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Abstract 
One of the most urgent problems facing our planet is the pollution produced in the 

transport sector. Over the years, increasingly stringent regulations have been imposed on the 

production of pollutants due to the damage they cause to health and the environment. 

 In this thesis, the production of Particulate Matter (PM) within Compression Ignition 

Engines (CI) and the after-treatment systems (ATS) is analyzed. In particular, this work is 

based on the construction of a virtual sensor based on Machine Learning algorithms for the 

On-Board Driving (OBD) prediction of the Soot Tail pipe produced in a Diesel Engine. Such 

a system was completed, building a Predictive Artificial Neural Network (ANN) in python, 

using calculation models belonging to the Deep Learning branch. The artificial intelligence 

systems are adequate for the resolution of this type of problem due to their high levels of 

precision and because they can deal with a large amount of data.  

This analysis was possible through the data provided by AVL Italia S.r.l containing 

some measurements carried out with a diesel engine on a roller bench in stationary and 

transient conditions. The different datasets contain measurements carried out under different 

operating or environmental conditions and within them there is the trend of twenty-one 

features including the Soot Tail Pipe. As a result of this, the predictive algorithm was 

implemented in supervised learning so that the model can collect input and output data from 

these sheets and then, through a training phase, it finds a rule which is useful for the 

generation of a desired output even for input values that it has never seen before. Specifically, 

attention was focused on two Stationary Datasets with an engine speed variation between 

800 rpm and 4500rpm, which differ from each other in EGR conditions.  At first, two Fully 

Connected Feed Forward Neural Networks (FFNN) for the prediction of the Soot Tail Pipe 

in stationary conditions were constructed. To make the neural networks as efficient as 

possible, numerous analyzes and tests were carried out, initially to study and understand the 

dataset’s behavior and then to detect the features of greatest relevance for the prediction of 

the soot through the tuning of the hyperparameters (feature importance). Subsequently, the 

network parameters were improved with appropriate algorithms for the upgrade of the 

performances and the minimization of the error between real and predicted values by a 

numerical evaluation of the Mean Square Error (MSE) and Determination Coefficient (𝑅2). 
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After that, attention was focused on the Transient Dataset, containing some measurements 

made on the WLTC normative guide cycle. Also, in this case a new Feed Forward Neural 

Network was built carrying out the same optimization processes as in the previous networks 

for the prediction of Soot Tail Pipe. 
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Introduction 
In recent years, air pollution has been attracting increasing interest from both an 

environmental and a social point of view due to the serious damage it produces to the 

environment and to humans. One of the major sources of pollutants is the transport sector, 

which is required to reduce fuel consumption by up to 30% within the next 5 years. Despite 

this, the demand for fuel is continuously increasing as well as the number of vehicles; in fact, 

due to the increase in population, the global car fleet will increase by 80% reaching 2000 

million vehicles on the road by 2040. 

More than 90% of the vehicles currently on the road have an internal combustion 

engine (ICE). It represents a simple, compact, and economical solution compared to other 

systems dedicated to propulsion. It also has a favorable weight-to-power ratio, linked to the 

high-density energy possessed by liquid fuels, such as diesel and petrol. However, it does 

have some important drawbacks such as: 

 

• Production of carbon dioxide (greenhouse gas that contributes to global 

warming) 

• Use of fossil fuels 

• Production of pollutants resulting from the fact that the combustion process is 

not ideal and incomplete. 

 

Pollutants are divided into primary and secondary. Primary pollutants are those emitted 

directly because of combustion, while the secondary pollutants are created as a result of the 

combination of primary ones. 

Primary pollutants are:  

 

• Carbon Monoxide (CO) 

• Hydrocarbons (HC) 

• Nitrogen Oxides (NOx) 

• Particulate Matter (PM)  

• Sulphate (SOx) 
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Diesel Engines produce a large number of suspended particles that seriously harm 

human health by depositing in the lungs. For these reasons, the regulations set by the various 

states have become increasingly stringent especially for these types of engine. This has 

prompted manufacturers to search for new technologies and to focus their attention on more 

accurate diagnostic tools. It is essential for the protection of the environment and human 

health to try to constantly monitor the quality of pollutants produced by the various vehicles. 

Virtual sensors are becoming progressively more useful since they are not subjected to the 

stress of the surrounding environment and do not create space problems unlike the physical 

ones.  

During my thesis work I have tried to design a virtual sensor for Soot Tail Pipe 

measurement (downstream of the DOC-DPF system) with the future aim of creating a system 

that can signal to the user that his car exceeds the preset emission values or if there are some 

malfunctions within its DPF.  
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CHAPTER 1 – IC Combustion Engine 
To fully understand the following thesis, it is necessary to address the internal 

combustion model in Compression Ignition Engines (CI).  Along with this, it will also be 

useful to learn the mechanism by which pollutants are formed and the factors that contribute 

to their variation. After analyzing these phenomena, I will finally discuss the methodologies 

and instruments to limit their presence at the drain and ATS systems. 

 

1.1 - Fuel Supply System  

Inside Compression Ignition Engines, highly reactive fuels with relatively short 

ignition delays such as diesel are used. In diesel engines, the air is compacted in the cylinder 

with the production of heat via Joule effect. The latter is composed of a mix of hydrocarbons 

represented by cetane C16H34. Compared to spark ignition engines, which operate by 

igniting the spark plug, the fuel cannot be premixed with air because it would lead to 

immediate combustion reactions. 

The injection takes place with the use of injectors for fuel atomization. These devices 

have inside them a sealing needle along the axis and a sack in the lower part to avoid the 

dripping phenomenon. Through an appropriate design, the injectors are placed in specific 

points of the chamber to obtain a combustion process as efficient as possible. The nozzles 

facing the combustion chamber have electronic controls for the opening. After the command 

arrives, the needle lifts from its seat and the pressure pump atomizes the fuel particles. 

Thanks to the high pressure involved, the dimension of the fluid particles is much smaller 

than the diameter of the nozzle holes.  
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Figure 1 - Injector's structure with nozzle closed and nozzle opened configurations (1) 

 

To control this phenomenon, the fuel must be injected at high pressure (500 – 2200 bar) 

into the cylinder, almost at the end of the compression phase, near the top dead center (TDC). 

The jet comes out at a high speed of approx. 100 m/s from the inlet holes (nozzle holes 

diameter ≈ 0.1mm) and disintegrates in a series of small fuel droplets (d ≈10μm), surrounded 

by hot compressed air at ≈ 900K at high density (20-30 Kg/m3) which vaporize forming a 

mixture that ignites spontaneously without the need of an external trigger. The presence of 

turbulent motions inside the chamber favors the mixing of air and fuel, creating a more 

homogeneous and efficient combustion. The combustion process starts with an extremely 

short ignition delay, furthermore this mixture can ignite even with air/fuel ratios far from the 

stochiometric conditions. This last aspect allows for movement towards poorer environments 

and experimentation of different strategies for controlling pollutants. (1) 
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1.2 - Injection Strategies 

Nowadays practically all diesel engines are equipped with an electromagnetic injection 

system, the so called “Common Rail”. This system makes it possible to adopt different 

strategies for controlling the combustion process. The injectors relate to the “rail” and, 

overlooking the chamber, they take care of the fuel injection. These devices are coupled with 

precise injection strategies in order to: 

 

• Contain combustion noise 

• Control the production of pollutants 

• Release the injection pressure from the rotation speed and the motor load  

• Make more injection per cycle 

 

The main parameters which are evaluated in this process are:  

 

• The modulation of the injected flow rate 

• Injection time interval 

• Pilot stages 

 

The latter application is widely used since the fuel flow introduced during this phase 

accumulates in the chamber and then burns all together. With appropriate strategies it is 

possible to make sure that the injected pilot fuel starts to burn when the main injection starts. 

In this way, the pilot combustion increases the temperature in the chamber and decreases the 

accumulations which lead to a greater formation of pollutants and inefficient combustion 

cycles. As already mentioned, one of the greatest advantages of the common rail is the 

possibility of fragmenting the injection process. The first-generation systems allowed to 

couple the main injection with a pilot and a post one. On the other hand, those of the latest 

generation allow the division of the injected quantity of the main phase as shown in figure 2. 

(1) 
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Figure 2 - Common Rail System (1) 

 

Excluding the pilot one, the injections presented are the following: 

 

• Pre-Main: carried out with very low advance values compared to the main 

injection, it allows to control the rapidity of combustion development, limiting 

the formation of pollutants (nitrogen dioxide and the carbonaceous portion of 

the particulate, called soot). Indeed, these injections manage to attenuate the 

peak temperatures of the combustion process which have a direct correlation 

with NOx emissions. 

• Main: is the main injection and its purpose is the combustion 

• Post-Main: is the injection carried out immediately after the main one in order 

to modulate the final phase of the combustion. Its presence favors soot 

oxidation, increasing the temperature of the final stage. 

• Post: when the piston is around the bottom dead center (BDC) it is possible to 

carry out a further injection which determines a significant rise in the exhaust 

temperature allowing the periodic regeneration of the particulate matter. This 

injection can also produce unburned hydrocarbons (HC), which are necessary 

to create a reducing environment, essential for the DeNOx catalyst. These are 
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therefore auxiliary injections for the management of the post treatment system, 

and it has nothing to do with the combustion process. 

 

1.3 - Combustion Process  

The conventional combustion process of a diesel engine can be divided into 4 intervals 

as shown in figure 3. 

 

 

Figure 3- Flow of cylinder pressure as a function of the crank angle in a compression ignition engine. Heat Release Rate (HRR) 
represented in dotted line. (2) 

 

• Injection delay, corresponding to the stroke (A-B) 

• Combustion in the premixed phase, corresponding to the stroke (B-C) 

• Diffusive combustion, corresponding to the stroke (C-D) 

• Late combustion phase, corresponding to the stroke (D-E) 

 

These phases are visible by evaluating the HRR (heat release rate) and the pressure 

curve as a function of the crank angle. 
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A = Start of injection point (SOI) 

B= Start of combustion point (SOC) 

 

The Ignition Delay (A-B) is the time interval between the start of injection (SOI) and 

the Start of Combustion (SOC). This time delay can be attributed to both physical and 

chemical phenomena. The physical delay is determined by the time it takes for the fuel 

mixing and evaporation with air to form a homogeneous mixture. The chemical delay, on the 

other hand, is determined by the delays present in the various chemical reactions that precede 

the self-ignition of the mixture. Because of such delays, it is essential to inject the fuel into 

the chamber at different crank angles before the Top Dead center (TDC) to control this 

phenomenon. 

 

𝜏𝑡𝑜𝑡 = 𝜏𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 + 𝜏𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 

 

Once the self-ignition has been reached, the fuel begins to burn in a phase called 

Premixed Combustion (B-C). The ignition of the first cores takes place with a consequent 

increase in temperature and pressure inside the chamber. In premixed combustion, there is a 

strong release of heat which can cause noise and vibrations that are harmful to the engine. 

This aspect must be constantly controlled by designers as it appears to be one of the most 

critical points in the management of the combustion process. A further disadvantage of this 

aspect is that in the presence of oxygen and high temperatures, nitrogen oxides (NOx) are 

formed.  

Following premixed combustion, Diffusive Combustion (C-D) takes place. This 

process consumes more than 90% of the fuel introduced into the chamber, resulting in a 

strong release of energy at the maximum pressure of the cycle. The speed with which the 

energy increases can be controlled by acting on the Injection Rate. Following the 

consumption of oxygen and the increase in combustion gases, dehydrogenation, 

condensation, and pyrolysis reactions take place leading to the formation of the first 

carbonaceous nuclei of soot.  
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Finally, at the end of the injection process, there is the Late Combustion Phase (D-

E). At this point the oxidation of several carbonaceous nuclei present in the chamber can 

occur. In addition to the closure of the injector it may happen the phenomenon of dripping 

resulting in the production of pollutants in the chamber that is found following the 

discharge. Part of the unburnt fuel can also be deposited in the different interstitials present 

inside the chamber or at the level of the piston. For this reason, it is very important that inside 

the chamber there are turbulent motions and Eddies to create a gas recirculation to make the 

combustion process more efficient and reduce the amount of pollutants. 

 

1.4 - Particulate Formation Mechanism 

The particulates come from the incomplete combustion reaction. The phenomena 

associated with their formation are particularly complex, despite this there are numerous 

models that describe their formation. 

Before defining such mechanism, it is important to define certain quantities involved: 

 

• Dosage α 

α =
𝐴𝑖𝑟 𝑚𝑎𝑠𝑠

𝐹𝑢𝑒𝑙 𝑚𝑎𝑠𝑠
 

 

This ratio defines the relationship between the mass of air and the mass of fuel 

in the mixture. Stoichiometric ratio 𝛂𝐬𝐭  means the reaction ratio for which all 

the mixture burns without unburned reagents. 

 

• Relative Air Fuel Ratio 𝝀 

 

𝜆 =
α

αst
 

• Equivalent Ratio 𝚽 
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Φ =
1

𝜆
 

• Apparent Heat Release Rate AHRR 

 

𝐴𝐻𝑅𝑅 =
𝛾

𝛾 − 1
 𝑝 𝑑𝑉 +

1

𝛾 − 1
 𝑉 𝑑𝑝 

 

𝛾 =
𝑐𝑝

𝑐𝑣
 

 

AHRR is a simplified evaluation of the heat release rate (HRR), the difference being 

that it does not consider the exchanges of heat with the walls of the cylinder. 

In the following image it is possible to view in a general example, the evolution of the 

fuel jet introduced into the chamber as the ASI (After Start of Injection) changes. This 

representation is particularly useful for evaluating the areas of pollutant formation. 
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Figure 4 - Jet evolution and pollutants formation (1) 

 

In the early stages, the fuel enters the chamber in liquid form, forming an accumulation 

zone at the tip. It then evaporates when it meets the air and mixes with it. After 4° ASI it is 

possible to observe the SOC and the chemiluminescence phenomena due to the formation 

reactions of the first radicals. In this way, the premixed combustion process begins with the 

consequent increase in pressure and a strong thermal release (HRR). 
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Figure 5 - AHHR curve (1) 

 

This combustion is characterized by very rich local areas with an equivalent ratio Φ~4. 

The products of the rich combustion are the following: 

 

• CO2 

• H2O 

• CO 

• H2 

• Polycyclic aromatic hydrocarbons (PAH) 

 

As also indicated in the figure, the green area present at 5° ASI represents the formation 

of PAHs. Immediately after 6° ASI it is possible to observe the transformation of the green 

areas into blue, this represents the soot development from PAH due to some chemical 

reactions and the growth mechanism of the carbonaceous particles which will form soot. 

Subsequently, the oxygen diffuses inside the jet and the diffusive combustion phase 

begins. Unlike premixed combustion, the latter occurs at equivalent ratios Φ~1, therefore 

around the stoichiometric ratio and leads to a further increase in temperature. In this phase 

above 6.5° ACI, the soot produced increases more and more also due to the incomplete 

oxidation of the various substances present inside the jet. During the diffusive phase, the 

particulate can be oxidizing if the duration of the diffusive flame and the availability of 
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oxygen allow it. So, the particulate formation is the result of balance between the 

mechanisms of formation and those of oxidation. 

 At the end of the injections, the late combustion leads to a reduction in pollutants and 

a reduction in engine efficiency, therefore it is important to make an appropriate trade off. 

Finally, the diffusive flame meets the walls of the chamber and the well and is extinguished 

due to the temperature gradient and oxygen deficiency. (1) 

 

1.5 - PM evolution into the jet 

In the following figure it is possible to analyze the entire development of the jet during 

all the phases of the combustion and it is representative of all the zones where pollutants are 

formed. 

 

 

 
Figure 6- Jet Description (1) 

 

As can be seen, the fuel is fed into the chamber at a temperature of 350 K and then 

warmed up after its atomization and mixed with air up to 650 K. Then there is a vertical peak 
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of heat and a strong exothermic reaction, this phenomenon is due to the self-ignition of the 

particles and indicates the start of premixed combustion. At this point there is a phase in 

which the temperature remains constant and about equal to 1600K.  

 

 
Figure 7 - Properties evolution during combustion (1) 

 

As can be seen in figure 7, during the premixed phase it can be recognize: 

 

• A peak in soot particle release 

• After being linearly increased during the mixing phase, oxygen is consumed 

during combustion 

• There is no trace of NOx because it is a rich combustion, deficient in oxygen so 

less prone to oxidation reduction. 
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Then, it reaches the state of diffusive combustion with a T ~ 2700 K. Being a 

stoichiometric combustion, the carbon particles pass through the flame and oxidize. At this 

point the concentration of 𝑂2 increases as the combustion products expand in the surrounding 

environment surrounded by oxygen. In this phase it happens: the formation of NOx and the 

oxidation of soot. As can easily be derived from the latter observation it is important during 

the combustion design process, to make an appropriate tradeoff between the production of 

soot and that of NOx.    

 

 
Figure 8 - Kamimoto- Bae Diagram (3) (4) (5) (6) 

 

The diagram of Kamimoto-Bae is particularly efficient to find the right compromise. 

This representation is a map as a function of temperature and equivalence ratio that explains 

the different zones of formation. (1) 

 

1.6 - Soot composition 

Particulate matter is a nongaseous emission composed by an articulated set of particles.  
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Most of the particulate matter comes from the carbon found in diesel fuel (H/C ~ 2), 

the remaining part comes from lubricating oil, ashes, and sulphates. Of all the hydrocarbons 

present inside the PM, the greatest contribution comes from the aromatics. 

PM is mainly composed of 3 parts: 

 

• Solid Fraction (SOL): it is composed of elemental carbon and ashes 

• Soluble Organic Fraction (SOF): It contains the organic material deriving 

from fuel and lubricating oil 

• Sulphate Particles (SO4): it is composed of sulfuric acid and water 

 

 

 
Figure 9 - Particulate structure (1) 

 

It is not possible to define a division between these three fractions because they depend 

on the operating conditions of the engine. To give an idea of the amount of soot produced 

depending on engine conditions and the proportion between the different parts, figure 10 

shows an example of a map of soot production according to engine speed (rpm) and engine 

load (%). 
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Figure 10 - Graph of the soot variation as a function of Load and Engine Speed (1) 

 

The size of the different balls represents the total amount of particulate matter produced 

under certain conditions. Within them, the white zone represents the fraction of SOL and 

SO4, while the green zone represents the fraction of SOF. It is also possible to note that as 

engine conditions increase, the solid part present in particulate matter becomes more and 

more dominant. 

The part referred to as SOL is formed by unburned carbon particles and derives directly 

from the premixed combustion process.  

The elementary carbon particles deriving from the heterogeneous combustion process 

have a hexagonal structure. These agglomerates, forming platelets and then synthesize into 

layers by increasing their size and form crystallite. Finally, the latter continue to randomly 

agglomerate with different orientation of the planes forming the primary particles (nuclei 

mode). This mechanism is shown in the following figure 11. 

 

 
Figure 11 - Evolution of the carbon particle (1) 
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The ashes instead represent everything that is incombustible and is found in the engine 

exhaust. This fraction derives from the metals and compounds present in the lubricating oil, 

in the additives and in the corroded and worn parts of the chamber. In addition, metal 

additives are also used inside the fuel for the particulate filter (DPF) regeneration, 

contributing to the ash fraction. 

The SOF is composed of organic hydrocarbons, which are absorbable by the solid 

carbonaceous particles or condense creating liquid particles. This fraction is called soluble 

because special solvents are used to isolate the SOF from the other particulate parts. The 

SOF consists of organic compounds belonging to different families of hydrocarbons. It is 

mostly composed of hydrocarbons with carbon atoms number C between 20 and 36. This 

composition is very similar to that of the lubricants present in the chamber and less similar 

to the diesel fuel which has a number of C between 12 and 20. Thus, almost all the PM from 

the oil is contained in the soluble fraction. 

 

 

 
Figure 12 - SOF composition (1) 

 

Sulfate particles derive from the interaction between hydrated sulphuric acid (H2SO4) 

and water (H2O) in a heteromolecular nucleation process that in saturation conditions leads 

to the formation of SO4. 
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Usually, the soot is also called PM10, in this case number ten indicates the diameter of 

particles that are below 10 µm. The PM is composed of particles of different sizes and they 

are subdivided in the following way, as visible also in figure 13. 

 

 

 
Figure 13 - Particulate mass and particle number distribution (1) 

 

In this figure the mass distribution is represented by a blue dotted curve and the particle 

number distribution is represented by the red curve, both as a function of the particle 

aerodynamic diameter. 

These curves allow to distinguish 3 different zones: 

 

• Nuclei mode: It includes nanoparticles and ultrafine particles with a diameter 

between 4 nm and 45 nm. This fraction is composed mainly of hydrocarbons 

and condensed sulphuric acids, in the liquid state, which are formed in the 

exhaust systems because of the strong decrease in temperature and the mixing 

with air. The concentration of this part depends heavily on the dilution 

conditions and although it covers a small percentage by mass, it includes most 

of the soot particles. Nanoparticles are the most dangerous to human health, so 

it is very important to try to minimize their concentration. 
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• Accumulation mode: Fine particles with a particle diameter ranging from 45 

nm to 1 nm. This fraction consists mainly of carbon particles with absorbed 

hydrocarbons and condensed vapors. The particles are not really numerous but 

give a high contribution in mass. 

• Coarse mode: This part is formed by wear of the exhaust parts and is made up 

of the larger particles of soot. 

 

1.7 - ATS systems 

The volatile (soluble) part can disappear with the evaporation process while to reduce 

the amount of dry soot cleansed by carbon particles, they need to be oxidized in the presence 

of O2 and depending on the temperature at which this reaction takes place it will take some 

time. For this reason, particulate matter can be reduced considerably by heating it in the 

presence of oxygen, and this is the fundamental principle of ATS systems. 

ATS systems for CI engines shall comprise the following parts: 

 

• DOC (Diesel oxidation Catalyst): For controlling CO, HC emissions and 

organic compounds in soot (SOF). 

• DPF (Diesel particulate filter): It is used to capture carbonaceous particles 

from the soot through filtration mechanisms. Captured particles are removed 

from the filter continuously or periodically through the thermal regeneration 

process. 

• SCR (Selective catalytic reduction): For the reduction of NOx. These users, 

after storing the pollutant in question, promote a strong catalytic reduction 

reaction with ammonia for the decomposition of oxides of nitrogen. 
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Figure 14 - Euro 6 Diesel ATS configuration (1) 

 

For the following thesis work I focused my attention on the DPF, as the main system 

for the reduction of particulate matter. 

 

1.8 - DPF Soot Filter 

The Diesel Particulate Filter (DPF) is a mechanical filter with the aim of physically 

capturing soot particles and avoiding their release into the atmosphere. In recent years there 

have been many models or prototypes that differ fundamentally for: 

 

• The type of material which may be of a metallic or ceramic nature 

• The geometric configuration present inside 

• Technologies used for regeneration and their control 
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Figure 15 - DPF (1) 

 

State of the art DPF models are able to achieve filtration efficiencies of 90% 

accompanied by an excellent level of thermal and mechanical durability. As a mechanical 

filter, the DPF is not able to reduce the volatile part of the soot but only the solid particles 

and therefore it is placed in series with the DOC system. The Filter consists of a number of 

channels, which can have a different type structure: 

 

• Wall-flow: alternating blind channels in and out  

• Flow-through: open channels 

 

 

 
Figure 16 - DPF structure Wall-flow and Flow-through (1) 

 

The filtration, therefore, the separation of the carbon particles from the exhaust gases, takes 

place during the passage of the gas through the channels owing to the porosity of the latter. 

 Two types of strategies are mainly used: 

 

• Depth filtration: The smallest particles pass through the porous matrix and 

remain trapped by the action of electrostatic forces. 

• Cake filtration: In this case the particles have larger diameters than the porous 

matrix.  
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For this reason, they are deposited on the matrix itself and consequently the successive 

particles will deposit over the previous ones. 

By increasing the accumulation of soot within the DPF, the system achieves an increase 

in the filtering efficiency, and a better thermal resistance. Nevertheless, as the particulates in 

the filter increase, it risks to fill itself with a consequent increase in the pressure drop, 

proportional to the amount of soot accumulated. The latter aspect leads to a lowering of 

engine performance, so it is important to adopt appropriate filter regeneration strategies to 

preserve the proper functioning of the engine. 

The combustion of the soot by oxygen, requires temperatures above 650 ºC, while the 

temperature of the exhausts gases is around 200 º C, for this reason an increase in temperature 

is needed in order to support the combustion. 

The regeneration process can be of two types: 

 

• Periodic regeneration: it uses oxygen (O2) as oxidizing agent. Since the 

temperature of the exhaust gases must be raised above 600 ºC, some catalysts 

are used to lower them.  A widely used strategy is the increase in exhaust gas 

temperature at the DOC level to make this process as efficient as possible. 

 

• Continuous regeneration: it takes place with the use of NO2 as an oxidizing 

agent to make the oxidation reactions of particulate matter happen at a 

temperature of around 250° C. The oxidation process then happens at the same 

temperature as the exhaust gases. 

 

(1) 
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CHAPTER 2 – Artificial Intelligence  
In this section there are some important notions on Artificial Intelligence and the logic 

present within the algorithms used for the construction of the virtual sensor. This sector is 

particularly large and complex, in fact it includes numerous subcategories such as Machine 

Learning and Deep Learning. 

 

2.1 – Machine Learning  

Machine Learning (ML) has been an existing field since 1950 and is currently used in 

all kinds of industry such as: medical, security and robotics for the construction of predictive 

algorithms. ML is the science which studies the construction of models capable of learning 

without being programmed. Such systems work, in a certain sense, just like the human brain, 

so after extrapolating a series of information from the data, they can form knowledge. After 

learning from the available data, the system is able to make predictions even from starting 

data that has never been seen before. For a correct operation of the model, it is necessary to 

use two sets of data: The Training Set with which the algorithms build the predictive 

structure, and the Test Set on which the performances are measured. 

The input that is provided to the network is composed of a series of Features (x), which 

represent the variables useful for learning. The output, instead, is defined as Label (y) which 

can be of different forms depending on the problem being analyzed. Obviously, to make the 

prediction as accurate as possible, the system needs a series of measurements of the different 

features, each of these is defined as Sample. (7) 
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Figure 17- Artificial Intelligence structure (Valvo) 

 

2.2 – Classification of Algorithms 

Machine Learning algorithms can be divided into different categories depending on the 

type of problem or prediction you want to perform or the type of structure of the dataset and 

the way you want to read it.  

 

 
Figure 18 - Classification of Machine Learning algorithms (8) 
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Machine Learning models are classified as follows: 

 

• Supervised Learning 

In this type of application, the user provides the algorithm with a set of input 

data (features) and the output value corresponding to each sample (label) on 

which develop the learning phase. Following the training phase, the program 

will be able to process a label hypothesis starting from a Sample (feature set) 

that has never been seen before. In this way, the program finds a rule capable 

of linking features and labels.  

This model is mainly used for two types of problem:  

o Regression Problem: 

It is an algorithm used to predict a numerical target value after having 

received the feature set as input. In this way, it can provide a function 

which approximates the input-output relation. As we can imagine this 

is not a simple problem because as in most regression problems, we 

work with a large number of features which must be taken into account. 

One of the most important cases is Linear Regression.  

We define: 

m= Number of examples 

x= Input variable/ Feature 

y= Output variable/target 

(x, y) = training example 

h= hypothesis linear function which connects x and y 

 

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥 
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Figure 19 - Regression Model (9) 

The main problem is to select the best possible 𝜃 parameters to improve 

the predictive level so that ℎ𝜃(𝑥) becomes as close as possible to y for 

the training example (x, y). So, we must also minimize the cost function 

J (Square Error Function), defined by the following equation: 

 

𝐽(𝜃0, 𝜃1) =
1

2𝑚
 ∑(ℎ𝜃(𝑥𝑖) − 𝑦𝑖)

2

𝑚

𝑖=1

 

 

Starting from two defined values of 𝜃0 𝑎𝑛𝑑 𝜃1  we keep changing these 

values until we find a minimum. This process is carried out with the use of 

the Gradient Descent Method. The regression type can also be polynomial 

by increasing the degree of the hypothesis function (h) and thus increasing 

the number of θ variables to be calibrated for the minimization of the cost 

function. (7) 

 

o Classification Problem: 

It is used for the recognition of the membership class of the case which 

is studied, starting from the input data. The output that is returned to us 

by the program is a discrete value that indicates the belonging class of 

the sample. Furthermore, we can distinguish two types of classifiers: 

Binary classification, where the algorithm distinguishes only two 

classes belonging to the case in question and Multi Class classification, 

where the output may belong to more than two classes. Usually within 
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binary classification, the results obtained by the program are 0 or 1 and 

each of these values represents the belonging class. 

 

 
Figure 20 - Classification Model (9) 

 

• Unsupervised Learning: 

In this case, in the training phase all the feature values belonging to the different 

samples are provided to the model but not the label values associated with them. 

The main algorithm in this category is Clustering, where the machine does not 

know the classes of the samples supplied in training, but it tries to group the 

different cases according to the characteristics derived from the data. In this 

way, the program creates a rule for cluster division, and it associates a specific 

class to each of them. 

 

 
Figure 21 - Clustering Model (9) 

 

• Semi supervised Learning 

This is a middle way between the 2 previously analyzed cases, in particular 

only a part of the samples provided to the model contain both the features and 

the label. In any case, it serves to improve forecasts made on unlabeled data. 
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• Reinforcement Learning  

The algorithm aims at learning optimal behavior, thus improving with 

experience. The program interacts within an environment and during the study 

of the problem it performs a series of evaluations, which can obtain recompiles 

or penalties as feedback. According to the latter, the algorithm continuously 

improves its experience and optimizes analysis strategies. These systems are 

very useful for the construction of models that can show the changes in the 

environment. (10) 

 

In the model developed in this thesis, a Supervised Machine Learning Regressive 

algorithm has been built since it is an efficient method for predicting continuous values of 

Soot Tail Pipe. In addition, a neural network will be implemented to allow the algorithm to 

work more efficiently with a large amount of data. 

 

2.3 – Logic of the System 

The behavior of a Machine Learning algorithm is regulated by a set of Parameters that 

characterize it. Thus, the learning phase of the algorithm is determined by the search of the 

optimal values of these parameters. Therefore, given a training set we have an objective 

function (𝑓) that can indicate: the optimal solution to maximize or the error to minimize. 

Optimization can be carried out through methods that are based on the mathematics of the 

system or through implicit methods. One of the most widely used mathematical methods, is 

the calculation of the partial derivatives, in which the function 𝑓 is derived according to the 

parameters, placed at 0 and then solved. Most of the algorithms need to define the value of 

the so called hyperparameters before the learning phase. Such quantities are fundamental for 

the optimum functioning of the model and can be the degree of polynomial used in a 

regression, the number of neurons or layers of a neural network or the type of loss function.  
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Figure 22 - Machine Learning Logic (9) 

 

By tuning them properly, the algorithm is maximized by increasing its predictive 

capabilities. Let’s analyze how the evaluation of the performance of the algorithm takes place 

and the definition of the main loss and optimization functions. (11) 

 

2.3.1 – Performance Evaluation  

The evaluation of the model is ruled by a set of parameters which characterize it. The 

learning ability of these algorithms is based on the determination of the optimal values of the 

parameters and the loss function minimization.  

To evaluate model performances in a Regressive Model, a series of coefficients are 

examined: 

 

• Determination Coefficient (𝑅2) 

Indicates a portion between the variability of the data and the correctness of the 

statistical model used. This data is particularly useful as it shows an actual 

deviation between actual and predicted values. 

 

𝑅2 =
∑ (�̂�𝑖 − �̅�)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

Within the formula 𝑦𝑖  are the observed data, �̅� is the average of the values 

observed and �̂�𝑖  are the data estimated by the model. The Determination 
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Coefficient varies between 0 and 1, if 𝑅2= 0 the model used is not able to 

predict the data in analysis, if 𝑅2= 1 the model perfectly explains the data.  

 

• Mean Square Error (MSE) 

Indicates the mean square difference between the real values supplied to the 

system and those predicted. 

 

𝑀𝑆𝐸 =
1

𝑁
 ∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

 

 

• Root Mean Square Error (RMSE) 

It indicates the square root of the mean quadratic error, present between the real 

values and those predicted by the system. 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

 

 

Within the classification problems, however, the efficiency of the system is 

evaluated in terms of percentage of accuracy and percentage of the error. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑎𝑡𝑡𝑒𝑟𝑛
 

 

𝐸𝑟𝑟𝑜𝑟 = 100% − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
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2.3.2 - Training Test and Validation Set 

For a correct operation of supervised learning algorithms, the dataset provided to the 

model must be properly divided into three parts. 

 

• Training Set 

It is the set of samples through which the algorithm is trained by finding the 

optimal value of the hyperparameters. Usually, the dimension of this set in 80% 

compared to the number of total data and it becomes 60% if we are also 

including the Validation Set 

• Test Set 

It is the set of samples on which the algorithm evaluates the final performances 

after training. The dimension of this set is 20% compared to the number of total 

data 

• Validation Set 

Usually, part of the training data is removed from the set to perform the 

validation. This range contains the patterns on which the model calibrates the 

hyperparameters without creating a learning from them. The dimension of this 

set is 20% compared to the number of total data 

 

 
Figure 23 - Representation of the subdivision of a dataset in Train, Test and Validation sets (12) 
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For the model calibration that I’ve made for the different dataset it is very important to 

apply a specific process called Cross-Validation. 

 

2.3.3 Cross – Validation 

During this process, the training dataset is divided into complementary subsets, after 

that the model is trained on a part of these and validated on the remaining part. Such an 

operation is repeated for different combinations of the subsets. Once best performances and 

hyperparameters are selected and defined, the final model is trained on the complete training 

set and then applied to the test set to provide the error. As a result of cross validation, we can 

have an optimal choice of the hyperparameters.  

 

 

 
Figure 24 - Flow Diagram with CV (13) 

 

Generally, the training set is divided into 10 parts of which one must be composed of 

the validation set while the remaining ones make up the training set. Then the training phase 

starts, repeating the same procedure for all possible combinations, each time selecting a 

different subset as a validation test.  
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Figure 25 - Cross validation subdivision (13) 

 

During every cycle the validation set is used to carry out the testing phase obtaining 

two score coefficients vectors, containing the accuracy of the validation set and the training 

set. They are: 

 

• CV train score 

• CV test score 

 

This test is important for assessing model convergence and assessing loss function 

during training and validation. The convergence is obtained if the loss function turns out to 

have a decreasing course regarding the number of iterations that are carried out by the model. 

In the algorithm developed within this thesis, the hyperparameter optimization 

algorithm used is GridsearchCV. This function present in the Scikit learn library of python, 

performs the tuning, thus maximizing the performance of the model. It is an estimator 

capable of choosing the best combination of hyperparameters from an input list. After testing 

the model in all possible cases, it returns the values of the hyperparameters for which the loss 

function is minimized. In addition, the latter is coupled with the K-cross Validation process. 

A very useful representation for the evaluation of the model is that of Learning 

Curves.  
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Figure 26 - example of Good Fit of Train and Validation Learning Curves (14) 

 

The diagram represented, introduces the evolution of the model in the time and along 

the number of iterations on the x axis, while on the y axis the value of the loss function is 

represented. 

The 2 curves in the graph represent: 

 

• Training Learning Curve: Learning curve calculated from the training dataset, 

gives an idea on how the model is learning 

• Validation Learning curve:  Learning curve calculated from the validation 

dataset, which gives an idea of how well the model is generalizing 

 

A good fit is identified by a decrease of the two curves up to the same point of stability, 

keeping a small gap between them until convergence is reached. 

However, it is not always possible to obtain these results, due mainly to the phenomena 

of Overfitting and Underfitting.  

Learning curves of model performance can also be used to diagnose whether or not the 

train and validation datasets are representative of the system. 
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An unrepresentative Training Set means that it does not provide enough information to learn the 

problem. 

 

 
Figure 27 - Learning Curves with unrepresentative Training Set (14) 

 

This phenomenon is identified by a divergence of the two curves that grows over time 

and by some spikes. 

On the other hand, an unrepresentative Validation Set means that it does not provide 

enough information to generalize the problem. 

 

 
Figure 28 - Learning Curves with unrepresentative Validation Set (14) 
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This phenomenon is identified by a training learning curve with a good fit and a 

validation curve that shows many spikes. (14) 

       

2.3.4 - Overfitting and Underfitting 

Following the training phase, the algorithm should be able to efficiently predict the 

cases present within the test set. However, there may be cases in which the training phase is 

not carried out properly and the hyperparameters are not correct for the resolution of the 

problem. When the training phase develops due to an excessive number of iterations, the 

function that connects input and output is incorrect. This phenomenon is called Overfitting. 

 

 

 
Figure 29 - Overfitting in Learning Curves (14) 

  

On the other hand, if the approximation function has an inaccurate fit or there is a small 

number of samples, we also obtain bad predictive results. This is called Underfitting.  
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Figure 30 - Underfitting in Learning Curves (14) 

 

A classic example of this phenomena is present in figure 31 below. 

 

 
Figure 31 - Representation of different fit curves (15) 

 

For these reasons, it is of great importance to: 

 

• Give a correct degree of the polynomial to a regressive function 

• Meticulously check the dataset  

• Correctly choose the hyperparameters 

• Make a proper feature selection 
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Compared to underfitting, overfitting is not simple to recognize and, in most cases, it 

may be solved by adopting a different algorithm or directly acting on its hyperparameters. 

 

2.4 - Feature Selection 

The feature selection process is a technique widely used to detect the most significant 

features within our dataset for label prediction. This allows us to reduce the number of 

features and to train the model only on the most important ones for our problem. In this way 

we can reduce the phenomenon of overfitting or redundant data, increase accuracy and 

decrease the computation times of our model. There are several methods to apply this 

technique but for the present thesis I decided to use the XGBoost algorithm, based on the 

Decision Tree method. 

 

2.5 - Decision Tree 

The Decision Tree is one of the most common classification and regression techniques 

used within the ML framework. A decision tree shall consist of the following elements for 

the decision-making action: 

 

• Root Node: Represent the node at the treetop, containing all the sample that 

will be divided in the decision process 

• Internal Nodes: Used to make any decision and make multiple branches 

• Branch/ sub tree: A tree formed splitting the tree 

• Leaf Nodes: Final output node, containing the predicted value for the target 

variable (16) 
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Figure 32 - Decision Tree Structure (16) 

 

The tree operating with several blocks and nodes is able to take a set of data and extract 

a set of rules in order to understand the problem. For the construction of the tree, we start by 

providing the algorithm with the dataset containing the different features and the label. The 

data are divided each time into nodes according to the values assumed by the features. Then 

the dataset is subdivided into subsets, which are passed through the first branches of the first 

decision node: if the analyzed data meet the same condition set of the feature, the leaf node 

is reached, otherwise we proceed to another decision node where they are divided according 

to the condition of the new node. Each leaf node defines a certain area in which the new 

target variables will be evaluated. 

The main advantages in using this technique are: the easy understanding of the results, 

the computational speed and the fact that the algorithm takes into account all the possible 

outcomes of the problem. On the other hand, the decision tree is prone to overfitting, so you 

must be very careful in its use. To avoid this problem, it is necessary to limit the freedom of 

the decision tree during training. This process is regulated by the tuning of some 

hyperparameters. (10). 
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CHAPTER 3 – Deep Learning 
The main algorithms and machine learning models are efficient for solving many 

problems. However, when dealing with problems with a large number of data or 

multidimensional ones, it is necessary to use algorithms belonging to the category of Deep 

Learning. The main foundation of the DL is the use of multilayer architectures and neural 

networks. Thanks to them, predictive algorithms can operate with high numbers of features, 

reducing computational cost and achieve excellent results. 

 

3.1 - Artificial Neural Networks (ANN) 

Let’s analyze the main characteristics of neural networks and models of computation 

present in them. Artificial neural networks were created for the purpose of reproducing the 

activity of the human brain. The fundamental unit of our brain is the neuron and they 

communicate with each other through electrical impulses. This element is therefore able to 

receive different input signals from Dendrites, rework them and produce in turn new output 

signals which exit from Axons. 

 

 
Figure 33 - Neuron Structure (9) 

 

 It is in this way that the artificial neural network also operates in which, the activity 

of the human neuron is replicated by the perceptron as the fundamental unit of the NN. A 
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series of perceptrons form a single layer of the NN. The first layer of a neural network is 

called input layer because it contains all the information from the dataset features. Then this 

information is processed and sent to the different neurons of the next layer, up to the output 

layer containing the target of our problem. In this similarity, any information from a given 

perceptron is appropriately weighed with the use of a coefficient; in addition, each layer also 

contains a bias factor that stabilizes the model. 

 

 
Figure 34 - Perceptron Structure (9) 

 

Let us now analyze the behavior of a single perceptron and the various parts that 

compose it. 

 

• 𝒙𝒊 represents a node and the information which enters in the perceptron  

• 𝒙𝟎 is the Bias term  

• 𝒘𝒊 represents the weight that characterizes each connection 

• 𝒇 is the activation function contained in the perceptron  

• 𝒉𝒘 (𝒙) is the output of the perceptron 

 

ℎ𝑤(𝑥) = 𝑓( 𝑥𝑜 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ + 𝑤𝑛𝑥𝑛 ) 

 

ℎ𝑤(𝑥) = 𝑓( 𝑥0 +  ∑ 𝑤𝑖 𝑥𝑖 )

𝑛

𝑖=1
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The perceptron therefore adds in a weighed way all the contributions in input and the 

bias term. Then, through the activation function f present in it, it processes its output. 

There are also different types of neural networks depending on their conformation and 

how neurons communicate with each other. In our case we will consider only Fully 

connected Feedforward neural networks. In this type of network, the information flows from 

the input layer to the output layer and each neuron of the layer "j -1" is connected to all 

neurons of the layer "j". (9) 

 

 

 
Figure 35 - Feedforward fully connected neural network (9) 

 

 

3.2 - Code description 

As previously described, the purpose of this thesis is to generate a machine learning 

code capable of predicting the emissions of Soot Tail Pipe coming from a compression 

ignition (CI) engine. This process is possible using a regressive artificial neural network that 

works in a supervised environment. The algorithm was implemented in python. The latter is 

a very useful and powerful programming language composed of several libraries containing 

pre-scripted algorithms. The libraries are constantly updated and improved by users; they 

contain functions for solving many problems belonging to different fields of application. In 
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the field of machine learning this program is particularly used, especially for programming 

artificial neural networks. The following libraries are used in the code: 

 

• Numpy 

• Tensorflow 

• Pandas 

• Scikit-Learn 

• Keras 

• Matplotlib 

 

3.2.1 - Pre-Processing 

First of all, we should remember that the predictive model works on some excel 

datasets containing different measurements corresponding to different engine operating 

points. For each engine point, numerous variables are reported corresponding to the main 

parameters characterizing the combustion process and therefore the emission. The python 

code reports the data matrix in the program and then works on the development of the 

predictive model. To make the algorithm as deductive and simple as possible, it has been 

divided into several functions and each of them has a specific task. In addition, the use of 

this technique leads to high time saving during the analysis especially because:  

 

• it allows to modify the dataset considered in a simple way 

• during programming it allows you to detect errors in a simpler way 

• it makes the code more orderly and simpler in its use 

 

three main codes with separate tasks have been developed. The first code 

(Feature_Selection_TP) is used to perform the feature selection process for the given 

dataset, then to detect the features of greatest relevance for the prediction of the Soot Tail 

Pipe label. The second one (Model_results_TP) returns the scores and the different plots of 

the neural network, using the data belonging to the same folder through an appropriate 

train_test_split as train and test sets. Finally, the third code (Train_Test) returns the scores 
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of the neural network by applying the training and testing phase on two different folders and 

so, taking two different excel inputs. These three codes recall or use other sub-functions that 

are important for the correct functioning of the model. The subfunctions used are listed here: 

 

• Dataset_elimination_TP 

Function used to eliminate and filter the outliers present inside the dataset. 

Given that the measurements taken have a certain level of precision, it was 

decided not to use a numerical filter, but simply to bring to 0 all 

measurements with negative values of Soot_EO or Soot_TP. 

 

• Dataset_division_TP 

Function used for separating dataset into features and label. 

 

• Normalization_TP 

Function used to perform dataset normalization using max/min 

Normalization. 

 Normalization is used in preprocessing, making the data more suitable for 

convergence and ensuring the stability of the model thus avoiding 

overfitting. 

 

𝑍 =
𝑥 − min (𝑥)

max(𝑥) − min(𝑥)
 

 

First, an analysis of the dataset is carried out to verify that it does not contain any 

anomaly or measurement error that could negatively affect the model calculations. After 

splitting the dataset into features and labels, the data are properly mixed through the shuffle 

function in the sklearn.utils library. 

 

From sklearn.utils import shuffle 

dataset = shuffle (dataset) 
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The use of the shuffle is vital to verify the efficiency of the model and not always 

consider the same data, in fact each analysis has been repeated 10 times to avoid incurring 

errors creating a variability in results and a more complete evaluation of the process. 

After that, the dataset must be divided into train set and test set with an appropriate 

proportional division. To do this we use the train and test split function in the Sckit-Learn 

library. It has been used in the following way: 

 

From sklearn.model_selection import train_test_split 

test_size_TP = 0.2 ( Test set = 20% Dataset ) 

 X_trainTP, X_testTP, y_trainTP, y_testTP = train_test_split(VarEngineATS_TP, sootTP,     

 test_size=test_size_TP) 

 

As shown above, a suitable train test split is 80% of the data for the training phase and 

20% of the data for the test set. Nevertheless, to verify the stability of the model and the 

efficiency of the neural network it is important to obtain high network scores even with lower 

percentages of the training set.  

Finally, we pass to the data normalization to eliminate the variability of the data and 

the fact that they can be on different orders of magnitude due to different units of 

measurement. The use of data of different orders can cause anomalies within the network as 

some features would be privileged compared to others. The min max Normalization is 

efficient as it reports the values of all the features to a number between 0 and 1 then easily 

manageable and measurable by the neural network.  

Now we move on to the feature selection and FFNN construction phases. 

 

3.2.2 - Feature Selection 

As mentioned above this process allows to understand which are the most relevant 

features for the predictive model and the concerned dataset. The main benefit of this 

technique is that the algorithm will not have to train on all data but only on those which are 

important for its operation. In addition, the feature selection allows us to speed up the training 

time of the network, increase accuracy and decrease the possibility of overfitting as it 
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eliminates redundant data. The Feature_selection_TP code provides the results from the 

Feature_Extraction_TP sub-function. The latter is important because through the use of the 

command window of python, it allows us to start the decision process and choose whether to 

use the XGBoost algorithm or the Random Forest algorithm for the selection. These 

algorithms, as explained above, are based on the decision tree and return the percentages of 

importance that are attributed to the different features. In this thesis XGBoost has been used 

as feature selection algorithm because it is more suitable for solving the Soot Tail Pipe 

predictive problem. It stands for Xtreme Gradient Boosting and it exploits a boosting 

ensemble technique, combining different decision trees in a unique system. 

XGB function is managed by the following hyperparameters: 

 

• Learning Rate: Indicates the boosting step used to prevent overfitting. 

Range [0,1]. 

• Max_Depth: Indicates the depth of each decision tree. Range [0,∞]. 

• N_estimators: Number of trees on which the model will operate. It would 

be the equivalent number of boosting rounds. 

• Min_child_weight: Minimum number of blocks of each branch. Range [0, 

∞]. 

• Gamma: Minimal loss reduction needed to make an additional partition on 

a node tree leaf. The higher the range, the more conservative the algorithm 

will be. Range: [0, ∞]. 

• Colsample_bytree: is the ratio of subsampling the columns during the 

construction of each tree. Subsampling occurs once for each mast 

built. Range: ]0,1]. 

 

Within the code, I combined this algorithm with the GridsearchCV process to allow 

the optimization of the model’s hyperparameters. Such process takes place by combining the 

data entered manually for every hyperparameter, until it finds the best combination. The 

evaluation of the models is carried out through a cost function or a score. The part of the 

code used for this process is as follows: 
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if est_selected == 'xgb' : 

             

            params ={'learning_rate':[0.01,0.001], 

            'max_depth':[10,6,8], 

            'n_estimators':[2500,3000,3500],               

            'min_child_weight': [8,10], 

            'gamma': [0.05], 

            'colsample_bytree':  [1.0]} 

            grid_estimator = XGBRegressor() 

  

At the end of the k-fold process, we obtain a division of the incoming data in different 

folders and for each of them we obtain a cv_score value, which represents the efficiency of 

the process. In addition, the use of shuffle allows to achieve higher scores so it is a further 

proof of the benefits it brings to the model.  

 

3.2.3 - Model Construction  

After the first phase of pre-processing, we build the neural network through the sequential model 

technique. The function used to calculate the network score is Model_results_TP. The latter takes 

in input the train set and the test set suitably divided and normalized, after that it relies on the 

Model_Formation function to carry out the processing of the artificial neural network. Using the 

sequential model, I can define from the input layer all the characteristics of the different layers of 

the network up to the output one. 

 

model = Sequential() 

 

    model.add(Dense(120, 

                input_shape = (X_trainTP.shape[1],),  

                activation = 'relu',  

                kernel_initializer = 'normal')) 
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    model.add(Dropout(0.1)) 

………………………………………………………….. 

     

    model.compile(loss = 'mse',  

              optimizer = Adam(lr = 0.001),  

              metrics = ['mse', r2_score]) 

 

    history = model.fit(X_trainTP,  

                    y_trainTP,  

                    epochs = 120, 

                    validation_split = 0.2,  

                    shuffle = False,  

                    batch_size = 250) 

 

The main parameters that outline the functioning of a neural network are the following: 

 

• Neurons N°  

• Hidden Layers N° 

• Batch_Size: corresponds to the number of samples used by the algorithm 

before changing the internal parameters of the model. 

• Epochs: defines the number of iterations for which the model will need to 

be trained 

• Optimizer: Associated with the learning rate used by the network to 

optimize its functions. 

• Activation Function: it indicates the function present within each neuron 

• Kernel_initializer: it defines how the weights for each epoch (iteration) of 

our neural network are initialized 

• Validation_split: Indicates the percentage of the train set that is used for 

the validation process. 
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• Dropout: this is particularly useful to avoid the phenomenon of overfitting 

as it indicates a certain percentage of neurons belonging to the current layer 

that are randomly ignored during the flow of information by the model. 

 

Following the network training process, I extrapolate the values of the error functions 

and continue with the testing phase. 

 

y_trainTP_pred = model.predict(X_trainTP) 

y_testTP_pred = model.predict(X_testTP) 

 

Then we proceed with the denormalization: 

 

def denormalize(y, y_max, y_min): 

        final_value = y * (y_max - y_min) + y_min 

        return final_value 

 

Finally, I evaluate the model by analyzing different plots and the network scores in the 

form of: MSE, RMSE and 𝑅2, returning to the main function Model_results_TP. 

 

r2_trainTP = r2_score(y_trainTP, y_trainTP_pred) 

r2_testTP = r2_score(y_testTP, y_testTP_pred) 

 

MSE_trainTP = metrics.mean_squared_error(y_trainTP, y_trainTP_pred) 

MSE_testTP = metrics.mean_squared_error(y_testTP, y_testTP_pred) 

 

RMSE_trainTP = np.sqrt(MSE_trainTP) 

RMSE_testTP = np.sqrt(MSE_testTP) 

 

The above procedure can also be performed using two different datasets such as train 

sets and test sets with the Train_Test function. The latter is very important for the cross-

analysis that will be carried out to verify whether the different datasheets can be physically 
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comparable and whether the logic of the model can work simultaneously with different 

folders. 

 

3.2.4 - Tuning of the Hyperparameters 

Thanks to the combination of two different codes: tune_params and 

tune_params_results we can achieve the tuning of the neural network hyperparameters and 

the optimization of the system. Through these two functions, the GridsearchCV process from 

the Sckit-Learn library is once again recalled combining the different parameters of the 

neural network in such a way as to minimize the loss function and optimize the system. This 

code has some limitations as it would be appropriate to indicate the values of the 

hyperparameters for each layer of the network, while the current model allows only to 

provide a unique combination of the hyperparameters for the whole network and all the layers 

which compose it. Reprogramming this code would make it possible to obtain stronger 

network parameters that would allow further optimization of the latter. 

 

param_grid = dict(batch_size = [250,200],  

                  epochs = [120,100],  

                  activation = ['relu'],  

                  loss = ['mean_squared_error'], 

                  init_mode = [ 'normal'],  

                  dropout_rate = [0.1,0.2],  

                  neurons = [200,250],  

                  learn_rate = [0.001,0.01],  

                  n = [1,2]) 

 

    grid = GridSearchCV(estimator = model,  

                    param_grid = param_grid,  

                    scoring = 'neg_mean_squared_error', 

                    n_jobs = -1,  
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                    refit = True,  

                    cv = 5,  

                    verbose = 2) 

 

    grid_result = grid.fit(X_trainTP, y_trainTP) 
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CHAPTER 4 – Data Analysis 
In this section the observations and the analyses carried out on the data present in the 

various folders provided by AVL Italia are studied. The several datasets contain many 

samples coming from some tests carried out on a roller bench to which have been applied 

many sensors including those for the measurement of Soot both in the engine out position 

and in the tail pipe one. In this thesis work, two datasets measured in stationary conditions 

and one on the WLTC regulatory driving cycle are taken into consideration. 

 

4.1 - Variables Pre-Processing 

Our aim is to build a virtual sensor capable of predicting the Soot_TP and as I have 

previously explained this measure is influenced differently by all the variables. For this 

reason it is very important to observe the performance of the different features and see 

whether their behavior is physically logical. 

The engine parameters measured during the tests describe: the engine operating 

conditions, the DPF conditions and the environmental conditions. There are 21 of them, 

including the Soot Engine Out and the Soot Tail Pipe. The following table shows the different 

features of the system used to predict the Soot_TP. 
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Time [s] 
Vehicle 
speed 
[km/h] 

Engine speed [RPM] 

Engine 
Coolant 

Temperature 
[°C] 

Injected 
quantity 

[mm^3/hub] 

EGR Rate 
[/] 

Environmental Temperature [°C] 
DPF Upstream 
temperature 

[°C] 

Environmental 
pressure [hPa] 

DPF delta 
pressure 

[hPa] 
Intake manifold pressure [hPa] 

DPF 
Downstream 
temperature 

[°C] 

Lambda [/] 
DPF Soot 
Mass [%] 

TLC_Concentration_EO_from_MSS_INCA 
[mg/s] 

Sensed Intake 
fresh air 
[kg/h] 

Intake manifold 
temperature 

[°C] 

Engine 
Mode [/] 

Volume Flow rate across DPF [m^3/s] 
Indicated air 
Mass Flow 

[kg/h] 

 

 

The label is indicated as TLC_Concentration_TP from_MSS_INCA (Soot_TP) and it 

is measured in [mg/s]. 

Inside the table there are two red features. The measures in question are those of Time 

and Engine Mode; both are not considered for the prediction of Soot_TP and then they are 

eliminated. This decision is because: The Engine Mode has a constant trend within each 

dataset and it does not represent a discriminating feature for the network, while time does 

not represent a physical variable for the system. As mentioned above, the neural network 

considered as a feed forward one does not take in account the temporal evolution of the 

system. On the latter aspect it would be interesting in the future to take this data into account 

to verify its effectiveness in predicting soot. 
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It is important to point out that the choice not to eliminate other features entering into 

the feature selection process is due to the fact that all the remaining features represent a 

possible factor of relevance for the prediction of a complex phenomenon such as the 

formation of soot. 

The datasets taken into analysis are the following: 

 

• File 1 ➔ DATASET 1: 

N°SAMPLES = 134.365 

FREQUENCY RESOLUTION = 10 Hz 

STATIONARY TEST AT DIFFERENT ENGINE SPEED                              

FROM 800 RPM TO 4500 RPM 

BPU 20x20 

EGR SWEEP 

 

• File 2 ➔ DATASET 2: 

N°SAMPLES = 36.658 

FREQUENCY RESOLUTION = 10 Hz 

STATIONARY TEST AT DIFFERENT ENGINE SPEED                              

FROM 800 RPM TO 4500 RPM 

BPU 20x20 

NOMINAL EGR 

 

• File 5 ➔ DATASET WLTC: 

N°SAMPLES = 18.346  

FREQUENCY RESOLUTION = 10 Hz 

WLTC TEST AT DIFFERENT ENGINE SPEED                                             

FROM 0 RPM TO 2500 RPM 

 
Initially the data was analyzed both according to the number of samples and according 

to the number of revolutions of the engine. In a first approach several filters had been placed 

to the various features of the system but after numerous meetings with the engineers of AVL 
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Italia, such filters were eliminated because every measure present in the datasets represents 

an effective behavior of the engine along the map. In fact, although some points may seem 

suspicious looking at the trend of the features, they represent the precise behavior of the 

engine, so the measurements of Soot_TP in these points cannot be ignored. 

Nevertheless, the only important filter we have decided to maintain is the one applied 

to Soot_EO and Soot_TP variables. Within all five folders there are some negative values of 

these features. For this reason, I reported these values to 0 without eliminating the sample in 

analysis. This decision is outlined by the fact that removing these points would mean again 

not considering some samples that represent the operation of the compression ignition engine. 

In the following image there is an example of some negative values in the Soot_TP 

measurements present in the Dataset 1. 

 

Figure 36 - File 1 Soot_TP plot 

 

 
Figure 37 - File 1 Soot_TP Zoom 
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It is again important to point out that the measurements that are present in steady 

conditions, and therefore carried out on the first two datasets, are all carried out on the same 

engine on a roller bench. These also have the same size as BPU 20X20. This dimension 

indicates the attack size of the DPF, and it is relevant for the comparison of the two folders 

even if the phenomenon of regeneration is not treated in stationary. 

As we will see, regeneration is only present in samples made on the WLTC driving 

cycle.  For this reason, the measurements of soot, present in File 5, will be several orders of 

magnitude smaller than the values presented in the stationary spreadsheets. 

 

4.2 - Dataset 1 

File 1 is the largest dataset among those analyzed and represents a series of stationary 

measurements made in the presence of EGR sweeps. This means that during fuel injection, 

the EGR is not kept at constant levels but follows ramps. 

 

 

 
Figure 38 - File 1 EGR Rate and Injected Quantity 
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 First, a check of the different features was made to control that there is no anomaly 

between them. The engine operates at an environmental temperature of around 25°C with an 

engine speed following a steps course between 800 and 4500 rpm.  

 

 
Figure 39 - File 1 Engine Speed 

 

The inlet and outlet temperature of the DPF varies never exceeding 700 °C. 

 

 
Figure 40 - File 1 DPF Features 
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The measurements of the DPF Soot mass have values higher than 100%, which is 

physically senseless. Despite this, discussing with the engineers of AVL we concluded that 

this feature follows a logical trend in the operation of the engine so it means that with the use 

of normalization, such features can be maintained and taken in consideration for the analysis 

of File 1. 

 

 
Figure 41 - File 1 DPF Soot Mass 

 

Analyzing the performance of the 3 features: Volume Flow rate across DPF, Sensed 

Intake fresh Air and Indicated air Mass Flow, it is possible to notice a redundancy in the 

performance of the features that must therefore be kept under control.  

 

 
Figure 42 - File 1 Air Flow features 
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Finally, the trend of Soot_EO is very similar to the trend of Soot_TP even though with 

different orders of magnitude, so we expect it to fall into the most important features of the 

predictive system. 

 

 

 
Figure 43 - File 1 Soot_TP and Soot_EO 

 

 

Now, the Feature Selection process is carried out using the algorithms described above. 

In this case, thanks to XGBoost we assign a percentage of importance for the prediction of 

Soot_TP to each feature. At this point we will only consider the most important features up 

to reach 90% as the sum of the different percentages of importance. It must be remembered 

that upstream of this process the shuffle was performed and a train_test_split of 0,2 was 

imposed. This means that the train set will have a size equal to 80% of the total amount of 

data. The following are the results of this process applied to File 1. 
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Main Features 
Importances 

[%] 

TLC_Concentration_EO_from 54,187 

DPF Soot Mass 11,957 

Indicated air Mass flow 7,436 

DPF delta Pressure 3,675 

DPF upstream Temperature 2,472 

DPF downstream 
temperature 

2,411 

Intake manifold 
temperature 

2,351 

Environmental temperature 2,342 

lambda 2,067 

Engine coolant temperature 1,908 

 

 

 
Figure 44 - File 1 Feature Importance Graph 

 

0 10 20 30 40 50 60

TLC_Concentration_EO_from

Indicated air Mass flow

DPF upstream Temperature

Intake manifold temperature

lambda

Volume flow rate across DPF

Engine speed

Vehicle speed

Environmental pressure

Importances [%]

Features Excluded 
Importances 

[%] 

Volume flow rate across DPF 1,498 

Injected quantity 1,366 

Engine speed 1,245 

EGR rate 1,206 

Vehicle speed 1,197 

Intake manifold pressure 0,945 

Environmental pressure 0,87 

Sensed Intake fresh air 0,65 
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As was expected, among the most important features we can find the Soot_EO and the 

DPF Soot mass. This behavior was desirable as these variables have a direct connection with 

the Soot present at the engine discharge. In addition, all the features regarding the DPF are 

also present in the analysis. As a third feature of greater importance, we can observe the 

indicated air Mass flow, which among the three redundant features that indicate the air flow, 

is the only one considered by the system. Here the different parameters at the output of the 

GridsearchCV process are reported, containing the coefficients of determination (cv_score) 

obtained during the analysis of the values of the XGBoost parameters linked to them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 - Dataset 2 

File 2 contains a series of measurements carried out on the same vehicle in stationary 

conditions but without the EGR sweeps mentioned in the previous dataset analysis. The 

performance of these features is maintained at a nominal value with respect to fuel injection. 

Even within this dataset, the measurements are carried out at an environmental temperature 

of 20° C in the same Engine Speed range.  

 

CV_SCORE 𝑹𝟐 

0 0,983 

1 0,979 

2 0,981 

3 0,978 

4 0,979 

5 0,979 

6 0,981 

7 0,979 

8 0,981 

9 0,98 

MEAN VALUE 0,98 

Hyperparameter   DATASET 1 

Learning rate 0,01 

Max_depth 5 

N_estimetors 1500 

Min_child_weight 6 

gamma 0,05 

Colsample_bytree 1 
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Figure 45 - File 2 Engine Speed 

 

Also, all the features of the DPF respect the standards of specification and as can be 

seen the DPF Downstream Temperature follows the Upstream one in a proper way. 

 

 
Figure 46 - File 2 DPF Features 
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The trend of Soot_EO reflects that of Soot_TP and we have the same redundancy case 

for the three features: Indicated air mass flow, Volume flow rate across DPF and Sensed 

intake fresh air as in the previous case. 

 

 

 
Figure 47 - File 2 Soot_TP and Soot_EO 

 

 

 
Figure 48 - File 2 Air Flow Features 
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The following are the results of the feature selection process, applying the same 

principles as in the previous case: XGBoost and train_test_split = 0,2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 49 - File 2 Feature importance Graph 
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Indicated air Mass flow

DPF Soot Mass

Intake manifold pressure

DPF delta pressure

Environmental pressure

Volume flow rate across DPF

Sensed Intake fresh Air

Engine Coolant temperature

Intake manifold temperature

Importances [%]

Features 
Importances 

[%] 

Indicated air Mass flow 49,35 

TLC_Concentration_EO_from 16,198 

DPF Soot Mass 12,998 

Injected Quantity 3,633 

Intake manifold pressure 3,565 

DPF Downstream 
temperature 

3,093 

DPF delta pressure 2,105 

Features 
Excluded 

Importances [%] 

Lambda 1,778 

Environmental 
pressure 

1,383 

Engine speed 1,283 

Volume flow 
rate across DPF 

0,797 

Environmental 
Temperature 

0,795 

Sensed Intake 
fresh Air 

0,615 

Vehicle Speed 0,612 

Engine Coolant 
temperature 

0,569 

DPF Upstream 
temperature 

0,483 

Intake 
manifold 

temperature 
0,385 

EGR Rate 0,347 
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Here the different parameters at the output of the GridsearchCV process are reported, 

containing the coefficients of determination (cv_score) obtained during the analysis of the 

values of the XGBoost parameters linked to them. 

 

 

Hyperparameter DATASET 2 

Learning rate 0,01 

Max_depth 5 

N_estimetors 1600 

Min_child_weight 6 

gamma 0,05 

Colsample_bytree 1 

 

 

 

 

 

 

As can be seen from the data obtained, the first three features of greater relevance are 

the same for both datasets. In addition, the EGR rate is excluded during feature selection of 

both datasets. This leads us to think that although EGR is physically one of the most 

important parameters for the determination of soot, the predictive process takes little account 

of this fact. Another important aspect is that the vehicle speed and engine revolutions are not 

considered for both the analyzed folders. Furthermore, even within the second dataset, 

among the three redundant variables physically connected to each other regarding the air 

flow, the predictive system only considers the indicated air mass flow. 

These last considerations lead us to think that although the two tests have been carried 

out under different conditions on the same engine, they can be physically comparable, and 

that the predictive system can operate with the same logic in both datasets. 

 

CV_SCORE 𝑹𝟐 

0 0,979 

1 0,98 

2 0,98 

3 0,98 

4 0,978 

5 0,98 

6 0,98 

7 0,981 

8 0,979 

9 0,98 

MEAN VALUE 0,979 
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4.4 - Dataset 5 

After analyzing the data belonging to the two stationary folders on the same vehicle 

and for an equal value of BPU, I carried out a new analysis on the data belonging to Folder 

5 containing the measurements regarding the WLTC driving cycle. 

The WLTC (World-wide harmonized Light duty test cycle) guide cycle is derived from 

real guide data provided by 5 different Regions: USA, India, Korea, Japan, and EU + 

Switzerland. These data were averaged by considering a large drop in vehicles on different 

types of roads and under different driving conditions. This pollutant determination cycle 

replaced the NEDC driving cycle in 2018 inside European legislation. This procedure is 

particularly important because the use of the NEDC cycle did not give a true view of the 

pollutants produced by vehicles.  

The measurement procedures are applicable to different categories of vehicles that are 

classified within the legislation according to their power to mass ratio (PMR). This parameter 

is defined as the ratio between the power expressed in Watt and the curb mass in Kg. (1) 

 

 
Figure 50 - WLTC Vehicle categories (1) 

 

The third class represented in the table, is representative of the vehicles driven in 

Europe and Japan. 
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Figure 51 - Vehicle Speed in a WLTC Driving Cycle Example (1) 

 

The cycle is divided into four parts: 

 

• Low 

• Middle 

• High 

• Extra-High 

 

 
Figure 52 - File 5 Vehicle Speed 
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Analyzing the diagram of the vehicle speed of Dataset 5, we can notice precisely the 

four phases of the WLTC cycle. It can also be seen that the maximum speed reached exceeds 

120 km/h, this means that the vehicle in analysis belongs to the regulatory class 3b. 

Since the test has different engine operating conditions, it is highly variable with sharp 

variations in speed and acceleration. 

Soot_EO and Soot_TP follow a less linear trend than the previous datasets and have 

orders of magnitude very different from each other since, as said before, there is the 

phenomenon of DPF regeneration. In addition, the Soot TP has more spikes than the engine 

out and it is believed that this may bring about some problems in the different 

analyses. Treating such small Soot_TP values can, despite the normalization process, lead to 

small unbalances, for this reason it is necessary to be very careful when handling the dataset. 

As with previous datasets, no filters were placed on File 5, but only the negative values 

of Soot_TP and Soot_EO were returned to 0.  

 

 
Figure 53 - File 5 Soot_TP and Soot_EO 

 

A check was made on the different features to analyze their performance and again in 

this case a certain redundancy was found between: Indicated air mass flow, Volume flow 

rate across DPF and Sensed intake fresh air. 
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Figure 54 - File 5 Air Flow features 

 

As for the characteristics of the DPF, we can observe that compared to the previous 

cases the upstream and downstream temperatures of the DPF are reduced. Furthermore, they 

follow a similar trend but not as close as in the two previous folders. In addition, a lower 

level of DPF Soot Mass measurements can be noticed. 

 

 
Figure 55 - File 5 DPF Features 
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In the following tables, we can observe the results obtained from the feature selection 

process, the different hyperparameters obtained from the GridsearchCV process and the 

coefficients of determination (𝑅2) obtained with the parameters of the XGBoost parameters 

connected to them. 

 

Features 
Importances 

[%] 

DPF delta Pressure 56,852 

Volume flow rate 
across DPF 

27,241 

Sensed intake 
fresh air 

2,323 

DPF Soot mass 1,549 

Intake manifold 
pressure 

1,314 

Engine coolant 
temperature 

1,19 

 

 

 

Features Excluded Importances [%] 

DPF Upstream 
temperature 

1,039 

Injected quantity 1,013 

Intake manifold 
temperature 

1,002 

Soot_EO 0,947 

DPF downstream 
temperature 

0,89 

Indicated air mass 
flow 

0,889 

Vehicle speed 0,88 

lambda 0,794 

Engine speed 0,752 

EGR rate 0,709 

Environmental 
temperature 

0,6 

Environmental 
pressure 

0 
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Figure 56 - File 5 Feature Importance graph 

 

 

CV_SCORE 𝑅2 

0 0,883 

1 0,871 

2 0,873 

3 0,88 

4 0,879 

5 0,877 

6 0,871 

7 0,875 

8 0,88 

9 0,868 

MEAN VALUE 0,874 

 

From the feature selection made on File 5, I noticed that the variables concerning 

engine revolutions and EGR are discarded again. The DPF delta pressure is the most 

important variable obtained in this process with a very high importance percentage of 56.85%. 

Among the DPF measurements, temperature variables are excluded, while the algorithm 

considers the DPF Soot mass as relevant (main variable for all 3 datasets). The main 

difference between Dataset 5 and the previous cases is the exclusion of the Soot_EO from 

the main variable of the problem. This may be due to different engine operating conditions 

0 10 20 30 40 50 60

DPF delta Pressure

Sensed intake fresh air

Intake manifold pressure

DPF Upstream temperature

Intake manifold temperature

DPF downstream temperature

Vehicle speed

Engine speed

Environmental temperature

Importances [%]

Hyperparameter   DATASET WLTC 

Learning rate 0,01 

Max_depth 10 

N_estimetors 3000 

Min_child_weight 6 

gamma 0,05 

Colsample_bytree 1 
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or the different magnitude of the measurements. It is important to point out that this analysis 

was carried out with several datasets concerning measurements on the WLTC driving cycle, 

but the results obtained were practically the same. Even using RandomForest as a feature 

selection algorithm, there were no major variations in the obtained features.  

 In the following sections I will analyze the results obtained by the artificial neural 

networks applied to the different datasets and the results obtained by crossing the two 

stationary spreadsheets. 
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CHAPTER 5 - Neural Network Results 
Let us now pass to the analysis of the results obtained using the neural network and the 

different plots which are representative of the performance of the system. 

 Hyperparameters of neural networks have been selected as mentioned above using 

GridsearchCV. In this way the best combination of parameters has been found to make the 

system as efficient and accurate as possible. They were then used for the model run in order 

to achieve the neural network results. 

 

5.1 - Dataset 1 

After having treated the dataset with the different functions previously analyzed, 

starting from the input features obtained by the feature selection process, we can continue 

with the network analysis.  

 

 

DATASET 1 

Soot_EO 

DPF soot mass 

Indicated air mass flow 

DPF delta pressure 

DPF upstream 
temperature 

DPF downstream 
temperature 

Intake manifold 
temperature 

Environmental 
temperature 

Lambda 

Engine coolant 
temperature 
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Starting from the new dataset, the hyperparameters of the ANN obtained from the 

GridsearchCV optimization were set. 

 

• N° of Neurnons: 

o Layer 1: 200, Dropout: 0,1 

o Layer 2: 200, Dropout: 0,1 

• N° of hidden layer: 2 

• Activation Function:  

o ReLu 

o Linear for the output layer 

• Loss: Mse 

• Batch size: 300 

• Epochs: 200 

• Learning rate: 0,001 

• Kernel initializer: normal 

• Train Size: 80% 

• Test Size: 20% 

• Validation Split: 20% 

 
 

All pre-processing operations previously carried out are intended to prevent the 

network from operating incorrectly or incurring inconsistent phenomena such as overfitting 

and underfitting. As previously mentioned, data are randomly selected from the network by 

shuffle. To get a more accurate estimations of the model results, the data processing 

operation was repeated 10 times. Here are the results obtained in training and testing by the 

network for all analyses in terms of 𝑅2, MSE and RMSE. 
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TRAINING 

METRIC 𝑹𝟐 MSE RMSE 

0 0,987 0,0001 0,0116 

1 0,99 0,0001 0,0099 

2 0,989 0,0001 0,0108 

3 0,99 0,0001 0,01 

4 0,992 0,0001 0,0093 

5 0,99 0,0001 0,0101 

6 0,991 0,0001 0,0101 

7 0,991 0,0001 0,0095 

8 0,992 0,0001 0,0092 

9 0,989 0,0001 0,0108 

MEAN 
VALUE 

0,99 0,0001 0,0106 

 

 

The tables show very positive predictive results in the order of 99% both in training 

and in testing. This means that the network is operating correctly and it can deal with this 

type of dataset without any problem. Despite the positive numerical results, it is also 

necessary to observe the graphs concerning the learning curves. As mentioned above, this 

procedure is important to understand whether the network incurs overfitting or underfitting 

phenomena. 

 

 
Figure 57 - File 1 Learning Curves 

 

TESTING 

METRIC 𝑹𝟐 MSE RMSE 

0 0,986 0,0001 0,0118 

1 0,989 0,0001 0,0105 

2 0,988 0,0001 0,0114 

3 0,99 0,0001 0,0101 

4 0,991 0,0001 0,001 

5 0,99 0,0001 0,0102 

6 0,99 0,0001 0,0101 

7 0,99 0,0001 0,01 

8 0,991 0,0001 0,01 

9 0,987 0,0001 0,0114 

MEAN 
VALUE 

0,989 0,0001 0,0108 
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From the diagram it can be observed that we do not incur in any kind of fitting error 

just because the two curves go perfectly to convergence following the increase in the number 

of epochs. Network performance can also be analyzed graphically using representations in 

which the predicted values obtained by the model in the training and testing phases are 

compared to the real ones present in the dataset. In the following diagrams it is possible to 

observe such aspects; moreover, the nearer the points are to the bisector, the greater is the 

precision of the system.  

 

 
Figure 58 - File 1 Plot Train Real vs Predicted 

 

 
Figure 59 - File 1 Plot Test Real vs Predicted 
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As we can see the model is working in the proper way and without problems. 

The last useful charts to observe were made in Matlab to give a better understand of 

the obtained results during the testing phase. The first one represents the overlap of real and 

predicted values of Soot as a function of time. This representation is made for a constant 

Engine Speed value because considering all the data would be too confusional and it would 

not give a good idea of the predictive level. Since the Dataset 1 is very large, this graph 

considers all the points at a constant value of 3250 RPM as engine revolutions. 

 

 

 
Figure 60 - File 1 Plot Real vs Predicted 3250rpm 

 

The second graph represents the two cumulated curves of real and predicted soot. This 

representation is made by summing up all the soot values (real and predicted) present in 

every point. It is useful to observe the total error given by the sum of all the differences 

computed for the points in analysis.  
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Figure 61 - File 1 Cumulated Plot 3250rpm 

 

Inside the graphs, the red curve and the red points represents the real values of Soot_TP 

while the blue ones represent the values of Soot_TP predicted by the neural network. 

 

5.2 - Dataset 2 

As for the previous case, the results obtained from the use of the File 2 starting from 

the new features incoming to the system are reported. 

 

 

DATASET 2 

Indicated air mass flow 

Soot_EO 

DPF soot mass 

Injected quantity 

Intake manifold pressure 

DPF downstream 
temperature 

DPF delta pressure 
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Hyperparameters of the Feed Forward Artificial Neural Network: 

• N° of Neurons: 

o Layer 1: 200, Dropout: 0,1 

o Layer 2: 200, Dropout: 0,1 

• N° of hidden layer: 2 

• Activation Function:  

o ReLu 

o Linear for the output layer 

• Loss: Mse 

• Batch size: 250 

• Epochs: 120 

• Learning rate: 0,001 

• Kernel initializer: glorot uniform 

• Train Size: 80% 

• Test Size: 20% 

• Validation Split: 20% 

 

As previously mentioned, the data are randomly selected by the network, to obtain a 

more and more accurate estimate of the results of our model; it was decided to run and repeat 

the data processing operation for 10 times. 

 

 
 

 

 

 

 

 

 

 

 

TESTING 

METRIC 𝑹𝟐 MSE RMSE 

0 0,974 0,0002 0,0133 

1 0,975 0,0002 0,0129 

2 0,973 0,0002 0,0136 

3 0,977 0,0002 0,126 

4 0,976 0,0002 0,13 

5 0,976 0,0002 0,0132 

6 0,973 0,0002 0,0131 

7 0,974 0,0002 0,0133 

8 0,972 0,0002 0,0138 

9 0,975 0,0002 0,0131 

MEAN 
VALUE 

0,974 0,0002 0,0131 

TRAINING 

METRIC 𝑹𝟐 MSE RMSE 

0 0,977 0,0002 0,0126 

1 0,978 0,0001 0,0122 

2 0,978 0,0002 0,0123 

3 0,978 0,0001 0,0121 

4 0,977 0,0002 0,0127 

5 0,979 0,0001 0,0119 

6 0,975 0,0002 0,0132 

7 0,977 0,0002 0,0126 

8 0,974 0,0002 0,0133 

9 0,976 0,0002 0,0129 

MEAN 
VALUE 

0,975 0,0002 0,0129 
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The 𝑅2 values are equal to 97%, this means that the determination coefficients of File 

2 are lower compared to the ones of File 1. Such behavior may be due to several causes but 

the most likely is that Dataset 1 presents a much greater number of samples than Dataset 

2. This means that in File 1, the neural network will have the opportunity to learn better and 

consolidate the system even more efficiently. Despite these observations, in any case the 

scores obtained in File 2 are very high, this means that the network can efficiently predict 

the Soot_TP through the data present in Dataset 2. Below there are the different charts as the 

ones that have been showed in the previous part. 

 

 

 
Figure 62 - File 2 Learning Curves 

 

 
Figure 63 - File 2 Plot Train Real vs Predicted 
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Figure 64 - File 2 Plot Test Real vs Predicted 

 

The following graphs represent part of the measures present inside File 02 at a constant 

Engine Speed equal to 2500 RPM. 

 

 
Figure 65 - File 2 Plot Real vs Predicted 2500rpm 
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Figure 66 - File 2 Cumulated Plot 2500rpm 

 

We can notice that there is a good fit from the learning curves that 

converge.  Furthermore, looking at the comparison between real and predicted values and 

the cumulated plot, it is possible to see a small predictive deficit. The obtained results are 

summarily good for the resolution of the predictive problem. 

 

5.3 - Dataset 5 

The same procedure as the stationary files is also followed for Dataset 5 containing 

data on the WLTC guide cycle. This analysis will be very important to interpret whether or 

not a neural network with the same structure as that adopted in the stationary cases is able to 

obtain satisfactory results even operating with transient data.  

Starting from the features obtained through the feature extraction process, the 

optimized network Hyprerparameters using GridsearchCV are reported. 
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DATASET WLTC 

DPF delta Pressure 

Volume flow rate across 
DPF 

Sensed Intake fresh air 

DPF soot mass 

Intake manifold pressure 

Engine coolant 
temperature 

 

 

• N° of Neurons:  

o Layer 1: 120, Dropout: 0,1 

o Layer 2: 120, Dropout: 0,1 

• N° of hidden layer: 2 

• Activation Function:  

o ReLu 

o Linear for the output layer 

• Loss: Mse 

• Batch size: 250 

• Epochs: 120 

• Learning rate: 0,001 

• Kernel initializer: glorot uniform 

• Train Size: 80% 

• Test Size: 20% 

• Validation Split: 20% 

 

As in the previous sections, here we can see 𝑅2, MSE and RMSE values coming from 

the ANN during training and testing phases. 
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TRAINING 

METRIC 𝑹𝟐 MSE RMSE 

0 0,873 0 0 

1 0,862 0 0 

2 0,869 0 0 

3 0,872 0 0 

4 0,865 0 0 

5 0,867 0 0 

6 0,867 0 0 

7 0,866 0 0 

8 0,87 0 0 

9 0,864 0 0 

MEAN 
VALUE 

0,859 0 0 

 

From the obtained results, we can immediately notice a lowering of 86% of the 

predictive level compared to the previous cases. This decrease is mainly due to the fact that 

this dataset operates in completely different conditions than the previous models. In addition, 

Dataset 5 contains 18,346 samples which are too low, compared to 136,365 of Dataset 1 and 

36,658 of Dataset 2. Having a smaller dataset can be translated into a further cause of 

decreased accuracy because the network has less points to train itself and to perform an 

optimal prediction. Inside the tables we can also see that all the MSE and RMSE values are 

reported equal to 0. This aspect does not mean that the error is null but that it is very small 

and several order of magnitude under the unity.  Now let us see the graphs of the analysis. 

 

 
Figure 67 - File 5 Learning Curves 

TESTING 

METRIC 𝑹𝟐 MSE RMSE 

0 0,857 0 0 

1 0,861 0 0 

2 0,851 0 0 

3 0,865 0 0 

4 0,861 0 0 

5 0,853 0 0 

6 0,848 0 0 

7 0,858 0 0 

8 0,857 0 0 

9 0,86 0 0 

MEAN 
VALUE 

0,858 0 0 
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Looking at the learning curves graph, we can notice that the system does not encounter 

any phenomenon of overfitting or underfitting and the hole system is making a correct 

training phase without internal errors. 

 

 
Figure 68 - File 5 Plot Train Real vs Predicted 

 

 
Figure 69 - File 5 Plot Test Real vs Predicted 

 

As can be seen from the different representations of Soot_TP, the measurements are 

very small and are about 6 orders of magnitude lower than the values present in the other 

datasets. This has a negative effect on the efficiency of the system but, nevertheless, we get 

acceptable levels of accuracy. Looking at the true vs predicted value plot it is clear that the 
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network is incurring in some difficulties to give a proper prediction. This aspect is visible by 

the fact that many points both in training and testing are not on the bisector but are following 

a random trend in some points. 

 

 

 
Figure 70 - File 5 Plot Real vs Predicted 

 

For what concerns the plot comparing predicted and real values, it shows the decrease 

in efficiency compared to the previously analyzed stationary systems. 

 

 
Figure 71 - File 5 Cumulated Plot 
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Although the cumulate looks quite efficient, this representation is not very useful since 

the orders of magnitude in question are small. 

The results obtained show that the predictive model can also work when dealing with 

the WLTC cycle. Nevertheless, the predictive levels of the previous cases are not reached. 

Furthermore, in order to build high precision sensors, scores like 85% are not a good enough 

solution to our problem. It is important to point out that all the analyses previously shown 

have been carried out with different train_test_split to demonstrate the stability of the neural 

network. In all these cases, even by modifying this variable, there are no changes in the use 

of the artificial neural network. This clearly demonstrates the efficiency of the system 

used. In the next section we will see if the network is able to achieve good predictive levels 

even crossing different datasets during training and testing. 

 

5.4 - Cross Analysis: Train set File 1 – Test set File 2 

After having analyzed the construction of the artificial neural network and the different 

yields obtained from the predictive model working on the three files, a cross-analysis was 

performed to assess whether the model is able to maintain high predictive levels by training 

on Dataset 1 and trying to predict in testing Dataset 2. Both files contain some measurements 

carried out in stationary conditions, however, the main difference present between the two, 

is the presence of EGR sweeps regarding File 1, while the EGR is kept at nominal values 

within File 2. As can be seen from the features of greater relevance for both folders, they 

turn out to be very similar. On this subject, there have been several meetings with AVL’s 

engineers to cover whether these datasets are physically comparable with each other. Despite 

the different characteristics of EGR, the levels of soot obtained in the two folders are 

comparable, so we can try to perform this type of analysis. 

The choice to place Dataset 1 as a train set and File 2 as test set is mainly because 

Dataset 1 is much bigger than Dataset 2. As already said, File 1 contains 134.365 samples 

while File 2 contains only 36.658. Summing up all the samples we can see that the training 

set composed by the first dataset covers 78.5% of the total number of data, while the test set 
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covers 21.5%. These percentages are close to the previously used train_test_split = 0.2, so 

the data partition was carried out efficiently. 

Since the training phase was carried out on Dataset 1, I have placed as input variables 

to the neural network, those coming from the feature selection process carried out on the 

spreadsheet in question. We also use the same network parameters used by File 1 in order to 

achieve our goal. 

 

DATASET 1 DATASET 2 

Soot_EO Indicated air mass flow 

DPF soot mass Soot_EO 

Indicated air mass flow DPF soot mass 

DPF delta pressure Injected quantity 

DPF upstream 
temperature 

Intake manifold 
pressure 

DPF downstream 
temperature 

DPF downstream 
temperature 

Intake manifold 
temperature 

DPF delta pressure 

Environmental 
temperature 

 

Lambda  

Engine coolant 
temperature 

  

 

 

• N° of Neurons: 

o Layer 1: 200, Dropout: 0,1 

o Layer 2: 200, Dropout: 0,1 

• N° of hidden layer: 2 

• Activation Function:  

o ReLu 

o Linear for the output layer 

• Loss: Mse 

• Batch size: 300 

• Epochs: 200 
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• Learning rate: 0,001 

• Kernel initializer: normal 

• Validation Split: 20% 

 

These are the results obtained by 10 tests made with the ANN in order to control the 

randomicity due to the shuffle of data.  

 

 

TRAINING 

METRIC 𝑹𝟐 MSE RMSE 

0 0,099 0,0001 0,0103 

1 0,993 0,0001 0,0099 

2 0,0993 0,0001 0,0083 

3 0,992 0,0001 0,0089 

4 0,992 0,0001 0,0089 

5 0,992 0,0001 0,0093 

6 0,99 0,0001 0,0101 

7 0,992 0,0001 0,0093 

8 0,993 0,0001 0,0085 

9 0,991 0,0001 0,0095 

MEAN 
VALUE 

0,991 0,0001 0,0095 

 

 

Unlike the previous analyses, in this case we obtain particularly low predictive network 

scores during the testing phase. Although the training done on Dataset 1 has not changed 

compared to the previous case, the artificial neural network is not able to obtain good 

predictive levels for the testing phase of Dataset 2. As we can see, the determination 

coefficient is near 0.1, this means that the network cannot find a logical connection between 

the study of the two problems.  

Let’s see the others plots related to the analysis: 

TESTING 

METRIC 𝑹𝟐 MSE RMSE 

0 0,195 0,0055 0,0742 

1 0,042 0,0066 0,081 

2 0,162 0,0057 0,0757 

3 0,012 0,0068 0,0822 

4 0,047 0,0065 0,0808 

5 0,02 0,0067 0,0819 

6 0,129 0,006 0,0772 

7 0,153 0,0058 0,0762 

8 0,109 0,0061 0,0781 

9 0,095 0,0062 0,0787 

MEAN 
VALUE 

0,13 0,006 0,0772 
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Figure 72 - Figure 67 - Static cross analysis Learning Curves 

 
Figure 73 - Train File 1 Plot Real vs Predicted 

 
Figure 74 - Test File 2 Plot Real vs Predicted 
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As was easily predictable, the learning curves have an excellent performance precisely 

because the system does not encounter any problem during its training. But looking at the 

plot comparing predicted and real soot values, we can easily notice that the system is working 

wrongly.  

Unfortunately, contrary to what we would have expected from observing the features 

and          behaviors of the different features of the two folders, this analysis has not led to 

any result. 

The artificial neural network is not able to solve this problem and to achieve acceptable 

predictive levels in the stationary cross analysis. 
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Conclusions 
This thesis aims at the development of a virtual sensor in python for the prediction of 

the soot levels present at the discharge of a diesel engine (IC) (tail pipe) through the use of 

Machine learning algorithms, in this case belonging to the branch of deep learning. The use 

of neural networks for such analyzes represents the state of the art especially for the 

resolution of problems related to the use of physical sensors such as, for example, 

encumbrance and maintenance. 

The aim is to lay the foundations for the development of new OBD systems that can 

reliably report the amount of pollutants emitted by the vehicle and the conditions of the 

particulate filter in order to implement precise regeneration strategies. The analysis presented 

would not have been possible without the support and datasets provided by AVL Italia. 

Within the work analysis was carried out on how to build the regressive artificial neural 

network and the different logics present within it in order to predict the complex phenomenon 

of soot formation. 

The algorithm was first applied to File 1 containing measurements made on a diesel 

engine on a roller bench in stationary conditions. The neural network has reported excellent 

levels of accuracy and reliability of around 99%, demonstrating that this system is actually 

able to work efficiently with these types of datasets. The high predictive accuracy is also due 

to the high number of samples present within the folder which therefore allow the network 

to operate in the best way there can be. In the second analysis on File 2, a new tuning of the 

hyperparameters was made and reuse of the same logic as the previous neural network was 

tried in order to obtain results. 

While Dataset 1 is characterized by some EGR sweeps, Dataset 2 presents a nominal 

EGR value with respect to the amount of fuel injected. Furthermore, the number of samples 

present in File 2 turns out to be much lower (about a quarter) than those present in File 1. 

Despite this, the results obtained from the network are very positive, to the order of 97 %, 

therefore satisfactory for solving the problem. In the next analysis, the dataset containing the 

WLTC regulatory guide cycle measurements was taken into consideration. Although this 

dataset is very small compared to two in stationary, use of the same logic as the neural 

network used previously to predict the soot values produced in the transient regime was tried. 
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The first major difference within this dataset is that the soot measurements are approximately 

six orders of magnitude lower than those present within the other folders. This is due to the 

fact that within these tests, the regeneration phenomenon of the DPF is also introduced, 

which implies a substantial reduction in the quantities of soot produced. 

Despite having adopted a normalization for the different datasets, this variation 

negatively affects the accuracy of the system. The analysis of File 5 shows predictive scores 

to the order of 86% and, although this result seems high, it is not enough for the construction 

of a high-precision sensor. 

In the last analysis presented, comparison of the two datasets in stationary was made 

and the training phase on Dataset 1 and the testing phase on Dataset 2 were carried out. Based 

on the results obtained following the features selection process, positive results would have 

been expected, but the scores obtained by the network are particularly low. It should be noted 

that during the analysis process many other stationary datasets were used with conditions 

similar to the two mentioned but in each application, satisfactory results were not obtained. 

Finally, cross-analysis with the datasets provided on the WLTC guide cycle was carried 

out. During this phase, AVL provided 3 other datasets with measurements of the Soot_TP 

but, despite this, the results obtained did not satisfy the analysis from a predictive point of 

view, thus a decision was made not to report them since negative determination coefficients 

were detected. This aspect demonstrates an impossibility on the part of the current neural 

network to find a physical link that correlates different transient datasets or the same transient 

data with those in stationary. I think that these unsatisfactory results are not a point of arrival 

but a departure in order to continue to improve the model and find a solution to the problem. 

The aim therefore remains to create a universal sensor that has the ability to combine the 

different spreadsheets and obtain excellent predictive levels in any type of stationary or 

transient condition. 

In order to improve the research, I think that two important foods for thought could be 

that of: 

 

• improving the GridsearchCV algorithm to obtain more precise optimizations of 

the network parameters, thus moving to a new algorithm that does not say 

standardized hyperparameters for the entire length of the network but which 
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can give precise structural parameters to each layer of the network. In this way 

it could be possible to improve the different network scores. 

 

• programming and trying to use a new regressive neural network that can take 

into account the temporal evolution of the system, especially for the study of 

datasets in a transient regime. 

 

Finally, it would be interesting to carry on this work towards the design of a classifier 

capable of periodically monitoring the operating status of the DPF and the soot in order to 

then be able to coordinate precise regeneration strategies so as to reduce the quantity of 

pollutants released into the atmosphere. 

I firmly believe that by continuing to experiment with new models and new ideas, the 

solution for the construction of the universal virtual sensor for the prediction of Soot_TP can 

be reached. 
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