

POLITECNICO DI TORINO
Master’s Degree in Computer engineering (Data Analytics)

Academic Year: 2020/2021
Session Degree: December

Implementation and Evaluation of an Educational

Chatbot based on NLP Techniques

Supervisors
Prof. TORCHIANO Marco

Dr. LEONARDI Simone

Candidate
CAIRONE Fiorentino

Matricola 277922

2

3

Summary
The thesis wants to suggest some solutions about the problems of remote communication in
schools and universities, due also to the COVID-19 pandemic, thanks to the creation of a real
time assistant that can answer the questions of the students and assist the teachers on their
job.

I did research and created an educational bot to answer the students’ questions in real time

about PO course (“Programmazioni ad Oggetti” of POLITECNICO OF TURIN), using a

framework called RASA Open Source and his evolution: RASA X, doing a linguistic
analysis of dataset, composed by some real questions and answers related of arguments of
Italian course of PO.

The Chatbot, also, offers a “Human Handoff” service, which allows the student to contact the

teacher that can answer directly the questions proposed. All is managed through Slack which
is one of the university communication channels most used by students and professors to
communicate remotely.

After the creation of the Chatbot, an accurate analysis was carried out and I compared various
NLP (Natural Language Programming) pretrained models: BERT, SpaCy and ConveRT used
to train edu-bot in learning process.

4

Acknowledgments

5

Index of Contents
1.Introduction

1.1 The remote communication and the school ... 8

2.AI Assistants

2.1 What is Virtual Assistant .. 9

2.2 The advantages of AI Assistant .. 9

2.3 AI Assistant in Schools and Universities .. 10

3.Background

3.1 Slack ... 13

3.1.1 Slack Bot App ... 13

3.2 RASA Open Source .. 16

3.2.1 Natural Language Understanding .. 17

3.2.2 Dialogue Management ... 17

3.2.3 Integrations RASA on Slack .. 17

3.3 How to create, tested and run a RASA project ... 22

3.4 How write stories (rules) .. 23

3.5 Principal configuration models ... 25

3.6 How create custom actions ... 27

3.6.1 Custom actions Class ... 28

3.7 Rasa X: an “evolution” of RASA ... 29

3.7.1 How install Rasa X .. 30

3.7.2 Rasa X Server .. 31

3.8 A brief introduction of Python .. 35

3.8.1 How write a class in python .. 35

3.9 A brief introduction of SQLite ... 36

3.9.1 SQLite in Python ... 36

4. Edu-Bot implementation

4.1 The problem and the goals ... 38

4.2 The dataset .. 38

4.3 The Technologies used ... 39

4.4 The AI Assistant’s architecture .. 40

4.4.1 SPACY Model ... 40

6

4.4.2 BERT Model.. 41

4.4.3 ConveRT Model .. 44

4.5 The final prototype ... 46

5. Evaluation

5.1 The Evaluation metrics ... 49

5.2 The NLU Evaluation .. 50

5.2.1 SPACY Model Evaluation ... 50

5.2.2 BERT Model Evaluation ... 54

5.2.3 ConveRT Model Evaluation .. 58

5.2.4 Some considerations .. 62

5.3 The Conversation Evaluation ... 62

5.3.1 SPACY Model Evaluation ... 64

5.3.2 BERT Model Evaluation ... 67

5.3.3 ConveRT Model Evaluation .. 70

5.3.4 Some considerations .. 72

6. Conclusions

6.1 Final considerations... 74

References…………………………………………………………..……..77

7

8

1. Introduction

1.1 The remote communication and the school
Today technological remote communication using smartphones, laptops and tablets, caused
also by the ongoing COVID-19 pandemic, are enabling a new transition in the educational
world that uses different communication channels and different modes of interaction. In both
schools and universities, students and professors could not have no way of communicating
"face to face" in the same room, as they usually do, and this leads to problems for both sides:

● Students very often have several questions to ask their teachers and would like they
answers as fast as possible

● Professors have to answer students questions but, due to the number of messages/
emails they receive, they often fail to meet all the requests by solving students doubts
even many days after or even not responding at all

This thesis, wants to try to solve these problems by introducing a bot in few known apps, as
Slack, that allows you to answer students’ questions/doubts quickly (within a few seconds)

and also facilitate the work of professors, who have fewer direct messages (eg. through the
institutional email) in order to:

● answer the questions proposed by the students by summarizing the content
requested through a complete answer

● offer a “Human Handoff” service, which allows the student to contact the teacher if
the bot has not answered the student's request in an exhaustive manner

● allowing everything through a communication channel used by the university by
both students and professors as Slack

The thesis is composed to 6 chapters (including “Introduction” and “Conclusion”):

● in “AI Assistants” chapter will we presented some general consideration about the AI
Assistants and their use in educational world

● in “Background” chapter will show the technologies used to create the educational
Chatbot, i.e. RASA Open Source framework, programming language (Python), …

● in “Edu-Bot implementation” chapter will present the educational bot implemented,
including the models used and it functionalities

● in “Evaluation” will analyse the three different pre-trained models (SpaCy, BERT,
ConveRT) used in learning process

The source code and dataset of the thesis can be found on the following page [1].

9

2. AI Assistants

2.1 What is Virtual Assistant
Virtual Assistant [2] or Artificial Intelligence (AI) Assistant is a software agent that can
perform tasks or services for an individual based on commands or questions. Another term,
usually used, is “Chatbot” and often refers to online chats. Online chat programs are used for

entertainment, but in this period it could be used for instance in the schools to simulate a
professors-students communications. So, AI Assistant can ask users questions, via text or
voice, control automation devices or play music or send emails.

As of 2017, the virtual assistants capabilities and usage are expanding rapidly, with new
products entering the market as Amazon Alexa or Cortana of Microsoft, but first experiments
decade just in XX centuries.

Virtual assistant work via:

● Text: online chat, SMS, Text, e-mail or other’s text-based communication channels
● Voice: an example, Amazon Alexa
● By taking and/or upload images
● Multiple methods of previous, as Google Assistant

Virtual Assistant is based on NLP (Natural Language Processing) to match i.e. user text,
voice input and execute commands or answer questions. It is based on Machine Learning
techniques, for instance question-answer pre-trained models, or image recognition.

2.2 The advantages of AI Assistant
Today, the increase in usage of smartphones, laptops, or something else, has made people
smarter than in the past. For this reason it is possible to use AI technologies that can help us
in a few fields of our life like school, job, entertainment.

As said in previous paragraph, nowadays were created some AI Assistant that in few time
have become popular and practically used to everyone: i.e. Siri, Amazon Alexa, Google
Assistant, Cortana that try to work like human personal assistant using Machine Learning.

So, we can find these advantages [3]:

● AI Assistant can offer a lot of services as question-answering, send emails, make a
to-do list, make phone calls, set a reminder or play music

● Less human efforts: you do no need to spend money on its salary, because, usually,
is completely free

https://en.wikipedia.org/wiki/Software_agent

10

● More productivity: Assistants are faster than humans and can work twice the speed
of a physical person and can give more and efficient output. Also, I want add that is
completely available 24/7

● Flexible work: it is adaptable to human needs and commands. Usually is used a voice
modulation of assistant to simulate a human voice and have the suggestion to talk (or
text to) with a real person

● Accuracy: smart AI Assistants is often more accurate and in the future will be more
and more, I want add, thanks improvements of technologies and new Machine
Learning methods

● Faster Approach: if you have a good internet connections, the Assistant do
everything for you at an instance

● Optimize workflow: AI Assistant is also used in industries and business companies
to optimize the work. In my opinion it can used in the schools or university to
improve the communication and help students and professors

● Mobility of device: you can used AI assistant in device as you prefer like
smartphones or laptops

2.3 AI Assistant in Schools and Universities
AI Assistant, as I wrote, can be used in the educational world. This approach, in this period,
also due to COVID-19 pandemic, could be used to help the teachers in their work, answering
the principal students' questions about one or more arguments, sending emails, and helping in
the administration. So, now, I want to talk about two examples of educational bot.

First I wanted to analyse the report of Sachin Waikar [4] that presents the research of Chris
Piech, an assistant professor of computer science at Stanford, and other experts in
reinforcement learning, human interaction, pedagogy and other areas, about the educational
system.
Some part of this research of Stanford cite:

“According to U.N. estimates, about 69 million teachers will be needed to achieve 2030
sustainable educational goal. Today, more than 260 million children and youth do not attend
school […]. The online educational tools can help, the lack of resources is particularly

challenging for open-ended tasks […]. We need to make roles teachers play easier –
especially understanding how to help students work through open-ended tasks.[…]”

The team propose an AI-based engine that “understand students” that could have a positive

impact and these include, as Piech suggests, expanding the impact of teachers and taking the
role of a one-on-one tutor. This “Super Teaching Assistant” could provide volunteer teachers

automated, detailed reports on what exactly students want, and help the teachers to
understand their students and deliver a better education. Also, this system would enable
teachers to spend less time on grading and more effort on teaching.

11

In their first focus, the Assistant helped students learn scientific methods and coding. As
Piech notices:

“[…] There are great online tools that enable to practice experimentation and see results.
But there’s no tool to look at your process of learning experimental methods, assessing your

understanding, and giving you feedback […]”.

Finally, the Stanford research want to suggest:

[…] the system should be adapted to diverse learning needs and contexts, and can help train
new teachers, multiplying its effects and lowering the barrier of creating scaled human-
centred education. […]

Secondly, I want to report a research by Dyllan Furness [5] that analyses an AI teacher
assistant created and used in a class of Georgia Institute of Technology. The Chabot answers
the questions, teaches and helps the students to learn. Goel said in the interview:

“[…] We thought that if an A.I. TA would automatically answer routine questions that
typically have crisp answers, then the (human) teaching staff could engage the students on
the more open-ended questions […]”

Some part of this interview of Digital Trends:

“A.I. is quickly integrating into every aspect of our lives […], will alter both the face and

function of education. […] A student’s engagement with A.I. will only increase as he/she

graduates through the school system. Educational A.I. toys will be replaced by tutors whose
job it will be to identify subjects of weakness and facilitate additional training […]”

“Systems like Wolfram Alpha can already answer complex math equation and queries in

language that’s informative and accessible.[…] These digital learning partners are meant to
support teachers rather than replace them.”

This system is not designed to replace humans, as Thilo Michael said:

“[…] the system is able to answer pragmatic questions about the courses and majors

available, but is not able to answer questions on a broader level. I think the system could
very well be used in combination with counselling to have the best of both worlds. […]”

So, with this two articles, I want to resume some very useful advantages, adding at the
previous describe in 2.2 paragraph, of use of AI Assistant in the education world:

● We can improve the teaching, help teachers to graduate, divide the effort, adapt the
learning based on needed and context, understand the students request in better way

● Try to take the possibility to learn at all people, also if they do not go in the school

12

● Help students in learning and teach some helpful methods of study in the different
subjects such as scientific methods or coding …

● … but without deleted the “human teacher variable” that is fundamental to give
feedbacks, train the bot and help students to understand the concept

13

3. Background

3.1 Slack
For this project, Slack [6] was chosen as bot application channels. It is one of the business
collaboration tools used to send instant messages to team members. It was developed by
Steward Butterfield in 2013. Today is one of the most popular instant messaging sites with
millions of daily active users.
Slack can be used by all iOS, Android, Windows devices (pc, smartphone or tablet) as an
application or as a web browser page.

One of its functions is the ability to organize team communication through specific channels
that can be accessible to the whole team or just to some members. It is also possible to
communicate with the team through private individual chats or chats with two or more
members. Another feature of Slack is the possibility to create some applications used in the
same slack channel. The next paragraph will describe the Chabot creation on slack channel,
used to answer users, in our case the students, questions.

3.1.1 Slack Bot App
Now let’s see how to create the Chabot in Slack [7]:

Step 1:
Go to https://api.slack.com/apps, click on “Create New App” as shown below:

https://www.youtube.com/redirect?redir_token=QUFFLUhqbkJlUEFQem9xN1l2YlRpT285WjllcHlBSHhrQXxBQ3Jtc0trQ1JNdmZUUkVROElhaUhIWE5ZU1JKNUpqSTdmQ19PTTBYa0c0a2dUVjVKeFFIZld1ZWlUM1NuS3Jud05iVHdTM2hha3U5NFFXYk9qLTl1R3MxMXVEalIyd24wbGdKZVp1b2hRQ3FhdjNDUlctMW9PYw%3D%3D&event=video_description&v=2Qu4LCvB4bs&q=https%3A%2F%2Fapi.slack.com%2Fapps

14

Step 2:
Choose an App name and the Slack Workspace where the bot will use:

Step 3:
First of all in “Oauth&Permission” section, below "Scopes” choose the Bot Token Scopes,
and User Token Scopes that bot will use to work. The scopes govern capabilities and
permissions of bot and users and tokens support them.
Available scopes are on following page: https://api.slack.com/scopes

https://api.slack.com/scopes
https://api.slack.com/scopes

15

Step 4:
After the choose of scopes, click on the “Install App on Workspace” and choose the

channel:

16

Step 5:
After the successful connection of the channel you will get the Oauth Token as shown here:

The Bot Token is important for the bot to manage the connection on the app and it must be
secret and start with xoxb-… . These tokens will be saved, for instance as environment
variables on the server, where the project is running.

3.2 RASA Open Source
Rasa Open Source [8] is a powerful framework that supplies the building to creating virtual
assistants (bot). It is used to automate human-to-computer interaction anywhere from
websites to social media platforms. It performs three principal functions:

● Natural Language Understanding [9]: it provides an open source natural language
processing to turn messages from your users, in our case students, into intents and
entities that assistants can understand in a better way

● Dialogue Management [10]: it manages the contextual conversation analysing step
by step the dialogues

● Integrations [11]: it provides many built-in connectors to connect to common
messaging and voice channels, such as Slack, Telegram, Discord

Rasa Open Source is licensed under the Apache 2.0 license, and the full code is available on
this page: https://github.com/RasaHQ/rasa.

https://github.com/RasaHQ/rasa

17

3.2.1 Natural Language Understanding
NLU [9] (Natural Language Understanding), a subset of NLP (Natural Language Processing),
classifies the text intent based on the context and content of the message. NLU goes beyond
converting text to its semantic parts and interprets the message of the user.

Rasa Open Source is based on lower-level machine learning libraries like TensorFlow and
SpaCy and provides NLP software that is approachable and as customizable as you need. It
gets up and running fast with easy to use default configurations, or swap out custom
components and fine-tune hyper parameters to get the best possible performance for the
dataset.

Advantage of Rasa in NLU are:

● Being open source, it is possible to see the source code, modify the components, and
understand why your models behave the way they do

● Open Source NLP offers the most flexible solution. It is possible to plug in personal
pre-trained models, build components, tune models with precision based on dataset

● It works with the principal pre-trained models like BERT, SpaCy, ConveRT
● Support multiple intents in a single message and can define hierarchical entities
● It is possible to test, in a simple way, the data using examples of conversations
● It supports some pre-built starter packs that can help developers in development of

bot

3.2.2 Dialogue Management
To create a context-aware conversational assistant, the important thing is to define how the
conversation history affects the next response.

The principal tasks to create it are [10]:

● Slots: are the assistant’s memory. They store pieces of information that the bot needs
to refer to later and can direct the conversation flow based on slot_was_set
events. There are a lot of slot type and you can see all here:
https://rasa.com/docs/rasa/domain#slot-types

● Stories: are the examples of conversation between user and bot. In the stories we write
the steps of dialogues with the questions, phrases and correlates answers/actions that
the assistant should say/do

● Policy: ML (Machine Learning) policy can help model to predict in a better way the
response also in unseen conversation paths, but “It is important to understand that

using machine-learning policies does not mean letting go of control over your
assistant”

3.2.3 Integrations RASA on Slack
First of all, we should go to the credentials.yml file on the root of the Rasa project
(see paragraph 3.3). And add the following rows [12]:

https://rasa.com/docs/rasa/domain#slot-types

18

slack:

 slack_token: <BOT_SLACK_TOKEN> #token bot

 slack_channel: “A020AHLC396” #channel ID bot

 slack_signing_secret: <SLACK_SIGNING_SECRET> # secret number

 slack_retry_reason_header: "x-slack_retry_reason"

 slack_retry_number_header: "x-slack-retry-num"

 errors_ignore_retry: None # Any error codes given by Slack included

 in this list will be ignored.

For slack_token and slack_signing_secret is recommended to create two
environment variables to not expose the tokens clearly.

Step 1:
In the page of your app (example: https://api.slack.com/apps/A020AHLC396
where A020AHLC396 is the channel ID) go in the “OAuth&Permissions” and scroll down
to Scopes. You should add, at least, the following scopes:

● app_mentions:read
● channels:history
● chat:write
● groups:history
● im:history
● mpim:history
● reactions:write

After “reinstall the App”, if you have changed some Scopes, in the same page copy the Bot
User Token and replace the value in the slack_token.

https://api.slack.com/apps/A020AHLC396%20where%20A020AHLC396
https://api.slack.com/apps/A020AHLC396%20where%20A020AHLC396
https://api.slack.com/apps/A020AHLC396%20where%20A020AHLC396
https://api.slack.com/apps/A020AHLC396%20where%20A020AHLC396

19

Step 2:
In “Basic Information” section there is the Signing Secret that will be the
slack_signing_secret value:

Step 3:
Now we must configure the bot to receive/send messages. First run the bot, for example using
rasa run on the prompt.

Step 4:
On “Event Subscriptions” sections, active Enable Events and write the Request URL in
this format:
<public_url>/webhooks/slack/webhook

 NB: If you want to run locally the server using the localhost address, you must use ngrok
[13] (or other tools) that retrieve a public URL for the server, because you won’t be able to

use the localhost address.

20

Step 5:
After that you need to Subscribe to the bot events on the same page. You will need to add
the following events:

● message.channels
● message.groups
● message.im
● message.mpim

21

Step 6:
Go to the “OAuth&Permission” section, below Redirect URLs, click on “Add New
Redirect URL” and insert the same URL on Step 4.

Step 7:
If you want that your assistant manage interactive Components, go on
“Interactivity&Shortcut”, enable Interactivity and insert the same URL on the step 4.

 Remember to Save all changes in any pages to have success of changes!

22

3.3 How to create, tested and run a RASA project
To create a Rasa project [14], first of all we need to install python=3.6+ libraries, for
instance using Anaconda [15] that is an open source, simple and very powerful distribution
for python and R languages.

So, in Anaconda Console we can write this commands:

conda create -n venv python=3.7

conda activate venv

pip3 install rasa

After we can create initial Rasa project and install some useful components:

pip3 install rasa[spacy]

pip3 install rasa[trasformers]

rasa init

rasa init command is used to create all files that Rasa needs and train a simple example
using simple data.
All project must have some *.yml/*.py file that programmer have to modify to
implement his personal virtual assistant (* can be changed with any words). One organization
of project could be:

● actions/actions_*.py: file or files code in python to create custom actions
● configs/config_*.yml [16]: file or files that contain the configuration of

NLU/NLP and Core models. Using the pipeline we can personalize models used to
train the data, containing i.e. Tokenizers, Featurizers, Classifiers, ResponseSelector
and also manage the ML rules policy. It supports all pre-trained models such as
SpaCy, TensorFlow, BERT, ConveRT

● data/nlu.yml [17]: examples of user utterances categorized by intent (as a topic)
to be trained. Also it possible defined entities, structured pieces of information inside
utterances

● data/stories.yml [18]: contains examples of conversations between user and AI
assistant, converted in a specific format: intents (and entities is necessary) are user
inputs; actions are responses of bot or something customized, depending of topic
predicted

● data/rules.yml [19]: describe small pieces of conversations that should always
follow the same path

● endpoints.yml: detail for connecting to channels like Slack
● models/*.tar.gz: models trained
● domain.yml [20]: contain the domain of assistant: the list of intents, entities, slots,

responses, forms and actions that bot should know about

23

If wanted training the data with particular configurations, run this command:
rasa train –-config [config file]

To run the server:
rasa run

To tested the stories contains in test/test_*.yml:
rasa test --config [config file] --cross-validation --runs [num] --

folds [num] --out [output diriectory]

To tested the intent recognition:
rasa test nlu --nlu {test_file} --out {dir_out} --model {model_name}

3.4 How write stories (rules)
As written in the previous paragraph, the stories [18] (and also the rules equally) contain
examples of conversation between AI Assistant and User. They are a type of training data
used to train dialogue management models, and they can be used to generalize to unseen
conversation paths.

A story should be written in stories.yml file and they have a simple format. An example
of story, take in Rasa website:

stories:

- story: name of story

steps:

- intent: greet # user message with no entities

- action: utter_ask_howcanhelp # action or response that the bot

 should execute

- intent: inform # user message with entity

- location: "rome"

- price: "cheap"

- action: utter_on_it

- action: utter_ask_cuisine

- intent: inform

entities:

- cuisine: "spanish"

- action: utter_ask_num_people

Where:

● Intent: represent the NLU domain, the topic, argument of question that user ask
● Action: the response of Assistant or custom action (see next paragraph). Every action

have a key (or name) that make it unique, as intent
● Entities: particular structured pieces of information used inside user messages

Stories can also describe events [21], returned often by custom actions, and are tracked
automatically by Rasa (i.e. user messages). The problem is that the assistant's model doesn’t

24

know which events will return. Because of this in stories we should activate/deactivate form
or setting slots explicitly:

● Slots Events: after custom action we should add the information about slot to
set/reset:
- story: set/rest slot

steps:

... other story steps

- action: my_custom_action

- slot_was_set:

- my_slot1: null # set slot to None (reset)

- my_slot2: “hi” # set slot to initial text

● Form Events [22]: a form, often, is used to save information of users, through slots.

After defining the form (and slots or entities) in domain.yml:

forms:

restaurant_form:

required_slots:

cuisine:

- type: from_text

We can define stories that activate/deactivate it. There are three kinds of events used
to manage forms:

o A form action server (i.e. – action: restaurant_form) that is used
to starting a form and resuming the form action if is already active

o A form activation event (i.e. – active_loop: restaurant_form) to
activate the form

o A form deactivation event (i.e. – active_loop: null) to deactivate the
form

An complete example of story, take on Rasa website:

- story: User interrupts the form and doesn't want to continue

steps:

- intent: request_restaurant

- action: restaurant_form # start form

- active_loop: restaurant_form # activate form

- intent: stop

- action: utter_ask_continue

- intent: stop

- action: action_deactivate_loop

- active_loop: null # deactivate form

25

Now talking about checkpoints and OR statements [18].

● Checkpoints: are used to modularize and simplify training data. They can be useful
but we do not overuse them, because they could make stories hard to understand and
slow down training. An example take on Rasa website:

story: beginning of flow

steps:

- intent: greet

- action: action_ask_user_question

- checkpoint: check_asked_question

- story: handle user affirm

steps:

- checkpoint: check_asked_question

- intent: affirm

- action: action_handle_affirmation

● OR statements: are used to write shorter stories or to treat multiple intents the same

way. Also an overuse of them will slow down training.
An example take on Rasa website:

- story:

steps:

... previous steps

- action: utter_ask_confirm

- or:

- intent: affirm

- intent: thankyou

- action: action_handle_affirmation

3.5 Principal configuration models
The model [20], is the “brain” of an assistant. Thanks to it, the bot predicts the topic of a
question, and answers, using components that work sequentially creating a pipeline that processes
user input.

The principal components [23] are:

● Language Models: load pre-trained models that are needed in case you want to use pre-
trained word vectors in the pipeline. The principals are:
o SpacyNLP: initialized spaCy structures. You have to specify the language model to

use and if it will be case sensitive or not.
o HFTrasformersNLP: use HuggingFace’s Trasformers based pre-trained language

model, as BERT. You have to specify the model_name and the model_weights.
● Tokenizers: split text into tokens. The principals are:

o SpacyTokenizer
o ConveRTTokenizer: if we use the ConveRT model
o LanguageModelTokenizer

26

● Featurizers: they can be sparse, that return feature vectors with a lot of missing values,
i.e. zeros, and usually take up a lot of memory, or dense, that store only value not missing
and the position of features in the vector. The featurizers return a sequence feature
(matrix contains a feature vector for every token in sequence) or a sentence feature
(matrix that contains the feature vector of all utterances).
The principals are:
o SpacyFeaturizer
o ConveRTFeaturizer
o LanguageModelFeaturizer
o CountVectorsFeaturizer: it is used for intent classification and response selections.

create bag-of-words represent the user messages, intent and responses. All tokens
consisting only of digits will be assigned to the same feature.

● Intent classifiers: assign one of intents defined in the domain file to user messages
(predict the topic of question in our case):
o DIETClassifier (Dual Intent Entity Trasformer Classifer) is used for intent

classification and entity extraction. The architecture is based on a transformer which
is shared for both tasks. A CRF (Conditional Random Filed) layer tagging the top 10
(usually) entity labels prediction using user input. It uses dot-product loss to
maximize the similarity with the target label and minimize similarity with negative
samples. It possible to change some hyperparameters as epochs, model_confidence
(softmax or linear_norm), transformer_size

● Entity Extractors: extract the entities, such a person's name or a location, from user
input. The most used are:
o SpacyEntityExtractor
o DietClassifier
o EntitySinonymMapper

● Selectors: predict an assistant answer form a set of candidate responses included in the
domain file. The principal used is ResponseSelector, and we can modify some
hyperparameters as DIETClassifier to customize the model.

Also we can create custom components and use them in the model to perform specific tasks if
pre-trained models are not sufficient to have high accuracy.

In the configuration models, there are also the policies that assistants use to decide which action
to take at each step in a conversation. At every turn, each policy defined in configuration will
predict a next action with a certain value of confidence, and the policy that predicts with the
highest confidence decides the bot’s next action, managed if present also the policy priority.

The most used Policies [24] are:

● TED Policy: Transformer Embedded Dialogue Policy is a multi-task architecture for
next action prediction and entity recognition. It possible configure the hyperparameters
and manage the “nlu_fallback_actions” (if there is no actions that have confidence major

of a certain threshold the bot not predict the action but answer wit “I don’t understand”

or something else defined in default utterance in domain file)

27

● Memoization Policy: remember the stories from training data. It checks if the current
conversation matches the stories in your stories file

● Rule Policy: handles conversation parts that follow a fixed behaviour. It manages the
rules contained in the rules file. Also here we can manage the “nlu_fallback_actions”

As for the model, we can customize our policy and use it in the configuration file.

3.6 How create custom actions
When a user posts a message, the model used to predict the intent and response, will choose
the best action [25][26] , with the highest probabilities of success, that the assistant should
perform next. It could be a simple text response (the utter_* created in responses
section in domain.yml) or a more complex action that can be customized creating classes
written in Python language saved in actions directory.

A custom action can run any code we want, including API calls (for instance we can use
Slack API, for instance, to send messages in a channel or in a private chat with another user),
manage databases, add particular events (i.e. calendar), do maths calculations.
All custom actions should be defined in the actions section of domail.yml file.

When dialogue engine predict that assistant should be execute a custom action, it will call the
action server, with this information:
{

 "next_action": "string",

 "sender_id": "string",

 "tracker": {

 "conversation_id": "default",

 "slots": {},

 "latest_message": {},

 "latest_event_time": 1537645578.314389,

 "followup_action": "string",

 "paused": false,

 "events": [],

 "latest_input_channel": "rest",

 "active_loop": {},

 "latest_action": {},

 },

 "domain": {

 "config": {},

 "session_config": {},

 "intents": [],

 "entities": [],

 "slots": {},

 "responses": {},

 "actions": [],

 "forms": {},

 "e2e_actions": []

 },

 "version": "version"

}

28

The tracker [27] represents a Rasa conversation tracker. Thanks it, lets you access the
assistant’s memory and get information about past events, current state through it attributes:

● sender_id: unique user ID talking to the assistant
● slots: the slots list that can be filled as defined in the domains
● latest_message: a dictionary containing the latest message attributes containing:

intent, entities and text
● events: all previous events list
● active_loop: the currently active loop name. It used to manage the form
● latest_action_name: the last action name that the bot executed

The domain [20] contains information about the “universe” in which assistants operate. In
contains:

● intents: intents list (the arguments or topics) used in NLU data
● entities: the entities that can be extracted in NLU pipeline
● slots: the assistants memory. It is used as a key-value variables with type (bool, text,

float, …);
● responses: the responses that assistant can use
● forms: is a special type of action that it is used to collect information (i.e. modify a

slot) from user
● actions: the possible actions list, including the customized

And server respond with a events and responses list:

{

 "events": [{}],

 "responses": [{}]

}

To run the server of Rasa actions [28], first of all we can add in endpoints.yml file the
following lines:

action_endpoint:

 url: "{address}/webhook"

where {address} is the address of the action server.
After in a console, we should write this commands:
rasa run actions

3.6.1 Custom actions Class
Every custom action classes [29] have the following format:

29

from rasa_sdk import Action, Tracker

class MyCustomAction(Action):

def name(self) -> Text:

return "action_name"

async def run(

self, dispatcher,tracker:Tracker,domain:Dict[Text, Any],

) -> List[Dict[Text, Any]]:

…

return []

It compose of two principal methods (but we can add others static methods if want):

● name(): return the custom action name
● run(dispatcher, tracker, domain): it is called when action is predicted

and it contains the “custom” action that the assistant should do. The three parameters
are:
o tracker [27]: It contains attributes and methods useful for manage the state of

current user
o domain [20]: contains information about the domain
o dispatcher [30]: it used to generate the responses to send back to the user. An

instance of CollectingDispatcher contains only the method
utter_message that is used to send the responses

3.7 Rasa X: an “evolution” of RASA
Another component used in this thesis is Rasa X [31], an improvement of the framework
Rasa Open Source.

Rasa X is a very powerful tool for Conversation-Driven Development (CDD). It processes,
saves automatically all conversations about Bot and User and uses them to improve AI
assistant and model used.

With Rasa X it is possible to analyse the conversation and model to try to learn how users
write and how he should be respond, improving over time.

30

Figure 1: functionalities of RASA X, from [31]

The principal Rasa X advantages are:

● it is a layer on top of Rasa Open Source and try to improve the model used using a
fine-tuning approaches to build a very custom and better assistant
In particular [32]:
o Review conversations: sort and filters, tag important messages, get insight into

user behaviour
o Annotate data: label real user messages, create new flows from real

conversations, fix incorrect predictions
o Share & Test: shareable links to test the assistant, analyse performance, create

robust test cases
● it is free, closed source tool available to all developers
● it can be deployed anywhere: train your data securely and proprietary
● It also offers very user-friendly web pages (it appears when the Rasa X server is in

running)

3.7.1 How install Rasa X
Rasa X can be installed in four mode [33]:

● Local mode
● Server Quick-Install Mode
● Helm Chart Mode
● Docker Compose Mode

In this thesis it will describe the first mode.

Local Mode Installation [34]
If Rasa Open Source is just installed, the installation of Rasa X is very simple.

31

1) First of all in a console we should write this command:
pip3 install rasa-x --extra-index-url https://pypi.rasa.com/simple

2) After in credentials.yml file we should add this line:

rasa:

 url: "{address}/api"

where {address} is the address of the rasa x server.

3) To run the Rasa X server, for instance we can write:

rasa x --connector slack --config configs/config_BERT.yml

To connect Rasa X server with Slack, for instance, using config_BERT (model that
uses BERT pipelines) file.

3.7.2 Rasa X Server
When Rasa X [35] is running, in the browser appears a web page that is useful to the
developer to manage the AI assistant and do the operation mentioned previously.

The home page include a menu that contains:

32

● Talk to your bot: in this part you can talk with your assistant, test the conversation and
analyse the story (or create) and slots.

● Conversations: It contains the list of all conversations, with some metrics evaluation,

between Assistant and user and we can manage it (for instance mark if an intent is
predicted correctly or not, save or delete it, …).

33

● NLU inbox: it contains all users utterances that NLU dataset do not contain, for instance.
It predicts the intent and if prediction is incorrect could be changed/created or message
can be deleted.

● Insight: it is useful to test the dataset of test stories contained in the test directory.

34

● Models: It manages the list of models available and we can activate one of them.

● Training: We can manage the NLU data, stories, rules and responses, configuration and

domain files.

35

3.8 A brief introduction of Python
Python [36][37] is an interpreted high-level general-purpose programming language. It could
be used to develop distributed applications, scripting and system testing. It emphasizes code
readability with its notable use of significant indentations. Its Object Oriented approach aims
to help programmers write clear, logical code. The first that began working on Python was
Guido van Rossum in the 1980s.

This language is dynamically-typed and garbage-collected, supports multiple programming
paradigms, and a comprehensive standard library that provides tools suited to many tasks as
Data Analytics, Databases, Machine Learning, Scientific computing, System administration
as Threads manage.

3.8.1 How write a class in python
To define a class in python [37] you can use a specific instruction called class. It is
possible to inherit multiple times, definition of attributes using initialization, and operators.

The reflective parameter is called self by default, and it represents the pointer of the class
object. Usually is the first parameter of every method defined in the class.

The __init__ method represents the constructor and usually is used to define the attributes
of class and call super class if derived from a superclass.

Exist also other special methods associated to operators and built-in functions, i.e. __add__,
__str__

36

An example of class and his use is:

class Vehicle(object):

 def __init__(self, name, number_of_ports):

 self.name = name

 self.number_of_ports = number_of_ports

 def name_of_vehicle(self):

 full = f'{self.name}'

 return full

vehicle = Vehilce('Fiat', 5)

print(persona.name_of_vehicle())

3.9 A brief introduction of SQLite
SQLite [38][39] is a C-language library that implements a small, fast, self-contained, high-
reliability, full-featured, serverless, transactional, zero-configuration SQL database engine.
SQLite is Open Source and one of the most used in the world. To manage the DB it is
possible to use a graphical tools class DB Browser for SQLite to manage DB (creation,
modification and run the principal SQL operation like SELECT).

So the principal features are [40]:

● The transaction are atomic, consistent, isolated and durable (ACID)
● Zero-configurations: no administration needed
● Full-featured SQL
● A complete DB is stored in a single cross-platform disk file
● Support terabyte-sized DB and gigabyte-sized string and blobs
● Small code
● Fast
● Cross-platform
● Open Source

3.9.1 SQLite in Python
The sqlite3 library [41] is used to manage SQLite DB in python, and is written by Gerhard
Häring. It provides a SQL interface compliant with the DB-API 2.0 specification.

After the import the first thing to do is create a connection with the DB. Then we must create
a cursor that is used to move in the DB. The cursor has some methods to call the SQL of
DDL, DML, etc. save the modification and close the connections with DB. The execute
method returns a table that can be used to process and read value if you want directly as a list.

A complete example, take on https://docs.python.org website:

37

import sqlite3

con = sqlite.connect()

cur = con.cursor()

cur.execute("create table lang (name, first_appeared)")

cur.execute("insert into lang values (?, ?)", ("C", 1972))

lang_list = [

 ("Fortran", 1957),

 ("Python", 1991),

 ("Go", 2009),

]

cur.executemany("insert into lang values (?, ?)", lang_list)

cur.execute("select * from lang where first_appeared=:year",

 {"year": 1972})

print(cur.fetchall())

con.close()

38

4. Edu-Bot implementation

4.1 The problem and the goals
The initial problem, was to create a Chatbot that would help the students of some courses
held at the Politecnico of Turin in learning their curricular contents and also in purely
organizational management, for example knowing where are the slides of the courses,
consequently also helping teachers in the management of requests from students who, given
the increasing number of students enrolled at the university every year, it is increasingly
difficult to manage them all in a reasonable time.

A resume of the main goals, presented on Introduction section, that the AI Assistant had to
solve were:

● answer the questions proposed by the students by summarizing the content
requested by the student through a complete answer

● offer a “Human Handoff” service, which allows the student to contact the teacher if
the bot has not answered the student's request in an exhaustive manner

● allowing everything through a communication channel used by the university and
students and it was decided to use Slack, which offers, among other things, the
possibility of creating APPs that can also be a Chatbot

After implementing the Chatbot, another goal of research has been to evaluate everything
using different prediction models used in Machine Learning in the NLP: BERT, Spacy and
ConveRT.

4.2 The dataset
During the work, we focused on one course in particular: "Programmazione ad Oggetti
(09CBIxx)" [42]. So, in the end it was decided to create a virtual bot that would help the
students of the PO course.

The topics of the course are vast and run along the theoretical and practical line, through the
study of the Java language, of object-oriented programming. Initially it was decided to create
a virtual assistant that would be able to answer all the topics of the course both theoretical
and practical, then in the course of work we opted to a selection of a particular topic, the
inheritance (in addition to some questions of organizational type) in theory and in practice
(Java programming), already vast as a topic and given that the technology used makes it very
easy, in the future, to add new topics and therefore to expand the dataset now implemented.

The dataset is a mixture of questions and answers (with the related "topics") taken from the
Slack channels of the PO course of the year 2020, as Train Set, and 2021, as Test Set,

39

included some created specifically to try to expand the argument of inheritance as much as
possible.

Then I found 53 different subtopics (with 300 examples of different questions), and manage
in standard RASA format (NLU file, stories file, rules file, domain file):

Inheritance in general Comparable
Override Comparator

Polymorphism Iterator-Iterable
Dynamic binding Observer-Observable

Casting Lambda functions
Downcasting Upcasting

Class/attribute visibility Methods references
Constructors in inheritance Instance of keyword

The super construct “this“ construct
The Object class “final” construct
Abstract classes Pattern

Interfaces Static methods
Defaults methods Defaults methods

And in addition to the questions of last year's students it included also, the organizational
questions (e.g. where are the slides, ...), and the regards.

All data has been meticulously analysed and manually anonymised for privacy issue, another
much debated topic in AI Assistant and modelled as the technology of RASA wanted.

4.3 The Technologies used
As seen in the previous chapters, the RASA framework was used to manage the dataset, the
prediction models, the data testing and therefore the evaluation of the different models using
the classical Machine Learning metrics.

In addition to offering a graphical interface (RASA X) that simplifies the management work
even more. It also allows you to customize the actions to be done by the assistant and
therefore allows the creation of the “Human Handoff” required by creating classes written in

Python language.

Slack was chosen as a communication channel, as required, due to its popularity of use,
simplicity on creation and use.

SQLite was also used to manage the requests of students who asked to be able to speak with
the teachers "in first person" without the aid of the bot.

40

4.4 The AI Assistant’s architecture
The choice of the architecture of the dataset training model is fundamental: we could define it
as the “brain”, as well as the thinking mind of the virtual assistant. In this thesis I decided to

compare three pre-trained models, widely used in Machine Learning NLP problems: SpaCy,
Google-BERT and ConveRT.

These three configurations can be used by the RASA framework, which as you may have
understood by now, is the "core technology" used in my implementation. Furthermore, Rasa
tries to simplify the work as much as possible, allowing the definition of a configuration file
which, through a series of pipelines that are executed consecutively and the definition of the
Policies, is able to predict the intents, entities and answers of bot, all in autonomous way,
without having to write code, also speeding up the implementation work.

4.4.1 SPACY Model
SpaCy [43] is the first pre-trained model that I wanted analysed. It is an open-source software
library used in Natural Language Processing (NLP) problems, written in Python languages
and Cython. The library is published under MIT license and its principal developers are
Matthew Honnibal and Ines Montani.

Spacy is focused on providing software for production usage and support deep learning
workflows that allow connecting statistical models by TensorFlow, PyThorch, or others
popular Machine Learning libraries. Also its features Convolutional Neural Network
(CNN) models for part-of-speech tagging, dependency parsing, text categorization and NER
(Named Entity Recognition). Its tasks are available in different languages, as English,
Italian, Spanish, and Chinese.

So, Its main features are:

● Non-destructive tokenization
● “Alpha tokenization” support 65 languages
● Built-in support for trainable pipeline components such as NER, Part-of-speech

tagging
● Support Statistical models for 17 languages, including English, Italian, …
● Support for custom models in PyTorch, TensorFlow and other frameworks
● State-of-the-art speed and accuracy
● Easy model packaging, deployment and workflow management
● Built-in visualizer for syntax and named entities

In my RASA configuration I used the “it-core-news-md” model of Spacy, to support Italian
language. I configured the hyperparameters for every part of the pipeline, for instance the
epochs (300) of DietClassifiers and other components, the fallback threshold in the Policies,
the model confidence of , for instance, ResponseSelector.

41

language: it

pipeline:

 - name: SpacyNLP
 model: "it_core_news_md"

 case_sensitive: False

 - name: SpacyTokenizer

 intent_tokenization_flag: False

 intent_split_symbol: "*"

 token_pattern: None

 - name: SpacyFeaturizer

 pooling: "mean"

 - name: LexicalSyntacticFeaturizer

 - name: CountVectorsFeaturizer

 - name: CountVectorsFeaturizer

 analyzer: char_wb

 min_ngram: 1

 max_ngram: 10

 - name: DIETClassifier

 epochs: 300

 constrain_similarities: True

 model_confidence: 'linear_norm'

 - name: EntitySynonymMapper

 - name: ResponseSelector

 epochs: 300

 constrain_similarities: True

 model_confidence: 'linear_norm'

policies:

 - name: RulePolicy

 core_fallback_threshold: 0.1

 core_fallback_action_name: "action_default_fallback"

 enable_fallback_prediction: True

 - name: MemoizationPolicy

 - name: TEDPolicy

 core_fallback_threshold: 0.1

 core_fallback_action_name: "action_default_fallback"

 enable_fallback_prediction: True

 max_history: 5

 epochs: 300

 constrain_similarities: True

 model_confidence: 'linear_norm'

4.4.2 BERT Model
BERT (Bidirectional Encoder Representation from Transformers) [44], developed by
Google, is a recent open source method of pre-training language representations, a general
purpose “language understanding” model on a large text corpus (BooksCorpus and
Wikipedia) and also is used in NLP tasks (fine-tuning). It is fast and relies on massive
computation and generates multiple, contextual, bidirectional word representations. In
addition proposed a new training objective: the MLM (Masked Language Model), that
randomly masks some of the tokens from the input and predicts the original vocabulary id of
the masked word based only on its context.

42

The basic BERT building block is the Transformer, opposed RNN (Recurrent Neural
Network): central is the notation of self-attention, contextual co-occurrence statistics.

Transformer is simpler and more parallelizable, faster than RNN, also because it use only
matrix multiplications and simple few layers feed forward neural network with no
recurrence and no weight sharing.

Figure from [44]

43

Figure from [44]

Important is the pre-training tokenization of text that is divided in three sequentially
operations:

● Token Embeddings: start to tokenize the text, clear and normalize it, change every
tokens in value and transform it in vector of 768 (by default) embeddings

● Segment Embeddings: identify every singular phrases

● Position Embeddings: add positional to input embedding

Figure from [44]

BERT supports a lot of different models for a lot of languages, such as English or Italian and
there are particular variants of BERT, like ALBERT, RoBERTa that can help to train better
the tasks to study.

In my RASA configuration I used “dbmdz/bert-base-italian-xxl-uncased” [45] model of
BERT, to support Italian language with large vocabulary. Also I configured the
hyperparameters for every components of pipeline, the same of SPACY configurations and
ConveRT.

44

language: it

pipeline:

 - name: LanguageModelTokenizer

 - name: LanguageModelFeaturizer

 model_weights: "dbmdz/bert-base-italian-xxl-uncased"

 model_name: "bert"

 cache_dir: "./cache_bert"

 - name: CountVectorsFeaturizer

 - name: CountVectorsFeaturizer

 analyzer: char_wb

 min_ngram: 1

 max_ngram: 10

 - name: DIETClassifier

 epochs: 300

 constrain_similarities: True

 model_confidence: 'linear_norm'

 - name: EntitySynonymMapper

 - name: ResponseSelector

 epochs: 300

 model_confidence: 'linear_norm'

 constrain_similarities: True

policies:

 - name: RulePolicy

 core_fallback_threshold: 0.1

 core_fallback_action_name: "action_default_fallback"

 enable_fallback_prediction: True

 - name: MemoizationPolicy

 - name: TEDPolicy

 max_history: 5

 core_fallback_threshold: 0.1

 core_fallback_action_name: "action_default_fallback"

 enable_fallback_prediction: True

 epochs: 300

 constrain_similarities: True

 model_confidence: 'linear_norm'

4.4.3 ConveRT Model
ConveRT (Conversational Representation from Transformers) [46] is a pre-training
framework for conversational tasks and satisfying these requirements: effective, affordable
and quick to train.

It is very scalable and portable: is only 59 MB in size and is significantly smaller than other
state-of-the-art dual encoders (444MB), as BERT. Also is more compact than other sentence
encoders, and consequently faster than its. This reduction in size and training are achieved
through combining 8-bit embedding quantization and quantization-aware training, subword-
level parameterization, and pruned self-attention. In addition, it provides a multi-context
variant that is also very compact (73 MB).

45

Figure from [46]

As SpaCy and BERT models I configured the hyperparameters for every component of the
pipeline. In this case ConveRT recognises the Italian languages, with the help of the RASA
framework.

language: it

pipeline:

 - name: ConveRTTokenizer

 - name: LexicalSyntacticFeaturizer

 - name: CountVectorsFeaturizer

 - name: CountVectorsFeaturizer

 analyzer: "char_wb"

 min_ngram: 1

 max_ngram: 10

 - name: DIETClassifier

 epochs: 300

 constrain_similarities: True

 model_confidence: 'linear_norm'

 - name: EntitySynonymMapper

 - name: ResponseSelector

 epochs: 300

 constrain_similarities: True

 model_confidence: 'linear_norm'

policies:

 - name: RulePolicy

 core_fallback_threshold: 0.1

 core_fallback_action_name: "action_default_fallback"

 enable_fallback_prediction: True

46

 - name: MemoizationPolicy

 - name: TEDPolicy

 core_fallback_threshold: 0.1

 core_fallback_action_name: "action_default_fallback"

 enable_fallback_prediction: True

 max_history: 5

 epochs: 300

 constrain_similarities: True

 model_confidence: 'linear_norm'

4.5 The final prototype
The final prototype of the project is able to meet all the goals initially set, that are:

● allowing everything through a communication channel: Slack is used as a
communication channel. The bot, created as Slack App, is an additional “user” called

PO_BOT, inserted in the channel with name #po_bot where students and professors
can communicate with each other. When it is mentioned it answers at student request.

● answer the students questions, resuming the content, for the topics of PO
inheritance and some organisation request:

Figure 1: Example of organisational question

47

Figure 2: Example of inheritance question (about Object class)

● offer a “Human Handoff” service: when a student wants to contact a professor, the
student asks a virtual assistant to send a message with a question to the professor. The
professor receives in a private channel the request and the link of question and he/she
can accept it or send it to another teacher, using the buttons included in the messages.
An example seen in the figures below.

Figure 3: Example of Human Handoff request

48

Figure 4: Message arrived at professor in private chat

Figure 5: Notification of acceptance in main channel

49

5. Evaluation

5.1 The Evaluation metrics
An important aspect of the goals of this thesis is the evaluation of model [47] is used to train
the dataset.

In this case, again using the RASA framework, I focused on evaluating the Intent
recognition to see if the model is able to correctly recognize the topic to which it refers to
given a question. There is also an analogue for entities, but in this project research they have
not been used and therefore not tested accordingly. After testing the Intent recognition, I
wanted to analyse the confidence of models, using a series of test stories that simulate
different completed dialogues and allow you to provide entire conversations and test the
actions.

For this evaluation I used some classical metrics, used in Machine Learning, also in multi-
label classification:

● Precision [48]: called positive predictive value, is the fraction of relevant instances
(true positives) among the retrieved instances (the true and false positives). It can be
defined also as the average probability of relevant retrieval

● Recall [48]: called sensitivity, is the fraction of relevant instances that were retrieved
(the true positives divide true positives with false negatives). It can be defined also as
the average probability of complete retrieval averaged over multiple retrieval queries

● F1-score [49]: it is calculated from the precision and recall. The formula used is:

F1-score

In multi-class classification the final score is obtained by micro-averaging (biased by
class frequency) or macro-averaging (taking all classes as equally important)

● Confusion matrix [50]: is a specific table that allows visualization of the
performance of a model. Each row represent the instances in an actual class while
each column represent the instances in a predicted class, or vice versa

● Accuracy [51]: is defined as the fraction of number of correct predictions among the
total number of predictions

These metrics have a range of value between zero and one, and values closer to one, are the
better.

50

5.2 The NLU Evaluation
To test only the NLU model, so only the Intent recognition, Rasa offers the possibility to split
the NLU file that contains the intents with examples, in train and test set. To do this we can
run this command [47]:
rasa data split nlu

And the original file will be divided into the train dataset (80% of dataset of NLU: 240
distinct examples) and test set (20% of dataset of NLU: 60 distinct examples) and saved in a
directory called train_test_split.

To test run this command:
rasa test nlu --nlu train_test_split/test_data.yml

The results of evaluation are saved in different files:

● intent_report.json: contains a report contains recall, f1-score, precision for
every topics

● intent_confusion_matrix.png: contains the confusion matrix
● intent_histogram.png: contains confidence histogram for intent classification

model and allow to visualize the confidence for all predictions, with correct (blue
bars) and incorrect (red bars) predictions

● errors.json: contains the incorrect predicted intents

5.2.1 SPACY Model Evaluation
The result of Spacy model for Intent Evaluation are reported below:

Value of metrics for every intent

Intent* #train #test precision recall
F1-

score

final 3 1 1.00 1.00 1.00

goodday 4 1 1.00 1.00 1.00

goodbye 4 1 1.00 1.00 1.00

deny 4 1 0.50 1.00 0.67

thanks 4 1 1.00 1.00 1.00

bot 4 1 1.00 1.00 1.00

GUI 4 1 1.00 1.00 1.00

upcasting 4 1 1.00 1.00 1.00

visibility 4 1 1.00 1.00 1.00

hineritance_constructor 4 1 0.50 1.00 0.67

super 4 1 0.00 0.00 0.00

class_object 4 1 1.00 1.00 1.00

51

comparator 4 1 0.00 0.00 0.00

observer_observable 4 1 1.00 1.00 1.00

greet 4 1 0.00 0.00 0.00

method_reference 4 1 1.00 1.00 1.00

objects_methods_doubt 4 1 1.00 1.00 1.00

static_final_doubt 4 1 1.00 1.00 1.00

visibility_variables_main 4 1 1.00 1.00 1.00

anonym_class_doubt 4 1 1.00 1.00 1.00

equals_doubt 4 1 1.00 1.00 1.00

arraysort_pattern_doubt 4 1 1.00 1.00 1.00

charAt_doubt 4 1 1.00 1.00 1.00

class_general_doubt 4 1 1.00 1.00 1.00

referent_methods_doubt 4 1 1.00 1.00 1.00

comparing_doubt 4 1 1.00 1.00 1.00

difference_dynaminc_bind_upcast 4 1 1.00 1.00 1.00

hineritance_tree 4 1 1.00 1.00 1.00

terminology 4 1 1.00 1.00 1.00

instanceof 4 1 1.00 1.00 1.00

this 4 1 1.00 1.00 100

pattern 4 1 1.00 1.00 1.00

functional_interface 4 1 1.00 1.00 1.00

default_methods 4 1 0.00 0.00 0.00

advantages 4 1 1.00 1.00 1.00

factory_methods 4 1 1.00 1.00 1.00

affirm 5 1 0.00 0.00 0.00

eclipse 4 2 1.00 1.00 1.00

override 5 1 1.00 1.00 1.00

dynamic_binding 5 1 0.34 1.00 0.50

casting 5 1 1.00 1.00 1.00

downcasting 5 1 1.00 1.00 1.00

class_abstract 4 2 1.00 1.00 1.00

comparable 5 1 0.50 1.00 0.67

iterator_iterable 5 1 1.00 1.00 1.00

lambda 5 1 1.00 1.00 1.00

static_methods 5 1 1.00 1.00 1.00

slides 5 2 1.00 1.00 1.00

polymorphism 6 1 1.00 1.00 1.00

anonymous_class 5 2 1.00 1.00 1.00

52

hineritance 8 1 1.00 1.00 1.00

interface 7 2 1.00 1.00 1.00

ask_prof 13 3 1.00 1.00 1.00

 240 60 0.88 0.92 0.89

 Accuracy 0.92

*In bold type the intents partially or totally not recognised correctly.

Examples of intents correct predicted or not recognized
Example Intent predicted Intent correct Correct?

hey dynamic_binding greet NO

descrivimi il comparator comparable comparator NO

cosa serve l’operator instanceof instanceof instanceof YES

Intent Confusion Matrix and Intent Prediction Confidence Distribution (IPCD)

Figure 1: IPCD of Spacy model

53

Figure 1: Intent Confusion Matrix of Spacy model

54

5.2.2 BERT Model Evaluation
The result of BERT model for Intent Evaluation are reported below:

Value of metrics for every intent

Intent* #train #test precision recall
F1-

score

final 3 1 1.00 1.00 1.00

goodday 4 1 1.00 1.00 1.00

goodbye 4 1 0.00 0.00 0.00

deny 4 1 0.33 1.00 0.50

thanks 4 1 1.00 1.00 1.00

bot 4 1 1.00 1.00 1.00

GUI 4 1 1.00 1.00 1.00

upcasting 4 1 1.00 1.00 1.00

visibility 4 1 1.00 1.00 1.00

hineritance_constructor 4 1 0.50 1.00 0.67

super 4 1 0.00 0.00 0.00

class_object 4 1 1.00 1.00 1.00

comparator 4 1 1.00 1.00 1.00

observer_observable 4 1 1.00 1.00 1.00

greet 4 1 0.00 0.00 0.00

method_reference 4 1 1.00 1.00 1.00

objects_methods_doubt 4 1 1.00 1.00 1.00

static_final_doubt 4 1 1.00 1.00 1.00

visibility_variables_main 4 1 1.00 1.00 1.00

anonym_class_doubt 4 1 1.00 1.00 1.00

equals_doubt 4 1 1.00 1.00 1.00

arraysort_pattern_doubt 4 1 1.00 1.00 1.00

charAt_doubt 4 1 1.00 1.00 1.00

class_general_doubt 4 1 1.00 1.00 1.00

referent_methods_doubt 4 1 1.00 1.00 1.00

comparing_doubt 4 1 1.00 1.00 1.00

difference_dynaminc_bind_upcast 4 1 1.00 1.00 1.00

hineritance_tree 4 1 1.00 1.00 1.00

terminology 4 1 1.00 1.00 1.00

instanceof 4 1 1.00 1.00 1.00

this 4 1 1.00 1.00 100

pattern 4 1 1.00 1.00 1.00

55

functional_interface 4 1 1.00 1.00 1.00

default_methods 4 1 1.00 1.00 1.00

advantages 4 1 0.50 1.00 0.67

factory_methods 4 1 1.00 1.00 1.00

affirm 5 1 0.00 0.00 0.00

eclipse 4 2 1.00 1.00 1.00

override 5 1 0.00 0.00 0.00

dynamic_binding 5 1 1.00 1.00 1.00

casting 5 1 1.00 1.00 1.00

downcasting 5 1 1.00 1.00 1.00

class_abstract 4 2 1.00 1.00 1.00

comparable 5 1 1.00 1.00 1.00

iterator_iterable 5 1 1.00 1.00 1.00

lambda 5 1 1.00 1.00 1.00

static_methods 5 1 1.00 1.00 1.00

slides 5 2 1.00 1.00 1.00

polymorphism 6 1 1.00 1.00 1.00

anonymous_class 5 2 1.00 1.00 1.00

hineritance 8 1 1.00 1.00 1.00

interface 7 2 1.00 1.00 1.00

ask_prof 13 3 1.00 1.00 1.00

 240 60 0.89 0.92 0.90

 Accuracy 0.92
*In bold type the intents partially or totally not recognised correctly.

Examples of intents correct predicted or not recognized
Example Intent predicted Intent correct Correct?

hey affirm greet NO

a dopo deny goodbye NO

descrivimi il comparator comparator comparator YES

56

Intent Confusion Matrix and Intent Prediction Confidence Distribution (IPCD)

Figure 1: IPCD for BERT model

57

Figure 2: Intent Confusion Matrix for BERT model

58

5.2.3 ConveRT Model Evaluation
The result of ConveRT model for Intent Evaluation are reported below:

Value of metrics for every intent

Intent* #train #test precision Recall
F1-

score

final 3 1 1.00 1.00 1.00

goodday 4 1 1.00 1.00 1.00

goodbye 4 1 0.00 0.00 0.00

deny 4 1 0.33 1.00 0.50

thanks 4 1 1.00 1.00 1.00

bot 4 1 1.00 1.00 1.00

GUI 4 1 1.00 1.00 1.00

upcasting 4 1 1.00 1.00 1.00

visibility 4 1 1.00 1.00 1.00

hineritance_constructor 4 1 0.50 1.00 0.67

super 4 1 0.00 0.00 0.00

class_object 4 1 1.00 1.00 1.00

comparator 4 1 1.00 1.00 1.00

observer_observable 4 1 1.00 1.00 1.00

greet 4 1 0.00 0.00 0.00

method_reference 4 1 1.00 1.00 1.00

objects_methods_doubt 4 1 1.00 1.00 1.00

static_final_doubt 4 1 1.00 1.00 1.00

visibility_variables_main 4 1 1.00 1.00 1.00

anonym_class_doubt 4 1 1.00 1.00 1.00

equals_doubt 4 1 1.00 1.00 1.00

arraysort_pattern_doubt 4 1 1.00 1.00 1.00

charAt_doubt 4 1 1.00 1.00 1.00

class_general_doubt 4 1 1.00 1.00 1.00

referent_methods_doubt 4 1 1.00 1.00 1.00

comparing_doubt 4 1 1.00 1.00 1.00

difference_dynaminc_bind_upca
st

4 1 1.00 1.00 1.00

hineritance_tree 4 1 1.00 1.00 1.00

terminology 4 1 1.00 1.00 1.00

instanceof 4 1 1.00 1.00 1.00

this 4 1 1.00 1.00 100

pattern 4 1 1.00 1.00 1.00

59

functional_interface 4 1 1.00 1.00 1.00

default_methods 4 1 1.00 1.00 1.00

advantages 4 1 0.50 1.00 0.67

factory_methods 4 1 1.00 1.00 1.00

affirm 5 1 0.00 0.00 0.00

eclipse 4 2 1.00 1.00 1.00

override 5 1 0.00 0.00 0.00

dynamic_binding 5 1 1.00 1.00 1.00

casting 5 1 1.00 1.00 1.00

downcasting 5 1 1.00 1.00 1.00

class_abstract 4 2 1.00 1.00 1.00

comparable 5 1 1.00 1.00 1.00

iterator_iterable 5 1 1.00 1.00 1.00

lambda 5 1 1.00 1.00 1.00

static_methods 5 1 1.00 1.00 1.00

slides 5 2 1.00 1.00 1.00

polymorphism 6 1 1.00 1.00 1.00

anonymous_class 5 2 1.00 1.00 1.00

hineritance 8 1 1.00 1.00 1.00

interface 7 2 1.00 1.00 1.00

ask_prof 13 3 1.00 1.00 1.00

 240 60 0.91 0.93 0.92

 Accuracy 0.93

*In bold type the intents partially or totally not recognised correctly
.
Examples of intents correct predicted or not recognized
Example Intent predicted Intent correct Correct?

hey affirm greet NO

a cosa serve il super

nei costruttori

hinericance_constructor super NO

contatta un docente ask_prof ask_prof YES

60

Intent Confusion Matrix and Intent Prediction Confidence Distribution (IPCD)

Figure 1: IPCD for ConveRT model

61

Figure 2: Intent Confusion Matrix for ConveRT model

62

5.2.4 Some considerations
As we can see, the three models are very accurate and exceed 90% accuracy. As for the
precision metrics, recall and f1-score are also very similar, this means that the three models
can be used almost completely indifferently.

The small differences between the three (the intents are predicted correctly in some models
where in others they are not) could be due to the fact that their configurations are quite
different, especially as regards the SpaCy which uses the NER (Name Entity Recognition)
and the Italian as language (like other models), but in this case, which could be a
disadvantage because in some of the examples used in the test set containing English-
speaking words typically used in Computer Science, even in Italy and it might get confused
to predict the intent correctly.

As for BERT and ConveRT, they are also both excellent models of Intent Recognition, and
they share the use of Transformers layers and the technique of self-attention. Even if the
BERT exploits its wide vocabulary that allows it to have a broader "perspective", the
ConveRT, basing on tasks such as the Response Selector, Intent Recognition, in addition to
being leaner and faster, is the best for all the evaluation metrics, even if briefly.

As for the confidence in the histograms, it is noted that it is not very high in all three cases.
However, it must be said that the number of examples in the test set is not very large and the
sentences with typically English-speaking technical terms do not help the model to have a
high confidence value of the intents, especially in SpaCy case. But it can be seen that once
again the ConveRT is slightly better, even if the other two still have a good reputation and
could still be used as valid substitutes.

In below table you can see a resume of results:
Model #train #test precision recall F1 score accuracy

SpaCy 240 60 0.88 0.92 0.89 0.92

Bert 240 60 0.89 0.92 0.90 0.92

ConveRT 240 60 0.91 0.93 0.92 0.93

5.3 The Conversation Evaluation
To test the entire model, so the test stories, RASA offer also this command [47]:
rasa test --config [config file] --cross-validation --runs [num] --

folds [num] --out [output diriectory]

With this configuration rasa uses cross-validation [52] that is a technique to estimate the
metrics of predictions accurately. Train set and test set change for the value of folds written
in command. The goal of the cross-validation is to test the model’s ability to predict new data

that was not used in estimating it, in order to see if there are present over-fitting or selection
bias problems and generalize a dataset more than possible.

63

Figure 1: K-cross validation division of dataset in train and test set, from [52]

The test stories, in total 174 (considering all combinations of possible dialogues using
checkpoints), saved in tests/test_stories.yml are written as normal stories in Rasa,
the only difference is the user parameters, that simulate a user’s input:

stories:

- story: stories1

steps:

- user: |

hello

intent: greet

- action: utter_greet

The results of evaluation are saved in different files, including the intent evaluation files (see
5.2):

● failed_test_stories.yml: contains the stories predict incorrectly
● story_confusion_matrix.png: contains the confusion matrix with the actions

predicted
● story_report.json: contains a report contains recall, f1-score, precision for

every action
● Also offer:

o END_TO_END level to analyse the accuracy of stories/conversations (the
percentage of stories predicted correctly)

o ACTION level to analyse the accuracy of actions, single turns in conversation (the
percentage of actions predicted correctly)

o CV (folds) level to analyse the train and test accuracy of intent predictions

64

5.3.1 SPACY Model Evaluation
The result of SpaCy model for Action Accuracy (Stories Evaluation) are:

Value of metrics
Evaluation Results on END-TO-END level (stories predicted)
 Correct: 167 / 174

 Accuracy: 0.960

Evaluation Results on ACTION level (action predicted of every part of stories)
 Correct: 915 / 921
 F1-Score: 0.993

 Precision: 0.994

 Accuracy: 0.994

Cross Validation evaluation for every Intent in stories (number of folds = 6):
 Train Accuracy: 1.000
 Train F1-score: 1.000

 Train Precision: 1.000

 Test Accuracy: 0.925

 Test F1-score: 0.901

 Test Precision: 0.886

65

Action Confusion Matrix and Intent Prediction Confidence Distribution (IPCD)

Figure 1: IPCD of Spacy model according test stories using cross validation

66

Figure 2: Actions Confusion Matrix of SpaCy model

67

5.3.2 BERT Model Evaluation
The result of BERT model for Action Accuracy (Stories Evaluation) are:

Value of metrics
Evaluation Results on END-TO-END level (stories predicted)
 Correct: 170 / 174
 Accuracy: 0.977

Evaluation Results on ACTION level (action predicted of every part of stories)
 F1-Score: 0.997
 Precision: 0.998

 Accuracy: 0.997

Cross Validation evaluation for every Intent in stories (number of folds = 6):
 Train Accuracy: 1.000

 Train F1-score: 1.000

 Train Precision: 1.000

 Test Accuracy: 0.992

 Test F1-score: 0.989

 Test Precision: 0.988

68

Action Confusion Matrix and Intent Prediction Confidence Distribution (IPCD)

Figure 1: IPCD of BERT model according test stories using cross validation

69

Figure 2: Actions Confusion Matrix of BERT model

70

5.3.3 ConveRT Model Evaluation
The result of ConveRT model for Action Accuracy (Stories Evaluation) are this:

Value of metrics
Evaluation Results on END-TO-END level (stories predicted)
 Correct: 174 / 174
 Accuracy: 1.000

Evaluation Results on ACTION level (action predicted of every part of stories)
 Correct: 921 / 921

 F1-Score: 1.000

 Precision: 1.000

 Accuracy: 1.000

Cross Validation evaluation for every Intent in stories (number of folds = 6)
 Train Accuracy: 1.000

 Train F1-score: 1.000

 Train Precision: 1.000

 Test Accuracy: 0.983

 Test F1-score: 0.981

 Test Precision: 0.982

71

Action Confusion Matrix and Intent Prediction Confidence Distribution (IPCD)

Figure 1: IPCD of ConveRT model according test stories using cross validation

72

Figure 2: Actions Confusion Matrix of ConveRT model

5.3.4 Some considerations
As for the analysis of the testing stories, we can see how once again the three models are very
accurate at the END-TO-END level and practically perfect in the case of the ConveRT. In
this level, the various test conversations are analysed, with all the possible combinations in
case there are branches due to the influence of a user response (for instances if a Question
Answer is YES or NO), and it is evaluated if the model is in able to predict the next action to
be done by the virtual assistant correctly. As we have seen in the case of the NLU Intent
analysis, ConveRT was optimised also to solve tasks of this kind and for this reason it is

73

practically perfect. However, it must be said that the number of tests is not that high and
therefore it is assumed that a significant increase in the data or arguments in the dataset could
lead to a presumably lower accuracy value, albeit slightly.

This also applies to the ACTION level where the number of actions are analysed
individually, without considering the stories as a whole, which therefore has a more detailed
perspective of the analysis.

As regards the evaluation of the Intents, already analyses previously with the division of the
NLU file into a fraction 80% train – 20% test, we can notice that using Cross-Validation
technique (with number of folds = 6) on the whole set and with a higher number of data to be
tested, the confidence value is significantly improved in all three cases.

However, we can say that in general the three models all seem very valid also at the level of
stories testing and therefore, as the first level of Intent Recognition analysis had already
announced, they can all be used in an almost completely indifferent way.

In below table you can see a resume of results for END-TO-END and ACTION level:

Model #Conversation #Action

%

Correct

conversation

Precision
F1

score
Accuracy

SpaCy 174 921 0.960 0.994 0.993 0.994

BERT 174 921 0.977 0.998 0.997 0.997

ConveRT 174 921 1.000 1.000 1.000 1.000

In below table you can see a resume of results for INTENT with CV(n=6) level:

Model Test precision Test F1 score Test accuracy

SpaCy 0.886 0.901 0.925

BERT 0.998 0.989 0.992

ConveRT 0.982 0.988 0.983

74

6 Conclusions

6.1 Final considerations
After analysing the various models, we can then draw the necessary conclusions. As we have
seen, using virtual assistants in education can offer numerous advantages:

● allow students to help in the learning process, also extending the possibility to help
those who cannot afford to physically go to the school / university

● offer teachers support to students' requests in order to better manage their work and
therefore offer a richer and broader offer

● then provide a set of answers to the students' frequent questions while guaranteeing
the possibility of being able to discuss also with the teachers in person, always
through the online communication channels in order to have more detailed feedback

So the advantages are available to both students and teachers, but always with a view to using
the virtual assistant as an additional support to teaching and never as a substitute.

We have also seen that there are various frameworks that allow you to create these edu-bots
in a fairly simple way. RASA was chosen, being one of the most used, very complete and
open source and which allows the connection with the most popular communication channels
such as Slack, and with its intuitive and clear configuration, it has allowed to create this
educational assistant prototype for the "Programmazione ad Oggetti" course for the topic of
Inheritance. Certainly, as mentioned previously, it will be possible to increase the training
and testing data in the future as well as the topics to which the bot can offer an answer. It also
allows the “Human Handoff”, the possibility for a student to contact a teacher and then be

able to speak in "first person" without the help of an Artificial Intelligence "brain". It also
guarantees learning that can evolve over time thanks to RASA X, a broader version of
RASA, which, thanks to Interactive Learning, offers the possibility of adding data taken from
real conversations between virtual assistant and student or correcting wrong predictions.

Finally, three prediction models were analysed:

● SpaCy: exploiting the NER and allowing a wide range of other tasks such as Part-of-
speech tagging, as well as allowing the support the Italian language, it is a valid
prediction model both in terms of Entity Recognition and Stories Accuracy

● BERT: allows a wider range of vocabularies, same including also the Italian
language, various versions for different tasks, including Question Answering, and the
management of even large data using the encoders and decoders formed by various
layers of Trasformers, a library widely used in Machine Learning especially for the
tasks concerning the management of text, it is also excellent for this as a model of the
Educational Assistant

75

● ConveRT: given its compactness, speed in learning and which was created to
optimize i.e. Response Selector or Intent Recognition tasks used in our case, it is the
best, even if slightly, in all the analysed metrics

This research thesis, also given the high results obtained from the various tests, and the
Chatbot implemented seems an excellent starting point to one day be used in real
environments such as schools or universities. Certainly further improvements and research
are possible such as:

● adding data to the dataset regarding other object-oriented programming topics,
teaching in PO course at the Polytechnic of Turin, and testing them with a larger
amount of data to have more accurate evaluation metrics

● add data also for other courses in order to have a more generic Chatbot
● implement other predictive models, for example more geared towards modelling

courses delivered in English rather than Italian
● update the database used for student requests in order to manage request of different

courses (based second point of improvement)

Therefore it can be concluded that using a virtual bot in schools and universities can be very
interesting and educational both for students, who "having fun" can ask questions and get
immediate answers, and for teachers who allow a more detailed study of the requests of the
students and therefore also create more specific paths based on the needs of their students.
All this can be created using powerful frameworks like RASA, communication channels like
Slack, and pre-trained models like SpaCy, BERT or ConveRT, and also a pinch of passion
that must never be lacking, especially in the educational field.

……

76

77

References

[1] Cairone Fiorentino. Educational PO Bot.
URL: https://github.com/caironefiorentino97/TESI_POLI_POBOT
(cit. on page 8)

[2] Wikipedia. Virtual Assistant (en).
URL: https://en.wikipedia.org/wiki/Virtual_assistant (cit. on
page 9)

[3] Mobinius Editor. How is AI advantageous as a Smart Assistant?. July 6, 2020.

URL: https://www.mobinius.com/blogs/advantages-of-ai-as-

smart-assistant (cit. on page 9)
[4] Sachin Waikar (Stanford Engineering). How an AI-based “Super Teaching Assistant”

could revolutionize learning. August 10, 2020.
URL: https://engineering.stanford.edu/magazine/article/how-

ai-based-super-teaching-assistant-could-revolutionize-

learning (cit. on page 10)
[5] Dyllan Furness (digitaltrends). A.I. teaching assistants could help fill the gaps created by

virtual classrooms. November 10, 2020.
URL: https://www.digitaltrends.com/computing/how-ai-is-

changing-education/ (cit. on page 11)
[6] Wikipedia. Slack.

URL: https://it.wikipedia.org/wiki/Slack (cit. on page 13)
[7] Innovate Yourself. SLACK CHANNEL | EASY STEPS 2 CONNECT YOUR RASA

CHATBOT TO SLACK. November 3, 2020.
URL: https://innovationyourself.com/connect-your-rasa-

chatbot-to-slack-channel/ (cit. on page 13)
[8] Rasa Technologies Inc. RASA Open Source.

URL: https://rasa.com/open-source/ (cit. on page 16)
[9] Rasa Technologies Inc. RASA NLU.

URL: https://rasa.com/solutions/open-source-nlu-nlp/ (cit. on
pages 16, 17)

[10] Rasa Technologies Inc. RASA contextual conversation.
URL: https://rasa.com/docs/rasa/contextual-conversations/
(cit. on pages 16, 17)

[11] Rasa Technologies Inc. RASA Interagrations.
URL: https://rasa.com/docs/rasa/messaging-and-voice-

channels/ (cit. on page 16)
[12] Rasa Technologies Inc. RASA Interagrations on Slack.

URL: https://rasa.com/docs/rasa/connectors/slack (cit. on page
17)

https://github.com/caironefiorentino97/TESI_POLI_POBOT
https://en.wikipedia.org/wiki/Virtual_assistant
https://www.mobinius.com/blogs/advantages-of-ai-as-smart-assistant
https://www.mobinius.com/blogs/advantages-of-ai-as-smart-assistant
https://engineering.stanford.edu/magazine/article/how-ai-based-super-teaching-assistant-could-revolutionize-learning
https://engineering.stanford.edu/magazine/article/how-ai-based-super-teaching-assistant-could-revolutionize-learning
https://engineering.stanford.edu/magazine/article/how-ai-based-super-teaching-assistant-could-revolutionize-learning
https://www.digitaltrends.com/computing/how-ai-is-changing-education/
https://www.digitaltrends.com/computing/how-ai-is-changing-education/
https://it.wikipedia.org/wiki/Slack
https://innovationyourself.com/connect-your-rasa-chatbot-to-slack-channel/
https://innovationyourself.com/connect-your-rasa-chatbot-to-slack-channel/
https://rasa.com/open-source/
https://rasa.com/solutions/open-source-nlu-nlp/
https://rasa.com/docs/rasa/contextual-conversations/
https://rasa.com/docs/rasa/messaging-and-voice-channels/
https://rasa.com/docs/rasa/messaging-and-voice-channels/
https://rasa.com/docs/rasa/connectors/slack

78

[13] Rasa Tecnologies Inc. RASA Connecting to Messaging and Voice Channels.
URL: https://rasa.com/docs/rasa/messaging-and-voice-

channels/#testing-channels-on-your-local- machine (cit. on page
19)

[14] Mohammad Shahil. How to create Chatbot using RASA. July 22, 2020.
URL: https://medium.com/voice-tech-podcast/how-to-create-

chatbot-using-rasa-82954e141ae7 (cit. on page 22)
[15] Andrea Mannini. Anaconda.

URL: http://www.andreaminini.com/datascience/anaconda/ (cit. on
page 22)

[16] Rasa Technologies Inc. RASA Components.
URL: https://rasa.com/docs/rasa/components (cit. on page 22)

[17] Rasa Technologies Inc. RASA NLU.
URL: https://rasa.com/docs/rasa/nlu-training-data/ (cit. on page
22)

[18] Rasa Technologies Inc. RASA Stories.

URL: https://rasa.com/docs/rasa/stories/ (cit. on pages 22, 23, 25)
[19] Rasa Technologies Inc. RASA Rules.

URL: https://rasa.com/docs/rasa/rules/ (cit. on page 22)
[20] Rasa Technologies Inc. RASA Domains.

URL: https://rasa.com/docs/rasa/domain/ (cit. on pages 22, 25, 28, 29)
[21] Rasa Technologies Inc. Rasa Events.

 URL: https://rasa.com/docs/action-server/events (cit. on page 23)
[22] Rasa Technologies Inc. Rasa Forms.

URL: https://rasa.com/docs/rasa/forms/ (cit. on page 24)
[23] Rasa Technologies Inc. Rasa Model Configurations.

URL: https://rasa.com/docs/rasa/model-configuration/ (cit. on
page 25)

[24] Rasa Technologies Inc. Rasa Policies.
URL: https://rasa.com/docs/rasa/policies (cit. on page 26)

[25] Rasa Technologies Inc. Rasa Actions.
 URL: https://rasa.com/docs/rasa/actions/ (cit. on page 27)

[26] Rasa Technologies Inc. Rasa Custom Actions.
URL: https://rasa.com/docs/rasa/custom-actions (cit. on page 27)

[27] Rasa Technologies Inc. Rasa Tracker.
URL: https://rasa.com/docs/action-server/sdk-tracker (cit. on
pages 28, 29)

[28] Rasa Technologies Inc. Rasa run actions.
URL: https://rasa.com/docs/action-server/running-action-

server/ (cit. on page 28)
[29] Rasa Technologies Inc. Rasa Default Actions.

URL: https://rasa.com/docs/rasa/default-actions (cit. on page 28)

https://rasa.com/docs/rasa/messaging-and-voice-channels/#testing-channels-on-your-local-%20machine
https://rasa.com/docs/rasa/messaging-and-voice-channels/#testing-channels-on-your-local-%20machine
https://shahilansari.medium.com/?source=post_page-----82954e141ae7--------------------------------
https://medium.com/voice-tech-podcast/how-to-create-chatbot-using-rasa-82954e141ae7
https://medium.com/voice-tech-podcast/how-to-create-chatbot-using-rasa-82954e141ae7
http://www.andreaminini.com/datascience/anaconda/
https://rasa.com/docs/rasa/components
https://rasa.com/docs/rasa/nlu-training-data/
https://rasa.com/docs/rasa/stories/
https://rasa.com/docs/rasa/rules/
https://rasa.com/docs/rasa/domain/
https://rasa.com/docs/action-server/events
https://rasa.com/docs/rasa/forms/
https://rasa.com/docs/rasa/model-configuration/
https://rasa.com/docs/rasa/policies
https://rasa.com/docs/rasa/actions/
https://rasa.com/docs/rasa/custom-actions
https://rasa.com/docs/action-server/sdk-tracker
https://rasa.com/docs/action-server/running-action-server/
https://rasa.com/docs/action-server/running-action-server/
https://rasa.com/docs/rasa/default-actions

79

[30] Rasa Technologies Inc. Rasa Dispatcher.
URL: https://rasa.com/docs/action-server/sdk-dispatcher/ (cit.
on page 29)

[31] Rasa Technologies Inc. Introduction to Rasa X.
URL: https://rasa.com/docs/rasa-x/ (cit. on pages 29, 30)

[32] Rasa Technologies Inc. Rasa X.
URL: https://rasa.com/rasa-x/ (cit. on page 30)

[33] Rasa Technologies Inc. Rasa X Installation Guide.
URL: https://rasa.com/docs/rasa-x/installation-and-

setup/installation-guide (cit. on page 30)
[34] Rasa Technologies Inc. Rasa X Local Mode Installation.

URL: https://rasa.com/docs/rasa-x/installation-and-

setup/install/local-mode (cit. on page 30)
[35] Rasa Technologies Inc. RASA X Share your Assistant.

URL: https://rasa.com/docs/rasa-x/user-guide/share-assistant (cit.
on page 31)

[36] Wikipedia. Python (en).
URL: https://en.wikipedia.org/wiki/Python_(programming_language)
(cit. on page 35)

[37] Wikipedia. Python (it).
URL: https://it.wikipedia.org/wiki/Python (cit. on page 35)

[38] Sqlite org. SQLite Home Page.
URL: https://www.sqlite.org/index.html (cit. on page 36)

[39] Sqlite org. About SQLite.
URL: https://www.sqlite.org/about.html (cit. on page 36)

[40] Sqlite org. SQLite Features.
URL: https://www.sqlite.org/features.html (cit. on page 36)

[41] Docs python. sqlite3.
URL: https://docs.python.org/3/library/sqlite3.html (cit. on
page 36)

[42] Softeng Polito. Corso di Programmazione ad Oggetti.
URL: https://softeng.polito.it/courses/09CBI/ (cit. on page 38)

[43] Wikipedia. SpaCy (en).
URL: https://en.wikipedia.org/wiki/SpaCy (cit. on page 40)

[44] Ranko Mosic (Medium.com). Google BERT – Pre Training and Fine Tuning for NLP
Tasks. November 5, 2018.
URL: https://ranko-mosic.medium.com/googles-bert-nlp-

5b2bb1236d78 (cit. on page 41, 42, 43)
[45] Hugging Face. dbmz/bert-base-italian-xxl-uncased.

URL: https://huggingface.co/dbmdz/bert-base-italian-xxl-

uncased (cit. on page 43)

https://rasa.com/docs/action-server/sdk-dispatcher/
https://rasa.com/docs/rasa-x/
https://rasa.com/rasa-x/
https://rasa.com/docs/rasa-x/installation-and-setup/installation-guide
https://rasa.com/docs/rasa-x/installation-and-setup/installation-guide
https://rasa.com/docs/rasa-x/installation-and-setup/install/local-mode
https://rasa.com/docs/rasa-x/installation-and-setup/install/local-mode
https://rasa.com/docs/rasa-x/user-guide/share-assistant
https://en.wikipedia.org/wiki/Python_(programming_language)
https://it.wikipedia.org/wiki/Python
https://www.sqlite.org/index.html
https://www.sqlite.org/about.html
https://www.sqlite.org/features.html
https://docs.python.org/3/library/sqlite3.html
https://softeng.polito.it/courses/09CBI/
https://en.wikipedia.org/wiki/SpaCy
https://ranko-mosic.medium.com/googles-bert-nlp-5b2bb1236d78
https://ranko-mosic.medium.com/googles-bert-nlp-5b2bb1236d78
https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased
https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased

80

[46] Matthew Henderson, Iñigo Casanueva, Nikola Mršić, Pei-Hao Su, Tsung-Hsien Wen and
Ivan Vulić. ConveRT: Efficient and Accurate Conversational Representations from
Transformers. April 29, 2020.
 URL: https://arxiv.org/pdf/1911.03688v2.pdf (cit. on pages 44, 45)

[47] RASA Technologies Inc. Rasa Testing.
URL: https://rasa.com/docs/rasa/testing-your-assistant/ (cit.
on pages 49, 50, 62)

[48] Wikipedia. Precision and Recall (en).
URL: https://en.wikipedia.org/wiki/Precision_and_recall (cit.
on page 49)

[49] Wikipedia. F-Score (en).
 URL: https://en.wikipedia.org/wiki/F-score (cit. on page 49)

[50] Wikipedia. Confusion matrix (en).
URL: https://en.wikipedia.org/wiki/Confusion_matrix (cit. on
page 49)

[51] developers.google.com (Machine Learning Crash Course). Classification: Accuracy.

URL: https://developers.google.com/machine-learning/crash-

course/classification/accuracy (cit. on page 49)
[52] Wikipedia. Cross validation (en).

URL: https://en.wikipedia.org/wiki/Cross-

validation_(statistics) (cit. on pages 62, 63)

https://arxiv.org/pdf/1911.03688v2.pdf
https://rasa.com/docs/rasa/testing-your-assistant/
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F-score
https://en.wikipedia.org/wiki/Confusion_matrix
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)

