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ABSTRACT 

Natural disasters have been always caused a danger to human life, and among these are 
earthquakes. Seismic risk assessment consists of the evaluation of existing buildings and 
their expected response in case of earthquake; exposure model of buildings has a significant 
role in the final results of risk calculations. With this respect, several studies, including 
traditional data acquisition (e.g. visual survey) or advanced methods (e.g. remote sensing 
and machine learning) are conducted. In recent years, advanced techniques have been 
developed to speed up and automatize the processes of data acquisition to data 
interpretation, although it is worth mentioning that the visual survey is essential to train and 
validate machine learning methods. 
 In the present study, we combined the traditional visual survey with the 
implementation of a deep learning model to identify building types. First, in order to 
understand the taxonomy of buildings in Switzerland, several cities (e.g. Neuchatel, 
Yverdon-Les-Bains) are studied with a virtual/physical survey. As a first outcome of the 
survey, city mapping schemes are obtained by classifying buildings according to the main 
features (i.e., construction period and height classes). Next, Random Forest (RF), a 
supervised learning algorithm, is applied to classify buildings into building types by 
exploiting all the building attributes. The RF model, trained and tested on the cities of 
Neuchatel and Yverdon-Les-Bains and then applied to two other Swiss cities (e.g. 
Solothurn and Visp), which are also visually/physically (e.g. Google street) surveyed. The 
decent accuracy of the results by application of the model to two cities of Solothurn and 
Visp with different distributions of building types showed that the robustness of the method 
in prediction of building types in other cities in Switzerland, paving the path for its 
application to whole country. Finally, to study the performance of the proposed building 
type detection in seismic risk assessment, the seismic damage for two different scenarios 
is evaluated by considering the real and predicted building exposure models.  A negligible 
discrepancy between the estimated damages based on the real and predicted exposure 
models demonstrate the successfulness of the method in risk assessment with high 
accuracy. 
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1 INTRODUCTION 

1.1 NATURAL DISASTERS: SEVERITY AND CONSEQUENCES 

Natural disasters always represented a menace for human life for both the economical and 
physical aspects; among them, earthquakes represent a serious hazard worldwide (Wei et al., 
2013). Indeed, approximately 1,600,000 deaths have been caused by earthquakes worldwide 
(Wu et al., 2014). The considerable damage observed after the latest moderate-to-strong 
earthquakes has increased awareness regarding natural disasters in the last decades  (Jackson 
& Conway, 2006). A recent example in Europe is the severe L’Aquila earthquake with 

magnitude 5.9 ML occurred in Italy on April 6th, 2009 and caused more than 300 victims, 1,600 
injured people and financial losses of ~ 10 billion Euros (Greco et al., 2018). The most recent 
large-magnitude earthquake in Europe is the Mw 5.3 Zagreb earthquake, occurred on March 
22nd, 2020. The epicentre was 7 kilometres (4.3 mi) north of the city centre of Zagreb (Croatia). 
The maximum intensity felt was VII-VIII (very strong to damaging) on the Medvedev-
Sponheuer-Karnik scale. It was the strongest earthquake in Zagreb since the 1880 earthquake 
and caused substantial damage to the city's historic centre. The direct damage inflicted by the 
earthquake on Zagreb and Krapina-Zagorje County was estimated 86 billion Croatian kuna 
(11.5 billion euros) (Josip Atalić, Uroš et al., 2021). Moreover, the impact of natural disasters 
has raised in the last decades. Global urbanization processes and increasing spatial 
concentration of exposed elements (e.g., people, buildings, infrastructure, and financial assets) 
in earthquake-prone area led to an increased seismic risk (Geiß et al., 2016). 

 

1.2 RISK ASSESSMENT: DIFFERENT TECHNIQUES 

In general, risk of earthquake is defined as the probability of earthquake consequences in terms 
of environmental, economical and social aspects and quantified by using loss modelling 
procedures, which includes earthquake hazard and fragility modelling (Erdik, 2017). 
Earthquake hazard are focused in estimation of strong ground motion parameters by means of 
probabilistic or deterministic models. For each strong ground motion, the structural damages 
are determined by using fragility models, linking the probability of damage to the level of 
intensity. Consequence model quantifies the loss (costs for retrofitting) or loss ratio (for 
example the repair cost divided by replacement cost) as a function of structural damages. Thus, 
some uncertainties should be considered during the earthquake risk estimations (Erdik, 2017). 
 Every year, hundreds of risk assessment studies are carried out. Some of them follow 
more traditional methods, others are more innovative (e.g. use of remote sensing, machine 
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learning methods). Concerning the traditional methods, for instance, in (Zuccaro & Cacace, 
2015), a quick method for seismic vulnerability assessment is proposed, according to the EMS 
98 classification. The criteria to assign the typological classes are mainly based on the vertical 
structure type. The purpose of this methodology is to reduce the uncertainty in the class 
assessment using a set of parameters, related to typological features, that are identified as 
modifiers of the vulnerability level. A synthetic damage parameter is defined for comparing 
the seismic response of different sets of buildings under the same seismic intensity and, in the 
end, the vulnerability assessment is obtained. In (Brando et al., 2017), a predictive model, 
Damage Probability Matrices (DPMs), for assessing the seismic vulnerability of small historic 
centres in Abruzzi region, in Italy, is presented. This model needs a certain number of 
parameters and it is based on information collected in the consequences of the 2009 L’Aquila 

earthquake. Concerning the more innovative methods, we can mention data mining methods 
(e.g. ARL and SVM), the use of machine learning and remote sensing techniques, which are 
aimed at creating an exposure model to perform the seismic damage assessment. 
 

1.3 EXPOSURE MODELS: TECHNIQUES USED IN THE PAST AND OUR METHOD  

Assessing the seismic vulnerability is a complex and expensive process, especially when entire 
urban area is concerned and a huge number of buildings are involved, as it includes the 
evaluation of existing buildings and their expected response in case of earthquake. With that 
goal, a large amount of data is required, while they are almost always incomplete. Over the 
last years, several methodologies have been implemented to overcome the incompleteness of 
data.  For instance, Riedel et al. (2014) proposed to assess vulnerability exploiting the data 
already available from the country or the region. For implementing this concept, data mining 
methods were proposed. Indeed, Data mining are computational processes used to discover 
patterns within large datasets through a combination of machine learning, statistics, and 
dataset systems  (Linoff & Berry, 1997). One of these methods is the Association rule learning 
(ARL), a rule-based data mining method used to reveal interesting relationships among 
variables within a large dataset (Frawley et al., 1992) using some measures of interestingness 
(Agrawal et al., 1993). In the last years, the ARL method is used to establish relationships 
between different building features (e.g., shape of roof, period of construction) and building 
types in different studies (Riedel et al., 2014), (Liu et al., 2019), (Diana et al., 2019).  
 Another method is the support vector machine (SVM) (C. Cortes, 1995), that is a 
classification algorithm (Noble, 2006). In essence, it is a mathematical entity that maximizes 
particular mathematical function with respect to a given high-dimension collection of data. It 
was employed by Torres et al. (2019) for vulnerability estimation in Lorca, Spain and by 
Riedel et al. (2015) for the seismic vulnerability assessment of urban environments. This 
method has also been applied by Harirchian et al. (2020), for investigating the efficacy of the 
Machine Learning (ML) application in damage prediction. Indeed, in that study, a fast, reliable 
and rapid method, known as Rapid Visual Screening (RVS) has been applied as a preliminary 
screening platform to identify vulnerable buildings by assigning the damage index for different 
types of structures. Moreover, SVM has been used in (Han & Kim, 2019) for seismic 
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vulnerability assessment and for mapping the ML5.8 Gyeongju Earthquake in Gyeongju, South 
Korea, as a case study. They applied logistic regression (LR) and four kernel models (linear, 
polynomial, radial basis function, and sigmoid kernels), based on the support vector machine 
(SVM) learning method to derive suitable models for assessing seismic vulnerabilities. 
 Another field that has been exploited for the vulnerability assessment is the remote 
sensing, that is the process of detecting and monitoring the physical characteristics of an area 
by measuring its reflected and emitted radiation at a distance (typically from satellite or 
aircraft) (usgs.gov). For instance, in (Geiß et al., 2016), the use of multi-sensor remote sensing 
has been proposed. It has proven a great potential to extract relevant features for prevent 
vulnerability analysis of buildings. The intrinsic advantage of remote sensing is the ability to 
offer an overview of building stocks and serve as a screening method for derivation of building 
vulnerability related features, such as shape characteristics, height, roof material, period of 
construction, structure type, and spatial context (Geiß & Taubenböck, 2013). 
 In the field of new methods for assessing seismic vulnerability, Lee et al. (2019) 
implemented a decision-maker for identifying areas with potential vulnerability to reduce 
seismic damage. In particular, a GIS-based opensource software entitled Seismic-Related 
Vulnerability Calculation Software (SEVUCAS), based on the Step-wise Weight Assessment 
Ratio Analysis (SWARA) method and geographic information system, has been developed to 
assess seismic vulnerability by considering four groups of criteria (i.e., geotechnical, 
structural, socio-economic, and physical distance to needed facilities and away from 
dangerous facilities). After weighing the criteria (indicators) and alternatives (sub-indicators), 
the weighted overlay analysis was used to determine the final vulnerability map in the form of 
contours and statistical data. 
 Furthermore, Torres et al. (2019) proposed to characterize the built stock of the Spanish 
city of Lorca by integrating airborne LiDAR points, orthophotos and satellite images to create 
an exposure and earthquake vulnerability dataset. The procedure for data integration intended 
to be fast and replicable in the rest of the cities listed by the GDCPE of Spain (Torres et al., 
2019). Despite to the possibility of employing all these new methodologies, it is important to 
remember that a ground truth dataset (e.g., dataset from visual survey) is necessary for training 
and validating machine learning models.  
 In the present paper, different cities have been surveyed to understand building 
taxonomy and building types in Switzerland. As a first step, 3537 buildings of Neuchatel and 
2808 buildings of Yverdon-Les-Bains are analysed through a visual survey. The building 
taxonomy proposed by Lagomarsino et al. (2006) are considered and building types are 
detected by taking into the consideration of building characteristics (e.g., the roof shape, the 
façade aspect, the presence of balconies). After that, the obtained dataset are enriched by the 
building database from BAFU, with more than 18 building features (e.g., building height, 
period of construction, number of building units). As a first outcome of survey, the mapping 
schemes of the cities are obtained based on  periods of contruction and height classes. In the 
second part of the paper, the obtained results of surveys are used to develop a deep learning 
model for building type prediction based on building features. The Random Forest (RF) 
method, a supervised learning algorithm, is applied. This algorithm is an ensemble of random 
decision Tree classifiers, that makes predictions by combining the predictions of the individual 
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trees (Vens, 2013). The model is trained and tested on the cities of Neuchatel and Yverdon-
Les-Bains, separately. The performance of the models are evaluated with three accuracy 
measures: AM1, based on the confusion matrix (also known as error matrix), AM2, obtained 
as the weighted average of the precision for each building type, and AM3, accuracy based on 
the distribution of building types. In the third section of the paper, a new RF model is trained 
and tested on the concatenated datasets of Neuchatel and Yverdon-Les-Bains. Next, in order 
to see the performance of the method for other cities, the model is applied on two different 
cities, Solothurn (3238 buildings) and Visp (307 buildings), visually/physically (e.g. Google 
street) surveyed. Accuracy of application of the new model to the different cities is comparable 
to the two models, which are separately trained and tested on the building datasets of 
Neuchatel and Yverdon-Les-Bains, showing that the methodology is also successful in 
predicting building types for cities with different distributions. In the last part of this paper, 
seismic damage assessment is carried out on the obtained exposure models. First, the damage 
assessment of Neuchatel and Yverdon-Les-Bains is performed. Next, the damage assessment 
of Solothurn and Visp for the two most-destructive historical events in Switzerland is 
conducted, considering both the real and predicted building exposure models, to study the 
performance of the proposed building type detection method in final output of seismic risk 
assessment. A negligible discrepancy between the estimated damages based on the real and 
predicted exposure models demonstrate the successfulness of the method in risk assessment 
with high accuracy. 
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2 VISUAL SURVEY 

In order to assess the seismic vulnerability of existing buildings at urban scale, it is necessary 
to detect building types and categorize the buildings in some limited building types to 
minimize the complexity of the computation. Performing a visual survey at urban scale is 
facing considerable challenges; it requires a big amount of time and money. Although the most 
innovative methods (i.e., use of remote sensing and deep learning) can simplify the process of 
building type detection classification; it is, however, important to mention that a visual survey 
remains necessary for testing the methods and verifying the results. In this chapter, the visual 
survey and the analysis of the results are presented. 

2.1 VISUAL SURVEY 

In exposure modeling, we need to define building taxonomy (Porter et al., 2001), a list of 
building types, classified based on method and/or materials used for construction. Here, the 
building types proposed by Lagomarsino et al. (2006) are used. Building types and their 
definitions are presented in Table 1 and images of the building types are shown in Figure 1. 

 

Table 1 - Building types 

BUILDING TYPE DESCRIPTION 
M3 Mansonry buildings with simple stone 
M4 Mansonry buildings with massive stone 
M5 Unreinforced masonry (bricks) with flexible floors 
M6 Unreinforced masonry—RC floors (rigid floors) 
RCW Reinforced concrete buildings with shear walls 
RCF Reinforced concrete buildings 
W Wood structures 
S Steel structures 
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In order to better understand the visual survey, it is appropriate to give a brief description of 
each category. (1) M3 are masonry buildings built with simple stones. The roof shape is 
traditionally sloped and small balconies are observable if there is balcony. (2) M4 are 
mansonry buildings with massive stone. They are identifiable by massive dressed stone and 
are usually used for important admestrative perposes. (3) M5 are unreinforced masonry 
(bricks) with flexible floors. (4) M6 are unreinforced masonry buildings with RC floors (rigid 
floors). It is usually possible to identify some concrete elements on the façade of these 
structures. Moreover, they are characterized by deep balconies made of concrete. All M3, M5, 
M6 are mostly used for residential purposes. (5) RCW buildings are made of reinforced 
concrete walls, which are more common in comparison to reinforced concrete frame (RCF) 
buildings in Switzerland. RC buildings are usually recently built and characterized by a flat 
roof and big openings. 

 

2.2 CASE STUDY: NEUCHATEL AND YVERDON-LES-BAINS 

 
The case study presented in this chapter are the cities of Neuchatel and Yverdon-Les-Bains. 
Neuchatel is located in the northwestern part of Switzerland and overlooking on the 
homonymous lake. Yverdon-Les-Bains is a swiss city, located in the district of Jura-Nord 
vaudois of the canton of Vaud in Switzerland and it also overlooks Lake Neuchatel. In Figure 
2, a map of Switzerland that includes Neuchatel and Yverdon-Les-Bains is presented. 

(a) (b)  (c)  (d)  

Figure 1 - Building types: (a) M3; (b) M4; (c) M6; (d) RCW. 
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Figure 2 - Neuchatel and Yverdon-Les-Bains 

 

In total, 3537 buildings in the city of Neuchatel and 2808 buildings in the city of Yverdon-
Les-Bains are surveyed and type of any single building has been determined based on 
taxonomy presented in Table 1. In Figure 3, a flowchart that can be used as a hint during the 
visual survey is presented. Some main features are considered in order to assign the most 
appropriate building type to each building. The most relevant features that have been taken 
into account are the roof shape, the façade aspect, the presence of balconies. The first 
distinction is made with the roof shape, that can be sloped or flat. Generally, buildings with a 
sloped roof are the masonry ones, whereas buildings with a flat roof are concrete structures. 
Considering buildings with the flat roof, a distinction is made by exploring the structure 
elements; if the structure presents shear walls, it is probably a RCW strucures, otherwise, if it 
is made with frames, it is a RCF structure. On the other hand, concerning the sloped roof 
structures, the façade aspect is considered. The buildings with stone masonry are identified as 
M3 or M4, according to the presence of  massive stone on the façade. The structures made of 
bricks and concrete blocks masonry are identified as M5 and  M6. In this field, the presence 
of balconies and their shape can be helpful for distinguish these two building types. Infact, M5 
buildings tends to have no balconies or small ones whereas M6 structures use to have 
significant balconies. It is important to mention that the flowchart of Figure 3 can be a good 
guideline for performing a visual survey; however, it has been built based on the experience 
and it has its own limitation. 
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Figure 3 – Flowchart of the visual survey 

 

2.3 BUILDING ATTRIBUTES 

Fortunately, there is a dataset of buildings located in Switzerland from Federal Offices. It 
contains several data about building features:  EGID - Federal building identification number, 
building location (canton’s name, ZIP-code, coordinates of building location), structural 
characteristics  (period of construction, footprint, number of stories, roof type), characteristics 
of  housing units (number of housing units, cumulative number of rooms in housing units), 
usage (number of inhabitants or equivalent full time employees) and financial value 
(Replacement value in CHF, Value of mobile goods in CHF). The list of building features is 
presented in Table 2. 
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Table 2 - Building features reported in the dataset of Federal Office of Buildings and Logistic 

ABBREVIATION DESCRIPTION 

EGID Federal building identification number 

ANZEDID Number of federal entry identification numbers 

GDEKT Abbreviation of cantons's name 

GDENRG BFS commune number from GIS analysis 

PLZ4G ZIP-code from GIS analysis 

PLZZG ZIP-code additional number from GIS analysis 

AREBAUZ Building zone category (ARE) 

GDETYP Commune category (Infoflan ARE) 

GKODE East coordinate 

GKODN North coordinate 

GKAT Category of the building 

GKLAS Classification of the building 

GBAUJ Year of construction 

GBAUP Period of construction 

FOOTPRI Area of the building footprint in m2 

GEBHOHE Average height above ground in m 

GEBVOL Building volume in m3 

ROOFTYPE Roof inclination 

ANZWHG02 Number of housing units 

KUMWAREA Cumulative area of housing units in m2 

KUMWAZIM Cumulative number of rooms in housing units 

EINWMOD Number of inhabitants 

ANGMOD Equivalent full time employees 

PUBLMOD Customers capacity for selected 

GEBWERT Replacement value in CHF 

INHWERT Value of mobile goods in CHF 

UMSATZ Production account as a proxy for the yearly 

sales revenue in CHF/year 

EIGKAT Owner's category 

WITAKAT Type of economic activity 

RELPOS Relative position of a building in an aggregate 

GEOMETRY Latitude and longitude of the building 

CONSTRPRD Construction period 

NOSTORIES Number of stories (only ground floor and upper floors) 
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In order to simplify the visual survey, a second dataset that contains street and building number 
of each building is used. The first and the second datasets are merged with respect on the EGID 
(Federal building identification number) and a new dataset is obtained. It contains the list of 
buildings of the city with the related features that are listed in Table 2, and the addresses of 
the buildings (street and building number). This dataset is used for performing the visual 
survey and for the analysis of the results. 
 For sake of simplicity in the interpretation of results, some features of the dataset have 
been categorized. The period of construction has been categorized in six categories, 
corresponding to ranges of period of construction (Table 3). The number of stories has been 
categorized in three categories (i.e., low-rise, mid-rise, high-rise) (please see Table 4). 

 

Table 3 - Classification of the construction periods  Table 4 - Classification of the number of stories 

 

CONSTRUCTION 
PERIOD 

CODE 

< 1919 1 
1919 - 1945 2 
1946 - 1970 3 
1971 - 1990 4 
1991 - 2003 5 
> 2003 6 

 

2.4 RESULTS OF VISUAL SURVEY 

The maps of building types distribution in Neuchatel and in Yverdon-Les-Bains are presented 
in Figure 4 and in Figure 5, respectively. It is seen that the masonry buildings with stone (M3 
and M4) are highly concentrated in the city centre and in the most ancient areas of the cities. 
On the other hand, the unreinforced masonry buildings (M5 and M6) and the reinforced 
concrete buildings (RCW and RCF) are mainly located in the peripheral zones of the cities. 

NUMBER 
OF 
STORIES 

HEIGHT 
CLASS 

1-3 L 
4-6 M 
>7 H 
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Figure 4 –Building type distribution in Neuchatel 

 

Figure 5 - Building type distribution in Yverdon-Les-Bains 
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2.4.1 Distribution of building types 

Figure 6 shows the distribution of building types in percentages. Concerning Neuchatel, the 
majority of buildings are M3 (34.67%). The second and third majorities are M6 and RCW 
buildings, with 26.38% and 24.46% of the total number of buildings, respectively. However, 
the majority of buildings in Yverdon-Les-Bains are  M6, with 30.63% of the total, whereas a 
contribution of M5 buildings and RCW buildings is considerable with 25.51% and 20.01% of 
the total, respectively. Comparing two parts of Figure 6 shows the biggest difference between 
the two cities lies on the M3 and M5 building types;  while Neuchatel has a majority of M3 
buildings, a large portion of M5 buildings can be found in Yverdon-Les-Bains. That fact can 
be explained by presence of some residential areas, where the same building types (mostly M5 
and M6) are built in Yverdon-Les-Bains (please see Figure 5). 

 
   (a)      (b) 

Figure 6 - Distribution of building types: (a) Neuchatel; (b) Yverdon-Les-Bains. 

 

Focusing on height classes, three different distributions of building types are obtained, as 
shown in Figure 7 and in Figure 8. Regarding the low-rise building in Neuchatel, the majority 
of buildings constitutes the M3 building type, as it represents the 37.33% of the total. The 
second majority is represented by M6 buildings, with 32.78%, and the third one is constituted 
by RCW buildings, with 17.96%. The remaining buildings belong to M4, M5 and RCF 
building types, as a minority. Considering the mid-rise class of building, the distribution is 
similar to the one of low-rise buildings, except for a relevant decrease of M6 buildings, that 
represent 22.76% of the total, and a complementar increase of RCW, that represent 26.43% of 
the total. On the other hand, M3 still represents the majority of buildings, with 34.27% of the 
total. Moving to the last height-class, we can notice a substantial difference with respect on 
the other two. Indeed, the RCW buildings are more than a half of the total number of buildings, 
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with 57.14%. After that, the second majority is represented by M3 buildings, with 17.73% and 
the remaining buildings belong to M4, M5, M6 and RCF building types. 
 The first two majorities of low-rise buildings in Yverdon-Les-Bains are represented by 
M5 and M6 buildings, with 31.52% and 30.74% of the total, respectively. After that, the third 
and fourth biggest portions belong to M3 and RCW building types, with 17.18% and 14.80% 
of the total. The remaining buildings belong to M4 and RCF building types, as a minority. 
Considering the mid-rise building, the first two majorities of buildings are represented by M6 
and RCW buildings, with 32.69% and 31.47% of the total, respectively. After that, 16.61% of 
buildings belong to M3 category, and M4, M5 and RCF represent a minority. Moving to the 
last height-class(i.e., high-rise buildings), we can notice a substantial difference with respect 
to the other two. Indeed, the RCW buildings havea great  contribution of  86.30%.  

 

 
  (a)       (b)            (c) 

 

Figure 7 – Distribution of building types per height class in Neuchatel: (a) Low-rise; (b) Mid-rise; (c) High-
rise. 
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  (a)         (b)            (c) 

 

Figure 8 - Distribution of building types per height class in Yverdon-Les-Bains: (a) Low-rise; (b) Mid-rise; (c) 
High-rise. 

 

2.4.2 Distribution of period of construction  

In this section, the important feature of the period of construction is investigated. It is one of 
the fundamental characteristic to be considered for the building type detecetion. Indeed, 
considering  materials that were available in different period of time, it could be a very reliable 
characteristic to find the type of building. Figure 9 shows the distribution of period of 
construction, categorised and presented in Table 3. Concerning Neuchatel, as shown in Figure 
9(a), it is clear that the masonry buildings (M3, M4) were mainly constructed in the periods 1 
and 2. Furthermore, the M5 and M6 buildings were constructed in the periods 2, 3 and 4. 
Concerning Yverdon-Les-Bains, as shown in Figure 9(b), most of mansonry buildings (M3 
and M4) were constructed in period 1. After that, the majority of M5 and M6 buildings were 
constructed in the range of 2-4. Finally, the RC structures are constructed from period 3 to 6. 
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(a) 

 

 

(b) 

 Figure 9 - Distribution of building per period of construction: (a) Neuchatel; (b) Yverdon-Les-Bains.  
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2.4.3 Mapping schemes 

Table 5 and Table 6 present the mapping schemes of Neuchatel and Yverdon-Les-Bains, 
respectively. They are obtained by considering two fundamental building features (i.e., period 
of construction and height class), categorized and presented in Table 3 and Table 4. The data 
are written in percentage so that 100% is obtained for each line (Construction period i, height 
class j). It is seen that the tables are almost diagonal, meaning by moving from the construction 
period of 1 to 6, the building type varies from M3 to RCW. Making a comparison between the 
two cities, it is possible to observe that in Neuchatel there are three height classes for each 
period of construction (L, M, H), whereas in Yverdon-Les-Bains the height class H is missing 
for the periods of construction 1 and 2. This means that no high-rise building, constructed 
before 1945 in Yverdon-Les-Bains are available in the dataset. Looking at the distribution of 
buildings for each category (Construction period i, height class j), we can say that the period 
of construction 3 is the most widespread as different building types were built during that 
period; nevertheless, M6 and RCW are the most common building types. From period of 
construction 4, concrete buildings constitute the majority of buildings.  

 

Table 5 - Mapping scheme of Neuchatel based on the two features of the construction period and height class 

 
BUILDING TYPE 

CONSTRUCTION 
PERIOD 

HEIGHT 
CLASS 

M3 M4 M5 M6 RCF RCW 

1 H 70.0 30.0 0.0 0.0 0.0 0.0 
L 88.5 11.5 0.0 0.0 0.0 0.0 
M 82.1 17.9 0.0 0.0 0.0 0.0 

2 H 50.0 20.0 0.0 30.0 0.0 0.0 
L 50.9 13.0 3.7 32.4 0.0 0.0 
M 31.6 19.0 2.6 46.8 0.0 0.0 

3 H 5.3 17.5 1.8 15.8 8.8 50.9 
L 2.2 2.0 12.4 64.2 0.2 18.9 
M 1.3 3.9 13.9 45.1 2.8 32.9 

4 H 0.0 0.0 0.0 7.5 3.8 88.7 
L 0.0 0.5 1.1 41.9 2.2 54.3 
M 0.0 4.5 0.0 16.4 4.0 75.1 

5 H 0.0 0.0 0.0 7.1 3.6 89.3 
L 0.0 0.0 0.0 17.9 0.0 82.1 
M 0.0 0.0 0.0 21.5 2.8 75.7 

6 H 0.0 0.0 0.0 0.0 0.0 100.0 
L 0.0 0.0 0.0 10.0 0.0 90.0 
M 0.0 0.0 0.0 3.7 0.0 96.3 

 

Key: please see Table 3 and Table 4 for the categorization of construction period and height class. 
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Table 6 - Mapping scheme of Yverdon-Les-Bains, based on the two features of construction period and height 
class 

 
BUILDING TYPE 

CONSTRUCTION 
PERIOD 

HEIGHT 
CLASS 

M3 M4 M5 M6 RCF RCW 

1 L 75.5 12.5 0.0 12.0 0.0 0.0 
M 56.0 36.0 0.0 8.0 0.0 0.0 

2 L 13.0 6.6 48.4 30.6 1.3 0.0 
M 8.9 8.9 28.9 53.3 0.0 0.0 

3 H 0.0 0.0 0.0 10.5 2.6 86.8 
L 2.8 0.7 38.4 41.1 1.7 15.3 
M 1.2 1.7 8.1 59.3 2.9 26.7 

4 H 0.0 0.0 0.0 12.5 0.0 87.5 
L 0.7 1.1 45.6 29.0 2.5 21.1 
M 4.9 2.9 5.9 22.5 2.9 60.8 

5 H 0.0 0.0 0.0 0.0 0.0 100.0 
L 0.0 0.0 0.0 49.5 1.1 49.5 
M 0.0 0.0 0.0 32.9 5.1 62.0 

6 H 0.0 0.0 0.0 0.0 100.0 0.0 
L 0.0 0.0 0.0 0.0 12.1 87.9 
M 0.0 0.0 0.0 0.0 5.3 94.7 

 

Key: please see Table 3 and Table 4 for the categorization of construction period and height class. 

 

2.5 INVESTIGATION ON THE OTHER BUILDING FEATURES 

In the subchapter 2.4, distribution of period of construction and height classes for different 
building types are shown. In this section, we focus on the other features that are listed in Table 
2 for understanding their importance in the process of classification of buildings. First of all, 
only the features that are significant for the classification of buildings are selected. As it is 
listed in Table 7, 17 features have been selected, as they have been considered good indicators 
of the building type. Among these, 13 are numerical features and 4 are categorical features. 
This means that in the first group, the values are numerically meaningful, whereas in the 
second group, the features’ value indicates a category of that feature. The two groups will be 

treated in different ways in the further analyses. 
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Table 7  – Building features used for the building type classification  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.1 Numerical features 

The first group of features includes numerical features. First of all, the pair-wise correlations 
of the selected numerical features are calculated to detect any potentially multicollinear 
variables. In Figure 10, a heat-map of pair-wise correlations for Neuchatel and Yverdon-Les-
Bains are shown; the darkest regions correspond to a low level of correlation while the lightest 
regions correspond to a high grade of correlation. In both the graphs, it is possible to identify 
some features as highly correlated. The first block of highly correlated features are “Number 
of inhabitants”, “Cumulative area of housing units in m2”, “Cumulative number of rooms in 
housing units”, “Number of housing units”. The second one is constituted by “Area of the 
building footprint in m2”, “Building volume in m3”, “Replacement value in CHF”, “Value of 
mobile goods in CHF”, “Production account as a proxy for the yearly sales revenue in 
CHF/year” and “Equivalent fulltime employees”. It is possible to say that the analysis of the 
pair-wise correlations of the selected numerical features in the two cities lead to the same 
result. If we had a limited computation power, it would have been reasonable to drop the highly 
correlated features for modelling; considering only one or two features per each block could 
be an option, as suggested by (Mumtaz, 2020). 

ABBREVIATION DESCRIPTION TYPE 

FOOTPRI Area of the building footprint in m2 Numerical 

NOSTORIES Number of stories (only ground floor and 
upper floors) 

Numerical 

GEBHOHE Average height above ground in m Numerical 

GEBVOL Building volume in m3 Numerical 

ANZWHG02 Number of housing units Numerical 

KUMWAZIM Cumulative number of rooms in housing units Numerical 

KUMWAREA Cumulative area of housing units in m2 Numerical 

EINWMOD Number of inhabitants Numerical 

ANGMOD Equivalent full time employees Numerical 

PUBLMOD customers capacity for selected Numerical 

GEBWERT Replacement value in CHF Numerical 

INHWERT Value of mobile goods in CHF Numerical 

UMSATZ Production account as a proxy for the yearly 
sales revenue in CHF/year 

Numerical 

GKAT Category of the building Categorical 

GKLAS Classification of the building Categorical 

GBAUP Period of construction Categorical 

ROOFTYPE Roof inclination Categorical 
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Another investigation is carried out to measure the importance of each feature on the 
identification of building types. By looking at the feature importance, it is possible to decide 
which features have less contribution (or even no contribution) in the prediction process 
(Donges Niklas, 2021). The features in Figure 10 are presented in order of importance by 
applying the ANOVA test. Six numerical features with the biggest contribution are: (1) 
Number of stories; (2) Number of housing units; (3) Cumulative area of housing units in m2; 
(4) Cumulative number of rooms in housing units; (5) Number of inhabitants; (6) Average 
height above ground in m. However, if we wanted to create mapping schemes of a city by 
considering only two features, we would have had to use "Number of inhabitants" and 
"Cumulative area of housing units in m2" for Neuchatel; "Average height above ground in m" 
and "Cumulative area of housing units in m2" for Yverdon-Les-Bains. This means that the 
choice of classifying buildings in an aggregated way with mapping schemes may exclude a lot 
of information. For this reason, a more sophisticated classification method will be presented 
and used later, using the principles and tools of deep learning. We will consider all the selected 
features, presented in Table 7, for having the best model in estimation of building type. 

    
   (a)       (b) 

Figure 10 - Heat-map of the pair-wise correlations between the building features: (a) Neuchatel; (b) Yverdon-
Les-Bains. 

 
In the next subchapters, some of these features are explored in more details to understand how 
they contribute in the process of identification of building type.  
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2.5.1.1 Number of housing units per each building 

The number of housing units per each building is a good example to show how features can 
be used for building typeification. Figure 11 shows distribution of this feature low-rise and 
mid-rise buildings. Figure 11(a) and (b) refers to Neuchatel dataset, Figure 11(c) and (d) refers 
to Yverdon-Les-Bains dataset. Concerning the low rise buildings of Neuchatel, the mode is 1 
housing unit per building. At the same time, for all different building types, the average is 
between 1 and 2 housing units per building. Considering the mid-rise buildings of Neuchatel, 
the mode is 8 housing units per building. The average lines are quite spread and they are 
different for the different building types; the average is 5 for M3 and M4 buildings while the 
average  for M6 and RCW buildings are 8 and 10 housing units per building, respectively. 
Regarding Yverdon-Les-Bains, the mode is 1 housing units per building for the low-rise 
buildings andthe averages for different building types are between 1 and 3 housing units per 
building while the averages are quite spread and different for the mid-rise buildings; the 
average for M3 and M4 buildings is between 4 and 5 while the averages for M6, RCF and 
RCW are between 13 and 19 housing units per building. In conclusion,  the feature of "Number 
of housing units per building" is useful to distinguish structural types of mid-rise buildings, 
for which there is a clear distinction; however, that feature could not do that  for Low-rise 
buildings as the number of housing units for low-rise building is in the same range for all 
building types. 
 
 

 
 
(a)      (b) 
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(c)      (d) 

Figure 11 - Distribution of number of housing units for (a) Low-rise Neuchatel; (b) Mid-rise Neuchatel; (c) 
Low-rise Yverdon-Les-Bains; (d) Mid-rise Yverdon-Les-Bains. 
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3 THE RANDOM FOREST CLASSIFIER 

 METHOD (RF) 

In subchapter 2.5, a general description of building features, that are listed in Table 7, is 
presented. In Chapter 3, a deeper analysis of these features is performed. In this chapter, a 
supervised learning algorithm is applied to predict building types based on the building 
features. The method is called Random Forest (RF), it is a supervised learning algorithm and 
it can be used both for classification and regression. It is also a flexible and easy-to-use 
algorithm. 
 RF has been widely used in areas of geography, economics, medicine, and engineering. 
It can be used to classify loyal loan applicants, identify fraudulent activity and predict diseases 
(Navlani, 2018). Fan et al. (2013) extracted building geometrical features from LiDAR point 
clouds using the RF method. Bosch et al. (2007) explored the problem of classifying images 
by the object categories by combining RF classification and multi-way SVM. For its 
applications in remote sensing, Ham et al. (2005) applied two methods inside a binary 
hierarchical multi-classifier system, generalizing the RF classifiers in an analysis of 
hyperspectral data, when the number of training samples is small. In our research, we 
implement RF method to detect building type from the building attributes. 

3.1 DESCRIPTION OF THE METHOD 

RF method is an ensemble of random decision tree classifiers, which discriminate between 
different classes based on features (Ho, 1995). The final prediction is made by combining the 
predictions of individual trees, that form the decision forests. In other word, a decision forest 
includes a set of expert tree classifiers and all of these classifiers would entirely vote for the 
most probable class of an input vector of features (Ho, 1998). There are different approaches 
to introduce randomness in the decision tree construction method. For example, we randomly 
select subsamples from the dataset (Pal, 2005). Generally, the more trees it has, the more 
robust a forest is. Decision trees are then built based on randomly selected subsamples. An 
attractive aspect of the RF classifier is that it can avoid overfitting and can rapidly adjust to 
the training data. Furthermore, even if some information is missing, the RF classifier can still 
accurately estimate the missing samples and maintain a stable classification performance 
(Breiman, 2001).  
 The algorithm works in four steps: (1) Elect training samples from a given dataset. The 
samples should include all of the building types and contain information on building type. (2) 
Construct a decision tree for each subsample. Then, every tree would modify itself and select 
the optimal type and branches to have the best performance in prediction. (3) Assign a vote 
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for each predicted result. (4) Select the prediction with the most votes as a final prediction 
(Huang, 2017). The procedure is schematically depicted in Figure 12.  

 

 

 

Figure 12 - RF diagram (Viet-Hung Dang, 2020) 

 
Summing up, RF is one of the best performing predictive models (Vens, 2013). It has several 
advantages: (1) It is considered as a accurate and robust method because of the number of 
decision trees participating in the process. (2) It does not suffer from the overfitting problem. 
The main reason is that it takes the average of all the predictions, which cancels out the biases. 
(3) The algorithm can be used in both classification and regression problems. (4) RF can also 
handle missing values. There are two ways to handle these: using median values to replace 
continuous variables and computing the proximity-weighted average of missing values. (5) It 
is possible to get the relative feature importance, which helps in selecting the most contributing 
features for the classifier (Navlani, 2018). On the other hand, it also has some disadvantages: 
(1) It might be slow in generating predictions because it has multiple decision trees. Whenever 
it makes a prediction, all the trees in the forest have to make a prediction for a given input and 
then perform voting on it. This whole process is time-consuming. (2) The model is difficult to 
interpret compared to a decision tree, where it is possible to easily make a decision by 
following the path in the tree (Navlani, 2018). 
 The Scikit-learn, an open-source Python module for machine learning, is used to 
implement the RF classifier (Pedregosa et al., 2012). The dataset of labelled samples is  
randomly divided into two sets: a training sample set for model calibration and a test set for 
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validation. In the present study, 80% of the dataset is used for the training sample, 20% of the 
dataset is used for as the test set. However, some simulations have been carried out in order to 
find the perfect balance leading to the best accuracy. 

3.2 APPLICATION OF THE RF METHOD ON NEUCHATEL AND YVERDON-LES-
BAINS 

In the following section, we describe two RF models developed based on the building datasets 
of Neuchatel and Yverdon-Les-Bains, seperately. The dataset encompasses records of 3533 
and 2808 buildings in Neuchatel and Yverdon-Les-Bains, respectively. All features listed in 
Table 7 are employed for development of RF model. Numerical and categorical features are 
important to be used in the modelling. In categorical variables, the different values do not have 
significant numerical relation with each other. Dummy indexes are, therefore, created for the 
categorical features. The purpose of the dummy variables is to convert categorical features 
into numerical values, which allows a clear interpretation of the categorical data by the RF 
model. That procedure can be explained with an example from (Mumtaz, 2020); Considering 
a categorical feature called grade with the following unique values in the dataset: A, B, C, and 
D. It does not make sense to assign numbers of 1 to 4. Therefore, the column “grade” will be 

split in four columns (i.e., A, B, C, D) with only value of 0 or 1. It is reasonable to create a 
variable called “A” and interpret it as meaning that someone assigned a 1 on this variable is A 
and someone with an 0 is not. 

 

3.2.1 Results 

Considering the test datasets, a comparison between the real and predicted distribution of 
building types for the two cities of Neuchatel and Yverdon-Les-Bains is shown Figure 13(a-
b) and Figure 13(c-d), respectively. The models provide a good prediction of the building 
types in general. The biggest confusion is found between M3 and M4 in period of construction 
of 1 and 2. That could be explained by the low population of M4 building type. 

     
(a)      (b) 
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(c)      (d) 

Figure 13 - Real and predicted distributions of building types in (a-b) Neuchatel and (c-d) Yverdon-Les-Bains. 

Focusing on height classes: 

Neuchatel 

 
(a)      (b)    (c) 

  (d)     (e)    (f)  

Figure 14 - Real and predicted distributions of building types with different height classes in Neuchatel 
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Yverdon-Les-Bains 

 
(a)      (b)    (c) 

 
  (d)     (e)    (f) 

Figure 15 - Real and predicted distributions of building types with different height classes in Yverdon-Les-
Bains 
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3.3 ACCURACY OF RF 

To evaluate the performance of the RF, the Confusion Matrix (CM), also known as error 
matrix, is obtained (Figure 16). The CM is a N×N matrix; where N is the number of building 
types. A CM cell indicates the number of test samples for each combination of ground-truth 
building types (N) and assigned building types (N). The diagonal elements show the number 
of buildings that have been correctly predicted by the RF model. On the off-diagonal elements 
show the number of buildings that have been incorrectly predicted by the RF model. It is 
important to mention that the fewer building number for each building type, the harder it will 
be for the model to predict that building type. For this reason, the biggest error is expected for 
the building types M4 and RCF, which have a lowest contribution on the portfolio. 
 Concerning Neuchatel, the major errors in the prediction are identified between M3 
and M4, rather than error is also identified between M6 and RCW. Concerning Yverdon-Les-
Bains, the biggest mismatching is identified between M5 and M6. Considering the two CMs, 
it should be mentioned that the Yverdon-Les-Bains RF model was able to correctly classify 
M3 buildings for 77% of the cases while the Neuchatel RF model reached 88% of the cases. 
Concerning M6, 78% of buildings is correctly identified in the case of Neuchatel whereas that 
is 56% of buildings in case of Yverdon-Les-Bains. On the contrary, M5 buildings are correctly 
classified in 65% of the case Yverdon-Les-Bains model as opposed to 23% for RF Neuchatel 
model. This might be related to the fact that the number of M5 buildings in Yverdon-Les-
Bains is higher than those in Neuchatel (154 vs 35). Finally, RCW are equally identified with 
success rates of 86% and 85%, in the two cases of Neuchatel and Yverdon, respectively. M4 
and RCF have a small contribution on the training and test sets and consequently, the highest 
level of error is expected for those building types.  

 

       

(a)             (b) 

Figure 16 - Confusion matrices for (a) Neuchatel; (b) Yverdon-Les-Bains 
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The results of the RF models are evaluated with three accuracy measures: the first one, AM1, 
is overall accuracy of building types, which is based on the confusion matrix; the second one, 
AM2, is obtained as the weighted average of the precisions for each building type; the third 
one, AM3, is based on the distribution of building types. AM1 is calculated as the ratio 
between the number of correctly detected buildings to the total number of buildings, as given 
by:  

𝐴𝑀1 =
∑ 𝐴𝑖𝑖𝑖

∑ ∑ 𝐴𝑖𝑗𝑗𝑖
      (1) 

 

Moreover, one parameter is directly presented from the algorithm for the evaluation of 
precision of the RF method: the weighted average of the precision (AM2). It is calculated by 
weighted averaging the precisions for each type with respect to the number of buildings on 
each type. AM3 is focused on the general distribution of building types; AM3 is calculated 
based on the difference (in number of buildings) between the “real” and the “predicted” 
distributions, as presented in equation 2. The real distribution of building types is the outcome 
of visual surveying (the test sample set) and the predicted distribution is provided by the RF 
model. These distributions and their differences for Neuchatel and Yverdon-Les-Bains are 
presented in Table 8 and Table 9. 

 

𝐴𝑀3 = 1 −  
∑ |𝑁𝑘

𝑟𝑒𝑎𝑙−𝑁𝑘
𝑝𝑟𝑒

|𝑘

∑ 𝑁𝑘
𝑟𝑒𝑎𝑙

𝑘
     (2) 

k: building types 

 

Table 8 – Real and predicted distributions of building types and its difference (Neuchatel) 

 

Table 9 - Real and predictd distributions of building types and its difference (Yverdon-Les-Bains) 
 

 

 M3 M4 M5 M6 RCF RCW 
REAL DISTR. (TEST SAMPLE SET) 242 61 27 198 6 175 
RF PREDICTED DISTR. 273 18 12 229 1 174 
Δ (IN ABSOLUTE VALUE) 43 53 15 31 5 1 

 M3 M4 M5 M6 RCF RCW 
REAL DISTR. (TEST SAMPLE SET) 90 30 154 172 6 110 
RF PREDICTED DISTR. 101 17 167 166 9 102 
Δ (IN ABSOLUTE VALUE) 11 13 13 6 3 8 
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The three accuracies for Neuchatel and Yverdon-Les-Bains are reported in Table 10. AM1 
and AM2 are quite similar; the main difference between the AM1 and AM3 is the fact that 
AM1 is evaluated at building-by-building level and based on the confusion matrix and all 
mispredicted buildings classification are considered as errors, although AM3 is based on the 
general distribution of building types. Thus, errors (whether false positives and false 
negatives) can compensate each other without impacting the final result. The lower value of 
AM1 in comparison to AM3 are therefore expected. It should be mentioned that seismic risk 
assessment is usually carried out for a big region; an estimate of buildings at city/district level, 
rather than building level, is considered. AM3 could be effective to show the performance of 
RF prediction with that generic purpose of risk calculations. 

 

Table 10 - Accuracy measurements for the Neuchatel and Yverdon-Les-Bains RF model 

 NEUCHATEL YVERDON-LES-
BAINS 

AM1 0.73 0.65 
AM2 0.74 0.66 
AM3 0.81 0.91 

 

3.4 PARAMETERS AFFECTING ACCURACY OF RF 

In the present study, 80% of the dataset is used for the training purpose, 20% of the dataset is 
used as a test set. However, some simulations have been carried out for finding the perfect 
balance leading to the best accuracy. Figure 17 shows that, as the fraction of train set to test 
set changes, the accuracy measures vary. The ratio of 0.8 should be used to achieve the best 
accuracy. In this simulation, the dataset of Neuchatel was used. 

 

 

Figure 17 - Accuracy variation according to the training set size 
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Another parameter that may influence the accuracy of the RF model is the number of decision 
trees. Several simulations are performed and starting from about 450 trees, the accuracy 
becomes stable, as shown in Figure 18. In the present study, 600 trees are used for in the 
training phase of the RF models.  

 

 

Figure 18 - Accuracy variation by changing number of trees in RF model 
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4 APPLICATION OF THE RF MODEL TO 

OTHER CITIES 

In the previous chapter, the RF method has been applied on the two building datasets of 
Neuchatel and Yverdon-Les-Bains, separately. In the following chapter, a RF model, trained 
based on the concatenated datasets of Neuchatel and Yverdon-Les-Bains, is applied to two 
other Swiss cities (i.e., Solothurn and Visp) in order to validate the proposed method’s 

applicability in other areas.  

 

Case study: Solothurn and Visp 

Solothurn is located in the north-west of Switzerland on the banks of the Aare and on the foot 
of the Weissenstein Jura mountains. Visp is located in the Canton Valais, it lies in the Rhône 
valleyand 9 km west of Brig-Glis. The locations of Neuchatel, Yverdon-Les-Bains, Solothurn 
and Visp are shown in Figure 19. 

 
Figure 19 - Neuchatel, Yverdon-Les-Bains, Solothurn and Visp. The Swiss border is highlighted in black lines. 
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4.1 SURVEY 

Before applying the RF model to the cities of Solothurn (3238 buildings) and Visp (307 
buildings), surveis have been carried out for providing a ground-truth datasets. The survey of 
Visp has been performed as a physical visual survey. The survey of Solothurn has been made 
by using two different techniques. First of all, a general classification has been done using 
Google satellite and street views. This classification has been carried out by categorizing the 
buildings according to other features (Footprint and Roof shape). After that, a check on the 
uncertain data has been performed with a physical visual survey. This technique was only 
possible thanks to the experience gained with the physical visual surveys. The distributions of 
building types are shown in Figure 20. Concerning Solothurn, the three main building types 
are M3, M6, and RCW, with 33.17%, 32.44% and 24.89% of buildings, respectively. A 
minority of buildings, 9.47%, is constituted by M5. It is possible to notice that only few 
buildings are M4. Concerning Visp, it has a more diverse distribution. The main building type 
is M6, with 31.56% of buildings. After that, 35.47% of buildings are RCW, 14.25% are M3. 
A minority of buildings is M1 (rural buildings) and RCF.  

 
(a)       (b) 

Figure 20 - Distribution of building types: (a) Solothurn; (b) Visp. 

It is worth mentioning that the distributions of building types in the two cities are quite 
different, making them as good candidates for evaluating performance of the RF model on 
other cities. Indeed, Figure 21 shows a comparison between the distribution of building types 
of Neuchatel, Yverdon-Les-Bains, Visp and Solothurn and it is clear that the four cities have 
different distributions of building types. In Valais, because the territory is more prone to 
earthquake, we have a greater preference to more stronger buildings. In fact, RC buildings in 
Visp are in majority while the distribution of buildings in Neuchatel, Yverdon and Solothurn 
are similar. Nevertheless, we will see that RF works well for all these building type 
distributions. 
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Figure 21 - Distribution of building types in Neuchatel, Yverdon-Les-Bains, Visp and Solothurn. 

4.2 THE RF MODEL BASED ON NEUCHATEL AND YVERDON-LES-BAINS 

DATASETS 

In this section, a RF model, based on the joined datasets of Neuchatel and Yverdon-Les-Bains 
(RF N&Y), is developed. The confusion matrix for the prediction in the test dataset is depicted 
in Figure 22 and a comparison is carried out between the current model and the previous ones, 
which are separately trained based on the datasets of Neuchatel and Yverdon-Les-Bains.  
 A comparison is established between the real building types and the correctly predicted 
building types by the three models: Neuchatel, Yverdon and N&Y, respectively. For example, 
concerning M3, the RF N&Y model was able to correctly identify in 86% of the cases while 
RF Neuchatel and RF Yverdon-Les-Bains reached respectively 88% and 77%. M5 buildings 
are correctly classified in 48% of the cases by the RF N&Y model whereas a value between 
30% and 65% from the RF Neuchatel and the RF Yverdon-Les-Bains models are achieved. 
Concerning M6, 71% of buildings is correctly identified in the case of RF N&Y, whereas 77% 
of buildings in case of RF Neuchatel and 56% in case of RF Yverdon-Les-Bains. In overall, 
we can say that the RF N&Y model performs with an accuracy slightly higher than the average 
of the RF Neuchatel and the RF Yverdon-Les-Bains. The three accuracy measurements are 
also calculated for this model and presented in Table 11. The accuracies of the model trained 
on the joint dataset are really similar to the accuracies of models based on single datasets, 
reported in Table 10. 
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Figure 22 - Confusion matrix of RF model, trained and tested on the concatenated dataset of Neuchatel and 
Yverdon-Les-Bains 

Table 11 - Accuracy measurements of the RF model, trained and tested on the Neuchatel and Yverdon-Les-
Bains dataset 

 N&Y 
AM1 0.70 
AM2 0.67 
AM3 0.85 

 

4.3 APPLICATION OF RF MODEL TO SOLOTHURN AND VISP 

By having the RF model, trained and tested on the concatenated datasets of Neuchatel and 
Yverdon-Les-Bains, we apply it on the two cities of Solothurn and Visp. For the application 
of the model, some adjustments have been made on the dataset. First of all, as described in 
Chapter 3 for Neuchatel and Yverdon-Les-Bains, only the features listed in Table 7 have been 
considered. Concerning the categorical features, dummies have been created, as described in 
Chapter 3. In this compound, it is important to underline that the dataset on which the model 
has been trained and the dataset on which the model will be applied must be exactly 
harmonized. It means that both of them must have the same features. Due to that, it is necessary 
to harmonize for full compatibility. For example, some columns concerning specific Building 
category (GKLAS) have been added, since some of them were not present in both the datasets. 
Moreover, the model is able to predict the building types that are present in the training 
datasets (i.e., building datasets of Neuchatel and Yverdon-Les-Bains). With that fact, the M1 
building type (rural buildings), that is present in the Visp dataset, is excluded from the 
analyses. This means that 12.08% of buildings in Visp are not considered for the application 
of the model. 
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 In Figure 23, a comparison between the real and predicted distribution of building types 
is presented. Generally, the graphs show that the model well predicts the building types for 
the two cities. Considering Solothurn, the biggest difference between the real distribution and 
the prediction is seen in the detection of M4 and in the detection of M5 during the construction 
periods of 2, 3 and 4. For the city of Visp, the biggest difference between the real distribution 
and the predicted distribution regards the absence of M3 in the periods of construction 3, 4 
and 5 and the absence of RCF in the predicted distribution. Moreover, no M6 are predicted for 
periods of construction 5 and 6. 

 

     
(a)        (b) 

 

    
   (c)       (d) 

 

Figure 23 - Application on Solothurn of the RF model trained on Neuchatel and Yverdon-Les-Bains: (a) 
Solothurn – real distribution; (b) Visp – real distribution; (c) Solothurn – predicted distribution; (d) Visp – 

predicted distribution. 

In Figure 24, the confusion matrix obtained from the application of the RF N&Y model on 
Solothurn and Visp dataset is presented. Concerning Solothurn, the model was able to 
correctly identify 84% of M3 buildings, 80% of M6 buildings and 87% of RCW buildings, 
showing a very good level of prediction. Indeed, there is a good correspondence between the 
reality and the prediction, as it is possible to see on the diagonal of the confusion matrix. On 
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the other hand, looking into the misclassification, the biggest errors are present in the detection 
of M3, M5 and M6, as it is possible to see from the off-diagonal elements in Figure 24. A 
confusion is also identified in the detection of M6 and RCW. Concerning Visp, the model was 
able to correctly identify 63% of M3 buildings, 70% of M6 buildings and 95% of RCW 
buildings. The major uncertainties in this case are identified between M6 and RCW. In Table 
12, the accuracy measurements for the application of the model to the two cities are reported.  

 

       
(a)       (b) 

Figure 24 –Confusion matrix of the RF model, trained on the Neuchatel and Yverdon-Les-Bains dataset and 
applied on (a) Solothurn; (b) Visp. 

 

Table 12 - Accuracy measurements of the RF model, trained on the Neuchatel and Yverdon-Les-Bains dataset 
and applied on Solothurn and Visp 

 SOLOTHURN VISP 
AM1 0.80 0.75 
AM2 0.82 0.71 
AM3 0.93 0.81 

 

 

According to Table 12, the RF N&Y applied on Visp is less accurate in comparison to its 
application to the city of Solothurn. This may be due to the difference in the size and 
distribution of building types in these two cities. The city of Solothurn is more comparable 
with the cities of Neuchatel and Yverdon-Les-Bains in terms of building types, as opposed to 
the city of Visp (please see Figure 21). Despite to this, the RF model, trained and tested on the 
joined datasets of Yverdon-Les-Bains and Neuchatel, applied on two cities with a different 
distribution of building types, provides a good prediction of building types. 
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5 DAMAGE MODELS 

In the previous chapters, a classification of buildings has been carried out on four cities (i.e., 
Neuchatel, Yverdon, Solothurn and Visp), by means of visual/physical surveys and by the 
application of a deep learning model (i.e., RF). This allows us to have several exposure 
models, which will be subjected to damage assessment. 
 In order to perform the damage assessment, two elements are needed: the hazard model 
and the exposure model. The hazard model is the source of hazard (e.g. earthquakes), while 
the exposure model is the set of buildings exposed to the hazard. In our study, several damage 
assessments are carried out: first of all, the damage assessments of the real exposure models 
of Neuchatel and Yverdon-Les-Bains are realized; after that, the damage assessments of the 
real and predicted exposure models of Solothurn and Visp are performed. In the latter case, 
we analyse the comparison between the results of the damage assessment of the real exposure 
model and those of the predicted exposure model. In addition, a study is done on the Visp 
exposure model, subjecting it to a magnitude 5, 6 and 7 hazard model, and the differences 
between the different cases are presented. 

5.1 HAZARD MODELS 

In our study, for the damage assessment, two different hazard models were used. For the Visp 
damage assessment, Sierre earthquake of 1946 was considered (Figure 25). It happened in the 
central Valais region in the southwest of Switzerland and it was the strongest for the last 150 
years. A moment magnitude of Mw = 6.1 was firstly assigned to the event from the Swiss 
Earthquake Catalogue (ECOS 2002). After that, a moment magnitude of 5.8 was detected from 
European stations. The latter value has been used in this study. The event resulted in 3500 
damaged buildings and CHF 26 million in today's money in damages (Fritsche & Donat, 
2009). For Neuchatel, Yverdon and Solothurn damage assessment, the Basel earthquake of 
1356 with magnitude 6.6 was considered. It is known as one of the most damaging events in 
intra-plate Europe within historical times and it was one of several devastating catastrophes in 
the 14th century (Fritsche & Donat, 2009). 
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Figure 25 - Sierre earthquake (1946) 

5.2 EXPOSURE MODELS 

For each damage assessment, the exposure model was derived from the dataset of buildings 
of the considered city. The exposure model quantifies the building stock considering the 
structural characteristics, the location and the occupancy (Pavić et al., 2020). In details, 
buildings are classified according to a taxonomy which uniformly covers all the structural 
typologies (as described in Chapter 2). In this study, the exposure model contains the following 
information about each building: (1) ID, which corresponds to the EGID and univocally 
indicates a building; (2) longitude and latitude of the building, which identify its geographical 
location; (3) taxonomy (e.g. M3_L, M3_M), which indicates the building type and height 
class, as reported in Table 1 and Table 4; (4) number, which indicates the quantity of buildings 
(i.e., 1). In our study, we considered a taxonomy that includes ten classes of buildings: five 
building types (i.e., M3, M4, M5, M6, RCW), subdivided in low-rise (L) and mid-rise (M). 
Therefore, rural buildings (M1) and reinforced concrete buildings with frame (RCF) were not 
considered in the damage assessment, since they are only present in a small percentage in 
Switzerland. High-rise buildings are also excluded from our assessment, since they constitute 
about 5% of the entire dataset of buildings. 

5.3 FRAGILITY CURVES 

In order to quantify earthquake loss estimation, it is fundamental to define the relationships 
between earthquake damage and ground motion. They are also called fragility curves and 
depict the probability of exceeding a certain level of damage as a function of ground-shaking 
intensity (Lallemant et al., 2015). Moreover, they can be classified as (1) empirical fragility 
curves, based on data of post-earthquake damage evaluation; (2) analytical fragility curves, 
based on response simulation and structural modelling; (3) heuristic fragility curves, based on 
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opinion of experts. The fragility curves can be represented as both discrete and continuous 
form (Lallemant et al., 2015). It is important to underline that fragility curves of this study are 
taken from Earthquake risk model. No coefficients for soil amplification factors are 
considered. 
 Although there are already several fragility models for European buildings, direct 
application of them in a large-scale seismic risk analysis can be challenging as the 
methodologies and damage criteria considered on available studies are often different. 
Moreover, structural characteristics of Swiss buildings are different in compared to buildings, 
common in other European countries; structural modelling of Swiss-specific buildings is the 
only way to have an estimate of possible damages. It is also worth noting that empirical 
fragility models developed based on macroseismic intensity are usually suffering from the lack 
of sufficient datasets of recorded damages due to the past events. Those models are, therefore, 
usually used for damage assessment of common scenarios whereas mechanical-based fragility 
functions can be a better option when it comes to calculating seismic risk in the probabilistic 
framework. The aforementioned factors demonstrate the necessity of a fragility model capable 
of overcoming these issues. For this study, we used the fragility curves, which are specifically 
derived for Swiss buildings for the big project of Earthquake risk model (ERM-CH). 

5.4 DAMAGE ASSESSMENT OF NEUCHATEL AND YVERDON 

In this section, the damage assessment of the real exposure model of Neuchatel and Yverdon-
Les-Bains is carried out. First of all, the exposure model of the two cities has been created, 
with 3300 buildings for Neuchatel and 2401 buildings for Yverdon-Les-Bains. After that, the 
damage assessment has been realized. The considered hazard model is the Basel earthquake 
of 1356 with magnitude 6.6. 
 Before analysing the results of damage assessment, it is interesting to know how many 
buildings have been considered for each building type. Table 13 shows the distribution of 
buildings according to the used taxonomy. The majority of buildings considered in Neuchatel 
is composed by masonry buildings with simple stones – low-rise and mid-rise (i.e., M3_L and 
M3_M) and unreinforced buildings with rigid floors (i.e., M6_L and M6_M). Moreover, 
reinforced concrete buildings – mid-rise (i.e., RCW_M) are present with a significant 
percentage. Considering Yverdon-Les-Bains, three major classes of buildings are present: (1) 
unreinforced buildings with rigid floors – low-rise (i.e., M6_L), as 27.49% of total buildings; 
(2) unreinforced buildings with flexible floors – low-rise (i.e., M5_L), as 26.07% of total; (3) 
masonry buildings with simple stones (i.e., M3_L), as 13.66% of total. 
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 Table 13 - Building types used for damage assessment in Neuchatel and Yverdon-Les-Bains 

 
NEUCHATEL YVERDON-LES-BAINS 

TAXONOMY Number of 
buildings 

% of 
buildings 

Number of 
buildings 

% of 
buildings 

M3_L 582 17.64 328 13.66 
M3_M 607 18.39 82 3.42 
M4_L 106 3.21 78 3.25 
M4_M 188 5.70 57 2.37 
M5_L 75 2.27 626 26.07 
M5_M 80 2.42 31 1.29 
M6_L 511 15.48 660 27.49 
M6_M 403 12.21 180 7.50 

RCW_L 280 8.48 210 8.75 
RCW_M 468 14.18 149 6.21 

 

 

Figure 26 shows graphically the distribution of the degree of damage, as an average of 
percentage of damage between the different buildings. The degree of damage is divided into 
6 classes (e.g. DG0, DG1 etc.), where DG0 represents the no damage and DG5 represents the 
fully collapsed building. 

 

     
(a)        (b) 

Figure 26 - Distribution of damage grade: (a) Neuchatel; (b) Yverdon-Les-Bains. 

The distribution of damage degree for the two cities can be represented with the probability of 
damage degrees according to the taxonomy of buildings, as shown in Table 14 and in Table 
15. The results are also graphically shown in Figure 45 of the Appendix. 
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Table 14 - Distribution of damage grade in Neuchatel 

 
DAMAGE GRADES 

TAXONOMY DG0 DG1 DG2 DG3 DG4 DG5 
M3_L 98.86 1.06 0.08 0.00 0.00 0.00 
M3_M 92.41 6.74 0.61 0.13 0.10 0.01 
M4_L 99.29 0.66 0.05 0.00 0.00 0.00 
M4_M 94.60 4.89 0.47 0.02 0.02 0.00 
M5_L 98.25 1.59 0.16 0.00 0.00 0.00 
M5_M 94.06 5.26 0.36 0.08 0.23 0.01 
M6_L 98.11 1.82 0.07 0.00 0.00 0.00 
M6_M 94.49 5.15 0.34 0.00 0.01 0.00 
RCW_L 99.00 0.97 0.03 0.00 0.00 0.00 
RCW_M 90.79 8.58 0.62 0.01 0.00 0.00 

 

Table 15 – Distribution of damage grade in Yverdon-Les-Bains 

 
DAMAGE GRADES 

TAXONOMY DG0 DG1 DG2 DG3 DG4 DG5 
M3_L 99.90 0.10 0.00 0.00 0.00 0.00 
M3_M 98.18 1.73 0.06 0.01 0.01 0.00 
M4_L 100.00 0.00 0.00 0.00 0.00 0.00 
M4_M 98.89 1.00 0.09 0.02 0.00 0.00 
M5_L 99.83 0.17 0.00 0.00 0.00 0.00 
M5_M 98.48 1.45 0.06 0.00 0.00 0.00 
M6_L 99.63 0.36 0.01 0.00 0.00 0.00 
M6_M 98.81 1.16 0.03 0.01 0.00 0.00 
RCW_L 99.90 0.10 0.00 0.00 0.00 0.00 
RCW_M 97.85 2.09 0.06 0.00 0.00 0.00 

 

 

In the end, we can show a comparison between the distribution of damage grade of Neuchatel 
and Yverdon-Les-Bains in Figure 27. As we can see, the majority of buildings is subjected to 
a damage grade DG0. Apart from that, a difference can be observed between the distribution 
of the damage degree of the two cities, as the DG1 in Neuchatel is higher than the DG1 in 
Yverdon-Les-Bains. This may be due to the fact that Neuchatel is closer to the source of the 
earthquake (Basel) than Yverdon-Les-Bains. Another reason might be that in Neuchatel there 
is a higher percentage of buildings from construction periods 1 and 2 than in Yverdon-Les-
Bains, as shown in Figure 9. The other damage grades are only present in small percentages 
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in both cities. For instance, the most severe degree of damage (i.e., DG5) is only present in 
Neuchatel, in a small percentage (0.0036%). 

 

 

Figure 27 - Distribution of damage grade: comparison between Neuchatel and Yverdon-Les-Bains 

5.5 DAMAGE ASSESSMENT OF SOLOTHURN: REAL AND PREDICTED EXPOSURE 

MODELS 

In this section, the damage assessment of Solothurn is carried out. In particular, the exposure 
models used are both the real ones and those predicted by the RF model. Therefore, two 
exposure models will be subjected to damage assessment: (1) Solothurn - reality; (2) Solothurn 
– prediction. 
 First, we can take a look at the number of buildings in each class of building in the two 
cases (Table 16). For both Solothurn – reality and Solothurn – prediction, the major classes 
are: (1) unreinforced buildings with rigid floors – low-rise (i.e., M6_L); (2) masonry buildings 
with simple stones – low-rise (i.e., M3_L); (3) reinforced concrete buildings - low-rise (i.e., 
RCW_L); (4) masonry buildings with simple stones – mid-rise (i.e., M3_M). The other 
building types represent a minority and mainly concern mid-rise buildings, stone buildings 
(i.e., M4) and unreinforced buildings with flexible floors (i.e., M5). 

 

 Table 16 – Building types in Solothurn: reality and prediction 

 REALITY PREDICTION 
TAXONOMY Number of 

buildings 
% of 

buildings 
Number of 
buildings 

% of 
buildings 

M3_L 640 19.97 663 20.71 
M3_M 433 13.51 411 12.84 
M4_L 0 0 39 1.22 
M4_M 1 0.03 58 1.81 
M5_L 263 8.21 269 8.40 
M5_M 44 1.37 6 0.19 
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Figure 28 shows the distribution of damage grade of Solothurn, for the real and predicted 
exposure model, as an average of percentage of damage between the different buildings. As it 
is possible to see, as the grade of damage increases, the percentage of buildings decreases. 
Moreover, despite slight differences of taxonomy between the actual and predicted model, the 
damage degree distribution is almost identical. Indeed, for the grade of damage DG0, there is 
a difference of 0.18% between reality and prediction, whereas for DG5, there is no difference. 

 

 

Figure 28 - Distribution of damage grade of Solothurn based on the real and predicted exposure models 

 

The distribution of damage grade can also be represented according to the taxonomy of 
buildings, as presented in Figure 29. The results are also shown in Table 18 and Table 19 of 
the Appendix. Figure 30 shows the difference in damage grade, as the difference between the 
damage evaluated from the real and the predicted exposure model. For all the classes of 
buildings, the difference decreases as the damage grade increases from the least severe (i.e., 
DG0) towards the most severe (i.e., DG5). The biggest difference is observed for M4 (mid-
rise) and M5 (mid-rise), that are the classes with less elements (please see Table 16); this 
demonstrates once again that the fewer elements in the sample, the lower the accuracy of the 
model's prediction. For the other building types, the difference between the actual and 
predicted damage grade distribution is limited to 1%. 

 

M6_L 885 27.61 843 26.33 
M6_M 174 5.43 189 5.90 

RCW_L 555 17.32 527 16.46 
RCW_M 210 6.55 197 6.15 
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   (a)         (b) 

Figure 29 - Distribution of damage grade for different building types in Solothurn: (a) reality; (b) prediction. 

 

Figure 30 - Differences of the expected damage  evaluated from  real and predicted exposure model in 
Solothurn 

Finally, we can show a comparison between the distribution of damage grade of Solothurn 
with the real exposure model and the one with the predicted exposure model in Figure 31. 
Here we can see that more than half of the buildings have an average probability of damage 
grade 0; about a third of the buildings have probability of damage grade 1; the remaining 
percentage of buildings have higher damage grades. The difference between the actual and 
predicted distribution of damage grade is very small. 
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Figure 31 - Distribution of damage grade: comparison between Solothurn reality and Solothurn prediction 

5.6 DAMAGE ASSESSMENT OF VISP: REAL AND PREDICTED EXPOSURE MODELS 

In this section, the damage assessment of Visp is carried out. In particular, the exposure models 
used are both the real ones and those predicted by the RF model. Therefore, two exposure 
models will be subjected to damage assessment: (1) Visp - reality; (2) Visp – prediction. First, 
we can give a look at the number of buildings subjected to damage assessment for each class 
of building in each of the four cases. Most of the buildings in Visp used for the damage 
assessment are RC (mid-rise), with 33.57% in the real classification and 40.07% in the 
predicted classification. After that, there are the M6 (mid-rise and low-rise), with percentages 
ranging from 16.61% to 20.58%. The remaining buildings are M3, M4, M5. Although, we can 
see that M4 and M5 are present in a very small amount in the predicted distribution and are 
not present in the real distribution. 

 

Table 17 - Building types in Visp: reality and prediction 

 

 

 

 

 

 

 

 

Figure 32 shows the distribution of damage grade of Visp, for the real and predicted exposure 
model, as an average of percentage of damage between the different classes of buildings. As 

 REALITY PREDICTION 
TAXONOMY Number of 

buildings 
% of 

buildings 
Number of 
buildings 

% of 
buildings 

M3_L 30 10.83 24 8.66 
M3_M 21 7.58 12 4.33 
M4_M 0 0 1 0.36 
M5_M 0 0 1 0.36 
M6_L 52 18.77 52 18.77 
M6_M 57 20.58 46 16.61 

RCW_L 24 8.66 30 10.83 
RCW_M 93 33.57 111 40.07 
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it is possible to see, despite slight differences in taxonomy between the actual and the predicted 
model, the damage degree distribution is almost identical. Furthermore, we can see that more 
than 90% of the buildings fall into the damage category 0; less than 10% are DG1 and only a 
very small number of buildings fall into the higher damage categories. This could be due to 
the large amount of reinforced concrete RC and M6 buildings present (please see Table 17). 

 

 

Figure 32 - Distribution of damage grade of Visp based on the real and predicted exposure models 

 

The distribution of damage grade can also be represented according to the taxonomy of 
buildings, as presented in Figure 33. The results are also shown in  

Table 20 and Table 21 of the Appendix. In Figure 34, the difference of distribution of damage 
grade between the reality and prediction is depicted. We can see that as the severity of the 
damage increases (from DG0 to DG5), the difference between the two cases - reality and 
prediction - decreases. The biggest difference is present in the M3 (mid-rise) building type, 
which is the building type with the fewest elements (please see Table 17). This confirms that 
the prediction accuracy is higher for building types with a larger number of elements. 
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(a)         (b) 

Figure 33 - Distribution of damage grade in Visp resulted from: (a) real exposure model; (b) predicted exposure 
model 

 

Figure 34  - Differences of damage grade evaluated from  real and predicted exposure model for Visp 

 

Finally, we can show a comparison between the distribution of damage grade of Visp with the 
real exposure model and the one with the predicted exposure model. 

 



Exposure modelling and seismic vulnerability    
assessment in Switzerland   

 

50 
 

 

Figure 35 - Distribution of damage grade: comparison between Visp reality and Visp prediction 

 
Speaking of the difference in probability between the real and predicted exposure models, we 
can also illustrate it in the maps of Figure 36 and Figure 37. Indeed, Figure 36 shows a map 
of buildings in Visp considering the difference between reality and prediction of DG0, Figure 
37 shows the same map, considering the difference between reality and prediction of DG1. A 
third map, referring to DG2 is included in the Appendix (Figure 43). 
 Looking at these maps, we can see that the very interesting aspect of the RF model is 
that it provides predictions building by building. In fact, with the mapping scheme (aggregated 
data), we can only have a general idea of the percentage of buildings that belong to a certain 
class and we have no information about the location of the buildings. In the aggregated data, 
we know the number of buildings for each class, but we do not have precise information, and 
this could be a problem especially for small villages. On the other hand, with the RF model, 
we have great accuracy at the building level. 
 With these maps, although we have some discrepancies in the RF model, we can show 
that the level of damage is well predicted. The maximum difference between reality and 
prediction is in the order of 7% only for some buildings, depicted in purple. For all buildings 
coloured in green, the difference is minimal, on the order of 0-2%. However, for most 
buildings a good estimate of the damage level was achieved by the exposure model predicted 
by the RF model. 
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Figure 36 – Difference in probability between reality and prediction – DG0 

 

Figure 37 – Difference in probability between reality and prediction – DG1 
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5.7 DAMAGE ASSESSMENT IN VISP: COMPARISON BETWEEN HAZARD MODELS 

OF MAGNITUDE 5, 6 AND 7 

 
In the previous section, a damage assessment on Visp has been carried out, by considering a 
comparison between the real and predicted exposure model, considering the earthquake of 
Sierre of 1946 with magnitude 5.8 (please see section 5.1). In this section, another study has 
been done, on the Visp real and predicted exposure models, subjecting it to magnitudes 5, 6 
and 7 hazard model. The differences between the three cases will be presented. 
 The real distribution of building types in Visp for the current damage assessment only 
includes M3, M6 and RC buildings (please see Table 17), whereas the predicted exposure 
model also includes few elements of M4 and M5. Figure 38 shows the distribution of damage 
grade in the three cases – Magnitude 5, Magnitude 6, Magnitude 7. It is clear that as the 
magnitude increases, also the percentages of buildings in higher grade of damages increase. 
In fact, for Magnitude 5, grade of damages after DG0 are almost absent, while for Magnitude 
6 and Magnitude 7, they increase in percentage of buildings. Furthermore, we can see that as 
the magnitude increases, the difference between the damage grade distribution with the real 
and predicted exposure model increases. Indeed, for Magnitude 5, the difference of DG0 
between reality and prediction is 0.04%; for Magnitude 6, this difference is 0.42%; finally, for 
Magnitude 7, the difference is 0.81%. 

 

 
 

(a)         (b) 
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(c) 
 

Figure 38 – Distribution of grade of damage: (a) Magnitude 5; (b) Magnitude 6; (c) Magnitude 7. 
 

Figure 39 shows the comparison of distribution of damage grades evaluated  the real and 
predicted exposure models, in the three cases – Magnitude 5, Magnitude 6 and Magnitude 7. 
First of all, we can see that the more the magnitude increases, the more the difference in the 
distribution of the damage grade between the different classes of buildings increases; it is clear 
that as the severity of the hazard model increases, each class of building reacts differently. 
Furthermore, we can see that although the magnitude increases, the distribution of the damage 
grade for the actual and predicted exposure models are still similar to each other, which again 
proves the validity of the RF model. 

 

 
(a)         (b) 



Exposure modelling and seismic vulnerability    
assessment in Switzerland   

 

54 
 

 
 

 
  

(c)         (d) 
 

 
 

(e)         (f) 
 

Figure 39 – Distribution of damage grade: (a) Magnitude 5 – reality; (b) Magnitude 5 – prediction; (c) 
Magnitude 6 – reality; (d) Magnitude 6 – prediction; (e) Magnitude 7 – reality; (f) Magnitude 7 – prediction. 

 

Figure 40 shows the differences in damage grades for the three cases – Magnitude 5, 
Magnitude 6 and Magnitude 7. Although there is no net change between the cases, it can be 
seen that as the damage grade increases, the difference between the building types decreases. 
It is important to stress, however, that the difference represented is an absolute difference. This 
means that it is not a given that if the difference decreases, then accuracy is better. Indeed, 
when the damage grade increases, the percentages of buildings are much smaller, so the 
difference is also smaller. Also, as the magnitude increases, the difference between reality and 
prediction increases. In fact, we can see that while for Magnitude 5, the maximum difference 
between reality and prediction is about 0.14%, for Magnitude 7 it is about 1.0%. In this regard, 
we stress that in Magnitude 5, there seems to be a lot of instability, while in Magnitude 7 the 
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difference seems to change gradually; actually, the range of difference in the two cases is very 
different and this justifies the apparent instability of the graph in Figure 40(a). 

 

 
 

(a)         (b) 
 

 
 

(c) 
 

Figure 40 – Difference of damage grades in Visp: (a) Magnitude 5; (b) Magnitude 6; (c) Magnitude 7. 

 

5.8 DAMAGE ASSESSMENT IN VISP: PROBABILITY OF DAMAGE GRADE FOR 

DIFFERENT CLASSES OF DAMAGE 

In this section, we present the map of Visp with the buildings subdivided according to the 
taxonomy (Figure 41), the map illustrating the percentage of damage grade DG0 of individual 
buildings (Figure 42) and the map illustrating the percentage of damage grade DG1 of 
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individual buildings (Figure 43). In the Appendix, we also attach the map illustrating the 
percentage of damage grade DG2 of individual buildings (Figure 47). 
 Looking at the maps, we can see for example that M3 - low-rise are close to 1 as a 
probability of DG0, while they have a lower probability of DG1. On the contrary, M3 - mid-
rise have a probability around 0.85 for DG0 and a higher probability (e.g. 0.15) for DG1. A 
parallelism can also be seen with M6 and RCW: low-rise buildings have a higher probability 
of DG0 and a lower probability of DG1, while mid-rise buildings follow the opposite law. 
This phenomenon can be clearly seen for the North-West buildings, where both RCW - low-
rise and RCW - mid-rise are present. RCW - low-rise have a probability close to 1 for DG0, 
while they have a probability of about 0.05 for DG1. RCW - mid-rise have a probability of 
about 0.80 for DG0, while they have a probability of about 0.20 for DG1. 

 

 

Figure 41 - Visp - Distribution of building types 
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Figure 42 - Visp - DG0 

 

Figure 43 - Visp - DG1 
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6 CONCLUSION 

Natural disasters have always represented a danger to human beings, and among these are 
earthquakes. Recent examples in Europe include the L'Aquila earthquake (6th of April 2009), 
which caused more than 300 deaths, 1600 injuries and 10 billion euros of damage. In order to 
prevent the tragic consequences of natural disasters, it is important to assess the risk to which 
cities are exposed and to plan, if necessary, retrofitting measures. In this respect, several risk 
assessment studies are carried out every year, using both traditional and advanced methods 
(e.g. remote sensing, machine learning etc.). Assessing seismic risk consists of evaluating 
existing buildings and their expected response in the event of an earthquake. To do this, it is 
very important to define the exposure model of the area to be assessed. Defining the exposure 
model consists in classifying buildings according to a building taxonomy (e.g. masonry 
structures, reinforced concrete structures etc.), based on their material characteristics and 
construction process. The most traditional method is a visual survey, where buildings are 
examined one by one and assigned a building type. However, this method is very time and 
labour intensive, as it has to be carried out by a team of experts. Therefore, in recent years, 
various techniques have been developed to speed up and automate the work. For example, in 
the field of Data mining, a computational process used to discover patterns within large 
datasets through a combination of machine learning, statistics, and dataset systems, we find 
Association rule learning (ARL) and support vector machine (SVM). Both methods reveal 
interesting relationships among variables within a large dataset and facilitate the prediction of 
building types. Furthermore, remote sensing, that is the process of detecting and monitoring 
the physical characteristics of an area by measuring its reflected and emitted radiation at a 
distance has been used for derivation of building vulnerability related features, such as shape 
characteristics, height, roof material, period of construction, structure type, and spatial context. 
In addition, LiDAR points, orthophotos and satellite images have been proposed as easily 
usable and reproducible means to create an exposure and earthquake vulnerability dataset. 
Despite the development of these innovative methods, it is important to remember that the 
visual survey is essential for having a reliable exposure model to validate the results of the 
automated methods. 
 In our research, we combined the traditional visual survey with the implementation of 
a deep learning model for building type identification. First, two Swiss cities were investigated 
with a visual survey: 3537 buildings in Neuchatel and 2808 buildings in Yverdon-Les-Bains. 
The main characteristics of the buildings were considered, such as the roof shape, the façade 
aspect, the presence of balconies, and each building has been assigned to a building type. This 
step has been very time consuming and was carried out according to our engineering judgment. 
The taxonomy used refers to Lagomarsino et al. (2006). Then, using the buildings' dataset of 
the Federal Office of Buildings and Logistic of Switzerland, the dataset was enriched with 
more than 18 building characteristics. An evaluation of the importance of the features and their 
correlation for the classification of the buildings was carried out and the results of the survey 
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were analysed according to the most important features (e.g. period of construction, number 
of floors, number of housing units). As a first outcome of survey, the mapping schemes of the 
cities have been obtained, with a building type classification according to period of 
contructions and height classes. 
 After that, Random Forest (RF), a supervised learning algorithm that can be used for 
both classification and regression, was applied. RF has been used in the areas of medicine, 
economics, engineering, for different purposes (e.g. extraction of geometrical features of 
buildings, classification of images...). In our study, we implemented this method for getting a 
building type for each building, by exploiting the building attributes and applying the RF for 
classification. This algorithm is an ensemble of random decision Tree classifiers, that makes 
predictions by combining the predictions of the individual trees. It considers the buildings’ 

features for making a prediction on the classification of buildings. First, the method was 
trained and tested on the cities of Neuchatel and Yverdon-Les-Bains. The classification results 
were evaluated with three measures of accuracy: AM1, based on the confusion matrix (also 
known as the error matrix); AM2 is calculated by weighting the value of precision of each 
category on the number of buildings of the respective category. Finally, a third accuracy AM3, 
that is based on the number of buildings for different types, was considered. Discrete 
accuracies have been reported for both cities.  
 Then, a new RF model was created by training and testing on the concatenated datasets 
of Neuchatel and Yverdon-Les-Bains. In this model, a better performance was observed, 
compared to the models trained and tested on the individual datasets, as an increase in data 
provides an improvement in accuracy. The latter model was applied to two other Swiss cities: 
3238 buildings in Visp and 307 buildings in Visp, which were also visually surveyed by other 
means (e.g. Google street and QGIS). This made it possible to obtain both a real and a 
predicted exposure model. Different accuracies were obtained in these two cities (in Visp the 
model performed better than in Visp) and this is probably due to the fact that the two cities are 
different: Visp is more similar to Neuchatel and Yverdon-Les-Bains, while Visp is smaller 
and has a different distribution of building types. Nevertheless, it is possible to say that the RF 
model, trained and tested on the joint datasets of Yverdon-Les-Bains and Neuchatel, applied 
on two cities with a different distribution of building types, provided a good prediction of 
building types. 
 As a final step, the seismic damage assessment was performed considering the real and 
predicted building exposure models to study the detection performance of the proposed 
building type in the final seismic risk assessment. For the damage assessment, two different 
hazard models were used. For the Visp damage assessment, Sierre earthquake of 1946 with 
magnitude 5.8 was considered. It resulted in 3500 damaged buildings and CHF 26 million in 
today's money in damages. For Visp, the Basel earthquake of 1356 with magnitude 6.6 was 
considered. A negligible discrepancy was reported between the damage assessment of the real 
and predicted exposure models. This demonstrates the robustness of the method and paves the 
way for its application to other cities. After that, another study has been done, on the Visp real 
and predicted exposure models, subjecting it to magnitudes 5, 6 and 7 hazard model. It is clear 
that as the magnitude increases, also the percentages of buildings in higher grade of damages 
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increase. Furthermore, it resulted that as the magnitude increases, the difference between the 
damage grade distribution with the real and predicted exposure model increases. 
 In conclusion, we can say that a new model for detecting building types has been 
developed, where all characteristics of buildings have been considered and the output obtained 
is at the level of the individual building, not at the aggregate level. Furthermore, it could be 
extended according to the functionality of the buildings (commercial or residential). Quite 
good accuracy in detecting building types and higher accuracy in assessing damage were 
found. 
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7 FUTURE WORKS 

In the present work, a deep learning model for the classification of buildings has been 
developed and applied on more than 6000 buildings. After that, a damage assessment has been 
carried out on the real and predicted exposure model. A negligible discrepancy reported 
between the damage assessment of the real and predicted exposure models demonstrated the 
robustness of the prediction method and paves the way for its application to other cities. 
 In the future, we can apply this model to other cities and we can extend it by 
investigating different types of cities (e.g. big cities, rural areas). Also, since in the previous 
model we considered all building types, we could focus on only one category (e.g. commercial 
buildings). 
 Speaking of machine learning techniques, it would be interesting to develop building 
classification models that use not the RF method (RF), but other algorithms (e.g. Neural 
networks, SVM). In fact, machine learning techniques have been developing more and more 
in recent years and include a variety of algorithms and applications. 
 Another possibility is to develop models that connect images with building datasets. 
Indeed, automating the process of recognising and classifying buildings could speed up the 
creation of the exposure model and make this method applicable to many cities. 
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10 APPENDIX 

The building-by-building visual survey is performed in the city of Neuchatel, by associating 
each building to a class of Table 1. In order to provide a better understanding of what has been 
observed during the visual survey, a flowchart is presented below. It includes the main 
characteristics of buildings that have been taken into account during the survey and their 
correlations to the assigned building type. The period of construction allows to establish some 
clear distinctions between the building types, since it gives an indication on the materials that 
were used during the era of construction of the building, but this was only observed after the 
survey. The roof shape, the presence of balconies and the façade aspect are the main features 
that were taken into account during the survey. Moreover, even the shape and the ratio of the 
windows may be indicative, since RC structures usually allows to have a massive presence of 
openings. This does not happen for the other building types.  

 

 

Figure 44 - Flowchart of visual survey based on experience 
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(a)         (b) 

Figure 45 - Distribution of damage grade according to taxonomy of buildings: (a) Neuchatel; (b) Yverdon-Les-
Bains. 

 

Table 18 - Solothurn - reality: distribution of damage grade 

SOLOTHURN - REALITY 
TAXONOMY DG0 DG1 DG2 DG3 DG4 DG5 
M3_L 70.60 22.13 6.86 0.36 0.04 0.02 
M3_M 52.56 36.41 6.87 1.94 1.85 0.37 
M4_M 59.00 32.00 8.00 0.00 1.00 0.00 
M5_L 67.11 23.05 9.02 0.65 0.12 0.05 
M5_M 53.84 35.77 5.36 1.61 2.82 0.59 
M6_L 70.77 24.00 4.65 0.36 0.15 0.06 
M6_M 52.00 37.03 9.41 0.95 0.39 0.22 
RCW_L 71.24 25.06 3.37 0.25 0.06 0.02 
RCW_M 40.27 43.12 15.86 0.64 0.10 0.02 

 

Table 19 - Solothurn - prediction: distribution of damage grade 

SOLOTHURN - PREDICTION 
TAXONOMY DG0 DG1 DG2 DG3 DG4 DG5 
M3_L 70.01 22.53 6.99 0.39 0.05 0.03 
M3_M 52.73 36.20 6.97 1.92 1.81 0.37 
M4_L 79.26 15.92 4.79 0.00 0.03 0.00 
M4_M 54.17 35.98 8.52 0.91 0.29 0.12 
M5_L 68.20 22.45 8.60 0.59 0.11 0.04 
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M5_M 51.67 37.33 6.33 1.33 2.67 0.67 
M6_L 70.84 23.87 4.72 0.36 0.16 0.05 
M6_M 52.23 36.79 9.46 0.94 0.35 0.24 
RCW_L 71.35 24.95 3.39 0.24 0.05 0.02 
RCW_M 40.11 43.54 15.53 0.68 0.13 0.02 

 

Table 20 - Visp - reality: distribution of damage grade 

VISP - REALITY 
TAXONOMY DG0 DG1 DG2 DG3 DG4 DG5 
M3_L 97.03 2.47 0.50 0.00 0.00 0.00 
M3_M 88.71 9.52 1.24 0.24 0.19 0.10 
M6_L 96.00 3.69 0.31 0.00 0.00 0.00 
M6_M 90.58 8.56 0.79 0.00 0.05 0.02 
RCW_L 96.63 3.17 0.17 0.04 0.00 0.00 
RCW_M 84.39 14.10 1.49 0.02 0.00 0.00 

 

Table 21 - Visp - prediction: distribution of damage grade 

VISP - PREDICTION 
TAXONOMY DG0 DG1 DG2 DG3 DG4 DG5 
M3_L 97.25 2.38 0.38 0.00 0.00 0.00 
M3_M 89.33 9.00 1.17 0.33 0.17 0.00 
M4_M 90.00 10.00 0.00 0.00 0.00 0.00 
M5_M 90.00 8.00 1.00 0.00 0.00 1.00 
M6_L 95.88 3.81 0.29 0.02 0.00 0.00 
M6_M 90.26 8.85 0.78 0.07 0.04 0.00 
RCW_L 96.70 3.10 0.17 0.03 0.00 0.00 
RCW_M 84.65 13.81 1.50 0.04 0.00 0.00 
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Figure 46 – Difference in probability between reality and prediction – DG2 

 

Figure 47 - Visp - DG2 


