G to minimize log⁡(1 − 𝐷(𝐺(𝑧))) they propose to train G to maximize the 

log⁡ 𝐷(𝐺(𝑧)). This objective function allows us to have a stronger gradient. 

 
 

3.3.3 GAN and Convolutional Neural Networks 
 
GAN networks are very often used in image-synthesis-based task. Examples of 

applications, where GAN networks are employed, are image generation, image-to-

image translation and image manipulation [41] which are typical computer vision tasks. 

We have seen how Convolutional Neural Networks (CNNs), described in the section 

3.2, have become the standard networks in image domain, because are designed to work 

with grid-structured inputs, which have strong spatial dependencies in local regions of 

the grid (e.g. 2-dimensional image). 

For this reason, in image domain, the GAN networks architecture are typically 

developed using as generator and discriminator two Deep Convolutional Neural 

Networks (DCNNs).  This kind of architecture was first presented by Alec Radford et 

al. [42] and is called Deep Convolutional Generative Adversarial Networks (DCGAN). 

Their work represents one of the most important steps forward in the design and 

training of stable generative adversarial models. 

Considering an image classification task the discriminator takes as input an image  

which is down sampled until we have as output a binary classification (real/fake). 

Typically, traditional DCNN uses pooling layers to down sample input image and 

feature maps. In DCGAN architecture is recommended to downsample using stride 

convolutions. Convolutional layers can perform a down sampling applying each filter 

across the input images or input feature maps (in case of hidden layers) using a stride of 

two instead of the default equal to one. The output of the convolutional layer is a feature 

map that is smaller with respect to the input. We can use the padding technique, in order 

not to lose information about the border of the feature map. 
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Figure 30 - Example of the discriminator model architecture for the DCGAN 

 

From the other hand, the generator has to synthesize an output image given random 

input vector designed from the latent space. To achieve this, the generator requires an 

inverse operation with respect the discriminator model. It needs an up-sampling 

operation in order to associate to the raw input the detailed image output (generated 

image). We can obtain this using transpose convolutional layer which performs an 

inverse convolution operation which can map features to pixels. 

 
Figure 31 – Example of the generator model architecture for the DCGAN 

 
3.3.3.1 Batch Normalization 
 

One common problem in deep neural networks is what is known as exploding gradient. 

During the training phase, the network’s weights are updated based on the error gradient 

(see section 3.1.2). Since, in the backward phase, the errors are propagated backward 

through the network, it can happen that the gradient computation grows exponentially 
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causing large updates to the network weights. Exploding gradients can result in an 

unstable network that sometimes cause NaN weight values [43]. 

Usually the problem does not happen immediately, but the training of the network can 

start and only after some training iterations can result in the exploding of the gradient. 

Typically, the network’s input data are scaled allowing a stable start over the first few 

iterations. If we used unscaled input, since the weights of the network are initially 

selected in a random way, we can have huge activation values that results in exploding 

gradient problem. Indeed, it is recommended scaling the image pixel values from the 

range [0, 255] to the range [-1,1]. Scaling input does not guarantee that the activations 

of all following layers are well scaled as well (covariate shift).  

A solution that drastically reduces the exploding gradient problem, stabilizing the 

training process, is the Batch Normalization (BN) introduced by Sergey Ioffe et al. [44]. 

Specifically a BN layer, at each batch, evaluates the mean and standard deviation of 

each of its input channels and normalizes subtracting the mean and dividing by the 

standard deviation. So, it standardizes the activations value from a prior layer to have 

zero mean and unit variance. For each channel in the preceding layer, the BN layer has 

two trainable parameters, gamma and beta that defines the scale and the shift, 

respectively. Algorithm 2 shown the BN process. 

 

Algorithm 2 [44]: Batch Normalizing Transform, applied to 

activation x over a mini-batch. 

Input: Values of 𝑥 over a mini-batch: 

 ℬ = {𝑥1…𝑚} Parameters to be learned: 𝛾, 𝛽 

Output: {𝑦𝑖 = BN𝛾,𝛽(𝑥𝑖)} 

𝜇ℬ ⁡←
1

𝑚
∑𝑖=1
𝑚  𝑥𝑖⁡⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡// mini-batch mean 

𝜎ℬ
2 ⁡←

1

𝑚
∑𝑖=1
𝑚  (𝑥𝑖 − 𝜇ℬ)

2⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡// mini-batch variance 

𝑥̂𝑖 ⁡←
𝑥𝑖 − 𝜇ℬ

√𝜎ℬ
2 + 𝜖

⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡// normalize 

𝑦𝑖 ⁡← 𝛾𝑥̂𝑖 + 𝛽 ≡ BN𝛾,𝛽(𝑥𝑖)⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡// scale and shift 

 

 

The BN layer can be place after dense or convolutional layers in order to normalize the 

output of these layers. 
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3.3.3.2 Dropouts Layers 
  

We have seen in the section 3.2.4 how it is important that a successful machine learning 

algorithm does not suffer from overfitting. It must perform well both with training 

dataset and with test dataset. To counteract this problem, we have seen that a possible 

solution is data augmentation. However, there are several regularization techniques, 

which ensure to penalize the model if it starts to overfitting. 

One of the most common technique, is using dropout layers, introduced by Geoffrey 

Hinton in 2012 and presented by Nitish Srivastava et al. [45] in 2014. 

The idea behind this approach is very simple. Each dropout layer randomly select a set 

of computational units of the prior layer and set their output to zero. 

 

Figure 32 - Dropout Layer [37] 

This simple operation allows the network to not be strictly dependent on certain units or 

groups of units. This makes the model more general when it deals with unseen data 

drastically reducing the overfitting problem. 

In the dropout layer we have not trainable parameters, but we can set the portion of 

computational units to drop from the preceding layer specifying the dropout rate. For 

instance, in Fig. 32 we have a rate of 0.5. 
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3.3.3.3 ReLU and Leaky ReLU 
 

Generally, in deep convolutional neural networks, it has become a best practice using  

the rectified linear activation unit, ReLU. It is a simple operation that given 𝐿𝑞 × 𝐵𝑞 ×

𝑑𝑞 feature values in a layer returns 𝐿𝑞 × 𝐵𝑞 × 𝑑𝑞 activation values, which are equal to 

the value provided as input directly, or the value 0.0 if the input is 0.0 or less. The 

ReLU activation, typically, follows the convolution operation. A. Krizhevsky et al. [46] 

show how the use of ReLU with respect to other activation functions, like sigmoid and 

tanh, has advantages in terms of training’s speed and accuracy. 

 

Figure 33 - ReLU function 

In generative adversarial networks, a best practice, is using a variation of the ReLU 

called Leaky ReLU which has a small slope for negative values instead of a flat slope 

[42]. The slope coefficient is specified before training, and it is not a trainable 

parameter. 
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Figure 34 - Leaky ReLU Function 

In DCGAN network [42] the generator model has ReLU activations, for all layers 

expect for the output, which uses Tanh whereas the discriminator adopts Leaky ReLU 

activations for all layers. 

 
 

3.3.4 GAN based Image-to-Image Translation 
 
The Image-to-image translation task is a subfield of computer vision, which aims to 

learn the mapping between an input image and output image. Specifically, the image 

from a source domain X is translated to a target domain Y. A wide range of problems in 

computer vision can be treated as image-to-image translation tasks [47][48][49]. 

 

Figure 35 - Computer Vision problems which involves translating an input image into a corresponding 
output image [47] 
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The image-to-image translation task using GAN networks requires to use conditional 

version of GAN (CGAN) whereas, unlike the GAN model above-mentioned, the input 

to the network is an image instead of random vector.  

 

3.3.4.1 Conditional GAN (CGAN) 
 

The Generative Adversarial Networks are architectures which have as objective the 

training of a generative model which must be capable to generate images. In order to 

have a complete control on the generation we should understand the complex 

relationship between the latent space, the generator and generated images. Conditional 

GANs allows us to have more control on the generation of the images. In particular, 

they permit to conditionate the generation of the images given a certain input. In order 

to do this the generator model is modified adding an additional input (for example the 

class label) allowing the generation of images of a given type. 

 

 

Figure 36 - Difference between original GAN architecture and CGAN architecture 
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3.3.4.2 GAN Pix2Pix 
 

A common approach used for accomplishing the image-to-image task is the Pix2Pix 

GAN architecture, introduced by Philip Isola et al [47] in 2018, which is a particular 

kind of conditional generative adversarial network. The main difference with respect to 

the CGAN is that the generation of the image is conditioned by a given input image and 

the loss function is modified in order to have a generated image that is a plausible 

translation of the input image. In particular, the generator is trained in order to fool the 

discriminator and minimize the loss between the generated image and the expected 

target image. 

It is worth noting that the GAN Pix2Pix translates the image from one domain to 

another using a supervised approach, because the generated image are compared to 

ground truth images contained in the training dataset and a loss is generated by the 

comparison.  

3.3.4.2.1 Generator U-Net Model 
 

Pix2pix architecture uses U-Net, as generator model, which is a revisitation of the 

common encoder-decoder network. In particular, in a common encoder-decoder model, 

the encoder takes an image as input and down samples it until a bottleneck layer and the 

decoder up samples again until it obtains as output the final image of specific size. In 

the encoder-decoder the bottleneck layer is the lower dimension layer which represents 

the lower-dimensional representation of the input. 

The U-Net model, as encoder-decoder model, uses down sampling layers until a 

bottleneck layer and up sampling blocks and add a linkage between layers of the 

encoder and decoder part which have the same size. In order to create the skip-

connections the model makes concatenation of same size features maps, along the 

channel dimension. 

 

Figure 37 - Encoder-decoder and U-Net [47] 
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In the Pix2Pix paper [47] the U-Net generator architecture is defined using the notation: 

o Encoder: C64-C128-C256-C512-C512-C512-C512-C512 

o Decoder: CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128 

Where Ck denotes a Convolution – BN – Leaky ReLU layer with k filters and CDk 

denotes Convolution – BN – Dropout – Leaky ReLU layer with dropout rate of 0.5. In 

the Convolution layer the kernel size is fixed at 4x4 and the stride at 2. The last layer of 

the encoder (bottleneck layer) does not use BN and uses ReLU instead of Leaky ReLU. 

   

3.3.4.2.2 Patch-GAN Discriminator Model 
 

PIx2Pix architecture uses Patch-GAN which is a revisitation of the common 

discriminator model uses by GAN. In particular it is a particular deep convolutional 

network which aims to classify patches of the input as real or fake instead of classifying 

the whole input image as real or fake. The output of the network is a simple feature map 

of a given dimension which contains real/fake predictions, which can be averaged in 

order to obtain a unique score.  

 

Figure 38 - Patch GAN output feature map 

In the Pix2Pix paper [47] the Patch-GAN architecture is defined using the notation: 

C64-C128-C256-C512, where C stands for a block composed by Convolution – BN – 

Leaky ReLU layers whereas the first C64 layer does not use BN and the number 

represent the number of filters. In the Convolution layer the kernel size is fixed at 4x4 
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and the stride at 2. The slope of the Leaky ReLU is fixed to 0.2 and to obtain a binary 

(real/fake) output matrix a sigmoid activation function is used to the output layer. 

 

3.3.4.2.3 Modified Loss Functions and training 
 

The training phase of the discriminator model is almost the same above-mentioned 

(section 3.3.2) . The only modification that we have is that the discriminator loss is 

halved in order to make the training of the discriminator less fast compared to the 

generator. 

The generator loss is enriched with additional terms with respect the adversarial loss. 

This term is the L1 distance  which is the mean absolute pixel difference between the 

generated translation of the image input and the expected target image. In the paper of 

the original Pix2Pix Image-translation the author explains how  using L1 loss in place 

of L2 loss encourages less blurring. 

Specifically D and G play the following the new two-player minmax game [47]: 

 

𝐺∗ = arg⁡𝑚𝑖𝑛
𝐺

 𝑚𝑎𝑥
𝐷

 ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺) ℒ𝐿1(𝐺) = 𝔼𝑥,𝑦,𝑧[∥ 𝑦 − 𝐺(𝑥, 𝑧) ∥1] 

 

Where 𝜆 is an hyperparameter which quantify the importance of L1 loss with respect to 

the adversarial loss in training phase (typical values are 10 or 100). 

 

3.3.4.2.4 Adam Stochastic Gradient Descent 
 

In the Pix2pix paper [47] the author proposes to use for the optimization a specific 

algorithm called Adam Stochastic Gradient descent [50]. 

The Adam SGD is an optimization algorithm which can be used instead of the classic 

SGD in order to update and optimize the weights of the networks at each training 

iteration, based on the training data.  

The authors of the original paper of Adam SGD [50] specifies a series of advantages 

which respect a classic approach: 

“The method is straightforward to implement, is computationally efficient, has little 

memory requirements, is invariant to diagonal rescaling of the gradients, and is well 

suited for problems that are large in terms of data and/or parameters. The method is 
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also appropriate for non-stationary objectives and problems with very noisy and/or 

sparse gradients. The hyper-parameters have intuitive interpretations and typically 

require little tuning ” [50] 

With respect to the classic SGD, which maintains, during training, a fixed single 

learning rate for all network weights (parameters), the Adam Optimizer maintains a 

specific learning rate for each network weight, which can be separately adapted during 

training phase. As mentioned in the paper the algorithm combines the advantages of two 

existing approach: AdaGrad and RMSProp optimizers, whereas the first works well 

with sparse gradients and the second works well in online and non-stationary problems. 

 
Algorithm 3 [50]: Adam algorithm for stochastic optimization. 𝑔𝑡2 indicates the elementwise square 

𝑔𝑡 ⊙𝑔𝑡. Good default settings for the tested machine learning problems are 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 =

0.999 and 𝜖 = 10−8. All operations on vectors are element-wise. With 𝛽1𝑡 and 𝛽2𝑡 we denote 𝛽1 and 𝛽2 to 

the power of t 

 
 

Specifically, the algorithm evaluates exponential moving averages: 

o mt is the exponential moving average of the gradient gt 

o vt is the exponential moving average of the gradient gt2   

where the hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay rates of these 

moving averages. 

The moving averages are estimates of the 1st moment (the mean) and the 2nd raw 

moment (the uncentered variance) of the gradient where 𝑚𝑡̂ and 𝑣𝑡̂ are bias-corrected 

estimates. 
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At the end of the algorithm the parameters (weights) are updated using the two bias-

corrected estimates and α which is referred as step size or learning rate which defines 

the proportion with which the weights are updated. Smaller value corresponds to more 

slow learning during training. 

The author of the paper [50] shows the effectiveness of Adam solver in deep 

convolutional networks. He shows Adam performance with CIFAR-10 image 

recognition dataset: 

 

Figure 39 - Adam Solver Performances(Convolutional neural networks training cost. (left) Training cost for the 

first three epochs. (right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.) 

 

In the initial iterations, both Adam and Adagrad quickly reduce the training cost. 

However, Adam and SGD eventually converge considerably faster than Adagrad (Fig. 

39) 

 

3.3.5 GAN metrics: Fréchet Inception Distance (FID) 
 

In image-to-image translation problem, implemented trough GAN network, two widely 

adopted metrics for the quantitative evaluation of the quality of the generated images 

are the Inception Score (IS) and the Fréchet Inception Distance (FID). The FID is an 

improvement of IS and it has been shown as FID is consistent with human judgments 

and is more robust to noise with respect to the IS [51]. 
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We adopt FID as metrics for the evaluation of the quality of the GAN network which 

allows us to compare the distribution of generated images with the distribution of target 

real images.  

The FID, introduced by Heusel et al. [52], is the squared Wasserstein metric evaluated 

between two multidimensional Gaussian distributions. In particular the first, is the 

distribution of some features of the real images and the second is the distribution of 

some features of the generated images. These features are obtained when the generated 

images and the target images are fed into Inception V3 network. 

FID = ∥∥𝜇 − 𝜇𝑤∥∥2
2 + tr⁡(Σ + Σ𝑤 − 2(ΣΣ𝑤)

1/2) 

Where the mean and the covariance are evaluated on the activations obtained when we 

fed the generated and real images into the Inception V3 network. 

Lower FID means smaller distances between generated and real data distributions. 

 

 

Figure 40 - FID measure sensitive to image distortions [52] 
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Chapter 4 
 

GAN-based Path Planning 
 
 
In this chapter, we present the proposed GAN architecture adopted to solve the path 

planning problem. The problem has been treated as an image-to-image translation task 

which consists in associating to the image which contains the environment map an 

image which contains the corresponding feasible path. The model is trained using a 

large number of samples which contains environment map, start and goal node and 

corresponding feasible paths  which are generated by the well-known algorithm A*. 

After the training, the model given the input (environment map and start and goal node) 

returns a plausible translation, which represents the path to follow, whereas the 

environment is modelled using two-dimensional grid map image which is a suitable 

input for convolutional neural networks.  

 

4.1 Problem statement 
 
We consider the environment as two-dimensional grid which is composed of obstacle 

cells (occupied cells), free cells and start and  goal cells. The generated path on the grid 

is a sequence of adjacent free cells which connect start and goal cells. The path planner 

aims to find a path given a start and goal locations trying to minimize the path length. 

Formally, the grid map can be defined as a two-dimensional matrix 𝐴 ∈ ℝ𝑚x𝑛, where 

the occupied cell is indicated with element 𝑎𝑖𝑗 = 1 and the free cell with the element 

𝑎𝑖𝑗 = 0. The path planning aims to find a feasible path, 𝜋, which is a sequence of 

feasible moves 𝑒𝑣 = (𝑎𝑖𝑗, 𝑎𝑘𝑙) between adjacent cells, where 𝑎𝑖𝑗 , 𝑎𝑘𝑙 ∈ free cells, which 

connects the initial cell with the goal cell. 
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4.2 The A* algorithm 
  

The A* algorithm represents one of the most applied global path planning algorithm, 

which is an extension of the Dijkstra’s algorithm [53], that allows to reduce the 

Dijkstra’s search space using a heuristic function to estimate the cost from any node to 

the goal node. In particular, the Dijkstra’s algorithm searches for the goal cell in all 

direction. This approach could be efficient if we deal with complex environment, but it 

becomes very inefficient when the optimal path is very simple, like a straight line to the 

goal cell. 

Considering a generic node 𝑛, the A* algorithm follows the best-first approach, which 

consists of assigning a cost of action at node 𝑛 by means of an evaluation function 𝑓(𝑛) 

and selecting the action corresponding to the best value. The algorithm considers not 

only the number of step from the start node, like Dijkstra, but also a heuristic function 

which gives an indication of the preferred direction to search (towards the goal node). 

Formally, the evaluation function 𝑓(𝑛) is defined as: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (4.1) 

where 𝑔(𝑛) is the cost from the starting node to the node 𝑛 and ℎ(𝑛) is the heuristic 

estimation of the cost from node n to the goal node. 

Since the A* is a graph-search algorithm and has to operate with grid maps, which are 

discretization of the real world, we can define two version of A* which depends on the 

number of movement allowed to the agent: 

o A* with 4-connected graph where 4 movements are allowed along the cartesian 

directions 

o A* with 8-connected graph where 8 movements are allowed along the cartesian 

directions and diagonal directions. 
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Figure 41 – Allowed movement in 4-connected and 8-connected 

In the first case the heuristic function is evaluated using Manhattan distance which is 

defined as follows: 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑛) = 𝐷 ∙ (𝑑𝑥 +⁡𝑑𝑦) (4.2) 

𝑑𝑥 = |𝑛𝑥 −⁡𝑔𝑥|, 𝑑𝑦 = |𝑛𝑦 −⁡𝑔𝑦| (4.3) 

where:  

o 𝑛𝑥, 𝑛𝑦 are the coordinates of the node 𝑛 

o 𝑔𝑥, 𝑔𝑦 are the coordinates of the goal node 

o 𝐷 is a cost parameter associated to cartesian movement between adjacent cells 

 

 

Figure 42 - Example of 4-connected with Manhattan Distance (simplest case without obstacles) [54]  

In the second case the heuristic is evaluated using diagonal distance which is defined as 

follows: 

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑛) = 𝐷 ∙ (𝑑𝑥 +⁡𝑑𝑦) + (𝐷1 − 2 ∙ 𝐷)min⁡(𝑑𝑥, 𝑑𝑦) (4.4) 

where D1 is a cost parameter associated to the diagonal movement. 

If 𝐷 = 1 and 𝐷1 = 1 the diagonal distance is known as Chebyshev distance whereas if 

𝐷 = 1 and 𝐷1 = √2 the diagonal distance is known as Octile distance. 
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Figure 43 - Example of 8-connected with Octile Distance (simplest case without obstacles) [54] 

An alternative to diagonal distance could be the Euclidean distance, which is shorter 

than diagonal distance. This means that the obtained paths will be the shortest, but A* 

computation time increases [54].  

 

 

Figure 44 - Example of 8-connected with Euclidean Distance (simplest case without obstacles) [54] 

Euclidean distance which is defined as follows: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑛) = 𝐷 ∙ √(𝑑𝑥
2 +⁡𝑑𝑦

2) 
(4.4) 

Assuming that 𝑆 and 𝐺 are the start and goal node, respectively and 𝑓(𝑛) is the 

evaluation function above mentioned, the A* algorithm, in its conventional form [10], is 

defined as follows: 
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Algorithm 4: A* algorithm 

1:  procedure⁡A_star(S, G) 

2:       OpenSet⁡ ← ⁡𝑆 

3: 𝑓(𝑆) ⁡= ⁡𝑔(𝑆) ⁡+ ⁡ℎ(𝑆) 

4: t  ←⁡0 

5: 𝐰𝐡𝐢𝐥𝐞⁡OpenSet⁡! = ∅⁡⁡𝐝𝐨 

6:  𝑛next⁡ = 𝑛min⁡ ∈ ⁡OpenSet⁡s.t.⁡𝑓(𝑡)(𝑛𝑚𝑖𝑛) < 𝑓(𝑡)(𝑛𝑗)∀𝑗 = 1,… , 𝑁 

7:  if⁡𝑛𝑛𝑒𝑥𝑡 = 𝐺⁡then 

8:   Terminate() 

9:  else 

10:   ClosedSet⁡ ← 𝑛next⁡ 

11:   start⁡execute⁡expand⁡(𝑛next⁡) 

12:   for⁡all⁡𝑚 ∈ 𝐴𝐷𝐽 − 𝑁𝑂𝐷𝐸𝑆(𝑛𝑛𝑒𝑥𝑡)⁡do 

13:    𝑓(𝑡)(𝑚) = 𝑔(𝑡)(𝑚) + ℎ(𝑡)(𝑚) 

14:    if⁡⁡𝑚 ∉ ⁡ClosedSet⁡𝐭𝐡𝐞𝐧 

15:     OpenSet⁡ ← 𝑚 

16:    else⁡if⁡𝑓(𝑡)(𝑚) < 𝑓(𝑡𝑖)(𝑚)⁡then 

17:     OpenSet⁡ ← 𝑚 

18:    end⁡if 

19:   end for 

20:   end⁡execute⁡expand⁡(𝑛𝑛𝑒𝑥𝑡) 

21:  end⁡if 

22:  t  ←⁡t + 1 

23: end⁡while 

24:  end⁡procedure 

 

4.3 Grid-Image Transformation 
 

The implemented GAN network solves the path planning problem treating it as an 

image-to-image translation task. So, being a network which works with images, we 

need to map the grid information into image data. We can distinguish 3 classes of grid 

cells, as mentioned in 4.1 ▬  free cells, occupied cells (obstacles), start and goal cells 

and path cells. So we map free cells with white pixels (0), occupied cells with black 

pixels, start cell with red pixel, goal cell with blue pixel and path cells with green pixels. 

In Fig. 45 we have an example of grid-image transformation for a grid map which 

contains obstacles, start and goal node and path. 
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Figure 45 - Grid-Image Transformation for a 10x10 grid map 

 

4.4 Dataset Generation 
 

The dataset consists of a RGB images of dimension 64x64 pixels: 

o for the generation of environment maps we use, instead of coordinates, image 

maps of dimension 64x64 pixels which are randomly generated. The 

environment is a grid map where the obstacles are denoted with black pixels and 

the free spaces with white pixels.  

o for each map, we generate a certain number of pairs of start and goal nodes, 

randomly chosen from the free space. The start node is denoted with red pixel 

whereas the goal node is denoted with blue pixel. 

o in order to generate the ground truth for training and validation set, we generate 

a feasible path, using A* algorithm, for each map and corresponding start and 

goal nodes. The path is denoted with green pixels. 

      

      

      
Figure 46 – An example of dataset. For each column, from the top to the bottom, each element represents 

environment maps, pair of start and goal node and feasible path generated by A* algorithm 
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4.5 Overall GAN-based Path Planning Architecture  
 
Fig. 47 shows the initial overall architecture of GAN model used for the path planning 

generation and Fig. 48 and Fig. 49 shows, respectively, the detailed structure of the 

discriminator and generator. 

  
Figure 47 - Overall Architecture of the GAN network for path planning 

In our application, we refer to: S as the path images space, M as the map images space, 

P as the point images space. 

In the discriminator the inputs are 64x64x3 dimensional map image M, 64x64x3 

dimensional points image P and 64x64x3 dimensional target path  image S, which can 

be fed by the generator (fake target) or by training set (true target). The output is a 6x6 

feature map which contains the fake/true prediction of specific patch of the input.  

So, the discriminator architecture is similar to the Pix2Pix model. Specifically: 

o the three inputs are concatenated, along channel dimension, and fed into the first 

block which is a Convolution – Leaky ReLU layer where the convolution  uses 

4x4 filters with stride of 2 and the slope of the Leaky ReLU is set to 0.2 



65 
 

o from the second to the fourth block we have Convolution – BN – Leaky ReLU 

layers. In the first two layers the convolution layer uses 4x4 filter with stride of 

2 and in the final layer the convolution uses 4x4 filters with stride of 1. 

o the final block is a simple Convolution layer, with 4x4 filters and  stride of 1, 

which output is the patch feature map. 

 
Figure 48 - Discriminator Architecture (to redo) 

In the generator the inputs are 64x64x3 dimensional map image M and 64x64x3 

dimensional points image P. The output is 64x64x3 dimensional image which 

represents the generated path S.  

The generator obeys to encoder-decoder architecture: 

o The encoder aims to extract information about the obstacles location and start 

and goal positions 

o The decoder aims to reconstruct a feasible path, using the information about the 

environment and start and goal locations.  

As in the Pix2Pix architecture, the generator uses U-Net model whereas the skip-

connections between same-size encoder and decoder layers are obtained concatenating, 

along the channel dimension, the output feature map of the encoder layer with the 

output feature map of the same-size decoder layer. 

So, M and P are fed into a 32-channel convolutional layer, respectively. The feature 

maps obtained are concatenated together along the channel dimension obtaining a 
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32x32x64 feature map which is processed by subsequent layers which encode and 

decode  obtaining the generated image. 

The encoding network architecture is structures as follows:  

o the block 1 consists of two layers which are Convolution-LeakyRelu layer with 

4x4 filters, stride of 2 and Leaky ReLU slope equal to 0.2. 

o the blocks 2 ÷ 4 are  Convolution-BatchNormalization-LeakyRelu layers with 

4x4 filters, stride of 2 and Leaky ReLU slope equal to 0.2 

o the bottleneck layer  is a Convolutional-Relu layer with 4x4 filters and stride of 

2 

The decoding network architecture is structures as follows:  

o the blocks 5 ÷ 8 are Deconvolution-BatchNormalization-LeakyRelu layers with 

4x4 filters and stride of 2. 

o the final block is a Deconvolution-Tanh layer with 4x4 filters and stride of 2. 

This block compresses the output feature map of the block 8 into 3-channel 

feature map and activates it by Tanh function obtaining the final generated 

image. 

If we denote the output feature maps from block 1 to block 4 as I1, I2, I3, I4 and the 

output feature maps from block 5 to 8 as I5, I6, I7, I8 we create skip connections 

concatenating, along the channel I1 and I8, I2 and I7, I3 and I6, I4 and I5. 

 

 
Figure 49 - Generator architecture 
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4.6 Training algorithm 
The network is trained according to the GAN adversarial game using as loss function 

those used in the original Pix2Pix paper. The algorithm, which allows the network to be 

trained is the following one. 
Algorithm 5: Training algorithm where θ𝐷 and θ𝐺  are the weights of the discriminator and generator 

respectively and 𝑚 is the batch size 

1: for Number of training iterations do 

2: for k iterations do 

3:  sample 𝑃𝒮,ℳ,𝒫(𝑠,𝑚, 𝑝) to get m random samples {𝑠𝑖 …𝑠𝑚}, {𝑚𝑖 …𝑚𝑚}, {𝑝𝑖 …𝑝𝑚} 

4:  Calculate the discriminator error: 

𝐽𝐷 = −
1

2𝑚
(∑  

𝑚

𝑖=1

log D(𝑠𝑖 , 𝑚𝑖 , 𝑝𝑖) +∑  

𝑚

𝑖=1

log(1 − 𝐷(𝐺(𝑚𝑖 , 𝑝𝑖),𝑚𝑖 , 𝑝𝑖))) 

5:  Update discriminator parameters  using Adam algorithm 

6:  Calculate the generator error: 

𝐽𝐺 = −
1

𝑚
(∑  

𝑚

𝑖=1

𝑙𝑜𝑔⁡ 𝐷(𝐺(𝑚𝑖 , 𝑝𝑖),𝑚𝑖 , 𝑝𝑖) +∑  

𝑚

𝑖=1

𝜆 ∗ ℒ𝐿1⁡(𝐺(𝑚𝑖 , 𝑝𝑖))) 

7:  Update generator parameters using Adam algorithm 

8: end 

9: end 
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Chapter 5 
 

GAN Path Planning Experimental  
Results 
 
 
5.2 Training details 
 

For the training and validation of the GAN network we use two datasets of increasing 

dimensions. The first one is composed by 44500 sets of data whereas we randomly 

choose, among them, 33000 for the training phase and 11500 for the validation phase. 

The second one is composed by 110500 sets of data where 99000 are randomly chosen 

for the training set and 11500 for the validation set. 
Table 1 – Summary of the dataset used for the experiments 

Dataset ID Training Size Validation Size Total Size Dataset Type 

Dataset_01 33000 11500 44500 Original (Fig. 46) 

Dataset_02 99000 11500 110500 Original (Fig. 46) 

Dataset_03 99000 11500 110500 Modified (Fig. 65) 

 

In order to validate our architecture, we have conducted different training process: 

o 50 epochs using for the training and validation phase the smaller dataset 

o 150 epochs using for the training and validation phase the smaller dataset 

o 50 epochs using for the training and validation phase the bigger dataset 

o 50 epochs using for the training and validation phase a modified dataset 

Afterwards, we have slightly modified the overall architecture seeking performance 

improvements. 

For the training phase, we used as stochastic gradient descent optimization algorithm 

the one used in the original Pix-2-Pix architecture [47] which is the Adam optimizer 



69 
 

with parameters β1 = 0.5 and β2 = 0.999 with learning rate of 0.00001 and 0.0001 for the 

discriminator and generator model, respectively. 

 

5.3 Success metrics 
 

For the quantitative evaluation of the quality of the generated images we have adopted 

Fréchet Inception Distance (FID) mentioned in 3.3.5. 

In our case, we have used the FID metric in two different ways: 

o during training, at each epoch, we adopt FID to compare the whole validation 

ground truth distribution (distribution of target path) with whole distribution 

generated by the generator model (distribution of generated path), pulling out a 

unique score. So, we obtain an overall FID for each epoch.  

o at the final epoch, we adopt FID to compare each pair of real target and 

corresponding generated target. In this case we obtain a specific score for each 

pair of them. 

The first way allows us to understand if the network is working in the right way. If the 

overall FID decreases at each epoch the overall quality of the generated images is 

improving. While, in the second way we understand, at the final epoch, what is the 

percentage of path correctly generated with respect the whole validation dataset. From 

this moment we will refer to the first FID as “Overall FID” (OFID) and to the second as 

“particular FID” (PFID) 

 

Figure 50 - Overall FID (OFID) 
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Figure 51 - Particular FID (PFID) 

Experimentally, we have found range of PFID which classifies the quality of the path 

generated: 

o PFID > 100: we obtain path which are very different with missing segments and 

image noise. In this situation the path starts and finishes with different start and 

goal nodes. 

o 60 < PFID < 100: we obtain paths similar to the target one (possibility of little 

missing segments and image noise) with the same start and goal node.  

o PFID < 60: we obtain paths which are very close to the target one 

In  all experiments that we have conducted the path generated does intersect with any 

obstacle for all PFID. 

In general, there may be cases where we have blurring. 

  
▬ IMAGE NOISE  

▬ MISSING SEGMENTS  

▬ DIFFERENT START AND GOAL  NODE 

Figure 52 – PFID = 117.93 

S 

G 
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▬ IMAGE NOISE  

▬ MISSING SEGMENTS  

Figure 53 – PFID = 89.12 

 

  
▬ IMAGE NOISE  

Figure 54 – PFID = 57.58 

 

  
▬ BLURRING 

Figure 55 – PFID = 24.15 

 

In our experiments we consider as successful generated all the path which have a PFID 

values less than 100. So, in order to compare the experiments we introduce a validation 
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quantity, the success rate. This quantity tells us how many paths are correctly 

synthesized on the total distribution of generated paths. Considering the paths with a 

PFID <100 as successful generated, we can easily compute the success rate from the 

PFID distribution.  

 

5.4 First Experiment – 50 epochs with smaller dataset 
 

We have conducted the first experiment, using for the training phase, the smaller dataset 

(Dataset_01) with 50 epochs.  

Fig. 56 shows the trend of generator and discriminator losses during each epoch. We 

can see that when the generator loss increases (the generator gets better in fooling the 

discriminator), the loss of the discriminator loss decreases as a result. This is an 

indication that the training is successful (see 5.11). The training is stopped before the 

discriminator and generator losses stabilize. 

 

 
Figure 56 – Generator and Discriminator Losses for 50 epochs with smaller dataset 

Fig. 57 shows the trend of the OFID during each epoch. At each epoch, the OFID 

decreases. This is an indication that the quality of the generated path is improving at 
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each epoch. After the 40^th epoch the value of OFID starts to stabilize around the value 

40. The final value of OFID, for the epoch 50, is 38.31. 

 

 
Figure 57 – OFID values for 50 epochs with smaller dataset 

For the epoch 50 we have evaluated the PFID value for each pair of target and generated 

path. Fig. 58 shows distribution of PFID values in the validation dataset. We can see 

that the model generate path, with PFID value around 100, with the highest frequency. 

From the distribution of PFID, we can evaluate the success rate which is 38.45%. 

 

 
Figure 58 - PFID probability function epoch 50 
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5.5 Second Experiment – 150 epochs with smaller 
dataset 

 

We have conducted the second experiment, using for the training phase, the smaller 

dataset (Dataset_01) with a higher value of epochs. We have increased the number of 

epochs in order to understand if we can have an improvement of the performances in the 

generation of the paths.  

Fig. 59 shows that after the epoch 50 the discriminator loss continues to decrease, and  

the generator loss continues to increase accordingly. The training is stopped before the 

discriminator and generator losses stabilize. 

 

 
Figure 59 - Generator and Discriminator Losses for 50 epochs with smaller dataset 

Fig. 60 shows that, after the epoch 50, the OFID trend stabilizes around a value 30. The 

final value of OFID, for the epoch 150, is 30.29. When the OFID stabilizes the quality 

of the generated images does not improve anymore. However, the generator and 

discriminator losses continue to increase and decrease respectively. So, they do not 

make us understand if the quality of the generated paths improves or not. The loss 

functions are not a good indication of the quality of the generated path.  
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Figure 60 - OFID values for 50 epochs with smaller dataset 

Fig. 61 shows the distribution of PFID values in the validation dataset evaluated for the 

epoch 150. In this case we have that the paths, with a PFID slightly higher than 100, are 

generated with the highest frequency. The  distribution of PFID moves slightly to the 

left. So, we have that the frequency associated to the generated paths with a PFID 

values smaller than 100 is increased. So, we have a little improvement of the 

performances with respect to the previous case, Experiment 1. From the distribution of 

PFID, we can evaluate the success rate which is 43.68%. So, training the network with a 

higher number of epochs, we obtain an improvement of the performances.  

 
Figure 61 - PFID probability function epoch 150 
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5.6 Third Experiment – 50 epochs with bigger dataset 
 

The third experiment consists in repeating the first experiment, using for the training 

phase, the bigger dataset (Dataset_02). We have increased the size of dataset in order to 

understand if we can have an improvement of the performance, with respect to the first 

experiment, as in the second experiment. 

Fig. 62 shows how, increasing the size of dataset, the generator and discriminator losses 

increase and decrease, respectively, with a highest slope. 

 
Figure 62 - Generator and Discriminator Losses for 50 epochs with smaller dataset 

Fig. 63 shows that the OFID decreases with a higher velocity and at epoch 50 the OFID 

reaches a smaller value with respect to the first experiment. In this case, the final value 

of OFID, for the epoch 50, is 29.21 which is almost the same of the one evaluated in the 

second experiment for the epoch 150. 

 

 
Figure 63 - OFID values for 50 epochs with smaller dataset 



77 
 

Fig. 64 shows that the PFID distribution moves slightly to the left with respect to the 

first experiment. This means that we have an improvement of the performances with 

respect to the first experiment. From the distribution of PFID, we can evaluate the 

success rate which is 47.52%. 

 
Figure 64 - PFID probability function epoch 50 

In order to compare the three experiments we summarize the results as follows: 

 
Table 2: Summary of the results for the first three experiments 

Experiments Number 

of 

Epochs 

Dataset 

Type 

OFID 

Final 

Epoch 

Success 

Rate 

Generator 

Loss Final 

Discriminator 

Loss Final 

1 50 Smaller 38.31 38.45% 6.914 0.107 

2 150 Smaller 30.29 43.68% 9.799 0.067 

3 50 Bigger 29.21 47.52% 10.187 0.058 

 

 

The comparison between the first two experiments shows how increasing the number of 

training iterations (epochs) has improved the performances. In particular, if we train the 

network with a higher number of epochs, we obtain a smaller OFID. This means having 

a better distribution of PFID, which has increased the number of paths correctly 

generated passing from a success rate of 38.45% to a success rate of 43.68%.  
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The comparison between the first and the third experiment shows how increasing the 

size of the dataset has improved the performance by almost 10%. So, with the same 

number of training iteration, the capability of the model in generating path in unseen 

environments has improved. Specifically, we pass from a success rate of 38.45% to a 

success rate of 47.52%. 

The comparison between the second and the third experiment confirm that increasing 

the size of dataset we have better performance. In particular, we obtain a better success 

rate with a number of iterations which is reduced by a factor of 3. Specifically, we pass 

from a success rate of 43.68% to a success rate of 47.52%. 

It is worth noting that: 

o Considering the training of the model with smaller dataset, if we increase the 

number of epochs over 150, we have no improvement of the performances.  

o Considering the training of the model with bigger dataset, if we increase the 

number of epochs over 50, we have no improvement of the performances. 

So, these results suggest that best way to train this network is to use a bigger dataset. 

 

5.7 Fourth Experiment – 50 epochs with modified dataset 
 
Analysing the results above mentioned we have seen that the best success rate that we 

have obtained is around the 50%. This means that half of the generated paths are wrong 

with PFID > 100. The wrong path does not intersect the obstacle but starts and finishes 

with different start and goal node with respect the one specified in the generator input. 

We remind that the generator inputs specify start and goal node using one pixel, 

respectively. This could suggest that the information associated to start and goal node of 

the path is too little considering that the filter is moved with a stride of 2. So, for the 

decoder network, it could be hard using the start and goal information in order to 

generate the path. In other words, the information relating to start and end points might 

be lost during the encoding process. 

So, we attempt to modify the dataset structure, associating more information to the start 

and goal nodes. In particular, we associate to each node a greater number of pixels, 

passing from 1 pixel to 8 pixel (Fig. 65). 

The dataset generated has the same size of the bigger dataset in the previous 

experiments. 
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Figure 65 – An example of modified dataset. For each column, from the top to the bottom, each element 
represents environment maps, pair of start and goal node and feasible path generated by A* algorithm 

with start and goal node 

We have conducted the fourth experiment, using for the training phase, the modified 

dataset (Dataset_03) with 50 training iterations. 

 

Figure 66 - Generator and Discriminator Losses for 50 epochs with modified dataset 
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Figure 67 - OFID values for 50 epochs with modified dataset 

 
Figure 68 - PFID probability function epoch 50 
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Table 3: Summary of the results for the third and fourth experiment 

Experiments Number 

of 

Epochs 

Dataset 

Type 

OFID 

Final 

Epoch 

Success 

Rate 

Generator 

Loss Final 

Discriminator 

Loss Final 

3 50 Bigger 29.21 47.52% 10.187 0.058 

4 50 Modified 

dataset 

20.16 57.51% 13.554 0.025 

 
The comparison between the third and the fourth experiment shows how modifying the 

dataset has improved the performances. In particular, the success rate has improved by 

10% with respect to the third experiment. Specifically, we pass from a success rate of 

47.52% to a success rate of 57.51%.  

This results suggest that there was a problem related to the representation of start and 

goal node. So,  this dataset is more suitable for this kind of architecture.  

 

5.8 Fifth Experiment – 200 epochs increasing number of 
layers  

 
In the previous experiments, using the architecture, presented in Chapter 4, we have 

tried to modify number of epochs, dataset size and dataset structure in order to obtain 

the best performance from the model. The best success rate that we have obtained is 

around 60%. Despite the improvements obtained, this results are not satisfactory in 

order to obtain a reliable path planning strategy. The model returns 40% of the time a 

wrong path which would lead the rover to a wrong location. 

So, we have made an attempt to modify the generator architecture. In particular, we 

have tried to modify the number of layers within the network in order to see how the 

number of layers influence the network performances. 

For the fifth experiment we have modified the architecture adding an encoder layer and 

a decoder layer. The detailed network architecture is the following: 
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Figure 69 - Generator architecture 

Adding an encoder and decoder layer means decrease the size of the output feature map 

of the bottleneck layer which passes from 2x2x512 to 1x1x512. 

Moreover, for the training phase we do not use the modified dataset, but the original one 

with bigger size (Dataset_02). 

 

Figure 70 - Generator and Discriminator Losses for 200 epochs with bigger dataset increasing number 
of layers 
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Figure 71 - OFID values for 200 epochs with bigger dataset increasing number of layers 

Fig. 71 shows how the OFID decreases with a lower velocity with respect to the third 

Experiment. The OFID starts to stabilize after the epoch 150 around the value 30. 

 
Figure 72 - PFID probability function epoch 200 
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Table 4: Summary of the results for the third and fifth experiment 

Experiments Number 

of 

Epochs 

Dataset 

Type 

OFID 

Final 

Epoch 

Success 

Rate 

Generator 

Loss Final 

Discriminator 

Loss Final 

3 50 Bigger 29.21 47.52% 10.187 0.058 

5 200 Bigger 27.07 48.62% 11.114 0.054 

 

The comparison between the third and the fifth experiment shows a little improvement 

with respect to the third experiment. Comparing, the value of OFID, in the fifth 

experiment, at the epoch 50, we have a value of 52.42 which is much bigger with 

respect the one we have in the third experiment, 29.21. Increasing the number of layers 

has increased the necessary time to train the network of three times, getting a very small 

improvement in the performances. We pass from a success rate of 47.52% to a success 

rate of 48.62%. 

5.9 Sixth Experiment – 80 epochs decreasing number of 
layers  

 

For the sixth experiment we have modified the architecture removing an encoder layer 

and a decoder layer. The detailed network architecture is the following: 

 
Removing an encoder and decoder layer means increasing the size of the output feature 

map of the bottleneck layer which passes from 2x2x512 to 4x4x512. 

Moreover, for the training phase we do not use the modified dataset, but the original one 

with bigger size (Dataset_02). 
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Figure 73 - Generator and Discriminator Losses for 80 epochs with bigger dataset decreasing the 
number of layers 

 

 

Figure 74 - OFID values for 80 epochs with bigger dataset decreasing number of layers 
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Fig. 74 shows that the OFID starts to stabilize after the epoch 60 around the value of 20.

 

Figure 75 - PFID probability function epoch 80 

Table 5: Summary of the results for the third, fifth and sixth experiment 

Experiments Number 

of 

Epochs 

Dataset 

Type 

OFID 

Final 

Epoch 

Success 

Rate 

Generator 

Loss Final 

Discriminator 

Loss Final 

3 50 Bigger 29.21 47.52% 10.187 0.058 

5 200 Bigger 27.07 48.62% 11.114 0.054 

6 80 Bigger 19.88 56.69% 9.936 0.076 

 

The comparison between the third and the sixth experiment shows an improvement with 

respect to the third experiment of about 10%. We pass from a success rate of 47.52% to 

a success rate of 56.69% 

So, with the original dataset, the best architectural choice is using 3 layers for encoder 

and decoder layers with a 4x4x512 bottleneck layer. Probably, the reduction of the input 

to a feature map lower than 4x4x512 makes the network lose relevant information, 

about the obstacle positions and start and goal node, which can be used from the 

decoder network to generate the path. 
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5.10 Seventh Experiment – 150 epochs decreasing number 
of layers using the modified dataset  

 

The seventh experiment consists in repeating the sixth experiment, using for the training 

phase, the modified dataset (Dataset_03) in order to see if it is possible to have a further 

improvement of the performances. 

 

Figure 76 - Generator and Discriminator Losses for 200 epochs with modified dataset decreasing the 
number of layers 

 

Figure 77 - OFID values for 80 epochs with bigger dataset decreasing number of layers 

Fig. 77 shows that the OFID starts to stabilize after the epoch 100 around the value of 
10. 
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Figure 78 - PFID probability function epoch 150 

 
Table 6: Summary of the results for the sixth and seventh experiment 

Experiments Number 

of 

Epochs 

Dataset 

Type 

OFID 

Final 

Epoch 

Success 

Rate 

Generator 

Loss Final 

Discriminator 

Loss Final 

6 80 Bigger 19.88 56.69% 9.936 0.076 

7 150 Modified 10.70 73.88% 13.159 0.052 

 

The comparison between the sixth and the seventh experiment shows an improvement 

with respect to the sixth experiment of about 17%. We pass from a success rate of 

56.69% to a success rate of 73.88% 

So, with the architecture used, the best choice, for the training, is using the modified 

dataset. 
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5.11 Generator loss components 
 

It is worth remembering that the generator loss shown in each experiment is given by 

the weighted sum of two components, adversarial loss and L1 loss (see section 

3.3.4.2.3). 

We have seen, in each experiment, that the trend of generator loss and discriminator loss 

remains very similar. So, in order to analyse the behaviour of the generator loss, we 

consider the last experiment. Fig. 76 shows the trend of generator and discriminator 

loss, and Fig. 79 shows the component of the generator loss. 

 

Figure 79 - L1 Generator loss and Adversarial Generator Loss for the seventh experiment 

The component which defines the trend, and the module of the overall generator loss is 

the adversarial generator loss. 

The adversarial generator loss increases at each training iteration. This means that, at 

each epoch, the generator capability to fool the discriminator improves, because the 

generator aims to maximize the probability to classify as real the generated images.  

The L1 loss, which represents the distance between the generated image and the target 

image, is decreasing. This means that the quality of the generated images is improving 

at each training iteration. 

However, the losses do not always make us understand how the network is working (see 

5.5). They cannot be considered as absolute metrics for the evaluation of the network 

behaviour. For this reason, we have used as metric the FID score. 
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5.12 Considerations 
 

In the first part of the experiments, the number of epochs, size and database structure 

have been changed while using the architecture presented in chapter 4. This has allowed 

to understand the best combination of number of epochs and dataset size and the impact 

of the dataset structure on the architecture behaviour. From the conducted tests it has 

been obtained a success rate around 60%. 

Since it has not been possible to obtain a greater success rate, from that architecture, 

architectural changes have been performed in order to obtain a better success rate. In 

particular, the number of layers of the generator has been modified to see the influence 

of this factor on the model behaviour. So, decreasing the number of layers we have 

obtained an improvement in the success rate, achieving a value around the 74%. These 

improvements have been obtained with a generator architecture with 3 layers for 

encoder and decoder, respectively with bottleneck size of 4x4x512, using as dataset the 

modified one. This architecture is the best one we have obtained, considering as input, 

64x64 environment map. 

Despite improvements have been obtained during the experiments, the final success rate 

is around 74%. This means that about 26% of the generated paths are wrong. 

Considering the scenario of application of the algorithm, which consists in rover planet 

exploration, this solution for global path planning is not the best one. In particular, the 

global path planning strategy aims to support the autonomous navigation. So, the rover, 

in autonomous mode, has to be capable to reach the specified target of scientific 

interest. The developed global path planning strategy returns 26% of the time a wrong 

path which would lead the rover to a wrong location. 

However, we have seen that all the returned paths do not intersect the obstacle. This 

means that the algorithm manages to recognize the obstacle edges allowing to avoid the 

obstacles. So, when a wrong target is reached, we do not risk that the integrity of the 

rover was compromised, reaching unsafe zones. 

It is worth reiterating that we have considered as successful all the paths which have a 

PFID value < 100. This means that the generated path could contain little missing 

segments or little image noise. In order to guarantee the continuity of the path, an 

algorithm that connects these cells with a straight line could be employed with minimal 
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computational effort (e.g. Bresenham Algorithm [55]). Moreover, in order to remove 

noise, the image could be convolved with a mask, which represents a low-pass-filter or 

a smoothing operation. An example can be the Gaussian mask which elements are 

determined by a Gaussian Function. 

The successful generated paths are very similar to the one that A* algorithm would have 

generated. So, when the algorithm works well, it manages to imitate the algorithm 

behaviour with which has been trained, in completely unknown environments. 

Using this method for the path planning allows, by construction, to have a direct 

generation of path planning strategy in response to context inputs (environment maps). 

This method is inherently reactive, and in particular, with a lack of explicit planning 

computations since the path planning strategy is obtained using a mathematical model 

which represent the link between input and output. 

Moreover, this path planning strategy does not depend on the complexity of the 

environment. If we consider the A* algorithm, the time needed to solve the path 

planning problem strictly depends on the number of nodes that the algorithm expands in 

the search space.  

It is worth noting that the architecture has been tested with 64x64 environment map.  

Increasing the map size, could get worse the problem related to the representation of the 

start and goal node. In particular, relatively to the new map dimension, the information 

related to the start and goal position could be very little and might be lost during the 

encoding process. 
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Conclusions 
 
 
The thesis work aimed to develop a global path planning algorithm to support the 

autonomous navigation system of a rover for the planet exploration. 

In order to solve the path planning problem, we have proposed an algorithm based on 

recent developments in deep learning networks. 

The problem has been treated as an image-to-image translation task. The network, given 

a certain input (environment map and start and goal node) returns a plausible translation 

of the input, which consists in the path to follow. 

So, using as baseline the Pix2Pix architecture [47], which is a general approach for 

image-to-image translation, a GAN architecture for the path planning has been 

implemented. The proposed architecture uses an imitation learning approach to generate 

the path. Given an unknown environment, the model generates the path trying to imitate 

the behaviour of the A* algorithm. This means that the network is trained using as 

ground truth a large set of example paths generated by the A* algorithm. 

In Chapter 5, the performances of the proposed architecture has been evaluated. The 

experiments have been conducted using as input 64x64 environment’s maps. In the first 

part of the experiments, the number of epochs, size and database structure have been 

changed while using the architecture presented in chapter 4. This has allowed to 

understand the best combination of number of epochs and dataset size and the impact of 

the dataset structure on the architecture behaviour. From the conducted tests it has been 

obtained a success rate around 60%. 

Since from the initial architecture it was not possible to obtain a satisfactory success 

rate, architectural changes have been performed in order to obtain a better success rate. 

In  particular, the number of layers of the generator has been modified to see the 

influence  
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of this factor on the model behaviour. The results have shown that decreasing the 

number of layers improves the performance, obtaining a maximum success rate of about 

74%. 

However, as highlighted in the Chapter 5, these performances do not allow to have a 

reliable path planning strategy, applicable to the planet exploration, because the planner 

returns 26% of the time an incorrect path. 

Despite the obtained results, these experiments highlighted the critical issues of the 

architecture, linked to the success rate, which translates into the limited reliability of the 

model in the planet exploration application. 

Although several experiments have been carried out, to analyse the performance of the 

architecture, other key aspects need to be analysed. Specifically, the generator 

architecture could be changed by changing the stride parameter in the encoder and 

decoder layers passing from 2 to 1 in order to see its impact on the performances. The 

stride parameter manages the step size of the filter in convolution operation. Decreasing 

the stride increases the quantity of information acquired by the convolution layer 

(greater feature map). Naturally, in order to create a lower-dimensional representation 

(bottleneck layer) we need a greater number of layers. This means having more complex 

architecture that can cause stability problems in the training phase.  

Moreover, the architecture performances should be measured increasing the size of the 

environment map (e.g. 128x128, 256x256, 512x512). 
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