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Summary 
The thesis wants to suggest some solutions about the problems of remote communication in 
schools and universities, due also to the COVID-19 pandemic, thanks to the creation of a real 
time assistant that can answer the questions of the students and assist the teachers on their 
job. 

I did research and created an educational bot to answer the students’ questions in real time 

about PO course (“Programmazioni ad Oggetti” of POLITECNICO OF TURIN), using a 

framework called RASA Open Source and his evolution: RASA X, doing a linguistic 
analysis of dataset, composed by some real questions and answers related of arguments of 
Italian course of PO.  

The Chatbot, also, offers a “Human Handoff” service, which allows the student to contact the 

teacher that can answer directly the questions proposed. All is managed through Slack which 
is one of the university communication channels most used by students and professors to 
communicate remotely. 

After the creation of the Chatbot, an accurate analysis was carried out and I compared various 
NLP (Natural Language Programming) pretrained models: BERT, SpaCy and ConveRT used 
to train edu-bot in learning process. 
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1. Introduction 
 
1.1 The remote communication and the school 
Today technological remote communication using smartphones, laptops and tablets, caused 
also by the ongoing COVID-19 pandemic, are enabling a new transition in the educational 
world that uses different communication channels and different modes of interaction. In both 
schools and universities, students and professors could not have no way of communicating 
"face to face" in the same room, as they usually do, and this leads to problems for both sides: 

● Students very often have several questions to ask their teachers and would like they 
answers as fast as possible 

● Professors have to answer students questions but, due to the number of messages/ 
emails they receive, they often fail to meet all the requests by solving students doubts 
even many days after or even not responding at all 

This thesis, wants to try to solve these problems by introducing a bot in few known apps, as 
Slack, that allows you to answer students’ questions/doubts quickly (within a few seconds) 

and also facilitate the work of professors, who have fewer direct messages (eg. through the 
institutional email) in order to: 

● answer the questions proposed by the students by summarizing the content 
requested through a complete answer 

● offer a “Human Handoff” service, which allows the student to contact the teacher if 
the bot has not answered the student's request in an exhaustive manner 

● allowing everything through a communication channel used by the university by 
both students and professors as Slack 

The thesis is composed to 6 chapters (including “Introduction” and “Conclusion”): 

● in “AI Assistants” chapter will we presented some general consideration about the AI 
Assistants and their use in educational world 

● in “Background” chapter will show the technologies used to create the educational 
Chatbot, i.e. RASA Open Source framework, programming language (Python), … 

● in “Edu-Bot implementation” chapter will present the educational bot implemented, 
including the models used and it functionalities 

● in “Evaluation” will analyse the three different pre-trained models (SpaCy, BERT, 
ConveRT) used in learning process 

The source code and dataset of the thesis can be found on the following page [1]. 
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2. AI Assistants 
 

2.1 What is Virtual Assistant  
Virtual Assistant [2] or Artificial Intelligence (AI) Assistant is a software agent that can 
perform tasks or services for an individual based on commands or questions. Another term, 
usually used, is “Chatbot” and often refers to online chats. Online chat programs are used for 

entertainment, but in this period it could be used for instance in the schools to simulate a 
professors-students communications. So, AI Assistant can ask users questions, via text or 
voice, control automation devices or play music or send emails. 
 
As of 2017, the virtual assistants capabilities and usage are expanding rapidly, with new 
products entering the market as Amazon Alexa or Cortana of Microsoft, but first experiments 
decade just in XX centuries. 
 
Virtual assistant work via: 

● Text: online chat, SMS, Text, e-mail or other’s text-based communication channels 
● Voice: an example, Amazon Alexa 
● By taking and/or upload images 
● Multiple methods of previous, as Google Assistant 

 
Virtual Assistant is based on NLP (Natural Language Processing) to match  i.e. user text, 
voice input and execute commands or answer questions. It is based on Machine Learning 
techniques, for instance question-answer pre-trained models, or image recognition. 
 
 

2.2 The advantages of AI Assistant  
Today, the increase in usage of smartphones, laptops, or something else, has made people 
smarter than in the past. For this reason it is possible to use AI technologies that can help us 
in a few fields of our life like school, job, entertainment. 

As said in previous paragraph, nowadays were created some AI Assistant that in few time 
have become popular and practically used to everyone: i.e. Siri, Amazon Alexa, Google 
Assistant, Cortana that try to work like human personal assistant using Machine Learning. 

So, we can find these advantages [3]: 

● AI Assistant can offer a lot of services as question-answering, send emails, make a 
to-do list, make phone calls, set a reminder or play music 

● Less human efforts: you do no need to spend money on its salary, because, usually, 
is completely free 

https://en.wikipedia.org/wiki/Software_agent
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● More productivity: Assistants are faster than humans and can work twice the speed 
of a physical person and can give more and efficient output. Also, I want add that is 
completely available 24/7 

● Flexible work: it is adaptable to human needs and commands. Usually is used a voice 
modulation of assistant to simulate a human voice and have the suggestion to talk (or 
text to) with a real person 

● Accuracy: smart AI Assistants is often more accurate and in the future will be more 
and more, I want add, thanks improvements of technologies and new Machine 
Learning methods 

● Faster Approach: if you have a good internet connections, the Assistant do 
everything for you at an instance 

● Optimize workflow: AI Assistant is also used in industries and business companies 
to optimize the work. In my opinion it can used in the schools or university to 
improve the communication and help students and professors 

● Mobility of device: you can used AI assistant in device as you prefer like 
smartphones or laptops 

 
 

2.3 AI Assistant in Schools and Universities 
AI Assistant, as I wrote, can be used in the educational world. This approach, in this period, 
also due to COVID-19 pandemic, could be used to help the teachers in their work, answering 
the principal students' questions about one or more arguments, sending emails, and helping in 
the administration. So, now, I want to talk about two examples of educational bot. 

First I wanted to analyse the report of Sachin Waikar [4] that presents the research of Chris 
Piech, an assistant professor of computer science at Stanford, and other experts in 
reinforcement learning, human interaction, pedagogy and other areas, about the educational 
system. 
Some part of this research of Stanford cite: 

“According to U.N. estimates, about 69 million teachers will be needed to achieve 2030 
sustainable educational goal. Today, more than 260 million children and youth do not attend 
school […]. The online educational tools can help, the lack of resources is particularly 

challenging for open-ended tasks […]. We need to make roles teachers play easier – 
especially understanding how to help students work through open-ended tasks.[…]” 
 
The team propose an AI-based engine that “understand students” that could have a positive 

impact and these include, as Piech suggests, expanding the impact of teachers and taking the 
role of a one-on-one tutor. This “Super Teaching Assistant” could provide volunteer teachers 

automated, detailed reports on what exactly students want, and help the teachers to 
understand their students and deliver a better education. Also, this system would enable 
teachers to spend less time on grading and more effort on teaching. 
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In their first focus, the Assistant helped students learn scientific methods and coding. As 
Piech notices:  

“[…] There are great online tools that enable to practice experimentation and see results. 
But there’s no tool to look at your process of learning experimental methods, assessing your 

understanding, and giving you feedback […]”. 

Finally, the Stanford research want to suggest: 

[…] the system should be adapted to diverse learning needs and contexts, and can help train 
new teachers, multiplying its effects and lowering the barrier of creating scaled human-
centred education. […] 

 

Secondly, I want to report a research by Dyllan Furness [5] that analyses an AI teacher 
assistant created and used in a class of Georgia Institute of Technology. The Chabot answers 
the questions, teaches and helps the students to learn. Goel said in the interview: 

“[…] We thought that if an A.I. TA would automatically answer routine questions that 
typically have crisp answers, then the (human) teaching staff could engage the students on 
the more open-ended questions […]” 

Some part of this interview of Digital Trends: 

“A.I. is quickly integrating into every aspect of our lives […], will alter both the face and 

function of education. […] A student’s engagement with A.I. will only increase as he/she 

graduates through the school system. Educational A.I. toys will be replaced by tutors whose 
job it will be to identify subjects of weakness and facilitate additional training […]” 

“Systems like Wolfram Alpha can already answer complex math equation and queries in 

language that’s informative and accessible.[…] These digital learning partners are meant to 
support teachers rather than replace them.” 

This system is not designed to replace humans, as Thilo Michael said:  

“[…] the system is able to answer pragmatic questions about the courses and majors 

available, but is not able to answer questions on a broader level. I  think the system could 
very well be used in combination with counselling to have the best of both worlds. […]” 

So, with this two articles, I want to resume some very useful advantages, adding at the 
previous describe in 2.2 paragraph, of use of AI Assistant in the education world: 

● We can improve the teaching, help teachers to graduate, divide the effort, adapt the 
learning based on needed and context, understand the students request in better way 

● Try to take the possibility to learn at all people, also if they do not go in the school 
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● Help students in learning and teach some helpful methods of study in the different 
subjects such as scientific methods or coding … 

● … but without deleted the “human teacher variable” that is fundamental to give 
feedbacks, train the bot and help students to understand the concept 

  



 

13 
 

3. Background 
 

3.1 Slack  
For this project, Slack [6] was chosen as bot application channels. It is one of the business 
collaboration tools used to send instant messages to team members. It was developed by 
Steward Butterfield in  2013. Today is one of the most popular instant messaging sites with 
millions of daily active users. 
Slack can be used by all iOS, Android, Windows devices (pc, smartphone or tablet) as an 
application or as a web browser page. 
 
One of its functions is the ability to organize team communication through specific channels 
that can be accessible to the whole team or just to some members. It is also possible to 
communicate with the team through private individual chats or chats with two or more 
members. Another feature of Slack is the possibility to create some applications used in the 
same slack channel. The next paragraph will describe the Chabot creation on slack channel, 
used to answer users, in our case the students, questions. 
 
3.1.1  Slack Bot App  
Now let’s see how to create the Chabot in Slack [7]: 
 
Step 1: 
Go to https://api.slack.com/apps, click on “Create New App” as shown below: 

 
 

https://www.youtube.com/redirect?redir_token=QUFFLUhqbkJlUEFQem9xN1l2YlRpT285WjllcHlBSHhrQXxBQ3Jtc0trQ1JNdmZUUkVROElhaUhIWE5ZU1JKNUpqSTdmQ19PTTBYa0c0a2dUVjVKeFFIZld1ZWlUM1NuS3Jud05iVHdTM2hha3U5NFFXYk9qLTl1R3MxMXVEalIyd24wbGdKZVp1b2hRQ3FhdjNDUlctMW9PYw%3D%3D&event=video_description&v=2Qu4LCvB4bs&q=https%3A%2F%2Fapi.slack.com%2Fapps
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Step 2: 
Choose an App name and the Slack Workspace where the bot will use: 

 
Step 3: 
First of all in “Oauth&Permission” section, below "Scopes” choose the Bot Token Scopes, 
and User Token Scopes that bot will use to work. The scopes govern capabilities and 
permissions of bot and users and tokens support them. 
Available scopes are on following page: https://api.slack.com/scopes

 

https://api.slack.com/scopes
https://api.slack.com/scopes
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Step 4: 
After the choose of scopes, click on the “Install App on Workspace” and choose the 

channel: 
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Step 5: 
After the successful connection of the channel you will get the Oauth Token as shown here: 

 

The Bot Token is important for the bot to manage the connection on the app and it must be 
secret and start with xoxb-… . These tokens will be saved, for instance as environment 
variables on the server, where the project is running. 

3.2 RASA Open Source  
Rasa Open Source [8] is a powerful framework that supplies the building to creating virtual 
assistants (bot). It is used to automate human-to-computer interaction anywhere from 
websites to social media platforms. It performs three principal functions: 

● Natural Language Understanding [9]: it provides an open source natural language 
processing to turn messages from your users, in our case students, into intents and 
entities that assistants can understand in a better way 

● Dialogue Management [10]: it manages the contextual conversation analysing step 
by step the dialogues 

● Integrations [11]: it provides many built-in connectors to connect to common   
messaging and voice channels, such as Slack, Telegram, Discord 

Rasa Open Source is licensed under the Apache 2.0 license, and the full code is available on 
this page:  https://github.com/RasaHQ/rasa. 

https://github.com/RasaHQ/rasa
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3.2.1 Natural Language Understanding  
NLU [9] (Natural Language Understanding), a subset of NLP (Natural Language Processing), 
classifies the text intent based on the context and content of the message. NLU goes beyond 
converting text to its semantic parts and interprets the message of the user. 

Rasa Open Source is based on lower-level machine learning libraries like TensorFlow and 
SpaCy and provides NLP software that is approachable and as customizable as you need. It 
gets up and running fast with easy to use default configurations, or swap out custom 
components and fine-tune hyper parameters to get the best possible performance for the 
dataset. 

Advantage of Rasa in NLU are: 

● Being open source, it is possible to see the source code, modify the components, and 
understand why your models behave the way they do 

● Open Source NLP offers the most flexible solution. It is possible to plug in personal 
pre-trained models, build components, tune models with precision based on dataset 

● It works with the principal pre-trained models like BERT, SpaCy, ConveRT 
● Support multiple intents in a single message and can define hierarchical entities 
● It is possible to test, in a simple way, the data using examples of conversations 
● It supports some pre-built starter packs that can help developers in development of 

bot 

3.2.2 Dialogue Management  
To create a context-aware conversational assistant, the important thing is to define how the 
conversation history affects the next response. 

The principal tasks to create it are [10]: 

● Slots: are the assistant’s memory. They store pieces of information that the bot needs 
to refer to later and can direct the conversation flow based on slot_was_set 
events. There are a lot of slot type and you can see all here: 
https://rasa.com/docs/rasa/domain#slot-types 

● Stories: are the examples of conversation between user and bot. In the stories we write 
the steps of dialogues with the questions, phrases and correlates answers/actions that 
the assistant should say/do 

● Policy: ML (Machine Learning) policy can help model to predict in a better way the 
response also in unseen conversation paths, but “It is important to understand that 

using machine-learning policies does not mean letting go of control over your 
assistant” 

3.2.3 Integrations RASA on Slack  
First of all, we should go to the credentials.yml file on the root of the Rasa project 
(see paragraph 3.3). And add the following rows [12]: 

https://rasa.com/docs/rasa/domain#slot-types


 

18 
 

slack: 

  slack_token: <BOT_SLACK_TOKEN> #token bot 

  slack_channel: “A020AHLC396” #channel ID bot 

  slack_signing_secret: <SLACK_SIGNING_SECRET> # secret number 

  slack_retry_reason_header: "x-slack_retry_reason" 

  slack_retry_number_header: "x-slack-retry-num" 

  errors_ignore_retry: None  # Any error codes given by Slack included  

                             in this list will be ignored. 

For slack_token and slack_signing_secret is recommended to create two 
environment variables to not expose the tokens clearly. 

Step 1: 
In the page of your app (example: https://api.slack.com/apps/A020AHLC396 
where A020AHLC396 is the channel ID) go in the “OAuth&Permissions” and scroll down 
to Scopes. You should add, at least, the following scopes: 

● app_mentions:read 
● channels:history 
● chat:write 
● groups:history 
● im:history 
● mpim:history 
● reactions:write 

 
After “reinstall the App”, if you have changed some Scopes, in the same page copy the Bot 
User Token and replace the value in the slack_token. 
 

 
 
 

https://api.slack.com/apps/A020AHLC396%20where%20A020AHLC396
https://api.slack.com/apps/A020AHLC396%20where%20A020AHLC396
https://api.slack.com/apps/A020AHLC396%20where%20A020AHLC396
https://api.slack.com/apps/A020AHLC396%20where%20A020AHLC396
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Step 2: 
In “Basic Information” section there is the Signing Secret that will be the 
slack_signing_secret value: 

 
 
Step 3: 
Now we must configure the bot to receive/send messages. First run the bot, for example using 
rasa run on the prompt. 
 
Step 4: 
On “Event Subscriptions” sections, active Enable Events and write the Request URL in 
this format: 
<public_url>/webhooks/slack/webhook 

 

 NB: If you want to run locally the server using the localhost address, you must use ngrok   
[13] (or other tools) that retrieve a public URL for the server, because you won’t be able to 

use the localhost address. 
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Step 5: 
After that you need to Subscribe to the bot events on the same page. You will need to add 
the following events: 

● message.channels 
● message.groups 
● message.im 
● message.mpim 
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Step 6: 
Go to the “OAuth&Permission” section, below Redirect URLs, click on “Add New 
Redirect URL” and insert the same URL on Step 4. 

 
Step 7: 
If you want that your assistant manage interactive Components, go on 
“Interactivity&Shortcut”, enable Interactivity and insert the same URL on the step 4. 
 
 Remember to Save all changes in any pages to have success of changes! 
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3.3  How to create, tested and run a RASA project  
To create a Rasa project [14], first of all we need to install python=3.6+ libraries, for 
instance using Anaconda [15] that is an open source, simple and very powerful distribution 
for python and R languages. 
 
So, in Anaconda Console we can write this commands: 
 
conda create -n venv python=3.7 

conda activate venv 

pip3 install rasa 

 
After we can create initial Rasa project and install some useful components: 
 
pip3 install rasa[spacy] 

pip3 install rasa[trasformers] 

rasa init 

 
rasa init command is used to create all files that Rasa needs and train a simple example 
using simple data. 
All project must have some *.yml/*.py file that programmer have to modify to 
implement his personal virtual assistant (* can be changed with any words). One organization 
of project could be: 
 

● actions/actions_*.py: file or files code in python to create custom actions 
● configs/config_*.yml [16]: file or files that contain the configuration of 

NLU/NLP and Core models. Using the pipeline we can personalize models used to 
train the data, containing i.e. Tokenizers, Featurizers, Classifiers, ResponseSelector 
and also manage the ML rules policy. It supports all pre-trained models such as 
SpaCy, TensorFlow, BERT, ConveRT 

● data/nlu.yml [17]: examples of user utterances categorized by intent (as a topic) 
to be trained. Also it possible defined entities, structured pieces of information inside 
utterances 

● data/stories.yml [18]: contains examples of conversations between user and AI 
assistant, converted in a specific format: intents (and entities is necessary) are user 
inputs; actions are responses of bot or something customized, depending of topic 
predicted 

● data/rules.yml [19]: describe small pieces of conversations that should always 
follow the same path 

● endpoints.yml: detail for connecting to channels like Slack 
● models/*.tar.gz: models trained 
● domain.yml [20]: contain the domain of assistant: the list of intents, entities, slots, 

responses, forms and actions that bot should know about 



 

23 
 

If wanted training the data with particular configurations, run this command: 
rasa train –-config [config file] 

 

To run the server: 
rasa run 

 
To tested the stories contains in test/test_*.yml: 
rasa test --config [config file]  --cross-validation --runs [num] --

folds [num]  --out [output diriectory] 

 
To tested the intent recognition: 
rasa test  nlu --nlu {test_file}  --out {dir_out} --model {model_name} 

 

3.4  How write stories (rules)  
As written in the previous paragraph, the stories [18] (and also the rules equally) contain 
examples of conversation between AI Assistant and User. They are a type of training data 
used to train dialogue management models, and they can be used to generalize to unseen 
conversation paths. 
 

A story should be written in stories.yml file and they have a simple format. An example 
of story, take in Rasa website: 
 
stories: 

- story: name of story 

steps: 

- intent: greet  # user message with no entities 

- action: utter_ask_howcanhelp # action or response that the bot 

                           should execute 

- intent: inform  # user message with entity 

- location: "rome" 

- price: "cheap" 

- action: utter_on_it 

- action: utter_ask_cuisine 

- intent: inform 

entities: 

- cuisine: "spanish" 

- action: utter_ask_num_people 

 

Where:  

● Intent: represent the NLU domain, the topic, argument of question that user ask 
● Action: the response of Assistant or custom action (see next paragraph). Every action 

have a key (or name) that make it unique, as intent 
● Entities: particular structured pieces of information used inside user messages 

 
Stories can also describe events [21], returned often by custom actions, and are tracked 
automatically by Rasa (i.e. user messages). The problem is that the assistant's model doesn’t 
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know which events will return. Because of this in stories we should activate/deactivate form 
or setting slots explicitly: 

● Slots Events: after custom action we should add the information about slot to 
set/reset: 
- story: set/rest slot 

steps: 

# ... other story steps 

- action: my_custom_action 

- slot_was_set: 

- my_slot1: null # set slot to None (reset) 

- my_slot2: “hi” # set slot to initial text 

 
● Form Events [22]: a form, often, is used to save information of users, through slots. 

After defining the form (and slots or entities) in domain.yml: 
 
forms: 

restaurant_form: 

required_slots: 

cuisine: 

- type: from_text 

 
We can define stories that activate/deactivate it. There are three kinds of events used 
to manage forms: 

o A form action server (i.e. – action: restaurant_form) that is used 
to starting a form and resuming the form action if is already active 

o A form activation event (i.e. – active_loop: restaurant_form) to 
activate the form 

o A form deactivation event (i.e. – active_loop: null) to deactivate the 
form 

An complete example of story, take on Rasa website: 
 
- story: User interrupts the form and doesn't want to continue 

steps: 

- intent: request_restaurant 

- action: restaurant_form # start form 

- active_loop: restaurant_form # activate form 

- intent: stop 

- action: utter_ask_continue 

- intent: stop 

- action: action_deactivate_loop 

- active_loop: null # deactivate form 
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Now talking about checkpoints and OR statements [18]. 

● Checkpoints: are used to modularize and simplify training data. They can be useful 
but we do not overuse them, because they could make stories hard to understand and 
slow down training. An example take on Rasa website: 
 
story: beginning of flow 

steps: 

- intent: greet 

- action: action_ask_user_question 

- checkpoint: check_asked_question 

 

- story: handle user affirm 

steps: 

- checkpoint: check_asked_question 

- intent: affirm 

- action: action_handle_affirmation 

 
● OR statements: are used to write shorter stories or to treat multiple intents the same 

way. Also an overuse of them will slow down training. 
An example take on Rasa website: 
 
- story: 

steps: 

# ... previous steps 

- action: utter_ask_confirm 

- or: 

- intent: affirm 

- intent: thankyou 

- action: action_handle_affirmation 

 

 
3.5 Principal configuration models  
The model [20], is the “brain” of an assistant.  Thanks to it, the bot predicts the topic of a 
question, and answers, using components that work sequentially creating a pipeline that processes 
user input. 
 
The principal components [23] are: 

● Language Models: load pre-trained models that are needed in case you want to use pre-
trained word vectors in the pipeline. The principals are: 
o SpacyNLP: initialized spaCy structures. You have to specify the language model to 

use and if it will be case sensitive or not. 
o HFTrasformersNLP: use HuggingFace’s Trasformers based pre-trained language 

model, as BERT. You have to specify the model_name and the model_weights. 
● Tokenizers: split text into tokens. The principals are: 

o SpacyTokenizer 
o ConveRTTokenizer: if we use the ConveRT model 
o LanguageModelTokenizer 
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● Featurizers: they can be sparse, that return feature vectors with a lot of missing values, 
i.e. zeros, and usually take up a lot of memory, or dense, that store only value not missing 
and the position of features in the vector. The featurizers return a sequence feature 
(matrix contains a feature vector for every token in sequence) or a sentence feature 
(matrix that contains the feature vector of all utterances). 
The principals are: 
o SpacyFeaturizer 
o ConveRTFeaturizer 
o LanguageModelFeaturizer 
o CountVectorsFeaturizer: it is used for intent classification and response selections. 

create bag-of-words represent the user messages, intent and responses. All tokens 
consisting only of digits will be assigned to the same feature. 

● Intent classifiers: assign one of intents defined in the domain file to user messages 
(predict the topic of question in our case): 
o DIETClassifier (Dual Intent Entity Trasformer Classifer) is used for intent 

classification and entity extraction. The architecture is based on a transformer which 
is shared for both tasks. A CRF (Conditional Random Filed) layer tagging the top 10 
(usually) entity labels prediction using user input. It uses dot-product loss to 
maximize the similarity with the target label and minimize similarity with negative 
samples. It possible to change some hyperparameters as epochs, model_confidence 
(softmax or linear_norm), transformer_size 

● Entity Extractors: extract the entities, such a person's name or a location, from user 
input. The most used are: 
o SpacyEntityExtractor 
o DietClassifier 
o EntitySinonymMapper 

● Selectors: predict an assistant answer form a set of candidate responses included in the 
domain file. The principal used is ResponseSelector, and we can modify some 
hyperparameters as DIETClassifier to customize the model. 

 
Also we can create custom components and use them in the model to perform specific tasks if 
pre-trained models are not sufficient to have high accuracy. 
 
In the configuration models, there are also the policies that assistants use to decide which action 
to take at each step in a conversation. At every turn, each policy defined in configuration will 
predict a next action with a certain value of confidence, and the policy that predicts with the 
highest confidence decides the bot’s next action, managed if present also the policy priority. 
 
The most used Policies [24] are: 

● TED Policy: Transformer Embedded Dialogue Policy is a multi-task architecture for 
next action prediction and entity recognition. It possible configure the hyperparameters 
and manage the “nlu_fallback_actions” (if there is no actions that have confidence major 

of a certain threshold the bot not predict the action but answer wit “I don’t understand” 

or something else defined in default utterance in domain file) 
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● Memoization Policy: remember the stories from training data. It checks if the current 
conversation matches the stories in your stories file 

● Rule Policy: handles conversation parts that follow a fixed behaviour. It manages the 
rules contained in the rules file. Also here we can manage the “nlu_fallback_actions” 

 
As for the model, we can customize our policy and use it in the configuration file. 
 

3.6 How create custom actions  
When a user posts a message, the model used to predict the intent and response, will choose 
the best action [25][26] , with the highest probabilities of success, that the assistant should 
perform next. It could be a simple text response (the utter_* created in responses 
section in domain.yml) or a more complex action that can be customized creating classes 
written in Python language saved in actions directory. 
 
A custom action can run any code we want, including API calls (for instance we can use 
Slack API, for instance, to send messages in a channel or in a private chat with another user), 
manage databases, add particular events (i.e. calendar), do maths calculations. 
All custom actions should be defined in the actions section of domail.yml file. 
 
When dialogue engine predict that assistant should be execute a custom action, it will call the 
action server, with this information: 
{ 

 "next_action": "string", 

 "sender_id": "string", 

 "tracker": { 

  "conversation_id": "default", 

  "slots": {}, 

  "latest_message": {}, 

  "latest_event_time": 1537645578.314389, 

  "followup_action": "string", 

  "paused": false, 

  "events": [], 

  "latest_input_channel": "rest", 

  "active_loop": {}, 

  "latest_action": {}, 

 }, 

 "domain": { 

 "config": {}, 

 "session_config": {}, 

 "intents": [], 

 "entities": [], 

 "slots": {}, 

 "responses": {}, 

 "actions": [], 

 "forms": {}, 

 "e2e_actions": [] 

 }, 

 "version": "version" 

} 
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The tracker [27] represents a Rasa conversation tracker. Thanks it, lets you access the 
assistant’s memory and get information about past events, current state through it attributes: 

● sender_id: unique user ID talking to the assistant 
● slots: the slots list that can be filled as defined in the domains 
● latest_message: a dictionary containing the latest message attributes containing: 

intent, entities and text 
● events:  all previous events list 
● active_loop: the currently active loop name. It used to manage the form 
● latest_action_name: the last action name that the bot executed 
 

The domain [20] contains information about the “universe” in which assistants operate. In 
contains: 

● intents: intents list (the arguments or topics) used in NLU data 
● entities: the entities that can be extracted in NLU pipeline 
● slots: the assistants memory. It is used as a key-value variables with type (bool, text, 

float, …); 
● responses: the responses that assistant can use 
● forms: is a special type of action that it is used to collect information (i.e. modify a 

slot) from user 
● actions: the possible actions list, including the customized 

 
And server respond with a events and responses list: 
 
{ 

  "events": [{}], 

  "responses": [{}] 

} 

 
To run the server of Rasa actions [28], first of all we can add in endpoints.yml file the 
following lines: 
 
action_endpoint: 

  url: "{address}/webhook" 

where {address} is the address of the action server. 
After in a console, we should write this commands: 
rasa run actions 

 
3.6.1  Custom actions Class  
Every custom action classes [29] have the following format: 
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from rasa_sdk import Action, Tracker 

class MyCustomAction(Action): 

 

def name(self) -> Text: 

return "action_name" 

async def run( 

self, dispatcher,tracker:Tracker,domain:Dict[Text, Any], 

) -> List[Dict[Text, Any]]: 

… 

return [] 

 
It compose of two principal methods (but we can add others static methods if want): 

● name(): return the custom action name  
● run(dispatcher, tracker, domain): it is called when action is predicted 

and it contains the “custom” action that the assistant should do. The three parameters 
are: 
o tracker [27]: It contains attributes and methods useful for manage the state of 

current user 
o domain [20]: contains information about the domain 
o dispatcher [30]: it used to generate the responses to send back to the user. An 

instance of CollectingDispatcher contains only the method 
utter_message that is used to send the responses 

 

3.7 Rasa X: an “evolution” of RASA  
Another component used in this thesis is Rasa X [31], an improvement of the framework 
Rasa Open Source. 

Rasa X is a very powerful tool for Conversation-Driven Development (CDD). It processes, 
saves automatically all conversations about Bot and User and uses them to improve AI 
assistant and model used.  

With Rasa X it is possible to analyse the conversation and model to try to learn how users 
write and how he should be respond, improving over time. 
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Figure 1: functionalities of RASA X, from [31] 

The principal Rasa X advantages are: 

● it is a layer on top of Rasa Open Source and try to improve the model used using a 
fine-tuning approaches to build a very custom and better assistant 
In particular [32]: 
o Review conversations: sort and filters, tag important messages, get insight into 

user behaviour 
o Annotate data: label real user messages, create new flows from real 

conversations, fix incorrect predictions 
o Share & Test: shareable links to test the assistant, analyse performance, create 

robust test cases 
● it is free, closed source tool available to all developers 
● it can be deployed anywhere: train your data securely and proprietary 
● It also offers very user-friendly web pages (it appears when the Rasa X server is in 

running) 
 

3.7.1  How install Rasa X   
Rasa X can be installed in four mode [33]: 

● Local mode 
● Server Quick-Install Mode 
● Helm Chart Mode 
● Docker Compose Mode 

 
In this thesis it will describe the first mode. 
 
Local Mode Installation [34] 
If Rasa Open Source  is just installed, the installation of Rasa X is very simple. 
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1) First of all in a console we should write this command: 
pip3 install  rasa-x   --extra-index-url https://pypi.rasa.com/simple  

 
2) After in credentials.yml file we should add this line: 

rasa: 

  url: "{address}/api" 

where {address} is the address of the rasa x server. 
 
3) To run the Rasa X server, for instance we can write: 

rasa x --connector slack --config configs/config_BERT.yml 

To connect Rasa X server with Slack, for instance, using config_BERT  (model that 
uses BERT pipelines) file. 

3.7.2  Rasa X Server  
When Rasa X [35] is running, in the browser appears a web page that is useful to the 
developer  to manage the AI assistant and do the operation mentioned previously. 

The home page include a menu that contains: 
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● Talk to your bot: in this part you can talk with your assistant, test the conversation and 
analyse the story (or create) and slots. 

 
 
● Conversations: It contains the list of all conversations, with some metrics evaluation, 

between Assistant and user and we can manage it (for instance mark if an intent is 
predicted correctly or not, save or delete it, …). 
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● NLU inbox: it contains all users utterances that NLU dataset do not contain, for instance. 
It predicts the intent and if prediction is incorrect could be changed/created or message 
can be deleted. 

 
● Insight: it is useful to test the dataset of test stories contained in the test directory. 
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● Models: It manages the list of models available and we can activate one of them. 

 
 
● Training: We can manage the NLU data, stories, rules and responses, configuration and 

domain files. 
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3.8 A brief introduction of Python 
Python [36][37] is an interpreted high-level general-purpose programming language. It could 
be used to develop distributed applications, scripting and system testing. It emphasizes code 
readability with its notable use of significant indentations. Its Object Oriented approach aims 
to help programmers write clear, logical code. The first that began working on Python was 
Guido van Rossum in the 1980s. 

This language is dynamically-typed and garbage-collected, supports multiple programming 
paradigms, and a comprehensive standard library that provides tools suited to many tasks as 
Data Analytics, Databases, Machine Learning, Scientific computing, System administration 
as Threads manage. 

3.8.1 How write a class in python  
To define a class in python [37] you can use a specific instruction called class. It is 
possible to inherit multiple times, definition of attributes using initialization, and operators. 

The reflective parameter is called self by default, and it represents the pointer of the class 
object. Usually is the first parameter of every method defined in the class. 

The __init__ method represents the constructor and usually is used to define the attributes 
of class and call super class if derived from a superclass. 

Exist also other special methods associated to operators and built-in functions, i.e. __add__, 
__str__ 
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An example of class and his use is: 

class Vehicle(object): 

 def __init__(self, name, number_of_ports): 

   self.name = name 

   self.number_of_ports = number_of_ports 

 

 def name_of_vehicle(self): 

   full = f'{self.name}' 

   return full 

 

vehicle = Vehilce('Fiat', 5) 

print(persona.name_of_vehicle()) 

 

3.9  A brief introduction of SQLite  
SQLite [38][39] is a C-language library that implements a small, fast, self-contained, high-
reliability, full-featured, serverless, transactional, zero-configuration SQL database engine. 
SQLite is Open Source and one of the most used in the world. To manage the DB it is 
possible to use a graphical tools class DB Browser for SQLite to manage DB (creation, 
modification and run the principal SQL operation like SELECT). 
 
So the principal features are [40]: 

● The transaction are atomic, consistent, isolated and durable (ACID) 
● Zero-configurations: no administration needed 
● Full-featured SQL 
● A complete DB is stored in a single cross-platform disk file 
● Support terabyte-sized DB and gigabyte-sized string and blobs 
● Small code 
● Fast 
● Cross-platform 
● Open Source 

 
3.9.1 SQLite in Python  
The sqlite3 library [41] is used to manage SQLite DB in python, and is written by Gerhard 
Häring. It provides a SQL interface compliant with the DB-API 2.0 specification. 

After the import the first thing to do is create a connection with the DB. Then we must create 
a cursor that is used to move in the DB. The cursor has some methods to call the SQL of 
DDL, DML, etc. save the modification and close the connections with DB. The execute 
method returns a table that can be used to process and read value if you want directly as a list. 

A complete example, take on https://docs.python.org website: 
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import sqlite3 

con = sqlite.connect() 

cur = con.cursor() 

 

cur.execute("create table lang (name, first_appeared)") 

cur.execute("insert into lang values (?, ?)", ("C", 1972)) 

 

lang_list = [ 

  ("Fortran", 1957), 

  ("Python", 1991), 

  ("Go", 2009), 

] 

 

cur.executemany("insert into lang values (?, ?)", lang_list) 

cur.execute("select * from lang where first_appeared=:year", 

  {"year": 1972}) 

print(cur.fetchall()) 

con.close() 
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4. Edu-Bot implementation 
 

4.1 The problem  and the goals 
The initial problem, was to create a Chatbot that would help the students of some courses 
held at the Politecnico of Turin in learning their curricular contents and also in purely 
organizational management, for example knowing where are the slides of the courses, 
consequently also helping teachers in the management of requests from students who, given 
the increasing number of students enrolled at the university every year, it is increasingly 
difficult to manage them all in a reasonable time. 

A resume of the main goals, presented on Introduction section, that the AI Assistant had to 
solve were: 

● answer the questions proposed by the students by summarizing the content 
requested by the student through a complete answer 

● offer a “Human Handoff” service, which allows the student to contact the teacher if 
the bot has not answered the student's request in an exhaustive manner 

● allowing everything through a communication channel used by the university and 
students and it was decided to use Slack, which offers, among other things, the 
possibility of creating APPs that can also be a Chatbot 
 

After implementing the Chatbot, another goal of research has been to evaluate everything 
using different prediction models used in Machine Learning in the NLP: BERT, Spacy and 
ConveRT. 

 

4.2 The dataset  
During the work, we focused on one course in particular: "Programmazione ad Oggetti 
(09CBIxx)" [42]. So, in the end it was decided to create a virtual bot that would help the 
students of the PO course. 

The topics of the course are vast and run along the theoretical and practical line, through the 
study of the Java language, of object-oriented programming. Initially it was decided to create 
a virtual assistant that would be able to answer all the topics of the course both theoretical 
and practical, then in the course of work we opted to a selection of a particular topic, the 
inheritance (in addition to some questions of organizational type) in theory and in practice 
(Java programming), already vast as a topic and given that the technology used makes it very 
easy, in the future, to add new topics and therefore to expand the dataset now implemented. 
 
The dataset is a mixture of questions and answers (with the related "topics") taken from the 
Slack channels of the PO course of the year 2020, as Train Set, and 2021, as Test Set,  
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included some created specifically to try to expand the argument of inheritance as much as 
possible. 

Then I found 53 different subtopics (with 300 examples of different questions), and manage 
in standard RASA format (NLU file, stories file, rules file, domain file):  

Inheritance in general Comparable 
Override Comparator 

Polymorphism Iterator-Iterable 
Dynamic binding Observer-Observable 

Casting Lambda functions 
Downcasting Upcasting 

Class/attribute visibility Methods references 
Constructors in inheritance Instance of keyword 

The super construct “this“ construct 
The Object class “final” construct 
Abstract classes Pattern 

Interfaces Static methods 
Defaults methods Defaults methods 

 

And in addition to the questions of last year's students it included also, the organizational 
questions (e.g. where are the slides, ...), and the regards. 

All data has been meticulously analysed and manually anonymised for privacy issue, another 
much debated topic in AI Assistant and modelled as the technology of RASA wanted. 

4.3 The Technologies used 
As seen in the previous chapters, the RASA framework was used to manage the dataset, the 
prediction models, the data testing and therefore the evaluation of the different models using 
the classical Machine Learning metrics. 

In addition to offering a graphical interface (RASA X) that simplifies the management work 
even more. It also allows you to customize the actions to be done by the assistant and 
therefore allows the creation of the “Human Handoff” required by creating classes written in 

Python language. 

Slack was chosen as a communication channel, as required, due to its popularity of use, 
simplicity on creation and use. 

SQLite was also used to manage the requests of students who asked to be able to speak with 
the teachers "in first person" without the aid of the bot. 
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4.4 The AI Assistant’s architecture 
The choice of the architecture of the dataset training model is fundamental: we could define it 
as the “brain”, as well as the thinking mind of the virtual assistant. In this thesis I decided to 

compare three pre-trained models, widely used in Machine Learning NLP problems: SpaCy, 
Google-BERT and ConveRT. 

These three configurations can be used by the RASA framework, which as you may have 
understood by now, is the "core technology" used in my implementation. Furthermore, Rasa 
tries to simplify the work as much as possible, allowing the definition of a configuration file 
which, through a series of pipelines that are executed consecutively and the definition of the 
Policies, is able to predict the intents, entities and answers of bot, all in autonomous way, 
without having to write code, also speeding up the implementation work. 

4.4.1  SPACY Model  
SpaCy [43] is the first pre-trained model that I wanted analysed. It is an open-source software 
library used in Natural Language Processing (NLP) problems, written in Python languages 
and Cython. The library is published under MIT license and its principal developers are 
Matthew Honnibal and Ines Montani. 
 
Spacy is focused on providing software for production usage and support deep learning 
workflows that allow connecting statistical models by TensorFlow, PyThorch, or others 
popular Machine Learning libraries. Also its features Convolutional Neural Network 
(CNN) models for part-of-speech tagging, dependency parsing, text categorization and NER 
(Named Entity Recognition). Its tasks are available in different languages, as English, 
Italian, Spanish, and Chinese. 
 
So, Its main features are: 

● Non-destructive tokenization 
● “Alpha tokenization” support 65 languages 
● Built-in support for trainable pipeline components such as NER, Part-of-speech 

tagging 
● Support Statistical models for 17 languages, including English, Italian, … 
● Support for custom models in PyTorch, TensorFlow and other frameworks 
● State-of-the-art speed and accuracy 
● Easy model packaging, deployment and workflow management 
● Built-in visualizer for syntax and named entities 

 
In my RASA configuration I used the “it-core-news-md” model of Spacy, to support Italian 
language. I configured the hyperparameters for every part of the pipeline, for instance the 
epochs (300) of DietClassifiers and other components, the fallback threshold in the Policies, 
the model confidence of , for instance, ResponseSelector. 
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language: it 

 

pipeline: 

  - name: SpacyNLP      
    model: "it_core_news_md" 

    case_sensitive: False 

  - name: SpacyTokenizer 

    intent_tokenization_flag: False 

    intent_split_symbol: "*" 

    token_pattern: None 

  - name: SpacyFeaturizer 

    pooling: "mean" 

  - name: LexicalSyntacticFeaturizer 

  - name: CountVectorsFeaturizer 

  - name: CountVectorsFeaturizer 

    analyzer: char_wb 

    min_ngram: 1 

    max_ngram: 10 

  - name: DIETClassifier 

    epochs: 300 

    constrain_similarities: True 

    model_confidence: 'linear_norm' 

  - name: EntitySynonymMapper 

  - name: ResponseSelector 

    epochs: 300 

    constrain_similarities: True 

    model_confidence: 'linear_norm' 

 

policies: 

   - name: RulePolicy 

     core_fallback_threshold: 0.1 

     core_fallback_action_name: "action_default_fallback" 

     enable_fallback_prediction: True 

   - name: MemoizationPolicy 

   - name: TEDPolicy 

     core_fallback_threshold: 0.1 

     core_fallback_action_name: "action_default_fallback" 

     enable_fallback_prediction: True 

     max_history: 5 

     epochs: 300 

     constrain_similarities: True 

     model_confidence: 'linear_norm' 

 

4.4.2  BERT Model  
BERT (Bidirectional Encoder Representation from Transformers) [44], developed by 
Google, is a recent open source method of pre-training language representations, a general 
purpose “language understanding” model on a large text corpus (BooksCorpus and 
Wikipedia) and also is used in NLP tasks (fine-tuning). It is fast and relies on massive 
computation and generates multiple, contextual, bidirectional word representations. In 
addition proposed a new training objective: the MLM (Masked Language Model), that 
randomly masks some of the tokens from the input and predicts the original vocabulary id of 
the masked word based only on its context. 
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The basic BERT building block is the Transformer, opposed RNN (Recurrent Neural 
Network): central is the notation of self-attention, contextual co-occurrence statistics. 
 
Transformer is simpler and more parallelizable, faster than RNN, also because it use only 
matrix multiplications and simple few layers feed forward neural network with no 
recurrence and no weight sharing. 

 
Figure from [44] 
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Figure from [44] 

 
Important is the pre-training tokenization of text that is divided in three sequentially 
operations: 

● Token Embeddings: start to tokenize the text, clear and normalize it, change every 
tokens in value and transform it in vector of 768 (by default) embeddings 

● Segment Embeddings: identify every singular phrases 

● Position Embeddings: add positional to input embedding 
 

 
Figure from [44] 

 
BERT supports a lot of different models for a lot of languages, such as English or Italian and 
there are particular variants of BERT, like ALBERT, RoBERTa that can help to train better 
the tasks to study. 

In my RASA configuration I used “dbmdz/bert-base-italian-xxl-uncased” [45] model of 
BERT, to support Italian language with large vocabulary. Also I configured the 
hyperparameters for every components of pipeline, the same of SPACY configurations and 
ConveRT. 
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language: it 

 

pipeline: 

  - name: LanguageModelTokenizer 

  - name: LanguageModelFeaturizer 

    model_weights: "dbmdz/bert-base-italian-xxl-uncased" 

    model_name: "bert" 

    cache_dir: "./cache_bert" 

  - name: CountVectorsFeaturizer 

  - name: CountVectorsFeaturizer 

    analyzer: char_wb 

    min_ngram: 1 

    max_ngram: 10 

  - name: DIETClassifier 

    epochs: 300 

    constrain_similarities: True 

    model_confidence: 'linear_norm' 

  - name: EntitySynonymMapper 

  - name: ResponseSelector 

    epochs: 300 

    model_confidence: 'linear_norm' 

    constrain_similarities: True 

policies: 

   - name: RulePolicy 

     core_fallback_threshold: 0.1 

     core_fallback_action_name: "action_default_fallback" 

     enable_fallback_prediction: True 

   - name: MemoizationPolicy 

   - name: TEDPolicy 

     max_history: 5 

     core_fallback_threshold: 0.1 

     core_fallback_action_name: "action_default_fallback" 

     enable_fallback_prediction: True 

     epochs: 300 

     constrain_similarities: True 

     model_confidence: 'linear_norm' 

4.4.3  ConveRT Model  
ConveRT (Conversational Representation from Transformers) [46] is a pre-training 
framework for conversational tasks and satisfying these requirements: effective, affordable 
and quick to train. 

It is very scalable and portable: is only 59 MB in size and is significantly smaller than other 
state-of-the-art dual encoders (444MB), as BERT. Also is more compact than other sentence 
encoders, and consequently faster than its. This reduction in size and training are achieved 
through combining 8-bit embedding quantization and quantization-aware training, subword-
level parameterization, and pruned self-attention. In addition, it provides a multi-context 
variant that is also very compact (73 MB). 
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Figure from [46] 

 
As SpaCy and BERT models I configured the hyperparameters for every component of the 
pipeline. In this case ConveRT recognises the Italian languages, with the help of the RASA 
framework. 

language: it 

 

pipeline: 

  - name: ConveRTTokenizer 

  - name: LexicalSyntacticFeaturizer 

  - name: CountVectorsFeaturizer 

  - name: CountVectorsFeaturizer 

    analyzer: "char_wb" 

    min_ngram: 1 

    max_ngram: 10 

  - name: DIETClassifier 

    epochs: 300 

    constrain_similarities: True 

    model_confidence: 'linear_norm' 

  - name: EntitySynonymMapper 

  - name: ResponseSelector 

    epochs: 300 

    constrain_similarities: True 

    model_confidence: 'linear_norm' 

 

policies: 

   - name: RulePolicy 

     core_fallback_threshold: 0.1 

     core_fallback_action_name: "action_default_fallback" 

     enable_fallback_prediction: True 
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   - name: MemoizationPolicy 

   - name: TEDPolicy 

     core_fallback_threshold: 0.1 

     core_fallback_action_name: "action_default_fallback" 

     enable_fallback_prediction: True 

     max_history: 5 

     epochs: 300 

     constrain_similarities: True 

     model_confidence: 'linear_norm' 

 

4.5 The final prototype 
The final prototype of the project is able to meet all the goals initially set, that are: 

● allowing everything through a communication channel: Slack is used as a 
communication channel. The bot, created as Slack App, is an additional “user” called 

PO_BOT, inserted in the channel with name #po_bot where students and professors 
can communicate with each other. When it is mentioned it answers at student request. 
 

● answer the students questions, resuming the content, for the topics of PO 
inheritance and some organisation request: 

 
Figure 1:  Example of organisational question 
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Figure 2: Example of inheritance question (about Object class) 
 

● offer a “Human Handoff” service: when a student wants to contact a professor, the 
student asks a virtual assistant to send a message with a question to the professor. The 
professor receives in a private channel the request and the link of question and he/she 
can accept it or send it to another teacher, using the buttons included in the messages. 
An example seen in the figures below. 

Figure 3:  Example of Human Handoff request 
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Figure 4:  Message arrived at professor in private chat 

Figure 5:  Notification of acceptance in main channel 
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5. Evaluation  
 

5.1  The Evaluation metrics  
An important aspect of the goals of this thesis is the evaluation of model [47] is used to train 
the dataset. 

In this case, again using the RASA framework, I focused on evaluating the Intent 
recognition to see if the model is able to correctly recognize the topic to which it refers to 
given a question. There is also an analogue for entities, but in this project research they have 
not been used and therefore not tested accordingly. After testing the Intent recognition, I 
wanted to analyse the confidence of models, using a series of test stories that simulate 
different completed dialogues and allow you to provide entire conversations and test the 
actions. 

For this evaluation I used some classical metrics, used in Machine Learning, also in multi-
label classification: 

● Precision [48]: called positive predictive value, is the fraction of relevant instances 
(true positives) among the retrieved instances (the true and false positives). It can be 
defined also as the average probability of relevant retrieval 

● Recall [48]: called sensitivity, is the fraction of relevant instances that were retrieved 
(the true positives divide true positives with false negatives). It can be defined also as 
the average probability of complete retrieval averaged over multiple retrieval queries 

● F1-score [49]: it is calculated from the precision and recall. The formula used is: 

F1-score    
                

                
 

In multi-class classification the final score is obtained by micro-averaging (biased by 
class frequency) or macro-averaging (taking all classes as equally important) 

● Confusion matrix [50]: is a specific table that allows visualization of the 
performance of a model. Each row represent the instances in an actual class while 
each column represent the instances in a predicted class, or vice versa 

● Accuracy [51]: is defined as the fraction of number of correct predictions among the 
total number of predictions 

 

These metrics have a range of value between zero and one, and values closer to one, are  the 
better. 
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5.2 The NLU Evaluation  
To test only the NLU model, so only the Intent recognition, Rasa offers the possibility to split 
the NLU file that contains the intents with examples, in train and test set. To do this we can 
run this command [47]: 
rasa data split nlu 
 
And the original file will be divided into the train dataset (80% of dataset of NLU: 240 
distinct examples) and test set (20% of dataset of NLU: 60 distinct examples) and saved in a 
directory called train_test_split. 
 
To test run this command: 
rasa test nlu --nlu train_test_split/test_data.yml 

 
The results of evaluation are saved in different files: 
 

● intent_report.json: contains a report contains recall, f1-score, precision for 
every topics 

● intent_confusion_matrix.png: contains the confusion matrix 
● intent_histogram.png: contains confidence histogram for intent classification 

model and allow to visualize the confidence for all predictions, with correct (blue 
bars) and incorrect (red bars) predictions 

● errors.json: contains the incorrect predicted intents 

5.2.1   SPACY Model Evaluation 
The result of Spacy model for Intent Evaluation are reported below: 

Value of metrics for every intent 

Intent* #train #test precision recall 
F1-

score 

final 3 1 1.00 1.00 1.00 

goodday 4 1 1.00 1.00 1.00 

goodbye 4 1 1.00 1.00 1.00 

deny 4 1 0.50 1.00 0.67 

thanks 4 1 1.00 1.00 1.00 

bot 4 1 1.00 1.00 1.00 

GUI 4 1 1.00 1.00 1.00 

upcasting 4 1 1.00 1.00 1.00 

visibility 4 1 1.00 1.00 1.00 

hineritance_constructor 4 1 0.50 1.00 0.67 

super 4 1 0.00 0.00 0.00 

class_object 4 1 1.00 1.00 1.00 



 

51 
 

comparator 4 1 0.00 0.00 0.00 

observer_observable 4 1 1.00 1.00 1.00 

greet 4 1 0.00 0.00 0.00 

method_reference 4 1 1.00 1.00 1.00 

objects_methods_doubt 4 1 1.00 1.00 1.00 

static_final_doubt 4 1 1.00 1.00 1.00 

visibility_variables_main 4 1 1.00 1.00 1.00 

anonym_class_doubt 4 1 1.00 1.00 1.00 

equals_doubt 4 1 1.00 1.00 1.00 

arraysort_pattern_doubt 4 1 1.00 1.00 1.00 

charAt_doubt 4 1 1.00 1.00 1.00 

class_general_doubt 4 1 1.00 1.00 1.00 

referent_methods_doubt 4 1 1.00 1.00 1.00 

comparing_doubt 4 1 1.00 1.00 1.00 

difference_dynaminc_bind_upcast 4 1 1.00 1.00 1.00 

hineritance_tree 4 1 1.00 1.00 1.00 

terminology 4 1 1.00 1.00 1.00 

instanceof 4 1 1.00 1.00 1.00 

this 4 1 1.00 1.00 100 

pattern 4 1 1.00 1.00 1.00 

functional_interface 4 1 1.00 1.00 1.00 

default_methods 4 1 0.00 0.00 0.00 

advantages 4 1 1.00 1.00 1.00 

factory_methods 4 1 1.00 1.00 1.00 

affirm 5 1 0.00 0.00 0.00 

eclipse 4 2 1.00 1.00 1.00 

override 5 1 1.00 1.00 1.00 

dynamic_binding 5 1 0.34 1.00 0.50 

casting 5 1 1.00 1.00 1.00 

downcasting 5 1 1.00 1.00 1.00 

class_abstract 4 2 1.00 1.00 1.00 

comparable 5 1 0.50 1.00 0.67 

iterator_iterable 5 1 1.00 1.00 1.00 

lambda 5 1 1.00 1.00 1.00 

static_methods 5 1 1.00 1.00 1.00 

slides 5 2 1.00 1.00 1.00 

polymorphism 6 1 1.00 1.00 1.00 

anonymous_class 5 2 1.00 1.00 1.00 
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hineritance 8 1 1.00 1.00 1.00 

interface 7 2 1.00 1.00 1.00 

ask_prof 13 3 1.00 1.00 1.00 

 240 60 0.88 0.92 0.89 

      

 Accuracy 0.92 

*In bold type the intents partially or totally not recognised correctly. 
 
Examples of intents correct predicted or not recognized 
Example Intent predicted Intent correct Correct? 

hey dynamic_binding greet NO 

descrivimi il comparator comparable comparator NO 

cosa serve l’operator instanceof instanceof instanceof YES 

 

Intent Confusion Matrix and Intent Prediction Confidence Distribution (IPCD) 

 
Figure 1: IPCD of Spacy model 
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Figure 1: Intent Confusion Matrix of Spacy model 
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5.2.2  BERT Model Evaluation 
The result of BERT model for Intent Evaluation are reported below: 
 
Value of metrics for every intent 

Intent* #train #test precision recall 
F1-

score 

final 3 1 1.00 1.00 1.00 

goodday 4 1 1.00 1.00 1.00 

goodbye 4 1 0.00 0.00 0.00 

deny 4 1 0.33 1.00 0.50 

thanks 4 1 1.00 1.00 1.00 

bot 4 1 1.00 1.00 1.00 

GUI 4 1 1.00 1.00 1.00 

upcasting 4 1 1.00 1.00 1.00 

visibility 4 1 1.00 1.00 1.00 

hineritance_constructor 4 1 0.50 1.00 0.67 

super 4 1 0.00 0.00 0.00 

class_object 4 1 1.00 1.00 1.00 

comparator 4 1 1.00 1.00 1.00 

observer_observable 4 1 1.00 1.00 1.00 

greet 4 1 0.00 0.00 0.00 

method_reference 4 1 1.00 1.00 1.00 

objects_methods_doubt 4 1 1.00 1.00 1.00 

static_final_doubt 4 1 1.00 1.00 1.00 

visibility_variables_main 4 1 1.00 1.00 1.00 

anonym_class_doubt 4 1 1.00 1.00 1.00 

equals_doubt 4 1 1.00 1.00 1.00 

arraysort_pattern_doubt 4 1 1.00 1.00 1.00 

charAt_doubt 4 1 1.00 1.00 1.00 

class_general_doubt 4 1 1.00 1.00 1.00 

referent_methods_doubt 4 1 1.00 1.00 1.00 

comparing_doubt 4 1 1.00 1.00 1.00 

difference_dynaminc_bind_upcast 4 1 1.00 1.00 1.00 

hineritance_tree 4 1 1.00 1.00 1.00 

terminology 4 1 1.00 1.00 1.00 

instanceof 4 1 1.00 1.00 1.00 

this 4 1 1.00 1.00 100 

pattern 4 1 1.00 1.00 1.00 
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functional_interface 4 1 1.00 1.00 1.00 

default_methods 4 1 1.00 1.00 1.00 

advantages 4 1 0.50 1.00 0.67 

factory_methods 4 1 1.00 1.00 1.00 

affirm 5 1 0.00 0.00 0.00 

eclipse 4 2 1.00 1.00 1.00 

override 5 1 0.00 0.00 0.00 

dynamic_binding 5 1 1.00 1.00 1.00 

casting 5 1 1.00 1.00 1.00 

downcasting 5 1 1.00 1.00 1.00 

class_abstract 4 2 1.00 1.00 1.00 

comparable 5 1 1.00 1.00 1.00 

iterator_iterable 5 1 1.00 1.00 1.00 

lambda 5 1 1.00 1.00 1.00 

static_methods 5 1 1.00 1.00 1.00 

slides 5 2 1.00 1.00 1.00 

polymorphism 6 1 1.00 1.00 1.00 

anonymous_class 5 2 1.00 1.00 1.00 

hineritance 8 1 1.00 1.00 1.00 

interface 7 2 1.00 1.00 1.00 

ask_prof 13 3 1.00 1.00 1.00 

 240 60 0.89 0.92 0.90 

      

 Accuracy 0.92 
*In bold type the intents partially or totally not recognised correctly. 
 
Examples of intents correct predicted or not recognized 
Example Intent predicted Intent correct Correct? 

hey affirm greet NO 

a dopo deny goodbye NO 

descrivimi il comparator comparator comparator YES 
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Intent Confusion Matrix and Intent Prediction Confidence Distribution (IPCD) 

 
Figure 1:  IPCD for BERT model 
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Figure 2: Intent Confusion Matrix for BERT model 
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5.2.3   ConveRT Model Evaluation 
The result of ConveRT model for Intent Evaluation are reported below: 
 
Value of metrics for every intent 

Intent* #train #test precision Recall 
F1-

score 

final 3 1 1.00 1.00 1.00 

goodday 4 1 1.00 1.00 1.00 

goodbye 4 1 0.00 0.00 0.00 

deny 4 1 0.33 1.00 0.50 

thanks 4 1 1.00 1.00 1.00 

bot 4 1 1.00 1.00 1.00 

GUI 4 1 1.00 1.00 1.00 

upcasting 4 1 1.00 1.00 1.00 

visibility 4 1 1.00 1.00 1.00 

hineritance_constructor 4 1 0.50 1.00 0.67 

super 4 1 0.00 0.00 0.00 

class_object 4 1 1.00 1.00 1.00 

comparator 4 1 1.00 1.00 1.00 

observer_observable 4 1 1.00 1.00 1.00 

greet 4 1 0.00 0.00 0.00 

method_reference 4 1 1.00 1.00 1.00 

objects_methods_doubt 4 1 1.00 1.00 1.00 

static_final_doubt 4 1 1.00 1.00 1.00 

visibility_variables_main 4 1 1.00 1.00 1.00 

anonym_class_doubt 4 1 1.00 1.00 1.00 

equals_doubt 4 1 1.00 1.00 1.00 

arraysort_pattern_doubt 4 1 1.00 1.00 1.00 

charAt_doubt 4 1 1.00 1.00 1.00 

class_general_doubt 4 1 1.00 1.00 1.00 

referent_methods_doubt 4 1 1.00 1.00 1.00 

comparing_doubt 4 1 1.00 1.00 1.00 

difference_dynaminc_bind_upca
st 

4 1 1.00 1.00 1.00 

hineritance_tree 4 1 1.00 1.00 1.00 

terminology 4 1 1.00 1.00 1.00 

instanceof 4 1 1.00 1.00 1.00 

this 4 1 1.00 1.00 100 

pattern 4 1 1.00 1.00 1.00 
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functional_interface 4 1 1.00 1.00 1.00 

default_methods 4 1 1.00 1.00 1.00 

advantages 4 1 0.50 1.00 0.67 

factory_methods 4 1 1.00 1.00 1.00 

affirm 5 1 0.00 0.00 0.00 

eclipse 4 2 1.00 1.00 1.00 

override 5 1 0.00 0.00 0.00 

dynamic_binding 5 1 1.00 1.00 1.00 

casting 5 1 1.00 1.00 1.00 

downcasting 5 1 1.00 1.00 1.00 

class_abstract 4 2 1.00 1.00 1.00 

comparable 5 1 1.00 1.00 1.00 

iterator_iterable 5 1 1.00 1.00 1.00 

lambda 5 1 1.00 1.00 1.00 

static_methods 5 1 1.00 1.00 1.00 

slides 5 2 1.00 1.00 1.00 

polymorphism 6 1 1.00 1.00 1.00 

anonymous_class 5 2 1.00 1.00 1.00 

hineritance 8 1 1.00 1.00 1.00 

interface 7 2 1.00 1.00 1.00 

ask_prof 13 3 1.00 1.00 1.00 

 240 60 0.91 0.93 0.92 

      

 Accuracy 0.93 

*In bold type the intents partially or totally not recognised correctly 
. 
Examples of intents correct predicted or not recognized 
Example Intent predicted Intent correct Correct? 

hey affirm greet NO 

a cosa serve il super 

nei costruttori 

hinericance_constructor super NO 

contatta un docente ask_prof ask_prof YES 
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Intent Confusion Matrix and Intent Prediction Confidence Distribution (IPCD) 

 
Figure 1:  IPCD for ConveRT model 
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Figure 2: Intent Confusion Matrix for ConveRT model 
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5.2.4  Some considerations 
As we can see, the three models are very accurate and exceed 90% accuracy. As for the 
precision metrics, recall and f1-score are also very similar, this means that the three models 
can be used almost completely indifferently. 
 
The small differences between the three (the intents are predicted correctly in some models 
where in others they are not) could be due to the fact that their configurations are quite 
different, especially as regards the SpaCy which uses the NER (Name Entity Recognition) 
and the Italian as language (like other models), but in this case, which could be a 
disadvantage because in some of the examples used in the test set containing English-
speaking words typically used in Computer Science, even in Italy and it might get confused 
to predict the intent correctly. 
 
As for BERT and ConveRT, they are also both excellent models of Intent Recognition, and 
they share the use of Transformers layers and the technique of self-attention. Even if the 
BERT exploits its wide vocabulary that allows it to have a broader "perspective", the 
ConveRT, basing on tasks such as the Response Selector, Intent Recognition, in addition to 
being leaner and faster, is the best for all the evaluation metrics, even if briefly. 
 
As for the confidence in the histograms, it is noted that it is not very high in all three cases. 
However, it must be said that the number of examples in the test set is not very large and the 
sentences with typically English-speaking technical terms do not help the model to have a 
high confidence value of the intents, especially in SpaCy case. But it can be seen that once 
again the ConveRT is slightly better, even if the other two still have a good reputation and 
could still be used as valid substitutes. 
 

In below table you can see a resume of results: 
Model #train #test precision recall F1 score accuracy 

SpaCy 240 60 0.88 0.92 0.89 0.92 

Bert 240 60 0.89 0.92 0.90 0.92 

ConveRT 240 60 0.91 0.93 0.92 0.93 

 

5.3 The Conversation Evaluation  
To test the entire model, so the test stories, RASA offer also this command [47]: 
rasa test --config [config file]  --cross-validation --runs [num] --

folds [num]  --out [output diriectory] 

 

With this configuration rasa uses cross-validation [52] that is a technique to estimate the 
metrics of predictions accurately. Train set and test set change for the value of folds written 
in command. The goal of the cross-validation is to test the model’s ability to predict new data 

that was not used in estimating it, in order to see if there are present over-fitting or selection 
bias problems and generalize a dataset more than possible. 
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Figure 1: K-cross validation division of dataset in train and test set, from [52] 

The test stories, in total 174 (considering all combinations of possible dialogues using 
checkpoints), saved in tests/test_stories.yml are written as normal stories in Rasa, 
the only difference is the user parameters, that simulate a user’s input: 

stories: 

- story: stories1 

steps: 

- user: | 

hello 

intent: greet 

- action: utter_greet 
 
The results of evaluation are saved in different files, including the intent evaluation files (see 
5.2): 

● failed_test_stories.yml: contains the stories predict incorrectly 
● story_confusion_matrix.png: contains the confusion matrix with the actions 

predicted 
● story_report.json: contains a report contains recall, f1-score, precision for 

every action 
● Also offer: 

o END_TO_END level to analyse the accuracy of stories/conversations (the 
percentage of stories predicted correctly) 

o ACTION level to analyse the accuracy of actions, single turns in conversation (the 
percentage of actions predicted correctly) 

o CV (folds) level to analyse the train and test accuracy of intent predictions 
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5.3.1  SPACY Model Evaluation 
The result of SpaCy model for Action Accuracy (Stories Evaluation) are: 

Value of metrics 
Evaluation Results on END-TO-END level (stories predicted) 
 Correct:    167 / 174 

 Accuracy:   0.960 

 
 
Evaluation Results on ACTION level (action predicted of every part of stories) 
  Correct:     915 / 921 
 F1-Score:    0.993 

 Precision:   0.994 

 Accuracy:    0.994 

 
 
Cross Validation evaluation for every Intent in stories (number of folds = 6): 
  Train Accuracy:   1.000 
 Train F1-score:   1.000 

 Train Precision:  1.000 

 Test Accuracy:    0.925 

 Test F1-score:    0.901 

 Test Precision:   0.886 
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Action Confusion Matrix and Intent Prediction Confidence Distribution (IPCD) 

 
Figure 1: IPCD of Spacy model according test stories using cross validation 
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Figure 2: Actions Confusion Matrix of SpaCy model 
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5.3.2  BERT Model Evaluation 
The result of BERT model for Action Accuracy (Stories Evaluation) are: 

Value of metrics 
Evaluation Results on END-TO-END level (stories predicted) 
  Correct:       170 / 174 
 Accuracy:      0.977 

 
 
Evaluation Results on ACTION level (action predicted of every part of stories) 
  F1-Score:      0.997 
 Precision:     0.998 

 Accuracy:      0.997 

 
 
Cross Validation evaluation for every Intent in stories (number of folds = 6): 
 Train Accuracy:   1.000 

 Train F1-score:   1.000 

 Train Precision:  1.000 

 Test Accuracy:    0.992 

 Test F1-score:    0.989 

 Test Precision:   0.988 
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Action Confusion Matrix and Intent Prediction Confidence Distribution (IPCD) 

 
Figure 1:  IPCD of BERT model according test stories using cross validation 
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Figure 2: Actions Confusion Matrix of BERT model 

 
 
 
 
 
 
 
 
 



 

70 
 

5.3.3  ConveRT Model Evaluation 
The result of ConveRT model for Action Accuracy (Stories Evaluation) are this: 

Value of metrics 
Evaluation Results on END-TO-END level (stories predicted) 
  Correct:      174 / 174 
 Accuracy:     1.000 

 
 
Evaluation Results on ACTION level (action predicted of every part of stories) 
 Correct:      921 / 921 

 F1-Score:     1.000 

 Precision:    1.000 

 Accuracy:     1.000 

 
 
Cross Validation evaluation for every Intent in stories (number of folds = 6) 
 Train Accuracy:   1.000 

 Train F1-score:   1.000 

 Train Precision:  1.000 

 Test Accuracy:    0.983 

 Test F1-score:    0.981 

 Test Precision:   0.982 
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Action Confusion Matrix and Intent Prediction Confidence Distribution (IPCD) 

 
Figure 1: IPCD of ConveRT model according test stories using cross validation 
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Figure 2: Actions Confusion Matrix of ConveRT model 

 

5.3.4  Some considerations 
As for the analysis of the testing stories, we can see how once again the three models are very 
accurate at the END-TO-END level and practically perfect in the case of the ConveRT. In 
this level, the various test conversations are analysed, with all the possible combinations in 
case there are branches due to the influence of a user response (for instances if a Question 
Answer is YES or NO), and it is evaluated if the model is in able to predict the next action to 
be done by the virtual assistant correctly. As we have seen in the case of the NLU Intent 
analysis, ConveRT was optimised also to solve tasks of this kind and for this reason it is 
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practically perfect. However, it must be said that the number of tests is not that high and 
therefore it is assumed that a significant increase in the data or arguments in the dataset could 
lead to a presumably lower accuracy value, albeit slightly. 

This also applies to the ACTION level where the number of actions are analysed 
individually, without considering the stories as a whole, which therefore has a more detailed 
perspective of the analysis. 

As regards the evaluation of the Intents, already analyses previously with the division of the 
NLU file into a fraction 80% train – 20% test, we can notice that using Cross-Validation 
technique (with number of folds = 6) on the whole set and with a higher number of data to be 
tested, the confidence value is significantly improved in all three cases. 

However, we can say that in general the three models all seem very valid also at the level of 
stories testing and therefore, as the first level of Intent Recognition analysis had already 
announced, they can all be used in an almost completely indifferent way. 

In below table you can see a resume of results for END-TO-END and ACTION level: 

Model #Conversation #Action 

% 

Correct 

conversation 

Precision 
F1 

score 
Accuracy 

SpaCy 174 921 0.960 0.994 0.993 0.994 

BERT 174 921 0.977 0.998 0.997 0.997 

ConveRT 174 921 1.000 1.000 1.000 1.000 

 

In below table you can see a resume of results for INTENT with CV(n=6) level: 

Model Test precision Test F1 score Test accuracy 

SpaCy 0.886 0.901 0.925 

BERT 0.998 0.989 0.992 

ConveRT 0.982 0.988 0.983 
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6 Conclusions 
 

6.1   Final considerations 
After analysing the various models, we can then draw the necessary conclusions. As we have 
seen, using virtual assistants in education can offer numerous advantages: 

● allow students to help in the learning process, also extending the possibility to help 
those who cannot afford to physically go to the school / university 

● offer teachers support to students' requests in order to better manage their work and 
therefore offer a richer and broader offer 

● then provide a set of answers to the students' frequent questions while guaranteeing 
the possibility of being able to discuss also with the teachers in person, always 
through the online communication channels in order to have more detailed feedback 

So the advantages are available to both students and teachers, but always with a view to using 
the virtual assistant as an additional support to teaching and never as a substitute. 

We have also seen that there are various frameworks that allow you to create these edu-bots 
in a fairly simple way. RASA was chosen, being one of the most used, very complete and 
open source and which allows the connection with the most popular communication channels 
such as Slack, and with its intuitive and clear configuration, it has allowed to create this 
educational assistant prototype for the "Programmazione ad Oggetti" course for the topic of 
Inheritance. Certainly, as mentioned previously, it will be possible to increase the training 
and testing data in the future as well as the topics to which the bot can offer an answer. It also 
allows the “Human Handoff”, the possibility for a student to contact a teacher and then be 

able to speak in "first person" without the help of an Artificial Intelligence "brain". It also 
guarantees learning that can evolve over time thanks to RASA X, a broader version of 
RASA, which, thanks to Interactive Learning, offers the possibility of adding data taken from 
real conversations between virtual assistant and student or correcting wrong predictions. 

Finally, three prediction models were analysed: 

● SpaCy: exploiting the NER and allowing a wide range of other tasks such as Part-of-
speech tagging, as well as allowing the support the Italian language, it is a valid 
prediction model both in terms of Entity Recognition and Stories Accuracy 

● BERT: allows a wider range of vocabularies, same including also the Italian 
language, various versions for different tasks, including Question Answering, and the 
management of even large data using the encoders and decoders formed by various 
layers of Trasformers, a library widely used in Machine Learning especially for the 
tasks concerning the management of text, it is also excellent for this as a model of the 
Educational Assistant 
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● ConveRT: given its compactness, speed in learning and which was created to 
optimize i.e.  Response Selector or Intent Recognition tasks used in our case, it is the 
best, even if slightly, in all the analysed metrics 

This research thesis, also given the high results obtained from the various tests, and the 
Chatbot implemented seems an excellent starting point to one day be used in real 
environments such as schools or universities. Certainly further improvements and research 
are possible such as: 

● adding data to the dataset regarding other object-oriented programming topics, 
teaching in PO course at the Polytechnic of Turin, and testing them with a larger 
amount of data to have more accurate evaluation metrics 

● add data also for other courses in order to have a more generic Chatbot 
● implement other predictive models, for example more geared towards modelling 

courses delivered in English rather than Italian 
● update the database used for student requests in order to manage request of different 

courses (based second point of improvement) 
 

Therefore it can be concluded that using a virtual bot in schools and universities can be very 
interesting and educational both for students, who "having fun" can ask questions and get 
immediate answers, and for teachers who allow a more detailed study of the requests of the 
students and therefore also create more specific paths based on the needs of their students. 
All this can be created using powerful frameworks like RASA, communication channels like 
Slack, and pre-trained models like SpaCy, BERT or ConveRT, and also a pinch of passion 
that must never be lacking, especially in the educational field. 

…… 
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