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Summary

Artificial intelligence, and in particular machine learning, is one of the enabling
technologies of Industry 4.0. It is successfully used in many application contexts and
with different scopes, including, for example, in preventive maintenance, automated
inspections, and optimization of communication processes. This thesis aims to
evaluate whether and to what extent artificial neural networks (ANN), a particular
application of machine learning, can be profitably used to predict the quality of
a Wi-Fi channel in terms of frame delivery ratio. Specifically, we defined two
approaches for this purpose: one based on ANNs and the other based on a more
traditional approach that mimics current adaptive solutions. Then we tested the
ability of each solution to predict the values of a target, which represents the state
of a channel over time. Both mechanisms try to infer the future state of a wireless
channel by analyzing its conditions in its recent past. For this purpose, data streams
transmitted over multiple Wi-Fi channels have been sampled periodically, and these
represent the starting data shared by both methods. The results obtained are
encouraging, with the ANN models showing superior performance to the traditional
method in almost all performance indicators examined. Our analysis also shows
that the current methodology has ample room for improvement, especially in terms
of performance achievable by ANN models. From our point of view, this approach
has vast real-world applicability, with the primary goal of improving the reliability
and resilience of a wireless system.
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Chapter 1

Introduction

Machine learning is profoundly changing our everyday lives and the ways we in-
teract with new (and old) technologies. It has been radically transforming every
sector of the economy for more than a decade, from medicine to finance, from
transportation to agriculture, from marketing to manufacturing, and so on. If we
look at any cutting-edge technology, such as image recognition [1], self-driving cars
[2], or virtual assistants [3], we most likely are witnessing one form or another of
machine learning. The algorithms are designed to analyze vast amounts of data,
extract useful information and use it, for example, to make decisions or predict
the outcome of an event. This gives the machines the ability to perform and com-
plete tasks without explicitly being programmed, i.e., without human intervention.
In general, machine learning is part of a larger family called artificial intelligence
(AI), which encompasses a wide range of technologies that enable computers to
behave in an “intelligent” manner, allowing them to adapt and respond to new
situations by approximating human behavior. They represent one of the focal tech-
nologies of Industry 4.0, along with the fields of IIoT, big data, cloud computing,
robotics, and additive manufacturing. These elements represent the enablers of
the smart factory concept - highly digitized factories that continuously collect and
share data through sensors, machines, and manufacturing systems, which in turn
are connected to one or more IT subsystems. Then, this data is used by the or-
ganization, or even directly by the “smart” devices, to improve existing processes
and optimize the responses generated. Today’s manufacturing facilities are pushing
and adapting more and more towards this new paradigm in order to increase the
overall efficiency, productivity, and reliability of their activities [4]. In this context,
machine learning techniques provide decision-making ability to specific problems by
processing and analyzing data collected, for example, from sensors. These methods
are generally better than conventional techniques that require human intervention,
as they can discern patterns, even complex ones, faster and with less effort. Then,
these patterns can be profitably exploited in various tasks in the automated in-
dustrial scenario, e.g., in discovering possible failures before they occur (preventive
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maintenance) [5, 6], for automated inspection, and in cobots (robots designed to
collaborate with human workers) [7, 8]. In general, industrial systems are becoming
increasingly automated, intelligent, and connected. However, they are also becom-
ing more distributed in nature in order to cope with an increasing demand for
higher flexibility and resilience. This implies the growing of highly heterogeneous
system, especially in communications, which requires many wireless extensions with
different technological characteristics in addition to a more traditional wired infras-
tructure [9]. For example, among the most relevant wireless technologies, we can
find: IEEE 802.15.4 (WirelessHART, ZigBee, 6TiSCH) [10], IEEE 802.11 (Wi-Fi)
[11], 5G for ultra-reliable low-latency communication (URLLC) [12], LoRaWAN for
IoT [13], Bluetooth Low Energy (BLE) for connecting field devices (IO-Link wire-
less) [14]. In industrial environments, generally, wireless networks are required to
satisfy two critical properties: reliability and timeliness, which denote respectively
the ability of a system to operate correctly over time and its ability to respect the
limits, usually time-based, imposed by the application. A wireless network is a
shared medium that is intrinsically vulnerable to non-deterministic external phe-
nomena that may cause huge variability in the spectrum conditions of a network.
Hence, it is not always possible to guarantee a satisfactory quality of service for
the applications or devices involved in the communication. However, several mech-
anisms have been developed over the years to ensure that a network meets specific
quality requirements, such as, for example, access control techniques, proactive or
reactive mechanisms. The former control which devices or applications can access
a particular service, in our specific case a wireless channel, denying use to unau-
thorized entities, hence ensuring a higher quality service. Proactive mechanisms
are designed to anticipate possible challenges rather than take corrective action
after they have occurred. For example, time slotted channel hopping (TSCH) con-
tinuously changes the transmission frequency to minimize packet loss [15], while
seamless redundancy techniques simultaneously send the same packet on different
channels to increase the reliability of a communication [16]. Reactive mechanisms,
on the other hand, act reactively to events or triggers, i.e., they take action after
the event has happened, such as, for example, changing the transmission chan-
nel whenever the quality drops below a predefined threshold. In this category, we
find, for instance, frequency agility in ZigBee, rate adaptation in Wi-Fi. These
techniques, especially the last two, are designed to work in environments with fast
dynamics (from a few milliseconds to seconds). The idea behind these methods can
be translated and applied to the application layer. For example, if the conditions
of a communication channel are expected to worsen, we can decrease the speed of a
group of automated vehicles controlled over the air accordingly. Another example
is roaming, where switching from one base station to another can be optimized by
knowing a priori estimates of the qualities of each station. The dynamics displayed
in these examples are much slower because mechanical parts are involved, which
increases the interval from seconds to minutes. Another use case is to optimize the
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use of a Wi-Fi channel used to interconnect two different and separate devices that
are part of the same logical system. Over this high-speed communication chan-
nel, other slower data streams, such as data collected by sensors, can transit. If
the communications are expected to deteriorate, we can accordingly enlarge the
sampling period or disable some sensors, to reduce traffic and thus congestion on
the link. The mechanisms mentioned above estimate the future state of a chan-
nel from measurements made on recent past conditions. In this regard, there are
several metrics that we can use, the most popular of which are based on simple
or weighted averages of successful transmission attempts. In this thesis, the pri-
mary goal is to evaluate whether and to what extent it is feasible to use artificial
neural networks, a particular application of machine learning, to predict the future
condition of a wireless channel [17]. The future condition is expressed similarly to
the past condition, i.e., through arithmetic averages. To this end, we periodically
sampled the state of multiple Wi-Fi channels operating in the 2.4 GHz band. Then
we defined a target, i.e., the frame delivery ratio over a window, and compared the
performances of two different approaches, one based on neural networks and the
other on a heuristic method, on their ability to predict the target correctly over
time given the same starting information (features). The target represents what we
called above the spectrum condition of a channel.
The thesis is organized as follows:

• Chapter 2 presents a basic introduction of the fundamentals concepts regard-
ing artificial neural networks

• Chapter 3 describes the channel prediction methodology from the theoretical
standpoint

• Chapter 4 describes the procedure used to acquire the initial database

• Chapter 5 and 6 describe the software applications used to perform the ex-
periments and the results obtained from them

• Chapter 7 contains the conclusions.

10



Chapter 2

Neural networks

2.1 Introduction
The human brain is the most intricate and fascinating organ in the human body.
It is the cause of our every thought, action, and memory. It gives us the ability
to easily differentiate and categorize objects in pictures, to understand and process
languages, things that machines were not good at just a few years ago until the
renaissance of artificial intelligence [18]. What is the relationship between a human
brain and neural networks? Moreover, what are precisely neural networks?
A brain consists of a set of basic interconnected units, called neurons, that can
receive, process, and transmit information to the other units. Different aspects of
information are processed hierarchically in different parts of the brain. So, each
level of neurons provides a unique insight that gets passed on to the next level.
That is the structure that neural networks are trying to mimic.
In order for a neural network to make information-based decisions, it has to go
through a process called learning. Its main steps remember what happens when we
need to make a decision based on experience. In general, it goes along the lines:

1. remember similar situations that occurred previously

2. create a general rule out of it

3. use the rule to predict what may happen.

Similarly, we provide a massive amount of information to a neural network, which
attempts to extract relevant patterns from the data. Once the training is over, the
derived model can be used to predict the outcome of an event as a result of new
data [19].
The information provided to the network is divided into two parts: inputs and
labels. The former are the information to be processed by the neural network,
while the latter are the values we wish to predict. The learning consists in iterat-
ing on the inputs more times and comparing the predicted values, that is, those
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generated by the network, with the desired ones, trying each time to improve the
predictions by adjusting the internal parameters of the neural network. In general,
a neural network can be viewed as a simple input-output model that approximates
an unknown function that outputs one or more values given a set of inputs. The
closer these values are to the labels, the better the model is considered to be. It
is worth noting that most intelligent tasks performed by humans can be expressed
in terms of mathematical functions, even if we do not know a priori the specific
characteristics for most of them. All we have at our disposal is a set of inputs on
which the outputs are known, collected in a collection called dataset.

2.2 General aspect
Artificial neural networks (ANNs), also known as neural networks (NNs), is a com-
putational model made of simple processing units called artificial neurons. Neurons
are grouped in a series of layers and interconnected to each other through links that
constitute the edges of a network. Information from the outside is fed to the input
units, processed and transformed by intermediary “hidden” units, and eventually
supplied to the output units to produce the final outputs. Each edge of the net-
work has a corresponding weight, a scalar representing the degree of influence of
one unit over another. Many different neural network architectures are available in
the literature, each designed to solve a different type of problem. They can range
from simple networks made of a single node (a perceptron network) to a highly
complex one consisting of millions of nodes and just as many links. In Section 2.5
two commonly used neural network architectures relevant to our case study are
discussed.

1st input

2nd input

3rd input

1st output

2nd output

1st hidden u.

2nd hidden u.

3rd hidden u.

Figure 2.1: Topology of an artificial neural network
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2.3 Artificial neuron
An artificial neuron, also called neuron or unit, is the basic unit of a neural network
that is connected to other similar units (nodes) via links (edges). Each neuron can
receive, process, and forward information in the form of numeric values to the other
neurons of the network. Each link has an associated weight, which determines the
"strength" of one’s node influence on another. Neurons are organized in a series of
layers (see Fig. 2.7).
Assuming that the network’s neurons are uniquely numbered, the output of neuron
k is dictated by the following equations:

netk =
mØ

i=1
wikxi + w0k (2.1)

ŷk = f(netk) (2.2)

where k is a unique identifier of the neuron, ŷk denotes the output value of the
neuron, f is an activation function (more on Section 2.4), xi is node k’s i-th input
and wik is the weight associated to the link between the input and the node itself,
and w0k represents a bias term. x0 has value 1 and here it was omitted as per
convention. The weighted sum qm

i=1 wikxi + w0k is called the net input, typically
abbreviated as netk.
An alternative form of (2.2), using matrices, is:

ŷ = f(WWW TXXX + w0) (2.3)

where: XXX =


x1
x2
...

xm

 and WWW =


w1
w2
...

wm



2.4 Activation functions
The function f(·) introduced in (2.2) is called activation function. It decides
how the net input is transformed into the output of the neuron. The activation
functions can be essentially divided into two main groups:

• linear activation functions: they are functions that can be expressed as a
polynomial function of degree zero

• non-linear activation functions: all other functions that are not linear func-
tions.
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𝑤0𝑘
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𝑥2
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1
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𝑖=0

𝑚
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ො𝑦𝑘

Figure 2.2: Visualization of a neuron’s anatomy

The choice of proper activation functions is an essential task that needs to be care-
fully tuned. It directly impacts a neural network’s ability to reach convergence, i.e.,
to estimate the function it wants to learn with an error lower than a given threshold
and the speed with which it does so. As we will see later, inappropriate selection
of activation functions can cause a number of problems known as vanishing/ex-
ploding gradients, which prevent neural networks from reaching the convergence
state [20]. Although linear transformations make neural networks simpler, they are
less powerful and cannot learn complex patterns from the data. Our studies will
concentrate mainly on non-linear activation functions with a short mention of the
identity function. There are several benefits to use non-linear activation functions:

• they restrict the output value of a neuron to a particular range. It has been
proven empirically that if the output value of a neuron is unbounded, it can
lead to computational issues and delayed convergence

• they introduce non-linearity into the neural networks, and consequently im-
prove its ability to learn complex problems.

The non-linearity property is essential to solving a multitude of different types of
tasks, which would not have been possible just by relying on linear transformations
unless approximations are made. For example, let us imagine we are given the task
to divide the data points in Fig. 2.3 into two groups using a curve, where each
group must contain only points of the same color. If we choose to use only linear
activation functions, the output value of a neuron would be a linear combination
of its inputs, which in turn are also a linear combination of another node’s inputs,
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and the same applies to the output values. Thus the problem would be equivalent
to trying to perfectly divide the data points in Fig. 2.3 using just a single straight
line. We can take a step further by saying that any multi-layer neural network that
uses linear activation functions is equivalent in terms of capabilities to single-layer
neural networks using the same type of activation functions.

c

Figure 2.3: A plane of red and green dots

Intuitively we can see that it is impossible to have two perfect groups separated
by a line. Even though it is a well-constructed example, most fundamental prob-
lems cannot be solved with desirable accuracy using only linear activation functions.
That is the principal reason why we need to introduce non-linearity into most of the
neural networks so that they can approximate arbitrary complex functions.
That is what makes neural networks extraordinary powerful. Activation functions
are generally required to be differentiable, which means its first-order derivative
must exist at each point in its domain. This property is expected because most
neural networks are typically trained using a learning algorithm called backprop-
agation that requires the derivative of the activation functions in one of its steps
(more on Section 2.6.2). Among the many different activation functions available
in the literature, the most used and common ones are:
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Figure 2.4: A dataplane split using a linear function (left picture) and a non-linear
function (right picture)

• ReLu. It is possibly the most popular activation function used in deep neural
networks. Its equation is:

y(x) = max(0, x) (2.4)

It became increasingly popular in recent years because of its simple shape
and it counteracts well the issue of vanishing gradients that prevents model
from converging.

• Sigmoid. It is a function with a S-shape that takes as input any real values
and outputs values in the range 0 to 1.

y(x) = 1
1 + e−x

(2.5)

where e is the Euler’s number.

• Tanh. It is a function that it is very similar to the sigmoid activation function.
It transforms any numerical value received as input to a value in the range -1
to 1.

y(x) = ex − e−x

ex + e−x
(2.6)

where e is the Euler’s number.

• Identity. It is a function that outputs the value received as input. It is part
of a larger family called linear activation functions, whose functions can be
expressed as:

y(x) = cx (2.7)
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where c denotes the slope of the line. For the identity function, c assumes the
value 1

Figure 2.5: A plot of the ReLu function (left picture) and the identity function
(right picture)

Figure 2.6: A plot of the sigmoid function (left picture) and the tanh function (right
picture)

2.5 Topology
The ways in which neurons are organized and connected within a network is called
the topology of a neural network. It is an important aspect since it directly impacts
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the functioning and learning of a network. In most topologies, neurons are organized
into logical groups called layers. Neurons are connected to other neurons through
weighted links or connections, and it represents the only mechanism available for
neurons to share data inside a network.
The weight associated with each connection denotes the strength of one node’s
influence on another. The layer that receives data from outside is known as input
layer, whereas the layer that produces the outputs is the output layer. Every other
layer is called hidden layer. The following explains different ways used to describe
the shape and capability of a neural network:

• size: number of neurons in the network

• width: number of neurons in a specific layer

• depth: the number of layers in a neural network. Note that usually in the
count we do not consider the input layer

• capacity: the type or structure of functions that can be learned by a network
configuration

• architecture: the specific organization of the layers and neurons in the net-
work.

Alternatively, the network can be expressed in terms of nodes and arcs using the
terminology of the graphs, representing respectively the neurons and connections
composing a neural network. From the many topology available in literature, which
are typically application specific [21], we will discuss two of the most common
and relevant ones for our work: feed-forward neural networks and recurrent neural
networks.

2.5.1 Input layer
It is the first layer in a neural network. Its width is equivalent to the dimension
of an input, i.e., an external data. An input is often represented in the form of a
vector made of numerical values:

Xt = (x1, x2, ..., xNfeatures
)t (2.8)

where Nfeatures denotes the dimension of an input vector and t identifies the vector
inside a dataset T .
An element of an input vector is called feature. The external data, before it is fed
to the network, normally go through a process called data cleaning, which refers
to all kinds of tasks used for: detecting and repairing errors, data transformation,
normalization and standardization.
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2.5.2 Hidden layers
A hidden layer is any layer located between the input and output layers. It does
not directly receive external data nor it produces outputs. Neurons applies different
transformation on the input data using (2.2).

2.5.3 Output layer
It is the layer responsible for producing the output values. It can be a single value
or a vector of values depending on the width of the layer, i.e., number of neurons
present

Ŷt = (ŷ1, ŷ2, ..., ŷNoutputs)t (2.9)

where Noutputs denotes the number of output values generated and t identifies the
output value generated following the input vector t.

1st input

2nd input

3rd input

1st output

2nd output

1st hidden layer

output layer

input layer

Figure 2.7: Topology of a fully connected feed-forward neural network

2.5.4 Feed-forward neural networks
Feed-forward neural network (FFNN) is one of the first and simplest type of ar-
tificial neural network conceived. The network layers are arranged in a sequence
with neurons forming links only with neurons of the next layer, and in the case all
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units are connected to every unit of the next layer the network is said to be fully-
connected. In essence feed-forward neural networks do not contain any loops, so
the data moves forward in one direction: the data is feed to the input layer, then it
goes through the hidden layers until it reaches the output layer. This explains why
these networks are called feed-forward networks. A feed-forward neural network
can be implemented in its simplest form as a single layer with one neuron, which
is capable of learning only linearly separable patterns (see Fig. 2.4)
As mentioned in Section 2.1, most real-life tasks can be expressed in terms of
mathematical functions. That is also what neural networks are trying to accom-
plish. They can be seen as black boxes that approximate a mathematical function
that, given any input, generates one or more output values. The better is the
approximation, the more accurate are the predictions generated by the network.
A fundamental theorem called “The universal approximation theorem” states that
FFNNs with as few as one hidden layer can approximate any continuous function
with any arbitrary degree of accuracy [22, 23]. The basic idea is to approximate
the continuous function with a series of rectangles placed side by side, where a
neuron conceptually represents a rectangle. Thus, adding more neurons results in
a more accurate approximation of the function, but this is paid for by adding more
computational complexity during the training phase [24].

2.5.5 Recurrent neural networks
Recurrent neural networks (RNN), in contrast to feed-forward networks, contain
loops inside the network. That means that data can be fed back as input into the
network before it is forward again for further processing. This allows the network
to persist information between successive predictions. This effect emulates what
is known as memory. In particular, special units called "memory units" stores
important information from the recent that influence the current input and output.
So the predictions are generally more precise compared to other neural networks
architectures such as feed-forward neural networks. This makes them suitable for
tasks that deals with sequential data or time series data such as speech recognition
or natural language processing.

2.6 Training
Training is the process that aims to set the internal parameters of a neural network
(i.e., weights and biases) to a set of values, such that the final model can generate
accurate outputs in response to any given inputs. Generally, an output is more
accurate the closer its value is to the desired value. At its core, training a neural
network means to extrapolate the relationship, if any, between the inputs, i.e., the
information fed to the ANN, with the desired values, known as labels. Colloquially
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this process is also called fit the model. Typically, inputs and labels are grouped in
a data structure called dataset.
Henceforth we will use the following conventions:

D = { (Xt, Ytruet) | t ∈ (1, ..., s) } (2.10)

where D denotes a dataset, s is the number of elements contained in D (size), t
identifies a tuple inside D, Xt and Yt follow respectively the definitions (2.8) and
(2.9). For common usage, D is divided into two subsets:

• TRA: a subset called training set that it is used to train an ANN

• TES : a subset called test set that it is used to evaluate an ANN once it has
been training.

Generally, a good value for the train-test split ratio is 80-20 (e.g., 80 percent of
inputs in D is allocated to TRA and 20 percent to TES), even though it may vary
depending on the particular use case and size of the dataset.
During training, the learning algorithm iterates over the training set in multiple
passes (training epochs), adjusting the weights and biases associated with the con-
nections as it progresses with the goal of minimizing a cost function. This function,
also known as error function or loss function, estimates the progress of the learning
of an ANN in terms of the qualities (closeness) of its predictions with respect to
the labels. What it does is measure the “distance" between the predicted values
and the target values. As it progresses with training, the cost function will likely
decrease over the epochs until it settles around a final value. When that happens,
it is said that the neural network reached a convergence state, meaning that any
additional training will not improve the model.
Choosing a loss function can be challenging as the function must comply with the
properties of the problem that a neural network is trying to solve. In the following
are described three common activation functions used for most types of problems:

• mean squared error (MSE). It computes the mean of the squared differences
between the predictions and the labels

MSE = 1
f

fØ
i=1

(y(i)
pred − y

(i)
true)2 (2.11)

• mean absolute error (MAE). It computes the mean of the absolute differences
between the predicted values and the target values

MAE = 1
f

fØ
i=1
|y(i)

pred − y
(i)
true| (2.12)
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• cross-entropy (CSE). It is defined as:

CSE = −
nØ

i=1
y

(i)
truelog(y(i)

pred) (2.13)

where y
(i)
true denotes a label and y

(i)
pred is the prediction generated by the ANN model

associated with the inputs of y
(i)
true. It is important to note that the choice of loss

function is directly related with the activation function used in the output layer of
a neural network. For regression problems, i.e., when you want to predict a numer-
ical value, such as the one presented in this thesis, the standard configuration is
to use as loss function either MSE or MAE and as activation function a linear one
in the output layer. Another widespread configuration is the one used for binary
classification problems, i.e., when the output you are trying to predict is a binary
value (0 or 1). The sigmoid is typically used as the activation function along with
the (binary) cross-entropy as the objective function [25].
The loss functions defined above refer to the error associated with a single predic-
tion, while the real cost function used to measure the overall loss on a dataset is
defined as:

J(T, θ) = 1
t

tØ
i=1

loss(yi
pred, yi

true) (2.14)

where J(T, θ) denotes the overall error computed over dataset T with particular
set of weights θ, loss denotes a loss function, i.e., (2.11), (2.12) or (2.13), and m is
the size of dataset T . If the predictions of a model are completely incorrect, (2.14)
will output a high value, while if they are close to the desired values, it will output
a low value. As the weights and biases are tuned during training, the cost function
will tell you if you are improving.
Before proceeding further, I would like to clarify the difference between model pa-
rameters and model hyperparameters. The first types are the variables we have so
far called weights and biases, which are internal to the model whose values are de-
rived from the training data. On the other hand, the hyperparameters are external
variables that determine the structure of the model and the quality of the training
process. They cannot be estimated from the data, and they must be optimized
before the training phase, manually or automatically. They are important because
they directly control the behavior and speed of the training algorithm and have a
significant impact on the final performance of the model being trained. Common
examples of hyperparameters are learning rate, activation functions, number of hid-
den layers, number of epochs, and batch size value. From now on, for convenience,
when we use the term parameter, we will refer to the model parameters unless it is
specified otherwise.
In practical terms, the training algorithm is composed of three phases:

1. the forward phase that deals with generating the predictions related to a
batch size of inputs, with the current state of the model
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2. the evaluation phase that deals with evaluating the objective function

3. the backward phase that deals with updating the weights and biases. Relative
to FFNN networks, this phase is usually implemented by two algorithms called
backpropagation and gradient descent. In general terms, the former deals with
estimating the contributions, or rather the effect, that each weight has on
the overall error. In contrast, the second algorithm decides how the various
model parameters should be updated so that the overall loss decreases, using
the results obtained from the backpropagation step.

Sometimes step 2 and 3 can be combined into a single phase. To summarize, the
training algorithm can be represented like:

Algorithm 1 Training algorithm for batch_size = size(T )
initialize θ to random values
declare and initialize an empty array v
while epoch ≤MAX_EPOCHS do

for all (Xt, Yt) ∈ T do
Ŷt = forward_phase(Xt, θ)
store (Ŷt, Yt) in v

end for
e = J(v, θ)
θ = backward_phase(e, θ)
epoch← epoch + 1

end while

Knowing a priori the best number of epochs can be difficult as it depends on the
specific use case and the level of performance that the network is trying to achieve.

2.6.1 Forward phase (forward propagation)
It is the first phase of the training algorithm. It is responsible for generating a
prediction Ŷt (definition 2.9) given an input pattern Xt (definition 2.8) extracted
from a dataset T . In the case of a fully connected feedforward neural network,
Xt is fed to the input layer, which propagates the values to the first hidden layer.
Then each hidden unit computes their output using (2.2) and forward their values
to the units of the next layer. Then the process of computation and propagation is
repeated up to the neurons of the output layer. For conciseness, the aforementioned
steps are summarized in the function forward_phase(·):

Ŷ = forward_phase(Xt, θ) (2.15)

where θ denotes a specific set of weights and biases.
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2.6.2 Backward phase
The backward phase is an essential step of the training algorithm. The goal is to
reduce, after each epoch, the measure of distances between the produced output
values and the desired output values: it does so by minimizing a cost function that
is properly selected before the start of the training phase. As we anticipated in
the previous section, a cost function quantifies how close the predictions are to
the desired values. From calculus, we know that the gradient of a multivariable
differentiable function represents the direction in which the function increase most
quickly (the direction that points to a maximum), while its magnitude is the rate
of increase in that direction. So the opposite of it shows the direction of the
steepest descent. Since a loss function is also a multivariable function, the idea is
to repeatedly adjust the network’s weights and biases in the opposite direction of
the gradient of the cost function computed with respect to the model parameters.
The weight’s updates are defined by an optimization algorithm called gradient
descent (more in Section 2.6.3), while backpropagation is responsible for computing
the gradients of the loss function. The “back” part of the name “backpropagation”
stems from the fact that the computations of gradients with respect to every weight
of the network are done in reverse order, starting from the neurons of the output
layer and proceeding backward until the neurons of the input layer. The strength
of this algorithm resides in its ability to compute the various gradients efficiently:
the values are propagated backward and reused for the calculations related to the
weights of the previous layers, as opposed to a more naive approach of computing
independently every gradient. This efficiency makes it possible to train a neural
network that may contain millions of weights.

2.6.3 Gradient descent
It is an optimization algorithm used by neural networks for finding a local or global
minimum of a cost function. The algorithm updates the weights and biases at the
end of each iteration according to this formula:

θi+1 = θi − α
∂J(θi)

∂θi

(2.16)

where θi denotes collectively a specific set of weights at time i, and α is a coefficient
called learning rate. For i = 0, θ is initialized with random values.
The minus sign in (2.16) is a consequence that the gradient of a function, as men-
tioned earlier, marks the direction of greatest increase, so to get the direction of
greatest decrease, one must negate the gradient. The learning rate determines the
size of each step taken (magnitude of an update), which figures out how fast or
slow we will move towards the optimal weights (more in Section 2.6.4). We repeat-
edly apply (2.16) until the termination criteria are met, e.g., the value of the loss
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Figure 2.8: Training algorithm diagram

function is below a given threshold value or we have reached the agreed number of
epochs.
An analogy that comes up frequently when describing the intuition behind the al-
gorithm is the following: a person is trying to move down from a mountain, but
it is surrounded by heavy fog. Hence, the person has not a clear path to walk on,
but it has only a general overview of its proximity. An ingenious solution is to take
repeatedly small steps towards the direction where the ground has the steepest
descent around his current position. Using this method, he will either arrive at
the bottom of the mountain or get stuck in a mountain hole. Minimizing the cost
function is analogous to descending the mountain. However, like in the example,
the neural network may get stuck in a suboptimal minimum (mountain hole) since
it is working only with local information. Feeling the mountain’s steepness is like
computing the gradient, and taking a step is equivalent to updating the weights.
The next few paragraphs describe the mathematical steps involved in computing a
gradient with respect to a generic weight. The convention used are:

1. superscript k denotes the k-th layer of a network. The input layer is considered
to be the 0-th layer

2. subscripts consisting of a single value denote the index of a neuron inside its
layer

3. subscripts associated with the weights consist of two numbers that denote
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the identifiers of the neurons involved in the connection. We will treat here-
after only connections for FFNN networks, i.e., the two neurons involved are
arranged on two adjacent layers. For example, wk

ij denotes the link between
neuron i of layer k-1 and neuron j of layer k.

As anticipated, the goal is to update every weight so that each prediction is closer
after every update to their target values. The magnitude of a weight update is
dictated by the gradient of the cost function with respect to that weight ∂E(T,θ)

∂wk
ij

,
which conceptually what it does is to tell us what effect has a small change in a
weight to the overall loss function.
From calculus, we know that the derivative of the sum of multiple functions is
equivalent to the sum of their derivatives. Since the cost function, according to
definition (2.14), is the average of single errors committed on a dataset T , its
gradient with respect to weight wk

ij becomes:

∂E(T, θ)
∂wk

ij

= 1
S

SØ
u=1

∂Eu(yu
pred, yu

true)
∂wk

ij

(2.17)

Therefore, instead of solving (2.14) entirely, we can focus on the mathematical steps
involved in calculating the derivative of the error associated with a single input.
Then to get the overall gradient, we simply need to average the individual smaller
gradients. Henceforth we assume that E is Eu unless otherwise specified.
Applying the chain rule on ∂E

∂wk
ij

we obtain:

∂E

∂wk
ij

= ∂E

∂outk
j

∂outk
j

∂netk
j

∂netk
j

∂wk
ij

(2.18)

The terms ∂E
∂outk

j
and ∂outk

j

∂netk
j

are often simplified as

δk
j = ∂E

∂outk
j

∂outk
i

∂netk
j

= ∂E

∂netk
j

(2.19)

while ∂netk
j

∂wk
ij

can be rewritten as

∂netk
j

∂wk
ij

= ∂

∂wk
ij

(
rk−1Ø
l=0

wk
ljoutk−1

l ) = outk−1
i (2.20)

where rk−1 denotes the number of neurons present in layer k − 1 and δj is called
the error term.
Therefore, (2.18) can be summarized as

∂E

∂wk
ij

= δk
j outk−1

i (2.21)
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The error δk
j assumes a different expression depending on whether we are computing

the gradient with respect to a weight linked to a node of the output layer or not.
In the former, δL

j assumes:

δL
j = ∂E

∂netL
j

= loss′(actL
j (netL

j ), yi
true) ∗ act′L

j (netL
j ) (2.22)

where L denotes the output layer and actj is the activation function of the j-th
neuron. Putting everything together, the partial derivative of E with respect to a
weight in the output layer wL

ij is:

∂Eu

∂wL
ij

= loss′(actL
j (netL

j ), yu
true) ∗ act′L

j (netL
j ) ∗ outk−1

i (2.23)

With regard to neurons in the hidden layer 1 ≤ k < L, using the chain rule, δk
j

becomes

δk
j = ∂E

∂netk
j

=
rk+1Ø
l=1

∂E

∂netk+1
l

∂netk+1
l

∂netk
j

(2.24)

where rk+1 denotes the number of nodes in the next layer. Note that, l starts from
1 because the bias outk

0 corresponding to wk+1
0j is constant, i.e., its value does not

depend on the outputs of the previous layers. The first term of the right side is, by
definition, the error of the next layer, δk+1

l

δk
j =

rk+1Ø
l=1

δk+1
l

∂netk+1
l

∂netk
j

(2.25)

an alternative form of (2.1) is

netk
j =

rk−1Ø
i=0

wk
ijg(netk−1

i ) (2.26)

and by substituting the above in the second term of (2.25), we get

∂netk+1
l

∂netk
j

= wk+1
jl g′(netk

j ) (2.27)

The final expression for δk
j is

δk
j = g′(netk

j )
rk+1Ø
l=1

δk+1
l wk+1

jl (2.28)

Putting everything together the partial derivative of E with respect to a weight wk
ij

in the hidden layers 1 ≤ k < L is

∂E

∂wk
ji

= δk
j outk−1

j = outk−1
j g′(netk

j )
rk+1Ø
l=1

δk+1
l wk+1

jl (2.29)

27



Neural networks

The error term associated with a weight in the k-layer is dependent on the error
term of the weights at the k+1 layer (see (2.25)). Thus the standard procedure
is to compute the error terms starting from the output layer and propagate them
backward, updating them whenever necessary, layer after layer until the first layer
is reached. This process is what makes backpropagation efficient at computing
the gradients and suitable to be used together with gradient-based optimization
algorithms such as gradient descent.
To compute the gradient of the cost function with respect to wk

ij we simply average
the individual derivatives computed over the entire dataset, i.e.,

∂E(T, θ)
∂wk

ij

= 1
S

SØ
u=1

∂Eu

∂wk
ij

(2.30)

where S is the size of the dataset.
To recap, once the gradients have been calculated via backpropagation, the weights
are updated via gradient descent using this formula:

wk
ij = wk

ij − α
∂E(T, θ)

∂wk
ij

(2.31)

where α is a scalar called the learning rate.
What we have described so far is the standard gradient descent, also known as
vanilla gradient descent, in which the gradient of each update is computed over all
examples contained in a training dataset. This process can be very time-consuming
in large-scale applications [26, 27], where training datasets may contain millions
of examples. A very common strategy to counteract this problem is to consider
updating the weights after every x elements, where x is also known as batch size. It
is a hyperparameter of the model that defines the number of patterns to consider for
each update. Its value is usually a power of 2 and can range from 0 < batchsize <
size(T ), where size(T ) denotes the size of a dataset T . Two variants of the primary
gradient descent algorithm are commonly found in the literature, differing only in
the batch size value:

• stochastic gradient descent (SGD). It updates the model’s parameters for
each input pattern seen during training (batch size = 1). It tends to be much
faster computation-wise but can cause the cost function values to fluctuate
strongly over the course of a training instance because the gradient evaluated
on a single input is a noisy approximation of the complete one

• mini-batch gradient descent is halfway between vanilla gradient descent and
SGD. It performs an update after every mini-batch of n training samples
seen, where n is in the range between 1 and the size of the training dataset
(exclusive). This variant provides better efficiency compared to the vanilla
version in terms of memory and speed, and it reduces the amount of noise
found in SGD.
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The main challenges associated with gradient descent algorithm are:

• choosing a suitable learning rate can be a daunting challenge. A learning rate
that is too small leads to a slow convergence, while a learning rate that is too
big causes the neural network to overshoot and never reach convergence

• the same learning rate is applied to all weights and biases. Sometimes we
would like to apply different learning rates if our data set contains sparse
data and features with very different frequencies

• finding a local minimum that generalizes well enough our problem. An ob-
jective function associated with real-life data sets have, in most cases, very
complex surfaces with many different valleys (minimum points). Finding a
global minimum can be sometimes infeasible.

To recap, gradient descent is an optimization algorithm for finding a minimum of
a multivariable function. In our case, the function we want to optimize, i.e., the
objective function, is dependent on the model parameters. By repeatedly applying
(2.31) on the weights and biases, we hope to eventually arrive at a set of optimal
values for the parameters so that the overall error associated with our model is the
absolute smallest.

2.6.4 Learning rate
The learning rate, also called step size, is a positive scalar, often between 0 and
1. Its purpose is to scale the magnitude of a weight update, found inside the
gradient descent algorithm. Intuitively, it determines how big the modification of
NN parameters is in the direction of a local minimum. It is a vital hyperparameter
that impacts whether a neural network can reach convergence, and if so, at what
speed. This parameter can be either tuned in manually by the practitioner or
adjusted automatically by an optimizer during training phase. Generally speaking,
we should set the learning rate to a value that is neither too high nor too low for
several reasons:

• having a small learning rate can cause the network to converge too slowly and
get stuck in a sub-optimal minimum (left picture of Fig. 2.9)

• having a big learning rate can cause the network to overshoot, leading to an
increase of the overall loss (right picture of Fig. 2.9)

Although it is not possible to know for certainty the optimal learning rate a priori,
there are some well-known techniques available to figure out a reasonable learning
rate. They are built on the recurrent idea of changing the learning rate dynamically
as an ANN progresses with its training instead of keeping it constant for all the
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train process. Examples of these techniques are: “learning rate schedules” and
“adaptive learning rate”. The former reduces the learning rate according to a pre-
defined schedule, e.g., half the learning rate after every epoch. This technique
has shown, in some application contexts, better performances compared to using
a fixed learning rate. However, it requires defining a schedule in advance, which
can be problematic since it is hard to know which are the best settings to adopt.
Furthermore, it lacks flexibility and adaptability since we are most likely required
to define a new schedule for a different type of problem. The adaptive learning rate
algorithms update the learning rate at run time based on heuristic methods, such as
adapting its value according to the values of past gradients. Their main advantage
over other techniques is that they require less work on tuning the hyperparameters.

w

J(w) J(w)

w
Figure 2.9: Effect of the learning rate on the cost function: a small learning rate
can cause a slow convergence (left picture), while a large learning rate can cause
the neural network to overshoot (right picture)

2.6.5 Momentum

Momentum is another technique extensively used to help a neural network finding
an optimal set of model parameters. It is a concept that has been taken from
physics, which expresses an object’s capability in movement to continue its trajec-
tory even when an external opposing force is applied to it. The same core idea has
been translated for machine learning. A term called momentum has been added
to (2.31) that takes into account the general direction of the previous updates and
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minimize the effect of opposite changes. So (2.31) becomes:

∆w
k(t)
ij = α

∂E(T, θ)
∂w

k(t)
ij

+ m∆w
k(t−1)
ij (2.32)

w
k(t)
ij = w

k(t)
ij −∆w

k(t)
ij (2.33)

where m, called momentum factor, denotes a coefficient, t indicates an update
associated to weight, and ∆w

k(t−1)
ij is the update vector at time t−1. It is common

practice to use momentum values close to 0.9, but it can take any value in the range
between 0 and 1.
With momentum, the neural network has better chances of not getting stuck in a
local minimum, avoiding oscillating around it. In fact, the momentum propels the
updates of the weights of a neural network to follow the general direction of the
last updates, reducing the effect of opposing changes. In practical terms, this is
implemented by saving in the momentum some parts of the past gradients. As we
can see from (2.33), momentum increases when the gradient continues to point in
the same direction while dampening the effect of opposing changes. As a result,
the neural network gains faster convergence and decreases oscillations.

2.6.6 Vanishing and exploding gradients
According to (2.31), each of the weights of a neural network receives an update
that is proportional to the gradient of the loss function with respect to the current
weight. In some cases, the gradient can be so small that it prevents the weight from
changing value. In the worst case, this can completely stop the training of a neural
network. One cause of this problem is the activation functions. For example, let us
look at the hyperbolic tangent function. Its gradient has values in the range (0,1),
and as we know, backpropagation computes gradients using the chain rule. This
has the effect of multiplying n of these small numbers to compute the gradients
of the first layers in an n-layer network, which means that the gradient decreases
exponentially as we approach the neurons in the first layers. The problem presented
above is called vanishing gradients.
A similar problem called exploding gradient is when the activation functions have
derivatives that can take on extremely large values, resulting in large gradients.
This, in turn, causes large updates in the weights, making the neural network
unstable. In the extreme case, the values could be so large that they cause overflows;
that is, the machine cannot correctly represent the value of the gradients.

Several techniques can be used to mitigate the problems mentioned above:

• reducing the number of layers that make up a neural network

• use a technique called gradient clipping to prevent exploding gradients. The
idea is to scale the gradients so that their norm does not exceed a given value.
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• use activation functions that suffer less from the vanishing gradient problem,
such as ReLu [28].

2.6.7 Underfitting and Overfitting
Let us briefly introduce two of the most common issues that negatively affect a
model: underfitting and overfitting. Underfitting refers to a model that can neither
learn from the training data nor generalize to unseen data. It is easy to detect since
underfitted models have poor performance metrics, e.g., inaccurate predictions. In
the context of neural networks, generalization refers to the model’s capability to
produce good predictions, i.e., reasonably close to the desired output, to sets of
inputs that it has never seen. This means that the current configuration of the
neural network failed to capture any relevant pattern from the training data. On
the other hand, a model that suffers from overfitting matches nearly perfectly to the
training data while it does inadequately on data that it has never seen before. The
main reason why a model goes into overfitting is because of the noise collected from
the training dataset. Noises are those features that appear in the training dataset
that are, for example, mislabeled or rarely show up in other similar datasets. This
causes the neural network to acquire distorted or incorrect information, generating
less accurate predictions when dealing with real-world data [29]. There are multiple
strategies available that can be adopted to reduce the effect of overfitting:

• early stopping: it is a strategy that consists of stopping the training when
it reaches a point where the performance metric evaluated over the testing
data set stops improving. Hence, it simply freezes the model before it gets a
chance to overfit (Fig. 2.10)

• expanding the training data set: a model performance can be significantly
improved using a more extensive data set

• dropout is based on the idea of temporarily dropping some nodes during
training to reduce the phenomenon called co-adaptation. In a way, we are
reducing the capacity of our neural network, forcing it to create “stronger”
connections on those links where usually would have little influence on the
final prediction. Furthermore, dropout makes it easier to train the neural
network, reducing the computation complexity of the model significantly. It
is an effective strategy to adopt for large or complex networks.
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Figure 2.10: Example of the strategy called “early stopping”
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Chapter 3

Channel Prediction

3.1 Introduction
In literature, there are countless methods available for estimating channel properties
of a communication link, collectively known as channel state information (CSI).
These techniques generally fall into one of these two categories: channel prediction
schemes based on traditional statistical methodologies or methods designed around
machine learning algorithms, with particular attention on neural networks-based
prediction [30, 31].
This work will focus on the latter with the aim of building a predictor that can
estimate the future quality of a wireless channel between two devices in real-time.
Specifically, the target is to predict with what probability a packet sent over the
channel arrives at its destination. The idea is to train an ANN model using the
knowledge of current and past transmissions outcomes to determine the probability
of success of future ones. Below is reported an example that will go through the
main steps of the algorithm. First of all, let us introduce two variables: i and pi.
The former denotes a counter that is incremented after each transmission attempt,
while the latter indicates its outcome (success or failure). The counter has an
initial value of 0, so if i is equal to 10, the transmitter has sent ten packets on
the wireless channel. In order to predict what will happen to the 11th packet, the
neural predictor will use a mathematical function, learned during training, that
accepts as input the results of the last transmissions (e.g., the 10th, 9th, and 8th)
to estimate the sought-after measure. The size of the data considered each time
is delimited by the left and right edge of a sliding window with no holes (see Fig.
3.1), which determines respectively the oldest and newest packet examined. The
window’s width is one of the model’s parameters under study, which changes from
channel to channel.
Once the final model is ready, i.e., after it has been trained and tested, we are
not limited to working only with the success rate, but we can derive from it other
metrics, such as the loss ratio.
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3.2 Methodology
This section will precisely describe the quantities of our interest and outline the
main features of a new type of predictor used as a reference model in the testing
phase. Below we introduce some of the notations that will be used in the next few
paragraphs:

• let pi denote the outcome of the i-th transmission over the wireless channel
connecting a transmitter and a receiver. In probabilistic terms, it denotes an
event. It has value 1 in case of success, 0 otherwise. The index can be viewed
also as the time of transmission. The two interpretations are equivalent in
that both denote a particular event within an ordered sequence, where the
concept of before and after applies. Both meanings are used interchangeably
in this text

• let PNevents be { pi | i ∈ ( 1, 2, . . . , Nevents ) }, where Nevents is the size of the
set containing all events

• let Pt be { pi | i ∈ ( t, t− 1, . . . , t−Npast + 1 ) }, where Npast is the width of a
window delimiting a subsequence in PNevents

• let D be a set of tuples { (Xt, ytruet) | t ∈ (1, ..., s) }, where Xt represents the
t-th input vector, ytruet is the associated label, and s is the size of the set D.
In other words, D is our dataset

• let Nnext be the size of the target window, which outlines the future trans-
missions we are interested in in the form of a sliding window.

As previously anticipated, the objective is to create an ANN-based model, mainly
using FFNNs, such that it can predict with reasonable accuracy the success rate
in the near future given the recent past. Note that unlike the example given in the
introductory section, the subject of interest is the near future and not the outcome
of the next frame. We made this choice because it is incredibly challenging and
complicated to create a predictor that can reliably estimate the outcome of a single
transmission due to the inherent issues affecting a wireless channel, e.g., noise. The
near future, henceforth called target window, is delimited by a window of width
Nnext, similarly the recent past is bounded by a window of width Npast (see Fig.
3.1). A generic target window at time t is represented as the arithmetic mean over
the Nnext consecutive events from time t + 1. Mathematically this is expressed as:

ytruet = 1
Nnext

NnextØ
i=1

pi+t (3.1)

The equation above represents what we called labels in Chapter 2. They are used
to assess the goodness of an ANN’s predictions by comparing them with the target
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values. The comparisons are made in two instances: during training while the
algorithm is still “learning” and during the test phase when validating the final
model.
As for the inputs of a neural network (i.e., Xt), they are vectors whose elements are
called feature. In turn, a feature is a simple arithmetic mean of a variable-size block
of transmission outcomes. A different window characterizes a different feature of
an input vector, with all having a width multiple of NANN

step . The largest one is
described by the parameter NANN

past (see Fig. 3.1). So, the k-th feature of an input
vector Xt is defined as follow:

xk
t = 1

NANN
pastk

NANN
pastkØ
i=1

xt−i+1 (3.2)

where k identifies the k-th feature of an input vector (counting from 1), NANN
pastk

(= k ∗NANN
step ) is the width of the window, and t identifies the time/example.

For instance, to produce an input vector Xt = {x1, x2, ..., xNfeatures
} we would need

to apply (3.2) on a window of length Nstep to get x1, on a window of length 2 ·Nstep

to get x2, and so on until xNfeatures
, which has a window of length Nfeatures · Nstep

(NANN
past ).

Now that we have the starting blocks in place, we need to be able to answer two basic
questions before we can proceed any further: how can we assess if a model/predictor
is good or not? And, what does it mean “good”? Generally speaking, the closer the
actual predictions are to the labels (henceforth “actual” values/predictions refers
to the prediction made by the model), the better a model is considered to be. The
concept of closeness is quantified in terms of distance, or rather error, between the
labels and actual values. For regression problems such as this one, we typically
would use as metrics:

MSE = 1
s

sØ
i=1

e2
i (3.3)

MAE = 1
s

sØ
i=1
|ei| (3.4)

where s is the number of examples or equivalently is the number of labels, and ei

is the difference between ytruet and the actual value generated by the ANN-based
predictor given Xt as input. MSE and MAE are acronyms respectively for “mean
squared error” and “mean absolute error”.
For conciseness, we introduce a function fANN(·), that summarize the operation
performed by an ANN model, i.e., given an input vector Xt produce a prediction
ŷANN

t . Then we can reformulate ei as:

ei = ytruet − fANN(Xt) (3.5)

In order to fairly evaluate an ANN model, it is common practice to divide the
dataset D in two disjoint subsets: the training dataset Dtrain and the test dataset
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Dtest. This is done because we want to ensure that the model is evaluated only on
unseen data during the testing phase. Otherwise, we do not have a way to correctly
interpret the metrics used to assess the predictor (e.g., MSE or MAE), on cases, for
example, whether the model actually extracted some useful generalization pattern
or simply memorized the entire training dataset (overfitting). With the help of
MSE or MAE, we can numerically characterize only one aspect of a neural network:
its accuracy. However, these metrics, by themselves, are generally not enough to
determine if a neural network is overall good until it is compared to a reference
point, which in turn sets the level of performance that we are trying to achieve or
surpass. The baseline is usually set up a priori by the practitioner, and it varies
from context to context, but, for example, it can be computed or extracted from
similar past experiments. In other cases, the ANN is directly validated against other
models that are functionally equivalent. The points of comparison can be multiple:
from matching results using MSE or MAE to define custom metrics that better
express the properties of the problem in question. In our case study, we followed
the second approach by defining a heuristic-based predictor and then using a metric
called win-ratio to compare the two.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21

𝑁𝑝𝑎𝑠𝑡
𝐴𝑁𝑁 𝑁𝑛𝑒𝑥𝑡

𝒚𝒕𝒓𝒖𝒆𝒕𝒙𝟏
𝒙𝟐

𝒙𝑵𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔

𝑁𝑠𝑡𝑒𝑝
2∙𝑁𝑠𝑡𝑒𝑝

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠∙𝑁𝑠𝑡𝑒𝑝

Figure 3.1: Input features of the ANN model when time t is 12 (example with
Nfeatures = 3, Nstep = 4, and Nnext = 8).

3.3 Heuristic predictor
The heuristic channel predictor was designed on the assumption that the dynamics
of near future transmissions are similar, in terms of outcomes, to those of the recent
past. Then, we can reliably estimate the success rate for a generic time interval t
as an arithmetic mean of the most recent NAV G

past transmission outcomes prior to t,
analogously to how the features of an input vector are computed. However, instead
of having multiple overlapping blocks, the heuristic model uses only a single block
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(see Fig. 3.2). In mathematical terms:

ŷAV G
t = 1

NAV G
past

NAV G
pastØ
i=1

pt−i+1 (3.6)

where NAV G
past denotes the length of a window delimiting the set of past transmissions.

Similar to what we did for the ANN model, we introduce a function fAV G(·) that
models the operation performed by the heuristic model, i.e., given a subset of Npast

input samples, collectively denoted with P AV G
t , provide an estimation of the target

ytruet . Hence, (3.6) can be rewritten as:

ŷAV G
t = fAV G(P AV G

t ) (3.7)

NAV G
past is the only parameter of this type of model. The choice of its value is impor-

tant and needs careful tuning since it will heavily influence the outcome of the final
comparison between the two types of predictors. Ideally, we should set this pa-
rameter to a value that optimizes the metric/s present during the validation phase,
so that we get the best possible heuristic predictor. In the case MSE is used, it
means finding a value of NAV G

past that minimizes the overall MSE computed over
the training dataset. Note that the dataset employed for the above operation is
the training set and not the test set, even though the latter is the one being used
during the benchmark. The reason behind this choice resides in the fact that in
real applications, we have at our disposal data with labels only during training.
Let us now discuss how we can compute the optimal value from a practical point
of view. The simplest of the methods is to use a brute-force-based approach, that
is, to try all possible admissible values of NAV G

past until the optimal solution is found.
NAV G

past is a parameter that depends on two other factors: the training dataset and
Nnext, i.e., the width of the target window. Whenever the values of either parame-
ter are changed, we must recalculate NAV G

past accordingly. Once we have selected the
training dataset Dtrain and the value of Nnext, the idea is to evaluate the MSE on
Dtrain for all the values of NAV G

past within the sequence (1,2, . . . , size(Dtrain)), gener-
ating the predictions using (3.6). Then, we have to associate to NAV G

past the window
corresponding to the smallest MSE found in the previous step. More details have
been presented in pseudocode form in Algorithm 2.

𝑁𝑝𝑎𝑠𝑡
𝐴𝑉𝐺

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21

𝑁𝑛𝑒𝑥𝑡

𝒚𝒕𝒓𝒖𝒆𝒕𝑷𝒕
𝑨𝑽𝑮

Figure 3.2: Input feature of the heuristic model when time t is 12 (example with
NAVG

past = 8 and Nnext = 8).
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Algorithm 2 bestNPastAV G(Dtrain, Nnext, computeMetric)
bestWidth← 0
bestMetric← null
for Npast ← 1 to Npast ≤ Dtrain.size do

initialize targets and predictions to an empty array
for t← Npast to t < Dtrain.size−Nnext do

ŷANN
t = 1

Npast

qt
i=t−Npast+1 Dtrain[i]

ytruet = 1
Nnext

qt+Nnext
i=t+1 Dtrain[i]

store ŷANN
t in predictions

store yt in targets
t← t + 1

end for
currentMetric← computeMetric(targets, predictions)
if bestMetric ≡ null or isBetter(currentMetric, bestMetric) then

bestMetric← currentMetric
bestWidth← Npast

end if
Npast ← Npast + 1

end for
return bestWidth

Algorithm 2 requires three arguments: a training dataset Dtrain, the width of
the target window Nnext, and a function computeMetric(·) that evaluates the
predictions against the targets based on a user-selected metric, e.g., see (3.3) and
(3.4). The function isBetter(·) is a placeholder for a procedure that semantically
all it does is return true in case its first argument is “better” than its second argu-
ment according to the selected metric, false otherwise.
From the point of view of computational complexity, Algorithm 2, as any algorithm
based on brute force, is inefficient and time-consuming. For large datasets, it means
not converging to a solution in an acceptable time. Therefore in these instances, we
need alternative approaches that are more efficient and faster, which opt to find an
approximate solution to the problem at hand instead of an optimal one. For exam-
ple, in our case, instead of examining all window lengths, we can test only a subset of
them. In particular, we can only try the lengths that are a multiple of a base x, effec-
tively reducing the number of executed iterations by x times. This implies increas-
ing the speed of the algorithm by x fold. As a further improvement, once we have
found a solution, denoted as approximateBest, we can reapply Algorithm 2 within
the interval (approximateBest−x, . . . , approximateBest, . . . , approximateBest +
x) to fine-tune our current solution.
In summary, the purpose of the heuristic approach is to set a valid and meaningful
baseline to be used during our tests. To this end, the heuristic model is initially
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evaluated on a training database Dtrain to find a specific value of NAV G
past , that min-

imizes the MSE. As for the predictions, the algorithm generates the estimate for a
generic time t by averaging the NAV G

past samples before t, as we did similarly for the
targets.
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Chapter 4

Database Acquisition

4.1 Introduction
This chapter describes the setup and techniques used to acquire the databases used
for training and testing the ANNs and heuristic model. The general scheme adopted
is the following: a commercial desktop PC sends frames at a constant and contin-
uous rate, on two separate Wi-Fi channels through two disjoint Wi-Fi adapters,
to an access point placed at a fixed distance. We will refer to this particular con-
figuration as basic setup. As explained in Chapter 3, the pieces of information we
are interested in are the outcomes of every transmission made on a Wi-Fi channel
between two devices (i.e., PC and access point) starting from an arbitrary point in
time. To achieve that, we have built an ad hoc software application that saves the
identifiers of all frames transmitted over the channels and their relative outcomes
in a database system. It is built on top of an architecture called SDMAC [32, 33],
which defines a set of functions collected in a library that allows the calling appli-
cations to directly access and control some of the low-level operations performed
by Wi-Fi adapters, such as automatic frame retransmission. It is necessary since
most of these operations are generally not accessible for applications running in
user space, such as this one. Using these specific MAC-level functions, we can
precisely control how and when a frame is transmitted over a wireless medium.
Conceptually the main application performs three macro functions, executed in the
following order:

1. every Ts seconds, the application sends a request to the Wi-Fi adapter to
transmit a frame to the access point via a specific channel. This operation is
accomplished by calling the function SDMAC_DATA_req(·)

2. the application hangs and waits indefinitely until it receives a notification
about the transmission outcome (success or failure). This operation is per-
formed by calling the function SDMAC_DATA_con(·)
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3. the application writes the statistics of interest regarding the request just made
in a database system.

SDMAC_DATA_req(·) and SDMAC_DATA_con(·) are functions found inside
the SDMAC library [33]. Then the application repeats the three steps above till it
gets the complete database, e.g., stop after a predefined number of transmissions.
We will discuss below, in general, the basic ideas and implementation choices made
by the SDMAC authors during its design and the specific options that were adopted
while writing the main application. As already mentioned, to send a packet, the
application calls the function SDMAC_DATA_req(·), which in turn, all it does
is primarily to call an endpoint (sendto) exposed by the POSIX raw sockets API.
Passing through the driver, the packet is then temporarily saved inside a queue
before being sent to its destination by the adapter. The transmission queue, also
called the ring buffer, is a kind of loading-unloading zone present in all modern Wi-
Fi adapters containing the packets to be forwarded, stored in a particular order.
In this first phase, several parameters and mechanisms of the Wi-Fi standard de-
serve special attention during the configuration stage: backoff, transmission speed,
and the retransmission process. The latter is a mechanism that deals with retrans-
mitting lost or damaged packets due to transmission failures. One of the most
common causes is the expiration of a timer before receiving an acknowledgment
for the packet. Under normal circumstances, the transmitter expects to receive a
confirmation from the recipient following a transmission. If this does not happen
within a time interval, the packet is considered lost from the transmitter’s point of
view, triggering the retransmission mechanism. Concerning our work, we disabled
this mechanism for the following reasons:

• ensure that each packet is sent exactly every Ts seconds. With retransmissions
enabled, retries may be forwarded at inconsistent rates

• guarantee that only one packet is present in the ring buffer at any given time.
This aspect is important because among the various statistics collected, some
track the temporal properties of each transmission. These values could be
distorted if there are other packets in the queue. For example, the time at
which the request is sent could be very different from the actual transmission
time if the Wi-Fi adaptor is busy disposing of lost packets. Theoretically, we
could run into this kind of problem also for small values of Ts. However, in
practice, this does not happen because Ts is usually in the order of seconds,
while packet transmission time is in the realm of microseconds. Nevertheless,
the latter will tend to increase if the dynamics of retransmissions come into
play, increasing the delay to even a few seconds in cases of high workload.

By disabling it and setting the parameter Ts to an appropriate value, we guar-
antee that requests are sufficiently equispaced so that there cannot be more than
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one packet at the same time in the ring buffer. In order to decrease latencies and
further improve the accuracy of time measurements, the random backoff was dis-
abled. It is a mechanism present in the Wi-Fi standard that serves to minimize the
probability of collision. Collision refers to the event in which one or more devices
want to transmit a packet at the same time. In these cases, the device which has
detected the channel as busy waits for a random time, called backoff time, before
attempting a new transmission. Deactivating the random backoff is equivalent to
transmitting the frame immediately after the channel becomes idle. The last rel-
evant parameter to which we made a change is the transmission rate. In modern
Wi-Fi adapters, the transmission rate is adjusted on the fly by adaptive mecha-
nisms, which decide the transmission rate for each frame. The drivers in our Wi-Fi
adapters use a rate adaptation algorithm called Minstrel. The way it has been
conceived and designed, Minstrel is suitable when the application context makes
use of retransmission procedures [34, 35]. Since the latter has been disabled for the
aforementioned reasons, it only makes sense to disable this feature. Consequently,
the transmission rate must be managed on the application side (with SDMAC).
The authors of SDMAC, through experimental studies, have shown that having a
fixed bit rate helps to improve the determinism of a system, and therefore in our
case, to obtain more reliable and precise time measurements. For precisely these
reasons, the transmission speed was set to 54Mbps, the same used in [33]. The
next phase is concerned with detecting whether a transmission has been success-
ful. Upon receiving an acknowledgment (success) or upon expiration of a timer
(failure), the device generates an interrupt meant to inform the operating system
that a response has arrived. Without going into implementation details that are
beyond the scope of this thesis, the operating system will handle the interrupt as
soon as possible by executing a predefined routine. The latter, in turn, will ex-
ecute a set of instructions within the driver, including those used to detect the
transmission’s outcome and those to collect statistics associated with it, such as
indicators of channel quality. All this information is then propagated in SDMAC
from the driver to the application via a character device. Remember that in the
meantime, the program is in an indefinite "waiting" state and remains blocked until
it receives new data from the character device. Once the information has reached
the application, it then proceeds to save it in a database.

4.2 Experimental setup
This section will present the settings of the testbed used during the database ac-
quisition. The basic setup introduced in the previous section was duplicated in
the final experiment. So in total, two desktop PCs were used to transmit to two
different access points on four separate channels, two for each PC. To summarize,
the application acquired the database by:
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• using two PC desktops (transmitter A and transmitter B) with installed a
Linux Ubuntu operating system (v.18.04 with kernel v.4.4.0) and equipped
with a dual-band TP-Link TL-WDN4800 Wi-Fi adapter managed by the
ath9k device driver (v. 4.4.2-1)

• having the sampling time Ts fixed at 0.5 seconds on all channels

• having the transmission speed set to 54Mbps

• having the retransmission process and Minstrel deactivated.

Transmitter A sends two packets every Ts seconds to access point A, one on channel
1 and the other on channel 9. Similarly, transmitter B transmits to access point B
on channels 5 and 13.
For each transmission made, the application saves inside a database a record with
the following information:

• channel name (ch1, ch5, ch9, or ch13)

• progressive number of a packet. It is global inside a file.

• timestamp in ms according to Unix time

• Time Stamp Counter (TSC) at the time of transmission. The TSC represents
the number of CPU cycles from its reset at the time of packet dispatch.

• TSC at the time of ACK reception. Analogous to above but calculated at the
time of ACK reception or at the expiration of the ACK timeout.

• outcome of the transmission. 1 in case of success, 0 otherwise

• received signal strength indicator (RSSI) of the ACK. It measures the strength
of the received ACK. If the timer expires before the reception of the acknowl-
edgment (known as ACK timeout), its value is undefined, thus unreliable.

• link quality according to iwconfig

• signal level according to iwconfig

• bit rate, which is fixed to 54 Mbps in the case of the database acquired in
this thesis.

For various reasons (failures, interference, and disconnections), it was not possible
to sample continuously on the same channel for the entire duration of the exper-
iment, thus breaking the transmissions on each channel into many trunks. Then,
the outcomes of the transmissions from each trunk were saved in a separate text file
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having as name: <channel>_<trunk>, where <channel> and <trunk> are place-
holders for the channel name and the trunk identifier.
Therefore the complete database is partitioned first by channel and then by trunks
(see Fig. 4.1). Although only part of the information collected will be used during
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Figure 4.1: Transmission’s outcomes of a channel over time

the training and testing of the predictors, the dataset represents a valuable source
of information that can be used to conduct other experiments based on this work.
The characteristics of the collected databases are summarized in Table 4.1.

channel F0 (MHz) # files # records/file # records # days code name
1 2412 55 155365.46 8389735 48.55 db_ch1
5 2432 55 153239.07 8274910 47.89 db_ch5
9 2452 23 308187.30 7088308 41.02 db_ch9
13 2472 23 308025.30 7084582 41.00 db_ch13

Table 4.1: Some metrics about the collected database.

Henceforth to refer to the database acquired on a particular channel, we will use
the corresponding abbreviation present in the “code name” column.
In summary, experimental data were acquired in an extensive acquisition campaign
based on real devices, which lasted more than 40 days. We repurposed an exist-
ing application, based on the SDMAC architecture, to transmit periodically with a
fixed period a frame on four distinct Wi-Fi channels operating in the 2.4 GHz band.
We then collected and saved the various statistics related to each transmission, such
as its outcome, into a database.
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Software

5.1 Introduction
This section describes the structure and the main components that constitute the
software application. It is mainly about the design choices, the algorithms em-
ployed, and the various obstacles encountered during the code writing phase. In
addition, we will expose the reasons why certain solutions were preferred over oth-
ers for the most critical parts of the application. From a general point of view, the
program consists of two macro components:

• an auxilliary software application that deals with processing the collected data
and converting them to an ad hoc format that will then serve as a dataset to
a neural network

• a main software application that takes care of configuring, training, and test-
ing the neural networks

The two components will be explained in Section 5.2 and 5.3, respectively.

5.2 Auxilliary software application
The auxilliary software has the task of transforming the collected raw data, as
described in Chapter 4, Section 4.2, into a dataset with an ad hoc format appro-
priate to be processed by a neural network during the training phase. A dataset
can be seen as a table consisting of two columns and many rows: the first col-
umn, abbreviated as X̄, denotes the inputs of a neural network (input vectors),
while the second column, abbreviated as ytrue, represents the labels associated with
the inputs. X̄ is a vector of real numbers whose elements are arithmetic averages
computed over sequences of transmission outcomes made before a generic time t,
likewise for ytrue but considering transmissions from t. Conceptually, to compute
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the i-th input vector, i.e., the first column of the i-th row, the application proceeds
as follow:

1. creates an imaginary window that covers the sequence containing all trans-
missions from t to t−Npast + 1

2. divides it into many overlapping blocks of increasing lengths with their right
side aligned. The smallest block has size Nstep, the second smallest block has
size 2 ∗ Nstep, the third smallest block has size 3 ∗ Nstep, and so on until the
largest block, which has size Npast. Clearly, for this to work, Npast must be a
multiple of Nstep

3. computes the arithmetic average on each of those blocks to get the elements
of the input vector.

Similarly, the label associated with the input vector is obtained by averaging the
results of transmissions from t + 1 to t + Nnext.
Nnext, Npast, and Nstep are the same parameters firstly introduced in Chapter 3.
By convention, we will use x1, x2, . . . , xNfeatures

to denote the feature (element)
computed on the Nstep, 2 ∗ Nstep, . . . , Npast block, respectively, and refer to this
specific format as overlapping format.

1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0

𝒚𝒕𝒓𝒖𝒆𝒕𝒙𝟏
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𝟐
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𝟏𝟎
= 0.7

Figure 5.1: Computation of an input vector and the corresponding label (example
with Nstep = 2, NAVG

past = 6, and Nnext = 10).

From a practical point of view, the first thing to do is set the values of Npast, Nstep,
and Nnext. All three take integer values. The last one, Nnext, represents the width
of the target window and expresses how far into the future we want to estimate
the channel quality at each prediction. The first and second define how to manage
past samples. Once these values are set, we can proceed with the primary phase
of the algorithm. We will conceptually describe the steps involved by illustrating
them with an example:

1. assuming we have chosen to work on db_ch1 (see Table 4.1), the initial step
is to read in memory the first of the 54 files.
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2. Step two is to select for each record of the dataset the field related to the
result of the transmission and save it inside a vector, which we will denote as
ack_series. The latter together with Nstep, Npast, and Nnext are the minimum
information required to run the algorithm that maps the data into records
with overlapping format as format type.

3. In step three, we proceed to extract from ack_series the features of all the
input vectors, following this specific order: first, we compute all x1 features,
then x2 features, and so on up to the xNfeatures

features. The feature extraction
is done by introducing a sliding window that has the same size as the block
associated with the feature we are currently working on. For example, if
we are extracting x1, the window has size Nstep. Also, the left edge of this
window must be aligned with ack_series at position: Npast − size(window),
where size(·) denotes the size of its input. This is because it is the largest
window, i.e. Npast, that characterizes the first valid input vector. Then we
shift the moving window one position at a time to the right and each time
repeat these two operations: sum the elements contained in it and save this
value in a support vector. Having reached the end of ack_series, we divide
each sum by the length of the window to obtain the feature values (see Fig.
5.2). To obtain the rest of the features, step three is repeated for all the other
lengths. This strategy was preferred over calculating the averages directly
because we can exploit some properties of our problem to calculate the sums
more efficiently, thus gaining computational time—more on later.

4. In the final step, we save the input vectors obtained in a file.

The procedure just described is then repeated for the other files part of the raw
database associated with channel 1. In the end, the final dataset for channel 1 will
consist of 54 files, each equivalent to one (mini) dataset.

1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1

1 successful transmission

0 failed transmission

2 2 1

1 1 0.5
2nd i.v.1st i.v. 3rd i.v.

i.v. = input vector

divide

𝒕𝟏 𝒕𝟐 𝒕𝟑

Figure 5.2: Computation of feature x1 for all the input vectors (example with
Nstep = 2, NAVG

past = 6, and Nnext = 10).

The files have been named using this convention: <channel>_<trunk>_<Nstep,
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Npast>_<Nnext>_<format>_<version>, where <version> represents a specific im-
age of the raw database, while the other fields are self-explanatory.
The number of elements, i.e. input vectors, contained in a file can be simply cal-
culated using this formula:

M = len(ack_series)−Nnext −Npast + 1 (5.1)

where len(·) is a function that returns the size of its argument.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

t + 1

t 

t + 2

▪ 𝑥1
▪ 𝑥2
▪ 𝑦𝑡𝑟𝑢𝑒

1st input vector

2nd input vector

3rd input vector

Figure 5.3: Visualization of all input vectors on ack_series (example with Nstep =
2, Npast = 4, and Nnext = 6).

All the reasoning did so far is valid for all other channels as well.
For block sizes that contain more than one element (i.e., Nstep > 1), doing the sums
by explicitly going to sum all the individual elements is computationally expensive,
especially if ack_series is very large. An optimization we can implement arises from
observing that part of a sum related to a window at a generic position has already
been computed in the previous iteration. Specifically, the sum of the window at
position t can be derived by adding and subtracting the incoming element and the
outgoing element, respectively, to the sum calculated at position t−1 (see Fig. 5.4).
With this optimization, the computational complexity of the algorithm goes from
O(M ·Npast) to O(M), where we used the big O notation to indicate the worst case
of the algorithm’s execution time, minus a constant. The algorithm in the simplest
case has complexity O(M · Npast) because it has to perform in total M sums and
each sum is computed on Npast elements, while in its advanced implementation
it performs roughly 2 ·M sums. The latter arises from the fact that the moving
window shifts M times and all the elements touched by the window, except the very
first and very last, are used in two different calculations: a sum and a subtraction
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outgoing element

incoming elementt – 1

t

Figure 5.4: Visualization of the incoming and outgoing element when shifting the
window to the right by one

(try to imagine having a window of size 1).
To recap, the goal of the auxiliary application is to transform the raw database into
a tabular data structure, commonly known as a dataset, consisting of input vectors
and labels. The input vectors are a collection of real numbers whose elements
are arithmetic averages calculated on the transmissions outcomes made on the
channel, as are also the labels. The final dataset consists of many separate files, each
representing the transformation of a raw database file into tabular data structure.

5.3 Main software application
This section focuses on the structure and code of the main software application.
The application was developed entirely in python for its simplicity, flexibility of
experimentation, and availability of an extensive collection of open-source libraries
for creating neural networks. In the following paragraphs, the explanations, where
necessary, will be supplemented by code snippets to improve clarity and readability.
However, the specific technological choices do not diminish the generality of our
work, as the ideas and algorithms introduced are independent of the development
platform and programming language in use. This section is further divided into
three subsections that describe the configuration, the training, and the testing of
neural networks, respectively.

5.3.1 Configuration
By configuration, we mean all that part that concerns the definition of the structure
and behavior of neural networks, therefore: the parameters that define the topology
(number of layers and neurons, type of connections), the hyperparameters (learning
rate, batch size, momentum), the optimizers and initializers, and the datasets. In
practical terms, the configurations are set up via two files that use a standardized
format named YAML for setting the various parameters. This centralized strategy
allows any user to use the application without having any a priori knowledge of its
internal structure and code. The first of the two files (confNN) allows you to set the
parameters related to the topology, optimizers, and initializers, specifically:
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• the type of model. As of today, the application supports only sequential
models (FFNN)

• the internal structure of each layer: type, number of neurons, activation func-
tions, and weights initializer. Our experiments will only use dense layers, i.e.,
every neuron is connected to all neurons in the next layer. However, there are
other forms of layers available in literature that have not been presented in
this work but are essential for other types of neural networks, such as RNN
or convolutional neural networks. Weight initializers define how the random
weights associated with the connections are chosen

• the optimizer to use during training, e.g., SGD or Adam.

The second configuration file (conftraining) allows to control the settings related to
the training, such as:

• the number of iterations on all the training dataset of a run (epochs)

• the batch size

• the learning rate. Two values are allowed: a real number that remains fixed
for the entire duration of the training or a function, called scheduler, created
by the user, which decides the values at the beginning of each epoch

• the datasets. These files are not declared explicitly, i.e., through their path,
but are retrieved by the application through some other variables included in
this configuration file. This is made possible because, as explained in Section
4.2, the filenames all follow a common naming convention that allows the
application to generate their paths on the fly:

<channel>_<trunk>_<Nstep, Npast>_<Nnext>_<format>_<version> (5.2)

Each field <. . . > is present as a configuration parameter. The <trunk> pa-
rameter accepts a vector of real numbers that characterizes all the mini-
datasets to be used in a single run of a training process.
Another important aspect is that the user can define more than one pair of
<Nstep, Npast>, so that we can sequentially train many neural networks with
different training datasets using the same configuration. This feature is es-
sential in order to automate the training process and obtain a large number
of different models for the analysis that will be conducted in Chapter 6

• the path to a folder containing all datasets used.

To summarize, the configuration phase allows the practitioner to define the neural
networks and manage the training process by setting up two files, making the whole
configuration process flexible and straightforward.
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5.3.2 Training
Once the configuration parameters are set, the application proceeds to create and
train a neural network based on these values. For this purpose, we decided to use
a library called Keras, one of the most popular ones out there to interface with the
world of neural networks. It was chosen for the ease of use and expressiveness of its
API, which allows the end-user to easily and comfortably create neural networks
as a composition of simple elements such as, for example, neurons, layers, and
activation functions. As a whole, the algorithm is abstractly made up of a sequence
of operations that are repeated until a criterion is satisfied, each one designed with
a specific goal:

1. read and parse the two configuration files (confNN and conftraining)

2. load in memory the training mini-dataset

3. extract the input features and labels from the training mini-dataset and even-
tually concatenate the rest of the features if more than one dataset has been
declared, similarly, for the labels.

4. create a neural network based on the values of the configuration files

5. perform the training of the neural network

6. load in memory the test dataset. Eventually perform the same operation done
for the training dataset if more than one test dataset has been specified

7. load the heuristic model

8. compare and evaluate the performance of the neural network versus the
heuristic model

9. save the results of the comparison in a database.

The application repeats steps 2 to 9 if there is more than one pair of <Nstep, Npast>.
Below, we will discuss point by point how the various stages were implemented and
the strategies adopted. As the initial step, the application reads, interprets and
converts the information contained in the two configuration files into a data struc-
ture suitable to the programming language in use. The name and the position of
the two configuration files are assumed to be fixed. Conversion is performed by a
library called yaml, which allows to transform YAML type files into a collection
of Python objects, known as dictionary. The result of this conversion is denoted
by the variable configs. From the settings in conftraining, the application obtains
at run-time the absolute paths of the datasets to be used during the training and
testing phases. The paths are generated by concatenating the various parameters
according to (5.2). A valid alternative is to indicate the file paths directly, but this
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strategy has been discarded because it does not scale as the problem grows.
As the second step, the application reads the training mini-datasets in memory
through a library called pandas, which saves the information in a table-like object,
known as DataFrame. To this abstraction are associated the most common op-
erations that we would expect to be able to perform on a table, such as reading
and deleting specific rows, dividing the table by columns and rows, joining several
tables and so on.
As the third step, the application merges the mini-datasets in the order in which
they were read and divides the complete dataset into two parts: the inputs and
the labels. The division is a simple process thanks to pandas because it is only a
matter of selecting one of the two columns since, as explained in Section 5.2, the
mini-datasets by construction are also tables made of two columns: one reserved
for inputs and the other for labels.
The following two steps are the central parts of the algorithm. The application
creates and trains the neural network based on the values read from confNN and
conftraining, respectively. At the time of writing this thesis, the application only
supports sequential models (FFNN), i.e., loop-free neural networks composed of
layers arranged one after the other, with a single input and output layer. To this
end, the application first calls the function keras.Sequential(), which creates an
empty network represented through the variable model. The various layers that
make it up will be added to this model as they are created using model.add(·). To
create dense layers, the keras.layers.Dense(·) function can be called, which allows
to define among the various characteristics: the number of neurons, the activation
function, the kernel initializer, the bias initializer. This is the minimum structure
required in order to proceed to compile the model, which consists of a specific
internal check in Keras to verify the correctness of the model just defined. The
optimizer and the objective function (e.g., MSE, MAE) are declared in this phase.
Clearly, these parameters vary depending on the type of problem we are trying to
solve. For regression problems, such as this one, it is usual to use Adam as the
optimizer and MSE/MAE as the objective function.

import t en so r f l ow as keras

def create_model ( c o n f i g s ) :
model = keras . Sequent i a l ( )

for _ in c o n f i g s . t o t_ laye r s :
l a y e r = keras . l a y e r s . Dense (

. . . , # un i t s
a c t i v a t i o n = . . . , # a c t i v a t i o n func t i on
k e r n e l _ i n i t i a l i z e r = . . . , # weigh t i n i t i a l i z e r
b i a s _ i n i t i a l i z e r = . . . , # b ia s i n i t i a l i z e r )

53



Software

model . add ( l a y e r )

model . compile ( opt imize r = . . . , l o s s = . . . )
Listing 5.1: Example of a function that creates a neural network using the Keras
interface

Once we have obtained the model, we can proceed with the training of the neural
network. It is done by calling the function model.fit(·) passing as arguments the
inputs and the corresponding labels, the number of epochs for which we want to
train the model, and the batch size value. In addition, we can specify whether to
shuffle the inputs. The shuffle consists of randomly ordering the data at the be-
ginning of each epoch before they are provided to the neural network for training.
This operation is done to minimize the risk of creating batches that are not repre-
sentative of the overall dataset. This problem becomes apparent in case a neural
network is being trained using SGD. In fact, if the data are not randomized at
each iteration, every data point is analyzed in the same sequence across all epochs,
causing each gradient to be distorted and dependent on the update done by the
data point before it. By shuffling, we ensure that each example updates the model
independently without being influenced by the same inputs. The same concerns ap-
ply when using mini-batches. In this cases, ideally each batch should contain data
points that are representative of the complete dataset, so that the model can then
extrapolate useful patterns. Without the shuffle, the chances of the model fitting
too well to a particular sequence of data increases, which may not be indicative of
the overall trend of the complete dataset. For the reasons mentioned above, the
shuffle is active by default in all of our configurations.

from t en so r f l ow import keras

# example o f a s chedu l e r t ha t ha l v e s the l e a rn ing ra t e
# fo r the f i r s t 5 epochs , then keeps i t cons tant
def l r_schedu l e r ( epoch , l r ) :

i f epoch < 5 :
return l r / 2

return l r

# for b r e v i t y , the code to ob ta in the inpu t s and the l a b e l s
# i s omit ted

model = create_model ( c o n f i g s )
model . f i t (

<inputs >,
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<la b e l s >,
epochs =<...> ,
batch_size =<...> ,
c a l l b a c k s =[ keras \

. c a l l b a c k s \

. LearningRateScheduler ( l r_schedu l e r ) ] )
Listing 5.2: Pseudocode for training a neural network in Keras using a custom
learning rate scheduler

5.3.3 Testing
Once the training is complete, we can proceed with the testing phase, which com-
pares the above model’s performance against a reference predictor based on a set
of metrics and one or more test datasets. The goal of this comparison is to evaluate
the quality of a neural network and to find a configuration that turns out to be
better than the reference model. Generally, metrics estimate the quality of a neural
network, and consequently of its predictions, by measuring the “distance” of the
predictions from the target values, even if they do it in different degrees and forms.
Thus, we can say that most of the cases, a model is considered better than another
if its forecasts are, on average, closer to the target value. However, the definition
may vary depending on the metrics and criteria applied—more on Chapter 6.
As the next step, the application loads the test datasets and the reference model
into memory. The latter is the predictor designed following the procedure described
in Section 3.3. Recall that for each group of test datasets, there is an equivalent
heuristic model, built on the basis of the optimal value of NAV G

past extracted from
the training dataset. A group is considered different from another group if one of
the following statements hold: the collections of the files used are not identical;
the collections are the same, but the arrangement of files is different. In addition,
the test datasets, like the training datasets, are also designed to use a parame-
ter of Npast, denoted as NANN

past . The latter is chosen by the practitioner during
the configuration phase and will almost certainly be different from the value of
NAV G

past . In order to properly compare the models, we need to realign the heuristic
model with the test datasets so that the predictions for the same target windows
are at the same locations. So in case NAV G

past and NANN
past do not match, the ap-

plication removes the first x inputs from either the test dataset or the heuristic
model, whichever has the smallest Npast value. The number x is calculated as:
max(NAV G

past , NANN
past )−min(NAV G

past , NANN
past ), where max(·) and min(·) are functions

that return the maximum and minimum of their arguments, respectively. Once this
operation is completed, the test dataset and the heuristic model will have in the ex-
act locations, respectively, the inputs and predictions to the same target windows.
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Figure 5.5: Realignment of the predictions

The next step is to extract the inputs and the labels from the test datasets, as it
was done for the training datasets, and to use the trained ANN model to generate
the predictions on the test inputs. This last operation is carried out by calling the
model.predict(·) method.
# te s t_ inpu t s are the inpu t s e x t r a c t e d
# from the t e s t d a t a s e t s
ANN_predictions = model . p r ed i c t (<test_inputs >)

Listing 5.3: Example forecast generation

Having reached this point, the only data left of interest are the heuristic model, the
ANN predictions on the test datasets, and the labels.
In this last step, the application compares the predictions generated by the ANN
model with those of the heuristic model based on a set of objective indicators that
are representative of the problem defined in Chapter 3. A total of five metrics
were chosen: MAE, MSE, win-ratio, filtered win-ratio, and empirical distribution
function of the errors (or equivalently its complement). This set of indicators are
also known as key performance indicators (KPIs) in the literature. In general, the
first two indicators are metrics that are chosen for their simplicity and provide a
good preliminary indication of the overall quality of the models. To obtain their
values, the application relies on two implementations made available by a popular
library optimized for vector calculations called sklearn.
import s k l e a rn

# code to ob ta in p r e d i c t i o n s and t a r g e t s
# i s omit ted f o r s i m p l i c i t y
mae = sk l e a rn . met r i c s . mean_absolute_error(< pr ed i c t i on s >,

<targe t s >)
mse = sk l e a rn . met r i c s . mean_squared_error(< pr ed i c t i on s >,

<targe t s >)
Listing 5.4: Example on how to compute MAE and MSE using sklearn
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Unlike the MSE and the MAE which follow the standard definition, win-ratio is a
custom KPI that in its simplest version was defined as the percentage of wins by
the neural network over the heuristic model.

win_ratio = #winsANN

#predictions
(5.3)

For the same target window, a win is the event in which the prediction generated
by the ANN is closer to the target than that of the heuristic model, or similarly, the
error produced by the former in absolute terms is smaller than that generated by
the target model. In practical terms, the application calculates the error generated
by the ANN model and that of the heuristic model for each target window. Then
it compares the values. If the error of the former, in absolute terms, is smaller than
that of the latter, the algorithm increments the counter that keeps track of the
number of ANN wins. In the end, this counter is divided by the number of target
windows present within the test datasets. In pseudocode, this is translated to:

Algorithm 3 computeWinRatio(predictionsANN , predictionsAV G, labels)
totalWinsANN ← 0
for i← 1 to i ≤ labels.size do

errorANN = abs(predictionsANN [i]− labels[i])
errorAV G = abs(predictionsAV G[i]− labels[i])
if errorANN ≤ errorAV G then

totalWinsANN ← totalWinsANN + 1
end if

end for
return totalW insANN

labels.size

The abs(·) function returns the absolute value of the given number.
The filtered win-ratio is a modified version that calculates the win-ratio according
to (5.3), but only considering the predictions in which the error committed by
either model is equal to or greater than a given minimum. For the purposes of
our analysis, the application considers as minima the values belonging to a finite
sequence, bounded both above and below. The plot of this function is handy and
practical to carry out a graphical analysis of the trend of the performances of the
ANN model against the heuristic one. The details of the procedure are explained
in Algorithm 4.
Regarding the last metric, the empirical cumulative distribution function (eCDF)
represents the distribution function associated with the errors committed in the
predictions. It is defined as:

F (e) = # errors ≤ e

n
= 1

n

Ø
n
i=11Xi≤e (5.4)
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Algorithm 4
computeWinRatioF iltered(predictionsANN , predictionsAV G, labels, minima)

initialize errorsANN and errorsAV G to empty arrays of size labels.size
for i← 1 to i ≤ labels.size do

errorsANN [i] = abs(predictionsANN [i]− labels[i])
errorsAV G[i] = abs(predictionsAV G[i]− labels[i])

end for
initialize winRatios to an empty map
for all minimum ∈ minima do

totalWinsF ilteredANN ← 0
totalPredictionsF iltered← 0
for i← 1 to i ≤ labels.size do

if errorsANN [i] ≥ mimimum or errorsAV G[i] ≥ minimum then
if errorANN ≤ errorAV G then

totalWinsF ilteredANN ← totalWinsF ilteredANN + 1
end if
totalPredictionsF iltered← totalPredictionsF iltered + 1

end if
end for
if totalPredictionsF iltered ≡ 0 then

winRatios[minimum]← 0
else

winRatios[minimum]← totalW insF ilteredANN
totalP redictionsF iltered

end if
end for
return winRatios

where 1Xi
is the indicator of the error i and n is the total number of predictions. It

shows for each value the fraction of the errors that are less or equal to the specified
value.
Assuming that we have already computed the errors associated with a model’s
predictions, subsequently referred to as En, the data we need to plot its eCDF are
two: a vector containing all distinct errors, i.e., without duplicate values, sorted
in ascending order, and a vector whose components are the values obtained by
applying (5.4) on En. The former and latter represent the x and y components of
our graph, respectively. The application, in practical terms, performs the following
operations:

1. performs an ascending sorting of En

2. removes the duplicates from En. These are the values of the x-axis. At the
same time, it keeps track of the number of copies (frequencies) and associates
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it with the corresponding element

3. perform the cumulative sum of the frequencies vector, i.e., each element is the
sum of the previous elements, and divide all elements by the total number of
predictions. These are the values of the y-axis.

1 3 5 5 5 1 1 1 2 4

1 1 1 1 2 3 4 5 5 5

1 2 3 4 5 4 1 1 1 3

En

sort

count 
frequencies

0.4 0.5 0.6 0.7 1

delete duplicates

4 5 6 7 10perform a cumulative 
sum

divide

f(x)x

Figure 5.6: Visualization of the steps involved in the computation of an eCDF

To plot the graph, the application used the matplotlib.pyplot.step(·) function of the
matplotlib library, the de facto standard library for plotting graphs in python.
The last step, which is optional but in many cases necessary, is to save the details of
each experiment, e.g., configurations, metrics, and data, to a database for later use.
The application writes the above information into a Google sheets spreadsheet via
a library called gspread. The latter allows the client application to authenticate
itself through a personal gmail account and perform read and write operations
on a spreadsheet by contacting the appropriate google sheets API. Among the
information that we saved, we find:

• the parameters of the neural network such as its topology, its hyperparameters

• optimizers and initializers used

• training and test datasets used

• heuristic model used for the comparison

• metrics obtained

5.4 Big data algorithm
Until now, we have overlooked a critical aspect in our analysis: the machine running
our application. This machine, also known by the term host, can be an ordinary
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desktop PC, a laptop, a remote machine, or even top-of-the-range computers like
mainframes. Although there is an large selection of machines of different kinds and
power nowadays, the devices are still limited by their hardware, which determines
the amount of memory and computing power we can exploit. These limitations
then affect the maximum performance that programs can achieve in terms of speed,
power, and memory. In addition to having to execute the business logic correctly,
computer software must manage these limitations to ensure that the program runs
correctly and uninterruptedly. Otherwise, there is a severe risk of compromising
the program’s quality and incurring serious risks such as, for example, crashes and
exceptions. Our application is not robust in this sense because it loads the data
in memory without first considering the available space of the machine. In fact,
until now, we have always assumed that the hardware characteristics of the host are
sufficient to accommodate all operations performed by the application. However,
in order for our work to have general validity, we must also consider more restricted
working environments.
Generally, there are two popular strategies used to counteract this type of issue:
either enhance the hardware specifications of the machine (scaling-up) or improve
the efficiency of the algorithms that make up our programs. The first strategy
is an acceptable solution if the problem does not grow over time and there are
ways to expand the machine, which is not always the case. The approach generally
used, including our case, is to improve existing algorithms or adopt functionally
equivalent strategies that are more efficient and less expensive.
This section will discuss an alternative version of the algorithm seen so far, which
is theoretically capable of working with an arbitrary number of datasets of various
sizes.
Up to this point, training an ANN network has been delegated to the model.fit(·)
method by passing all inputs and labels directly to it. Alternatively, the method
also accepts a so-called generator, a simple python class that produces data on the
fly as Keras requests it. For a class to be considered a generator by the library,
it must have a well-defined structure; the easiest and most straightforward way to
create one is to have a normal class extend keras.utils.Sequence and implement
the two methods: __getitem__(·) and __len__(·). Each time it is called, the
former must return a new batch complete with inputs and labels, while the latter
must provide the number of steps that make up an epoch, i.e., the number of batch
iterations before an epoch is considered complete. Then, it will be the care of Keras
to appropriately call __getitem__(·) to get the data during training.
How is a batch generated? Assuming we are working with more than one mini-
dataset, ideally, we would like to generate batches by randomly extracting inputs
and labels considering the union of all the datasets. However, since we assume that
the machine cannot hold all the data in memory simultaneously, this in many cases
involves reading from disk and discarding the same file multiple times within an
epoch, creating an overhead that in many applications is unacceptable. To see why
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this might be a problem, let us imagine we are in a situation like this: we want to
train an ANN using two mini-datasets as input and that the host’s memory is large
enough to contain only one at a time. Moreover, we want to make sure that the
batches are representative of the overall data, so we randomly select the elements
from the entire dataset, i.e., union of the two. In the worst case, we may find
ourselves in the situation where the batches must be extracted alternately from
one file and then to the other. This implies reading one file, then discard it, then
read the other file and discard it, and repeat the process until the end of the training.
Every time the operating system loads a new file into memory, the application is
idle and the train of the ANN is suspended. All these moments of waiting prolong
the training process, slowing it down by about 5-20 times compared to the norm.
This increase of 0-20 times is due to the different workload and the number of
selected datasets, which then affects the number of I/O operations performed. It
is well known that I/O operations involving the disk are expensive operations that
negatively impact the running time of software. That is why we want to limit the
disk accesses and execution of algorithms as much as possible with data already in
memory. The advanced version of the algorithm was designed to minimize the I/O
operations from disk, limiting us to read at most each mini-dataset once within an
epoch. Conceptually, the algorithm is divided into 7 phases:

1. associates to each mini-dataset selected during the configuration phase an
unique identifier

2. performs a random sorting of the identifiers

3. loads in memory the next Cmax mini-datasets following the order determined
by the identifiers. Cmax is an integer that denotes the maximum number of
files that the machine can load into memory at a time.

4. associates to each example (input vector plus label) loaded in memory a
progressive identifier

5. shuffles the example identifiers

6. generates a new batch by selecting the examples according to the ordering
of the identifiers. If there are not sufficient examples to extract, repeat the
process from point 3

7. at the end of each epoch, repeats the procedure from step 2.

The basic idea is to use two sets of identifiers to simulate the global shuffle, then
load into memory one set of files at a time, and extrapolate all batches from the
data in memory before proceeding to load the next set of files. In this way, the
application reads each file within each epoch exactly once. The disadvantage of this
approach is that batches are not generated randomly as in the ideal case. However,
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Figure 5.7: A full iteration of the big data algorithm with batch size = 2 and
Cmax = 2

we can decrease the magnitude of this problem by ensuring that each file contains
a limited number of patterns. If each data pattern was saved in a separate file,
executing step 2 would have the same effect as shuffling the complete dataset. On
the other hand, limiting the file size causes an increase in the total number of files,
and therefore also the number of I/O operations to be performed increases. So we
have to find a tradeoff between size and quantity of files for the algorithm to work
satisfactorily.
From a practical point of view, we need to modify both the auxiliary and primary
applications. So far, each raw file has been converted, with a 1:1 ratio, into the
corresponding mini-dataset using the auxiliary application. However, with the in-
troduction of the big data algorithm, we will further divide each mini-dataset into
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several equal parts. To this extent we introduced a new parameter called Tmax,
which denotes the maximum number of examples (inputs plus labels) that a file
can contain. It is advisable to set it to a power of 2 because it will be helpful in
the batch extraction phase to have it to a value that is a multiple of the batch size,
assuming that the latter is also a power of 2. The total number of files we can
obtain from a mini-dataset with Treal examples can be computed as:9

Treal

Tmax

:
(5.5)

where ⌈·⌉ is the ceiling function.

raw 
database

mini-dataset1:1 ratio

raw 
database

mini-dataset1: 𝑇𝑟𝑒𝑎𝑙
𝑇𝑚𝑎𝑥

ratio
mini-dataset

mini-dataset
mini-dataset

Standard version

Advanced version

Figure 5.8: Comparison of the standard and advanced version of the auxiliary
software in the transformation of a raw database file

All parts have exactly Tmax examples except the last one, which has:

gp2le(Tmax mod Treal) (5.6)

inputs and labels, where gp2le(·) is a function that finds the greatest power of 2
less than or equal to its given argument. Using (5.6), we may end up discarding
some data but, as we will see later, it will be to our advantage to have the sizes of
all the files as a multiple of the batch size.
As for the primary application, the changes made concern steps 2-3 of the al-
gorithm introduced in Section 5.3.2. Instead of loading all data into memory,
the application instantiates a generator, a python class object that extends the
keras.utils.Sequence class, which must implement the following two methods:
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__getitem__(·) and __len__(·). Then this object is passed as an argument
at the time model.fit(·) is called.

The generator life cycle is conceptually divided into three phases:

1. the initialization phase

2. the data loading phase

3. the batch generation phase.

Phase 2 and 3 are executed alternatively in an loop until the end of the training
process. The goal of the first phase is to internally save and initialize the various
arguments passed to the class constructor. Among the most important ones are: the
batch size, the total number of epochs, the absolute paths to the mini-datasets, and
Cmax, a parameter denoting the maximum number of datasets to load into memory
at a time. Each path is associated with a unique identifier, e.g., an integer, which
remains constant for the entire life cycle of the generator. Henceforth this collection
of identifiers will be referred to as IDfiles. The order of the identifiers in IDfiles

represents the order in which files are loaded within a single epoch. For this reason,
before proceeding to the following phases, we perform a shuffle on IDfiles.
Phase 2 and 3 are implemented by __getitem__(·). In terms of pseudocode, the
method can be summarized as follows:

1. loads and concatenates the next Cmax mini-datasets if there is no data in
memory or no more batches can be extracted from the current data. Associate
a progressive identifier, e.g., integer, with each example (input vector plus
label) loaded into memory. We denote the concatenated dataset and the set
of identifiers, respectively, with DScurrent and IDexamples. Then, we perform
a shuffle on IDexamples

2. select the next batch size examples from DScurrent. It is advisable to save
DSexamples as a vector/matrix or a similar structure such that the identifiers
can be used as indices to get the elements of a batch.

The generator implements an extra method in addition to those already mentioned,
conventionally called on_epoch_end(·), which Keras invokes at the end of each
epoch. In this segment, two operations are performed in preparation for the next
epoch: the shuffle on IDfiles and the memory release of the current data.
The last useful method is __len__(·), which has the task of informing Keras
about how many steps an epoch is made of at the beginning of the training. The
value is calculated in the initialization phase by dividing the sum of the sizes of
each mini-dataset by the batch size value. For the algorithm to work correctly, the
value returned by __len__(·) must match the actual number of batches that are
created within each epoch. In some cases, these two values may differ depending
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on the order in which the mini-datasets are loaded. To see why let us look at an
example: let us assume that we have three mini-datasets available that contain
respectively 3, 3, and 2 examples, a batch size of 2, and that we can load into
memory at most two files at a time (Cmax = 2). According to what has been
said so far for __len__(·), the method will return 4 as a result of 3+3+2

2 , which
represents the number of batches that Keras expects in each epoch. The number
of steps is actually 4 only if the files are loaded in this sequence: first the two files
with the 3 examples, then the one with 2 (see Fig. 5.9a). In other combinations (3,
2, then 3) or (2, 3, then 3), we would only have 3 complete batches in total because
of the way the algorithm is designed (see Fig. 5.9b).

1st batch

2nd batch

3rd batch

4th batch

shuffle

shuffle

example
mini-dataset

shuffle

load

load

(a) batch size = 2 and Cmax = 2

1st batch

2nd batch

3rd batch

shuffle

shuffle

shuffle

load

load

(b) batch size = 2 and Cmax = 2

Figure 5.9: Batch extraction without discarded examples (top picture) and with
discarded examples (bottom picture).
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That is why it was suggested, at the beginning of the section, to set Cmax to a
power of 2 because we want to ensure that the size of each file is a multiple of the
batch size. So, no matter how the mini-datasets are loaded, we would have the
same number of batches in each epoch. Obviously, we assume that the batch size
is also a power of 2, which is almost always the case.
In summary, in this section, we presented the big data algorithm, which is an
improved version of the algorithm introduced in Section 5.3.2, that considers the
memory limitations imposed by the machine hardware by adopting solutions that
extract the training data on the fly instead of preloading them all in memory.
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Chapter 6

Results

6.1 Introduction
This chapter illustrates and analyzes the results obtained comparing the perfor-
mance of the ANN models with the heuristic models on the basis of multiple test
datasets. The latter were built using the procedure described in Section 5.2, using
the data collected during packet transmissions over multiple Wi-Fi channels. For
each test dataset, we created a corresponding heuristic model that acts as one of
the reference model for our benchmarks. Then, we ran these tests on a set of ANN
models, each characterized by a different configuration of one or more hyperparam-
eters, e.g., value of NANN

past . Before we begin with our analysis, we introduce below
the indicators that are used to assess the quality of ANN and heuristic models:

• MSE: 1
N

qN
i=1 ei, where ei denotes a prediction error and N is the size of a

test dataset.

• MAE: 1
N

qN
i=1 e2

i . Same as above.

• win-ratio. It shows the percentage of times a model’s predictions edged out
the other model’s predictions in terms of accuracy (see Algorithm 3).

• win-ratio filtered. It is an alternative version of the win-ratio, in which it
takes into account only prediction errors greater than a threshold value (see
Algorithm 4).

• eCDF. It computes the cumulative density function of the prediction errors
of a model (see definition 5.4). In other words, given a value x, it returns
the ratio of prediction errors that are less than or equal to x. We model this
indicator with the function ecdf(·).

• complementary eCDF (eCCDF). As the name suggests, it is complementary
of the eCDF, i.e., it returns the ratio of prediction errors that are greater than
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or equal to a given value x. It is defined as: cecdf(x) = 1 − ecdf(x), where
we used cecdf(·) function to model this indicator.

6.2 Test lists
Regarding the data, as shown in Table 4.1, the raw database is divided into two lev-
els: the first level is composed of 4 parts, one for each Wi-Fi channel we transmitted
on, while the second level denotes the number of files that make up that specific
channel. The datasets were derived by transforming each file into a corresponding
and distinct (mini) dataset using the procedure described in Section 5.2 via the
auxiliary application. Relative to the test datasets, they are merely collections,
even of one element, of mini-datasets. They were designed with the goal of creating
tests that were unique, varied, and most importantly, representative of the various
quality states in which the 4 channels were found during the sampling periods. The
ultimate aim is to quantify, on the one hand, the ability of our models to generalize
and, on the other hand, to demonstrate the (in)effectiveness of the methodology
described in Section 3.2 in the practical domain. For each channel, we created test
datasets by selecting a subset of the mini-datasets associated with that particular
channel. We will list below the identifiers of the mini-datasets that were used in
each test dataset:

Channel Testing file IDs # y3600
true # Days Code name

1 0, 1, 2, 3 922053 5.42 list 1
1 4, 5 664283 3.88 list 2
1 6, 7, 8, 9, 10 852793 5.04 list 3
5 0, 1, 2, 3 911552 5.36 list 4
9 0, 1, 2, 4 446435 2.67 list 5
9 9 1313119 7.62 list 6
13 0, 1, 2, 4, 5 1152996 6.78 list 7

Table 6.1: Test list collection

# y3600
true denotes the number of targets available inside a list with Nnext = 3600, #

Days represents the sampling duration, while the IDs specify the files that belong
to a list (we used the same convention applied in Table 4.1). For each channel, we
constructed the experiments such that we cover the target windows of 5, 10, and 30
minutes, which is equivalent to setting Nnext to 600, 1200, and 3600, respectively.
In general, to derive the number of targets within a list for any value of Nnext, we
can use this formula: # ynext

true = (3600−next) · (# files)+(# y3600
true ), where # files

denotes the number of files inside a list.
The plots of the test lists covering channel 1 are shown in Fig. 6.1. The three
test lists each represent a very different qualitative state of channel 1 found during
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(c) Test list 3

Figure 6.1: ytrue trends of the test lists associated with channel 1.

the sampling period: the target in lists 1 and 3 has a generally stable trend, with
some square wave variations in the former and steep drops in the latter. While in
list 2, the target displays an irregular shape. Similarly, the remaining lists have
been chosen for their particular trend that varies from regular to sudden dips to
irregular ones (see Fig. 6.2 and 6.3). A common feature of all the test lists is that
as the value of Nnext is decreased, the trends of the targets tend to be less outlined
and more irregular. However, the overall appearance of a specific list remains un-
changed as Nnext varies (see Fig. 6.4).
Section 6.3 illustrates the results obtained using the standard algorithm with a
reduced database, while Section 6.4 shows the results obtained using the big data
algorithm with the complete datasets.

6.3 Preliminar analysis
As mentioned in the previous section, each experiment is characterized by a unique
combination of test list and Nnext value. Each of them is associated with a unique
and distinct reference model, which we have called heuristic model, which serves
as a baseline for our tests. The object under test is the different ANN models
trained in different conditions in terms of dataset and hyperparameters to find con-
figurations that outperform the heuristic model according to the selected metrics.
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(a) Test list 4
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Figure 6.2: ytrue trends of the test lists associated with channel 5 (a) and 13 (b).

By construction, heuristic predictors are models that depend solely on the variable
NAV G

past . This parameter changes as the test or training datasets vary. To obtain a
meaningful comparison, NAV G

past must be set to the best possible value, i.e., the one
that generates the best heuristic model for a particular test list. Best means finding
a value of NAV G

past that optimizes the performance indicators summarized in the pre-
vious section. For example, in the case of MSE, we want to find the value of NAV G

past

that realizes the smallest value of MSE on the test list. In reality, however, NAV G
past

is computed by considering the training dataset corresponding to that test list. We
do this because we want to ensure a fair and meaningful comparison with the ANN
models, given that the latter are trained solely using training data. In addition,
both types of models, to have any practical usefulness, must be able to generate
quality predictions on data for which the targets are unknown, which means finding
the set of optimum parameters using only training data. For the computation of
the best NAV G

past relative to a test list, we can choose to use either the MSE or the
MAE as performance metrics since the behavior of the other performance indicators
depends, albeit indirectly, on the performance of the MSE or MAE. For example,
assuming to keep fixed the MSE value for the ANN, a decrease or an increase of

70



Results

0 50000 100000 150000 200000 250000 300000 350000 400000
time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y tr
ue

Trend of ytrue over time with NANN
past  = 3600 and file ids = {0, 1, 2, 4}

(a) Test list 5
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Figure 6.3: ytrue trends of the test lists associated with channel 9

the MSE for the heuristic model calculated on a test list involves, respectively, to
an improvement or worsening of the win-ratio in its favor. The same phenomenon
happens similarly for the other three metrics. The choice between MSE or MAE
is irrelevant for the final results of the experiments because analyzing the values
obtained on all the test lists, calculated on the training dataset, the trend of the
two metrics is nearly identical. We preferred anyway to use the MSE because it
coincides with the objective function associated with all the configurations of the
ANN networks. Moreover, when examining the experimental results obtained by
applying Algorithm 2 on the training files, we noticed that the optimal value of
NAV G

past for the test lists referring to the same channel were almost identical, mark-
ing at most a difference in absolute terms of less than one percent. Therefore, to
simplify our analysis and eliminate some of the variables involved, we decided to
use a single value of NAV G

past for all lists referring to the same channel, choosing the
median value. We reported the optimal values of NAV G

past for the different channels
and Nnext values in Table 6.2.
Specific to ANNs, the training dataset associated with an experiment is obtained
using the raw files not contained inside the chosen test list. For example, if we are
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(b) Npast = 1200
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(c) Npast = 600

Figure 6.4: ytrue trends of the test list 1 with different values of Npast

channel/Nnext ch1 ch5 ch9 ch13
600 370 440 120 690
1200 440 480 130 750
3600 2450 13075 14400 3750

Table 6.2: Display of the optimal values of NAV G
past as the channel and Nnext vary

using the list 1 as the test dataset, then the training dataset is extracted from all
raw files belonging to that channel except the files with id 0, 1, 2, and 3 (see Table
6.3). All the experiments performed in this section use a neural network with the
same structural configuration and partially share some of the other hyperparame-
ters related to the training process. This model is the starting point for our analysis
and is denoted henceforth as ANNbase.
Each experiment is divided into two recurring steps:

• training a model with the ANNbase configuration using a different training
dataset each time that differs for the value of NANN

past

• compare the trained model with the heuristic model specific to the test list
and analyze the results.
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List Training file IDs # y3600
true # Days

1 ∀i ∈ {0, . . . , 19} \ {0, 1, 2, 3} 2722371 16.07
2 ∀i ∈ {0, . . . , 19} \ {4, 5} 2980141 17.60
3 ∀i ∈ {0, . . . , 19} \ {6, 7, 8, 9, 10} 2791631 16.45
4 ∀i ∈ {0, . . . , 19} \ {0, 1, 2, 3} 2695045 15.91
5 ∀i ∈ {0, . . . , 10} \ {0, 1, 2, 4} 3022366 17.61
6 ∀i ∈ {0, . . . , 10} \ {9} 2155682 12.66
7 ∀i ∈ {0, . . . , 10} \ {0, 1, 2, 4, 5} 2316061 13.51

Table 6.3: Lists of files used in training databases

The characteristics of the ANNbase model are as follows: a FFNN consisting of
1 input layer of Ninput neurons, 2 intermediate layers of 32 neurons each, and 1
output layer of 1 neuron. Each layer is densely connected with the next layer.
Each neuron has ReLu as its activation function except the output neuron, which
has a linear activation function. The weights are initialized with the glorot normal
initializer, also called Xavier normal initializer. Each model is trained in 10 epochs
with a batch size of 64, using Adam as an optimizer. The learning rate is set to an
initial value of 0.01, which is halved at the end of each epoch by a scheduler (see
Section 5.3.2). We used MSE as the objective function for all our configurations,
as is customary for regression problems of this kind.
We ran our python programs in an environment known as Google Colaboratory, also
known as Colab, which is a free Jupyter notebook environment that allows a user
to run python code on the cloud. At the time of our experiments, we had at our
disposal a machine with 2 Intel(R) Xeon(R) CPU processors with a clock speed of
2.20 GHz, 107.72 GB of disk space, and 12.69 GB of RAM.
Regarding training, for each combination of test list and Nnext (600, 1200, or 3600),
we trained 12 ANNbase models, each characterized by a different training dataset.
The diversity consists in the values of NANN

past , starting from 1200 up to 14400 in
increments of 1200, i.e., {i · 1200|i ∈ (1, . . . , 12)}, with a value of Nstep fixed at 120.
We present below the most significant part of the preliminary results obtained on
the test lists with Npast = 3600.
For each test list, we present the measurements of two different models: the heuris-
tic model with the optimal value of NAV G

past and the ANN model that displayed the
best MSE, i.e., with the smallest value. As depicted in the Table 6.4, the ANN
models beat the corresponding heuristic models in all respects except for the ANN
model associated with list 1. These last two models are very similar qualitatively,
as can be seen from the win-ratio of 49.58%, which means, for example, that on
average, 49 out of 100 times the predictions of the ANN model are more accurate
than those of the heuristic model. Considering only absolute errors greater than
0.17, the win-ratio exceeds the 70% threshold to reach 100% wins for errors greater
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Nnext Test list Method Npast MSE [·10−3] MAE [·10−2] w [%]
3600 1 AVG 2450 2.18 2.32 –

ANN 14400 2.27 2.53 49.58
2 AVG 2450 4.05 4.57 –

ANN 14400 3.14 4.14 55.60
3 AVG 2450 1.76 2.18 –

ANN 4800 1.27 1.95 56.03
4 AVG 13075 1.14 2.21 –

ANN 14400 0.82 1.83 56.17
5 AVG 14400 27.22 12.86 –

ANN 8400 24.77 11.02 57.51
6 AVG 14400 9.25 5.89 –

ANN 14400 6.55 4.86 54.39
7 AVG 3750 1.92 3.09 –

ANN 6000 1.48 2.81 55.37

Table 6.4: Prelimary results of the AVG and ANN predictors on the test lists with
Npast = 3600 using several KPIs

.

than 0.33 (see Fig. 6.5a). Recall that in the filtered win-ratio analysis, we only
consider targets for which at least one of the two models committed an error greater
than a given value x. Although the ANN model for list 1 is quantitatively inferior,
the errors committed still fall within the range of values for which we consider the
forecasts to be good, as supported by the MSE value of 2.53 · 10−2. This means
that in the optics of predicting the mean frame delivery probability of the next
30 minutes, the ANN model will commit on average an error of 2.53%. The best
win-ratio was obtained on list 5 with 57.51%. Interestingly, it is also the list where
the models realized the highest MSE and MAE values, looking at all experiments.
Intuitively, the cause can be traced to the poor selection of the files that make up
this list. Analyzing the results of list 6, which is associated with the same channel
as list 5, we notice that the value of MAE is 2.26 times lower (from 11.02 to 4.86)
with three times the size of the dataset, meaning that the source of the inaccurate
predictions is due in part to the size of the test list. Secondly, as depicted in Fig.
6.3a, the target trend over time is very irregular, with frequent drops and sudden
rises that touch highs of 0.9 and lows of 0.2. So it is understandable how both mod-
els struggle to generate accurate forecasts. Despite this, the methodology of using
neural networks has proven to be a better solution than the heuristic technique.
We present, as the last case, the models in list 2 that achieved the median win-ratio.
The eCCDF curve relative to the ANN model is always below that of the heuristic
model for both small and large errors (see Fig. 6.6b), and this results in a win-ratio
that tends to increase as larger errors are considered. These trends found in list 2
are also present for the predictors of the other lists that have not been analyzed.
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Figure 6.5: (a) Filtered win-ratio and (b) eCCDF of the absolute errors committed
by ANN and AVG on list 1

By reducing Nnext to 1200 (10 minutes), we see a sharp improvement in all KPIs
analyzed across all models, particularly those referring to channel 9. As was pre-
viously established, the dynamics of this channel are very turbulent, making it
difficult to create an accurate predictor for target windows as long as 30 minutes.
By reducing this window to 10 and 5 minutes, we found significant improvements
in the prediction accuracy for both methods. The values are reported in Table
6.5. We added to this table an additional row for each test list, which reports the
measurements obtained by a model that was trained with the same best value of
Npast obtained in Nnext = 3600.
For Nnext = 600 (5 minutes), the results are very similar to those anticipated in
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Figure 6.6: (a) Filtered win-ratio and (b) eCCDF of the absolute errors committed
by ANN and AVG on list 2

our analysis with Nnext = 1200. The only noteworthy aspect is the improvements
in MSE and MAE obtained on channel 9: we find a decrease of 37.37% and 26.03%
on the targets of list 5, and 26.45% and 15.76% on list 6, respectively. As for the
other lists, the measures obtained when varying Nnext are stable, and no great im-
provements are appreciated. These metrics are difficult to improve without adding
features of other kinds or different types of ANNs, in particular the values of MSE
and MAE, which turn out to be already relatively small.
To recap, we have seen so far that ANN models are, in almost all cases, better
predictors than the corresponding heuristic models, especially for analyzing future
dynamics of medium duration (5 and 10 minutes) over unstable channels. However,

76



Results

Nnext Test list Method Npast MSE [·10−3] MAE [·10−2] w [%]
1200 1 AVG 440 1.36 2.20 –

ANN 14400 1.41 2.22 54.77
ANN 10800 1.34 2.17 54.88

2 AVG 440 4.07 4.48 –
ANN 14400 3.22 4.03 60.96
ANN 3600 3.20 4.02 61.30

3 AVG 440 1.11 1.96 –
ANN 4800 0.93 1.85 55.94
ANN 8400 0.94 1.84 56.57

4 AVG 480 0.94 1.88 –
ANN 14400 0.72 1.73 54.13
ANN 7200 0.72 1.69 56.65

5 AVG 130 19.96 7.66 –
ANN 8400 16.26 7.59 52.34
ANN 2400 16.67 7.22 57.80

6 AVG 130 6.21 4.35 –
ANN 14400 4.72 4.17 49.16
ANN 4800 3.97 3.49 60.78

7 AVG 750 1.84 3.13 –
ANN 6000 1.40 2.77 58.25
ANN 7200 1.39 2.76 58.66

Table 6.5: Prelimary results of the AVG and ANN predictors on the test lists with
Npast = 1200 using several KPIs

we have also seen that the differences in the measurements are not substantial in
some areas, especially in those whose values are already close to the best achiev-
able result with the current methodology adopted. On the other hand, if we zoom
our analysis on specific areas, we see that the performance of ANNs models is
significantly better than their heuristic counterpart.

6.4 Results
This section presents and analyzes the results achieved by repeating the experi-
ments reported in the previous section, using as a training algorithm the big data
algorithm described in Section 5.4 applied to the complete database. In addition
to the basic experiments, we have expanded our selection by adding for each list
two new configurations of neural networks: on the one hand, we have increased the
number of neurons present in the intermediate layers, from 32 to 64, on the other
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Nnext Test list Method Npast MSE [·10−3] MAE [·10−2] w [%]
600 1 AVG 370 1.19 2.17 –

ANN 14400 1.15 2.13 54.53
ANN 8400 1.12 2.10 55.19

2 AVG 370 2.93 3.75 –
ANN 14400 2.55 3.55 56.87
ANN 3600 2.52 3.53 57.35

3 AVG 370 0.89 1.88 –
ANN 4800 0.77 1.79 55.17
ANN 8400 0.78 1.79 55.42

4 AVG 440 0.76 1.83 –
ANN 14400 0.59 1.71 52.21
ANN 8400 0.63 1.71 54.53

5 AVG 120 11.86 5.66 –
ANN 8400 9.77 5.77 50.41
ANN 4800 10.44 5.34 59.39

6 AVG 120 4.04 3.75 –
ANN 14400 3.43 3.69 50.13
ANN 2400 2.92 2.94 65.36

7 AVG 690 1.59 2.94 –
ANN 6000 1.32 2.74 55.43
ANN 12000 1.31 2.73 55.69

Table 6.6: Prelimary results of the AVG and ANN predictors on the test lists with
Npast = 600 using several KPIs.

hand, we have increased the value of the batch size. Therefore to each test list are
associated four different neural networks configurations:

• configuration C1 uses ANNbase together with the training algorithm presented
in Section 5.3.2 applied to a reduced database, i.e., the results shown in the
previous section

• configuration C2 uses ANNbase together with the big data algorithm applied
to the complete database

• configuration C3 modifies ANNbase, increasing the batch size from 64 to 256

• configuration C4 modifies ANNbase, increasing the number of neurons of each
intermediate layer from 32 to 64.

Both C3 and C4 use as default training algorithms the big data algorithm employed
to the whole database. Each of these two configurations is differentiated from C2

78



Results

List Training file IDs # y3600
true # Days ⇑ [%]

1 ∀i ∈ {0, . . . , 54} \ {0, 1, 2, 3} 7276936 43.13 268
2 ∀i ∈ {0, . . . , 54} \ {4, 5} 7534706 44.66 254
3 ∀i ∈ {0, . . . , 54} \ {6, 7, 8, 9, 10} 7346196 43.51 264
4 ∀i ∈ {0, . . . , 54} \ {0, 1, 2, 3} 7172611 42.53 267
5 ∀i ∈ {0, . . . , 22} \ {0, 1, 2, 4} 6531560 38.17 217
6 ∀i ∈ {0, . . . , 22} \ {9} 5664876 33.22 262
7 ∀i ∈ {0, . . . , 22} \ {0, 1, 2, 4, 5} 5821235 34.04 252

Table 6.7: List of files used to train neural networks. ⇑ denotes the percentage of
increase in dataset size with respect to the experiments presented in the previous
section.

by a single hyperparameter so that we can then evaluate the impact that each of
these parameters has on the final performance of the models. This means keeping
the value of NANN

past fixed for all configurations relative to the same list, picking the
value associated with the model found in C1 with the smallest MSE, i.e., those
shown in Table 6.4.
Regarding training, the datasets used are at least twice as large as the correspond-
ing reduced datasets. The details of the enlarged set of training files are shown in
Table 6.7.
Even though the models were trained with a larger database, there were no notice-
able improvements as shown in Table 6.8. On the contrary, in some experiments,
we reported, although marginal, some worsening of the KPIs. Specifically, in lists
1, 3, 5, and 6, passing from configuration C1 to C2, we have noticed a decrease
on average of the win-ratio of 1.28%, touching a maximum of 2.17% reported in
list 5. As for the MAE, the values remained roughly the same, reporting deteri-
oration and improvement, in absolute terms, to the maximum of 0.07 · 10−2 and
0.17 · 10−2 reported in lists 6 and 1, respectively. Analyzing the results in greater
depth, we discovered an interesting situation involving ANN models C1 and C2 in
list 1. Switching from C1 to C2, although the average win-ratio dropped by 0.14%,
from 49.58 to 49.45, the MAE improved by 6.72%, from 2.53 · 10−2 to 2.36 · 10−2.
This implies that although the number of wins did not change, the predictions of
the model C2 have become more accurate. This fact is also confirmed by its eC-
CDF, depicted in Fig. 6.7.
Although the overall win-ratio has decreased, the improvement in the MAE has
benefited the filtered win-ratio in some areas where it did not previously perform
as well. This gain becomes immediately evident by comparing the filtered win-ratio
plots associated with C1 and C2, depicted in Fig. 6.8, especially in the initial areas.
In the latter, the model reaches 70% of victories starting from 0.08, while in the
former, the model exceeds this value only after it has passed 0.16.
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Figure 6.7: eCCDF of the absolute errors committed by ANN C1, C2 and AVG on
list 1
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Figure 6.8: Win-ratio filtered by the absolute errors committed by ANN C1 and C2
on list 1

As for the experiments in which the win-ratio metric improved by switching from
C1 to C2, i.e., lists 2, 4, and 7, the ANN model pairs remained nearly equal in terms
of MSE and MAE, with maximum variations of 2.44% and 0.72%, respectively. It
is natural that with such minimal variations, even the graphs of the eCCDFs and
filtered win-ratios have remained quite similar, as shown, for example, in Fig. 6.9.
The effects of increasing the batch size from 64 to 256, i.e., moving from C2 to
C3, as expected did not benefit any KPIs of any test list, except list 6, but still
in only marginal terms as seen in the other examples. C3 is a valid alternative to
C2, despite the lower performances, in cases where we would like to prioritize the
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Figure 6.9: (a) Filtered win-ratio and (b) eCCDF of the absolute errors committed
by ANN C1 and C2 on list 2

training speed, which in our specific case, increased, on average, by 3.86 times. As
for increasing the number of neurons in the intermediate layers, i.e., moving C2
to C4, the variations are imperceptible and unpredictable in both directions. For
the above reasons and the fact that increasing the number of neurons involves an
additional computational cost, which in turn lengthens the training time, the C4
configuration is not recommended for our problem. The results of experiments with
Npast values of 600 and 1200 are presented in Appendix A.
To recap, we have seen that training neural networks with an enlarged database, in
our specific case, did not significantly improve the KPIs, especially regarding the
overall win-ratio. Nevertheless, analyzing the eCCDFs for the experiments in which
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a gain on the MAE was realized, as modest as 6.72%, we see that the magnitude of
errors generated by the ANN predictors is visibly smaller than in the corresponding
C1 configuration. This gain is even more evident and pronounced when analyzing
the win-ratio in some circumscribed areas of the errors. Regarding the effects of hy-
perparameters on the performance of a model, we saw that increasing the batch size
or the number of neurons did not bring significant improvements to the analyzed
metrics, except reducing or increasing the training time.
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Nnext Test list Config. Method Npast MSE [·10−3] MAE [·10−2] w [%]
3600 1 – AVG 2450 2.18 2.32 –

C1 ANN 14400 2.27 2.53 49.58
C2 ANN 14400 1.95 2.36 49.45
C3 ANN 14400 2.01 2.40 49.52
C4 ANN 14400 1.94 2.36 49.34

2 – AVG 2450 4.05 4.57 –
C1 ANN 14400 3.14 4.14 55.60
C2 ANN 14400 3.14 4.11 56.33
C3 ANN 14400 3.19 4.13 56.10
C4 ANN 14400 3.13 4.10 56.46

3 – AVG 2450 1.76 2.18 –
C1 ANN 4800 1.27 1.95 56.03
C2 ANN 4800 1.29 1.97 54.39
C3 ANN 4800 1.32 2.01 53.21
C4 ANN 4800 1.30 1.98 54.19

4 – AVG 13075 1.14 2.21 –
C1 ANN 14400 0.82 1.83 56.17
C2 ANN 14400 0.84 1.83 56.39
C3 ANN 14400 0.86 1.89 54.02
C4 ANN 14400 0.85 1.88 54.49

5 – AVG 14400 27.22 12.86 –
C1 ANN 8400 24.77 11.02 57.51
C2 ANN 8400 23.44 11.00 55.34
C3 ANN 8400 23.94 11.08 54.05
C4 ANN 8400 23.63 10.98 55.47

6 – AVG 14400 9.25 5.89 –
C1 ANN 14400 6.55 4.86 54.39
C2 ANN 14400 6.38 4.93 53.19
C3 ANN 14400 6.29 4.83 54.69
C4 ANN 14400 6.38 4.97 52.87

7 – AVG 3750 1.92 3.09 –
C1 ANN 6000 1.48 2.81 55.37
C2 ANN 6000 1.47 2.81 55.42
C3 ANN 6000 1.47 2.81 55,32
C4 ANN 6000 1.47 2.81 55,43

Table 6.8: Results of the AVG and different ANN predictors on the test lists with
Npast = 3600 using several KPIs

.
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Chapter 7

Conclusions

In this thesis, we exploited machine learning, specifically feed-forward neural net-
works, to predict the quality of a wireless channel over multiple time windows in
terms of frame delivery ratio. This ability can be exploited in many different ways
by both application processes and low-level hardware devices to improve reliability
and efficiency of Wi-Fi channels. For example, we can leverage the predictions of
the ANN model to adjust the transmission channel on the fly if the quality of the
communication is expected to deteriorate in the immediate future. The method-
ology presented in this thesis does not have a practical use if used alone; instead,
it is an integrative and supporting tool for those mechanisms that are designed
to leverage this kind of information, such as, for example, adaptive algorithms in-
stalled in Wi-Fi adapters. The benchmark results achieved are reassuring, with
ANN models outperforming conventional methods based on averages in almost all
KPIs analyzed. However, in some experimental conditions, the results presented,
in absolute terms, are lower than expected, denoting shortcomings and limitations
of the adopted methodology. As confirmed in Section 6.4, despite how much one
might try to change the configurations, the performances obtained in the different
settings are very similar, proving to be difficult to improve with the current method.
While working on this thesis, we published an article in a scientific journal with
some of the results obtained from our experiments [17]. For future work, it is rec-
ommended to increase the number of distinct features, e.g., such as received signal
strength indicator (RSSI) or transmission latency, and exploit a different type of
neural networks that also considers the time factor, i.e., recurrent neural networks,
to substantially improve the quality of the techniques seen here.
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Appendix A

Tables

Channel IDs # y3600
true # y1200

true # y600
true # Days Code name

1 0, 1, 2, 3 922053 931653 934053 5.42 list 1
1 4, 5 664283 669083 670283 3.88 list 2
1 6, 7, 8, 9, 10 852793 864793 867793 5.04 list 3
5 0, 1, 2, 3 911552 921152 923552 5.36 list 4
9 0, 1, 2, 4 446435 456035 458435 2.67 list 5
9 9 1313119 1315519 1316119 7.62 list 6
13 0, 1, 2, 4, 5 1152996 1164996 1167996 6.78 list 7

Table A.1: List of files used for the test databases

List Training file IDs # y3600
true # y1200

true # y600
true # Days

1 ∀i ∈ {0, . . . , 19} \ {0, 1, 2, 3} 2722371 2758371 2767371 16.07
2 ∀i ∈ {0, . . . , 19} \ {4, 5} 2980141 3020941 3031141 17.60
3 ∀i ∈ {0, . . . , 19} \ {6, 7, 8, 9, 10} 2791631 2825231 2833631 16.45
4 ∀i ∈ {0, . . . , 19} \ {0, 1, 2, 3} 2695045 2731045 2740045 15.91
5 ∀i ∈ {0, . . . , 10} \ {0, 1, 2, 4} 3022366 3036766 3040366 17.61
6 ∀i ∈ {0, . . . , 10} \ {9} 2155682 2177282 2182682 12.66
7 ∀i ∈ {0, . . . , 10} \ {0, 1, 2, 4, 5} 2316061 2328061 2331061 13.51

Table A.2: List of files used for the reduced training databases

List Training file IDs # y3600
true # y1200

true # y600
true # Days ⇑ [%]

1 ∀i ∈ {0, . . . , 54} \ {0, 1, 2, 3} 7276936 7394536 7423936 43.13 268
2 ∀i ∈ {0, . . . , 54} \ {4, 5} 7534706 7657106 7687706 44.66 254
3 ∀i ∈ {0, . . . , 54} \ {6, 7, 8, 9, 10} 7346196 7461396 7490196 43.51 264
4 ∀i ∈ {0, . . . , 54} \ {0, 1, 2, 3} 7172611 7290211 7319611 42.53 267
5 ∀i ∈ {0, . . . , 22} \ {0, 1, 2, 4} 6531560 6574760 6585560 38.17 217
6 ∀i ∈ {0, . . . , 22} \ {9} 5664876 5715276 5727876 33.22 262
7 ∀i ∈ {0, . . . , 22} \ {0, 1, 2, 4, 5} 5821235 5862035 5872235 34.04 252

Table A.3: List of files used for the training databases. ⇑ denotes the percentage
of increase in dataset size with respect to the reduced databases.
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Tables

Nnext Test list Config. Method Npast MSE [·10−3] MAE [·10−2] w [%]
1200 1 – AVG 440 1.36 2.20 –

C1 ANN 10800 1.34 2.17 54.88
C2 ANN 10800 1.23 2.06 57.40
C3 ANN 10800 1.18 1.98 59.69
C4 ANN 10800 1.22 2.07 56.75

2 – AVG 440 4.07 4.48 –
C1 ANN 3600 3.20 4.03 60.96
C2 ANN 3600 3.11 3.98 60.95
C3 ANN 3600 3.56 4.19 54.33
C4 ANN 3600 3.09 3.97 60.82

3 – AVG 440 1.11 1.96 –
C1 ANN 8400 0.94 1.84 56.57
C2 ANN 8400 0.93 1.82 57.43
C3 ANN 8400 0.92 1.82 57.31
C4 ANN 8400 0.93 1.82 57.37

4 – AVG 480 0.94 1.88 –
C1 ANN 7200 0.72 1.69 56.65
C2 ANN 7200 0.73 1.75 53,79
C3 ANN 7200 0.77 1.83 51.41
C4 ANN 7200 0.74 1.76 53,55

5 – AVG 130 19.96 7.66 –
C1 ANN 2400 16.67 7.22 57.80
C2 ANN 2400 15.52 7.14 54.90
C3 ANN 2400 15.47 7.03 56.18
C4 ANN 2400 15.61 7.10 56.61

6 – AVG 130 6.21 4.35 –
C1 ANN 4800 3.97 3.49 60.78
C2 ANN 4800 3.80 3.39 60.86
C3 ANN 4800 3.89 3.44 60.04
C4 ANN 4800 3.94 3.53 59.08

7 – AVG 750 1.84 3.13 –
C1 ANN 7200 1.39 2.76 58.66
C2 ANN 7200 1.41 2.77 58,83
C3 ANN 7200 1.42 2.77 59.10
C4 ANN 7200 1.41 2.77 59.14

Table A.4: Results of the AVG and different ANN predictors on the test lists with
Npast = 1200 using several KPIs

.
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Nnext Test list Config. Method Npast MSE [·10−3] MAE [·10−2] w [%]
600 1 – AVG 370 1.19 2.17 –

C1 ANN 8400 1.12 2.10 55.19
C2 ANN 8400 1.06 2.04 56.48
C3 ANN 8400 1.06 2.04 56.32
C4 ANN 8400 1.06 2.04 56.54

2 – AVG 370 2.93 3.75 –
C1 ANN 3600 2.52 3.53 57.35
C2 ANN 3600 2.44 3.49 57.17
C3 ANN 3600 2.63 3.56 54.04
C4 ANN 3600 2.44 3.49 57.04

3 – AVG 370 0.89 1.88 –
C1 ANN 8400 0.78 1.79 55.42
C2 ANN 8400 0.78 1.77 55.99
C3 ANN 8400 0.77 1.77 56.00
C4 ANN 8400 0.78 1.77 55.83

4 – AVG 440 0.76 1.83 –
C1 ANN 8400 0.63 1.71 54.53
C2 ANN 8400 0.65 1.78 51.43
C3 ANN 8400 0.65 1.73 54.03
C4 ANN 8400 0.66 1.79 51.11

5 – AVG 120 11.86 5.66 –
C1 ANN 4800 10.44 5.34 59.39
C2 ANN 4800 9.31 4.98 59.34
C3 ANN 4800 9.23 5.01 59.15
C4 ANN 4800 9.40 5.04 58.35

6 – AVG 120 4.04 3.75 –
C1 ANN 2400 2.92 2.94 65.36
C2 ANN 2400 2.72 2.89 63.21
C3 ANN 2400 2.71 2.85 63.94
C4 ANN 2400 2.80 2.94 61.69

7 – AVG 690 1.59 2.94 –
C1 ANN 12000 1.31 2.73 55.69
C2 ANN 12000 1.33 2.74 55.99
C3 ANN 12000 1.33 2.74 55.99
C4 ANN 12000 1.33 2.74 56.01

Table A.5: Results of the AVG and different ANN predictors on the test lists with
Npast = 600 using several KPIs
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