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Abstract

Goal of the thesis is to develop a meter for the measurement of the instantaneous
flow rate at high pressures (the experimental tests oscillate between a minimum
pressure of 600 bar and a maximum of 1800 bar).
The research and studies took place with the collaboration of the Rabotti company
and all experimental tests were conducted in the laboratory of the Energy Depart-
ment of the Polytechnic.
The meter is based on the detection of pressure, carried out by means of two
high-performance piezoresistive transducers, in two points placed at an appropriate
distance along a sufficiently rigid duct with a constant diameter where diesel, petrol
or mineral oil flows inside.
The instrument to be designed has a high technological content and brings a
significant innovation in terms of the market since there are no reliable instruments
on the market capable of evaluating the instantaneous flow rate in liquid flows
characterized by large levels of pressures.
The experimental readings of the pressure and temperature sensors are sent to an
acquisition card for high and low frequency signals and are then processed by a
cRIO platform.
The platform initially performs a filtering and then determines the instantaneous
flow rate associated with the liquid flow that passes along the duct.
The cRIO platform is also able to carry out post-processing concerning the flow
signal.
The primary goal is to implement an advanced filtering technique to correct the
results that the platform returns.
The methodology must take into account many parameters: processing times,
general efficiency, reliability and complete generality (having to do with numerous
experimental tests, each test will have its own behavior and introducing a general
methodology is not easy).
Furthermore, since it is not possible to perform a validation with a master type
meter, in addition to the realization of the prototype, a number-experimental
methodology will be defined for its validation.
The experimental tests on the prototype will be carried out on fuel supply systems
for internal combustion engines as they allow to reach high pressures.
After the implementation of the filtering techniques we will pass from the modeling
(using CAD-3D Solidworks) of the meter to the actual physical design.
All production processes for the engineering of the final product will be analyzed
and studied.
The thesis can therefore be divided into two large sections: in the first a methodology



was introduced to identify a technique for the correct filtering of the meter results
and in the second everything was integrated with the modeling and mechanical
design of the meter itself.
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Chapter 1

Fourier Analysis

1.1 From the series to the Fourier transform
Let’s consider a generic function F(t).
Function F is defined periodic if there exists a real number T (called period of
the function) which satisfies the following expression:

F (t + T ) = F (t) (1.1)

In this way I can obtain F as an infinite sum of harmonic functions; I write F in
Fourier Series:

F (t) = a0 +
∞Ø

n=1
an cos (nΩ0t) + bn sin (nΩ0t) (1.2)

where:
Ω0 = 2π

T
(1.3)

Ω0 is the fundamental frequency

a0 = 1
T

Ú T

0
F (t)dt = 1

T

Ú T/2

−T/2
F (t)dt (1.4)

a0 is the mean value of the function F

an = 2
T

Ú T

0
F (t) cos (nΩ0t)dt = 1

T

Ú T/2

−T/2
F (t) cos (nΩ0t)dt (1.5)

bn = 2
T

Ú T

0
F (t) sin (nΩ0t)dt = 1

T

Ú T/2

−T/2
F (t) sin (nΩ0t)dt (1.6)

1



Fourier Analysis

a0, an and bn are called Fourier coefficients and are a real numbers.
Remembering this trigonometric expression:

a cos α + b sin β = c sin (α + β) (1.7)

I can rewrite the Fourier series in the following way:

F (t) = a0 +
∞Ø

n=1
Cn sin (nΩ0t + Φ) (1.8)

Cn is the amplitude of the nth harmonic function.
The set of all Cn defined the spectrum of the function F.
An important concept to understand is thatI have moved from the time do-
main to the frequency domain (this concept is extremely important when it’ll
be introduced the Fourier Transform and the Discrete Fourier Transform).
The difference between two consecutive spectral lines is called frequency resolu-
tion and it coincides with the fundamental frequency Ω0:

∆Ω = Ωn+1 − Ωn = Ωn − Ωn−1 = nΩ0 − (n− 1)Ω0 = Ω0 (1.9)

This because I describe the nth frequency in this way:

Ωn = nΩ0 (1.10)

Figure 1.1: Example of Fourier Series of a generic periodic function F

It is possible to obtain the exponential form of the Fourier series by means
of the Euler identity:

eiα = cos α + i sin α (1.11)

2



Fourier Analysis

(1.2) will become:

F (t) = a0 +
∞Ø

n=1

(an − ibn)
2 eiΩnt + (an + ibn)

2 e−iΩnt (1.12)

through some simple mathematical steps I obtain:

(an − ibn)
2 = 1

T

Ú T

0
F (t)(cos Ωnt− i sin Ωnt)dt = 1

T

Ú T

0
F (t)e−iΩntdt = Xn (1.13)

(an + ibn)
2 = 1

T

Ú T

0
F (t)e−iΩ−ntdt = X−k (1.14)

where:
Ω−k = −kΩ0 (1.15)

Fourier series’ll become:

F (t) = a0 +
∞Ø

n=−∞(n /=0)
(XneinΩ0t + X−ne−inΩ0t) (1.16)

F (t) =
+∞Ø

n=−∞
XneinΩ0t (1.17)

(1.17) is the Fourier series in exponential form
Xn contains the amplitude and the phase because is a complex number:

Xn = 1
T

Ú T

0
F (t)e−iΩntdt (1.18)

The concept of the Fourier series finds space only in the field of periodic functions,
but this can also be extended to non-periodic functions.
This can be done by considering the periodic non-periodic function with:

T −→ +∞ (1.19)

Doing this moves from the series to the Fourier transform
In this way the spectrum (before characterized by points as it was considered the
nth harmonic function) becomes a continuous function:

∆Ω −→ dΩ(−→ 0) (1.20)

In this way:
nΩ0 −→ Ω (1.21)

The resolution frequency tends to 0 and becomes fundamental frequency Ω0 and
this causes the spectrum to become continuous.
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Through simple mathematical steps they will also change the shape of F(t) and
Xn.
From (1.18):

lim
T→∞

(TXn) =
Ú +∞

−∞
F (t)e−iΩtdt = X(Ω) (1.22)

X(Ω) is the Fourier transform of the initial function F (note that the periodicity of
the function is not required).
With the Fourier transform we pass from the time domain to the frequency domain,
but the reverse passage it is allowed, infact with a few steps we can compute the
Inverse Fourier transform:

F (t) = 1
2π

Ú +∞

−∞
X(Ω)eiΩtdΩ (1.23)

With the inverse Fourier transform we pass from the frequency domain to the time
domain.
The following table shows the differences between the Fourier series and the Fourier
transform.

Fourier Series Fourier Transform
Discrete Spectrum Continuous Spectrum

Function with period T Function with period T −→ +∞
Frequency resolution ∆Ω = Ω0 Frequency resolution ∆Ω −→ 0

F (t) =
+∞q

n=−∞
XneinΩ0t F (t) = 1

2π

s+∞
−∞ X(Ω)eiΩtdΩ

Xn = 1
T

s T
0 F (t)e−iΩntdt X(Ω) =

s+∞
−∞ F (t)e−iΩtdt

Table 1.1: Differences between the Fourier series and the Fourier transform
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1.2 From the transform to the Discrete Fourier
transform (DFT)

To better understand the concept of the Fast Fourier Transform (FFT) it is necessary
to introduce the methodology with which one passes from an analog signal to a
digital one.
An ADC is an electronic circuit capable of doing this, so it transforms a continuous
signal (displacement, acceleration, voltage) into a series of discrete values with
particular properties.
Identify a generic function G (t) in the time domain.
The analog to digital converter performs a sampling of the function, the distance
between two sampled points is called sampling period ∆t.
It’s possible to introduce the sampling frequency:

fs = 1
∆t

[Hz] (1.24)

If the sampling frequency is very large the frequency resolution gets large, which is
not positive to build the signal.
It’s necessary to introduce the Shannon theorem (or Nyquist theorem): the
theorem guarantees that an analog signal can be perfectly recovered as long as the
sampling rate is at least twice of the highest-frequency component of the analog
signal to be sampled.
The condition is:

fs > 2fmax (1.25)
where fmax is the maximum-frequency of the analog signal to be sampled.
If this theorem is not respected, there is a subsampling of the analog signal in
the time domain; in the frequency domain there is the production of frequencies
that are not inherent to the original signal (This phenomenon is called aliasing)
and vice versa from the frequency domain to the time domain a distortion of the
original signal is generated.
The process is complicated by the fact that the frequency of the signal to be
digitized is not known, therefore it is necessary to use appropriate filtering to
identify a cut off frequency.
The most important digital filters are identified:

• low pass-filter: the spectrum (or Frequency Response Function) after the
fcutoff is canceled.

• high pass-filter: the spectrum before the fcutoff is canceled.

• band pass-filter: a range of frequencies is identified [fmin, fmax] where the
spectrum is not canceled
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The steps for identifying DFT are now analyzed.
It is necessary to pass from the transform to the DFT because:

• The continuous function is unknown;

• By means of the analog-digital converter the discrete signal is available and it
is not possible to carry out the Fourier transform of a discrete signal;

• The hypothesis of an infinite period cannot be found in reality;

It is therefore necessary to return to the Fourier series (and to its hypothesis of
periodic function) and integrate with all the sampling discourse developed above.
From (1.18), sampled time history:

t = k∆t (1.26)

F (t) = F (k∆t) = Fk (1.27)

T = N∆t (1.28)
With the following modifications we obtain the Discrete Fourier Transform:

Xn = 1
N

N−1Ø
k=0

Fke−i2πn k
N (1.29)

Some of the properties of the DFT are as follows:

• it replaces K’=n+N

XKÍ = 1
N

N−1Ø
k=0

Fke−i2π(n+N) k
N = 1

N

N−1Ø
k=0

Fke−i2πn k
N e−i2πk (1.30)

By Euler’s identity:

e−i2πk = cos 2πk − i sin 2πk = 1 (1.31)

because n∈N.
It can say that the coefficients of the DFT are periodic because:

XN+n = Xn (1.32)

• In the same way, if it replaces K’=N-n, it is obtain:

XN−n = X∗n (1.33)

Where X∗n is the conjugate complex.
(1.33) is valid for n=1,2,3...N/2, therefore it is not necessary to sample the
whole domain, but only half of it.
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In reality, modern software does not implement DFT, but FFT (Fast Fourier
Transform).
The Fast Fourier Transform is an implementation of the DFT which produces
almost the same results as the DFT, but it is incredibly more efficient and much
faster which often reduces the computation time significantly.
It is just a computational algorithm used for fast and efficient computation of the
DFT [1].
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Chapter 2

Test bench

All experimental tests were conducted in the laboratory of the Energy Department
of the Polytechnic.
Using the measuring instruments it is possible to detect the quantity of fuel injected
by the individual injectors, the time histories of the pressures and temperatures in
operation.
The signals are acquired through a program that analyzes the current signal coming
from the control unit.

2.1 Hydraulic circuit
Figure 2.1 shows the diagram of the hydraulic circuit used in the test bench.
The following circuits are identified in the figure:

• Low pressure hydraulic circuit;

• High pressure circuit tools ;

• Continuous meters of medium injected flow KMM;

• EMI2 flow-meter

• Meter of instantaneous flow-rate EVI;

High-pressure pump (HPP) is driven by a three-phase asynchronous motor,
controlled by an inverter, whose nominal characteristics are, depending on the star
/ delta switching of the power supply:

• Speed 2000/4000 rpm;

• Power 37/34 kW;
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Figure 2.1: Hydraulic circuit of the test bench

• Torque 175/82 Nm.

For protection of the counter from any torque overloads caused by injection
system malfunctions, a safety joint is mounted between the pump and the electric
motor.
To avoid explosions the test stand is not powered directly with diesel fuel, but with
oil with characteristics that comply with the ISO 4113 standard.
Low pressure circuit consists of three priming pumps and a system of sensors
and heat exchangers that feed the HPP with a fluid controlled in pressure and
temperature and cool the motor that drives the pump itself.
The fluid itself is tapped to cool the EMI2 meter.
Two pneumatically operated solenoid valves are present on the low pressure circuit
to regulate the HPP and to regulate the back pressure on the recirculation of the
injector pilot stages.
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2.2 Oil tank

Figure 2.2: Oil refrigeration system

The test oil tank has a capacity of 50 liters and is equipped with a thermal
probe through which the temperature of the liquid present in it is detected and
there is also a coil heater.
A minimum oil level is guaranteed thanks to a float switch.
An additional thermal protection probe is also inserted in this switch, which deac-
tivates the entire bench in the event that the temperature of the test oil, following
operating anomalies, exceeds 80°C.
As long as the HPP is not activated, the heating device, if activated, raises the
temperature of the oil contained in the tank to the desired value.
The temperature is continuously monitored by means of the thermal probe inte-
grated in the tank.
When the HPP is actived the entire regulation system is controlled in feedback by
a second thermal probe, placed at the inlet of the HPP and the coil heater in the
tank keeps the HPP suction temperature constant.
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2.3 Feed pumps and cooling circuits

Figure 2.3: Feed and cooling pumps

In the low pressure circuit there are three pumps mounted in parallel on the
shaft of a direct current electric motor.
Pump 2 is the one that makes the oil flow into the cooling circuit of the HPP drive
motor.
Pump 2 sucks the oil from the 16-liter tank and discharges it into it at a higher
temperature, after the oil has fulfilled its function as engine coolant.
The two remaining pumps are used to supply the HPP and are connected to a
device that regulates the pressure and causes pump 1 to reach a maximum pressure
of 60 bar and pump 3 to a pressure of up to 6 bar.
The test oil is cooled by means of a heat exchanger positioned on the feed pump
delivery, downstream of the filter.
The fluid flows through the cooling pipes and transfers its heat to the water that
laps them.
The test bench also houses a second 16-liter tank for the refrigeration circuit of the
electric motor driving the bench.
The oil in this circuit is cooled in a water heat exchanger, the flow rate of which is
selected, this time manually, through an appropriate proportional valve (Item 4
figure 2.2).
Also in this device there is a float switch for safety reasons.
Through a variable throttle the exchanger is fed with an appropriate quantity of
water taken from the water mains; regulation of the throttle is carried out in closed
loop by an electronic control unit.

11



Test bench

2.4 KMM flow-meter

Figure 2.4: KMM meter’s scheme

KMM meters have the same operation as traditional volumetric flow meters,
but have the difference of having a mechanical-optical device which increases the
accuracy of the measurement.
The injected flow rate (in this case in the chamber) is directed towards a damper
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which reduces the pressure oscillations of the fluid.
There is, therefore, an accumulation of fluid on the left side of the circuit.
The right side is directly connected to the tank.
Other elements present in the KMM system are a positive displacement pump
driven by an electric motor and a floating plunger.
The plunger has a radial through hole through which a light beam from an emitter
passes (as seen in the figure 2.4) which is intercepted by a receiver.
A signal is generated which is then sent to the engine.
In the rest situation (no injection) the pressures in the two branches pm and
pv are equal to those of the tank, the plunger is also in equilibrium with the hole
positioned so as to give the receiver the entire light beam projected by the emitter.
Following the accumulation of fluid, the value of pm increases with respect to pv,
the floating piston moves and the receiver does not take on the entire light beam.
This is transformed into a signal that is sent to the motor which drives the pump
with a rotation speed proportional to the degree of obscuring of the sensor.
In this way pm begins to decrease and the plunger returns to the equilibrium
position and the pump begins to decrease its rotation speed.
The servo system installed in the meter tries to keep pm and pv equal, therefore
by means of the mechanical-optical feedback device it correlates the number of
revolutions carried out by the pump to the injected volume flow.

2.5 EMI2 meter
The EMI2 measuring instrument senses the displacement of a piston which limits
the cylindrical chamber on which the injector is mounted.
In this way the injected volume is calculated. Using a thermocouple, the tempera-
ture in the injection chamber is measured and based on the counter pressure value
used, the meter also gives an indication of the injected mass.
For the correct functioning of the EMI2 meter it is necessary:

• An encoder;

• A nitrogen bottle to guarantee the required back pressure (nitrogen is used
rather than compressed air to avoid the formation of an air-oil mixture);

• Cooling oil;

For each engine cycle it is possible to measure the preliminary, main and final
injected quantity, in addition to the overall and cumulative quantities.
When the piston reaches the end of its stroke, the normally closed two-position
solenoid valve allows the fluid to be evacuated from the chamber.
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Figure 2.5: Structure of EMI2 meter
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During the injection phase, the solenoid valve remains closed and the piston
descends due to the filling of the chamber placed above it.
The volume of injected liquid is associated with the displacement of the piston.
The piston position is always controlled by a position transducer.
The pressure in the chamber is known as it must be such as to counterbalance the
back pressure in order to guarantee the balance of the piston.
At the end of the injection the solenoid valve opens and the piston, under the
action of the spring, releases the liquid from the measuring chamber.
The next figure (2.6) shows an operational diagram of the EMI2 meter:

Figure 2.6: Operating diagram of EMI2 meter

The meter controls the solenoid valve so that the chamber never empties completely
and the liquid that remains in the chamber is called liquid stop and its value is
adjustable.
When the injections are small enough not to guarantee the permanence of the liquid
stop, the emptyings themselves do not take place at each injection, but periodically
and the instrument communicates this to the user by means of a flashing signal.
In this way, correct functioning is guaranteed in every possible situation.
The graduated burette is used in the calibration phase, the liquid is collected and
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is used as a term of comparison for the cumulative quantity detected in a certain
number of injections.
In the mechanical configuration used, the maximum measurable single injection
quantity is 600 mm3 with an accuracy of ± 0.1% of full scale which corresponds to
an absolute precision of ± 0.6mm3.

2.6 EVI meter

Figure 2.7: Structure of EVI meter

EVI meter detects the pressure increase due to the injection of the fluid into a
capacity consisting of a spiral-wound tube.
The measured pressure increase leads to the injected flow rate.
The damper section is varied by a stepping electric motor; the variation of the
section determines a variation of the damping of the system and, therefore, of the
perturbation of the pressure wave of the fluid.
The filter package attenuates the pressure wave, so it has the same effect as the
damper.
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The bursting disk is an overpressure protection device in the event of a malfunction
of the back pressure regulator valve.
To understand how the meter works it is necessary to see the next figure (Figure
2.8).

Figure 2.8: Operating diagram of EVI meter

The injector injects the fluid into the spiral measuring tube, this causes an increase
in pressure in the tube, directly proportional to the mass of the fluid entering.
The piezoelectric pressure sensor detects the pressure increase as a variation with
respect to the average pressure value (piezoelectric sensors do not detect the
absolute pressure value).
The acquired value is sent to the electronic acquisition system.
The injection generates a pressure wave that propagates on the spiral wound tube
and this wave is attenuated thanks to the damper and thanks to the filter package.
When the perturbation is completely damped, the entire quantity of injected fluid
passes through the choke.
Downstream of the throttle, through the solenoid valve, it is possible to adjust the
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back pressure to simulate all the conditions of our interest.
By means of physical and mathematical considerations it can be shown that:

du = dp

ρa
(2.1)

• du is the speed increase due to the pressure wave perturbation;

• dp is the pressure variation;

• ρ is the density of the fluid;

• a is the speed of sound in the fluid at rest.

Through the piezoelectric pressure sensor the EVI measures the pressure variation
dp, therefore it is possible to calculate the velocity of the inlet fluid through the
numerical integration of the above-mentioned equation.
The initial speed condition can be zero because between two consecutive injections
the measuring tube and the variable throttle completely dampen the pressure wave.
The volumetric flow rate can be calculated as follows:

Q = u× A (2.2)

A is the section of the injection chamber of the EVI.
Mass flow rate can be calculated:

ṁ = ρuA (2.3)

By integrating equation (2.3), the total injected mass is obtained:

M =
Ú t1

t0
ṁdt (2.4)

t0 and t1 are the initial and final instants of the injection.
This procedure presents measurement uncertainties.
It is necessary to calibrate the procedure by comparing the injected fluid volume
values calculated with the EVI with those measured by EMI2 with the same injec-
tor.
It should be remembered that EVI provides an indication of the injection charac-
teristic and EMI2 provides an indication of the volume injected.
Therefore, the calibration procedure mentioned above has rather the purpose of
ensuring that the measurements performed by the EVI, and the procedure to
compute the instantaneous flow rate are congruent with the indications provided
by EMI2, and that therefore they can ultimately be deemed reliable. [2]
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Chapter 3

Before algorithms

3.1 Presentation of the problem
Goal of the algorithm is to improve the flow diagram obtained by means of a fluid
dynamic model which allows to compute the instantaneous flow rate of fuel entering
the combustion chamber of a common rail diesel engine.
The fluid dynamic model allows to calculate the flow rate in this way:

G(t) = A

l

3Ú t

0
∆pdt− < ∆p >

4
(3.1)

where:

• A is the Area of the flow-meter;

• l is the distance between the two pressure sensors;

• ∆p is the pressure drop calculated by the two sensors.

The experimental tests performed allow to compute the flow rate considering
pressure variations ranging from 600 bar to 2000 bar.
It is possible to note that by diagramming what has been obtained from the
experimental points, the graph of the flow presents errors that have no physical
value.
After the injector fires into the combustion chamber the fuel should have a flow
rate value equal to 0 (precisely it will not be 0 because the mechanical system
being analyzed is highly dynamic, therefore it will continuously show variations in
flow rate between positive values and negative values), but this does not happen
because we work with very high pressure variations and the sensors will not be
able to provide an accurate estimate at all.
It should be emphasized that more than 100 tests have been analyzed at different
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pressures, at different ET (energizing times), so the same experimental test will
not be proposed.
The next figures show 3 examples (low, intermediate and high pressure) to better
understand the problem:

Figure 3.1: Low pressure: 800 bar, regulation with FMV, 700 µs ET, respectively
pressure measured by the upstream sensor and instantaneous flow rate
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Figure 3.2: Intermediate pressure: 1400 bar, regulation with PVC, 1000 µs ET,
respectively pressure measured by the upstream sensor and instantaneous flow rate

It is emphasized that all the calculations carried out refer only to the pressure
upstream of the flow meter and that most of the experimental tests refer to the
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Figure 3.3: High pressure: 1800 bar, regulation with PVC, 1000 µs ET, respec-
tively pressure measured by the upstream sensor and instantaneous flow rate

22



Before algorithms

rotation speed of the pump of 1000 rpm.
From the graphs highlighted it is evident that the output flow rate is wrong,
therefore it is necessary to introduce a methodology to solve the problem.
By carefully analyzing the Fast Fourier Transform of the pressure signal upstream
of the flow meter, in all experimental tests, at different rotation speeds, for different
conditions, a common point is noted: a peak at a significant frequency for
each test.
Paying attention to this effect, the respective 3 Fourier spectra of the pressure
signals represented above are reported:

Figure 3.4: Fourier spectrum of the pressure signal with Pup=800bar, ET=700µs,
FMV

It is necessary to note that for each spectrum a frequency can be identified which
must be identified (in the cases that have been seen 16.67 Hz and 33.33 Hz).
The idea is therefore to carry out some operation on the Fourier spectrum of the
parameter ∆p - < ∆p >, but to make everything computerized it is necessary to
identify, for each spectrum, this remarkable frequency.
The next step is to do just that.
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Figure 3.5: Fourier spectrum of the pressure signal with Pup=1400bar, ET=1000
µs, PCV

Figure 3.6: Fourier spectrum of the pressure signal Pup=1800bar, ET=1000 µs,
PCV
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3.2 Multiplicative factor MF and linearization of
the spectrum

By doing the FFT of the parameter Pup - < Pup > it’s possible to identify the
frequency on which we have to work (in the previous cases we expect a peak at
16.67 Hz and two peaks at 33.33 Hz).

Figure 3.7: Fourier spectrum of the pressure signal Pup− < Pup > with -
Pup=800bar, ET=700 µs, FMV regulation

Now it’s possible to identify the remarkable frequency and identify a methodology
to solve the problem.
The other 2 spectra (Figure 3.8 and Figure 3.9) are reported for completeness to
clarify the results.
After careful analysis, it was understood that the goal is not to cancel the contri-
bution of the spectrum at the considerable frequency, but to linearize the spectrum
locally, in order to eliminate the peak.
It has been noted that multiplying Pup with an adequate multiplication factor
MF (totally random) results in convergence, the contribution of the spectrum is
eliminated and the range seems to stabilize.
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Figure 3.8: Fourier spectrum of the pressure signal Pup− < Pup > with -
Pup=1400bar, ET=1000 µs, PCV regulation

Figure 3.9: Fourier spectrum of the pressure signal Pup− < Pup > with -
Pup=1800bar, ET=1000 µs, PCV regulation
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Now let’s analyze the behavior of the different graphs when the different MFs
change; it is necessary to take into account the order of magnitude of the various
multiplying factors (Figures 3.10 and Figure 3.11).
In figure 3.10 we have constructed the graph of the instantaneous flow rate consid-
ering a range of MF from 1.1 to 0.9 with step 0.05, while in figure 3.11 the same
range, but with a smaller discretization step 0.01. None of the graphs converge

Figure 3.10: Instant flow graphs with MF from 1.1 to 0.9 with discretization step
0.05 (Pup=1400 bar, ET=1000 µs, PVC regulation)

because the unit of measurement of the multiplicative coefficient is wrong, so
for each diagram that is taken into consideration, the correct MF value must be
considered.
Obviously it is possible, at the limit, to use an infinitesimal multiplicative coefficient,
but this implies a very high computation burden.
Another property that the algorithm must take into account is that the execution
time of the program must be as low as possible: having a really efficient algo-
rithm, but slow in terms of computational burden is a poor result.
With a lower discretization step it is obtained:
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Figure 3.11: Instant flow graphs with MF from 1.1 to 0.9 with discretization step
0.01 (Pup=1400 bar, ET=1000 µs, PVC regulation)

Figure 3.12: Instant flow graphs with MF from 1.1 to 0.9 with discretization step
0.005 (Pup=1400 bar, ET=1000 µs, PVC regulation)
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The result with figure 3.11 is 0.99, but decreasing the discretization step we see
that it converges on 0.9927.
The comparison is now made between the initial and final flow rate with MF
corrected and identified by means of the implemented algorithms. .

Figure 3.13: Initial Flow-rate vs Final Flow rate with MF=0.9927

From the behavior of the spectra it is possible to notice some fundamental char-
acteristics that will be taken into consideration during the implementation of the
algorithm.
Obviously, all the discourse made about the discretization step, the computational
burden applies to the spectra and we must take this into account. From figure 3.14
it’s possible to notice that the spectrum corresponding to 0.99 has the lowest slope,
but making the comparison between the initial one and the one to which MF =
0.9927 corresponds there is a clear and precise correspondence.
From figure 3.15 it is perfectly clear that a linearization of the Fourier spec-
trum must be performed.
it is therefore necessary to define an intersection frequency that will serve as a
control parameter (in addition to MF) to make the spectrum diagram fit well and,
consequently, the flow rate one.
In conclusion it can be stated that, from all the considerations made, to solve the
problem there are 2 parameters that influence the methodology: the intersection
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Figure 3.14: Spectra graph with MF from 1.1 to 0.9 with discretization step 0.01
(Pup=1400 bar, ET=1000 µs, PVC regulation)

Figure 3.15: Initial Spectrum vs Final Spectrum with MF=0.9927
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frequency which allows to linearize the spectrum and eliminate the peak and the
MF coefficients that correct the flow rate.
These two must be connected and everything will be explained in the following
paragraphs when the algorithm is explained in depth.

3.3 Extension to all situations
A characteristic that the algorithm must have is generality, all possible situations
must be considered and, obviously, in all cases it must work.
Up to now it has been considered a classic mechanical system, with a fixed rotation
speed (1000rpm), with precise regulation techniques, but we must get away from
all this.
The following changes will be considered:

• Different pump rotation speed;

• Different pressure levels and different ET;

• Injection that is not for t = 0, therefore also intermediate injection.

Figure 3.16 analyzes a different situation.
The pumping elements of the pump used in the mechanical system are no longer 2,
but 3. The rotation speed is always the same (1000 rpm), but a total transformation
of the Fourier spectrum is noted.
The results of the algorithm (in blue) make the correction.
It is possible to note, again in the Fourier spectrum diagram, the interpolating
line that has the intersection at a frequency that respects certain requirements
of the algorithm (concept explained in the previous paragraph and which will be
deepened in the following paragraphs).
It is possible to note that the linearization resulted has a beneficial effect on the
flow rate graph which was initially completely wrong.
Figure 3.17 analyzes a different situation.
The pumping elements, also this time, are 3.
The rotation speed is always the same (1000 rpm), but the injection no longer
takes place in the initial instant, but in an instant of intermediate time.
It is always possible to note that the spectrum always assumes a strange shape,
but the goal is always to linearize it at the frequency recognized by the Fourier
spectrum of the magnitude Pup− < Pup >.
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Figure 3.16: Respectively graph of Pup with reference value 1800 bar, pump
equipped with 3 pumping elements, Fourier spectrum and flow rate graph with
PCV regulation, n = 1000 rpm
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Figure 3.17: Respectively graph of Pup with reference value 1400 bar, pump
equipped with 3 pumping elements, Fourier spectrum and flow rate graph with
PCV regulation, n = 1000 rpm
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Consider another situation: FMV regulation, average pressure value upstream
of the flow meter 1800 bar, 1000 µs ET.
Consider the initial pressure, flow and Fourier spectrum graphs.

Figure 3.18: reference value of pressure 1800 bar, regulation with FMV, 1000 µs
ET, respectively pressure measured by the upstream sensor and instantaneous flow
rate

In this case, unlike what happened previously, there is no presence of the frequency
peak, therefore, at first glance, one could say that there is no need to linearize the
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Figure 3.19: Fourier spectrum of ∆p− < ∆p > with reference value of pressure
1800 bar, FMV

spectrum.
See what happens to the FFT of parameter Pup− < Pup > and see if there is a
correspondence with what was said before.

Figure 3.20: Fourier spectrum of Pup− < Pup > with reference value of pressure
1800 bar, FMV
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The peak is always present, therefore the methodology for solving the problem
remains unchanged.

Figure 3.21: Respectively graph of Pup with reference value 1800 bar, pump
equipped with 2 pumping elements, Fourier spectrum and flow rate graph with
FMV regulation, n = 1000 rpm

It’s possible to notice that the algorithm is efficient in solving this problem.
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3.4 Different speeds of rotation
To implement the algorithm, the different rotation speeds to which the motor will
be subjected must be taken into account.
It is limiting to consider only the rotation speed of 1000 rpm, therefore, experimental
tests were carried out at other speeds: 1500 rpm and 600 rpm.

3.4.1 Experimental tests with rotation speed n = 600 rpm
Consider the usual diagrams for the study of the problem and for the research of
the methodology of resolution.
Let’s consider PCV regulation, reference value of pressure 1300 bar, 1000 µs ET,
n=600 rpm.

Figure 3.22: Pressure upstream the flowmeter (n=600rpm)

The initial flow diagrams and the associated spectra are shown respectively. The
problem is still the same, but it is possible to notice that the peak frequency takes
on a different value than 16.67 Hz and 33.33 Hz (cases for n = 1000rpm) and this
time it is 20 Hz.
There seems to be, at least in PCV regulation, a well-known correspondence
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Figure 3.23: Initial flow-rate (n=600rpm)

Figure 3.24: Spectrum of the parameter <∆p−∆p > (n=600rpm)
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Figure 3.25: Spectrum of the parameter Pup− < Pup > (n=600rpm)

between the peak frequency, the geometric characteristics of the pump and its
rotation speed.
Reconsidering the previous case (figure 3.16) consider the Fourier spectrum of the
parameter Pup− < Pup >

Figure 3.26: Spectrum of the parameter Pup− < Pup >, reference pressure 1800
bar, 3 pumping elements of the pump (n=1000rpm)

The algorithm solves the problem and gives a coherent solution (Figure 3.27).
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Figure 3.27: Respectively graph of Pup with reference value 1300 bar, pump
equipped with 2 pumping elements, Fourier spectrum and flow rate graph with
FMV regulation, n = 600 rpm
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3.4.2 Experimental tests with rotation speed n = 1500 rpm
Let’s consider PCV regulation, reference value of pressure 1200 bar, 1000 µs ET,
n=1500 rpm.

Figure 3.28: Pressure upstream the flow-meter (n=1500rpm)

Figure 3.29: Initial flow-rate (n=1500rpm)
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Figure 3.30: Spectrum of the parameter ∆p− < ∆p > (n=1500rpm)

Figure 3.31: Spectrum of the parameter Pup− < Pup > (n=1500rpm)
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The solution of the algorithm is as follows:

Figure 3.32: Respectively graph of Pup with reference value 1200 bar, pump
equipped with 2 pumping elements, Fourier spectrum and flow rate graph with
FMV regulation, n = 1500 rpm
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In this case the frequency to be cut down is 50 Hz.
Through all the examples seen it is possible, for the PCV regulation, to identify
a correlation between the peak frequency and the operating (rotation speed) and
geometric (number of pumping elements) properties.
Before doing this we summarize the results obtained with the following table:

600 rpm 1000 rpm 1500 rpm
2 pumping elements 2 pumping elements 2 pumping elements

fpeak = 20Hz fpeak = 33.3Hz fpeak = 50Hz

3 pumping elements
fpeak = 50Hz

Table 3.1: PCV regulation, data to derive analytical equation between peak
frequency, pump rotation speed and number of pumping elements

fpeak = N
n

60 (3.2)

where:

• N is the number of the pumping elements of the pump;

• n is the rotation speed of the pump;

Unfortunately, experimental tests are not enough to be able to find an analytical
relationship also for the FMV regulation (no tests have been developed with the 3
pumping pump with FMV regulation).
This result can be really interesting as it is possible to link the peak frequency
with the frequency between the intersection of the interpolating line and the initial
spectrum.
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Chapter 4

Implementation of the
algorithms

4.1 Introduction to the first check

For the study of the algorithm we will consider a test in particular: PCV regulation,
reference pressure: 1200 bar, n = 1000rpm, 400 ET.
The corresponding Fourier spectrum is as follows:

Figure 4.1: Fourier spectrum of pressure signal, PCV, reference pressure 1200 bar
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to which it corresponds the flow-rate:

Figure 4.2: Flow-rate’s graph, PCV, reference pressure 1200 bar

The idea of the first control is to create a vector of frequencies following the peak
frequency identified by the Fourier spectrum (of the other quantity).
Each frequency will determine a point of intersection with the initial spectrum and,
considering the origin,a series of straight lines that will form a fan (Figure
4.3).
The goal is to identify which of the following lines allows a better lin-
earization of the Fourier spectrum, then associate the multiplicative
coefficient MF to these lines.
For each line, a cycle will be carried out and a vector of multiplicative coefficients
MF will be associated with it, appropriately spaced with a discretization step.
The line leading to the solution of the algorithm is the one that intersects the
spectrum at 83.33 Hz (it is the one that best approximates the linearization of the
spectrum); for this reason we will proceed with the description taking into account
only the latter.
Once the vector of the multiplicative coefficients has been built, I start a cycle
where I carry out, each time, the following steps:

• Calculate ∆p in this way:

∆p = Pup ×MF − Pdown (4.1)
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Figure 4.3: Initial spectrum with range of straight lines with corresponding points
of intersection

• Calculate the integral, do the difference with his mean value;

• Calculate the flow-rate;

• Compute the Fourier spectrum of this new signal;

• For each multiplicative factor the relative spectrum is constructed and for each
spectrum a least square line is constructed (with an appropriate range).

Now notice how the least squares lines converge going around the solution identified
by the algorithm (MF = 0.922).
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Figure 4.4: Line bundle of least squares with average value of the multiplicative
coefficient MF equal to 1.03

Figure 4.5: Line bundle of least squares with average value of the multiplicative
coefficient MF equal to 1.01
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Figure 4.6: Line bundle of least squares with average value of the multiplicative
coefficient MF equal to 0.952

Figure 4.7: Line bundle of least squares with average value of the multiplicative
coefficient MF equal to 0.991
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The first check consists in respecting a certain slope of the least
squares lines with respect to the intersection line.
For each Spectrum analyzed we’ve to compare the angular coefficient of the first
line and the angular coefficient of the fitting line.

4.2 Second check
This first control isn’t enough because each test has its own behaviour, therefore
some lines that satisfy the imposed condition have a spectrum that is not good for
the application, we need a second control.
The first check may not be enough because a solution in which the spectrum has a
jump from 16.67 Hz to 33.33 Hz would be correct because the fitting line would
not notice this.

Figure 4.8: Spectrum associated to MF=0.9911, initial spectrum and fitting line

In addition to a control of the inclination of the lines, I need a control for a correct
distribution of the spectra in the considered neighborhood (In this case 16.67 Hz,
50 Hz, 66.67 Hz and 100 Hz, but every n will have his neighborhood).
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The corresponding flow diagrams are as follows: To solve this problem the discretized

Figure 4.9: Flow-rate associated to MF=0.9911 and initial flow-rate

integration between the fitting line and the reference line were compared; in this
way’ll have a better distribution of the spectra.
The discretized integration of the reference line (straight line) will be:

S =
NØ

i=1
m1f(xi) (4.2)

The discretized integration of the fitting line’ll be:

R =
NØ

i=1
m2f(xi) (4.3)

N is the number of samples on which we want to do this integration (it represents
the range of the least square line).
After making these checks it is necessary to connect the multiplicative
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coefficients MFs with the correct slope of the line that best linearizes the
spectrum (this is done by applying the least squares method between
the spectrum corresponding to the MF coefficient and the line in an
appropriate interval).
First and second checks are not yet satisfactory for solving the problem because
there are wrong spectra that respect the conditions of the checks.
Let’s see the situation after these two checks: For the experimental test taken into

Figure 4.10: Initial Spectrum and Spectra after first and second control

consideration (1200 bar, PCV, 400 ET µs) we do not see a real divergence of the
solution, but we propose a series of images that make it clear that after the two
checks the result does not exactly converge.
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Figure 4.11: Initial Flow-rate and Flow-rate after first and second control
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Figure 4.12: Initial spectrum and Spectra after first and second control, reference
pressure 1000 bar, PCV regulation, 1000 µs ET,2 pumping elements

Figure 4.13: Initial flow-rate and flow-rate after first and second control, reference
pressure 1000 bar, PCV regulation, 1000 µs ET, 2 pumping elements
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Figure 4.14: Initial spectrum and Spectra after first and second control, reference
pressure 1500 bar, PCV regulation, 700 µs ET, discretized step 0.0001, 3 pumping
elements
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Figure 4.15: Initial flow-rate and flow-rate after first and second control, reference
pressure 1500 bar, PCV regulation, 700 µs ET, discretized step 0.0001, 3 pumping
elements
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4.3 Third check

Returning to the example of paragraphs 1 and 2 (reference pressure 1200 bar, 400
µs ET, PCV, 2 pumping elements) let’s analyze the situation after the controls.
After the first checks, the line that best linearizes the spectrum was iden-
tified:

Figure 4.16: Initial Spectrum, Spectra and interpolating line

It is easy to understand that the third check will be done on the spectrum closest
to the straight line obtained initially.
In this way we will have only one result and it will be the solution to our problem.
The range to be considered is from 0 to the next point of the intersection between
the initial spectrum and the identified line (in this case 100 Hz).
The final results are reported:
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Figure 4.17: Initial Spectrum and Final spectrum after the implementation of
the algorithm
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Figure 4.18: Initial Flow-rate and Final flow-rate after the implementation of the
algorithm
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4.4 Introduction to the simplified algorithm
It is necessary to reduce the processing time of the algorithm (the 3 controls are
efficient, but entail a high computational burden).
It has been noticed that the logic of the third control is a good choice to implement
the new algorithm.
In the first algorithm the discretization step was not fundamental be-
cause the first two controls eliminated the spectra that were wrong and
at the last control the spectra remained at best correct, so inserting a
smaller step did not change the algorithm that much.
Now the discretization step is fundamental because the first two controls have been
removed.
Some examples follow (Consider reference pressure 1400 bar, 3 pumping elements,
400 µs ET, PCV regulation):

Figure 4.19: Flow domain with discretization step 0.01, range of MF: from 1.1
to 0.97
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Figure 4.20: Domain of spectra with discretization step 0.01, range of MF: from
1.1 to 0.97

Figure 4.21: Result of the algorithm with discretization step 0.01, range of MF:
from 1.1 to 0.97
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Figure 4.22: Flow domain with discretization step 0.001, range of MF: from 1.1
to 0.97
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Figure 4.23: Domain of spectra with discretization step 0.001, range of MF: from
1.1 to 0.97

Figure 4.24: Result of the algorithm with discretization step 0.001, range of MF:
from 1.1 to 0.97
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Figure 4.25: Flow domain with discretization step 0.0001, range of MF: from 1.1
to 0.97
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Figure 4.26: Domain of spectra with discretization step 0.0001, range of MF:
from 1.1 to 0.97

Figure 4.27: Result of the algorithm with discretization step 0.0001, range of
MF: from 1.1 to 0.97
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Chapter 5

Comparison of algorithms

5.1 A brief summary
Making a small summary it can say that:

• The first algorithm performs three checks (least squares line, discretized integral
and sum of the differences between the i-th spectrum and the reference line)
to identify the spectrum that best linearizes the Fourier spectrum.
The advantage of the algorithm is efficiency, in fact it is able to identify
the best spectrum and, consequently, the correct flow-rate.
Another advantage (which was not discussed previously) is that in the third
check the sum of the differences between the e-th spectrum and the
identified line is carried out up to a very precise point (the point
after the intersection found).
The disadvantage should be the computational time.

• The second algorithm (simplified algorithm) foresees a single control which
corresponds to the third control of the first algorithm, but the logic is different
because this time the control is applied on the whole family of spectra that
are considered.
The Fourier spectra analyzed in this control are many compared to those of
the first algorithm, therefore the trends will not be as ordered as before (in
the first algorithm the first two controls gave a certain order of the remaining
spectra) and, consequently, the point up where to check is not easy to
identify.
One of the disadvantages has already been mentioned: difficulty in identi-
fying the final point of the control (it no longer coincides with the point after
the intersection).
The main advantage should be the low computational time (unlike
the other algorithm there is now only one check to be performed)
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However, the two algorithms have several differences and you have to compare
them to understand which one can be the best.
The differences that will be analyzed are the following:

• Processing time;

• Identification of the intersection line with the initial spectrum;

• Final point to check the sum of the differences between the straight line and
the i-th spectra;

• Accuracy and efficiency;

• Comparison of results.

5.2 Processing time
The processing time is the time it takes to make the algorithm work, that is the
time it takes for the algorithm to give the result.
Consider a generic test and compare the processing times for both (FMV regulation,
reference pressure 1400 bar, 700 µs ET):

Figure 5.1: Initial and final flow-rate, discretization step 0.001
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Both algorithms give MF=0.994 as result.
The algorithm of the 3 controls gives as processing time a value of 0.58 s (including
the time to plot the graph) while the simplified algorithm 0.61s.
Only the processing times are considered (excluding the times to have the graphs):

t1stalgorithm = 0.18s (5.1)

t2ndalgorithm = 0.21s (5.2)

First algorithm appears to have the lowest time, but see a table where a list of
times is made. with all certainty it can be said that:

Experimental test Processing time first algorithm Processing time second algorithm
PCV, 600 bar, ET=400 µs 0,12 s 0,17 s
PCV, 600 bar, ET=700 µs 0,13 s 0,15 s
PCV, 600 bar, ET=1000 µs 0,137 s 0,148 s
PCV, 800 bar, ET=400 µs 0,126 s 0,161 s
PCV, 800 bar, ET=700 µs 0,131 s 0,152 s
PCV, 800 bar, ET=1000 µs 0,138 s 0,146 s
PCV, 1000 bar, ET=400 µs 0,16 s 0,17 s
PCV, 1000 bar, ET=700 µs 0,142 s 0,17 s
PCV, 1000 bar, ET=1000 µs 0,125 s 0,15 s
PCV, 1200 bar, ET=400 µs 0,11 s 0,162 s
PCV, 1200 bar, ET=700 µs 0,13 s 0,165 s
PCV, 1200 bar, ET=1000 µs 0,125 s 0,15 s
PCV, 1400 bar, ET=400 µs 0,172 s 0,181 s
PCV, 1400 bar, ET=700 µs 0,123 s 0,15 s
PCV, 1400 bar, ET=1000 µs 0,125 s 0,17 s
PCV, 1600 bar, ET=400 µs 0,126 s 0,169 s
PCV, 1600 bar, ET=700 µs 0,136 s 0,152 s
PCV, 1600 bar, ET=1000 µs 0,136 s 0,154 s
PCV, 1800 bar, ET=400 µs 0,12 s 0,169 s
PCV, 1800 bar, ET=700 µs 0,123 s 0,158 s
PCV, 1800 bar, ET=1000 µs 0,119 s 0,145 s

Table 5.1: Comparison of times for all the tests listed, PCV regulation, n=1000
rpm

t1stalgorithm < t2ndalgorithm (5.3)

The processing time of the algorithm of the three controls is lower than
that of the simplified algorithm
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5.3 Identification of the intersection line with
the initial spectrum

A flow-chart is introduced to understand the logic of the first algorithm:

Figure 5.2: Flow-chart of the first algorithm

The i-th spectrum associated with the j-th frequency is checked, the spectrum is
passed in the first two controls; if the spectrum respects the controls, a summation
is performed and the associated value is inserted into a matrix, instead if it does
not respect it, the value 0 will be associated.
There will be two similar matrices with values other than 0 and with many 0s.
The minimum of the matrix of figure 5.4 is identified and the frequency
is extracted from the column and the remaining multiplicative coeffi-
cients will go into the third control.
It can be said that everything is quite complex, while in the simplified algorithm
everything happens in one fell swoop: both the identification of the frequency and
the multiplicative coefficient MF.
The simplified algorithm is more compact than the first algorithm.
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Figure 5.3: Matrix of multiplicative coefficients MF

Figure 5.4: Matrix of the sum of the differences between the i-th spectra and the
j-th line
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5.4 Final point
For ’final point’ it means the point up to where to compute the sum of the differ-
ences between the intersection line and the i-th spectrum.
In the algorithm of the 3 controls this point has been identified as the point follow-
ing the intersection between the intersection line and the initial spectrum.
The important thing to emphasize is that this point applies to all ex-
perimental tests that have been analyzed.
This happens because the first two controls destroy the wrong spectra
and thus give a certain order of the remaining spectra.
Let’s see a series of examples for the first algorithm:

Figure 5.5: Example 1: Initial spectrum, final spectrum, intersection point and
reference point for the initial algorithm
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Figure 5.6: Example 2: Initial spectrum, final spectrum, intersection point and
reference point for the initial algorithm
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Figure 5.7: Example 3: Initial spectrum, final spectrum, intersection point and
reference point for the initial algorithm
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The end point problem is in the simplified algorithm because there
is no correction effect of the first two controls.
The algorithm analyzes more wrong spectra and everyone has his own behaviour.
See some examples if we consider the final point the one following the intersection
point:

Figure 5.8: Semplified algorithm: Spectrum identified by reference point following
the intersection point

It is therefore necessary to identify a point that is good for all experi-
mental tests (150 Hz for example is good for all experimental test).
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Figure 5.9: Semplified algorithm: Spectrum identified by reference point fixed to
150 Hz
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5.5 Accuracy and efficiency
In this paragraph it wants to analyze the effect of the discretization step in the
two algorithms.
Obviously the need for the discretization step to negatively affect the processing
time, but it wants to see the effect it has on the algorithms.
Considering the first algorithm:

Figure 5.10: Effect of the variation of the discretization step: first algorithm

The decrease of the DS does not involve a substantial variation of the flow rate
diagram (the variation is present), but the thing to note is that it passes from a
processing time of 0.62 s (SD = 0.001) to 2 s (DS = 0.0001).
In these times it is necessary to consider the time to plot the graphs (the value is
not important, but the effect of the discretization step).

In the simplified algorithm the multiplicative coefficients MF are different, but it
should be noted that we go from 0.8 s (DS = 0.001) to 8 s (DS = 0.0001) which is
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Figure 5.11: Effect of the variation of the discretization step: Semplified algorithm

absolutely an unacceptable situation.
This is due to the fact that, by increasing DS, the number of spectra
that the algorithm has to analyze increases (the simplified algorithm
analyzed them all).
The algorithm of the 3 controls does not have this problem because most of the
spectra are eliminated by the two initial controls, so I will have increasingly larger
matrices, but with lots of 0.
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5.6 Absence of the solution
Due to how the algorithm of the three controls is set up, there is a possibility that
the solution may not be found (due to the two initial controls that eliminate all
the spectra).
This happens in a few experimental tests, so it is also necessary to manage this
situation because the algorithm must have a totally general value.
If the experimental test with reference pressure 1000 bar, 400µs ET, FMV regulation
is considered it is possible to notice that, with 5 intersection frequencies analyzed,
the algorithm does not find the solution.
This situation happens when the instant flow diagram is not totally wrong.
Initial flow-rate is:

Figure 5.12: Initial Flow-rate, Reference pressure 1000 bar, 400µs ET, FMV
regulation, n=1000 rpm

It’s possible to see the same situation in other experimental tests.
Consider ,respectively, FMV regulation, reference pressure 800 bar, 400µs ET and
1200 bar, 400 ET:
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Figure 5.13: Initial Flow-rate, Reference pressure 800 bar, 400µs ET, FMV
regulation, n=1000 rpm

Figure 5.14: Initial Flow-rate, Reference pressure 1200 bar, 400µs ET, FMV
regulation, n=1000 rpm
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Figure 5.15: Initial Spectrum and Final spectrum, Reference pressure 1000 bar,
400µs ET, FMV regulation, n=1000 rpm

Figure 5.16: Initial flow-rate and Correct Flow-rate, Reference pressure 1000 bar,
400µs ET, FMV regulation, n=1000 rpm
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The corrected and linearized spectrum is found at the 15-th frequency analyzed; this
makes the algorithm computationally inefficient, so it is not possible to implement
this solution.
The solution is to widen the acceptance range of the spectra of the first two controls
(if it was previously set at ± 15%, it will now be ± 20%).
in figure 5.17 the interval of the first two checks is increased to ± 25% and now
the algorithm recognizes the correct frequency at 83.33 Hz.

Figure 5.17: Initial spectrum and final spectrum with the interval of the two
controls fixed at ± 25%

The algorithm must also take this problem into account.
The situation is different, however, as regards the simplified algorithm.
As it is implemented, the simplified algorithm will always be a solution
(which corresponds to the minimum of the sum of the difference between
the i-th spectrum and the j-th frequency).
The simplified algorithm immediately recognizes the solution (figure 5.19).
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Figure 5.18: Initial Flow-rate and final flow-rate with the interval of the two
controls fixed at ± 25%
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Figure 5.19: Initial Flow-rate and final flow-rate with the semplified algorithm
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Chapter 6

Conclusions and Future
Prospects

In the light of what has been said in the previous paragraphs, the algorithm of the
three controls seems to be the most reliable and the most accurate.
The simplified algorithm, computationally, is much easier to understand, but has
many problems (intersection of lines, end point, processing time and discretization
step).
The algorithm of the three controls, on the other hand, does not present these
problems.
The only drawback is the management of the absence of the solution, but as has
been shown, it is possible to overcome this problem.
Another problem to be taken into account is that if the instantaneous initial flow
rate is already correct the algorithm does not have to do anything (which happened
in 1-2 experimental tests).
It must also be taken into account that all the graphs shown have been analyzed
on Matlab, but there will be no sophisticated software in the flowmeter, so the
perfectly correct graphs seen with the algorithm may not give the expected results.
Everything becomes even more complicated if we consider the fact that the process
is highly random, so a simple systematic error may not give the expected
results.
Precisely to avoid this, as many experimental tests as possible have been analyzed
(about 60-70), but such a small sample certainly cannot solve the statistics behind
the problem.
The goal is to introduce a correct and sensible methodology, studied in
every detail and correct from the point of view of electronic controls and obviously
from the engineering point of view.
The implementation of the algorithm followed a careful analysis because, being
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the phenomenon studied stochastic, it was necessary to identify a model that was
suitable for all experimental tests.
Initially it seemed that the tests did not have a common point (some had Fourier
spectrum peaks at 16.6 Hz, others at 33.33 Hz, others at 50Hz, some peaks were
repeated for a certain remarkable frequency, for others the linearization seemed
to have no effect), but with careful analysis an attempt was made to solve the
problem by means of a common and general resolution.
Fourier’s analysis made this possible and proved to be a powerful weapon for
the general study of the phenomenon.
All this work goes into improving the flowmeter and ensuring good repeatability
with each use.
In general, the flowmeter can be applied to hydraulic power systems equipped with
pipelines, characterized by the presence of high pressure unsteady flows.
Other applications of the meter, beyond those in injection systems involving high-
pressure flows (Diesel or Gasoline GDI) are the analysis of the flow-ate irregularity
in the different typologies of high pressure positive displacement pumps and the
investigation of the dynamic response of servo-valves to the electrical command.
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Appendix A

Mechanical design of the
flowmeter

The flow-meter includes two pressure sensors, installed at xup and xdown of a pipeline
in order to detect the pressure time distributions.
The ratio between the distance of the two sensors ’l’ and the internal pipe diam-
eter ’d’ should be high enough to consider the flow as one-dimensional, since a
nonuniform flow over the pipe cross section has a negative effect on the flow-meter
measurements.
It was also designed the rack of the case (Figure A.5) that will contain the entire
device where the input/output signals will be managed.

Figure A.1: Scheme of the flow-meter

The case that will be designed must take into consideration the overall dimensions
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(minimum in order not to hinder the flow of high pressure liquid) and must contain
the pressure transducers properly spaced.
Must be managed the appropriate mechanical connections to make easy the fluid
path, then the mechanical devices that will be inserted (nuts, fittings etc..) should
not be an obstacle to the flow path otherwise there will be concentrated induced
pressure drop.

A.1 Piezoresistive high pressure sensor
The pressure transducers used are those of Kistler, type 4065B...DS.
In Type 4065B. . . DS, the pressure acts through a robust diaphragm onto a piezore-
sistive measuring element. The compact dimensions and the shoulder sealing of the
sensor provide ideal access to the measuring point. Only a minimal dead volume is
created between the sensor front and the measured medium.
The sensor is therefore suitable for applications with a high requirement for
frequency-accurate pressure measurements.
This sensors are used in applications where average to high pressures must be
measured with a static and a dynamic component. [3]
Examples includes:

• General pressure measurements in gas and hydraulic systems;

• Frequency-accurate analysis of pressure curves in gasoline or diesel injection
pressure systems.

Figure A.2: Pressure transducer

87



Mechanical design of the flowmeter

Property [u.d.m.] Value
Measuring range [bar] 0 ... 200, 0 ... 500, 0 ... 1000

Overload [bar] 300, 750, 1000
Electrical connection Fischer connector 5 pole (S103A054)

Amplifier compatibility [Type] 4665, 4665B, 4624A
Power supply amplifier integrated

Reference temperature (Tref) [◦C] 25
Sensor temperature, min ./max. [◦C] -40/140

Temperature compensation digital
Temperature compensation range [◦C] 25 ... 120

Max. deviation pressure [%FSO] ≤ ± 1,5
Max. deviation temperature [◦C] ≤ ± 3
Linearity at Tref (LSQ) [%FSO] ≤ ± 0,3

Natural frequency 200, 500 bar, 1000 bar [kHz] >40, >100
Acceleration sensitivity [mbar/g] ≤ 10
Life cycle (typical) [load change] > 107

Mounting torque sensor [Nm] 5
Weight (without connector and cable) [g] 9

Protective class IP65

Table A.1: Technical Data of the transducer
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Figure A.3: 3D model of the flowmeter

Figure A.4: Flow-meter connected to the circuit for diesel injection
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Figure A.5: Rack of the device
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Figure A.6: Injection circuit diagram [4]

91



Appendix B

Fundamentals of Fluid
Dynamics Model of the
Flowmeter

All the theoretical concepts developed in the following appendix are derived from
the book ’Fondamenti di termofluidodinamica delle macchine’ by Prof. Ferrari and
from his lectures of the course ’Advanced computational techniques for hydraulic
and thermal machines’.

B.1 Introduction to Navier-Stokes equations
The flow meter analyzed returns in output the flow value of the fluid that is passing
through the mechanical system in question (in our case the injector).
The mass flow rate is calculated using the equations of thermofluid dynamics.
The equations of fluid dynamics for a viscous fluid are as follows:

dρ
dt

+ ρ∇ · v = 0
ρdv

dt
= −∇p + µ[∆v + 1

3∇(∇ · v)] + ρfe
∂(ρet)

∂t
+∇ · [ρv(et + p

ρ
] = ∇ · (k∇T )−∇ · ([τ ]v) + ρl̇e + ˙qH

These three equations represent the conservation of mass equation, momentum
equation, and energy equation, respectively.
The set of equations defines the equations of Navier Stokes.
All the terms that appear in the system are analyzed in detail [5]:

• ρ is the density of the fluid system under consideration;

• fe is the resultant of the external field forces per unit volume;
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• et is the total mass energy of the system;

• k is the thermal conductivity of the fluid;

• ˙qH and l̇e are the volumic sources of energy given by the sum of the work of
the external field forces and the contributions of heat (radiation and chemical
reactions);

• [τ ] is the deviatoric component of the stress tensor [σ]

B.2 Stress tensor in dynamics
In the momentum balance equation it is necessary to consider the species of the
fluid system being considered.
It is possible to decompose the tensor of the stress in a static part (characterized
only from the pressure that acts along the correspondent normal þn) and a com-
ponent that takes into account the dynamics of the fluid system (the deviatoric
component).

[σ] = p[I] + [τ ] (B.1)
It is possible to write the components of the deviatoric tensor by means of Navier’s
constitutive equation for Newtonian fluids:

τij = −2µÔij − λδij∇ · v (B.2)

It was possible to express a linear relationship between the deviatoric components
of the tensor and the angular slip or elongation rates (components of the strain
tensor [Ô]) thanks to Newton’s law.
From the equation (B.2) it is necessary to pay attention to the coefficients δij which
are part of the tensor of Kronecker [δ] which gives the value δ = 0 if i/=j and 1
otherwise.
The coefficients µ and λ are called Lamè coefficients.
Introducing the concept of dynamic pressure:

pd = p− η∇ · v (B.3)

where η is the volumic viscosity and is equal to:

η = 2
3µ + λ (B.4)

Dynamic pressure and static pressure (the one that goes to be inserted in the
equation of state of the fluid system considered) are equal if there is a specific
condition etween the Lamè coefficients:

λ = −2
3µ −→ η = 0 (B.5)
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This is Stokes’relation.
If the relation of stokes is valid then (B.2)’ll is:

τij = −2µÔij + 2
3µδij∇ · v (B.6)

Substituting (B.6) into the starting equation (B.1):

σ11 = p− 2µ
∂v1

∂x1
+ 2

3µ

A
∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3

B
(B.7)

σ22 = p− 2µ
∂v2

∂x2
+ 2

3µ

A
∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3

B
(B.8)

σ33 = p− 2µ
∂v3

∂x3
+ 2

3µ

A
∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3

B
(B.9)

τ12 = −µ

A
∂v1

∂x2
+ ∂v2

∂x1

B
(B.10)

τ23 = −µ

A
∂v2

∂x3
+ ∂v3

∂x2

B
(B.11)

τ13 = −µ

A
∂v1

∂x3
+ ∂v3

∂x1

B
(B.12)

In vector notation [5]:

[σ] = p[I]− µ
1
∇v + (∇v)T )

2
+ 2

3µ(∇ · v)[I] (B.13)

B.3 Classic 1D Euler’s equations
The Euler equations represent a simplified form of the Navier Stokes equations
with the following assumptions:

• No friction;

• No form of heat transmission (no convection and radiation);

• entropy conserved in each trajectory (homoentropic field);
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The system of equations transforms as follows:
∂ρ
∂t + ρv

∂x = 0
∂ρv
∂t + ∂(p+ρu2)

∂x = 0
ds
dt = ∂s

∂t + u ∂s
∂x = 0.

Since the field is homoentropic it is possible to develop:

∂p

∂x
= a2

s

∂ρ

∂x
(B.14)

where as is the isoentropic speed of sound.
it is possible to write the system of equations in the following way:

þUt + [A] þUx = 0 (B.15)

Where:
þUt = ∂þu

∂t
(B.16)

and
þUx = ∂þu

∂x
(B.17)

and
þu = [ρ, ρu, s]T (B.18)

[A]is the Jacobi matrix and is defined in this way: 0 1 0
a2

s − u2 2u 0
0 0 u


Setting det(A)=0 and solving the characteristic equation I get the three eigenvalues
of the matrix:

λ1 = u− as; (B.19)

λ2 = u; (B.20)

λ3 = u + as (B.21)

Recognizing the eigenvalues of the system of equations is critical, as we can modify
the equations to make them simpler and lead them back to forms that we can solve
analytically (D’alembert equation).
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Euler equations are more critical than Navier-Stokes equations to be discretizing
because in Euler we don’t have any dissipation mechanism.
In Navier Stokes equations the diffusion mechanism is present and this tends to
make the filed homogeneus.
If a numerical oscillarions are present in the scheme, diffusion mechanism helps to
cancel these oscillations.
This does not occure in Euler equations, the discretization should be very stable
otherwise the oscillations will have an increasing amplitude in time [5].

B.4 Generalized Euler equations
Although diffusive terms are absent from the Euler equations, it is possible to
simulate viscous wall actions and heat exchanges with duct surfaces.
It is possible to modify them without changing the mathematics of the equations.

∂ρ
∂t + ρv

∂x = 0
∂ρv
∂t + ∂(p+ρu2)

∂x = −4τw

D

T ds
dt = T (∂s∂t + u ∂s

∂x) = ρ(q̇ + ˙lw).

where:

• d is the diameter of the duct;

• τw are the wall stresses;

• q̇ and ˙lw are the thermal power exchanged by convection and the power
dissipated by the viscous actions of the fluid.

The wall stress can be traced back to the equation:

τw = λρ|u|u8 (B.22)

where [5]

• λ is the coefficient of pressure drop called Darcy-Weisbach coefficient and its
value can be taken from the Moody diagram ;

96



Fundamentals of Fluid Dynamics Model of the Flowmeter

B.5 Numerical algorithm for the flor-rate evalu-
ation

The numerical algorithm that identifies the mass flow rate in the mechanical system
is based on the generalized Euler equations.
The mass conservation and momentum balance are written in 1D form for a slender
pipe [4]: 

dρ
dt + ρ∂u∂x = 0
∂u
∂t + u∂u

∂x + 1
ρ
∂p
∂x = −4τw

ρd

where:

• u is the average cross-sectional fluid velocity;

• x is the coordinate along the pipe;

• τw is the wall shear stress;

• ρ and p are the density and pressure of the fluid.

A fundamental hypothesis that is carried out is that of incompressible fluid, this
hypotesis is physically consistent, provided the Mach number is lower than 0.1.
The equations become the following:

∂u
∂x = 0
∂u
∂t + 1

ρ
∂p
∂x = −4τw

ρd

By integrating the moment balance equation and multiplying by appropriate
coefficients I obtain:

dḠ

dt
= A

l
∆p− πdτ̄w (B.23)

The frictions are approximated in the following way:

τ̄w = τsf ≈
f̄

8ρA2 |Ḡ|Ḡ ≈
f

8ρA2 |G|G (B.24)

where:

• τsf is the steady-state wall friction;

• f is the space-averaged friction factor, which can be expressed as a function of
Reynolds number;

• A is the area of the pipe.
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f̄ = 1.613
C
ln

A
0.234

3
Ô

d

41.1007
− 60525

R̄e
1.1105 + 56291

R̄e
1.0712

BD−2

(B.25)

Equation (B.25) is a good approximation of the Moody diagram in the Reynolds
number interval from R̄e = 3 · 103 to Re = 108 and Ô

d
≤ 5 · 10−2 where Ô

d
is the pipe

relative roughness.
It is necessary to add an additional wall stress term due to the wall shear stress
term friction and this changes the equation.

τ̄w = τ̄sf + ¯τfdf (B.26)

¯τfdf = 4µ

d

Ú t

−∞

∂ū

∂t
(λ)W (t− λ)dλ (B.27)

where:

• ū is the space averaged fluid velocity;

• W is a weighting function, which is maximum when λ = t and decreases
monotonically as (t-λ)>0 increases.

Substituting we obtain:

dḠ

dt
= A

l
∆p− πd

< f̄ >

8ρA2 < Ḡ > | < Ḡ > | − 4πµ

ρA

Ú t

−∞

dḠ

dt
(λ)W (t− λ)dλ (B.28)

• <f̄> is the space and time averaged friction factor;

• <Re> is the space and time averaged Reynolds number.

To semplify the numerical model the convolution integral can be neglected.
Integrating the equation B.27 we obtain:

Ḡ(t) = Ḡ0 + A

l

Ú t

0
∆pdt− πd

< f̄ >

8ρA2 < Ḡ > | < Ḡ > |t (B.29)

By integrating B.29 over a complete working cycle T (exploiting that hydraulic
machines are all periodic):

A

l
< ∆p >= πd

< f̄ >

8ρA2 < Ḡ > | < Ḡ > | (B.30)

Using the fourier series (1.2):

∆p(t) = a0 +
∞Ø

k=1
ak cos (Ωkt) + bk sin (Ωkt) (B.31)
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∆p(t) ≈< ∆p > +
NØ

k=1
ak cos

A
k2πt

T

B
+ bk sin

A
k2πt

T

B
(B.32)

The pressure transducers are affected by zero-offset errors, which can be larger
in value than the physical time-averaged pressure difference and which result in
spurious contributions to a0.
In this way B.31 cannot be use to evaluate <G>.
Substituting the previous equations the following expression can be obtained:

¯G(t) = Ḡ0 + A

l

NØ
k=1

C
ak

wk

sin(wkt) + bk

wk

[1− cos(wkt)]
D

(B.33)

With an appropriate integration and simplification we obtain:

∆Ḡ = A

l

NØ
k=1

A
ak

wk

sin(wkt)− bk

wk

cos(wkt)
B

(B.34)

(B.34) is a simple analytical expression and represents a robust algorithm.
If <G> datum is available, the instantaneous flow-rate can be calculated with the
relation [4]:

Ḡ =< G > +∆Ḡ (B.35)
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