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Abstract

In recent years the climate crisis gained growing attention thanks to the work

of the activists. The increased sensitivity towards the environment did not

always translate into efficient actions actuated by the governments and this

fight lacks a global effort.

However, some sectors are changing. Transports, which are among the main

cause of pollution and greenhouse gases emission, has started a process of

abandoning combustion engines to move to 100% electric powertrain. Indeed,

the fleet of electric vehicles (EV) is getting more and more numerous and the

rate of EV adoption is expected to increase.

Although the high penetration of EVs is good news for air quality and the

environment, it brings issues that need to be addressed. Firstly, the effort of

reduced pollution could be nullified if EVs are not combined with a renewable

energy source. The batteries of the cars required a large amount of energy to

be charged and this could cause an extreme load on the grid.

This thesis investigated a scenario in which EVs are widely used and the gas

stations have been substituted by the battery switching stations, i.e. platforms

that can swap the flat battery of a vehicle with a fully charged one. These

stations are equipped with an array of photovoltaic panels that produces en-

ergy for the batteries and host charging and fully charged batteries. Hence,

they provide flexibility to the grid and could prevent or even solve congestions,

serving as energy storage stations and becoming agents of the smart grid.

This thesis aims to assess the feasibility of the battery switching stations. To
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do that a discrete-event simulator has been built to study the system so that

it is possible to evaluate how the station reacts with a certain traffic pattern

with certain parameters.

By dimensioning the capacity of the batteries and the number of solar panels,

this study observes that to compensate for a large amount of energy demanded

by the vehicles a large number of panels is required, and adopting some charg-

ing strategies it is possible to reduce the costs.
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Chapter 1

Introduction

1.1 Motivations

Cars and transport have a big, negative impact on the planet, that starts

before the car makes it to the road, since cars are made of materials with a

major carbon footprint as steel, rubber, paints. However, 80-90% of the en-

vironmental impact is due to fuel consumption and emissions of air pollution

and greenhouse gases that climate scientists say are driving global warming.[1]

Fuel-powered vehicles not only contribute negatively to the climate emergency,

but they release smog, carbon monoxide, and other toxins at street level, di-

rectly compromising our health. In the U.S. Greenhouse gas (GHG) emissions

from burning fuel for transportation cause one-third of the total air pollu-

tion.[2] In Figure 1.1, the pie chart represents the global GHG emissions sector

by sector. Data show that if we could electrify the whole road transport sector,

and complete the transition to a fully decarbonized electricity mix, we could

feasibly reduce global emissions by about 12%.[3]

Thanks to supportive regulatory frameworks, that aim at reducing CO2 emis-

sions, and additional incentives to safeguard Electric Vehicles (EVs) sales from

the economic downturn caused by the COVID-19 pandemic, the EV market
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Figure 1.1: Global GHG emissions by sector.

has been growing fast: in 2020 the global electric car stock hit the 10 million

units. Battery electric vehicles accounted for two-thirds of new electric car

registrations and two-thirds of the stock in 2020. China, with 4.5 million elec-

tric cars, has the largest fleet, yet Europe had the largest annual increase to

reach 3.2 million.[4]

The intent of this thesis is to investigate a scenario of battery switching sta-

tions, i.e. platforms that deploy a robotic arm to swap the flat battery of a

vehicle with a full charged one, that could speed up the adoption of electric

vehicles and, broadly speaking, to contribute to the global effort to increase
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the pace of the transition from fossil fuel energy to eco-friendly energy sources

to fight the climate emergency.

1.2 Objectives

This thesis aims at dimensioning a battery switching station (BSS), analysing

the behavior with different parameters and the quality of the service received

by the customers.

A BSS can be compared to a gas station, in the sense that an electric vehicle

(EV) is refueled with an operation that lasts for few minutes, whereas plug-in

EVs charge process may last for longer amount of time (hours) that depends

on the type of charger.

BSSs are equipped with a robotic arm that autonomously removes the battery

from the vehicle and installed a full one. Subsequently, the flat battery will be

charged by the station and it will be used to serve another customer.

A BSS can be represented as a client-server model, in which the server/station

has a limited amount of resources (fully charged batteries) that depends on

the size of the dock and the parameters of the charge process. If we consider

negligible the time required by the battery swap, the queue is due only to

the time for charging the batteries in the dock, whereas the loss is due to an

impatient client/vehicle, that leaves the BSS without waiting for a battery

becoming available.

Before a company could invest in the BSSs, it is necessary to verify the fea-

sibility of the system in a real scenario, i.e. analyse the average service time,

the loss probability, the average availability.

1.3 Structure

The thesis is composed by four chapters. The first one gives an overview of

3



the electric vehicle technologies. Since the term EV may be confusing, it starts

with a dictionary of the current EV types. Generally, the term electric vehicle

refers to vehicles in which power is provided by batteries that needs to be

charged by an external source. This thesis follows this trend. Then, it reports

the characteristics of the modern electric vehicles on the market and it explains

the components of the powertrain focusing on the battery.

The second chapter introduces the battery switching station and explains how

it is structured. Afterwards, it reviews a model of integration between renew-

able energy sources and EVs, it assesses the pros and cons of the BSS and it

cites some case studies.

The third chapter presents the simulator, the tools used to build it, the pa-

rameters, and the architecture. It explains the operation it performs and the

strategies that implement smart charging.

The last chapter presents the results showing the most significant graphs and

derives the final conclusions.
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Chapter 2

EV Overview

The last years recorded a growing interest in EV technologies by the vehicle

manufacturers and the policymakers, because EV models are attractive options

to help environment and health issues, because they can reduce the dependency

on fossil fuel energy reducing GHG emissions and with zero emissions they

don’t contribute to air pollution.

Figure 2.1: Net GHG reduction compared with increasing EVs adoption.[4]

In 2020, EVs saved more than 50 Mt CO2-eq (million tonnes of carbon-dioxide

equivalent) of GHG emissions globally, equivalent to the entire energy sector
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emissions in Hungary in 2019.[4]

The projections for the decade expect that as the EV fleet will expand we will

assist in a net reduction of GHG emissions (Figure 2.1), yet EV deployment

needs to be accompanied by decarbonization of electricity generation. Indeed,

the increasing number of EVs will cause an additional demand for energy,

that has to be produced by renewable sources, otherwise the benefits on the

environment will be nullified.[5]

2.1 Taxonomy

Since the term, Electric Vehicle is actually very vague and it includes different

technologies, this section provides a dictionary of the existing EV types.[6][7]

EVs can be categorized as follow:

• Battery Electric Vehicle (BEV): power is provided only by the bat-

teries. It does not produce any greenhouse gas (GHG), does not make

any noise and therefore beneficial to the environment.

• Hybrid Electric Vehicle (HEV): power is provided by a combination

of an Internal Combustion Engine (ICE) and an electrical power train.

This combination can come in different forms. It uses the electric propul-

sion system when the power demand is low, i.e. low-speed conditions like

urban areas; it also reduces the fuel consumption as the engine stays to-

tally off during idling periods like traffic jams. This feature also reduces

the GHG emission. When higher speed is needed, the HEV switches to

the ICE. The ICE can charge up the batteries, HEVs can also retrieve

energy by means of regenerative braking.

• Plug-In Hybrid Electric Vehicle (PHEV): it uses a combination of

ICE and electrical power train like HEV, but the main driving force is the

electrical propulsion. The ICE is used to provide a boost or to charge up
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the battery pack to extend the range. PHEVs can charge their batteries

directly from the grid. The carbon footprint is smaller than HEVs.

• Fuel Cell Electric Vehicle (FCEV): they use chemical reactions to

produce electricity. They carry hydrogen in special high-pressure tanks.

Electricity generated from the fuel cells goes to an electric motor that

drives the wheels. Excess energy is stored in storage systems like batteries

or supercapacitors.

• Extended-range EV (ER-EV): similar to the BEVs category, however,

the ER-EVs are also provided with a supplementary combustion engine,

which charges the batteries of the vehicle if needed. This type of engine,

unlike PHEVs and HEVs, is only used for charging, so that it is not

connected to the wheels of the vehicle.

The BSS is designed to substitute the battery of BEVs, which will be called

EVs for simplicity.

2.2 EV Benchmarks

This section reports average benchmarks to give an idea of the capabilities of

the current electric vehicles.

The data have been taken from the Electric Vehicle Database[8], which collects

all data regarding EVs to make this information easily available to accelerate

the adoption of sustainable transport by solving misunderstandings and myths

surrounding the electric vehicle.

The main concern of customers is the autonomy of a vehicle, i.e. how far can

I go once with full batteries/tank, and how much does it take to refuel the

car. The range of EVs obviously depends on the capacity of the batteries, but

also speed, style of driving, weather, and route conditions. Table 2.1 presents

battery and range values for some purchasable vehicles and the mean values

7



Model Capacity [kWh] Usable [kWh] Range [km]

Renault Twingo Electric 23 21.3 130

Mini Cooper SE 32.6 28.9 185

Citroen e-C4 50 45 250

BMW iX3 80 74 385

Tesla Model 3 Performance 82 76 470

Average 60 59.9 315

Table 2.1: Battery and range values from [8]. The range is an estimated mean
of the range under different conditions.

of all the 180 car model contained in the dataset.

The charging time instead mainly depends on the charging infrastructure that

can be categorized in three levels. These levels are summarized in Table 2.2.

Charging lvl Typical power Typical use Time to Charge1

Level 1 2 kW Home 4-11 hours

Level 2 20 kW Public 1-4 hours

Level 3 100 kW DC Fast 30 minutes

Table 2.2: Charging Power Levels [9]

2.3 Powertrain Components

This section focuses on the elements that compose a (B)EV powertrain. The

parameters and their typical values have been taken from this study of the

literature [10].

1Time to raise EV 60 kWh battery from 10% to 80%
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2.3.1 Traction Battery

It is the most important and the most expensive component. Currently, the

most advanced technology is the lithium-ion battery (LIB), that consists of

interconnected cells, clustered in packs, whose dimensions (length, width, and

height) and shape (pouch, prismatic, and cylindrical) depend on the manufac-

turer.

The primary parameters are:

• Gravimetric energy density [Wh/kg] at cell and pack level

• Volumetric energy density [Wh/L] at cell and pack level

• Battery C-rate [h−1]

• Number of battery cycles

• Cost [€/kWh]

The energy density is the amount of energy stored in a given system or re-

gion of space per unit volume (volumetric) or mass (gravimetric). Both have

been steadily increasing in recent years. Nowadays it has more than doubled

the values of 2012, when it was almost 100 Wh/kg. Some researchers claim

that the limit of the lithium-ion technology is around 350-370 Wh/kg and that

it will be reached by 2030. Then new cell chemistry and technology will be

needed to make further progress in gravimetric energy density.

The energy density at the pack level is always lower than at the cell level,

because the battery also contains other components, e.g. cooling, wires.

The C-rate describes the maximum charge or discharge current in relation

to the energy of the battery. A C-rate of 1 means that the battery can be

completely discharged in one hour. Because of internal resistance loss and the

chemical processes inside the cells, a value between 2 and 5 hours is considered
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realistic.

The number of battery cycles is the maximum number of cycles that the bat-

tery can withstand before its useable energy drops to 80% of its initial value.

The literature considers this number to be realistically in a range between 1000

and 3000.

Nowadays the cost is around 150 €/kWh and it is expected to decrease in

the next years.

Battery Ageing

LIBs are subjected to deterioration over time, which consists of capacity degra-

dation and a resistance increase. Battery degradation is the result of several

simultaneous physicochemical processes and it depends on the cell chemistries,

time, (ambient) temperature, current load, voltage, accumulated ampere-hour

throughput, and mechanical stress[11].

The conditions of a battery are described mainly by two parameters: state-of-

charge and state-of-health.

The state-of-charge (SOC) is the ratio between the currently available capacity

(Q(t) = α · β ·QN) and the total capacity at the previous full charge [12]:

SOC = Q/Q0 = α (2.1)

The state-of-health (SOH) is the ratio between the remaining capacity in aged

batteries Q0 and the initial, nominal capacity QN [12]:

SOH = Q0/QN = β (2.2)

The capacity degradation was used to describe the aging behavior of a battery,

but in recent years, changes in internal resistance have received more attention
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as an aging characteristic as well. Indeed, as the resistance increases, the ohmic

heat generation increases, and the available energy is reduced as power is lost

to ohmic heating[11].

The battery ageing mechanism can be decoupled in:

• calendar aging: it is due to the consequences of battery storage; several

studies showed the impact of high temperature, which facilitates corro-

sion and lithium loss, and high SOC, which represent the ions proportion

present on electrodes that promote chemical reactions[13].

• cycle aging: it happens when the battery is either in charge or discharge

and it is the direct consequence of the level, the utilization mode, the

temperature conditions, and the current solicitations of the battery. The

higher ∆SOC (i.e. the state of charge variation during a cycle) is, the

higher is the loss of battery power[13].

Many studies show that to preserve the battery life, the SOC should be main-

tained between 20% and 80%.[14]

2.3.2 Electric Machine and Gearbox

The electric machine converts electrical energy into mechanical energy and it is

coupled with the gearbox that transmits the machine torque to the wheels. It

is described by: gravimetric power density [kW/kg], machine overload factor,

maximum rotational speed [min−1], costs [€/kW].

Due to the high variety of the losses caused by the gearbox, the exact modeling

of its efficiency is very complicated, therefore researchers use a fixed value,

typically between 92-97%.

2.3.3 Power Electronics

Power electronics control the power from the battery to the motor. The ef-

ficiency of the power electronics varies according to its operation conditions,
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however, a realistic range is between 85% and 95%.

2.4 Cost Assessment

Figure 2.2: Current and future cost of the structure of BEVs / ICEVs.

Figure 2.2 compares the costs of an ICE vehicle with those of an EV with a

50 kWh battery. As we can see, ICEVs are remarkably cheaper than EVs,

yet, according to the projections, the price difference is going to decrease due

to the battery prices falling. The battery indeed is the most expensive car

component for EVs and it constitutes more than one-third of the total cost.

Figure 2.3 shows the projection, derived from the literature, of the battery pack

costs in the next years. The researchers estimate that as current battery pack

costs are already at the lower end of the reviewed range (minimum values),
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the costs by 2030 will be in the lower range too.

Figure 2.3: Development of battery pack costs.
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Chapter 3

The Battery Switching Station

A Battery Switching (or Swapping) Station (BSS) is similar to a traditional gas

station, where a compatible EV replaces its flat battery with a fully charged

one.

The main advantage of the BSS is that the time of the switching process is

comparable with the refueling of ICE vehicles. This system would eliminate

any driving range limit that plug-in EVs are subjected to. Imagine the case

of a driver that needs to drive for 1000 km, a distance larger than any EV

range. With a traditional plug-in vehicle, the driver has to stop likely two-

three times to charge the car and it would probably take hours since the most

common charge is level 2 (Table 2.2). With a BSS instead the stop could last

few minutes.

The deployment of BSSs could encourage the purchase of EVs instead of ICE

cars, making the driving experience more similar.

The BSS is also an actor of the smart grid, because the surplus of energy

stored in the batteries or the surplus of energy produced by the renewable

energy source could be sold to the grid.
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3.1 Components

This section describes the essential components of a BSS. It does not look into

the mechanical aspects, but it shows the system from a logistic point of view.

Figure 3.1: BSS Model

• EVs: the clients of the BSS arrive at the station when the battery is

almost flat and the vehicle has a few kilometers of autonomy left. They

eventually wait in a FIFO (First In First Out) queue if either the station

is serving another vehicle or there aren’t batteries in the stock.

• Switch Platform: it deploys a robotic arm to remove the flat battery

and install a fully charged one. It can serve one vehicle at a time and it

doesn’t need human assistance.

• Charging Hub: the flat battery after being removed is plugged in a

special socket and charged in the hub. The process takes a time that
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depends on the battery capacity and the charging rate (Time = (Full

Capacity [kWh] - SOC)/ Charging Rate [kW]).

• Battery Stock: it stores the batteries that are charged. Its capacity is

limited.

• Renewable Energy Source (RES): the BSS is provided with a set of

photovoltaic panels or a wind turbine. The interaction of the BSS with

RES is described in the next section.

3.2 Interaction with RESs

EVs have a key role to achieve air purification goals, since they emit no CO2

and other pollutants, yet lower emissions of GHG determined by a substantial

increase of EVs could cause higher emissions by the electricity generation when

it is based on fossil fuel combustion.

The widening of the EV fleet will drastically increase the electricity demand.

It’s hard to tell precisely how much energy will be required, but it is estimated

that the consumption of an 80% share of EVs will differ between 3 and 25%

of total electricity demand across EU member states.[5]

The integration of RESs with EVs could lead to a decarbonization effect and

an improvement of resource efficiency, however, several investments by nations

are required. Nations should also implement management strategies depending

on the types of renewable energy they produce. States with high solar energy

production, for example, may prefer charging peak to be during the day and

they may adopt different strategies with respect to states that produce wind

energy or a combination of both.

Furthermore, the uncoordinated charge of a fleet of EVs could cause a large

electric load resulting in higher power systems peak-load and distribution grid

congestion issues.

EV technology should cooperate with renewable energy production to fix its
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drawbacks: in particular, it should achieve a synergy with photovoltaic gen-

eration (PV) to provide individual and systemic benefits, by decreasing both

technology costs and ecological footprints and even stimulate the development

of each technology.[15]

Figure 3.2: Interaction with RES

In [15], the researchers have identified the technical aspects of the EV/PV

synergy that is depicted in Figure 3.2.

The main component is the smart control strategies. A key element of the

strategies is the ability of the EVs to use bidirectional flow (vehicle-to-grid,

V2G), i.e. to drain and deliver energy to the system.

A strategy has an objective to achieve. In this case, it can be a monetary
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objective, e.g. increasing the revenue of a charging station or decreasing the

electricity cost, or a physical objective, e.g. increasing energy efficiency and

decreasing the ecological footprint.

The control mode coordinates the charges of the EVs. If it is centralized, a

special agent, called aggregator, manages the schedule of the EV fleet charges.

This provides good results, but it requires exchanging a very large amount of

data. If it is decentralized, EV drivers respond to the incentives of an aggrega-

tor. This requires a less complex communication infrastructure, but the gains

are lower since we don’t know how drivers react to incentives.

The coordination method is the mathematical formulation of the control strat-

egy, e.g. an objective function (based on cost, energy efficiency, or ecological

footprint) to be optimized.

The control strategies are tailored for a specific spatial configuration that

brings specific constraints.

3.3 Pros and Cons

The deployment of the BSS can bring advantages to the EV drivers and, as

an actor of the smart grid, to the community.

Firstly, a widespread network of BSS would solve range anxiety, i.e. the fear

that a vehicle has insufficient range to reach the destination. The term, which

is primarily used in reference to BEVs, is considered to be one of the major

obstacles to the large-scale adoption of all-electric cars.[16] Moreover, the swap

is comparable to refueling an ICE vehicle in terms of duration.

The second benefit is that the drivers wouldn’t be the owners of the batteries

of their vehicles, since the batteries would belong to the BSS owners or to a

company that has an agreement with the BSS owners. Therefore, the price of

the EV should considerably decrease, because the battery is the most expensive

component. The company owning the battery could offer a subscription to the

users to lease the battery, it would charge the driver to access to the swap
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service and it would offer to substitute if the capacity decrease due to age

problem or any other damage maintaining the costs reasonable.

The main drawback is that all the vehicles should be compatible with the

switching process. It is necessary to create a universal standard for batteries

in order to make them switchable, hence different electric automakers should

produce EV models with a not embedded battery that can be dismounted

easily.

The BSS brings another advantage: it can be an actor of the smart grid. The

schedule of batteries charge can be indeed flexible, e.g. it can postpone the

charge to less busy hours preventing peak-loads of electricity, acting like an

aggregator, or it can discharge the battery to sell the energy to the grid.

Moreover, the BSS doesn’t need to call the EVs to plan to charge/discharge;

it neither needs to use incentives, because it already holds the batteries in the

stock, as opposed to the plug-in charge station scenario.

3.4 Case Studies

This section brings up three case studies of real existing companies that in

recent years have deployed, or still deploy, a fully operative network of BSS.

3.4.1 Tesla

Tesla is an electric vehicle and clean energy company based in Palo Alto,

California. It began production of its first car model, the Roadster, in 2009.

In 2017, Tesla started production of Model 3, the all-time best-selling plug-in

electric car worldwide, which, in June 2021, became the first electric car to sell

1 million units globally.

In 2013, Tesla showed off a 90 seconds battery swapping technology, but later

the company changed its plans and decided to invest in Superchargers.[17]

As of February 18, 2021, Tesla operates over 23,277 Superchargers in over
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2,564 stations worldwide.

Figure 3.3: Tesla Supercharger

3.4.2 Nio

Nio is a Chinese electric vehicle manufacturer that is betting on battery swap-

ping to compete against Tesla. The company was founded in 2014 and has

sold around 120,000 EVs. Nio has so far built around 300 battery-switching

stations and it plans to add at least 3700 BSS by the end of 2025.[18]

In August 2020, the automaker launched Battery-as-a-Service, whereby cus-

tomers buy the car but lease the battery. In this way, buyers can keep up-to-

date with battery technology as it improves.

In May 2021, Nio announced a Norway expansion plan, saying it would begin

delivering cars to Norway by September 2021.[19]

3.4.3 Ample

Ample, a San Francisco-based developer of switchable electric vehicle (EV)

batteries, has raised $160 million in a new funding round. The company has
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Figure 3.4: Nio Working BSS

developed a battery for EVs and an automated process for quickly swapping

out flat batteries for newly charged ones.[20]

Ample aims to make its batteries and swapping process more widely available

to different brands.

The industry’s response to shortening the charging time has been to develop

technology like DC fast chargers, which have managed to shave it down to

only 20 or 30 minutes. But Ample co-founder John de Souza said that im-

provements in charging time don’t get rid of fundamental problems: “[Fast

charging] generates a lot of heat; the grid doesn’t support it”.[21]

3.5 Summary

We have seen that to move towards a zero-emissions future we have to combine

EV technology with renewable energy sources that produce power to charge
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Figure 3.5: Ample BSS

the vehicles. Plug-in models don’t address this issue, since they drain power

from the grid, and delegate the decarbonization to the political establishment.

Furthermore, they don’t address yet the peak load that could be caused by a

large fleet of EVs in need of a charge.

Since the EV fleet is expanding constantly, it is necessary to face these prob-

lems: battery switching stations would deploy photovoltaic panels on the

rooftop to produce clean energy to power the batteries and, if energy from

the grid is needed, they could schedule the charges to avoid peak loads.

This scenario doesn’t require a massive communication infrastructure for co-

ordinating the charge of vehicles and drivers don’t have to be involved.

For example, a peak load can be avoided by postponing the charge of some bat-

teries or by exclusively using the power from the solar panels. These decisions

are up to the BSSs, but they can be stimulated by the smart grid increasing

the electricity price when it is under stress and decreasing the price in the

other periods. BSSs could even decide to discharge some batteries and sell the
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energy to the grid to prevent congestions.

The investigated scenario

We want to assess a scenario in which a BSS serves a car-sharing firm, whose

vehicles are equipped with a 20 kWh battery. This capacity, according to the

Electric Vehicle Database, should provide (on average) a driving range slightly

longer than 100 km. Since car-sharing works only in the cities, the range could

be even longer because the speed must be mild and the car could retrieve

energy from frequent regenerative braking.

Figure 3.6 presents how the battery switching station should look like. The

concept reveals that the number of photovoltaic panels is expected to be high,

because their efficiency is usually not so elevated and it puts a constraint on

the capacity of the batteries, i.e., given the number of sockets that depends

on the number of arrivals, a trade-off between the battery capacity and the

number of panels should be found, otherwise the solar energy would not be

sufficient. The next section will deepen the dimensioning of the batteries and

the panels.

Figure 3.6: BSS with PV panels installed on the roof.

23



Chapter 4

The BSS Simulation

As already mentioned in section 1.2, the main contribution of this thesis is the

calibration of the parameters of all the actors involved in the BSS system (the

station, the batteries, the vehicles, the photovoltaic panels) and assessment of

the feasibility of the system with respect to the grid and the customers.

The core of the work consists of a computer simulation that reproduces the

BSS behavior and, by simply changing the value of certain parameters (e.g.

the number of batteries that the station can hold), it is possible to analyze the

response, since it provides statistics and performance metrics, such as the loss

rate or the average time that a client (i.e. an EV driver) waits in the queue.

The analysis of the statistics allows tailoring the BSS for a specific traffic pat-

tern. The goal of the station is to serve an EV at any time with the lowest

waiting time possible.

The first step was building a baseline model of the BSS able to serve an ad-

equate number of customers. The modality of the arrivals is described in

Section 5.1. The volume of traffic has been set to a reasonable value, i.e. 100

vehicles per day, each vehicle with a 20 kWh battery. This phase consisted

in calibrating the parameters to have an acceptable loss rate. Losses are due

to impatient drivers: when an EV comes to the station and all the batteries

are still charging, the driver waits for some minutes and then it goes away, so
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Figure 4.1: Electricity cost reported by the Italian energy market.[22]

the BSS missed a customer. So far the BSS was set to charge the batteries

continuously using exclusively energy from the grid.

Afterward, the PV panels were implemented, so that they can contribute to

the grid to charge the batteries. Besides satisfying Quality of Service (QoS)

constraints, the BSS implements some strategies to make the charge of the

batteries cheaper or more environmentally friendly. To do that, an algorithm

can postpone the charge in a time slot in which the energy price is expected

to be cheaper (usually during night hours and the midday, as we can see in

Figure 4.1), or when the PV panels installed on the roof of the station produce

electricity. Obviously, this happens during daylights hours. Figure 4.2 shows

the average output power for each hour and season, that is double in summer

and spring with respect to winter and fall.
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Figure 4.2: Output power by hour of a solar panel with nominal capacity of 1
kWp for a period of 1 year.

4.1 Simulation Tools

A discrete-event simulator was designed to reproduce the behavior of the bat-

tery switching station, because mathematical modeling did not seem to be a

practicable approach due to the high number of parameters. The simulation

has been built using Python 3.8.5, in PyCharm 2021.2.2 installed on a macOS

11.6 device.

Moreover, these libraries have been used: matplotlib, to generate the plots to

analyze the statistics and visualize the results; numpy, to compute the statis-

tics; random, that was used to draw the inter-arrival time between the EVs

coming at the station using a Poisson distribution; pandas to operate over the

datasets.
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4.2 Datasets

The first dataset contains the output power, for each hour of the day, of a PV

panel with a nominal capacity of 1 kWp for 1 year, expressed in Watts. The

data are derived considering real irradiation data during the Typical Meteoro-

logical Year in the city of Turin, Italy. Figure 4.3 shows the amount of power

produced by one panel for each day of the year.

Figure 4.3: Amount of power produced each day.

The second dataset contains the the average daily electricity prices per season,

expressed in €/MWh, reported with a time granularity of 1 hour (Figure 4.1).
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4.3 BSS Parameters

This section explains the parameters of the BSS that defines its behaviour

and its performances. Some values are taken from the literature, for others

reasonable values have been picked.

• Number of sockets (Nbss): it is the number of batteries that the BSS

can charge simultaneously. If all the sockets are busy, the station rejects

a new client.

• Battery capacity (C): in this scenario all the vehicles have a 20 kWh

battery. The bigger are the batteries, the larger is the impact on the

grid.

• Charging rate (Cr): to preserve a good battery lifespan, the charging

rate should preferably not exceed half the capacity of the battery per

hour, so it is set to C/2 = 10 kW, that means that a flat battery is fully

charged in 2 hours.

• Threshold capacity (Bth): in periods of high demand, the BSS can

deliver a battery even if it is not fully recharged, as long as it has achieved

a minimum charge level, i.e. Bth. The threshold is set to 80% of the full

capacity.

• Number of PV panels (SPV ): the number of photovoltaic panels

installed on the roof of the station. Assuming a PV panel efficiency

of 19%, a 5 m2 panel has a nominal power of 1 kWp, i.e. in optimal

conditions, it will produce 1 kW.

• Waiting tolerance (Wmax): it is the amount of time that drivers can

wait for a battery in case the charge of the next available battery is

completed shortly. It is set to 15 minutes.
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• Postponable batteries (F): it is the number of batteries whose charge

can be postponed to exploit solar power or to use cheaper energy from

the grid.

• Postpone time (Tmax): it is the maximum time, always expressed in

minutes, that the charge of a battery can wait before starting.

4.4 Architecture

Figure 4.4 shows the object-oriented design of the battery switching station

simulator. Each element of the real station corresponds to a module that

interacts with the others providing and demanding services.

Figure 4.4: Class Diagram of the BSS Simulator.
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The simulation creates an instance of EV every inter-arrival time. The EV

instance creates the instance of Battery and requests a swap service at the

BSS module. The Battery module keeps track of the level of the charge,

updates it at every event, and can provide the time to the full charging.

The BSS module is the core of the architecture. It immediately serves an EV

if a ready battery is available, otherwise, it holds the EV in a queue until a

charging battery is full. It has multiple instances of Socket (depending on the

capacity of the system) and each Socket holds a battery. The BSS can plug

a battery in a Socket, reserve a charging battery for a vehicle that is waiting

in the queue, decide to postpone or resume the charge by changing the status

of a socket. When it comes to compute the cost of a charge or to update

the battery level with solar power the BSS retrieves the data from the Data

Manager module.

The Statistics module retrieves the data from the BSS and compute stats every

hour or every day of the simulation and eventually plots the data.

4.4.1 Sequence of Operations

Before the simulation starts an instance of BSS and Nbss Sockets are created

and each socket is associated with a flat battery. The simulation starts when

an instance of an EV is created, then every new EV triggers the next one. This

event is an arrival and is handled in the homonymous function.

arrival()

Firstly, this function calls update all batteries() to update the charge of the

batteries plugged in the sockets. Subsequently, it generates a new EV and

sets its inter-arrival time with an exponential function with a parameter that

depends on the hour of the day.

Then, three cases are possible:
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1) a fully charged battery is available, therefore the BSS swaps the batteries

and plugs the flat one in a free socket;

2) there is no ready battery, the BSS checks when the next battery will be

ready and if it takes less than Wmax time the EV is put in the queue and

it waits;

3) there is no ready battery, the next one takes too long to be ready or all

the charging batteries are booked for another vehicle: the EV can’t be

served and the client is lost.

serve queue()

This event happens after case 2 of arrival(). When the battery that has been

reserved for a vehicle is fully charged, the BSS pops the EV out of the FIFO

queue and executes the swap.

battery available()

This event is triggered by a battery that has completed its charge. The BSS

unplugs it from the socket and puts it on the dock with the other full batteries

(in the simulation the ready batteries variable is incremented).

update all batteries()

This function is called every hour and before every event, because of the price of

the electricity and the solar power production change with hourly granularity.

After updating the battery levels, the BSS checks if it has to resume the charge

of a battery that has been postponed (see Section 4.4.3) because the postpone

timer has expired.
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4.4.2 Performance indicators

This section explains the performance indicators that have been used to eval-

uate the behavior of the system. The indicators are the following:

• losses: the BSS is not able to provide a battery to a client in Wmax

time, so the client goes away; it is the absolute number of clients lost on

average each day during the year;

• waiting time: average delay of the station in serving the clients, due to

EVs that waits for the next ready battery;

• cost: the average of daily costs of the energy bought from the grid to

charge the batteries;

• cost per service: it is how much the station spent to charge a battery

to serve a client: it is the daily cost divided by the number of arrivals

minus the losses;

• average ready batteries: it is the average number of batteries that a

vehicle finds when it arrives at the BSS;

• savings: if the solar panels produce a surplus of energy, the station sells

it to the grid for half the price of the energy; it is the average daily value.

4.4.3 Postpone Strategies

At every arrival and every time a battery completes its charge, the BSS checks

whether it can postpone the charge of some batteries to save money on energy,

finding a trade-off between the quality of service and the costs. It always tries

to put off the maximum number of batteries, specified by the F parameter.

Hence, Nbss - F is the granted number of always active sockets.

Firstly, the station checks whether solar energy is being produced. If not,
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it checks the convenience of the rescheduling (Algorithm 1). Two policies of

convenience have been tested:

• postpone the charge in a time slot in which the electricity provided by the

grid is cheaper. This method assumes that the station knows beforehand

the energy price for every time slot.

When the BSS has to put off a battery it checks whether the panels are

producing energy to avoid wasting of it, then it looks for a time slot (all

the slots that do not exceed the Tmax constraint) in which the electricity

is cheaper than the current one. If the charge of a battery requires more

than an hour to be completed it also take into account the price of the

subsequent hour and the residual charge (Algorithm 2).

• postpone the charge when the panels provide solar power. If the energy

from the PV panels is 0, then the charge is postponed by Tmax if the

panels are expected to produce. The simulation uses certain data about

the weather condition, recorded in 2018, whereas in a real scenario the

BSS can’t know with certainty the amount of power that will be produced

and it should use weather forecast (Algorithm 3).

If the station considers postponing convenient, it sets a timer for the socket

that is decreased at each hour and when it expires the socket resumes the

charge.
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Algorithm 1 Postpone charge

i← 0
if pv == 0 then

while postponed batteries < F do
if socket[i] is charging and socket[i].battery is not booked then

timer ← check convenience()
if timer > 0 then

socket[i].timer ← timer
postponed batteries++

end if
end if
i++

end while
end if

Algorithm 2 Check convenience (cheapest price)

i← 0
timer ← 0
while i < Tmax do

prices.append(energy prices(month, day, hour + i))
i++

end while
if charge < C/2 then

timer, prices← min(prices)
return timer

else
delta charge1, delta charge2← charge.split()
timer ← cheapest hour(prices, delta charge1, delta charge2)
return timer

end if
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Algorithm 3 Check convenience (solar power)

timer ← 0
pv next← get pv power(month, day, hour + Tmax)
if pv next > 0 then

return Tmax

else
pv now2← get pv power(month, day, hour + 1)
pv next2← get pv power(month, day, hour + Tmax + 1)
if pv now2 ≤ pv next+ pv next2 then

return Tmax

end if
end if
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Chapter 5

Results

This section presents the results of the simulation of the battery switching

station. The simulation has been run several times to dimension the parameter

and to test strategies for reducing the costs, so that this project could provide

a feasible and profitable model to an actual BSS firm.

5.1 Baseline

Figure 5.1 presents the traffic pattern of the EVs/clients that arrive at the

station, i.e. the absolute number of EVs that on average arrive for each hour

of the day (for example: the BSS is expected to serve between 12:00 and 12:59

on average 10 clients). The inter-arrival time between two vehicles is drawn

with an exponential function that receives as input a parameter that depends

on the hour. The parameters are chosen in such a way that the pattern has

three peaks during the day.

The program can simulate one year or more or a shorter period of time. Figure

5.2a shows the daily arrivals during a one-year simulation. The exact number

of arrivals varies day by day, but is usually greater than 80 and smaller than

120. The average number of arrivals is around 100. Although, the arrivals are

not constant, the losses are stable: the mean value is 0.02%, whereas the daily
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Figure 5.1: Daily arrivals by hour.

value never exceed 3 EVs per day (Figure 5.2b). The losses are low and stable

because Nbss is set to 20 (this choice is justified subsequently in this section.).

Moreover, during the three peaks of traffic, the station charges the batteries

up to Bth, i.e. 90% of the full capacity. This choice is convenient to face the

high demand and it is positive for the batteries lifespan.

In this phase, the system is not using either the PV panels or any strategy to

handle the charges. Panels and strategies don’t have any impact on the arrivals,

since they are the input of the system and the number panels don’t modify the

losses, because if they are not able to guarantee the fixed charging rate, the grid

occurs to make up the difference. Figures 5.3a and 5.3b represent the baseline

costs and energy consumption of the BSS. The costs depend exclusively to the

electricity price, indeed, during the fall (that goes from day 250 up to 320,

circa) they are more expensive (Figure 4.1).

37



(a)

(b)

Figure 5.2: Daily number of arrivals (a) and daily losses (b).
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(a)

(b)

Figure 5.3: Daily cost (a) and daily energy consumption (b) for a one year
simulation.
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5.2 PV panels implementation

After assessing the baseline behavior of the station, the photovoltaic panels

were implemented. Several values of SPV and Nbss were tested. The number

of panels should be regulated concerning the number of sockets, given that

each socket shares the power provided by the panels and the amount of energy

should be significant enough to allow to adopt some strategy that helps the

BSS to exploit a possible surplus of energy, that happens when the panels

produce more energy than the one required to charge all the batteries plugged

in the active sockets at Cr.

Figure 5.4: Losses by number of sockets and number of panels.

Figure 5.4 shows the losses during the simulation of one year with respect to

the number of sockets, Nbss, and the number of panels, SPV . As expected,

as Nbss increases the loss rate decrease, whereas as SPV increases the cost per
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service decreases (Figure 5.5), because it increases the ratio of free solar power

with respect to the grid contribution.

Figure 5.5: Cost per service by number of sockets and number of panels.

Since the next step foresees to apply strategies to postpone the charge to reduce

the costs, i.e. reduce the contribution of the grid, Nbss was chosen, because

it provides almost 0 losses. Indeed, we expect the average number of ready

batteries to decrease and the loss rate to increase, therefore Nbss=20 is chosen

to have more flexibility.

Figure 5.6a represents the total cost, that is the expenditure for the energy

absorbed from the grid, and the savings, that is the extra energy produce by

the panels that is sold to the grid for half the price of the electricity. Figure

5.6b shows instead the contribution of the grid and the panels.
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(a)

(b)

Figure 5.6: Cost and energy consumption with 100 panels.
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5.3 Postpone strategies application

A solar panel with a 1 kWp output, i.e. a maximum power output of 1 kW in

optimal conditions, has an area of 5 m2, which means that 100 panels occupy

500 m2 of space. Although the occupied space is remarkable, the contribution

to the charges is still modest with respect to the grid. Indeed, as we can

see in Figure 5.6b, the amount of energy provided by the panels and used

by the sockets never exceeds the one of the grid. Furthermore, Figure 5.7

demonstrates that the sockets are using almost all the solar energy produced

and that there is no waste of it.

Figure 5.7: Daily produced and consumed solar energy with Spv=100.

In this step, the postpone strategy depicted in Algorithm 1, 2 was deployed.

This policy works on the electricity prices trying to put off the charges in

an hour when the energy cost of the grid is cheaper. The algorithm doesn’t

postpone the battery if the PV panels are producing energy and moves the

charge in the hour that does not exceed Tmax with the cheapest electricity
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cost.

Obviously, if postponing the charges impacts negatively the performance of

the BSS in terms of waiting time and loss rate; hence a trade-off should be

found.

Figure 5.8a illustrates how the loss rate dramatically increases for large values

of F and Tmax, that guarantee the lowest costs; whereas, small values of Tmax

(less than one hour), do not decrease the costs significantly.

Given 100 daily arrivals, a reasonable loss rate of the station should be <2%,

i.e. less than two lost customers per day on average. If we compare the cost

per service and the net cost (the total cost minus the savings) with F=11 and

Tmax=300 and with F=0 (no postponing), the BSS records a 4% reduction of

the cost per service (respectively 0.804347 and 0.842503 euros per service) and

a 6% reduction on the net cost (respectively 79.843471 and 84.893281 euros).

The main issue of this approach is that the mean value of the loss rate is

acceptable, but if we look at the daily values of the losses we can see that

during winter and fall they are too high, while they are almost zero during

summer and spring. This happens because the batteries are not postponed if

the solar panels are working, therefore the station rarely put them off during

these seasons, but it only moves the charges of the batteries that arrive in the

evening during the night when the electricity is cheaper and the traffic is less

intense.

Hence, this algorithm performs well in sunny seasons, yet it performs poorly in

the rest of the year. Moreover, it doesn’t take into account the sustainability

purpose of the station.

Figure 5.9a and 5.9b shows that if we deploy this algorithm, but we allow the

BSS to wake up the postponed socket if it needs to serve a client, the loss

rate consistently decrease but the reduction on the cost per service becomes

negligible.

44



(a)

(b)

Figure 5.8: Losses (a) and cost per service (b) with postpone for cheaper
electricity price strategy. Spv=100; Tmax is expressed in minutes.
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(a)

(b)

Figure 5.9: Losses (a) and cost per service (b) with postpone for cheaper
electricity price strategy. Spv=100. BSS can anticipate wake up of batteries.
Tmax is expressed in minutes.
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Maximising solar power usage

After trying to exploit cheaper hour slots, a different approach was tested.

Since that 100 panels couldn’t provide enough energy to apply any strategy

(Figure 5.7), Spv was set to 500, i.e. 500 photovoltaic panels installed on the

battery switching station (Figure 5.10). This dimensioning slightly changes

the scenario, because the BSS should be a big facility with 2500 m2 of PV

panels.

Figure 5.10: Daily produced and consumed solar energy with Spv=500.

The algorithms implemented are the ones described in section 4.4.3 (Algorithm

1, 3). This algorithm tries to move the charges when the panels produce

energy (in a real scenario the BSS would use weather forecast and mathematical

model to estimate the production). This shift happens especially during the

evening and the night to put off the batteries to the next morning, therefore the

charges are postponed by exactly Tmax minutes, because if we would resume

the charge process as soon there is the sun, i.e. at sunrise, all the batteries
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would wake up together and they would share the energy provided at sunrise

that is usually low. This wouldn’t interfere with the system performances, but

it would increase the consumption of the grid energy. A fixed Tmax instead

allows the BSS to resume the charges gradually, according to the order of

arrival.

Figure 5.11: Losses with postpone for maximizing solar power usage. Spv=500.
Tmax is expressed in minutes.

Figure 5.11 and 5.12 shows the values of the losses and the cost per service for

different F and Tmax. In this case, the simulation was run for an entire year

and the optimal parameters were found. With F=17 and Tmax=480 (8 hours)

the average daily losses are 1.643836, which is less than the threshold (2 daily

losses) that we used to assess the system acceptably. The cost per service

(0.496740 euro) and the net costs (37.465598 euros) are 9.7% and 10% lower

than the case with 500 panels but without postponing (0.550179, 41.637631

euros). The lines representing Tmax >480 intersect the others because with

these values the batteries are put off around midday when the traffic is more
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intense and the PV production is shared between more sockets, thus the costs

per service are higher.

This algorithm presented the same issue as the other one, i.e. even if the

average loss rate is low, the daily losses may be occasionally high. Therefore,

instead of picking two values simulating one year, the values could be selected

running the simulation for each season, because each season presents similar

weather conditions. Hence, for each season the same plots of Figure 5.12 were

drawn and for each season a pair of F and Tmax was sorted. Tmax=480 was

the optimal postpone delay for every season; the values of F, the maximum

number of idle sockets, are: 13 (winter), 20 (spring and summer), 16 (fall).

This settings slightly reduces the average loss rate and make the daily losses

more homogeneous. The cost per service is slightly increased (0.500426 euro),

but still 9% lower than the case without postponing and the net cost is still

10% lower.

Figure 5.12: Cost per service with postpone for maximizing solar power usage.
Spv=500. Tmax is expressed in minutes.
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A 20 kWh capacity can work for vehicles employed for a car-sharing service, but

the EVs sold nowadays are equipped with bigger batteries, thus, the algorithm

has been tested with C=40kWh, providing a 6% reduction on both net cost

and cost per service, and C=70kWh, providing 5% on net cost and 4.3% on

cost per service.

5.4 Conclusions

Global warming requires the world to make radical changes in different in-

dustrial sectors and individual habits. These changes are already visible in

some fields, such as transportation, where the climate emergency required the

abandonment of fossil fuel to convert to clean energy and zero emissions. In

the next future, all the ICE vehicles would be replaced with electric vehicles,

that don’t pollute the urban area since they don’t emit GHG gases. Yet, to

have no negative impact on the environment, they need to be charged with

clean energy sources.

The battery switching station, not only incentives the adoption of EVs making

the driving experience more similar to the one of ICEV allowing an instanta-

neous refueling, but it takes responsibility for the energy used to charge the

batteries deploying a set of PV panels to generate that energy.

The BSS simulator was built to understand under which conditions the station

is feasible and whether the solar panels could provide enough energy for the

batteries.

The results were presented and discussed in Section 5 and they revealed that

to manage on average 100 daily arrivals the station needs to host 20 sockets

for the charge of the batteries. Given a capacity of 20 kWh for each vehicle,

500 panels are needed to cope with the energy demand and perform a smart

control over the schedule of the charges. The algorithm implemented in the

simulator provides a 9% reduction on the cost per service and 10% on the net

costs providing a better usage of the power of the panel and diminishing the
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energy drained from the grid.

This work is meant to be a contribution to the sustainability challenge that

current societies are facing. It exposed the potentiality of the battery switch-

ing stations and the flaws that have to be addressed. One future development

could be a new smart charging algorithm that would both consider the PV

panels production and the electricity prices at the same time with a more dy-

namic postponing.

In conclusion, the BSS is a great resource to face the issues that a bigger and

bigger EV fleet could bring and it could play a key role in the future of the

smart grid.
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[13] Anthony Barré et al. “A review on lithium-ion battery ageing mecha-
nisms and estimations for automotive applications”. In: Journal of Power
Sources 241 (2013), pp. 680–689. issn: 0378-7753. doi: https://doi.
org / 10 . 1016 / j . jpowsour . 2013 . 05 . 040. url: https : / / www .

sciencedirect.com/science/article/pii/S0378775313008185.

[14] Emmanouil D. Kostopoulos, George C. Spyropoulos, and John K. Kaldel-
lis. “Real-world study for the optimal charging of electric vehicles”. In:
Energy Reports 6 (2020), pp. 418–426. issn: 2352-4847. doi: https:
//doi.org/10.1016/j.egyr.2019.12.008. url: https://www.
sciencedirect.com/science/article/pii/S2352484719310911.

[15] Quentin Hoarau and Yannick Perez. “Interactions between electric mo-
bility and photovoltaic generation: A review”. In: Renewable and Sus-
tainable Energy Reviews 94 (2018), pp. 510–522. issn: 1364-0321. doi:
https://doi.org/10.1016/j.rser.2018.06.039. url: https://www.
sciencedirect.com/science/article/pii/S1364032118304751.

[16] Range anxiety. url: https : / / en . wikipedia . org / wiki / Range _

anxiety.

[17] Tesla’s battery-swapping plan has a mere shadow of the promise it once
showed. url: https://www.businessinsider.com/teslas-battery-
swapping-plan-isnt-working-out-2015-6?r=US&IR=T.

53

https://doi.org/10.1007/s42835-020-00547-x
https://doi.org/10.1007/s42835-020-00547-x
https://doi.org/10.3390/wevj12010021
https://www.mdpi.com/2032-6653/12/1/21
https://www.mdpi.com/2032-6653/12/1/21
https://doi.org/10.3390/en14051248
https://www.mdpi.com/1996-1073/14/5/1248
https://doi.org/10.3390/batteries6010004
https://www.mdpi.com/2313-0105/6/1/4
https://doi.org/https://doi.org/10.1016/j.jpowsour.2013.05.040
https://doi.org/https://doi.org/10.1016/j.jpowsour.2013.05.040
https://www.sciencedirect.com/science/article/pii/S0378775313008185
https://www.sciencedirect.com/science/article/pii/S0378775313008185
https://doi.org/https://doi.org/10.1016/j.egyr.2019.12.008
https://doi.org/https://doi.org/10.1016/j.egyr.2019.12.008
https://www.sciencedirect.com/science/article/pii/S2352484719310911
https://www.sciencedirect.com/science/article/pii/S2352484719310911
https://doi.org/https://doi.org/10.1016/j.rser.2018.06.039
https://www.sciencedirect.com/science/article/pii/S1364032118304751
https://www.sciencedirect.com/science/article/pii/S1364032118304751
https://en.wikipedia.org/wiki/Range_anxiety
https://en.wikipedia.org/wiki/Range_anxiety
https://www.businessinsider.com/teslas-battery-swapping-plan-isnt-working-out-2015-6?r=US&IR=T
https://www.businessinsider.com/teslas-battery-swapping-plan-isnt-working-out-2015-6?r=US&IR=T


[18] Nio Plans to Add 3,700 Battery Stations by 2025 in World’s Largest Auto
Market. url: https://www.bloomberg.com/news/articles/2021-07-
09/nio-outlines-battery-swap-station-push-at-first-ever-

power-day.

[19] NIO (car company). url: https://en.wikipedia.org/wiki/NIO_
(car_company).

[20] Electric vehicle battery startup Ample raises $160 million. url: https:
//www.reuters.com/business/autos-transportation/electric-

vehicle-battery-startup-ample-raises-160-million-2021-08-

19/.

[21] Ample raises $160M to scale its battery swapping service. url: https:
//techcrunch.com/2021/08/19/ample-raises-160m-to-scale-its-

battery-swapping-service/.

[22] Gestore dei Mercati Energetici (GME). url: https://www.mercatoelettrico.
org/It/download/DatiStorici.aspx.

54

https://www.bloomberg.com/news/articles/2021-07-09/nio-outlines-battery-swap-station-push-at-first-ever-power-day
https://www.bloomberg.com/news/articles/2021-07-09/nio-outlines-battery-swap-station-push-at-first-ever-power-day
https://www.bloomberg.com/news/articles/2021-07-09/nio-outlines-battery-swap-station-push-at-first-ever-power-day
https://en.wikipedia.org/wiki/NIO_(car_company)
https://en.wikipedia.org/wiki/NIO_(car_company)
https://www.reuters.com/business/autos-transportation/electric-vehicle-battery-startup-ample-raises-160-million-2021-08-19/
https://www.reuters.com/business/autos-transportation/electric-vehicle-battery-startup-ample-raises-160-million-2021-08-19/
https://www.reuters.com/business/autos-transportation/electric-vehicle-battery-startup-ample-raises-160-million-2021-08-19/
https://www.reuters.com/business/autos-transportation/electric-vehicle-battery-startup-ample-raises-160-million-2021-08-19/
https://techcrunch.com/2021/08/19/ample-raises-160m-to-scale-its-battery-swapping-service/
https://techcrunch.com/2021/08/19/ample-raises-160m-to-scale-its-battery-swapping-service/
https://techcrunch.com/2021/08/19/ample-raises-160m-to-scale-its-battery-swapping-service/
https://www.mercatoelettrico.org/It/download/DatiStorici.aspx
https://www.mercatoelettrico.org/It/download/DatiStorici.aspx

	Introduction
	Motivations
	Objectives
	Structure

	EV Overview
	Taxonomy
	EV Benchmarks
	Powertrain Components
	Traction Battery
	Electric Machine and Gearbox
	Power Electronics

	Cost Assessment

	The Battery Switching Station
	Components
	Interaction with RESs
	Pros and Cons
	Case Studies
	Tesla
	Nio
	Ample

	Summary

	The BSS Simulation
	Simulation Tools
	Datasets
	BSS Parameters
	Architecture
	Sequence of Operations
	Performance indicators
	Postpone Strategies


	Results
	Baseline
	PV panels implementation
	Postpone strategies application
	Conclusions

	Bibliography

