
Politecnico Di Torino

Master’s Degree in Electronics Engineering

Embedded Systems

Master’s Degree Thesis

Deterministic Cache-Based Execution of On-Line Self-Test
Routines in Multi-Core Automotive System-On-Chips

Supervisor

Dr. Edgar Ernesto Sánchez

Sánchez

Co-supervisors

Andrea Floridia

Davide Piumatti

Annachiara Ruospo

Candidate

Tzamn Meléndez Carmona

December 2021

Page | 2

Contents

ABSTRACT... 3

INTRODUCTION ... 4

CHAPTER 2 .. 8

LITERATURE REVIEW ... 8

Testing on System on Chips. .. 8

General Architecture of a Pipelined Microprocessor....................................... 11

Control Unit and Exceptions .. 17

Cache Memories and The Principle of Locality ... 19

CHAPTER 3 .. 24

MULTICORE ISSUES ... 24

Boot-Time Test Issues In Multicore Context ... 24

Timing Issues .. 25

CHAPTER 4 .. 30

PROPOSED APPROACH .. 30

Cache Memories as a Solution ... 30

The Loop Solution ... 32

CHAPTER 5 .. 38

CASE STUDY AND EXPERIMENTAL RESULTS .. 38

Case Study .. 38

Uncertainties in multi-core SoCs ... 42

Uncertain Fault Coverage ... 44

Unstable Signature .. 46

Comparisons with Other Solutions .. 48

CONCLUSION .. 51

APPENDIXES ... 52

APPENDIX 1 .. 52

BIBLIOGRAPHY ... 53

Page | 3

Abstract

In this thesis, the author wants to discuss the problematics that

arouse while working with the Self-Test procedures that are conducted online

in a multicore context. Self-Test procedures have not been considered until

now for their use on caches-based systems due to the lack of proof of their

deterministic behavior when executing instructions. Execution in cache and

deterministic are concepts considered exclusive one to each other. If we add

to this conception the execution of those procedures on multicore context,

the bus contention produces a strong timing unpredictable system. Having

Online Self-Test procedures being executed under those conditions might

lead to a variation in the fault coverage or the failure of the software test. This

thesis presents a brief description of the behavior of a test procedure in single

core and multicore. There is proposed a cache-based strategy for achieving

both deterministic behavior and stable fault coverage from the execution of

self-test procedures for multi-core systems. The proposed strategy is applied

to two representative modules of the microprocessors that are affected by

the issues of executing self-test software in a multi-core execution:

synchronous imprecise interrupts logic and pipeline hazard detection unit.

The experiment results demonstrate that it is possible to attain a stable

execution whilst also improving the state-of-the-art approaches for the on-

line testing of embedded microprocessors. The level of effectiveness of the

methodology was established on all the cores of a multi-core industrial

System-on-Chip (SoC) intended for automotive ASIL D applications.

Page | 4

Introduction

Software Test Libraries (STLs) have become one of the preferred

solutions for online testing of automotive processors SoCs. The cost of the

STLs is lower in comparison with other test solutions due to the fact that they

are a totally software based, with a high effectiveness [1], [2], [3], [4], [5], [6],

[7]. STLs are composed of tens of self-test procedures, written in source

code, that look for the occurrence of permanent faults. In other words, their

goal is to identify when some misbehavior occurred in the SoC. This

approach was introduced by Satish M. Thatte and Jacob A. Abraham in [8].

In the paper the authors proposed the idea of using a so-called test signature.

This approach involves running a test program with some specific patterns

as inputs where the results are accumulated in a variable (test signature).

Afterwards, the test might be either pass or fail depending on the result of

the comparison of the test signature with an expected signature. The

expected test signature is obtained when the test is run in context, where

there are no failures present (fault free scenario).

This thesis consists of four parts. The first part involves reviewing the

concepts that are related to software testing and their applications in SoCs.

What follows, an explanation of a the importance of a test signature in a STL

and why by means of the test signature, it is a safe way to detect the

occurrence of faults [9], [10], [11], [12]. Furthermore, in the first part of the

thesis there is explained the Self-test procedures and how they are

categorized in two; boot-time and run-time tests [2], [7]. Run-time testing has

the advantage of being executed when the microprocessor is in standby.

However, the author of this thesis focuses on boot-time test since it requires

some special considerations [13].

The author describes the importance of STLs and why they must

comply with the typical requirements of the embedded software in the

automotive industry. Since STLs run concurrently with operating system or

an application program, the resources that are available to the programmer

are limited. The other important fact is that nowadays most of the new high

performance SoCs that are released in the market are based on multicore

architectures. This implies a new challenge for software based self-test

(SBST) techniques. SBST must be adapted to these new architectures since

Page | 5

most of the test software that has been developed, has been focusing single

core architectures [10] and that is why the importance of having parallel

testing is discussed in this paper as well.

For better understanding of the units under test discussed in this

work, there is reviewed the general architecture of a typical 5 stages MIPS

microprocessor with its forwarding unit, the ARM Cortex-A8 and its

instructions buffer, due to its similarities with our case of study. The final

important concepts that are developed in detail in the first part of this work is

the principle of locality and cache memories since they are an important part

of the solution that concern to this thesis.

When STLs are running in multicore architectures some issues

appeared due to the complexity of the architecture. In order to have high

effectiveness STLs must be executed uninterruptedly, in particular those test

procedures targeting permanent faults in Hazard Detection Units, Control

Units, Forwarding Units, etc. A not interrupted execution is one of the main

problems that appear when there is switched from a single core architecture

to multiple cores. The system suffers from a bus contention, this is an effect

that occurs at the time when there are multiple requests in a bus. In this case,

in the memory bus. When there is a high bus contention while accessing to

the instruction memory, the microprocessor core that has a request must wait

until other cores will have been attended. The microprocessor solves this

conflict stalling one of the cores at the fetching stage until the bus is available.

These affections causes that the test procedure deals with a limited timing

predictability in a multicore context [14]. This implies two important

consequences on the self-test procedures that require a specific sequence

of instructions. The first consequence is fault grading. The fault coverage

become uncertain, and it fluctuates depending on which processor is excited

depending on the system bus activity. This first consequence affects the test

code when it is intended to detect a specific fault in a certain location on the

microprocessor. The fact that it does not execute where it should be results

in the non-detection of the intended faults. The second important

consequence is test signature instability. The signature that is generated by

the test program cannot identify the intended fault safely. When the test

expects to have a set of instructions in a certain order or has to be finished

the test in expected time, and it does not, clearly it will exist a mismatch in

Page | 6

the signature. The signature does not have a steady value and cannot be

reliable.

The main intent of this thesis is to propose a deterministic

methodology for executing in-field self-test routines in a multicore scenario.

The solution is based on the use of cache memories. By means of the use

of cache memories in a loop structure, it guarantees a stable signature and

deterministic fault coverage, in specific for those test procedures that target

CPU modules where the time instability affects their fault coverage

negatively. The methodology does not require significant modifications to the

single core STLs algorithms. The cache-based methodology exposes better

response at the time of testing in parallel all the cores of a multicore

architecture than test in which each core is treated independently. This

methodology is purely software and neither does it require any additional on-

chip hardware, nor an external device, that is a good solution for online-

testing. The use of cache memories as a solution for testing multicore SoCs

has been researched previously. Those previous solutions store the self-test

procedures and the test responses by share on-chip memory in the multicore

system. Yet the solution targets end-of-manufacturing testing [15].

Meanwhile, the cache-based proposed in this work reduce the test

application time and there is no need of off-chip memory accesses. Those

other methodologies use an external device to load the test into the cache

through an external tester and they can only be applied for the end-of-

manufacturing testing and only when the device is in the factory. In the

cache-based proposed in this work the test is loaded in cache by the test

itself and it can be used in the field. There exists a methodology that uses a

cache-aware test scheduler which takes advantage of the memory hierarchy

for speeding-up the run-time tests [16]. However, it does not deal with the in-

field execution of boot-time procedures. Other work that analyses a parallel

execution of boot-time tests is proposed in [13]. The paper proposed some

scheduling alternatives considering conflicts that occur when testing in

shared resources. Nevertheless, the determinism of the self-test procedures

in a multi-core scenario is a statement that has not been covered previously

in other works so far.

This document is organized by chapters. The second chapter starts

with a brief description of Testing on SOCs. This is where the general

architecture of pipelined microprocessors is explored followed by a

Page | 7

description of a pipelined microprocessor control unit and exceptions. The

last issues exposed in the Chapter 2 are cache memories and the concept

of principle of locality. The third chapter indicates all the problems that arise

as soon as STLs are executed in multicore architectures and their

consequences in testing reliability. The fourth chapter presents the author’s

proposed methodology that solves the issues exposed in the third chapter.

The chapter 5 focuses on the results of the methodology applied in a real

case multicore microprocessor. The methodology is compared with other

existing solutions. The last part of the thesis is the author’s conclusions.

Page | 8

Chapter 2

Literature Review

In this chapter is reviewed all the literature that is required for the

understanding the topics exposed on this work. The chapter begins with a

brief description of what is testing on SOCs and the importance of testing in

the vehicle industry. Following by an explanation of SBST. The concept of

boot time diagnostics and run time diagnostics are introduced in this chapter

as well. For a general understanding of the unit under test the author exposes

the general functionality of the MIPS microprocessor and its forwarding unit.

Another microprocessor that is explored is a double issue ARM

microprocessor (Cortex-A8) due to the similarities with the case of study. The

last concepts that are reviewed are cache memories and the concept of

principle of locality because of their importance on the proposed solution of

this thesis.

Testing on System on Chips.

Nowadays the execution of software online is part of our lives in

regular basis, more specific in the automotive industry, the use of STLs is

present in most of the new vehicles produced today. This kind of software is

executed into SoCs integrated in the cars and have become extremely

important because they increase the safety of the system. STLs assure the

correct functionality of the SoCs a prior or when the vehicle is in use.

Assuring a correct functionality of the SoC is crucial due to the number of

components that are managed by them. “The role of testing is to detect

whether something went wrong” [17].

The consequences of skip Testing can carry different problematics in

the future, depending on the severity of when and where the misbehavior

might occur. As example, supposing there is a failure within the SoC, if the

failure happens in a signal that shows whether the stereo is switched on or

Page | 9

off, the consequences of this will not produce a significant effect. Meanwhile,

if a failure happens in a signal that activates the brake system, the

consequences directly affect the lives of one or some human beings, and the

result can be catastrophic. Testing helps to prevents this kind of scenario and

gives a certain level of confidence when the device is released from the

factory.

Online testing based on STLs, has been adopted for testing the

device when it is in use. STLs are basically a piece of code written in

assembly language that are designed for being executed looking for the

presence of certain faults. [2]. For a better understanding of those

procedures and for the proposed methodology on Chapter 4 is important to

briefly explain this concept.

There are different approaches for testing, which are: Software-

Based Self-Test (SBST) which is based on STLs and Built-In Self-tests

(BIST) [1]. BIST it is not discussed by the author of this thesis. The topic that

concerns to this thesis is SBST since the proposed methodology of this

thesis is SBST based on STLs. SBST based on STLs can be found in the

industry such as [2], [3], [4], [5] and [6], which is an starting point for propose

a solution to the problem that is presented later in this paper.

SBST was originally proposed by Satish M. Thatte and Jacob A.

Abraham in [8]. What they proposed was to apply a specific set of patterns

generated by software instructions. Later to observe the results of those

instructions and accumulate what results in a variable. This variable is called

test signature. Subsequently the test signature is compared with a

beforehand computed value (expected test signature). The result of the

comparation is used to determine whether it is a test pass or test fail. The

expected test signature is well known since its computation is obtained by

means of the execution of the test procedure in a fault free scenario.

Satish M. Thatte and Jacob A. Abraham describe the procedures in

4 steps:

Page | 10

Step 1: Initialize the queue Q with all the registers so that Ri lies ahead

of Rj, if and only if l(Ri) < l(Rj); Initialize the set A as empty.

Step 2: A register at the front of Q; Update Q.

Step 3: REPEAT

Step 4: Repeat Steps 1, 2, and 3 with complementary data.

 Source [8]

If we look forward into the literature, until now there is no other

method for the representation of the occurrences of faults within this

scenario, if it is not done with a test signature such as the one described in

the sources [9], [10], [11] and [12].

According to the literature [2] and [7], Self-test procedures are divided

in two main categories:

• Boot-time (Boot diagnostics) and run-time tests (Run time

diagnostics). The first one is executed once, at the time that the

system starts or goes online, with the purpose of interfere as

less as possible with the real-time execution.

• Run time diagnostics is executed while the system running in

its normal operation. In this one before the test is executed the

data or the context should be stored in order not to destroy any

important information.

It is important to highlight that some Boot diagnostics programs to

have a good accuracy require to execute the instructions in a certain order

and being performed uninterrupted. This without withdrawing that; the STLs

must fulfil all the requirements included in any typical embedded software,

this last statement is important since STLs works concurrently with any other

application programs and with an operating system. Therefore, when

working in testing libraries, the programmer should be extremely careful

since the access to resources such as data memory and namely code are

limited, this means that the test code must be efficient in terms of memory.

Technology evolves fast through the time, this implies that as soon

as a new microprocessor appears in the market with more complex

architectures, SBST must evolve at the same time. Although we are in a time

Page | 11

where SBST has reached important advances in the industry [10], still there

is a large field of improvement.

Currently, most of the devices coming out to the market every year

are multicore and naturally they are used in the automotive industry, however

the Self-Test in those multicore architectures has not developed totally since

most of the Test software available is designed to single core architecture,

that is why most of the research in SBST are focused now on how to test

effective those new architectures. SBST for multicore is not being carried out

faster as the single core, due to those new devices bringing new

problematics as a result of their design complexity. Those microprocessors

came out with dynamic instruction execution, multithreading, GPUs,

multicores, etc. [10], concepts that were not included before.

General Architecture of a Pipelined Microprocessor

For Testing any kind of device, it is important to know its functionality

and as far as possible the details of components that assemble it, for this

reason is taken as a base other analysis available in the literature. In the

following section is described in general a single core pipelined

microprocessor MIPS, it is a load-store word microprocessor with a Harvard

memory architecture structure. Branches are present in the microprocessor

whenever the result of registers operations are equal to zero and manage

integer Arithmetic Logic Unit operations [18], making emphasis of the

forwarding unit functionality and the control unit. In addition, a general

architecture of dual issue pipelined microprocessor ARM Cortex-A8 is

discussed, both analyses are present in [18]. There are emphasized those

units because are the ones involved in Chapter 3 and Chapter 4. The final

architecture presented in this part of the work is the SPC58EC SOC, which

it is a SOC targeted for the automotive industry. This last SOC is a real

example and give the reader an idea of the case of study discussed in the

Chapter 5.

The simplest version of the MIPS is a RISC microprocessor which consists

in 5 stages instruction pipelined, Instruction Fetch Unit, Instruction Decode

Unit, Execution Unit, Memory Access Unit and Writeback Unit. The pipelined

Page | 12

data path is shown in Figure 2.1 and the summary of what is done in each

stage is explained below.

• Fetch stage: During this stage the Instruction word (IW) is read from

the instruction memory, and the Program Counter (PC) receive the

address of the next instruction added by 4.
• Decode Stage: This stage is fixed-field decoding [18] Here is where

the Register File (RF) is located and the IW is decoded, depending

on the type of Instruction, one or two register sources are being read.

The sing extended unit is contained in this stage, this is needed for

the immediate operation, and finally there are two more components:

One Adder which performs the immediate Jump and the Conditional

Test Unit, where the out of the register file is compared in order to

perform a Brach.
• Execution Stage: In This implementation it only consists of the

Arithmetic Logic Unit (ALU), where are performed all the operations

that are required including the computation of the Data Memory

address. The other component in this stage is a multiplexer which

only selects the second operand of the ALU that might come from a

register, or the extension unit of the Decode Stage.
• Memory Stage: The Data Memory is located here; this

microprocessor is Harvard memory structure which implies that

Instruction Memory is separated from Data Memory. The target

address is computed in the previous stage and this stage just read or

write from it.
• Write Back Stage: The last step consists in bypassing the value that

is obtained either from the Data Memory or the ALU to the RF, this

operation is made by a multiplexer.

Page | 13

Figure 2.1, Pipelined MIPS Datapath. Image source: [18]

As we can see, it is not the best version of the MIPS because this

implementation is not optimal neither in terms of Hardware nor performance,

however this gives us a brief idea of the functionality of a current

microprocessor used in the automotive industry and for the purpose of this

thesis there is no need going deeply into it.

The Forwarding unit consists in a couple of multiplexers added to the

data path in the inputs of the ALU, which bypassed other results from other

stages, specifically from the Memory stage and the Write Back stage, its

implementation is shown in Figure 2.2 The multiplexers are driven by a

forwarding logic which its goal is to identify and manage the data

dependencies. In order to identify when a data dependency occurs in the

steam of instructions, in some cases the forwarding logic is included in a

special unit called Hazard Detection Unit. In other cases, the forwarding logic

is included within the multiplexer itself, being a modified version of the typical

multiplexer.

Data Dependencies are present when an instruction is performed,

and its execution depends on previous results that are still being computed

at that time. Those are called Data Hazards [18]. This implies that the

Datapath either reads the wrong data or it must wait until the previous

instructions are finished. Stalling the microprocessor directly affects its

performance. Certainly, the use of forwarding is a good solution for Data

Hazards and is used widely today. This understanding of the multiplexers of

the forwarding unit helps to achieve the goal of this thesis.

Page | 14

Figure 2.2, Forwarding MIPS Implementation. Image source: [18]

Most of the microprocessors available in the market today are

multicore. Which implies that STLs need to do the transition from singlecore

to multicore as well. When the change from a single issue to a multiple issue

is done, the hardware and the stages of the microprocessor become more

complex, the pipeline might require more stages compare with the typical 5

stages proposed on the MIPS. The ARM Cortex-A8 is the perfect example

of this last statement, as it has some important characteristics. It is a dual

issue microprocessor, it has a static scheduler, and it has dynamic issue

detection, concepts that were not included into the basic 5 stages MIPS,

furthermore there are 13 stages pipeline. The design of this microprocessor

is extremely helpful for the understanding of the behavior of our case due to

its similarities.

One of the stages that are worth looking into slightly more is the

decode stage. This stage gives us an idea of the functionality of how the

instructions are issued in our case of study. In the Figure 2.3 is shown the

five-stage instruction decode of the Cortex-A8. It shows how the instruction

is decoded from the fetch unit. Up to two instructions can be decoded and

then they are stored into the queue, afterwards it goes to the Score board +

issue logic where it is decided when the instruction can be issue. It is

important for our work to notice that this is the stage where it is decided if the

instructions received are branches, or if there are some dependencies that

cannot be managed by the forwarding unit.

Page | 15

Figure 2.3, The five-stage instruction decode of the Cortex-A8. Image
source: [18]

The execution unit of the Cortex-A8 has some important aspects to

analize, it consist In 6-stage pipeline, and two instruction can be exacuted at

a time, depending of the type of operation. There are two main aspects to

highlight important for our analisis, as it is shown in the Figure 2.4 both pipes

cannot execute all the instructions, for example the is only one multiplier and

is set it in pipeline 0. The other important aspect is that there is comunication

among the pipelines, and within the same pipeline, that means that is fully

bypassing.

Figure 2.4, The execution pipeline for the Cortex-A8. Image source: [18]

All the previous architectures mentioned in this chapter let the reader

know more about the CPUs that are embedded in modern vehicles SOC.

What follows, is a brief analysis of a real SOC that is used on the regular

basis in the automotive industry. For example, we can choose a SOC from

STMicroelectronics, the SPC58EC which is a dual-issue double core SOC,

which is part of the line of the General-Purpose Automotive Power

Architecture® MCUs from STMicroelectronics [19]. This SOC was designed

Page | 16

to satisfy the ISO 26262 and ASIL-B standards. The architecture is illustrated

in the Figure 2.5

Figure 2.5, SPC58EC SOC used in the Automotive industry [20]

In the Figure 2.5 the reader can observe that the SPC58EC has 2

e200z420n3 cores. The e200z420n3 is a dual issue CPU, which has a similar

behaviour as the Cortex-A8 mentioned before. It is important to emphasize

the path between the Memory and the cores for fetching an instruction. Every

instruction that is executed for each core must be prefetched to the Set-

Associative Prefetched-Buffers. Once they are in the buffers the instructions

are then assigned to their respective CPU by passed in the crossbar switch.

Afterwards, the instructions can be decoded and executed independently in

each core. It is important to notice that now the process of assigning the

instructions takes some extra clock cycles.

Page | 17

Control Unit and Exceptions

The control unit is the logic that manage and switch all the signal into

Datapath depending on which type of that is intended to be executed, this

kind of logic take as input the instruction, each instruction has a unique

identifier, and the outputs are the signals that activate the components in

each stage of the pipelined. It is important to notice that in a pipelined

microprocessor such as the MIPS, the signals need to be pipelined as well

in order to have the right signal at the corresponding pipelined stage. In the

Appendix 1 shows the instructions and the actions to be perform in each

stage for the MIPS.

The control unit is the one in charge to stall the pipelined

microprocessor when a hazard is detected, and it cannot be managed by the

Datapath. They are 3 types of hazards:

• Structural hazards: Those came out when 2 or more instructions get

in conflict because they claim the same hardware resource at the

same time and the microprocessor is not able to manage it, it is a

matter of how the microprocessor is designed, therefore the

microprocessor needs to stall.

• Data hazards: Those does not depend on the design of the

microprocessor, the came out when there is a dependency in the

data, that means that when a current instruction claims some

hardware resource and the hardware requires a value or values of

the instructions that are either in computation at that specific moment

or have not been computed yet. As a consequence, the

microprocessor needs to stall.

• Control hazards: they came out when branch, Jump or any other

instructions that modify the Program Counter. The microprocessor

stalls here because the instructions that were fetched by the

microprocessor before it realizes that a branch need to be performed,

they need to stop their execution. [18]

Hazards are not the only reasons why the control unit must stall the

pipelined microprocessor, other are “Exceptions, Interrupts, or faults” [18].

We should be careful with terminology as those terms are used indistinctively

depending on the author.

Page | 18

• Precise Interrupt: those kinds of interruptions are present when all

the context is saved, and all the states before interruptions are

performed and well define.

• Imprecise interrupt: those ones according to the literature, [21] they

occur when an instruction does not meet the 3 following conditions

otherwise it is precise interrupt:

a) All the instructions before the current pointed instruction by the

Program Counter have been correctly executed, and the process

state is well modified.

b) All the instructions after the current pointed instruction by the

Program Counter have not been executed and they have not

modified the process state.

c) When an exception condition is present in a program, the

interruption is called, afterwards the interrupted instruction is

pointed by the saved Program Counter, this instruction either has

not been executed yet or has been executed, that depends on

how interruptions are managed in the microprocessor and what

kind of exception causes the interruption. In any case the

instruction that was interrupted was executed or will start its

execution.

When one of those conditions has not met, it complicates the

resuming of the Program after the interruption is called. Because the

context changes and the process states might has changed as well,

that is why they are called imprecise interruptions.

At the same time according with [18], the interrupts are categorized

in two other terms, synchronous or asynchronous.

• Synchronous interruptions: These ones are called so because

they happen every time the program is executed, furthermore, they

use the same Data and the same memory allocation.

• Asynchronous Interruptions: contrary to Synchronous ones, they

do not use the same memory allocation nor Data, typically those ones

are not produced by the microprocessor itself or by the main memory,

they are caused by an external device.

Page | 19

As a matter of this work the author centralize in Synchronous

imprecise interrupts. Synchronous imprecise interrupts refer to the concepts

of synchronization and imprecise interrupt meet at the same time. This refers

to the interruptions that are present in the program that always use the same

data and memory allocation but once that those interruptions are executed,

the context and the state of process might change which may lead to

problems at the time of resuming the normal execution of the program.

Cache Memories and The Principle of Locality

The solution to the problems exposed in Chapter 3, are based on the

use of cache memories since they take advantage of the Principle of Locality

or Locality of reference. The principle of Locality is a tendency that happens

when a program is running, and it must access to any memory location, either

for Instruction or for Data, those memory references tend to be called

repeatedly, some authors such as [18], suggest a rapidly statistical number

conclusion “that a program spends 90% of its execution time in only 10% of

the code”. This might not be clear if the program is short, but if the program

is longer enough it can be visualized clearly.

 For example, if we consider a program where the same temporally

variable is called several times or a program where the same data is

constantly read. Consequently, the same Data memory locations are

accessed several times. Let’s discuss the other example.

When a function is called in several parts of the code, the same set

of instructions are executed each time, which implies same instructions

memory localities are accessed continually, this is also very clear in loops;

the same code is executed N number of times.

 When a program is executed, the same memory information is used

several times. It can be said that the memory addresses used by the

microprocessor ingroup in small packages and the program gets trapped

within them. Of course, over time the memory information used by the

microprocessor changes since it performs diverse tasks, which implies that

another group of memory addresses must be used. Those last statements

help to conclude that in a short period of time the microprocessor uses a

Page | 20

group of memory allocations but over long period another group of memory

allocations are used [22]. With this information in mind, it is possible to use

this natural tendency in order to improve the efficiency of the microprocessor,

when accessing to memory, and here is where the role of cache memories

take importance.

Cache memories are a specific kind of storage devices that are part

of the computer organization. Those kinds of memories are the fastest

memories available within the memory hierarchy organization shown in the

Figure 2.6. Cache memories are located between the main memory and the

CPU, caches memories have the same content of a small portion of the main

memory. These memories are smaller compared with the main ones, but the

access time is shorter. The idea of having this organization is based on the

principle of the Locality, since the program gets trapped for a short period of

time in a certain group of memory allocations, and it changes group overtime.

This tendency of principle of locality applies to all levels of the memory

hierarchy, cache memories are thought to take advantage of this to improve

performance [18]. That means that it is not necessarily to have all the content

of the main memory available all the time, since most of it will not be used.

What matters is having the right memory content into the right level of the

memory. Those diverse memory levels are filled by a cache memory,

following the following rule as nearby to the CPU as quickest.

It might not be trivial understand how increasing the number of

memories in the system helps to improve performance. Since now the

system have lots of memories and is well known that accessing memory has

a considerable latency. However, what is needed is having the memory

content in the lowest cache level at time that is required. When this happens,

it is called a cache-hit. When a cache-hit happens in a low level of the

memory hierarchy, the accessing time decrease significantly, since the

lowest levels of cache memories are fastest. Meanwhile, if the content is not

stored in the right level, the access time of the memory hierarchy

organization is worse compare with accessing straight to the main memory,

this is called a cache-miss. When a cache-miss is present the latency is much

worse than the original one, since now we must go through all the memories

and to the originally time latency, we most add all the time latencies of the all

memories, that is why in the system is crucial to have a high level of cache-

hits and as lees cache-miss as possible.

Page | 21

Figure 2.6, Memory hierarchy organization, Image Source: [22]

Data transfer between CPU and the main memory has a considerable

latency, which means that is a bottleneck, the use of cache memories helps

reducing the latency with the condition of store the right data at the right

cache level.

There are some differences of cache memories regarding to the main

memory, the data in the main memory is stored by Words while in the case

of cache, it is stored by Blocks. This is more efficient due to “spatial locality”

[18]. That means that not only the content of the memory of one single

memory allocation will be used but also the neighbor memory allocations will

be more likely accessed too, which implies that bringing a set of memory

allocations is better than bringing just one.

The Figure 2.7 shows how the data is transferred from main memory

to the cache. In each line (row) of the cache there is stored a complete Block;

A Block contains a copy of K words of the main memory with a Tag; A Tag

helps to match, validate, and identify that the block information with respect

to the data into the main memory.

Each cache contains fewer rows in comparison with the main

memory. The number of lines is the cache memory size, and the cache are

considerably smaller in comparison with the main memory. These memories

need to have the data that most likely will be accessed soon in order to keep

the performance. Due to the fact that the CPU executes different programs,

the data transfer must be dynamic. This implies that the content within the

cache memory cannot be fixed.

Page | 22

Figure 2.7, Representation of a memory within a cache, Image source: [22]

It is necessary to know when and which data should be stored or

replaced. These are split into writing policies and replacement algorithms.

Replacing algorithms chose which locations in the cache might be not

necessary anymore and can be replaced for new data. As far as this thesis

concerned those algorithms are not detailed, there are only exposed writing

policies.

When a data is stored in the cache, the content from the cache must

be transferred to the main memory. This can be performed in different ways,

some of writing policies found in the literature are the following:

• Write-through: whenever that a write operation is present, writing is

performed in all the memory hierarchy, that assures that the main

memory is always valid. This means that every time that something

is intended to be written in the cache, the content is stored in the main

memory as well, which means that the content is stored at least twice

every time; The first one in the cache and the other one in the main

memory [22].

• Write back: Write in the main memory as less as possible. Whenever

a replacement is needed, then update the data in the main memory.

In this policy, the content is stored in the cache instead of being

written into the main memory, which would create a Data Incoherency

because the contents are not the same. However, the concept of a

dirty-bit or used-bit is applied here, it is an extra bit in the cache that

is set when incoherency in the data is present. In this way, the

Page | 23

memory allocation that is incoherent can be identified and will be

replaced later.

When the microprocessor needs writing the data in cache, it will be

performed when a cache-miss occurs. Furthermore, it is needed to write the

whole block and it can be done in two different ways:

• Write allocate: Every time that a write-miss occurs, the block is

allocated followed by a write hit operation. Write misses act like read

misses. In other words when a write operation is performed the whole

block is brought to the cache [18].

• No-write allocate: This one does not perform the write operation

when the write miss occurs and only the low memory-level block is

modified. In other words, the content is stored in the main memory

first and when there is a read operation, there will be produced a

cache-miss, and finally, the data is brought in the cache. [18].

In general, write-allocate is better for write-back caches meanwhile

no-write-allocate makes more sense for write-through caches.

Page | 24

Chapter 3

Multicore Issues

Once that it has been reviewed concepts related to this work, the author

presents in this chapter the main problematics that occurs when STLs

procedures run in a multicore context. The chapter centralized in the issues

related to booting time diagnostic and the constrains that implicates working

with it, such as, memory available, avoid no-deterministic procedures and

the possible conflicts with external peripherals. When it is not worked

properly with the constraints just mentioned, there is affected negatively the

fault grading and the stability of the test signature. The author focuses on

that the reader can observe in detail how the stream of instructions is affected

by the bus contention in the instant that the instructions are executing the

test procedures. Finally, there is discussed the importance in the use of the

performance counters and why they should be included in the test

procedures when available.

Boot-Time Test Issues In Multicore Context

As mentioned before, SoCs are widely spread in automotive

applications and they are easily found all over the vehicles. STLs is the most

used solution for testing microprocessors online. Currently, those SoCs are

based in multi-core architectures. What follows, the testing procedures must

be designed and developed for working with these parallel architectures

instead of single-core SoCs. This transition is not trivial. When these STLs

are applied in multi-core SoCs, the results are unexpected, specifically in

booting-time tests as it is exposed in the case of study presented in Chapter
5. This section exclusively exposes the problems related to creating testing

procedures followed by the issues of programming STLs for high-

performance multi-core SoCs.

The advantage of Run-time tests is that they can run concurrently

with the application generally when the processor is not in use. Nevertheless,

Page | 25

boot-time test carries more complex issues because there are more

constraints that the programmer should follow. The awareness of the limited

resources available is crucial, and these constrains are exposed below:

• One of the main constraints is the memory usage. The memory

storage and RAM available in the SoC is limited, and it cannot be

forgotten that in all modern SoCs there is an Operating System

included. Hence, STL source code cannot be large, and the use of

RAM most be limited since there are not much space reserved for

testing [13].

• Boot-time software test must be deterministic and any kind of

indeterministic source must be avoided. The Sequences of

instructions can be modified by the microprocessor anytime that the

microprocess might require it [13]. At the same time, STLs must

execute uninterruptedly. This leaves the programmer with the

obligation to reduce as many conflicts with the microprocessor as

possible. At the same time, the programmer must be aware of a need

of deactivate any unit that might cause the interruption of the boot-

time procedure.

• Weather there are some other peripherals or Interrupt controllers

avoid conflicts with resources that the STLs might use as well [13].

Timing Issues

An important problematic that appears when applying the STLs to

multiple-core SoCs is Timing. However, Timing is uncertain and changes

depend on the STLs. Time uncertainty came out as a result of the shared

memory bus that is common to all the cores in the microprocessor. When

one of the cores tries to access the memory and there are other cores that

are performing a memory request it results in a bus conflict and the access

memory time increases. This is called Bus Contention [14]. When this

problematic occurs, the microprocessor stalls at the fetching stage. This

happens because even though each core has their own instruction memory,

The instructions come from the main memory and then they are assigned to

at core. Nevertheless, the fact that the instructions are coming from the main

memory and it is shared by all the cores. This is what causes the memory

Page | 26

bus contention. When being aware that the memory access is already the

bottleneck in the architectures and adding a bus conflict to this. This effect

becomes more significant in multicores SoCs. This bottleneck causes that

STLs have a low efficiency.

When the microprocessor performs undesired stalls, the instructions

in the pipeline change. This leads to the fact that STLs execute with volatile

interruptions making it extremely difficult to determine when the instruction is

going to be executed. This directly affects two main aspects in self-test

procedures.

• Fault grading: Due to the fact that the time in which the instruction is

performed changes depending on whether the processor stalls or not.

The fault that is intended to be stimulated might be not excited which

means that this specific fault remains non-detected.

• Incorrect signature: when the timing changes, the signature

becomes unstable, and the matching of the signatures is not

trustable.

Those affections are clearly unsought and as a consequence of this

affections, it will be an untrustworthy fault coverage. Since we are talking

about STLs that are thought for being used in the automotive industry and

eventually in everyday vehicles, the STLs that are used in the SoCs must

fulfil modern safety standard requirements such as ISO 26262 for the

automotive industry.

For a better understanding, it will be discussed the MIPS

microprocessor explained in Chapter 2, which consist of a typical 5 stages

pipelined microprocessor and the unit under test is the forwarding unit. In the

example that is analyzed in the following paragraphs the forwarding by-

passing occurs when there is a dependency of the value of two consecutive

arithmetic or logic instructions. Indeed, the MIPS is a single-issue

microprocessor, however the same logic can be perfectly transpose to

multiple-issue microprocessors, with the consideration that instead of using

the term issued instructions at the same time, there must be used the term

package of instructions issued at the same time with dependencies occurring

either within instructions in the package or between packages.

Page | 27

Assuming that a forwarding path between the data at the end of the

execution stage to the beginning of the execution stage exists, and it is

intended to be tested. The source test code for this specific path is shown in

Figure 3.1. For testing EX to EX forwarding path, there is created a

data dependency between the first and the second instruction, aiming that

the data produced in the first AND instruction, forwards as an input of the

second AND instruction, for then complete its execution one clock cycle after

the first instruction was completed.

Clock Cycles 1 2 3 4 5 6

AND R7 R8 R9 IF ID EX MEM WB

AND R10 R7 R8 IF ID EX MEM WB

Figure 3.1, EX-EX test source code, single core execution

As it is expected in a single core microprocessor, there is no memory

accessed delay and no stalling has been produced. Consequently, this

portion of a test code excites correctly the fault intended to test. For a better

detection of the fault, we can use the methodology to discovered

Performance Faults described in [23], The methodology describes the use of

performance monitors, such as Performance Counters if they are available,

they improve the fault coverage. The performance counters can store some

important information such as Processor cycles, Instruction completed,

Processor cycles with 0,1 or 2 instructions issued, Instruction fetched

transitions, branch instruction or other important events that occur during the

execution of a program. This information released by the performance

counters increases the probability of detecting an abnormal behavior within

the Hazard Detection Unit.

On the other hand, Figure 3.2 shows exactly the same STL source

code, but it is executed in a multiple-issue microprocessor, where the test is

executed in parallel by other cores. The higher system bus contention in the

microprocessor has the consequence of stall the microprocessor, releasing

no time predictability and the fault coverage drops significantly.

Page | 28

Analyzing what happens in deep, the following results were obtained:

The first instruction is fetched in the first clock cycle, and it seems that

everything was working correctly at that point. Nevertheless, the problem

appeared in the next clock cycle when the second instruction should have

been fetched but was not. This is the result of the bus contention, which

means that accessing to the memory and bringing the next instruction is not

possible in this clock cycle. Outcoming with stalling the microprocessor until

the next instruction is prepared in the instruction buffer for being fetched. As

we can see in the Figure 3.2 the instruction has been fetched in the fifth

clock cycle.

The fault coverage drops as there is unwanted stalls. This yields in

that the STL code does not excite the forwarding path correctly that is

intended to be tested, even if the test code creates the dependency to

stimulate the fault. The register R7 reads the value of the previous instruction

when the value is already stored in the Register File. This means that when

the second instruction reads the value of R7, it reads it form the Register File

instead of the forwarding path that is meant to be tested. Indeed, the

consequences are that the signature is not able to catch the fault.

The other important fact is when performance counters are not

available, the signature will not display any difference in the result in

comparison to the single core scenario. This might errantly be assumed as

the test code is working correctly. however, when the test code is fault

simulated, the fault coverage drops significantly since the signature is not

reliable.

Clock Cycles 1 2 3 4 5 6 7 8 9

ADD R7 R8 R9 IF ID EX MEM WB

ADD R10 R7 R8 stalls IF ID EX MEM WB

Figure 3.2, EX-EX test source code, multicore execution

The inclusion of Performance Counters into the signature brings a

better reliability to the test program as it is demonstrated in the single core

Page | 29

scenario. In the following paragraph, there is discussed the inclusion of this

Performance monitors on the signature for the second scenario.

When analyzing the examples of Figure 3.1 and Figure 3.2, we can

see that in the second example the execution time of the STL code is larger

compared to the first one. Evidently, that happens because of the fact that

there are unsought stalls. If Performance Counters are used, they count the

number of stalls performed by the microprocessor; it reports no stalls for the

first scenario, and three stalls for the second scenario. Including that value

into the test signature, a better reliability is expected.

The reader can notice that when adding the Performance Counter to

the test signature causes that the signatures are mismatched. In this specific

multicore scenario, the microprocessor has performed three undesired stalls,

but it is not certain how many stalls might be performed. It may be zero stalls

(when there are no problems) or any other number of stalls (when bus

contention or any other issue occurs). There is no way to predict the value of

signature when a problematic is present, in other words, the signature

becomes unstable. Once that it is known that the signature becomes

unstable when undesired stalls are present, it is possible to use this

information to catch some permanent faults.

Monitoring the performance of the program using Performance

Counters helps to detect permanent faults related to time predictability, and

they inform you when there are unexpected stalls. This is a great solution

and the awareness of including Performance Counters in multicore SoC is

critical, since in multicore SoC there might exist other factors that might alter

the continue execution of the program. However, this solution does not

assure the continues execution of the STLs in multicore scenario, it only

highlights when the execution is interrupted. It is not yet stablished how to

assure the correct excitation of the EX to EX forwarding path which the STL

source code in the Figure 3.2 is intended for. The solution of this statement

is the main focus of this thesis, and it will be discussed in the following

Chapter.

Page | 30

Chapter 4

Proposed approach

After having analyzed the main problematics, when traditional STL

approaches designed for single issue microprocessors are applied to

multiple issue ones. The aim of this thesis is to propose a new methodology

for executing in-field self-test routines in a multi-core scenario, avoiding all

the problems previously discussed. Bearing in mind all the typical constraint

in an automotive multicore SoC. Not forgetting that the system has limited

resources in terms of memory and the software execution must be

predictable.

Cache Memories as a Solution

As it was discussed in Chapter 2, most of the programs and their

processes are trapped in a tendence called the principle of locality, which

means that when a certain memory location is accessed by the

microprocessor, the same memory locations and the neighbor locations, it is

highly probable that they will be re-accessed soon. It was referred as well

that cache memories take advantage of this concept. Cache memories take

data that might be required and stored it in advance. Afterwards, they deliver

the information much faster to the microprocessor in comparison with normal

memories. The work of the caches is reflected in the performance of the CPU

when accessing memory. This is a key clause since one of the main

problems that appear when STLs are applied in multicore, is the time delayed

when bus contention occurs.

 Furthermore, cache memories bring isolation. They are located at

the lowest level in the memory hierarchy. The data is read by the

microprocessor directly from the caches, avoiding the whole system. Cache

memories are present in all modern multicore SoCs. All those statements are

the essence of this thesis. There is proposed a new methodology, with use

of the cache memories and all their advantages for creating testing libraries

Page | 31

to work in-field, solving the problematics described earlier in multicore

scenario for its use in multicore automotive SoCs.

The use of caches as a solution for testing in multicore scenario is

not trivial, given that caches are not deterministic. As it was previously

discussed, their functionality depends on different aspects such as cache

depth size, cache writing and replacing policy, etc. This indeterministic

situation must be avoided since it is one of the rules to follow when creating

self-test libraries.

The challenges are clear: Create a methodology based on the use of

caches to increase the performance of the microprocessor (at the time of

accessing memory), the fact that cache brings isolation to the whole system,

this implies not entering conflict with the Operating System and avoiding their

natural indeterministic behavior.

Caches in SoCs are distributed in levels. The lowest level of cache is

reserved to each processor core, as it is exposed in our case of study in the

Chapter 5. Consequently, when a program is stored in the lowest cache

level, it becomes isolated. Therefore, if we move the STLs to the lowest

cache memory, it becomes isolated of the whole system as well. Yet, writing

the code directly within the cache, requires a big effort and a perfect

knowledge of how it is designed the cache. Moreover, the data in the cache

can be modified anytime, because the data that is stored is just temporally

data, and STL are typically larger than the memory space available in the

lowest level of cache.

The methodology that is proposed to store the self-testing procedure

in the lowest cache levels. It takes advantage of the cache memory using

them in accordance with its original purpose, along with having the concept

of principle of locality in mind. This clause can be explained by recalling

briefly how a cache-based systems work. It is known that when the system

needs to read information from memory, firstly it will look for it in the cache.

If the data is not available in cache, then the microprocessor will determine

whether the data should be carried into the cache or not. This depends on

whether the data might be needed again (principle of locality). Being aware

of the statement might allow the system to believe that the data will be

accessed again, which came out with the system keeping the wanted

information in the cache and assuring that the data will not be replaced soon.

Page | 32

Therefore, designing a proper code structure assures having the intended

information in the cache.

The Loop Solution

One of the structure programs where caches are extremely useful is

when loops are present in the code. Due to the fact that loops are parts of

the code that is executed repeatedly by the microprocessor, and they have

high cache locality. By means of the cache, the code that is within a loop

does not have to access to the main memory and load the needed Data every

time. It only loads once the Data and then it reads it from the cache, which is

faster. Based on this valuable evidence, the solution for the original program

comes out. A structure based on a loop results in having the general self-test

code into the lowest cache level.

As soon as the test is stored in the lowest cache level, the program

will be accessed by the microprocessor with a better performance, avoiding

the bus contention. This means that the STL code is executed without stalling

making the signature deterministic and stable. A solution based on the use

of cache memories assures that the signatures generated by a single core

self-test procedure intended for specific modules of the microprocessors, can

also be transpose into multi-core execution and come out with a stable

execution and with a fault coverage that is deterministic. The proposed

methodology does not require modifying the existing solutions significantly

and they do not result in introducing penalties from the memory footprint

perspective.

The proposed solution starts from a generic boot-time single-core test

program that is shown in the Figure 4.1. It is modified structure for a multi-

core microprocessor explained in detail below:

1) The program must be executed twice inside of a loop-based mode.

The body of the loop that is represented by the blocks (a) and (c) in

the Figure 4.2 is the single-core test procedure but intended for

testing the SoC multi-core microprocessor, which, in the original

single-core methodology is represented by the blocks (b) and (c) in

the Figure 4.1, Although, it might undergo some slight modifications;

Page | 33

the test might be longer since the original code is intended for test

one pipe instead in multiple-issued context, there is a need to modify

the code for testing the multiple pipes, which in most cases is just

replicate the code to stimulate all the pipes, this operation is trivial.

When the self-test code is executed more than one time, it produces

strong temporal locality, since all the instructions are called multiple

times. In our proposal it is enough to call the instructions two times

and consequently the addresses of each instruction are referenced

exactly twice.

During the first loop (Loading Loop), as result of the Instruction Cache

and Data Caches are activated as is shown in the Figure 4.2 in the

block (b), all the instructions are moved to the instruction cache and

if there is a content from the data memory its’ addresses are stored

into the Data cache, assuming that the cache-memory is a write

allocate (data at the missed-write location is loaded to cache).

If the cache has another write policy, which is our case of study, after

each store operation, there is performed a dummy load operation in

the same address that forces the cache to have a read cache-miss,

and when this is triggered, the data is stored into the data-cache.

Hence, the second time that the code is executed, the

microprocessor will find all the instructions in the instruction-cache

and all the data in the data-cache. That means that the store

operations will not result in any write-miss.

Another import fact that we must consider is that during the Loading

Loop the signatures that are generated are not reliable. Due to the

fact that during the Loading Loop the microprocessor is full of not

deterministic actions, such as stalls provoked by all the misses in the

cache memories. The order in which the instructions are assigned to

the pipes depends on the logic of the circuit; one pipe might work

more extensively than the others, which produce a totally

indeterministic signature.

Page | 34

On the other hand, when the second execution is performed, the

Execution Loop, all the instructions and data required in the test are

loaded in the caches. As a consequence, the microprocessor has

access to all the content faster, avoiding stalls that might be provoked

due to high system bus contention. Additionally, each test is assigned

to its respective pipe, resulting in that the entire test is deterministic,

what allows the signatures to be computed without any risk or any

influence by the rest of the system.

Figure 4.1

Figure 4.2

2) The entire test source code procedure and the data must be stored

in the caches at the Loading Loop, as it is explained in the previous

section. It brings high spatial locality and stable signatures since

unsought stalls and cache-misses are avoided. Yet, there are some

other considerations that the proposed methodology must fulfil to

prevent the possible alteration of the signature. These considerations

are:

2.1 Avoid Conditional Branches in the Execution Loop. When this kind of

instructions are present in the code, the order of execution of the test

(a) Save Context

(b) Setup Required Registers

(c) Test Program Body

(d) Check Signature

(e) Restore Context

(a) Save Context

(b) Configure Caches

(c) Setup Required Registers

(d) Test Program Body*

(e) Loop Conditon

(f) Check Signature

(g) Disable Caches

(h) Restore Context

x 2

Page | 35

might change due to the nature of the instruction. it halts the

microprocessor.

Clearly, this statement does not apply when the order of execution is

intentionally changed by the programmer in order to test specific

faults related to alter the execution flow. This do not conditionate the

methodology when a loop-based program is intended to be tested, it

is needed that all the possible branches are taken and included in the

code.

2.2 The test code of the multicore version (Figure 4.2) must not be larger

than the size of the cache memory. It is important to be aware of the

size of the cache. As soon as the program is larger than the size-

cache the content of the cache starts to be replaced, depending on

the replacing policy, this makes the program being unstable, not

deterministic and compromises the fault coverage.

When the program overflows the size of the memory cache, the

solution is to divide the large self-test procedure in diverse smaller

programs so that they always fit into the cache not to compromise the

effectiveness of the test. For example, if the resulting test program is

20KB and the available cache is 8KB the code should be divided in

three different test-programs: two of 7KB and one of 6KB.

3) The initialization of the instruction cache and data cache must be

performed before the execution of the test procedure. The

initialization is done by the invalidation of the content as it is shown

in the Figure 4.2 in the block (b) before the part of the code where

the test procedure is executed, as it is illustrated in the Figure 4.2 in

the blocks (c) and (d).

The proposed methodology which uses the caches, covers all the

statements required in order to achieve a deterministic behavior with low

resources usage, this is possible thanks to two important facts, which are:

• Caches isolate the processor from the rest of the system, what

implies that the execution of the self-test program is performed

without being affected by other processor’s activity, and there are no

external stalls that might affect the efficiency of the test-procedure.

• The program that is stored into the cache does not affect the self-test

routine memory footprint.

Page | 36

One important advantage of the proposed approach is that it is a

hundred percent software, and it does not require any additional testing

device on-chip. Store self-test procedures in cache in a multicore scenario

have been studied before in such systems where the memory is common for

all the cores as it is presented in [15], however this methodology requires off-

chip resources for load the test-codes in the cache memories.

The methodology proposed in this thesis successfully reduced the

application time of the test in the SoC, and it can be applied when the

vehicles are in use, while in the other methods they are exclusively designed

for end-of-manufacturing, they assume that STLs are loaded with an external

test device, which clearly is not available when the vehicles are in use.

Another methodology found in the literature is [16]. Where it is

possible to take advantage of the memory hierarchy as well, however, the

aim is different than the one proposed in this thesis. The one proposed in

[16] is called cache-aware selective testing, which their aim is to run test

procedures faster and does not deal with testing when the vehicle is in use,

while the one exposed in this paper does. Moreover, this thesis specifically

focuses on boot-time procedures in-field, and it does lead to the uncertainties

that occur in multicore SoC architectures by means of the use of cache

memories.

The last work that is related to boot-time execution test is covered in

[13]. this paper targets the conflicts that arrive when sharing resources and

they come out with some scheduling alternatives. Nevertheless, the problem

of indeterministic behavior that occurs when self-test procedures are applied

in multicore scenario is not covered.

 The methodology proposed in this chapter covers all the

requirements of a modern automotive multicore SoC using cache memories.

It avoids the main problematics that came out when STLs are switched from

a single core context to multicore context such as bus contention. Bus

contention appears randomly in multicore microprocessors at the time that

the microprocessor requires data from memory provoking unwanted stalls.

However, if the test procedure is being executed from the cache the

microprocessor does not perform additional stalls. Furthermore, when cache

memories are activated, they bring isolation from the rest of the system.

Page | 37

 Due to the proposed methodology, other issues come out once

cache memories are activated in boot-testing. However, the methodology

solves them by creating strong spatial locality, in a loop-form program, where

the test is executed twice (the loading loop and the execution loop). The first

one is a dummy operation, while the second one is the real test. It was shown

that other facts should be considered when this methodology is applied. One

is always trying to avoid factors that might bring indeterminism to the test.

This certainly is an innovation since no other methodology exposed before

in the literature covers all those problematics.

Page | 38

Chapter 5

Case Study and Experimental Results

For validate our methodology is necessary apply it to a multi-core

microprocessor and confront the results with previous methodologies and

see if the results correspond to the expected ones. In this chapter we will

discuss and analyze the target multicore device used for carrying out the

experiment. Afterwards, the results will be presented with the problematics

previously discussed in the Chapter 3. Other important aspect that is

covered in this chapter is how effective is the methodology in comparison

with other possible alternatives.

Case Study

For the experiment, the target device was an industrial triple-core

System-On-Chip, manufactured for automotive application, in specific for

safety-critical application ranked as ASIL D. which consist in in three dual-

issue processor cores. Which from now on they will be referenced as core A,

B, and C. Core A and B are twins, each of them is 32 bits processors cores,

in other hand core C consist in an extended instruction set version which can

perform 64-bits operands.

All the cores have two Tightly Coupled Cache Memories modules,

one for private data which a capacity of 4kB and the other for the instructions

with capacity of 8kB. The cache modules can be configurable a prior and can

supports the two different policies: write allocate and no-write allocate.

Despite of it exists different test-fault models, in this experiment it is

only applied the stuck-at fault model, however, that does not exclude the

applicability of the proposed methodology to another test-fault model that

exist out there.

The analysis starts with the number of stuck-at faults for the core

processors, and it suffer a variation from 643,209 in the core C to 473 in the

Page | 39

core B, core A despite being equal from the concept viewpoint to core B, it

has a different stuck-at fault list, that happens due to the physical design

process. The physical design process changes for each core processor

which results in different stuck-at fault lists, hence from the testing point of

view they must be treated different.

Recalling one of the main problematics when talking about

transposing single-core self-tests to a multiple-core context exposed in

Chapter 3, the same problematics are shown in the units of the

microprocessors who deals with the stalls and the order of the execution.

The Interrupt Control Unit and Hazard Detection Unit self-test procedures are

the ones that suffers significantly due to these phenomena, it is important to

mention that the forwarding mechanism is possible the most affected one,

because it is straightly related with the order of execution, the forwarding

mechanism is included into the hazard detection unit. Hence in this thesis we

centralize the effort exclusively in the faults related to these units, in the

microprocessor that is under test in this experiment, the Hazard Detection

Unit is composed of The Hazard Detection Control and the Forwarding Logic.

The Hazard Detection Control Unit focus on the detection of the

possible problematics due to the dependencies of the issue packets. When

it is worked in a multicore situation, it is not talked about isolated instructions,

it is referenced as issue packet as it is explained in Chapter 3. Depending

on possible conflicts of data between different packages of instructions or

within the same package of instructions. The Hazard Detection Control Unit

solves the conflict by either inserting bubbles in the pipes or driving the

forwarding paths.

The Forwarding Logic consists in special multiplexers, which there is

a logic within them that helps to manage the forwarding conditions.

Additionally, these multiplexers send results produced by the different

execution units in distinct stages of the microprocessor to previous stages

either in the same pipeline or to the other pipeline.

Testing this kind of units is not something new and there are some

methodologies for “develop a systematic SBST methodology that enhances

existing SBST programs to comprehensively test the pipeline logic” found in

[24], and the one that is of our interest for “produce test programs suitable to

Page | 40

detect stuck-at faults in computational modules belonging to dual issue

processors” [25] as is aimed for multiple issues microprocessors.

We take as an important source [25] due to is similarities with our

case of study. In that article is well tested the forwarding mechanism, and it

considers the two possible paths existing, intra-pipeline and inter-pipeline

paths.

intra-pipeline refers to the instruction dependencies of two different

consecutive pipelined issue packages. For example, supposing there is a

dependency between the instruction 1 and instruction 3 in the execution

stage and they are in different pipelines, as is shown in Figure 5.1.

Figure 5.1, intra-pipeline dependency EX-EX execution in a dual issued
microprocessor

inter-pipeline refers to the instruction dependencies within the same

pipeline in the same issue package. For example, there is a dependency of

two consecutive instructions, 1 and 2, and the result of the first one in the

execution stage is required in the second one but in the memory stage and

both are in the same issue package, as is shown in the Figure 5.1.

Additionally, the method proposed in [25] made use of the

performance counters, as it was discussed before in Chapter 3, they help

for detecting performance faults and realize when the microprocessor

produce unwanted stalls, bringing stability at the time of executing the test.

The performance monitors in [25] are used for counting the number of times

that the microprocessor is interrupted wrongly by the hazard control unit

while it is executed of the self-test procedure.

FE DE EX ME WB

FE DE EX ME WB

FE DE EX ME WB

FE DE EX ME WB

1

2

3

4
1st package
2nd package

Page | 41

Figure 5.2, inter-pipeline dependency EX-ME execution in a dual issued
microprocessor

For the analysis of the Interrupt Control, the interrupts presented here

are synchronous imprecise interrupts defined in Chapter 2, this interruptus

are present when the memory or the CPU requires to stop the execution due

to one instruction (i.e., synchronously), or exception. The CPU then attends

some other work with more priority. imprecise interrupts have the

characteristic of does not save properly the context before interrupting the

CPU, that means that either the program counter, registers or memory states

have not been backup before the stalling. This happens do to the fact that

we are running in a multiple issue pipelined microprocessor, and it depends

on the number of instructions that are running at the same time in the

pipelines, this kind of interruptions are hard to recognize it, and when the

microprocessor realize about them some other instructions are executed

outside that the instruction that is interrupted. Unlike the precise interrupts

where everything is well defined.

To know exactly how many instructions have been performed by the

microprocessor after an imprecise interrupt occurred is extremely hard, for

the reason that once an instruction of one of the pipelines requires to be

interrupted, it will interrupt the process of that instruction. Still all the other

instructions that are running at the same time in the other pipelines might

have completed their execution when they should not do it. When the

imprecise interrupt is recognized after the other instructions that should have

not completed their execution, but they have done, the instructions in the

pipelines must be reassigned either to the same pipeline or another

pipelines, for then been executed again with the correct context. those

making the system unpredictive because the number of instructions running

into the pipeline change ever time that one of these interrupts are present.

FE DE EX ME WB

FE DE EX ME WB

FE DE EX ME WB

FE DE EX ME WB

1

2

3

4
1st package
2nd package

Page | 42

The test codes that aim those kinds of imprecise interruptions are

unstable because they depend on the other instructions activity running in

parallel in the other pipelines. This produce an unstable signature because

there is not consistency in the execution time. For managing this kind of

faults, we follow the method proposed in [26]. What they do is identify critical

points in the test where there exist some resource conflicts or it exists large

instruction dependencies and the interruptions occurs in those points (the

methodology achieves higher fault coverage than other methodologies). The

resultant faults obtained in the units using this technique are reported in

Figure 5.3 and Figure 5.4 in the column N of Faults.

As it is explained in Chapter 4 the last step was enabled both cache

memories available, since the microprocessor that is used for this experiment

can manage both write policies. It was chosen write-allocate for both test

programs. In this way all the write cache misses during the execution loop

are avoid it. That implies that it is no necessary add more load operations. It

is important to mention that as the size of both test programs are smaller in

size compared with the available caches size, both tests fit into the cache

memories. This is convenient for the proposed methodology, because it is

not need it to split the test code.

Uncertainties in multi-core SoCs

The experiments started applying the multi-core test libraries

developed in the multicore microprocessor and analyzing their behavior in a

multi-core context. Due to Core A and B are twins, it was developed only two

test libraries, one for core A and B and one for core C. It was decided to split

the experiment in two analyses, the first one targeting the forwarding

mechanism and separately a second analysis where imprecise interrupts

and hazard detection unit are treated.

In this initial step, the STLs were only applied to the forwarding

mechanism, following the methodology proposed in [13]. It was applied the

same software structure and the STLs were executed in parallel on the

physical microcontroller. Afterwards with the help of an external debugger, it

was tracked the executed instructions of the STL programs, and it was

Page | 43

counted the number of clock cycles stalled because of the access memory

concerns that might appeared in each core.

In Figure 5.3 is observed all the results collected by the debugger

and it is clearly that when is moved from a single core (only one switched on)

to a multiple core (more than one core is active), it can be noticed that as the

number of cores are activated as the number of stalls increase. This might

be expected, if more cores are working, more times the microprocessor must

stalls. However, this is not a linear behavior. As it can be observed in Figure
5.3, the number of stalls that happened, when one core is activated in

comparison when 2 cores are active, are significantly higher. That means

that it is suffering of bus contention. Recalling what was discussed in

Chapter 3, this is happening because all the instructions are coming from

the main memory and this one is common for all the cores.

Number of
Active Cores

IF STALLS
(Clock
Cycles)

MEM stalls
(Clock Cycles)

1 200,679 117,965

2 717,538 305,801

3 1,878,336 663,386

 Figure 5.3, quantity of stalls as the number of active cores is present

The instruction fetch unit (IF) is the one that suffers more stalls due

to this phenomenon. This is explained because as soon as other cores are

started to switch on, the bus contention rises. Therefore, the Instruction Fetch

Unit of the core that requires a certain instruction is forced to stall and waits

until the other instructions that have been requested have been issued for

then finally been fetched.

Finally, it is important to highlight that the results of the second and

third row shown in Figure 5.3 represents mean values collected by the

debugger after several executions, the real number of stalls depends on the

initial state of the SoC in each execution, which makes it unpredictable.

Page | 44

Uncertain Fault Coverage

After the execution of the previous experiments, it is confirmed that

when self-test procedures are executed in a multi-core microprocessor, they

become highly unpredictable, because they are dependent of the context of

execution, the whole system affects the effectiveness of the STLs since they

should be executed without being interrupted. Nonetheless, it is not clear yet,

how much those interruptions affect the self-test libraries when they are on

execution. Due to this fact the experiments exposed below aim to see the

effects of the microprocessor stall into the STLs. In fact, the following

experiments focus on the fault coverage within the Hazard Detection Unit,

which is the one that suffers more the presents of stalls when they are on

execution. The experiments were realized with the help of a commercial fault

simulator, and with the netlist of the post-layout gate-level of the SoC.

The experiment started with the data of Figure 5.3 exposed in the previous

section, it was shown clearly that the interruption of the pipelined due to

memory bus contention produce that the Performance Counters (PCs)

become unstable when they are used in a multicore context. And as it was

explained before in Chapter 3 they are a good mechanism for the reliability

of the self-test-signature.

One solution for avoiding the unstably introduced by the PCs is pull them out

of the self-test procedure being aware that the fault-coverage (FC) will drop

significantly, however as we can observe in the results showed in the Figure
5.4, the fault coverage does not reach a proper value for guaranteeing a

deterministic fault coverage of the forwarding logic.

Page | 45

Core
Number of

faults

Min - Max FC [%]
no caches no

PCs

FC [%]
with caches no

PCs

A 53,298 64.14 - 75.19 79.61

B 57,506 63.61 - 79.59 82.08

C 113,212 56.24 - 66.48 68.79

 Figure 5.4, FC previous solutions vs cache-based solution.

The results of Figure 5.4 were obtained following the procedure

exposed in [25], which propose self-test techniques for dual issue

microprocessor, however it had to be adapted to the needs exposed before.

The logic simulations were fault simulated first removing the Performance

Counters from the Self-test procedures, and then they were executed varying

the following conditions.

a) Two and three active cores

b) Use of the high, middle, and low Flash memory locations

c) Word, double-word, and double double-word code alignment

Despite of changing all those parameters the signature remains

steady, because the resulting signature it is not affected by those changes.

Afterwards it was summarized all the results, for a better understanding it is

exposed only the Minimum (Min) and Maximum (Max) values from the fault

simulation for a clear comparison with the solution proposed in this thesis.

The results of this experiment show that the resultants fault coverage

is extremely unpredictable since the results are not consistent. If we observe

the core B in the third column from Figure 5.4 the variation reaches almost

16% even if the signature does not change along each of the fault

simulations.

In this fault coverage experiment the result of the fault simulations

depends mainly on the order of execution, since the self-test is aimed for

excite the forwarding paths when the issue packets enter in the pipeline not

continually, the aimed paths are not excited and as consequences the fault

coverage drops, in the other hand when the packets enter as they were

aimed for, the forwarding paths are excited, therefore the fault coverage

Page | 46

increase. This explains the fluctuation into the fault coverage, it is needed to

ensure that each packet of instructions is executed in consecutive clock

cycles and without stalling for having a steady fault coverage.

As soon as we applied the proposed approach of the Chapter 4 as it

is shown in the last column of the Figure 5.4 with the use of the caches the

fault coverage is always higher with respect the Max value of the previous

solution, in the best case the improvement is around 4% better, with the

significant difference that there are no variations, when the conditions a), b)

and c) are present.

Continuing the analysis of the results of the Core C, last row

illustrated in the Figure 5.4, the fault coverage it is lower with respect Core

A and Core B, we should recall that the core C is the extended version, which

is able to manage 64-bits operation, this implies that the multiplexers in

charge of the inter-pipeline and intra-pipeline forwarding mechanism are 64-

bits width as well. Although the Microprocessor can manage 64-bit the

General-Purpose Registers (GPRs) are still 32-bits wide, which means that

when the self-test procedure is done the signature is stored in a 32-bits, this

carries some fault simulations effects to be masked. This last statement is

not targeted in this thesis, since the main argument is to improve the

methodology for the application of the STLs, not for the improvement of the

algorithms of the forwarding mechanism.

Unstable Signature

After having been performed the experiments related to the

Forwarding Unit, the other units that remained unexamined is the Interrupt

Control Unit (ICU) and the Hazard Detection Control Unit (HDCU), which are

the ones related with the imprecise interrupts. The HDCU was tested with

the same algorithm proposed by [25] for the Hazard Unit in a Dual issued

Microprocessor where Performance Counters are used. For the ICU the

algorithm that it is used is the one previously mentioned by [26]. Both

algorithms are applied to all the cores (Core A, B and C). and the results are

presented in the Figure 5.5.

Page | 47

The Figure 5.5 shows the results of the fault simulations of ICU and

the HDCU in two different contexts. The fourth column shows the fault

coverage achieved when the STLs are applied in a single-core scenario, only

one core is active at a time, and the proposed cache approach is not applied.

In this single-core scenario the test programs achieved stability in the test

signature. In this case there is no Performance monitors added to the

signatures, and the expected test signature stores only the results of the

instructions. As it is expected the execution of the STLs in Single core are

stable meaning that the fault coverage under these conditions is stable.

Core Module
Number of

faults
FC Single-Core
no caches [%]

FC Multicore
with caches [%]

A
ICU 14,230 46.57 51.36

HDCU 16,096 62.53 70.37

B
ICU 13,149 46.39 50.97

HDCU 15,783 63.84 70.12

C
ICU 13,888 54.94 60.91

HDCU 19,931 65.66 68.09

Figure 5.5, ICU and HDCU Fault simulation results, Single-Core vs
Multicore.

The last column of the Figure 5.5 shows Fault simulation results that

are achieved when the STLs are executed under the proposed cache-based

methodology. The methodology archives stable execution and stability in the

test signature when all the cores are active and all the cores are running

concurrently their test procedure. Other important fact is that when the STLs

are applied without activate the cache memories, the test procedure

inevitably failed in any configuration. Therefore, the proposed approach is

crucial in order to reach stability in the test signatures for then compute the

fault coverage.

The results in the Figure 5.5 showed that the cache-based approach

achieves higher fault coverage in both units under test (ICU and HDCU) in

all the cores (all cores are active at a time) in comparison with the single core

scenario (one core is active at a time). Rather than be more effective when

Page | 48

STLs run in a single core scenario, the system suffers important latency due

to the memory subsystem. The system takes eight clock cycles when

fetching an issue packet from the Flash memory. Due to this latency the

effectiveness of the STLs drops. When the STLs do not execute

continuously, they do not excite all the possible paths that the test is

designed for neither they do not trigger all the imprecise interruptions. All

those clauses are reflected in the lower fault coverage achieved in a single-

core scenario.

Meanwhile, in the second scenario there is no latency when fetching

an issue packet from the Instruction Cache memory, it takes one clock cycle

rather than eight. Another point that worth to mention is that the HDCU with

the proposed approach achieves similar fault coverage in the three cores,

around 70 percent. Nonetheless, in the ICU of the core C the fault coverage

achieved around 10 percent better effectivity compared with core A and B.

This difference basically depends on the different implementations of the ICU

depending on the core. The ICU in core C exposes some software-

accessible registers that are used to identify the type of possible interrupts

that might appear. While this operation in the cores A and B are mapped

using the same bits. This statements clearly affect the obtained fault

coverage.

Comparisons with Other Solutions

The last analysis presented in this work is compare the proposed

solution with the other solution that is used nowadays for testing multicore

microprocessors, this alternative solution uses the microprocessor’s Tightly-

Coupled Memories (TCMs). Store STLs in the TCMs is proposed by [27],

They also can be found in the literature as scratchpad memories proposed

by [28]. TCM based solution are used for executing programs in real-time.

What they proposed is copy the program when the system is booting and

then execute it from the instruction TCM. A TCM is a reserved space of the

SRAM memory but without the concept of Data coherency that exist in a

Caches memory because it is in fact a real copy of the program. This implies

that it must be reserved a permanently space for the TCM in memory for

testing purposes.

Page | 49

TCM-based approach has similar advantages alike the cache-based

one proposed in this work. However, it must be noticed the amount of SRAM

memory space that is needed to reserve, it is the actual size of the whole test

library. Additionally, the fact that the reserved space must be fixed during all

the time that the microprocessor is in use, it is clearly a weak point. The

impact of this clauses affects the test library portability and flexibility. Unlike

the cache based one no extra memory space must be reserved. The test

programs are designed for: fit into the cache, activate the caches memories,

load and run the tests, and deactivate the caches memories. Furthermore,

as soon as the test it is executed, the caches become available for the

microprocessor. Which means that the instructions of the test can be

replaced with other instructions or with another test program.

SOLUTION
Overall Memory

Overhead
[bytes]

Execution Time
[Clock cycles]

Increment
Execution Time

TCM-BASED 2,874 16,463 0 %

CACHE-BASED 0 18,043 9.59 %

Figure 5.6, TCM vs Cache methods, Execution Time and Memory Storage.

In the Figure 5.6 it is shown the two approaches, TCM-based and

Cache-based. It is reported the execution time and the Overall Memory

Overhead of both strategies. Both solutions achieve similar results when

STLs target imprecise interruptions and Hazard Detection Units, Since the

results are similar those are not reported here. The complexity of the two

methodologies is reduce of additional some instructions that are added to the

test, this means they do not have substantial differences in terms of flash

memory storage. At the same time the fault coverage remains the same in

both strategies.

As it can be noticed by the reader the difference that the Figure 5.6
shows is that the TCM-based, requires copying the test program to the

Page | 50

SRAM, and then being executed. However, in comparison with a cache-

based strategy there is not a significant difference in terms of clock cycles, it

is around 1,500 clock cycles more. The cache-based one it is larger since as

it was exposed in the methodology exposed in the Error! Reference source n

ot found. the test should be executed twice in order to load all the test in

cache. If it is considered that this difference might be negligible when the STL

is executed at-speed (8.25µs when the considered SoC operates at its

maximum frequency of 180 MHz). The other significant difference is the

amount of extra memory space that is required for the TCM methodology.

The cache-based approach does not increase the overall memory footprint

of the self-test procedure.

Page | 51

Conclusion

The use of a cache-based approach for testing Multicore Architectures

achieves deterministic execution and solves the problematics that come out

when self-test procedures work in a multicore scenario. The methodology

provides a deterministic fault coverage, a stable signature, and a steady time

predictability. The solution does not need neither an additional in-built

hardware nor external device. This is an advantage because the solution is

convenient for online testing. The carried-out experiments support the

proposed methodology because of its applicability to any self-test procedure.

The memory space required for this methodology does not increase and

does not need any additional SRAM space reserved for testing, as in case

of Tightly-Coupled-Memories (TCM) based methodology. The only concern

is that the execution time is longer in comparison to TCM-based ones.

However, this difference is not significant since the cache-based

methodology only requires slightly more clock cycles.

Page | 52

Appendixes

Appendix 1

Page | 53

Bibliography

[1] F. Reimann, M. Glaß , j. Teich, A. Cook, L. Rodríguez Gómez, D. Ull,

H.-J. Wunderlich, U. Abelein and P. Engelke, “Advanced diagnosis:

Sbst and bist integration in automotive e/e architectures,” in 2014 51st

ACM/EDAC/IEEE Design Automation Conference (DAC), June 2014.

[2] Library, ARM Software Test, [Online]. Available:

https://www.arm.com/products/development-tools/embedded-and-

software/software-test-libraries. [Accessed 2019].

[3] Infineon Software Test Library, [Online]. Available:

https://www.hitex.com/tools-components/software-

components/selftest-libraries-safety-libs/pro-sil-safetcore-safetlib/.

[Accessed 2019].

[4] Cypress Software Test Library, [Online]. Available:

https://www.cypress.com/file/249196/download. [Accessed 2019].

[5] Renesas Software Test Library, [Online]. Available:

https://www.renesas.com/eu/en/products/synergy/software/add-

ons.html#read. [Accessed 2019].

[6] Microchip Software Test Library, [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf.

[Accessed 2019].

[7] P. Bernardi, R. Cantoro, S. De Luca, E. Sánchez and A. Sansonetti,

“Development flow for on-line core self-test of automotive

microcontrollers,” IEEE Transactions on Computers, vol. 65, no. 3, p.

744–754, March 2016.

[8] Thatte and Abraham, “Test generation for microprocessors,” IEEE

Transactions on Computers, Vols. C-29, no. 6, p. 429–441, June 1980.

[9] A. Paschalis, D. Gizopoulos , N. Kranitis, M. Psarakis and Y. Zorian ,

“Deterministic software-based self-testing of embedded processor

Page | 54

cores,” in IEEE Proceedings Design, Automation and Test in Europe.

Conference and Exhibition 2001, Munich, March 2001.

[10] M. Psarakis, D. Gizopoulos, E. Sanchez and M. S. Reorda,

"Microprocessor Software-Based Self-Testing," IEEE Design & Test of

Computers, vol. 27, no. 3, pp. 4 - 19, May 2010.

[11] N. Kranitis, M. Andreas, T. George, P. Antonis and D. Gizopoulos,

“Hybrid-SBST Methodology for Efficient Testing of Processor Cores,”

IEEE Design & Test of Computers, vol. 25, no. 1, pp. 64-75, 08 January

2008.

[12] L. Chen and S. Dey, “Software-based self-testing methodology for

processor cores,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 20, no. 3, pp. 369-380, March

2001.

[13] A. Floridia, D. Piumatti, A. Ruospo, E. Sanchez, S. D. Luca and R.

Martorana, “A Decentralized Scheduler for On-line Self-test Routines in

Multi-core Automotive System-on-Chips,” in 2019 IEEE International

Test Conference (ITC), Washington, 2019.

[14] M. Lv, W. Yi, N. Guan and G. Yu, “Combining Abstract Interpretation

with Model Checking for Timing Analysis of Multicore Software,” in 2010

31st IEEE Real-Time Systems Symposium, San Diego, CA, USA,

2010.

[15] A. Apostolakis, D. Gizopoulos, M. Psarakis and A. Paschalis,

“Software-Based Self-Testing of Symmetric Shared-Memory

Multiprocessors,” IEEE Transactions on Computers, vol. 58, no. 12, pp.

1682-1694, December 2009.

[16] M. A. Skitsas, C. A. Nicopoulos and M. K. Michael, "DaemonGuard:

Enabling O/S-Orchestrated Fine-Grained Software-Based Selective-

Testing in Multi-/Many-Core Microprocessors," IEEE Transactions on

Computers, vol. 65, no. 5, pp. 1453 - 1466, 1 May 2016.

Page | 55

[17] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital,

Memory and Mixed-signal VLSI Circuits, Kluwer Academic Publisher,

2000.

[18] J. L. Hennessy and D. A. Patterson, Computer Architecture A

Quantitative Approach, 5th ed., Waltham, MA, USA: Morgan

Kaufmann, 2012.

[19] STMicroelectronics, "st.com," STMicroelectronics. [Online]. [Accessed

2021].

[20] STMicroelectronics, "st.com," May 2021. [Online]. Available:

https://www.st.com/resource/en/datasheet/spc584c70e3.pdf.

[Accessed November 2021].

[21] J. Smith and A. Pleszkun, "Implementing precise interrupts in pipelined

processors," IEEE Transactions on Computers , vol. 37, no. 5, pp. 562

- 573, 1988.

[22] W. Stallings, COMPUTER ORGANIZATION AND ARCHITECTURE

DESIGNING FOR PERFORMANCE, 8th ed., Upper Saddle River,,

New Jersey: Pearson Prentice Hall, 2010.

[23] T.-Y. Hsieh, M. A. Breuer, M. Annavaram, S. K. Gupta and K.-J. Lee,

“Tolerance of performance degrading faults for effective yield

improvement,” in 2009 International Test Conference, Austin, TX, USA,

2009.

[24] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A.

Raghunathan and S. Ravi, "Systematic software-based self-test for

pipelined processors," in 2006 43rd ACM/IEEE Design Automation

Conference, San Francisco, CA, USA, 2006.

[25] P. Bernardi, R. Cantoro, S. D. Luca, E. Sanchez, A. Sansonetti and G.

Squillero, "Software-Based Self-Test Techniques for Dual-Issue

Embedded Processors," IEEE Transactions on Emerging Topics in

Computing, vol. 8, no. 2, pp. 464 - 477, October 2017.

[26] P. Singh, D. L. Landis and V. Narayanan, "Test Generation for Precise

Interrupts on Out-of-Order Microprocessors," in 2009 10th International

Page | 56

Workshop on Microprocessor Test and Verification, Austin, TX, USA,

2009.

[27] J. Ax, G. Sievers, J. Daberkow, M. Flasskamp, M. Vohrmann, T.

Jungeblut, W. Kelly, M. Porrmann and M. Porrmann, "CoreVA-MPSoC:

A Many-Core Architecture with Tightly Coupled Shared and Local Data

Memories," IEEE Transactions on Parallel and Distributed Systems,

vol. 29, no. 5, pp. 1030 - 1043, 2018.

[28] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan and P. Marwedel,

"Scratchpad memory: a design alternative for cache on-chip memory in

embedded systems," in Proceedings of the Tenth International

Symposium on Hardware/Software Codesign. CODES 2002 (IEEE Cat.

No.02TH8627), Estes Park, CO, USA, 2002.

[29] M. Psarakis, D. Gizopoulos, M. Hatzimihail, M. Maniatakos, A.

Paschalis, A. Raghunathan and S. Ravi, "Systematic Software-Based

Self-Test," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 16, no. 11, pp. 1441 - 1453, 2008.

