
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

On the analysis of the criticalities of deep
neural network

Supervisors

Prof. Edgar Ernesto SANCHEZ SANCHEZ

Ph.D. Annachiara RUOSPO

Candidate

Ilaria BRAGAGLIA



Abstract

In recent years, the complexity of emerging computing systems has led to the
need of developing new algorithms and solutions for both industry and academy.
In this scenario, due to their outstanding computational capabilities, artificial
neural networks (ANNs) have become attractive solutions in tasks such as image
classification, such as radars, flight control, robots, self-driving cars, space appli-
cations. However, to adopt this solution safely in human context, it is crucial to
assess their reliability. This work presents a methodology to identify the most
critical neurons of a convolutional neural networks (CNN) (Resnet-18) trained on
two different datasets, i.e. MNIST and CIFAR-10. This method is based on two
levels of analysis: first, the neuron is viewed as an element of each output class
(class-oriented analysis); second, the same is interpreted as belonging to the entire
neural network (network-oriented analysis). In detail, a neuron that contributes
more to the final prediction of the network and therefore carries more information
than others, was considered critical. The proposed methodology has been validated
by means of two software fault injection campaigns, through which we confirmed
that the accuracy of the network decreased much faster in the case of fault involving
neurons defined as critical with respect to neurons of minor importance within the
network. Subsequently, to improve the reliability of the target convolutional neural
networks, a strategy based on the Triple Modular Redundancy (TMR) technique
was adopted. The goal was to identify a mitigation technique able to protect
all the neurons labeled as critical in the previous step in case they were subject
to a fault. The TMR is a fault masking technique that, in our study, allowed
to triple all those critical neurons and, through the usage of a majority voter,
propagate in the successive layers of the network the most common output of the
said neuron, masking possible single faults. In particular, through software fault
injection campaigns on different percentages of neurons , we have applied the TMR
technique on all the neurons deemed critical and we have shut off all the outputs
of those neurons considered not important for the elaboration of the final forecast
by the network. Using this method of shutdown parallel to the tripling, we have
investigated the trade-off between memory footprint and reliability.
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Chapter 1

Introduction

Nowadays, artificial neural network (ANN)-based solutions are spreading more
and more in safety-critical applications across different domains, due to their
outstanding capabilities. Those brain-inspired computing system were developed
to be able to mimic complex features of the biological human model. The human
nervous system is a complex network consisting of bilions of neurons and synapses,
it is characterized by a plastic ability, allowing to remodel, repair and reorganize
its functions, even in presence of faults.[1] Artificial neural networks (ANN)s are a
generalized mathematical model, inspired by the biological equivalent, representing
today a valid and attractive solution for both industry and academy. Image
classification performed in safety-critical applications (i.e. radars, flight control,
robots), is the field where ANNs are used the most. [2]
A safety-critical system or a life-critical system is a system which, if subject to a
malfunction or to a failure, may cause serious consequences to the environment
or to users.[3] This premise highlights the urgent need for ANN to ensure high
reliability and tolerance to faults.[4] Being the biological model counterpart, artificial
neural networks (ANN) are considered inherently robust and fault tolerant.[5] This
assumption derives in particular from two characteristics of the model [6]:

• over-provisioning: in a generic network, the number of neurons is higher than
the minimum amount of neurons required to provide an output prediction. [7]

• a parallel and distributed structure.

The Figure 1.1 reported below shows the structure of a generic neural network.
Thanks to the characteristics described, a network is able to produce the expected
output even if a subset of its neurons are subject to behavioural errors (i.e. a
neuron stops its activity or sends a different value than the expected one). However,
when the number of errors exceeds the acceptable threshold, network reliability
and accuracy degrades quickly.
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Introduction

Figure 1.1: Common ANN architecture.

Motivated by the above-mentioned considerations, the objective of this study
is to directly access the weak points of the network (i.e. all the neurons that
most influence its robustness in case of a malfunction) and therefore, to propose
a methodology that is able to overcome this scenario ensuring, even in case of
behavioral errors, an high reliability. The key points of this research can be
summarised in the following:

1. The first part of the methodology aims to identify which neurons are more
critical within a neural network and to produce an ordered list of those neurons
that are most influential in generating the final prediction. In particular,
this technique involves two different levels of analysis: first, each neuron
is considered as a processing element of each output class (class-oriented
analysis); second, each neuron is seen as a processing element of the entire
neural network (network-oriented analysis). Using a Residual Neural Network
(ResNet-18) trained on two different datasets: MNIST and CIFAR-10, the
proposed approach is validated by means of software fault injection (FI)
campaigns.

2. Based on the criticalities identified in the previous step, to achieve network
reliability, even in the presence of failures, the TMR mitigation technique
was adopted. A fixed percentage of neurons were protected from individual
behavioral errors and using this redundancy technique, the network is able
to mask and thus to not propagate faults, within the successive layers of the
network. At the end of this network fault-tolerance re-design, software FI
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Introduction

campaigns were again performed for validation purposes.

Will then be demonstrated that by using the proposed mitigation technique to
protect critical neurons, even in the scenario where the network is subject to a
high number of multiple faults, the result in terms of reliability is still high. It is
necessary to specify that all the proposed considerations and approaches within the
following chapters, result from an analysis of neural networks carried out exclusively
at software level.
Chapter 2 provides background knowledge on ANNs, then the selected ResNet-18 is
described and introduces the concepts of fault, error and failures and the main fault
models in the field of artificial neural networks. The proposed approach is explained
in details in Chapter 3. In Chapter 4, all the details about the implementation of
the network and the tools used to develop it, are given. Next, Chapter 5 describes
the experimental setup while Chapter 6 shows the experimental results. Finally
Chapter 7 draws some conclusions and feature directions.

3



Chapter 2

Background

This chapter introduces background knowledge on the topics dealt during this
Master Thesis. Initially, Section 2.1 introduces the biological and artificial model
of neurons (2.1.1), presenting an overview on the neuron connection architectures
(2.1.2), on ANN activation functions (2.2) and finally on Learning algorithms (2.3).
Then, the main performance and architecture features of the selected residual
neural network (ResNet-18) are described in Section 2.4. Finally, Section 2.4.4
provides an overview of the software-level fault models in DNNs.

2.1 Neural Networks

2.1.1 Models of Biological and Artificial Neurons
The human brain represents the pivotal example of the existence of massive neural
networks capable of solving and managing in parallel cognitive and control tasks
(e.g. face recognition, speech, body functions). Starting from the generalization
of mathematical models of biological nervous systems and the introduction of a
simplified model of neurons realized by McCulloch and Pitts (1943), the concept
of ANNs has been developed.[8] The human brain consists of more than 10 bilion
interconnected neurons and each neuron is shaped by a cell body or soma, by
a single fiber, the axon, and several nerve fibers called deindrites (Fig.2.1a)[9].
Biologically, neurons transmit signals through synapses, a complex chemical process
through which specific transmitters substances are released. Whenever the potential
within the neuron cell has been stimulated enough by the incoming signals to reach
the threshold, a pulse is sent down the axon (Fig.2.1c). However, if the required
threshold level is not reached, no actions are generated. Analogously, an ANN
consists of an elevated numbers of basic processing elements, called neurons,
wired together by weighted connections. Comparing the models, biological
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2.1. NEURAL NETWORKS

synapses becomes the connections weights that menage the input signals, while, the
activation function is the artificial counterpart representing the non-linear behavior
of biological neurons(Fig.2.1b). Referring to Figure 2.1b, the neuron’s output signal
yj is given by the following relationship:

yj = f(x, w) = f(
nØ

i=1
(xi · wi)) (2.1)

Where x = x1, x2, ..., xn are the input signals, w = w1, w2, ..., wn is the weight
vector and the function f(x, w) is the activation function.
The output neuron yj is computed as:

yj =

1 if (qn
i=1(xi · wi)) ≥ θ

0 otherwise
(2.2)

Where θ is the threshold level.
A multilayered neural network is illustrated in Figure 2.1d.

Figure 2.1: A biological neuron in comparison to an artificial neural network: (a)
human neuron; (b) artificial neuron; (c) biological synapse; and (d) ANN synapses.

5



2.2. ACTIVATION FUNCTIONS

2.1.2 Artificial Neural Networks Architectures

The standard architecture of an ANN consists basically of three types of neuron
layers: input, hidden and output layers. As for the connections between the
different layers, one main group of networks is feed-forward .[8] In a feed-forward
(Fig.2.2) neural network the information flows in only one course from the input
nodes to the output nodes, (i.e., the output of any layer does not affect that same
layer without creating loops). This type of architecture is also called bottom-up or
top-down organization.[10]

Figure 2.2: Feed-forward neural network

2.2 Activation Functions

The key role of the Activation Function in ANN is to decide whether a neuron
should be activated or not. By calculating the weighted sum of input signals and
by adding the bias, it usually limits the output range. [11] Activation Functions,
also known as Transfer Functions, are distinguished mainly in linear and non-linear
activation functions.

6



2.2. ACTIVATION FUNCTIONS

Figure 2.3: Linear Activation function.

2.2.1 Linear activation function
Linear activation function is also called identity or no activation.
As shown in the figure on top Fig. 2.3, the activation is proportional to the input
following the relationship:

f(xi) = kxi (2.3)

where xi is the input of the activation function f and k is a fixed constant. The
output of an identity function is k times the input, therefore the output’s range
can be [−inf ,+inf ]. Moreover, since the derivative is a constant, also the gradient
is a constant and therefore, it is unrelated with the input. The main drawback
of linear activation functions lies in the fact that the network cannot improve the
error so that it is not able to identify complex patterns from the data.

2.2.2 Non-Linear Activation Functions
Non-linear activation functions are very used because they allow to interpret and
process a wide variety of data and to range outputs differently. In this sub-sequence
the three most commonly used non-linear activation functions will be introduced.

1. Sigmoid (S shaped) function.
The Sigmoid Function is a nonlinear curve on the ranging [0,1] and is given
by:

f(xi) = 1
1 + e −xi

(2.4)

7



2.2. ACTIVATION FUNCTIONS

Figure 2.4: Sigmoid Activation function.

f ′(xi) = e −xi

(1 + e xi)2 (2.5)

As shown in 2.4, the output of Sigmoid Function is steep, around 0 small
changes of input would bring large changes of output, instead at both ends of
the curve, the output tends to 0 or 1.

2. Tangent hyperbolic function

Tanh activation function represents a Sigmoid variant in which the output is
zero-centered and is given by:

tanh(xi) = 2
1 + e −2xi

− 1 (2.6)

tanh′(xi) = 4e −2xi

(1 + e −2xi)2 (2.7)

Compared with Sigmoid Function, the key difference is the Tanh output
ranging that is [−1,+1]. Although the curve is less steep than the Sigmoidal

8



2.2. ACTIVATION FUNCTIONS

Figure 2.5: Tanh Activation function.

activation function, also in this case we find the problem of ’vanishing gradients’.
Tanh activation functions are typically used in hidden layers of ANNs.

3. Rectified Linear Unit.

ReLu is one of the most widely used activation functions especially when using
Convolutional Neural Networks (CNN) or Deep Learning (DP).
The main advantage of the ReLu is the fact that this activation function
addresses the vanishing gradient problem. When we train a very deep neural
network, using the activation functions described above, the gradient decreases
exponentially propagating from the last layer to the first. Due to this behavior,
the initial layers, often crucial for final prediction, are not actually updated in
the training process. The ReLu, having constant and higher gradients than
Sigmoid and Tanh, directly tackles the vanishing gradient problem. The ReLu
activation function is given by:

f(xi) =

xi if xi ≥ 0
0 if xi < 0

(2.8)

9



2.3. ANN LEARNING PROCESS

Figure 2.6: ReLu Activation function.

2.3 ANN learning process
Being ANN an adaptive complex system, the learning process implies that each
processing element is capable of changing its input/output behavior due to the
changes in environment. Basically, during the learning process the network adjusts
its own weights to obtain better results in terms of accuracy.[12]
One of the main learning paradigms for ANNs is the Supervised Learning.
The Supervised Learning or Associative learning in which a sort of ’teacher’ is
defined which is able to pilot the training phase by providing pairs of input and
output, the network learns prediction. In the field of ANNs such technique is used
in feedforward models. Learning during the training phase, in supervised artificial
neural network models, is also called error back-propagation algorithm, in which the
network, based on the difference between the calculated output and the expected
one, adjust the weights from the output layer until the input layer. The flow going
forward from the input to the output and viceversa is called epoch. This recursive
process of computations is continuously. till the network converges. [13]

10



2.4. RESNET-18

2.4 ResNet-18
This section is entirely dedicated to the description of the neural network used
throughout the entire project (i.e ResNet-18). Starting from some basic notions
about Convolutional Neural Networks (CNN) 2.4.1, Section 2.4.2 describes the
intuition behind the emergence of residual neural networks and the improvements
to DP in the field of Computer Vision. Finally, in section 2.4.3, the main features
of the ResNet-18 architecture are presented.

2.4.1 Convolutional Neural Networks
Convolutional neural networks (CNNs) play a key role in image classification and
recognition, in Computer Vision domain. An image (i.e a matrix of pixels) to
be recognized is provided to the input layer of the network and its output is the
predicted class label. A neuron in a later layer is related, unlike the networks
described in the previous sections, only with some neurons in the preceding layer.
This type of circumstantial correlation to a region is called a receptive field which,
from a mathematical point of view, is represented by a matrix of pixels that are
convoluted with the weight matrix, called Kernel matrix. The Kernel matrix is
shared with all the receptive fields of the same input feature map, reducing decidely
the number of trainable parameters. With this approach all relevant features,
occurring at different locations in the input feature map can be detected.[14]
N different kernel applications, also named convolution operations, are able to

Figure 2.7: 2d Convolution operation.

11



2.4. RESNET-18

extracts N number of features from the input image in a single layer representing
distinct features, leading to N output feature maps. The kernel matrix is able
to sliding horizontally as well as vertically, over the input image. As shown in
the Figure 2.7, a convolution operation is nothing more than a sum of products
element by element. In a CNN, in addition to the convolution layer is also defined
a Pooling layer. The main benefits of this layer are first to reduce the dimensions
of the feature maps as well as to reduces the number of learnable parameters, than
to make the network much more robust to variations in the position of the features
in the input image.

Figure 2.8: Pooling layer, a practical example.

Pooling layers can be Max Pooling or Average Pooling. While Max Pooling returns
the maximum value from the portion of the image covered by the Kernel, the
Average Pooling returns the average of all the values from the portion of the image
covered by the Filter (Fig. 2.8). Finally, to produce the final prediction, the output
of the previously described layers is passed to a Fully Connected Layer.

12



2.4. RESNET-18

2.4.2 Residual Neural Network, intuition and improve-
ments

Residual neural networks ResNet were first introduced in 2015 by Kaiming He,
Xiangyu Zhang, Shaoqing Ren and Jian Sun in their paper “Deep Residual Learning
for Image Recognition”. [15]
Before the development of ResNet, to solve complex problems, additional layers
were added creating deeper and deeper neural networks. However, it has been
shown that the error in prediction increases with the depth of the network.[15]
Hence the need to establish a depth threshold for CNNs. As shown in the Figure
2.9 in both cases of training and testing data, the error for 56-layer is more than a
20-layer network.

Figure 2.9: Training error (left) and test error (right) on CIFAR-10 with 20-layer
and 56-layer “plain” networks.[15]

When deeper neural networks begin to converge, degradation may occurs which
leads to a clear decrease in network accuracy. This problem has therefore been
dealt with by the introduction of ResNet, and in particular by the development of
the so-called Residual Blocks.

Figure 2.10: ResNet Skip connection. [15]

13



2.4. RESNET-18

The residual blocks introduce a direct connection, which is called skip connection,
which allows to skip some layers in the middle. The original mapping becomes
now: F(x) + x where x is the input feature map, therefore this architecture is
also called Identity mapping. The use of residual blocks directly addresses the
problem of vanishing gradient in DNN, allowing even the model to learn the identity
functions. It is essential to stress that the use of skip connection does not increase
the number of parameters and does not even affect the computational complexity
of the network.

2.4.3 ResNet-18 architecture
The residual neural network (ResNet-18) used in this study consists of 18 layers.

Figure 2.11: ResNet-18 Architecture

As shown in Figure 2.11, for each pair of convolution with 3x3 Kernel, there is a
skip connection. This kind of organization is also called Basic Block which is a
2 layer deep Residual Block (Fig.2.12). Each Block takes as input a feature map
characterized by a certain number of input channels and, after passing trough a flow
of operations (i.e two Convolutional layers,Batch Normalization (BatchNorm),ReLu
activation function), an output feature is obtained which is added to the input
feature map. If there is a mismatch between the size of the feature maps that
need to be added, the incoming feature map passes directly through the identity
connection.
The use of BatchNorm inside the Basic Block, is another key step to gain im-
provements in network performances. BatchNorm is able to make fundamental
improvements to the optimization problem, helping to tackle the vanishing gradient

14



2.4. RESNET-18

Figure 2.12: ResNet-18 Basic Block

problem and to obtain a faster network convergence. [16]

2.4.4 Software-level Fault Models in Deep Neural Networks
In the current section the concept of reliability of neural networks is introduced,
emphasizing the distinction between faults, errors and failure. In particular, the
issue of software faults for DNN will be addressed.
Nowadays, ANNs are a valid solution for applications that are considered safety-
critical such as robots, flight control, space applications and self-driving cars. It
is therefore necessary to ensure that these networks are considered reliable. It
is a fact that neural networks are inherently reliable because on the one hand,
they have a distributed and parallel structure and on the other, they are equipped
with a number of neurons that is greater than the minimum number required to
carry out the computational process.[17] Considering the biological parallelism, the
human brain itself is able to tolerate that a small number of synapses or neurons
do not behave as desired. Similarly, ANNs are able to menage the fault of a limited
number of neurons due to over-provisioning. After providing this introductory
scenario, the concepts of fault, error and failure are explained.[18]

• A fault or a defect is an anomalous physical condition in the system and
corresponding to its temporal characteristic could be classified as permanent
or transient. A permanent fault is an unrecoverable defect in the system,
stable and fixed over time. A transient fault is instead, a defect active for a
short period of time. A fault could gives rise to an error.

15



2.4. RESNET-18

• An error is the manifestation of a fault in the system, for which the logical state
of an element differs from its expected value. In the neural network scenario,
each neuron is considered an independent identity that can fail regardless of
failure of any other. Referring to behavioral error, we can distinguish between
two categories of errors:

– Crash: Neurons and synapses (i.e. the connections between different
neurons) completely stops their activity. A crashed neuron can be modeled
by using the dropout fault model, so that the neuron output is set to
0. At the other hand, a crashed synapses can be modeled as a synapses
weighted by value 0.

– Byzantine : Neurons or synapses send a value different from their nominal
expected output of the activation function within their capacity.[7]

• A failure which is the propagation of errors at the system level. A failure
evolves therefore, into a wrongly prediction of the output.

16



Chapter 3

Proposed Approach

The entire study aims to propose a methodology that is able to guarantee excellent
results in terms of reliability of DNNs, even in the presence of behavioural errors at
the behavioral level (i.e. crash neurons (2.4.4)). Going step by step, this chapter
will describe the process through which neurons considered most critical for a
neural network have been identified (3.1), and will explain in detail the redundancy
method used to improve the accuracy of the network even in the presence of
behavioral error.

3.1 Identification of the Criticality of Single Neu-
rons

First of all when we refer to critical neurons we indicate the subset of neurons that
contribute more to the final prediction of neural networks, in other words we refer to
those neurons that carry more information than others.

[19]

The study of artificial neural net-
works as mathematical models
shows, as in the next figure, how
the output of an artificial neu-
ron is nothing more than the re-
sult of a summation, which then
passes through the ReLu activation
function. Being ReLu the activa-
tion function used, critical neurons
are those that produce the highest
value in output since they propa-
gate their value within the network, contributing to the final prediction. Further-
more, by considering possible behavioural errors that may cause a change of sign in

17



3.1. IDENTIFICATION OF THE CRITICALITY OF SINGLE NEURONS

the output, it is essential to consider the value of the neuron in absolute value. The
theoretical-based criticality analysis is also reinforced by a further key phenomenon
derived again from the biological counterpart. The memory of the human brain
is distributed according to specific groups of neurons that are activated. In other
words, depending on the input stimuli, the neurons are activated in particular
pathways of neuronal activity. In the artificial neural model, this neuroscientific
theory leads us to consider the net as a multi-output neural network, and therefore
the contribution of a neuron can be seen from two different points of view. On the
one hand, the neuron should be able to predict the output of the single class, on
the other hand it should be able to provide the right prediction of the entire neural
network. To clarify, considering a two-output neural network able to distinguish
between dogs and cats pictures; following the explanation we can say that there are
neurons more significant for the class of dogs and others for the class of cats. At the
same time, however, all neurons must lead to a correct overall output prediction.
On this premise is based the methodology of the ranking of critical neurons for an
ANN. It consists of three steps:

• Class-oriented analysis (CoA): For each individual output class during each
training inference, the output values produced by each neuron are collected.
At the end of the network training phase, the average in absolute value of the
outputs of each neuron is calculated. Finally, according to the previous results
a sorted decreasing list for each class is produced, so we can extrapolate which
are the most critical neurons for each output class.

• Network-oriented analysis (NoA): The process above is repeated for the
entire neural network, without taking into account the distinctions between
different output classes. A single sorted decreasing list is produced.

• Final network-oriented list : during this phase a single final list is created,
considering both the criticalities per classes and the criticalities for the entire
network.

It is important to point out that the search for critical neurons took place consider-
ing exclusively the convolutional layers, since the BatchNorm and the Activation
Function (2.2), are only operations that modified the final output neuron, without
adding other processing element to the network. Moreover, the output of each
neuron is sampled after the BatchNorm and the Activation Function. Going into
the detail of the methodology, during the CoA phase, the differentiated train dataset
for each output classes is fed to the network and the output values of each neuron is
therefore collected for every inference. At the end of the process, the average abso-
lute value for each neuron is achieved. As for the NoA phase, the process of creating
the ordered list remains unchanged but in this case the network is trained on the
entire train dataset without any difference between the output classes. As explained
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3.2. TRIPLE MODULAR REDUNDANCY ON ARTIFICIAL NEURAL NETWORK.

in the introduction to the chapter, a neural network is regarded as a multi-output
neural network. Hence the need to carry out the third stage and generate the
Final network-oriented list. It might happen that the critical neurons for individual
classes take a low value in the NoA. The final sorted list of critical neurons is
computed by executing the union without repetitions of all the classes’ lists and
the network list. All three steps mentioned above can be viewed in the image be-
low, which is a practical example of the entire algorithm with CIFAR-10 dataset.3.1

Figure 3.1: The critical neuron identification process : a pratical example with
CIFAR-10 dataset

3.2 Triple Modular Redundancy on Artificial Neu-
ral Network.

As mentioned in the previous chapters, the entire study aims to propose a method-
ology that is able to ensure that an artificial neural network is able to guarantee a
high accuracy, even in the presence of behavioural errors. The goal is therefore to
create a neural network that can provide the right prediction even when one or
more of its processing elements fail. In this study we considered that the neural
network may be subject to a fault model whereby one or more neurons could be
Crash or Byzantine neurons.(2.4.4) In this section is then presented the model of
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3.2. TRIPLE MODULAR REDUNDANCY ON ARTIFICIAL NEURAL NETWORK.

fault tolerance design used to overcome this type of undesirable scenario.
First of all, among the various techniques of fault tolerance design at the software
level, it is essential to introduce the concept of redundancy. Basically, a software
system is redundant when it is able to perform the same functionality through the
execution of different processing elements. In the field of redundancy techniques
one of the most used approaches to meet the strict reliability requirements is the
use of Triple Modular Redundant architecture. [5] The key feature of the TMR
technique lies in the concept for which three separate units, working in parallel,
performes the same process. The result is processed by a majority-voting element.
Of course, it is necessary to specify right now that this type of architecture is able
to mask the error of a single processing unit. In other words, if two of the three
processing units are subject to a fault, the voter implemented in the TMR will
not be able to mask the error. However, if we consider our specific scenario where
neurons are supposed to be subject to behavioral errors, this kind of fault tolerance
design, turns out to be an excellent compromise between the ability of getting
a correct neural network’s output prediction and memory footprint. In details,
this modular redundancy technique is used to protect all those neurons that were
identified as critic in the previous phase.

Figure 3.2: TMR implementation on a critical neuron

As shown in the picture above (Fig.3.2), the critical neuron identified with ID13,
is duplicated within the network. In particular, each single replica performs in
parallel, the same summation and then passes into its own activation function.

20
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Each process element is therefore fed by the same duplicate input signals so as
to obviate upstream errors due to writing and reading in memory of the weight
matrices. Each neuron replicas produces its own output that feeds the majority
voting unit. The voter in this case processes the outputs received by each processing
modules and returns the majority output. Considering the particular case where
two or all of the computation units are subject to behavioural errors (i.e. multiple
faults), the voting unit is not able to return any majority. We have therefore
agreed that in the event of the scenario mentioned above the output returned by
the voter (i.e. y13) is zero and that therefore the neuron13 behaves like a Crash
neuron without any possibility of masking the error.
Finally, as for the list of Crash neurons, extrapolated from the previous selection
process, having been deemed not critical to the network, these are not protected
but rather cut (i.e. their output is set to 0) so as to achieve greater network
computational efficiency and better results in terms of memory footprint.
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Chapter 4

Case study

In order to prove the effectiveness of the proposed methodology, the Residual Neu-
ral Network (ResNet-18) 2.4.3 is used, trained on two representative and famous
dataset: CIFAR-10 [20] and MNIST [21].
The CIFAR-10 dataset (Canadian Institute For Advanced Research) is an object
recognition dataset made of 60000 color images of size 32x32. It consists of ten
output classes (i.e. airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck) with 6000 images for each class. The CIFAR-10 dataset is composed
of 50000 training images and 10000 test images and in particular the test split
contains of exactly 1000 randomly-selected images from each class.[20](4.1)

Class MNIST CIFAR-10
Train Test Train Test

1 5923 980 5000 1000
2 6742 1135 5000 1000
3 5958 1032 5000 1000
4 6131 1010 5000 1000
5 5842 982 5000 1000
6 5421 892 5000 1000
7 5918 958 5000 1000
8 6265 1028 5000 1000
9 5851 978 5000 1000
10 5949 1009 5000 1000
Total 60000 10000 50000 10000

Table 4.1: MNIST and CIFAR-10 Image Distribution
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The MNIST database was created in 1998 as a combination of two of NIST’s
databases (i.e. National Institute of Standards and Technology database) : Special
Database 1 and Special Database 3. In particular, Special Database 1 and Special
Database 3 consist of digits written by high school students and employees of
the United States Census Bureau, respectively.[20] The MNIST dataset (Modified
National Institute of Standards and Technology database) is an handwritten digits
recognition dataset that consists of 60000 training and 10000 test gray-scale images
of size 28x28.As shown in the table 4.1, the distribution of MNIST images is not
uniform for both the train set and the test set.
As regards the implementation of ResNet-18, it was developed using PyTorch [22]
on a Windows server equipped with an Intel Core CPU i7-8565U and 8 GB of RAM.
PyTorch is an optimized tensor library most used for DP and ML applications,
in particular it is an open-source machine learning library for Python, mainly
developed by the Facebook AI Research team, released in 2016. [22][23]. PyTorch
is today one of the most used platforms both in industry and academia.

Layer Name Output Size ResNet-18
conv1 14x14x64 7x7,64 stride 2

conv2x 7x7x64

3x3 max pool, stride 2
3x3,64, stride 1
3x3,64, stride 1
3x3,64, stride 1
3x3,64, stride 1

conv3x 4x4x128

3x3,128, stride 2
3x3,128, stride 1
3x3,128, stride 1
3x3,128, stride 1

conv4x 2x2x256

3x3,256, stride 2
3x3,256, stride 1
3x3,256, stride 1
3x3,256, stride 1

conv5x 1x1x512

3x3,512, stride 2
3x3,512, stride 1
3x3,512, stride 1
3x3,512, stride 1

fully connected 10 512x1000 fully connected

Table 4.2: ResNet-18 architecture trained on MNIST
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ResNet-18 is a Residual Neual Network composed by 18 layer. In particular, as
counted by the authors in the paper [15], the network is composed of a single
initial convolution followed by 8 Residual Blocks 2.10, in which 2 convolutions
are carried out and finally the fully connected layer FC. After each convolution it
follows a BatchNorm and the ReLu activation function. ResNet-18, recives as input
images of size 28x28x1 when trained on MNIST dataset, while 32x32x3 inputs when
trained on CIFAR-10 dataset. For greater clarity, we can refer to the tables above
and below to understand the ResNet-18 implementation customized on MNIST 4.2
and CIFAR-10 4.3.

Layer Name Output Size ResNet-18
conv1 32x32x16 3x3,16 stride 1

conv2x 32x32x16

3x3, 16 stride 1
3x3, 16, stride 1
3x3, 16, stride 1
3x3, 16, stride 1

conv3x 16x16x32

3x3,32, stride 2
3x3, 32, stride 1
3x3, 32, stride 1
3x3, 32, stride 1

conv4x 8x8x64

3x3,64, stride 2
3x3, 64, stride 1
3x3, 64, stride 1
3x3, 64, stride 1

Average Pooling 1x1x64 8x8 avg pool
fully connected 10 1x10 fully connected

Table 4.3: ResNet-18 architecture trained on CIFAR-10
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Finally, ResNet-18 was trained and tested on MNIST dataset reaching a 95.53%
of accuracy , instead trained and tested on CIFAR-10 dataset, it reaches an accuracy
of 88.56%. Every detail of the implementation is then summarized in the table 4.4.

CNN
Model

dataset Application Accuracy Total Neu-
rons

Total
Conv.Neurons

ResNet-18 MNIST Image Classification 94.53 43,072 39,424
CIFAR-
10

Object Recognition 88.56 131,136 131,072

Table 4.4: ResNet-18 benchmarks.
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Chapter 5

Experimental setup analysis

During this chapter, the experimental setup is provided through an accurate
discussion. In particular, each algorithm and the corresponding parameters used in
the two macro-areas of the methodology will be presented gradually in two sections.
In each of the two experimental setup paragraphs, the methodology adopted will be
explained both as regards the Identification of the Criticality of Single Neurons (3.1)
as regards the Triple Modular Redundancy applied on critical neurons (i.e.TMR
technique) (3.2).

5.1 Critical Neurons Identification Experimental
Setup

5.1.1 Class-Oriented Analysis (CoA) Setup
First of all, each training datasets has been declined into n subsets where n is the
number of output Classes. For both datasets used, the number of output classes is
10. However, it is important to specify that this methodology can be suitable for
any different number of outputs. Regarding MNIST dataset, each class represents
an handwritten single digits between 0 and 9. CIFAR-10, instead contains 10 classes
of images belonging to one of these categories: airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks. The subsets of the training- datasets used in
this phase, therefore, contain only images that represent the selected output class.
For each training image of the selected output class, the output value assumed by
each neuron has been saved in a list updated iteration by iteration. At the end of
the collection process, the average was calculated, neuron by neuron, on each class
list. Each of the 10 lists obtained by the algorithm is then ordered in descending
manner: at the top we find the neurons activated with the highest average absolute
value, at the bottom, instead those neurons less influential for the output class
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under observation. In simpler words, the list for the particular output class, is
sorted by neuron ID from the most critical to the least one.
Subsequently, software FI campaigns were performed in order to highlight that
single output classes hold different robustness features in the presence of errors.
At this stage, to inject behavioural errors to the neurons, we decided to adopt the
Crash Neurons fault model. In particular, different percentages p% of neuron have
been set to 0, deleting their contribution. To begin demonstrating the validity of
the first area of the methodology (i.e. critical neurons identification), the same
amount p% neurons outputs is set to 0 in two different scenarios.
In the first scenario (Random), the neurons to be switched off were chosen com-
pletely randomly from the class list.
In the second (Critical) scenario, the same number p% of neurons to be switched
off is carefully selected from the top of the class list (i.e. selecting from the most
critical neurons). After each round of FI, network accuracy was recalculated using
the total number of test set images.
The experiments, independently from the dataset used, were developed for each
output class of the target ResNet-18 and particularly, they were repeated for
growing p-percentages: p = 1.0%; p = 10%; p = 20%; p = 30%; p = 50%.

5.1.2 Network-oriented Analysis (NoA) Setup
In the previous section, software FI campaigns were performed to demonstrate
that for each output class there is a set of neurons that are more relevant for the
correct output class prediction. The same process of collecting neuron outputs is
then reproduced at this stage, without differentiating by output classes. In detail,
neuron outputs are collected for each image belonging to the entire training dataset
and at the end of the process, for each neuron is calculated the average of the
absolute values collected. The output of this process is now a single ordered list
of critical neurons, where at the top we find the most critical neurons and at the
bottom level, the neurons considered to be less important for the final prediction.

5.1.3 Final Network-Oriented list Setup
At the end of the two previous phases (CoA and NoA), a final network-oriented list
is obtained on the basis of both the class and the whole train dataset criticalities.
The approach used to obtain the final list is described in details in Section 3.1
(Figure 3.1). In particular, the final list represents the point of convergence of
the two types of criticality that influence the performance of the entire neural
network. By applying the explained algorithm, the merged list, without repetition,
is generated. At this point, another software FI campaign is performed in order to
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demonstrate that the final list takes into account both the output classes criticalities
and the criticalities for the whole train dataset. Also in this case it was decided to
compare two different scenarios: the case in which a set of neurons randomly chosen
is crashed (Random) and the case in which a set of critical neurons is crashed
(Critic). Again, the same fixed amount of neurons output (p) is set to zero and the
resulting accuracy of the ResNet-18 was measured by running the total test set of
images. Particulary, each experiment is replicated for growing p-percentages such
as: p= 1%; p= 10%; p= 20%; p= 30% and p= 50%.
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5.2 Triple Modular Redundancy Experimental
Setup

The second section of this chapter is devoted to the setup of the TMR technique.
This mitigation technique (3.2) is applied on a fixed percentage t of critical neurons
which are duplicated within the network. To validate this fault tolerance design, a
FI campaigns is carried out on growing p-percentage of randomly selected neurons
in which a subset t of critical neurons is duplicated and then protected. In detail,
firstly, the presented algorithm identifies within the percentage p of neurons to
crash, a percentage t of the most critical neurons to which the TMR technique
is applied. In other words, by considering the percentage p as a set of randomly

Figure 5.1: A Practical example of identifying the neurons to be tripled

selected neurons to be switched off and the percentage t as the set of the most
critical neurons derived from the final network-oriented list, the algorithm returns
on the one hand the difference set that is nothing more than the list of neurons that
will actually be switched off during the campaign and on the other hand, generates
the intersection set that is the list of critical neurons that the mitigation technique
will duplicate. A practical example of how the algorithm works is reported in figure
5.1.
The direct advantage of using the TMR technique lies in the fact that even a
critical neuron becomes a Crashed neuron, the other two replicas are able to
process the expected output and then propagate it in the successive layers of the
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network.(Fig.3.2) It is therefore a process of masking errors that is performing
only when the failure acts on a single neuron among the three that the network
has available to process that feature map input. Each experiment is replicated for
growing p-percentages such as:
p= 1%; p= 10%; p= 30% and p= 50% while t is fixed for each FI campaigns and
equal to 5%.
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Chapter 6

Experimental result analysis

In this chapter, the experimental results are provided and, in particular, all the
results obtained for the two macro-areas of the methodology will be presented
gradually in subsections in which the outcomes of the ResNet-18 trained on MNIST
dataset and ResNet-18 trained on CIFAR-10 dataset are respectively evaluated.
In the each of the two experimental result analysis sub-paragraphs, the results
obtained will be evaluated both as regards the Critical Neurons Identification (5.1)
procedure as regards the Triple Modular Redundancy procedure (5.2) applied on
critical neurons (i.e.TMR technique). All the experiments were performed using the
open source machine learning framework PyTorch on a Windows server equipped
with an Intel Core CPU i7-8565U and 8GB of RAM.

6.1 Critical Neuron Identification Experimental
Results

6.1.1 Class-Oriented Analysis (CoA) Experimental results
The experimental results of software FI campaigns on ResNet-18 trained on MNIST
dataset are reported in the Figures 6.1(a,b,c,d,e) while, the outcomes on the CIFAR-
10 dataset are shown in Figure 6.2(a,b,c,d,e).
The Fault-Free scenario is used as a reference parameter for the validation of the
methodology and it is nothing more than the real accuracy of the class when the
network is not subject to behavioural errors. It is important to underline that all
the results shown have been obtained by running only the test inferences of the
imagine belonging to the given output class.
By conducting a generalized analysis of both case studies, we can immediately
validate the assumptions made in the previous chapters. On the one hand, it is
evident that when the FI campaign is carried out on randomly selected neurons,
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the accuracy of the network remains comparable with the Fault Free scenario.
Excluding the case in which half of the neurons present in the network are switched
off (p = 50%), in the other 4 cases, the accuracy is comparable with the golden
accuracy. From these experimental results, we can confirm that a neural network
is equipped with a budget of neurons actually greater than the minimum number
required to perform the right prediction.
On the other hand, it is clear that when the scenario shifts to the Critical one,
the accuracy of the output classes decreases dramatically when those neurons,
identified as critical, are killed. This last observation allows us to confirm that
inside the network there are neurons that carry an higher number of information
than the others and whether affect to behavioral errors, the performances of the
entire network degrades quickly.
By looking at the graphs below, we can see that the results obtained with the
CIFAR-10 dataset are better than those obtained with MNIST. It should be
remembered, however, that the number of ResNet-18 neurons trained on CIFAR-10
is more than twice the number of neurons belonging the network when trained on
MNIST dataset. It is therefore important to consider that in the second case, the
budget of ’superfluous’ neurons for prediction purposes is much higher and hence
the need to interpret the results obtained in this perspective.
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CoA on MNIST

Concerning ResNet-18 trained on MNIST dataset, when p = 10% the accuracy
of some output classes decreases dramatically. In particular, the first and tenth

(a) p = 1% (b) p = 10%

(c) p = 20% (d) p = 30%

(e) p = 50%

Figure 6.1: Class-Oriented analysis on MNIST

classes (which correspond to digital 1 and digital 9 respectively) show a variation in
accuracy of 44.58% in the first case and 39.76% in the second case. This degradation
in terms of reliability gets bigger and bigger when you go on to consider a higher

33



6.1. CRITICAL NEURON IDENTIFICATION EXPERIMENTAL RESULTS

number of neurons killed. In detail, when 50% of the critical neurons of class 10
are switched off, the network accuracy on the subclass reaches 6.5%. The most
robust class for the MNIST Dataset is instead, the class corresponding to digit
6. As for the case where the percentage p = 1%, we get improvements regarding
accuracy. This behaviour might be attributed to a general over-fitting problem.

CoA on CIFAR-10

(a) p = 1% (b) p = 10%

(c) p = 20% (d) p = 30%

(e) p = 50%

Figure 6.2: Class-Oriented analysis on CIFAR-10

34



6.1. CRITICAL NEURON IDENTIFICATION EXPERIMENTAL RESULTS

Concernign ResNet-18 trained on CIFAR-10 dataset, when p = 20% the accuracy
of some output classes decreases dramatically. Also in this case, due to over-fitting
problems, when the network is lightened by killing some neurons, the accuracy
of the network itself improves. However, we can see that when p = 30%, in the
critical scenario, the accuracy of the network decreases significantly in each output
class. The ’bird’ class is the one that is more subject to a negative variation in
accuracy. In particular, it starts from a value of 84.8% up to a value of 23.43%
when half of its critical neurons are killed. The variation is therefore 61.37%. From
the results of the analysis, we can point out that the most robust class is the ’Ship’
class , immediately followed by the ’Deer’ class.

6.1.2 Final Network-Oriented list Experimental Results
The experimental results for the two software FI campaigns are reported in Figure
6.3 and Figure 6.4. In particular, in every graph we find on the x axis the percentage
p of neurons killed and on the y axis the recalculated accuracy. The results of
this analysis allow us on the one hand to strongly confirm what has already been
learned from the previous section (i.e. in the event that critical neurons become
Crash neurons for the network, accuracy decreases dramatically), and on the other
hand, to validate the theory that for a NN should be considered both of the two
criticality categories mentioned above.

Final Network-Oriented analysis on MNIST

Referring to the outcome of the ResNet-18 (Fig.6.3) FI campaign trained on MNIST
dataset, it is immediately evident how the network is subject to an high degradation
of its performance in terms of accuracy in the Critical scenario. In detail, when p =
20%, the accuracy variation is 72.11%, reaches a value of 22,42%. For subsequent
p samples, the degradation of the network remains rather constant, reaching a
plateau value of 11.3% which is the accuracy of aRandom Classifier. Referring
instead to the blue curve, the Random scenario, we confirm again the theory that
the network is equipped with a higher number of neurons with respect to the value
strictly necessary. Is therefore highlighted a significant degradation in terms of
accuracy only when p reaches 50%.

Final Network-Oriented analysis on CIFAR-10

Referring, instead, to the outcome of the ResNet-18 (Fig.6.4) FI campaign trained
on CIFAR-10 dataset, we confirm that the network is equipped with a number
of neurons much higher than those needed to make a correct prediction. This
assumption is evident if we consider the fact that the Random scenario and the
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Figure 6.3: Final Network-Oriented Analysis on MNIST

Figure 6.4: Final Network-Oriented Analysis on CIFAR-10

Critical scenario differ sharply only when p is more than 30%. In any case, following
the behavior of the curve in red (critical scenario), we can note that the accuracy
variation is 39,64% when p = 50% , while in the case of the (Random) scenario this
variation is only equal to 14,11%. This type of comparison is strongly explanatory to
validate the assumption that, in the event that critical neurons are faulty, network
accuracy decreases rapidly.
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6.2 Triple Modular Redundancy Experimental
Results

The results obtained clearly show that the application of this redundancy technique
is effective to ensure that the network correctly predicts the final output even when
the injection of single faults affects critical neurons.
In order to make the result obtained clearer and more evident, the results of
the analysis of the previous section are compared in the graphs below (Fig.6.5a,
Fig.6.6a) when no percentage of critical neurons withinp were replicated) and the
results obtained from the application of TMR on t of the critical neurons belonging
to p (Fig.6.5b, Fig.6.6b). In every graph we find on the x axis the percentage p
of neurons killed and on the y axis the recalculated accuracy. Each experiment is
replicated for growing p-percentages such as:
p= 1%; p= 10%; p= 30% and p= 50% while t is fixed for each FI campaigns and
equal to 5%.

TMR Analysis on MNIST

(a) Accuracy Evaluation of FI campaigns
without TMR mitigation technique on

MINST.

(b) Accuracy Evaluation of FI campaigns with
TMR mitigation technique on MNIST.

Figure 6.5

Referring to the results obtained from the application of the redundancy tech-
nique on the TMR dataset present in the graph above, we immediately note that
the improvements in network accuracy due to the application of the mitigation
technique are obvious and explanatory. By protecting 5 % of the critical neurons
within p from time to time, the expected results are evident already for p= 10
%. In particular, whether in case in figure 6.5a, for p = 10 % the accuracy of
the network was 80,51 %, after the application of the TMR, in Figure 6.5 b, the
calculated accuracy is 97,17 %. To feed the effectiveness of the methodology, by
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analyzing the sample p = 30%, we note that in case a, the accuracy is 11.37 %
while in case b is 93.65 %.

TMR Analysis on CIFAR-10

Referring to the results obtained from the application of the redundancy technique
on the CIFAR-10 dataset shown in the graph below (Fig. 6.6), we further confirm
the effective results obtained from the proposed methodology. Analyzing the
experiments in detail, we notice a clear improvement of the response of the network
to the faults injected at p = 30% where in case a, the accuracy is 74.21 while in
case b is 87.91. Any doubt about the improvements brought by the use of the
redundancy technique used, is resolved by looking at the results obtained for p =
50%, where in the case a, the accuracy drops to 48.92%, while in case b is equal to
85.44% (a number very close to the initial golden value).

(a) Accuracy Evaluation of FI campaigns
without TMR mitigation technique on

CIFAR-10.

(b) Accuracy Evaluation of FI campaigns with
TMR mitigation technique on CIFAR-10.

Figure 6.6
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6.3 TMR Memory Footprint Drawback
We conclude this chapter reaffirming the success in the validation of the entire
methodology and focusing briefly on the disadvantage in the use of this technique :
the increasing of memory footprint due to the triplication of some process elements.
If we focus in detail on the algorithm implemented by the methodology, we can
notice that a variable number of neurons will be switched off within the network.
This operation is therefore fundamental in the speech related to the occupied
memory, as it allows us to cancel the computational effort and the occupation in
memory of a significant number of processing elements.
Referring to ResNet-18 trained on MNIST dataset, the increase in memory is about
0.03%, while in the case of ResNet-18 trained on CIFAR-10 dataset. the increase
is around 0.01%. We end the discussion by pointing out that all the experiments
were carried out only at software level and that therefore these results represent an
excellent trade off between memory footprint and network reliability in this specific
context.
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Chapter 7

Conclusions

This thesis provides a methodology able to improve the reliability of ANNs, showing
how the most critical neurons can be identified and how they can be protected
through a specific redundancy technique. Following the proposed methodology, has
been demonstrated that ANNs are equipped with a number of processing elements
(i.e. neurons), grater than the minimum value required to correctly perform the
output prediction. The goal was therefore to understand which neurons were
superfluous and which neurons were indispensable in terms of network reliability.
During this study it was also explained how the criticalities of neurons should not
be evaluated only for the entire network but also for the different output classes. In
this regard the methodology is declined in two different stages of critical neurons
identification : Class-Oriented Analysis (CoA) and Network-Oriented Analysis
(NoA). These two phases converge in the third and last step of the first macroarea:
Final Network-oriented analysis from which critical neurons are extrapolated. Based
on the results obtained during the validation of the critical neuron identification
algorithm, the methodology continues by proposing the use of a famous redundancy
technique with the aim of making the network more robust, even in the presence of
behavioural errors. Also in this case the validation phase was more than satisfactory
and we have demonstrated, through the use of fault injection campaigns at the
software level, that the network, even in the presence of single faults on neurons,
maintains a high accuracy.
To conclude, in the feature, the objective is to validate this same methodology also
considering the hardware level of the implementation.
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