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Tongji University Master/Doctor of Philosophy Abstract 

ABSTRACT 

Composite is often subjected to various loads (such as impact load) from outside, 

resulting in fracture, delamination and other damages. Traditional continuum 

mechanics theory based on partial differential equation is difficult to deal with 

discontinuous problems such as fracture and damage because it involves space 

derivation. Peridynamics (PD) is a nonlocal theory based on integral equation. It uses 

space integration to describe the material function, which has great advantages in 

dealing with the above problems. But there is "surface effect" in traditional PD 

methods. That is, when discretizing the material points, the horizon of the material 

points in the boundary area is incomplete, which will cause calculation errors. Based 

on this, the paper analyzes the problem of the problem, a more concise surface 

correction factor is proposed. 

In the design process of composite materials, accurate load information is needed, 

such as the direction and velocity of external impactor, for example, for aircraft, it is 

convenient for engineers to design enough strength in appropriate positions, or 

estimate the residual strength of structures subjected to load and evaluate the 

probability of its continued use. Therefore, it is of great significance to identify the 

impact condition based on the damage data, and to improve the design of composite 

materials and ensure its safe use. Based on this problem, this paper develops a set of 

impact condition identification model based on deep learning, which can use the 

impact damage evolution data of composite materials under different impact 

conditions for training, and realize the identification of unknown impact conditions, 

so as to provide more detailed reference and basis for improving the design method of 

laminated plates. 

The main contents of this paper include: 

(1) Aiming at the problem of impact damage discontinuity of composite 

laminates, a numerical analysis model of impact damage evolution of composite 

laminates based on peridynamics theory is established, and the corresponding 

calculation program is developed. Moreover, in order to solve the problem of 

incomplete horizon of material points in the boundary region, an improved "surface 

correction factor" is proposed, which can improve the calculation accuracy. On the 

basis of the above model, the damage evolution of composite materials under different 



IV 

impact conditions of cylindrical and spherical rigid bodies is analyzed. 

(2) In order to identify the impact condition of composite laminates, a model 

based on machine learning convolution neural network (CNN) is developed under the 

framework of TensorFlow and Jupyter Notebook. The recognition model uses the 

impact damage evolution data of peridynamic composite laminates under different 

impact conditions for training, realizes the recognition of unknown impact conditions, 

and can control the relative error within 5% and reach a high accuracy. 

 

Key Words: Peridynamics theory, composite laminate, impact damage analysis, Deep 

learning,TensorFlow
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Chapter 1 Introduction 

1.1 Background and significance of the study 

Composite material is an important product of modern material industry and 

technology development. It is a new type of material made by combining material 

components with different properties and attributes according to a certain ratio, level 

and structure by using advanced material preparation technology. The material 

components can be divided into Matrix materials and Reinforcement materials 

according to the different functions in the preparation process, the former is the carrier 

of the latter, while the latter is the functional or structural complement of the former. 

Composites have been used in a wide range of engineering and technical 

applications, including. 

(1) Aerospace. 

Composites are not only extremely strong, but also more thermally stable than 

conventional materials, making them ideal for the various extreme environments in 

which spacecraft are placed. Therefore, they are widely used in components and parts 

such as fuselage shells and glass of aircraft, wings, antennas of satellites, and shells of 

launch vehicles. 

(2) Automotive and delivery engineering. 

The automotive industry is more relevant to our daily life than the 

aforementioned fields, and is also a field where composite materials are very widely 

used. In addition to better fatigue resistance and mechanical strength, composite 

components are more resistant to impact than ordinary materials, and can therefore be 

used in automobile bodies, windshields and other stressed components. 

(3) Construction industry 

With the low price of composite materials and related products, they have been 

more widely used in the field of construction engineering. At present, the composite 

materials used in the construction industry are mainly non-metallic, including fiber 

reinforced materials (glass fiber, carbon fiber, etc.), synthetic resins (rubber), etc. Due 

to their low density, these materials can significantly reduce the weight of buildings, 

improve structural design and architectural design, reduce costs and improve 

economic efficiency. 
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(4) Other areas 

Composite materials can also be used to produce and manufacture a number of 

other components or equipment, such as helmets and body armor for military and 

civilian use. In the military, composite materials are also often used in a variety of 

disaster prevention and hazard avoidance buildings or components. 

In summary, composite materials are often used in structural members due to 

their own characteristics, and therefore, they are also the first to suffer external loads 

or effects during their use, and once damage occurs to these key parts of the 

composite material, it can lead to major accidents. 

To aircraft, for example, one of the major hazards of aircraft in flight is flying 

birds and other outside flying objects, due to the relative speed of the two is great, 

therefore, once the impact of outside flying objects and the aircraft's front windshield 

and other key parts, it is very likely to break these parts and invade the interior of the 

body, thus causing accidents. 

In construction projects, for example, composite materials are often used in 

curtain walls of high-rise and super high-rise buildings, and load-bearing elements of 

buildings, such as floor slabs and roof panels. These components have an obvious 

characteristic, that is, they are exposed to the external environment and are very 

vulnerable to various kinds of external effects, such as explosive loads, impact effects, 

etc. At the same time, once such events occur, they will lead to serious consequences, 

such as falling curtain walls, collapse of floor panels, etc., resulting in casualties. 

For the automotive industry, once the car suffers a sudden impact from the 

outside world during the high-speed driving process, these parts often bear the brunt, 

thus threatening the safety of the driver and passengers. A large number of traffic 

accidents at home and abroad are from external foreign objects, such as stones and 

other broken car glass or body, threatening the safety of the driver's life. Therefore, 

the application of composite materials with excellent load-bearing capacity and 

impact resistance to these parts can greatly protect the safety of pedestrians, thus 

reducing the danger of traffic accidents to people. 

Composite materials almost naturally possess certain defects due to their 

preparation processes and composition principles, including the differences in the 

respective physicochemical properties of the constituent materials, and these defects 

constitute the initial damage of the material, and damage evolution is an important 

topic in the field of engineering. Damage refers to the material or structure under 
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external loading or action, from the fine structure defects (such as microcracks, 

microvoids, etc.) sprouting, expansion and other irreversible changes caused by the 

deterioration of the macro mechanical properties of the material or structure. From the 

traditional point of view, damage analysis is mainly handled by the theory of 

continuous medium mechanics, but this traditional theory is based on partial 

differential equations, and thus encounters setbacks in dealing with spatially 

discontinuous problems such as damage and fracture, while Peridynamicss (PD) is a 

non-local theory based on integral equations, which uses spatial integration to 

describe the action of matter, instead of the traditional continuous medium mechanics. 

The traditional peridynamics theory has a "surface effect" in the application process, 

i.e., the incomplete range of the material points located in the material boundary 

region, and thus the real results are inaccurate. Based on this, a variety of solutions 

have been proposed, such as modeling the internal region only by the peridynamics 

method, while the boundary region is simulated by the finite element method; 

introducing correction coefficients or attenuation factors to correct the material 

properties (micromodulus), etc. In this paper, based on the related research, a more 

concise surface correction factor is proposed to improve the model. 

In addition, due to the wide application of composite materials, improving the 

design of composite materials has also become a very important research content. The 

improvement of the design, in general, needs to be carried out from two aspects, one 

is the possible external load or action, and the other is the properties of the material 

itself, however, the current situation is that once an accident occurs, the information 

we can obtain is often only a series of discontinuous damage data (such as fracture, 

deformation, etc.) on the structural member (e.g., composite laminate) that suffers 

from external load or action, and for the impact object before the accident However, 

these parameters are important factors that can help us analyze the cause of the 

accident. For example, when a car is hit by a stone, we can analyze the source of the 

stone through the cracking of the front windshield, including the direction and speed 

of flight, so as to help relevant agencies and units clarify For aircraft, satellites, 

rockets and other vehicles, we can also analyze the damage on their shells to 

qualitatively determine the form of impact or quantitatively calculate the size and 

direction of the impact, so as to provide more basis for engineers in designing the 

shells of these vehicles. 

In summary, in addition to passively studying the damage of composite materials 
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after being subjected to external loads or effects, and arbitrarily enhancing the 

strength and other properties of the materials themselves, we should consider whether 

we can obtain some parameters of the impact based on the existing damage, with 

emerging technical methods, to help us analyze and restore the information on the 

working conditions of the impacted materials at the time of impact and before the 

impact, and invert the information on the form and size of the impact loads on the 

materials, and other working conditions It is a more important topic to improve the 

design of composite materials. 

1.2 Current status of related research 

As a new theory and method in the field of computational mechanics, 

peridynamics has natural advantages in the direction of solving damage evolution, 

crack sprouting, fatigue, fracture, etc. Although it has only been proposed for a short 

period of more than ten years, and has been introduced to China for only about ten 

years, there are still many scholars at home and abroad who have produced a lot of 

results in this field. 

1.2.1 Status of research on peridynamics theory and 

impact damage 

As mentioned earlier, peridynamics theory has a natural advantage in impact 

damage studies, but traditional PD faces the so-called "surface effect" problem, which 

means that when discretizing material points, the near-field range of material points in 

the boundary region is incomplete, which leads to greater computational errors. 

Therefore, since PD theory was proposed, scholars at home and abroad have carried 

out extensive research based on it, proposed a variety of improved models, and carried 

out simulations and tests for a variety of materials and components, and produced a 

large number of meaningful results. 

In terms of foreign scholars' achievements, early in the research, Madenci et al[1] 

combined the PD method with the traditional finite element method, and used finite 

element modeling for the boundary area, thus avoiding the problem of "boundary 

effect", and modeled and analyzed the structures such as steel plates based on the 

above method, and achieved better results. 
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Florin et al[2] proposed a modified "bond-based" peridynamics model based on 

brittle materials for "boundary effects", simulating the damage evolution and 

development of multi-layer tempered glass (MgG) under the action of high-speed 

impact. The damage evolution and development of multi-layer tempered glass (multi-

layer glass) under high-speed impact is simulated, and most of the numerical results 

of [3] are reproduced, such as stress waves, crack development, deflection, etc. At the 

same time, the damage evolution of the three-dimensional structure of multi-layer 

tempered glass with time is simulated, and the damage and destruction mechanism of 

this typical brittle material of glass is revealed. 

Akbari et al[4] investigated the impact response of polymers. They selected 

poly(methyl methacrylate) (PMMA) as the object of study and developed a modified 

"bond-based" PD model based on this material to simulate the impact of PMMA 

beams with initial cracks at different impact velocities and fracture toughness, and the 

results were in good agreement with other related literature [5-8] 

Butler et al [9] predicted the compressive and impact strengths of carbon 

reinforced plastic flat laminate with initial circular holes by using the PD method. 

Baber et al[10] roposed an improved "bond-based" peridynamics model, taking into 

account bond nonlinear shear deformation and "boundary effects", to simulate the 

deformation and damage of composite laminates under low-velocity impact. The 

deformation and damage response of composite laminates under low velocity impact 

was simulated by Baber et al. 

Bobaru et al[11] proposed a virtual node method for the PD model of elastic 

materials to reduce the effect of "boundary effect" and compared the effect of various 

methods and selected the one with the best correction. 

Bartlett et al[12] improved the virtual node method proposed by Boraru et al. to 

make this method applicable to objects with arbitrarily shaped boundaries, which can 

better eliminate the "boundary effect", and compared the results with those of related 

literature and achieved better results. 

The domestic results mainly focus on the simulation and analysis of complex 

materials or structures such as concrete, ice bodies, and composite materials. Qing 

Zhang[13] was the first to introduce the concept and method of PD to China, and also 

the first to conduct related research in China, improving the calculation method of 

micro-modulus in the traditional PD model, solving the problem of "boundary effect" 

in the model, and based on this improved PD method, simulating concrete structures 
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and members under different working conditions, such as Based on this improved PD 

method, the damage of concrete structures and members under different loading 

conditions, such as impact [14-16]、tensile[17]、and intrusion[18] is simulated with good 

accuracy. 

Cheng et al[19] used an improved damage factor with a modification of the 

conventional intrinsic force function to model and simulate the cracking process of 

engineered cement matrix composites (ECC) and compared it with relevant tests with 

good results. 

Based on the "bond-based" PD theory, Xiong Weipeng et al[20]constructed an 

improved PD model and realized the simulation of the mechanical behavior of a 

complex mixture of ice body under the action of high-speed impact by self-

programming, reproduced the damage characteristics of the ice ball with high strain 

rate during the impact process and the complete damage process of the sphere, and 

accurately simulated the development of surface cracking and overall cracking of the 

sphere. The surface cracks and the development of the overall cracking were 

accurately simulated, while the time course curve of the impact force during the 

impact was identified by the PD program, which was in good agreement with the 

measured values. 

Xiaoping Zhou[21] established a "conjugate bond" base PD model based on the 

traditional "bond base" PD theory, introduced the rotation angle, and derived the 

relevant parameters to realize the damage characteristics of the rock under the blast 

impact load, and achieved a The relevant parameters are derived, and the damage 

characteristics of the rock under the blast impact load are realized with good results. 

In the field of composite materials, Guogun Zheng et al [22] proposed an 

improved BPD model for the problem of the limitation of Poisson's ratio in the 

peridynamics (BPD) model, which can be used both for the simulation of deformation 

and crack extension of orthotropic anisotropic monolayers and for the prediction of 

deformation and crack development of carbon fiber composites with high accuracy. 

Jinsong Zhang[23] derived a new type of iterative formulation for a heavy-headed 

quasi-static intrusion plate based on the punch extrusion model in finite element 

theory, and introduced a volume correction factor in the intrinsic force function to 

establish an impact dynamics model for composite laminates, studied the impact 

damage problem of composite laminates, and simulated the damage evolution process 

of various peer brittle materials. 
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Wang Fuwei et al[24] introduced interlaminar shear and long-range force terms on 

the basis of the traditional laminate model, modified the "boundary effect" in PD 

theory, and derived the relevant equations and parameters to improve the traditional 

model, and used the model to simulate the tensile and impact of each homogeneous 

and each anisotropic laminate, and obtained the The damage evolution of the 

composite laminates was obtained, and the damage pattern of the composite laminates 

was further obtained. 

Qin Hongyuan et al[25] introduced a kernel function correction term reflecting the 

dimensional effect of the long range force in the matrix bond on the basis of the 

traditional intrinsic structure model, which solved the problem of "boundary effect" in 

the traditional PD theory, and simulated the deformation and damage of the composite 

single-layer plate with higher accuracy than the traditional model. It can simulate the 

deformation and damage of composite monolayers with higher accuracy than the 

traditional model. 

The application scenarios and environments of composites are often very 

complex, and a number of domestic scholars have conducted PD simulations for 

composites in different use environments. Zhao Tianyou [26] proposed an improved PD 

model based on composite materials commonly used on ships, and simulated the 

damage evolution of composite laminates and reinforced laminates under the action of 

underwater fragment intrusion laminates and blast impact based on the boundary 

constraints of laminates and underwater environment, and obtained the damage 

evolution of laminates under different impact conditions (impact velocity, impactor 

shape, mass) and lay-up direction; and analyzed the damage evolution law of 

laminates with reinforced bars. The damage evolution of laminates under different 

impact conditions (impact velocity, impactor shape, mass, and layup direction) was 

obtained, and the influence of the size and distribution distance of the reinforcement 

on the strength of laminates with reinforcement was analyzed. Su Boyang et al[27] , 

also for composite materials in ships, improved the principal structure equation by 

introducing a hygrothermal elongation correction term describing humidity and 

temperature, and used this equation to simulate the evolution of impact damage of this 

material in different hygrothermal environments, and analyzed the effect of impact 

velocity on the energy absorption performance of composite laminates, and obtained 

some relevant laws with certain application values, which can be used to improve the 

design method of composite materials on ships. The impact velocity effects on the 
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energy absorption performance of composite laminates are analyzed, and some 

application rules are obtained, which can be used to improve the design method of 

composite materials on ship hulls. 

Due to its good ductility, composite materials are often prepared into a variety of 

shapes according to the actual use scenarios, and most of the domestic and foreign 

studies are carried out based on flat structures. Chen Xiaofeng et al. studied the 

response of curved plates under the impact action based on the study of impact 

damage of composite flat plates[28][29] . A program was written in Fortran to simulate 

the impact damage evolution of laminates with different impact conditions (velocity 

and angle) for various lay-up forms of laminates; meanwhile, the impact resistance of 

sinusoidal curved plate models with different heights was studied and the best 

performing curved plate height was optimized. 

Since the traditional PD theory faces the problem of "surface effect", the current 

impact simulation studies based on peridynamics are mostly based on the traditional 

model, and the form of the intrinsic force function is modified, such as the 

introduction of correction coefficients, attenuation factors, etc. Therefore, we address 

this problem by introducing a more concise expression for the surface correction 

coefficients in the model, based on the existing studies. Therefore, to address this 

problem, we introduce a more concise expression for the surface correction coefficient 

to simulate and analyze the impact damage of laminated plates based on existing 

studies. 

1.2.2 Status of research on impact condition identification 

The impact condition refers to the "Inverse problem" based on the above-

mentioned impact damage simulation work, and many scholars at home and abroad 

have started to study this problem, i.e., to identify the impact condition (such as 

energy, velocity, angle, load, impact force time range and other parameters) based on 

the known data, such as the observed damage evolution, the various types of impact 

response (displacement, strain, etc.) monitored by sensors. In this study, the impact 

conditions (e.g., energy, velocity, angle, load, impact force time range, etc.) are 

identified based on known data, such as the observed damage evolution, various types 

of impact responses (displacement, strain, etc.) monitored by sensors. The current 

research mainly includes the identification of impact velocity and direction, the 

reconstruction of the time course curve of the impact load, and the localization of the 
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impact point. 

Liu et al[30] proposed a time course identification method for impact loads that 

combines the L-curve criterion (RCBSC-ML) and the cubic spline configuration 

method (RCBSC), taking into account the inconvenient installation of sensors and so 

on, and attempted to reconstruct the time course curve of impact loads by 

approximating the unknown force with a linear combination of cubic spline curves 

with good results. 

Inman et al[31] developed a load and damage identification system based on a 

one-dimensional convolutional neural network (CNN) that is capable of monitoring 

and localizing vibration damage in structures in real time (Real-time) and predicting 

the magnitude and location of impact forces. 

Guan et al[32] , on the other hand, determined the analytical solution of the 

displacement function of the plate under impact loading based on Reddy's higher-

order shear deformation theory and the classical laminate theory, and proposed a set 

of impact condition models based on this, which can identify the vibration and impact 

responses in fiber-reinforced metal laminates, and also predict the impact loads and 

displacements to which the laminate is subjected with high accuracy. 

Abraham et al[33] used a hybrid learning approach to build a set of neural network 

models based on the damage data of vehicles in crashes, capable of classifying the 

severity of traffic accidents according to the type and extent of vehicle damage, thus 

providing a reference for researchers and engineers in the automotive industry in their 

designs. 

Kalhori et al[34] completed a series of impact load reconstruction and impact 

location determination using a signal processing approach, including for a multi-story 

tower structure, where the dynamic response signal of the response was measured by 

multiple sensors, including acceleration sensors, vibrometers, and displacement 

sensors, and based on this signal and the superposition principle, the magnitude and 

location of the impact load applied to the tower were reconstructed. In addition, a 

similar method was used to complete the identification of the impact load time course 

curve and the impact position localization on the composite sheet in the field of action 

[35], which achieved high accuracy and engineering application value. 

Kawabata et al[36] optimized the strain sensor based on the observation spillover 

minimization criterion and reconstructed the time course profile of the impact load 

applied to the structure by measuring the obtained low-order modes. 
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Li et al[37] built a program that can identify the car impact velocity (Velocity), 

angle (Angle) and deviation (Offset) from finite element simulation, combined with 

deep learning, which carried out the finite element simulation of car collision through 

ABAQUS, taking the extracted car sound plastic deformation as input, and after 

training in the model, the output obtained the above The identification results of the 

parameters are compared with the real values with high accuracy and good error 

control. 

Fang et al[38] used the small mass impact (Small mass impact) theory, and based 

on the impact force calculation model of plate deflection in this theory and the spring-

impact force prediction model based on impact crater, the impact force was predicted 

using the force, displacement and acoustic emission signals collected by sensors 

during the impact, and the time course curve and energy spectrum of the impact load 

were obtained. 

Zhu et al[39] used ABAQUS to establish a model of low-velocity impact 

composite laminates in the hemisphere and to approximate the location of the impact 

loads by using the stress, strain, and vibration modal data of each layup extracted 

from the software, so that protection against the hazards caused by low-velocity 

impact and repair of the corresponding damage can be carried out, which has some 

practical application value. 

Yan Gang et al. proposed a recognition technique based on Bayes compressed 

sensing (Bayes compressed sensing) method[40] , which reconstructed the time course 

of the impact load based on the impact response measured by the sensor, and the 

shape, duration, and peak value of the time course curve of the recognition result are 

basically the same as the actual impact load, which has certain applicability. 

Jia et al[41] proposed a novel regularization method based on the alternating 

direction multiplier method for the problem of too many dimensions of the 

identification matrix and severe pathologies during impact loading, and successfully 

identified impact loads in cantilever beams and high-speed presses. 

Su et al[42] introduced the Array signal processing technique (ASP) to the field of 

impact condition identification, and used Wavelet transform (WT) and Multiple 

Signal Classification algorithm (MUSIC) to achieve the impact localization of 

composite results with high accuracy and Real-time monitoring is achieved. 

With the development of deep learning, related concepts and methods have been 

introduced into the study of impact condition identification. Shou-Ju Li et al[43] 
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addressed the blast impact loads that may be encountered in protection engineering, 

and the response of the structure (e.g., displacement, velocity, stress, etc.) was used as 

input to obtain the impact loads (magnitude of initial pressure) acting on the structure 

by inversion through the idea of least squares, so that the relevant damage, damage 

mechanisms and further guidance for the design of the relevant protection structures 

could be obtained. 

Guo et al[44] used FBG fiber grating sensor, combined with Wavelet Packet 

Transform and Correlation coefficient method (Correlation coefficient) to achieve the 

impact position identification of composite laminates, to a certain extent can be more 

localized to the exact position or the position adjacent to the exact position, there is 

Certain application and promotion value. Wang Liheng[45] proposed a series of new 

identification indexes, such as pulse rise time and pulse rise area, based on the pulse 

strain signal obtained during the impact process, and found that the time-related 

indexes can be used to identify the damage degree, while the area-related indexes can 

be used for impact location identification. 

Damage evolution of composite materials is a very complex nonlinear problem, 

and the inverse problem of this problem, impact condition identification based on 

damage evolution data, also encounters great challenges. Therefore, in this paper, we 

try to use a deep learning approach to identify unknown conditions based on damage 

evolution data of composite laminates. 

1.3 Development and organization of this paper 

This paper can be divided into two parts according to the work, the first part is 

numerical calculation and the second part is deep learning based impact condition 

identification. 

Composite laminates generate complex discontinuities during the damage 

process, such as fiber fracture, matrix cracking and delamination damage[46] . And due 

to the use of integral form to construct the equations of motion of the object, the 

peridynamics method is well suited to deal with these discontinuities, and through 

bond-by-bond destruction, the peridynamics method can effectively simulate the 

complete process of composite materials from initial damage to final destruction. 

Therefore, in this paper, the peridynamics method is used to develop the study of 

progressive damage and deformation characteristics of fiber-reinforced composite 
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laminates, which are widely used in engineering. 

In Chapter 2, some basic theoretical knowledge of the peridynamics theory is 

briefly introduced[47-49] , which mainly includes the basic equations of motion of 

peridynamics and the physical quantities in the equations, especially some basic 

theories of the intrinsic force functions, including some different forms of the 

functions and the improvements and modifications made by domestic and foreign 

scholars for the traditional intrinsic force functions. 

In Chapter 3, firstly, the basic knowledge of composite laminates is introduced [46, 

49] , including the intrinsic constitutive equations of the plate, and based on this, a rigid 

body impact damage evolution analysis model of composite laminates based on 

peridynamics theory is developed for the impact damage discontinuity mechanics 

problem of composite laminates in combination with the PD method[47, 50]，, and the 

corresponding computational program is developed . Moreover, in order to solve the 

problem of incomplete near-field material points in the boundary region, an improved 

"surface correction factor" is proposed, which can improve the calculation accuracy. 

After the calculation system was built, the impact damage evolution of composite 

laminates under different working conditions (including different shapes, velocities 

and angles) was simulated, and the impact damage results at each intermediate step 

were recorded and analyzed. 

In Chapter 4, a deep learning-convolutional neural network (CNN)-based 

recognition procedure was developed in the framework of TensorFlow and Jupyter 

Notebook to address the problem that the impact damage evolution of composite 

laminates exhibits nonlinear characteristics and the impact condition recognition 

encounters great challenges [51, 52] . In this chapter, we build a database with 1800 

samples by modifying the impact conditions of rigid impact balls and adding "pretzel 

noise"[53] based on the computational procedure in Chapter 3, and use this dataset for 

training to achieve the recognition of unknown impact conditions, and the relative 

error of the recognition results is The relative error of the recognition results is 

controlled within 5%, while the accuracy rate reaches more than 90%, which has 

certain applicability. 

In Chapter 5, we summarize some of the preliminary results obtained in the 

previous chapters and provide an outlook on some future work. 
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Chapter 2 Introduction to Peridynamics Theory 

2.1 Introduction 

The theory of peridynamics was proposed specifically to deal with 

discontinuities such as damage[47] , where traditional mechanics of continuous media 
[54, 55] describes the motion of objects by introducing partial differential equations[54, 

55] , so that at points of spatial discontinuity, there is a problem of non-existence of 

partial derivatives. Peridynamics is a new subject in the field of computational 

mechanics and opens up a new direction for solid mechanics. 

In this chapter, the basic framework of the peridynamics theory originally 

proposed by Professor Silling [47, 50] , i.e., the traditional "bond-based" 

peridynamics[50] , including the PD equation of motion, the intrinsic force function, 

and some modifications and improvements of the traditional intrinsic force function 

by domestic and foreign authors. However, the "bond-based" peridynamics theoretical 

approach has obvious drawbacks [50] , including material properties (e.g., Poisson's 

ratio) limitations, etc. Therefore, an improved "Stated-based" peridynamics was 

briefly introduced afterwards [57]。 Although the "Stated-based" theory compensates 

for the shortcomings of the "Bond-based" theory, it has its own limitations, such as 

the difficulty of mathematical derivation. 

Although the "Stated-based" theory compensates for the shortcomings of the 

"Bond-based" theory, it has its own limitations, such as the difficulty of mathematical 

derivation. 

After that, this chapter continues to introduce the numerical calculation method 

and solution system of PD, including the discretization of the equations of motion and 

the corresponding stability condition, i.e., the condition that the discretized equations 

of motion can converge to a stable solution by the explicit integration method [47, 58]，, 

and this stability condition gives the range of values of the time step t  that we need 

to set in the subsequent calculations.  

2.2 Theoretical framework of peridynamics 
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2.2.1 Overview of "bond-based" peridynamics theory 

Peridynamicss (PD) [59] was proposed in 2000 by Professor Stewart A. Silling of 

Sandia National Laboratories, USA, and has subsequently rapidly become an 

emerging method for modeling and describing the mechanical behavior of matter by 

solving spatial integral equations based on the idea of nonlocal action 

The early PD theory is called "bond-based" theory, which is generally translated 

as "bond-based" theory in China, that is, the interaction only considers the axial force 

between a single material point pair, but the single-parameter model derived from the 

energy equivalence method has the limitation of Poisson's ratio[57]。 

The traditional solid mechanics theory is constrained by the local idea, which 

introduces partial differentiation and spatial derivation in the solution process[54] thus 

requiring spatial continuity of the object, and such requirement leads to greater 

difficulties in dealing with [56] .PD theory, on the other hand, introduces the nonlocal 

idea [60-62] , which is derived from the traditional continuous medium mechanics and 

classical molecular dynamics [63, 64] , which combines the advantages of macroscopic 

mechanics and microscopic dynamics. 

According to the theory of peridynamics, the conventional continuous medium is 

first discretized into an ensemble of matter points and it is assumed that any matter 

point occupies a part of space R. Also, referring to the theory in classical molecular 

mechanics[65], PD theory assumes [47, 59]，that at any moment t，a material point x 

interacts with other matter points within a certain range δof its surrounding space 𝑥 ′ . 

there exists an interaction, as shown in the following figure： 

 

Fig.2.1 Material points and their interactions 
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This point is similar to the intermolecular forces in molecular dynamics[65] , and 

is the core of PD theory, on which the subsequent construction of equations of motion 

and mechanical calculations are based. In the above force relation, δis called the 

horizon of the material point, all such points constitute a region called the "family" of 

material point as ( )H x  , denoted by the following figure： 

 

Fig.2.2 range 

The material points x(k) and x(j) occupy a certain volume V(k) and V(j) respectively, 

while their near-field ranges are
( )k

Hx 和 ( )j
Hx 。 

This interaction, which is also known as the near-field kinetic force, can be 

referred to traditional mechanics[66-68] by introducing a function to describe the 

direction of the magnitude of this force, which is often referred to as the intrinsic 

force function, the force density function, the force vector function, etc. [47] . Similar 

to the traditional mechanics of continuous media [67, 68], the magnitude of this force is 

related to the change in the position and relative position of the material point, so that 

this force function can be denoted as ( , )f η ξ , where: −η = u' u denotes the relative 

position of the material point, −ξ = x' x  denotes the relative displacement of the 

material point, and the material points x、 'x  , which each undergo displacement 

under the interaction, are denoted as u、 'u , respectively, as follows： 
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Fig.2.3 Relative position and relative displacement 

From the viewpoint of classical Newtonian mechanics, it is clear that the change 

of the state of motion of a material point is the result of the combined action of 

external forces as well as the interaction forces between the material points within

( )H x , and therefore, according to Newton's second law [68] , we can establish the 

dynamical equations [59] under PD theory as follows： 

 ( ) ( , ) ( , , ) ( , )
H

t t dH t = +x u x f η ξ b x  (2.1) 

Where：H is the family，expressed as theset of matter points concentrated in 

the local area of the matter point x :  ' : 'R  − x x x ； ( , )tb x  is the external load 

per unit of matter, i.e., the external load density； ( ) x  is the density. 

force function 
The construction of the intrinsic force function is the core and key of 

peridynamics modeling and has been the focus of research since the birth of PD 

theory, because it contains the intrinsic information of the material and directly 

reflects a series of properties of the material itself; therefore, the selection or 

construction of different intrinsic force functions for different materials[69, 70] enables 

PD theory to simulate different materials[71] for static[72] , quasi static[73-76]or 

kinematic[16, 69, 71, 77] phenomena. 

he intrinsic force function itself follows Newton's law in classical mechanics [68] 

and first satisfies the Linear Admissibility Conditions, i.e.： 

 ( , ) ( , )= − − −f η ξ f η ξ  (2.2) 

The physical meaning of this equation is that the near-field kinetic forces in the 

material point pairsand and should occur in pairs with equal magnitude and opposite 
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direction, which is one of the most essential and central features of the "bond-based" 

near-field kinetic theory[47]。 

In addition, the principal structure forces should also satisfy the Angular 

Admissibility Conditions： 

 ( )( , ) + =0f η ξ η ξ  (2.3) 

This equation states that the intrinsic forces between the material points are 

parallel to their relative positions, i.e., the lines of action of the forces coincide with 

the lines of the material points. 

Therefore, in summary, in the "bonded base" near-field kinetic theory, we can 

introduce a scalar function ( , )F η ξ to describe the intrinsic forces [47] , expressed as 

follows： 

 ( )( , ) ( , ) +F=f η ξ η ξ η ξ  (2.4) 

This formula combines the two compatibility conditions mentioned above, where 

the scalar function ( , )F η ξ characterizes the magnitude of the intrinsic force and the 

vector ( )+η ξ describes the direction of the intrinsic force.  

Based on the above description, the study of the present constitutive force 

function can be reduced to the study of the scalar function. In the very first model 

proposed by Silling [47] , this function is further reduced to a linear function, i.e.： 

 ( ) ( )( , )= ,F c sη ξ ξ η ξ  (2.5) 

Where， ( ),s η ξ  is the elongation of the material point pair； ( )c ξ  is the 

micromodulus，, which is a concept similar to the elastic modulus in traditional 

continuum media mechanics and is related to the material itself as a property of the 

material, and many different micromodulus models have been proposed by scholars 

for one-dimensional structures (e.g., rods) and two-dimensional structures (e.g., 

plates), etc. [78-82] , as shown in the following figure： 

 
Fig.2.4 One-dimensional structural micromodulus model 
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Fig.2.5 Two-dimensional structural micromodulus model 

This formulation is a generalization of the classical Hook's Law[68] and is 

therefore formally very concise, and because of this simplicity, PD theory has better 

results in dealing with some simple problems, especially nonlinear ones. 

However, it is also because these micromodular forms are very simple and are 

stretched in the face of more materials that are slightly more complex in terms of their 

intrinsic structure (e.g., concrete, composites), therefore, some scholars have 

introduced various forms of decay terms based on Silling's basic intrinsic force 

functions[81-83] and proposed some kernel function models that can reflect the long-

range force properties, which refer to the intermolecular force variations, which can 

be interpreted as the mesoscopicization of the microscopic model, enabling the PD 

forces to exhibit decaying properties with distance, as follows.： 

 

Fig.2.6 Decay of the action force with distance 

This modification has improved the accuracy of the PD model and has been more 

widely used. In China, some scholars constructed a quadratic polynomial-type 

intrinsic force kernel function under the framework of PD theory [82] , which extended 
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the capability of PD theory in the nonlinear field and could better simulate the 

response of some nonlinear materials. Some scholars[70] also compared different 

kernel function correction terms and identified the kernel function correction term 

with the highest accuracy, and applied it to the simulation of cracking test of concrete 

Brazilian discs, which achieved better results. 

Damage Description 

PD theory was originally proposed to describe discontinuous phenomena such as 

damage, so the definition and description of damage is also a fundamental concept of 

PD theory. Instead of using the concept of "strain" as in the traditional continuous 

medium theory [65] , PD theory introduces a new concept, namely elongation s, when 

considering deformation, and defines elongation as [47, 84], , following the definition of 

strain ε in the mechanics of materials.： 

 ( , )s
+ −

=
η ξ η

η ξ
ξ

 (2.6) 

The parameters in Eq. are defined as above. 

Further, PD theory uses ζ to denote the disruption of a given bond at a material 

point [47]，即： 

 01 ( ', ) , ' (0, )
( , )

0
s t s t t

t
 

= 


ξ
ξ

其他
 (2.7) 

Where：𝑠0 denotes the critical elongation of the material point pair, which for a two-

dimensional model can be defined by the following equation[47]： 

 0

2
6 16 ( 2 )

9

eGs
k  

 

=
 

+ − 
 

 (2.8) 

Where：k is the bulk modulus of elasticity of the material；𝜇 is the shear modulus；

𝐺𝑒 is the critical energy release rate；δ is the near-field radius。 

The meaning of this formula is very clear: when the relative position between the 

material point pairs exceeds the critical elongation, the "bond" between the two points 

is broken and the material is damaged. But this is often the microscopic level of 

"damage," when the "bond" damage gradually accumulate to form a surface, the 

material will also produce macroscopic "cracking". Another function was introduced 

in PD theory to describe this local damage[47]： 
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( , )

( , ) 1 H

H

t dH
t

dH



 = −




ξ

x  (2.9) 

The parameters in Eq. are defined as above. 

The statistical significance of the above equation is the ratio of the number of 

broken bonds to the total number of bonds in the near-field range, with a higher ratio 

indicating more broken bonds.  

2.2.1 Overview of "state-based" peridynamics theory 

The aforementioned "bond-based" PD theory is the mainstream PD theory 

nowadays due to its simplicity, procedural simplicity, and fast computational speed, 

and it has been used for the simulation of various practical problems with different 

materials and working conditions. However, this theory has a very fatal theory, 

namely, the Poisson's ratio of the material is fixed under the assumption of online 

elastic isotropy[47, 57] , 1 4 for a one-dimensional structure (rods, etc.), and 1 3  for a 

two-dimensional material (plates, etc.), it is .  

The traditional "bond-based" peridynamics theory suffers from a limited 

Poisson's ratio, an inherent defect that led Silling et al. to refine it in a paper in 2007. 

The refined PD theory is called "state-based" theory [57] , and overcomes the above-

mentioned shortcomings of "bond-based" theory. The "bond-based" theory has 

overcome these shortcomings. 

rofessor Silling proposed the concept of "state" to replace the "tensor" in the 

traditional theory of continuum mechanics, and the tensor[49, 85] and the "state" can be 

compared and described as follows The comparative description of "state" can be 

represented in the following figure. 
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Fig.2.7 Tensor mapping 

 

Fig.2.8 "State" mapping 

As shown above, "state" was proposed by Silling et al. to compensate for the 

shortcomings of the traditional tensor concept, which can only map a cluster of 

vectors ξ to another cluster of vectors continuously Fξ ; while "state" can map the 

vectors to another cluster of vectors Y ξ  discontinuously.  The "state" can map the 

vector discontinuously to another cluster vector. This is consistent with the original 

purpose of the peridynamics theory, which is to solve the discontinuity problem.  

However, the so-called "state" is only a mathematical concept proposed by Dr. 
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Silling and his co-workers, which is a mapping from a space vector to a tensor set. At 

present, however, the "state-based" peridynamics theory is mathematically difficult to 

derive, so the current literature output is much less than the traditional "bond-based" 

theory.[85-87] 

2.3 Computational methods and solution systems for 

peridynamics 

2.3.1 Discretization of the equations of motion 

The computational methods of PD theory are also being developed and refined. 

In the most generalized way, we first consider a uniform discretization of the 

equation[47] , which yields.： 

 ( ) ( , ) ( , , ) ( , )
H

t t H t =  +x u x f η ξ b x  (2.10) 

Thus, the integral calculation in the near-field range of the material point is 

transformed into a volume summation operation for the material point. 

Most of the problems described by PD theory are dynamical damage problems, 

and under dynamical problems, applying the central difference formulation of 

acceleration[89, 90]： 

 
1 1

2

2n n n
n i i i
i t

+ −− +
=



u u uu  (2.11) 

The dynamic equations can be solved. However, for the static or quasi-static 

problems, the stiffness matrix can be constructed by imitating the finite element 

method and then solved by solving a nonlinear system of equations, but this approach 

generally requires a harsh computer memory machine and has a lower computational 

efficiency. To solve this problem, the earliest foreign scholars[47] effectively solved the 

quasi-static problem under PD by introducing a damping term. Domestic Shen Feng et 

al [91] borrowed the dynamic relaxation method of solving static problems in classical 

dynamics, introduced artificial damping, and constructed a graded loading algorithm 

and related system imbalance judgment criteria, which is the peridynamics method 

can be applied to the computational analysis of quantitative quasi-static deformation. 

Dan Huang et al [82] modified the original PD theory, considered the relative rotation 
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of material point pairs, and developed the corresponding discrete, add-in and time-

integrated algorithms to realize the simulation of composite crack extension process in 

typical concrete members. Qing Zhang et al [[79] elaborated the solution method of PD 

micropole model and gave the static solution format of PD micropole model, which 

improved the computational efficiency without introducing damping terms in solving 

the static problem and provided a new idea of solving the static problem based on the 

PD theory. 

2.3.2 Stability conditions for numerical methods 

Although the explicit integral solution method is simpler, this method can only 

converge the result to a stable solution under certain conditions. Therefore, we need to 

study the stability conditions of the above equations. 

In a related paper[47] , Professor Silling et al. obtained stability conditions on the 

time step ∆t by standard von Neumann stability analysis.  

First write the displacement [81] of the material point i at the n-th time step 

( t n t=   ) in the form of an exponent： 

 ( 1)n n k
iu e  −=  (2.12) 

Where， and k are positive real numbers and complex numbers, respectively. 

According to the stability requirements of the PD numerical system, there are.： 

 1 R  +    (2.13) 

Substitute equation (2.12) into the equation of motion and note that： 
 ( )cos( 1)n n

k iM C x x k V


= − −   (2.14) 

It is obtained that： 

 
2

2 ( )2 1 1 0
i

M t 


 
− − + = 

 
 (2.15) 

Solving this quadratic equation yields： 

 
22 2( ) ( )1 1 1

i i

M t M t 
 

  
= −  − − 

 
 (2.16) 

From equation (2.13), 1 R  +   , it can be derived that： 

 2 it
M


   (2.17) 
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The above equation should hold for all  .  

Eq. (2.17) is the stability condition for the time step in the numerical method of 

peridynamics, i.e., for the time step t  satisfying the equation , the equations of 

motion can be converged to a stable solution.  

2.4 Summary of this chapter 

In this chapter, the basic theoretical framework of the peridynamics theory, 

namely, the traditional "bond-based" peridynamics, including the equations of motion, 

the intrinsic force functions, and some modifications and improvements of the 

traditional intrinsic force functions by domestic and foreign scholars, is introduced. At 

the same time, it is pointed out that the "Bond-based" peridynamics theory has 

obvious shortcomings, including material properties (e.g., Poisson's ratio) limitations, 

and the improved "Stated-based" peridynamics theory is introduced. 

After that, the chapter continues with the numerical calculation method and 

solution system of PD, i.e., the explicit integration method, and analyzes the stability 

condition of the method, i.e., the range of values of the time step derived based on the 

von Neumann stability condition.
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 Chapter 3 Impact damage analysis of laminates based 

on peridynamics 

3.1 Introduction 

Composite materials have been widely used in many engineering fields. This 

chapter firstly introduces the basic theory of composite laminates, and based on this, 

an analytical model based on the peridynamics theory of composite laminate rigid 

body impact damage evolution is established for the problem of discontinuous 

mechanics of composite laminates impact damage, and a corresponding calculation 

program is developed. Moreover, in order to solve the problem of incomplete near-

field material points in the boundary region, an improved "surface correction factor" 

is proposed, which can improve the calculation accuracy. After the calculation system 

was built, the impact damage evolution of composite laminates under different 

working conditions (including different shapes, velocities and angles) was simulated 

in the above model, and the impact damage results at each intermediate step were 

recorded and analyzed. 

3.2 Development and Computing Environment 

3.2.1 Development environment construction 

The peridynamics theory has been proposed for more than ten years, but the 

computational resources applicable to the theory are extremely limited, and the 

computational software and mechanical solution software developed specifically for 

the PD method are still in the research stage. There are several software developed by 

domestic scholars that can deal with simple peridynamics problems, such as 

PdynaComp [81] from Shanghai Jiao Tong University, which can deal with the PD 

theory of damage problems of composite laminates. 

At the same time, the computational procedures and algorithms that can 

effectively improve the computational efficiency are yet to be improved. For general 

problems, researchers need to design and program their own programs, which is time-
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consuming and laborious. For slightly more complex problems, the number of "keys" 

in the model often reaches millions or even tens of millions, which makes it difficult 

for general home computers to handle this level of computation and requires the use 

of more expensive computing resources such as supercomputers. 

Among the available computational software that can perform peridynamics, 

LAMMPS [47] was developed by Sandia National Laboratories in the U.S. LAMMPS 

is called Large-scale Atomic/Molecular Massively Parallel Simulator. Silling et al. 

developed the PDLAMMPS toolkit on the basis of the original framework, which can 

directly call the relevant function libraries to complete the modeling and analysis of 

peridynamics, but this software is based on the LINUX platform, and the building 

steps and processes are However, this software is based on the LINUX platform, and 

the steps and procedures are cumbersome, and the computational power is not 

available on the Windows platform. Therefore, in this paper, we consider using 

Microsoft's Visual Studio Community with Intel's parallel computing software Intel 

Parallel Studio for development and computation, and after the installation and 

integration of the two software, we can directly add the program files of related 

projects. 

Intel Parallel Studio is a professional compiler developed and launched by Intel 

for parallel computing, supporting programming languages such as Fortran, C++, C, 

etc. It also inherits a large number of computational libraries commonly used in 

scientific computing, such as MKL. 

  Fortran is an old programming language, but it still has a strong vitality in 

the field of scientific computing due to its fast computation speed, simple syntax, and 

wide range of related programs. The computational programs in our paper are all 

based on the Fortran language, and both Visual Studio Community development 

environment and Intel Parallel Studio parallel computing software have good support 

for Fortran. 

  After obtaining the computational results obtained by the above 

environment, we consider the visualization operation using MATLAB software. 

  In summary, the computing platform and software development platform 

used in this paper are as follows. 

Table3.1 Table of hardware information of computing platform 

Hardware Type 

PC MSI GE62-2QD Apache 
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CPU Intel Core i7-5700HQ(2.7GHz/L3 6M) 

GPU NVIDIA GeForce GTX 960M 

RAM 8GB DDR3L 1600MHz 

Hard Disk 日立 1TB HDD 

The software configuration of the platform is as follows： 

Table3.2 Computing platform software information table 

Software Type 
OS Microsoft Windows 10 Basic 
IDE Visual Studio Community 2019 

Compilers and solvers Intel Parallel Studio XE 2019 
Plot software MATLAB 

3.2.2 Computational flow and algorithm design 

The content of this chapter involves PD calculations, including the determination 

of bond breakage and the calculation of the velocity and displacement of the material 

point, we can draw the calculation flow of the numerical simulation in this chapter, 

and the detailed process can be shown by the following flow chart： 
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Fig.3.1 Computational flow and algorithm design 

3.3 Modeling of composite laminates and impactors 

3.3.1 Theory of anisotropic composite laminates 
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With the birth and use of high-strength materials such as carbon fiber, composite 

materials, a new type of material, have also begun to be widely used in various 

industrial sectors. Composite materials refer to new materials prepared by using 

various advanced material preparation technologies and methods to synthesize a 

variety of materials (components) with different properties and attributes in a certain 

ratio. Composites have the properties of the original component materials, but often 

have new properties that these materials do not have, such as alloys, which inherit the 

strength of the original component metal materials, while far better than the raw 

materials in terms of fatigue resistance, fire resistance, ductility.。 

Composite single-layer panels are generally made by arranging reinforcing fibers 

(Fiber, such as carbon fiber, glass fiber) in the matrix material at a certain angle, and 

the common structure of composite single-layer panels can be represented in the 

following figure： 

 

Fig.3.2 复 Schematic diagram of composite single-layer plate structure 

The matrix material and the fiber material each have almost completely different 

material properties [45] , the former generally cannot withstand large tensile forces, 

while the latter has extremely strong tensile properties, the combination of the two 

makes the formation of composite materials in addition to having notable mechanical 

properties, often also has some special properties that neither material has, such as 

strong resistance to vibration, fatigue resistance, etc. 

Composite laminates are obtained by bonding single-layer laminates together 

using certain adhesives and in certain orientations, as shown in the figure below： 

  

 

  

  

  



Politecnico di Torino 

30 

 

Fig.3.3 Schematic diagram of composite laminate structure 

Composite laminates are typically anisotropic materials, meaning that the 

material has different material properties and strengths in almost all directions, with 

the strongest along the fiber direction and weaker in the remaining directions. 

Classical composite mechanics has a very detailed study of composite laminates. 

For orthotropic anisotropic composite laminates, the general stress-strain relationship 

can be expressed as：  

 = σ Q ε  (3.1) 

Each quantity in the equation is a tensor. 

Expanding gives：  
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The stiffness matrix of the material Q consists of four independent elastic 

constants. Also, considering that the elastic moduli are all positive, the Poisson's ratio 

12 and 21 should also satisfy the relationship satisfying： 
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=  (3.7) 

 12 211 0 − ＞  (3.8) 

Based on the conventional composite material theory and peridynamics theory, 

we can develop a PD model for anisotropic composite laminates. 

In fiber-reinforced laminates, three types of bonds are considered to be defined - 

fiber bonds, matrix bonds and interlaminar bonds, where interlaminar bonds also 

belong to matrix bonds in a broad sense. According to the relevant literature, the bond 

constants of each of the two bonds and can be given by： 
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3.3.2 Description of damage to composite laminates 

For composite laminates, we can establish two damage description models, one 

is the overall damage, which is to record the fracture of all bonds at the material point, 

including fiber bonds, matrix bonds and interlaminar bonds; the other is the 

interlaminar damage, which is to record the fracture of interlaminar bonds on both 

sides of the material point. 

As mentioned earlier, PD theory introduces the variable ζ to represent the 

destruction of the material point, i.e.： 

 01 ( ', ) , ' (0, )
( , )

0
s t s t t

t
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ξ
ξ
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 (3.11) 

Where：𝑠0 denotes the critical elongation of the material point pair, which for the 

plate model can be defined by the following equation. 
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Where：k is the bulk modulus of elasticity of the material；𝜇 is the shear modulus；

𝐺𝑒 is the critical energy release rate；δis the near-field radius。 

The above equation can be more visually illustrated in the following figure.： 
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Fig.3.4 Bond breakage 

Equation (3.11) shows that at a certain point, when the elongation of the bond is 

greater than the critical elongation, the bond is permanently fractured. 

Introducing another parameter to describe the bond breakage at a given material 

point： 

 
( , )

( , ) 1 H

H

t dH
t
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 = −




ξ

x  (3.13) 

The parameters in Eq. are defined as above. 

The statistical concept of Eq. (3.13) describes the proportion of bonds that have 

been broken in the domain of the material point, and the magnitude of this value 

implies the extent to which the damage has developed at that point, when the value is 

1, it means that all bonds around that point have been broken. 

3.4 Shock theory based on peridynamics 

3.4.1 Shock modeling 

Professor Silling et al. proposed a shock theory based on the principle of 
peridynamics in the related literature, and the shock model contains two parts, i.e., the 
impactor and the impacted structure (generally regarded as a deformed body). The 
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latter is the object of our study and analysis and can be discretized by the PD method; 
for the former, we generally assume that it is an ideal rigid body, i.e., during the whole 
impact process, the impactor only undergoes rigid body displacement and does not 
produce any deformation itself, and the PD-based impact model can be shown as 
follows： 

 

Fig.3.5 Schematic diagram of the impact model based on PD theory 

According to the schematic diagram, the impactor collides with the deformed 

body at a velocity v0. The impacted deformed body is controlled by the equations of 

motion of peridynamics. When the impactor makes contact with the deformed body, a 

part of the impactor penetrates into the deformed body and occupies the position of 

some of its original material points (e.g., point i in the figure). In order to reflect this 

physical phenomenon, we need to reset the position of the occupied material points. 

Again, taking point i in the figure as an example, according to the PD-based impact 

theory, this point should be transferred outside the impacted body along the shortest 

path (as shown in the figure above). From there, we can calculate the velocity at the 

moment ( )t t+  by the following equation: 

 ( ) ( )
( )

t t t
k kt t

k t

+

+
−

=


u u
v  (3.14) 

Where： 

( )
t t
k
+u ， ( )

t
ku : the displacement of the material point at the moment ( )t t+   and 

the moment t； 

( )
t t
k
+v ：the velocity at the moment ( )t t+  of matter point； 

Similarly, at the moment of time ( )t t+  , the reaction force of the material point 

( )kx  against the impacting body can be calculated by the following equation： 
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+

+
−
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v v
F  (3.15) 

Where： 

 ( )
t t
k
+v , ( )

t
kv : point of material moment by moment ( )t t+  and t the velocity 

at the moment of time； 

 ( )
t t
k
+F ：the reaction force of the material point (k) against the impactor； 

 ( )k ：Density at substance point (k)； 

 ( )kV ：the volume occupied by the substance point (k)； 

The inverse force sought to be summed for all material points within the range of 

the impacting body can be obtained（𝑡 + ∆𝑡）moment, the reaction force on the 

impacting body is： 
 ( ) ( )

t t t t t t
k k

k
+ + +=F F  (3.16) 

Where： 

 ( )

1
=

0
t t
k + 




冲击 在 体内

冲击 在 体外
 (3.17) 

That is, if the value is 1, the material point is occupied by the impact and the 

response of this material point needs to be corrected according to the above process. 

 The above equation can be used to describe the variation of the velocity of the 

impacting body movement during the impact. 

3.4.2 Examples 

Professor Silling layer proposed several benchmark problems based on the above 

impact theory, simulated using the PD method, and visualized the results using 

MATLAB software, with the following results： 

Example 1: Rigid circular plate impact test 

In this example, the rectangular plate is impacted by a rigid circular plate, and 

the initial positions of both are as follows： 
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Fig.3.6 Geometric model of the rigid circular plate experiment 

The geometric parameters of the steel plates in the experiments are set as follows： 

Table3.1 Laminate geometric parameters 

参数 备注 数值 单位 

L 宽 200 mm 

W 高 100 mm 

h 总厚度 9 mm 

In addition, the material properties of the impacted steel plate are set as follows： 

Table3.2 Material properties of steel plates 

Property Note Value 

E Modulus 191MPa 

ν Po sson’s rat o 0.33 

ρ Density 8000kg/m3 

The cylindrical impact object is treated as an ideal rigid body, i.e., it does not 

undergo any deformation under the impact, only rigid body displacement occurs, and 

its material properties are set as follows： 

Table3.3 Material properties of the impactor 

Property Note Value 

D Diameter 50mm 

H Height 50mm 

Using the PD method for simulation, in this example, we do not consider bond 

fracture, i.e., the material does not appear to break, so the relevant parameters are set 
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as follows： 

Table3.4 PDParameter settings of PD method 

Property Note Value 

Δ Size of point 1mm 

δ Range 3.015mm 

Δt Time step 1 × 10−7𝑠 

Number of steps 2000 

After reproducing this experiment using the PD method, the following results 

were obtained： 

 

Fig.3.7 Vertical (y-direction) displacement contour of steel plate 

We note that the vertical displacement in the middle of the plate is larger than the 

sides, which is in accordance with the expected results. 

Example 2: Kalthoff-Winkler impact experiment 

Kalhoff and Winkler in 1988 had simulated the crack development of a steel 

plate with two initial cracks subjected to a cylindrical impact by an experiment. The 

geometric model of the experiment is shown in Fig： 
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Fig.3.8 Geometric model of the Kalhoff-Winkler experiment 

The geometric parameters of the steel plates in the experiments are set as follows： 

Table3.5 Laminate geometric parameters 

Parameter Note Value Unit 

L Width 200 mm 

W Height 100 mm 

h Thickness 9 mm 

d Space of crack 50 mm 

a0 Height of crack 50 mm 

h0 Width of crack 1.5 mm 

In addition, the material properties of the impacted steel plate are set as follows： 

Table3.6 Material properties of steel plates 

Property Note Value 

E Modulus 159.96MPa 

ν Po sson’s rat o 8.96MPa 

ρ Density 0.02 

The cylindrical impact object is treated as an ideal rigid body, i.e., it does not 

undergo any deformation under the impact, only rigid body displacement occurs, and 

its material properties are set as follows： 

Table3.7 Material properties of steel plates 

Property Note Value 

D 圆柱直径 50mm 
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H 圆柱高 50mm 

The simulation is carried out using the PD method, and the relevant parameters are set 
as follows： 

Table3.8 Parameter settings of PD method 

Property Note Value 

Δ Size of point 1mm 

δ Range 3.015mm 

sc Critical stretch 0.01 

Δt Time step 8.7 × 10−8𝑠 

Number of steps 1350 

After reproducing this experiment using the PD method, the following results were 

obtained： 

 

Fig.3.9 Crack development in steel plate with initial cracks 

From the above figure, we can observe that, due to the principle of stress 

concentration, the crack starts to sprout from the initial crack tip and spreads to both 

sides according to a certain angle; the measurement can be obtained that the angle 

claimed between the crack and the vertical direction is about 68°, and it is 

symmetrically distributed. 

3.5 Determination of surface correction factor 

At the beginning of the PD model, some scholars found that the calculation 
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results of PD often have certain errors with the finite element software or 

experimental results, mainly due to the incomplete domain of the material point in the 

boundary region, a phenomenon also known as the "surface effect" (Surface effect), as 

shown in the following figure： 

 

Fig.3.10 "Surface effect" 

To make the PD calculations closer to those of conventional continuum media 

mechanics (CM), some authors[59, 81, 84] introduced the concept of long-range forces 

from molecular physics into PD, while Professor Silling et al. introduced a surface 

correction factor to correct the microelastic modulus in the literature[47] , using the 

principle of controlling the strain energy density of the two to be equal to determine 

this factor. 

For fiber-reinforced laminate materials, we propose a more concise expression to 

describe this coefficient based on the above principles, derived as follows.： 

Take the x -direction as an example： 

As shown in the figure below, let the fiber direction of the i-th ply of the laminate 

be αi. An elongation δ is given to the laminate along the x-direction： 
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Fig.3.11 Small deformation assumption 

Then, from the geometric relationship, the elongation along the fiber direction is： 

 , cos( )f i i  =  (3.18) 

In addition, according to the relevant literature [47] , the strain energy density of a 

fiber bond in a laminate under PD theory can be expressed by the following equation： 

 ( )
2

,
1 1 ( , )
2 2PD f fw b s V fac=      η ξ ξ  (3.19) 

Where，facis used to describe the decay of the micromodulus with distance, 

which can be expressed by the following equation [47]: 
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 (3.20) 

Substituting the relevant variables and simplifying gives： 

 

2

,

cos( )1
4

i
PD f fw b V fac

  −
=       

 

ξ
ξ

ξ
 (3.21) 

Summing over all the bonds in the plate, the strain energy of the laminate is 

obtained as： 

 , ,PD f PD fW w=  (3.22) 

Also, we have the relevant equations in the traditional continuum media 
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mechanics. According to the knowledge of composite mechanics, the strain energy in 

the fibers of the laminate and in the matrix can be expressed by the following equation： 
  (3.23) 

 ( ) 2
, 11 22

1
2CM fw Q Q = −   (3.24) 

 2
, 22

1
2CM mw Q =  (3.25) 

Substituting the variables, we have： 

 ( )( )
2

, , 11 22
1 cos( )
2CM f i iw Q Q  = −  (3.26) 

Thereby, summing the strain energy of all the layers, the strain energy stored in the 
fibers and matrix in the laminate can be found as： 

 , , ,

n

CM f CM f i
i

W w=  (3.27) 

 , , ,

n

CM m CM m i
i

W w=  (3.28) 

Where，nis the number of plies of laminate. 

The ratio of CMw and PDw is the correction factor, and the correction factors of fiber 

bond and matrix bond can be obtained as： 

 ,
,

,

CM f
cor f

PD f

W
i

W
=  (3.29) 

 ,
,

,

CM m
cor m

PD m

W
i

W
=  (3.30) 

3.6 Geometric model and material parameters 

After determining the surface correction coefficients, we introduce them into the 

program and perform the numerical simulation work. The composite laminate for the 

numerical simulation in this paper is in the conventional form, i.e., it consists of 

composite single-ply sheets superimposed by correlated interactions (e.g., gluing), and 

interlaminar action bonds are introduced to describe this interlaminar correlation. 

In this paper, we will study the damage caused to the laminate by two different 
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shapes of impact objects, cylindrical and round ball, the relative positions of the two 

at the beginning of the impact are shown in the following figure： 

 

Fig.3.12 Schematic diagram of the initial relative position of the impactor and the laminate 

The specific geometric parameters of the laminate model can be summarized as 

shown below： 

Table3.9 Laminate geometric parameters 

Parameter note Value Unit 

b Width 200 mm 

h Height 100 mm 

t Total thickness 9 mm 

t0 Thickness of layer 1 mm 

The specific geometric parameters of the rigid cylinder are as follows： 

Table3.10 Cylindrical geometric parameters 

Parameter note Value Unit 

𝛷 Diameter 50 mm 

H Height 50 mm 

The geometric parameters of the rigid sphere are as follows： 

Table3.11  Geometric parameters of the sphere 

Parameter note Value Unit 

  Diameter 20 mm 

The composites used in this paper are all aramid/epoxy (K49/EP) materials, with 

reinforcing fibers lay out in： 

Table3.12 Lay out method of reinforcing fiber 
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 Direction 

Example [0/45/90/-45/0/-45/90/45/0] 

As shown in the picture below:: 

 

Fig.3.13 Laminate lay out method 

In this paper, the following intrinsic model is used for the composite material as 

shown in [47]： 
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Fig.3.14 Constitute model of the material 

We do not consider the residual bearing capacity of the material after 

deformation, which is the same in both directions of compression and tension. 

Based on data from the relevant literature, the specific material properties are set 

as follows： 

Table3.13 Material properties 

Parameter Note Value 

Ef Modulus-Fiber 159.96MPa 

Em Modulus-Matrix 8.96MPa 

sf Critical stretch-Fiber 0.02 

sm Critical stretch-
Matrix 0.01 

si 
Critical stretch-

Interlayer 0.05 

3.7 Numerical simulation results under impact conditions 

3.7.1 Simulation results of cylindrical impact damage 

After determining the relevant parameters and variables, we started to 

numerically simulate the composite laminate model in the example. The laminate 

damage includes both intra-ply damage and inter-ply damage, where the intra-ply 
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damage contains both fiber fracture and matrix cracking, while the intra-ply damage 

mainly refers to the delamination of two adjacent layers due to extrusion, 

misalignment, and slip. As mentioned in the previous section, when the deformation 

of the fiber bond or matrix bond reaches their respective limits, fracture occurs in the 

phase key, and damage occurs in the region when a large number of bonds break in 

the region. 

We selected the time step of numerical simulation 8.7 × 10−8𝑠(0.087𝜇𝑠)，The 

total number of calculation steps is 3000, and the damage evolution of each layer is 

recorded in the middle of 500, 800, 1000, 2000 and 3000 steps, respectively, and some 

of the fiber layers with more obvious damage evolution are selected. 

Overall damage 

The damage contour can be shown in the following figure.： 

（1）500 step 

The damage to the laminate at 500 steps is shown in Fig： 

 
(1) 1st/0° 

Fig.3.15 Damage cloud at 500 steps 

At 500 steps, the impactor has a short stroke and only makes initial contact with 

the upper surface of the laminate. Therefore, the damage is almost only concentrated 

in the first layer of the laminate. At the same time, the cylinder will squeeze the 

laminate during the impact, so although the contact area produces obvious damage, it 

is not the most serious part of the damage. With the above image, it can be seen that 

the most serious part of the damage is concentrated at the upper and lower surfaces of 

the cylinder, which will produce a large tensile stress due to the traction on the plate 

surface generated by the movement of the laminate, thus causing tensile damage to 

the substrate material, so the damage is most obvious, which is consistent with our 
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knowledge and relevant test data. 

（2）800 step 

The damage to the laminate at 800 steps is shown in Fig： 

 

(1) 1st/0°                              (2) 2nd/45° 

 
(3) 3rd/0° 

Fig.3.16 Damage cloud at 800 steps 

At 800 steps, the damage continued to develop, and the direction of development 

was roughly the same as the direction of the fibers in this layer; at the same time, 

along the depth direction of the laminate, the damage began to gradually expand to the 

first three layers, and the damage in the latter layers was not yet obvious due to the 

fact that the base had not yet been created with the impact, as well as the extrusion of 

the column. 

（3）1000 step 

 

(1) 1st/0°                              (2) 2nd/45° 
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(3) 3rd/0°                              (4) 4th/-45° 

Fig.3.17 Damage cloud at 1000 steps 

At 1000 steps, we can conclude similarly to the above, that the damage is carried 

out along the fiber release line of this layer, which is especially evident in the results 

of the first three layers, with the most severely damaged yellow areas in the first three 

layers being 0°, 45° and 90°, respectively, in the same direction as the fibers of this 

layer; at the same time, the damage begins to spread down layer 4 with the motion of 

the impactor. 

（4）2000 step 

 

(1) 1st/0°                              (2) 2nd/45° 

 

(3) 3rd/0°                              (4) 4th/-45° 

Fig.3.18 Damage cloud at 2000 steps 

In the first three layers, the damage had been carried out along the fiber direction 

to the edge of the laminate, especially in the third layer is the most obvious, because 

the fiber of this layer is parallel to the short side direction, the fiber length is the 
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shortest; also the fiber direction is parallel to the direction of the cylindrical bus, 

which means that the damage of this layer is the easiest to carry out, and the damage 

is the most This was confirmed by the final test results. 

（5）3000 step 

 

 (1) 1st/0°                              (2) 2nd/45° 

 

 (3) 3rd/0°                              (4) 4th/-45° 

 

 (5) 5th/0°                              (6) 6th/-45° 

 

 (7) 7th/90°                              (8) 8th/45° 
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(9) 9th/0° 

Fig.3.19 Damage cloud at 3000 steps 

At 3000 steps, the column almost completely invaded the laminate, and the 

bottom layer of the laminate (layer 9) started to show damage, and the location of the 

damage was concentrated in the contact position between the two, especially the 

location of the top and bottom surface of the column was the most obvious, which is 

consistent with the previous conclusions. 

In the first four layers, the damage cracks were roughly spider-webbed in layers 

2 to 4, where the damage evolution was more obvious; at this point, the damage was 

carried out along the fiber direction to the edge of the laminate, indicating that the 

matrix of the layer was almost completely fractured at this point and the layer of fiber-

reinforced composite had lost its load-bearing capacity. 

Simulation results of interlayer damage 

Here, we define interlaminar damage as the fracture of the "interlaminar bond" 

between the two adjacent layers above and below a given layer. We have introduced 

interlaminar bonds to describe the interlaminar action, so that the results of 

interlaminar damage can also be obtained, as shown in the following figure. 

  

 (1) 1st/0°                              (2) 2nd/45° 
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 (3) 3rd/0°                              (4) 4th/-45° 

 

 (5) 5th/0°                              (6) 6th/-45° 

 

 (7) 7th/90°                              (8) 8th/45° 

 

(9) 9th/0° 

Fig.3.20 Schematic diagram of interlaminar damage of composite laminates 

Observing the above damage contour diagram, we can find that the interlaminar 

damage evolution form of laminate is similar to that of intra-laminar damage and 

overall damage, but the interlaminar damage tends to be more uniform and blocky. 

Deformation of laminate 
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In addition, we can obtain the displacement of each material point on the 

laminate in the vertical direction, and thus we can obtain the vertical deformation of 

the laminate. Taking the vertical displacement of each material point at 3000 steps as 

a variable, we can plot the deformation of the laminate as shown below： 

 

Fig.3.21 Vertical deformation of laminated panels 

Observing the above images, it can be found that the laminate undergoes 

significant deformation under the impact, and the most obvious is the contact area 

with the impactor, where the deformation profile is "cylindrical", i.e., consistent with 

the shape of the impactor. At the same time, the deformation shows an obvious 

"groove" shape, i.e., the deformation of the laminate is deeper on the impacted side 

and shallower on the back side, which is consistent with the findings of the related 

literature [24]  

3.7.2 Simulation results of round ball impact damage 

Based on the above procedure, we replaced the impactor from a cylinder to a rigid 

sphere, with the geometric parameters of the sphere as described before and the rest of 

the parameters remaining the same. 

Considering the symmetry of laminate layup, we choose two different typical 

working conditions to show the simulation results of impact damage under different 

shapes. 

Case 1（vx=0m/s，vy=24m/s，vz=32m/s）： 

In the 1st case, we set the initial verlovity as vx=0m/s，vy=24m/s，vz=32m/s，

which is equivalent to v=40m/s，α=36.5°，αis the angle between the velocity and 

the normal direction of the laminate, i.e. the angle with the surface of the laminate is 

63.5°.The rest of the initial conditions remain the same as the previous test. 

In order to demonstrate the results of the development of damage at different 

stages, the results of damage evolution at two different stages were selected, 1000 

steps and 3000 steps, the former at the early stage of the impact effect, and the latter at 
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the late stage of the impact effect, and the results of damage evolution at the two 

stages are shown in the following figure： 

1000 step： 

 

(1) 1st/0°                              (2) 2nd/45° 

 

(3) 3rd/0°                              (4) 4th/-45° 

 

(5) 5th/0°                              (6) 6th/-45° 

 

(7) 7th/90°                              (8) 8th/45° 
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(9) 9th/0° 

Fig.3.22 Schematic diagram of the overall damage to the composite laminate 

3000 step： 

 

(1) 1st/0°                              (2) 2nd/45° 

 

(3) 3rd/0°                              (4) 4th/-45° 

 

(5) 5th/0°                              (6) 6th/-45° 
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(7) 7th/90°                              (8) 8th/45° 

 

(9) 9th/0° 

Fig.3.23 Schematic diagram of the overall damage to the composite laminate 

Deformation of laminate 

In addition, we can get the displacement of each material point on the laminate in 

the vertical direction, and thus we can get the vertical deformation of the laminate. 

Taking the vertical displacement of each material point at 3000 steps as a variable, the 

deformation of the laminate can be plotted as shown below： 
 

 

Fig.3.24 Vertical deformation of laminated panels 

Observing the above damage evolution and deformation, it can be found that at 
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1000 steps, the normal travel of the impactor is short, estimated to be about 3 mm 

based on the initial velocity, and only the first three layers of the model produce 

contact with the laminate; at this time, the overall damage situation of the laminate is 

shallow, and the damage area of each layer is small and almost concentrated at the 

contact position between the impactor and the laminate, which is roughly circular, i.e., 

the damage shape is roughly the same as the impactor; when When the program enters 

3000 steps, the rigid round ball almost completely invades the laminate, and at the 

same time, comparing the results of 1000 steps, it can be clearly observed that the 

damage area increases significantly, and the damage of each layer is carried out 

roughly along the fiber direction, which is consistent with the results of other related 

literature. 

Comparing the results under the action of cylindrical impact, it can be found that 

there is a clear relationship between the damage development and the motion 

parameters (velocity, angle) of the impactor. In the cylindrical impact experiment, the 

impact velocity of the impactor is perpendicular to the plate surface, which means that 

the velocity is spatially symmetric, and the damage evolution is also symmetrically 

distributed considering the symmetry of the laminate lay-up direction; while in this 

test, the motion parameters of the impactor do not have symmetry, so the damage 

development also shows a certain generality and correlation with the velocity 

magnitude and direction. The sphere has a horizontal velocity pointing in the negative 

direction of the y-axis and parallel to the direction of the plate; therefore, the damage 

is more pronounced in the negative position of the y-axis than in the positive position, 

i.e., the damage arises roughly in the direction of travel of the impactor. 

Case 2（vx=18m/s，vy=24m/s，vz=32m/s）： 

In this condition, the initial velocity vx=18m/s，vy=24m/s，vz=32m/s，, i.e., the 

velocity along the x-axis is increased, and the rest of the initial conditions are the 

same as above, showing the damage evolution results for 1000 steps and 3000 steps as 

well. 

1000 step时： 
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 (1) 1st/0°                              (2) 2nd/45° 

 

 (3) 3rd/0°                              (4) 4th/-45° 

 

 (5) 5th/0°                              (6) 6th/-45° 

 

 (7) 7th/90°                              (8) 8th/45° 

 

(9) 9th/0° 

Fig.3.25 Schematic diagram of the overall damage to the composite laminate 

3000 step： 
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 (1) 1st/0°                              (2) 2nd/45° 

 

 (3) 3rd/0°                              (4) 4th/-45° 

 

 (5) 5th/0°                              (6) 6th/-45° 

 

 (7) 7th/90°                              (8) 8th/45° 
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(9) 9th/0° 

Fig.3.26 Schematic diagram of the overall damage to the composite laminate 

Observing the overall damage contour of the above laminate, we can find that the 

damage is carried out similarly to that under the action of cylindrical impact. 

At 1000 steps, the ball as the impact object has limited travel, the damage to the 

laminate has not yet been carried out, and the more serious damage is almost always 

concentrated in the contact area between the ball and the laminate. 

Also, due to the spatial asymmetry of the impact velocity, the damage is carried 

out more irregularly in the plane, but the overall conclusion remains the same, i.e., 

more pronounced damage occurs in the direction of travel of the impactor.  

3.8 Summary of this chapter 

This chapter focuses on the simulation of impact damage of composite laminates 

based on peridynamics, with specific work on： 

（ (1) A more concise surface correction factor for composite materials is 

proposed. The traditional peridynamics method faces the problem of "surface effect", 

which means that the near-field range is often incomplete for the material points in the 

boundary region, which leads to large calculation errors. 

(2) To address the problem of discontinuous mechanics of composite laminate 

impact damage, an analytical model of rigid body impact damage evolution of 

composite laminate based on the peridynamics theory was established, and a 

corresponding PD calculation program was developed. Based on this model, the 

damage evolution of the composite laminate is simulated under different impact 

conditions (shape, velocity and angle of the impactor). During the simulation, the 

impactor is assumed to be rigid, i.e., only rigid body displacement occurs, and no 

deformation occurs in itself. During the impact process, we record the results of the 

laminate at different time steps, analyze the evolution of the impact damage and the 

deformation of the laminate, and obtain the damage law of the laminate under the 

action of rigid body impact, i.e., the damage is carried out roughly along the normal 

direction of each ply fiber, the fracture of the matrix precedes the fracture of the fiber, 

the damage area increases with the increase of the impact velocity, and its shape is 

consistent with the shape of the impactor. 
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Chapter 4 Deep Learning Based Impact Condition 

Identification 

4.1 Introduction 

In the previous chapter, we simulated the impact action of a rigid body on a 

laminate under different working conditions through an analytical model of laminate 

impact damage evolution based on peridynamics, and analyzed the development and 

form of laminate impact damage. We found that the damage evolution of a laminate is 

not only related to its own properties and parameters, including factors such as layup 

direction, geometry, and material properties, but also to the impact working conditions, 

such as velocity, angle, and position of the contact area. Therefore, for this 

phenomenon, we consider an "Inverse solution" - based on the damage evolution of a 

plywood layer, we infer the size and direction of the impact it was subjected to in the 

first place. This is a very practical problem in engineering, i.e., some structures 

represented by composite laminates are often subjected to impacts from the outside, in 

different directions and at different speeds, such as front windshields or shells of cars 

and airplanes, which may be hit by birds or rocks, thus causing accidents. The study 

of this phenomenon will help to analyze and restore the working conditions when 

such accidents occur, and provide some theories and evidence for a series of 

subsequent improvement measures or engineering studies. However, since the impact 

damage evolution of composite laminates presents complex nonlinear characteristics, 

the identification of impact conditions encounters great challenges, so we address this 

problem by trying to identify unknown impact conditions using deep learning 

methods. 

4.2 Introduction to Deep Learning Theorys 

Deep learning[95] is a way of Machine Learning (ML), and the main research 

directions of machine learning include decision trees, random forests, and deep 

learning. Its ideas have existed for almost centuries, and as early as the 17th century, 

Thomas Bayes, Pierre-Simon Laplace and others proposed some derivations and 
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conclusions about the method of least squares (Ordinary least squares), and these 

theories also constitute the most These theories form one of the core and essential 

theoretical foundations of machine learning theory today. 

In the 1950s, Alan Turing, the father of computer science, asked in one of his 

papers[93] "Can machines think?" (Can machines think?), asking whether machines 

could learn and become self-aware like the human brain. This question continues to 

plague today's academic community and has, in part, inspired today's work on deep 

learning. At the beginning of this century, Hinton et al. formally introduced the 

concept of Deep Learning (DL). Meanwhile, with the dramatic improvement of 

computer hardware and the birth and practical application of some network models 

(e.g., AlexNet[94] proposed by Hinton in 2012）, deep learning has made great 

progress and become the most popular research direction in machine One of the 

hottest research directions in the field of learning has intersected with almost all 

disciplinary disciplines, and algorithms refined by deep learning have shone in the 

fields of finance, medicine, autonomous driving, drones, and even art, with notable 

results. Today, deep learning is the most widely used term in science, engineering, and 

even the online community. 

Deep learning discovers the intrinsic distribution of data by combining low-level 

features to form more abstract categories or features of higher-level representational 

attributes that can inform the study of similar features in other data. The essence is to 

learn from sample data to discover its intrinsic patterns and levels of representation, 

and the information obtained from this learning process can be of great help in the 

interpretation of data such as text, images, and sounds. The ultimate goal of deep 

learning is to enable computers to learn analytically like humans, and to train various 

types of data to perform subsequent predictions, including recognition, classification, 

regression, etc. 

As one of the methods in deep learning theory, neural networks are one of the 

popular research at present, and many researches related to deep learning are carried 

out on neural networks. Typical neural network models include fully connected neural 

networks (FNN), convolutional neural networks (CNN), recurrent neural networks 

(RNN), and so on. Each of these networks has its own characteristics and strengths, 

and it is often necessary to select the appropriate network according to the specific 

research problem. 

At present, the code of deep learning is mainly presented in the form of Python 
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language. At present, there are already a large number of libraries and platforms 

developed for deep learning internationally, and these libraries and platforms 

constitute the development framework of deep learning, and the related development 

work can be carried out on the basis of the above framework, among which some 

more popular frameworks have been widely popularized and applied, abroad, 

including TensorFlow developed by Google, Caffe developed by UC Berkeley Caffe 

developed by Google, Theano developed by Polytechnic Institute of Montreal, 

PyTorch launched by Facebook AI Institute, etc. In addition, domestic research 

development frameworks include the deep learning platform Flying Paddle 

(PaddlePaddle) launched by Baidu with years of deep learning technology and 

business applications, Jittor developed by Tsinghua University, MindSpore launched 

by Huawei, etc. 

TensorFlow developed by Google is one of the most widely used frameworks, 

and the computational libraries, software packages and other related data materials 

based on this framework are the most complete, so the deep learning models in this 

paper are all developed and built based on TensorFlow. 

4.3 Model Selection 

As mentioned earlier, the development of deep learning so far has given birth to 

a large number of network models, including the classical BP model, CNN model, 

RNN model, FNN model, GAN model, etc. These models have different 

characteristics and are also applicable to different practical problems, and choosing a 

suitable class of network models is our first job. 

4.3.1 Common Network Models 

1. Fully connected network, FNN 

A fully connected neural network is one of the most traditional neural networks 

in which two neurons in any two adjacent layers are interconnected, and its structure 

is shown in the following figure： 
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Fig. 4.1 Fully connected neural network model 

In each iteration, the data in the input layer is first passed one-way until the 

output, the error is calculated, and then the parameters are updated by the back 

propagation algorithm and a second iteration is performed, cyclically advancing the 

above process until the final error converges. 

2. Convolutional Neutral Network, CNN 

Convolutional neural networks (CNNs) are a clever combination of computer 

science and mathematics, and have now become a highly influential part of the 

computer vision field, with a wide range of applications in many areas, such as image 

recognition and behavior classification. 

 
Fig.4.2 卷积神经网络模型 

3. Recurrent Neural Network, RNN 

Recurrent neural networks are also known as recurrent neural networks. Such 
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networks can be used to deal with a more specific class of problems where there is a 

clear Sequence relationship between feature data, a typical example being the 

language used by humans. Almost all languages contain certain grammatical rules, 

which means that words can only be arranged in a specific order to produce a specific 

meaning, and different orders often mean different meanings. Therefore, recurrent 

neural networks are born. 

 

Fig.4.3 Schematic diagram of the recurrent neural network timeline 

Comparison of the models 

We list the characteristics and the most important usage scenarios of the above 

three neural networks in the following table： 

Table4.1 Comparison of three types of neural networks 

 FNN CNN RNN 

Features Connections exist 

between each 

neuron on two 

adjacent layers of 

the network, with 

a simple structure 

and wide 

applicability, but 

a large number of 

parameters 

CNN can 

significantly reduce 

the number of 

parameters to be 

measured 

compared to FNN 

by extracting and 

enhancing data 

features through 

convolution and 

pooling operations 

There is a recurrent 

layer, i.e., the 

output of this layer 

and the sample data 

are used together as 

the input of the 

next layer, so there 

is a memory 

function for the 

sample data 

The type of 

problem suitable 

In terms of 

principle and 

Suitable when the 

input data is two-

Such as text 

recognition, natural 
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for structure, the 

most traditional 

FNN is suitable 

for all problems 

dimensional, such 

as image 

recognition, face 

recognition, etc. 

language 

processing, text 

padding, time 

series related 

problems Select 

Selection  √  

As described in the table above, we consider the damage data of the laminate as a 

multi-channel number of pictures, so the convolutional neural network is best suited 

for our work. 

4.3.2 Convolutional neural network and image recognition 

Deep learning theory has a wide range of applications and has yielded numerous 

results in search techniques, data mining, machine translation, natural language 

processing, multimedia learning, speech, recommendation and personalization 

techniques, and other related fields. 

Image recognition, on the other hand, is a technical area of great interest to deep 

learning. Image recognition refers to the technology of using computers to process, 

analyze and understand images in order to recognize various targets and objects with 

different patterns, which is a practical application of deep learning algorithms. At this 

stage, image recognition technology is generally divided into face recognition and 

commodity recognition. Face recognition is mainly used in security inspection, 

identity verification and mobile payment; commodity recognition is mainly used in 

the process of commodity circulation, especially in the unmanned retail field such as 

unmanned shelves and intelligent retail cabinets. 

The traditional image recognition process is divided into four steps: image 

acqu s t on →  mage pre-process ng → feature extract on →  mage recogn t on, as 

shown in the following figure： 

 

Fig.4.4 Image recognition process 
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Convolutional neural networks (CNN), recurrent neural networks (RNN), RNN-

based long-short term memory model (LSTM), deep confidence networks, generative 

adversarial nets (GAN) and other common network structures are widely used in the 

field of image recognition. The traditional classical models have not disappeared, but 

are being updated, and there are many related researches. Hinton, a leading figure in 

deep learning, and his student Alex Krizhevsky designed a new model called 

AlexNet[94] based on the traditional convolutional neural network (CNN), and applied 

ReLU, Droupout and LRN techniques in CNN for the first time, and applied the 

model to super large-scale image recognition. achieved better recognition accuracy 

than traditional networks and won the championship in the ImageNet competition in 

2012; after that, results born on this basis began to emerge. Domestic scholars Zhou et 

al [96] developed a set of migration learning algorithms based on AlexNet and applied 

them to image recognition in industrial environments, solving the problems of 

complex maintenance and poor environmental adaptability of traditional methods. in 

2013, Zeiler's team[97] further updated AlexNet in that year's ImageNet competition. 

Google, Microsoft, Facebook, and other Internet giants Google's AI team[97] designed 

and proposed the model of GoogleNet in 2014, which further reduced the error rate of 

image recognition to about 6.7%. 
Channel 

Channel is a very important concept in image theory, initially referring to the 

display scheme of a computer or print for pictures, the former mainly being the RGB 

channel and the latter commonly being the CMYK channel. The essence of a two-

dimensional image is a collection of pixel dots, each of which displays only one color, 

which in turn is a superposition of the grayscale values of the R (red), G (green) and B 

(blue) color channels. 

Take RGB channel as an example, for any picture, each of its pixel points is 

displayed through a three-dimensional array (R,G,B) to show the corresponding color, 

where R,G,B that represents the value of the three color channels of red, green and 

blue, known as grayscale value, the range is [0,255], the operation of the channel is 

reversible, that is, a picture can be separated into three channels on the sub-picture, 

and the three sub-pictures can also be be superimposed into the original picture in 

some way, as shown in the following figure.： 
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Fig.4.5 RGB channel 

Based on this theory, we propose a channel division method for laminate damage, 

i.e., the damage of each layer is input to the neural network as a channel, and the 

damage is divided as shown in the following figure： 

 

Fig.4.6 Damage channel division 

Convolutional layer 

Convolutional layers are the core of convolutional neural networks. When the 

number of layers of fully connected neural networks increases and the number of 

neurons in the hidden layer gradually increases, the number of parameters to be 

optimized also increases exponentially, which is a great test for the computer's 

computational power. Convolution operation avoids this crisis. Take image 

recognition as an example, there is often a lot of repetitive or useless information in 

the image summary, so we apply convolution to the image, the essence of which is to 

extract the significant features (such as edges) in the image to reduce the number of 

features and thus the number of parameters. 

The principle of the convolution operation can be represented in the following 

figure： 

Take a 4×4 grayscale image, the number in the image represents the grayscale 

value of the pixel, 0 is all black and 255 is all white. We take a 3×3 convolution kernel 

to convolve the image with a step size of 1, i.e., the convolution kernel moves to the 

right or down one at a time, and the convolution operation can be shown as follows： 
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Fig.4.7 Schematic diagram of convolution operation 

The size of the image obtained after the convolution operation is related to the 

size of the convolution kernel, the step size of the convolution operation, etc., and 

satisfies the following equation： 

 2 1n p fo
s

+ − 
= + 
 

 (4.1) 

Where，he input image size is ×n n； the convolution kernel size is ×f f ； the 

thickness of the fill layer is p； the step is s；the size of the output image is o；“   ” 

is the downward rounding sign. 
Observe the above process, and then combine with the above formula, we can 

find that after the convolution operation of the original 4×4 grayscale image, the 

image size becomes 2×2, which also means that some grayscale information of the 

original image edges is lost, and in most cases, we want to keep the image size 

unchanged after the convolution operation. To meet this requirement, we try to expand 

the image size by filling "0" value points around the original image, as shown in the 

following figure： 
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Fig.4.8 Diagram of filling operation 

With this method, an image of the same size as the original image can be 

obtained after the convolution operation. 
Pooling layer 

Pooling is necessary in convolutional neural networks, especially when the 

amount of data is large, and pooling is also called Downsampled. Too much data in 

the input model often means too many parameters, which means it is very easy to 

cause overfitting. Therefore, we consider introducing a pooling layer to downsample 

the features, compress the number of data and parameters, reduce overfitting, and 

improve the fault tolerance of the model. 

The two common pooling methods used today include Max pooling and Average 

pooling. 

 

（a）Max pooling                       （b）Average pooling 

Fig.4.9 Pooling 

In general, the two pooling methods do not have an essential effect on the results. 

In this paper, we consider using maximum pooling. 

4.4 Convolutional neural network construction 

We build our impact work recognition network on the basis of classical image 

classification convolutional neural network, and before that we need to determine 

some parameters in the network. 

4.4.1 Activation Function 

The activation function is a very important concept in deep learning networks 

and is also known as the "transfer function" in artificial neural network theory. It acts 
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directly on the neuron, mapping its original linear input to the output. 

  For neurons that do not add an activation function, we call them 

"Perceptron", which is a very primitive learning network that is also capable of 

performing some learning and regression work, and whose principle can be 

represented in the following figure： 

 

Fig.4.10 Perceptron model 

在 In the above figure, the input layer elements 1x 、 2x  with weights 1w 、 2w  

and bias b，are transformed by a simple linear transformation to obtain the output of 

this neuron ，i.e.： 

   1
1 2

2

x
w w b

x
 

 =  + 
 

 (4.2) 

From the above figure and a simple mathematical derivation, it is clear that if 

only the perceptron model exists in the network, the model remains linear even if the 

number of neurons and hidden layers is increased. This model is then extremely 

biased when fitting nonlinear events. 

  Therefore, the most important point of the activation function is to introduce 

nonlinear properties into the network, so that our network can learn and understand 

those complex nonlinear models. 

  Activation functions commonly used in deep learning include： 

1. Sigmoid 

 ( )
1

1 xf x
e−

=
+

 (4.3) 
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Fig.4.11 Schematic diagram of the Sigmoid function 

The Sigmoid function is also known as the "logistic function" and is also known 

as the S-shaped growth curve in the field of biology. As a very common activation 

function, it can map the continuous value of the input to the output of the interval. 

This feature makes the Sigmoid function extremely useful for binary classification 

problems, i.e., to determine the class of the input by judging the magnitude of the 

function value and 0.5. 

  Sigmoid was once widely used, though in recent years it has been used less 

and less frequently because of some of its inherent drawbacks. One is that it tends to 

lead to gradient explosion and gradient disappearance when gradients are passed 

backwards in deep learning networks; the second is that its parsing formula contains 

power operations, which can significantly reduce the training efficiency of the 

computer for larger data sets. 

  In addition, the output values of Sigmoid are all greater than 0, making the 

output not zero-centered, which in a way causes the "bias phenomenon". 

2. Tanh 

The Tanh function is mathematically known as the "hyperbolic tangent function" 

and has the following functional equation： 

 ( )
x x

x x

e ef x
e e

−

−

−
=

+
 (4.4) 

The image of the function is shown below： 
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Fig.4.12 Schematic diagram of Tanh function 

From the above function image, it can be seen that the Tanh function maps the 

input to the interval (-1,1) and, according to the symmetry of the image, implies that 

the output of the Tanh function is a distribution with 0 as the mean. Compared with 

the Sigmoid function, the problem that the latter is not zero-centered is solved, and the 

problems of power operation and gradient disappearance still exist. the Tanh function 

has a similar image trend to the Sigmoid function, which means that the function is 

also applicable to the binary classification problem. combining the above advantages, 

disadvantages and common points, we will be accustomed to using the Sigmoid 

function on occasions when it can be Tanh function instead. 

3. ReLU(Rectified Linear Unit) 

The ReLU function is a very simple function to take the maximum value with the 

following functional equation： 

 ( ) max(0, )f x x=  (4.5) 

The image of the function is shown below： 

 
Fig.4.13 Schematic diagram of the ReLU function 

The ReLU function is essentially a take maximum function in mathematics - for 

positive values, the function value is equal to itself, and for negative values it is 0. 

ReLU is currently the most widely used activation function in deep learning, 

especially in convolutional neural network models, and almost all such models use 

ReLU as the hidden layer ReLU is the most widely used activation function in deep 

learning. 

  Thanks to the simple form of ReLU, it converges faster than the first two 

and solves the problem of gradient vanishing at the same time. But the ReLU function 

also has two problems. One is that it is not fully interval derivable, and the derivative 

function is not continuous at the origin; second, its output is still not a distribution 

with 0 as the mean; third, ReLU maps all negative inputs to 0, meaning that it ignores 
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the contribution of negative features. 

  In the model of this paper, we use ReLU as the activation function in all the 

two convolutional layers except the final linear output layer. 

4.4.2 Hyperparameter setting 

Hyperparameter refers to a set of parameters that need to be specified before the 

network starts training. It is different from another type of parameters that need to be 

updated through learning, because once the hyperparameter is specified, it will not be 

changed during training. Therefore, the setting of hyperparameters is also a very 

important issue in the construction of deep learning networks. The hyperparameters 

involved in deep learning include Learning rate, Batch size, etc. In a broad sense, 

hyperparameters also include non-numerical parameters such as Loss function, 

Optimizer, etc. 

  Since the hyperparameters need to be set before the network starts iterative 

training and will not be modified during the training process, and since the training of 

deep networks is generally time-consuming, selecting a better set of hyperparameters 

as much as possible can significantly improve the learning efficiency and of deep 

learning networks. 

  A series of hyperparameters are determined in this paper as follows： 

1. Learning rate 

The learning rate determines the magnitude of parameter updates during each 

iteration of training： 

 1j j  + = −   (4.6) 

Where 1j + 、 j ——parameters to be learned； 

 ——Learning rate； 

——
loss





，the partial derivatives of the loss function with respect to the 

parameters。 

The effect of learning rate on training is shown in the following figure.： 

Learning rate too small： 
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Fig.4.14 Learning rate too small 

As shown above, when the learning rate is too small, the training process iterates 

slowly and tends to fall into a local optimum solution, i.e., the loss function converges 

when the gradient decreases to a very small value. 

When the learning rate is too high： 

 
Fig.4.15 Excessive learning rate 

And when the learning rate is too large, the gradient oscillates repeatedly around 

the optimal solution and sometimes fails to converge. Therefore, it is crucial to choose 

an appropriate learning rate. 

In deep learning, we use a very basic strategy of choosing the learning rate, i.e., 

choosing a larger learning rate at the beginning of training to make the gradient 

converge to the optimal solution first, and then using a smaller learning rate to 

converge to the optimal solution. Therefore, we consider the "exponential decay 

learning rate" to describe this kind of adjustment. tensorFlow framework provides the 

corresponding function tf.train.exponential_decay. based on this function, 

the learning rate is adjusted during the iterative process by the following equation： 
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2. Batch size 

Batch size refers to the number of samples selected for training at one time. In 

particular, when the total sample size is extremely large, it is not physically possible 

to feed all samples into the model at once. In addition to this factor, the batch size also 

affects the degree of optimization and training speed of the model, and an 

inappropriate batch size may cause the model to converge to a local optimum. 
3. loss function 

The loss function can quantitatively evaluate the degree of difference between 

the recognition result of the model and the true value. Generally speaking, the smaller 

the loss function is, the stronger the model is and the better the performance is. The 

loss function used varies for different models. For example, for a series of 

classification problems such as image recognition problems, we tend to use the cross-

entropy loss function, while for continuous output problems such as regression, we 

use the mean square error (MSE) loss function. 
4. Optimizer 

The optimizer is a class of algorithms used to find the optimal solution in deep 

learning network models. Its main role is to guide the parameters of the loss function 

to update the appropriate size in the right direction during the backpropagation 

process of deep learning, so that the updated parameters can keep the loss function 

value close to the global minimum. 

The most central optimization idea of almost all optimizers is the use of gradient 

descent (Gradient descent). Currently, the commonly used optimizer algorithms 

include Stochastic gradient descent (SGD), Adaptive learning rate algorithm 

(AdaGrad), etc. In this paper, we use the Adam optimizer based on the self-using 

learning rate algorithm, which is also a widely used optimizer in deep learning.Adam 

is a set of the aforementioned methods, and its main advantages include： 

 Simple implementation, efficient computation and low memory requirements. 

 The update of the parameters is not affected by the scaling transformation of the 

gradient. 

 Suitable for scenarios with large-scale data and parameters, etc. 

5. Dropout 

Dropout technique was first introduced in AlexNet in 2012 by Hinton and his 

team, the titan of deep learning. This technique means that during the training process 
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of a neural network, for each layer of neurons, a portion of the neurons are randomly 

dropped according to a ratio (called "Dropout rate") set by the implementation. The 

main purpose of introducing dropout is to prevent overfitting of the convolutional 

neural network during training, as shown in the following figure： 

 
Fig.4.16 Normal fit, underfitting and overfitting 

verfitting means that the model learns the features of the data in the training set 

excessively and is less sensitive to the unexpected data features in the training set. 

During the training process, although the loss function is converged to a very low 

level, however, the real recognition ability of the model is poor. 

A comparison of the neural network with and without the dropout added is 

shown below： 
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Fig.4.17 Adding dropout 

Through the above comparison, it can be noted that the network after dropout is 

more streamlined than the original network, thus reducing the probability of 

overfitting. 

  After clarifying the above concept, and after several rounds of attempts, we 

finally selected the hyperparameter settings as shown in the following table： 

Table6.2 Hyperparameter setting table 

Hyperparameter Value 

Learning rate base 0.001 

Learning rate decay 0.99 

Training set 1440 

Validation set 180 

Test set 180 

Batch size 18 

Training epoch 3000 

Dropout rate 0.025/0.2 

Loss function MSE 

Activation function ReLU 

Optimizer Adam 

4.4.3 Network Structure 

After determining the neural network type and all hyperparameters in the 

network, we can draw the neural network structure of the response, as shown below： 

 

Fig.4.18 Neural network structure diagram 
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In the first fully connected layer, we set up with 1024 neurons, and in the second 

fully connected layer, with 256 neurons. 

4.5 Impact condition identification 

The main content of this chapter is deep learning-based impact condition 

recognition, and the computational flow of this part is shown in the following figure： 

 

Fig.4.19 Calculation flow of this chapter 

4.5.1 Dataset construction and partitioning 

1. Dataset construction and partitioning 
First, we specify the coordinate system settings for the laminate as shown below： 

 
Fig.4.20 Coordinate system setting of laminate model 

After that, we construct the data set based on the calculation procedure in the 
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previous chapter by modifying the ball impact velocity and angle, where the velocity 

is from 30 to 70 in size with a step size of 5, for a total of 10 groups. The angles range 

from 0° (perpendicular to the plate) to 85° (almost parallel to the plate) in steps of 5°, 

for a total of 18 sets. The following figure shows： 

 

Fig.4.21 Schematic diagram of speed and angle 

2. Data enhancement 
With the combination of speed and angle described above, we can obtain a 

sample set consisting of 180 data sets. According to the experience related to deep 

learning, this amount of data is low, therefore, we consider obtaining more data by the 

method of Data augmentation. 

  The traditional data enhancement methods include SMOTE (Synthetic 

Minority Over-sampling Technique) method, adding noise (Gaussian noise, pretzel 

noise, Poisson noise, etc.), and the traditional data augmentation methods are used to 

expand the number of sample data sets (Data set) when they are small. Sample pairing 

method, Mix up method, etc. 

  In this paper, we consider data enhancement by adding "Salt and Pepper" to 

the data. 

  "Pepper noise" is divided into "pepper noise" and "salt noise", which refer 

to white dots with a gray value of 1 and black dots with a gray value of 0, respectively. 

We add a given percentage of noise to the image by controlling the value of signal-to-

noise ratio (SNR). 

  In this paper, we set SNR=0.99, and add noise to all damage images 

according to this ratio, i.e. "pepper noise" or "salt noise" is added to 1 out of every 

100 data. The damage contour after adding noise is shown in the following figure： 
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Fig.4.22 Damage contour after adding noise to layer 1 in case 1 (v=30m/s, α=0°) 

A comparison with the original image is shown below： 

 

(a) No noise added                                            (b) Noise added 

Fig.4.23 "Pepper noise" effect diagram 

The yellow and blue dots in the figure are the added "pretzel noise", which 

accounts for 1% of the total number of points. This percentage is very small and will 

not blur the features of the damage contour. The above operation was repeated 10 

times for each damage image, as shown in the following figure： 

 

Fig.4.24 Data enhancement 
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Then, for each condition, we can obtain 10 different sets of noise added damage 

contours, which can expand the sample capacity from 180 to 1800 sets, thus achieving 

the effect of data enhancement. 

3. Partitioning of the data set 

With the initial construction and data augmentation described above, we obtained 

1800 sets of sample data, and these constitute our subsequent deep learning dataset. 

According to the deep learning theory, we need to divide the 1800 sets of data 

into three groups, i.e. Training set, Validation set and Test set. 

The three data sets serve the following purposes. 

(1) Training set: the training set is input into the model at the beginning of the 

phase for training, helping the model to keep updating its parameters during the 

training process; in terms of quantity, it accounts for the largest share of the data set. 

(2) Validation set: The main function of the validation set is to prevent the model 

from "overfitting" and to verify that the model has sufficient generalization ability, i.e., 

similar sensitivity to different data sets.  

(3) Test set: The role of the test set is to test the recognition ability of the model 

using the trained model after the training is finished. 

According to the related literature, the ratio of the three data sets can be set to 

8:1:1. According to this ratio, we randomly select 1440 sets as the training set and 

input them into the constructed neural network for training; then randomly select 180 

sets as the validation set to verify the generalization ability of the model after each 

round of training to prevent overfitting; and the last 180 sets as the test set to test the 

accuracy of the model after the training is completed. model recognition accuracy. 

In the aforementioned division of material points, the laminate was divided into 

more than 180,000 material points in total. However, according to the damage 

evolution contour obtained in the previous section, almost all the damage of the plate 

is concentrated in its central area, i.e., the area in contact with the impactor and its 

peripheral part, while the other areas, especially its edge areas, hardly produce any 

damage. Based on this, we consider cutting the original laminate by cutting off 20% 

of the length of each side of the plate, and selecting only the damage data of the 

material points in the central part as the input of the neural network. 

The discarded areas have zero damage values, so they do not affect the 

distribution of the damage data, and at the same time, the amount of input data is 

reduced by about 40%, which also improves the computational efficiency. The 
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laminate is cut as shown in the following figure.： 

 

Fig.4.25 Schematic diagram of laminate cutting 

4.5.2 Identification based on the whole dataset 

After building the model and getting the training data set, we can input 144 sets 

of training set data into the input layer of the model and start the training. After 3000 

rounds of iterative training, the time-course curves of the damage functions of the 

training and validation sets can be plotted as shown below： 

 
Fig.4.26 Training loss for the training and validation sets 

Observing the loss function curves, we can find that after 3000 rounds of 
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iterative training, the loss functions of both have converged to very small values. 

  Unlike the classification problem, we define the accuracy rate in this paper 

as follows: the recognition result is considered accurate when the absolute error 

between the recognition result and the true value is not greater than 5（°/ m s）. 

  Based on the above definitions, an image of the 3000-round accuracy time 

course curve can be plotted as shown below： 

Fig.4.27 Accuracy of training set and validation set 

After 3000 rounds of training, the accuracy of both the training and validation 

sets reached about 95%, indicating that the model has a high recognition accuracy and 

no "overfitting" phenomenon. 

  We used the trained model to recognize the remaining 180 test sets and 

selected 18 of them to show the recognition results as follows： 

Table4.7 Table of identification results 

No. v[ m s ] α[°] 

1 64.98  35.96  

2 54.90  47.32  

3 60.47  78.04  

4 58.06  80.45  

5 74.09  54.50  

6 37.82  22.84  
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7 56.65  18.78  

8 53.26  34.64  

9 45.73  10.42  

10 75.96  60.93  

11 69.48  55.46  

12 46.91  22.58  

13 63.77  10.87  

14 57.56  51.56  

15 35.84  48.01  

16 51.32  53.99  

17 35.16  10.84  

18 62.13  25.73  

The label values (true values) corresponding to each working condition are 

shown in the following table： 

Table4.8 Table of label values 

No. v[ m s ] α[°] 

1 65 35 

2 55 50 

3 65 80 

4 60 80 

5 75 55 

6 35 20 

7 55 20 

8 55 35 

9 45 10 

10 75 60 

11 70 55 

12 45 20 

13 60 10 

14 60 60 

15 35 45 

16 50 55 

17 35 10 
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18 60 25 

From there we can calculate the relative error as shown in the following table： 

Table4.9 Relative error table 

No. v α 

1 0.04% 2.74% 

2 0.18% 5.35% 

3 6.96% 2.45% 

4 3.23% 0.57% 

5 1.21% 0.91% 

6 8.06% 14.21% 

7 3.00% 6.08% 

8 3.17% 1.02% 

9 1.63% 4.17% 

10 1.28% 1.54% 

11 0.74% 0.84% 

12 4.24% 12.92% 

13 6.28% 8.66% 

14 4.07% 14.06% 

15 2.41% 6.69% 

16 2.65% 1.84% 

17 0.45% 8.37% 

18 3.55% 2.90% 

Average 2.95% 5.30% 

The absolute errors are shown in the following table.： 

Table4.10 Absolute error table 

No. v[ m s ] α[°] 

1 0.02  0.96  

2 0.10  2.68  

3 4.53  1.96  

4 1.94  0.45  

5 0.91  0.50  

6 2.82  2.84  

7 1.65  1.22  
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8 1.74  0.36  

9 0.73  0.42  

10 0.96  0.93  

11 0.52  0.46  

12 1.91  2.58  

13 3.77  0.87  

14 2.44  8.44  

15 0.84  3.01  

16 1.32  1.01  

17 0.16  0.84  

18 2.13  0.73  

Average 1.58  1.68  

Standard 

deviation 1.24 1.92 

Reading the data in the error table, we can get, in the speed identification results, 

the maximum relative error is located in working condition 6, 8.06%, the minimum 

error is located in working condition 1, only 0.04%, the average relative error is 

2.95%; the maximum absolute error is located in working condition 3, 4.53 m s , the 

minimum error is located in working condition 1, only 0.02 m s , the average absolute 

error is 1.58 m s . 

In the angle identification results, the maximum relative error is also located in 

working condition 6, 14.21%, the minimum is located in working condition 4, only 

0.57%, the average relative error is 5.30%; the maximum absolute error is 8.44°, the 

minimum is only 0.5°, the average absolute error is 1.68°. 

Analyzing the above error data, we find that for the vast majority of results, the 

identification results have extremely small errors relative to the labeled values (true 

values). According to the accuracy formula proposed in this section, 18 sets of data, 

for a total of 36 sets of identification results, 35 sets will have an absolute error within 

5[°/m/s], with an accuracy rate of 97.2%. 

The above results prove that the fitting effect and recognition ability of the model 

have reached a high degree and meet the requirements of engineering practice. 

4.5.3 Identification based on partial dataset 

In practical engineering, due to the limitation of the technology level, we cannot 
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get the damage of all data points, so we started to study the change of the model 

accuracy when the number of samples in the input data set is reduced. 

We consider the selection of material points by controlling the step size. The 

selection process is shown in the following figure： 

 

Fig.4.28  样示意 Fig. 

We start from the lower left corner and select a material point every dx points 

along the x-direction and every dy points along the y-direction. Since two pooling 

layers are set in our neural network structure, the dimension of the input matrix 

becomes 1/2 of the original one in the length and width direction for each pooling 

layer, i.e., both dimensions should be a multiple of 4. We control the dimensionality of 

the output data by the following equation： 

 

100
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4
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 (4.9) 

where m, n are the dimensions of the sampled matrix; dx, dy are the sampling spacing 
in the x and y directions, respectively. 

To investigate the relationship between the recognition error of the model and the 

sampling spacing based on data reduction, we adjusted the values of dx, dy according 

to the data in the following table.： 

Table4.11 Sampling spacing table 

dx dy 

  

 

str  e
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2 2 

3 3 

4 4 

6 6 

8 8 

By adjusting the sampling spacing according to the above table and repeating the 

identification process in Section 4.3.2, we can obtain the variation of the loss 

functions of the training and test sets under each set of spacing as shown in the 

following figure： 

 
  (a)                                    (b) 

Fig.4.29 (a Training set loss (b) Validation set loss 

From the above images, it can be found that as the sampling spacing increases, 

the loss value obtained by the model convergence also gradually increases, and when 

the sampling spacing is taken（dx, dy）  as (8, 8), the loss value converges to about 

60, which is nearly 10 times more than the initial value. 

Also, the accuracy of the training and validation sets can be plotted as shown 

below： 
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(a) 

 
(b) 

Fig.4.30 (a) Training set accuracy (b) Validation set accuracy 

Also, the change in accuracy of the training set can be plotted as shown in the 

following figure： 

 

Fig.4.31 Training set accuracy 

and the trend of the relative error is shown in the following figure.： 
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Fig.4.32 Speed relative error 

 
Fig.4.33 Angular relative error 

Observing the above images, we can also draw similar conclusions, i.e., as the 

sampling spacing increases and the number of samples decreases, the model shows 

the following changes. 

(1) Convergence of the damage function to a larger value, indicating a decrease 

in the optimization capability of the model and convergence to some less optimal 

local optimum point. 

(2) The accuracy rate tends to decrease significantly, but the model still has an 

accuracy rate of about 75% when the selected material points are trained, while when 

the sampling spacing (dx, dy) is (8, 8), the number of samples used as input is about 

1/64 of the initial one, and for this order of magnitude, the recognition accuracy rate 

of the model has decreased to about 50%, which basically does not have practical 

application value. 

In summary, constructing the dataset by sampling reduces the amount of input 

data and also significantly reduces the model recognition accuracy, but when the 
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amount of data is reduced to a certain degree (around in this paper), the model still has 

a high accuracy, and the amount of input data can be adjusted according to the actual 

needs. 

4.6 Summary of this chapter 

In this chapter, we further investigate the inverse problem of identifying impact 

conditions from damage evolution data, which is of great importance and has wide 

application in engineering. At the same time, impact condition identification 

encounters great challenges due to the complex nonlinear characteristics of composite 

laminate impact damage evolution, and attempt to identify unknown impact 

conditions using deep learning methods. 

To solve this problem, we first analyzed the type of damage data and the form of 

impact, and briefly reviewed and analyzed various types of neural network structures 

widely used in the current deep learning field, from which we selected the most 

suitable class of neural network structure, convolutional neural network (CNN), based 

on the characteristics of various models and the actual problem of this paper. ). 

Then, we developed a deep learning-convolutional neural network (CNN)-based 

laminate impact recognition program in the framework of TensorFlow and Jupyter 

Notebook, inspired by image recognition techniques. Based on the PD program in 

Chapter 3, we expand the dataset to 1800 sets by modifying the velocity and angle of 

the impact and adding "pretzel noise", and the program uses this dataset for training 

and recognition of unknown conditions. The relative error of the final recognition 

result is controlled within 5%, and the recognition accuracy is over 90%, which has 

high application value. 

After that, the damage evolution data of some material points were selected as 

the training set, and the changes of the model accuracy and error were analyzed under 

different sample numbers and patterns. It was found that the accuracy of the model 

decreased significantly as the number of samples decreased, and the error increased 

accordingly, indicating that the recognition ability of the model decreased 

significantly with the decrease of the number of samples, and it was also found that 

the model still had an accuracy of about 75% when the material points were selected 

as the input, while the accuracy of the model decreased to about 50% when only the 

damage data of the material points were selected as the input, indicating that The 
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model is unable to learn the effective information from the data, and this procedure 

does not have practical application value. It is necessary to further improve the 

accuracy by other means, such as increasing the number of hidden layers, modifying 

the network structure, and data enhancement. 
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Chapter 5 Conclusion and Outlook 

5.1 Conclusion 

In this paper, we use the traditional peridynamics model and deep learning theory 

to investigate the relevant positive and negative problems based on the impact damage 

evolution of a composite laminate model. Firstly, for the problem of discontinuous 

mechanics of composite laminate impact damage, an analytical model of composite 

laminate rigid body impact damage evolution based on peridynamics theory is 

established, and the corresponding computational procedure is developed. Moreover, 

in order to solve the problem of incomplete near-field material points in the boundary 

region, an improved "Table surface correction factor" is proposed, which can improve 

the calculation accuracy. Based on the above results, a deep learning-convolutional 

neural network (CNN)-based impact condition recognition model is built to address 

the problem that the damage evolution of composite laminates exhibits complex 

nonlinear characteristics and the impact condition recognition encounters great 

challenges. A deep learning-convolutional neural network (CNN)-based impact 

condition recognition model was developed, and the laminate damage evolution data 

obtained under different impact conditions were used for training, and the recognition 

of unknown impact conditions was successfully achieved with high accuracy and 

precision. The specific research results are summarized as follows： 

(1) The impact damage evolution of composite laminates is related to the impact 

conditions (shape of the impactor, impact velocity, direction) and the form of ply lay-

up of the laminate. The damage tends to spread along the fiber direction of each ply, 

and the damage area of each ply of the laminate is larger for different impact 

conditions when the impactor volume is larger and the impact velocity is higher. 

(2) The deep learning-convolutional neural network (CNN)-based impact 

condition recognition procedure can effectively identify the unknown impact 

conditions and control the recognition error within a small range with a high accuracy 

rate. We built a deep learning-convolutional neural network (CNN)-based laminate 

impact condition recognition program, and selected several sets of conditions that did 

not appear in the training and validation sets to test the recognition ability of the 

model, and found that the average error between the recognition results and the real 
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values was controlled at about 3%, and the accuracy of the recognition results reached 

about 90%, thus verifying the effectiveness and applicability of our recognition 

program. validity and applicability. 

(3) The recognition accuracy of the model is related to the size of the sample. By 

selecting damage data from different locations of material points and studying the 

effect of sample size on the accuracy, it was found that the accuracy of the model 

began to decrease as the number of selected data points became smaller, while the 

error increased, indicating that the recognition ability of the model decreases as the 

number of samples decreases, and the model still has an accuracy of about 75% when
1 4 of the material points selected for training are selected, while the accuracy of the 

model is about 75% when the material points selected for training are selected. The 

accuracy of the model decreases to about 50% when 1 64  of the material points are 

selected for training, which is basically not applicable. 

5.2 Outlook 

In terms of the present results, the research work of this paper has achieved 

certain results and the accuracy of the relevant identification procedures is good, but 

there are still many defects and debatable points based on the above work, which are 

now briefly described as follows. 

(1) The numerical method of PD is less efficient, the calculation of PD depends 

on the discretization of material points, for the finer the model, the more the number 

of material points and the number of "keys" involved in the calculation procedure, 

take this paper as an example, the laminate model in this paper is divided into 182,709 

material points, the number of "keys" in each material point field is in hundreds. In 

this paper, for example, the laminate model is divided into 182,709 material points, 

and the number of "bonds" in each material point field is recorded in hundreds, and 

the whole model involves nearly 10 million PD bonds. For more detailed models, or 

when the model size is even larger, the number of keys will be even larger and the 

time required will also increase proportionally. 

(2) Damage data collection and evaluation is more difficult. Due to technical and 

capability limitations, our work is limited to numerical values, especially in the 

methodological area of damage identification techniques. Damage identification is 

still a difficult problem in engineering, and there are numerous researches in related 
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fields. In particular, refined damage identification methods for small and micro 

structures and components still need to be researched and developed, and many 

structures are not visible and open to the outside, and are difficult to cut, thus making 

it difficult to discover and monitor their internal damage evolution; at the same time, 

there are difficulties in calibrating the damage degree of the test structure. The 

aforementioned difficulties also make it difficult to obtain training datasets for the 

neural networks we build, despite their notable efficiency and accuracy, and it is well 

known that a sufficiently large dataset is the basis for us to continuously update and 

improve the network structure. Therefore, the methodological field of damage 

recognition still needs further work and efforts from scholars. 

(3) Attempts and applications of "state-based" peridynamics theory. "The "state-

based" PD theory has been published for some isotropic single-media materials, in 

which the derivation of the physical quantities of such materials is given, but for each 

anisotropic material with composite materials as a proxy for Table, this method has 

not been studied in depth. Therefore, it is hoped that the near-field kinetic theory and 

the study of anisotropic materials will be further explored in the future. 

(4) Other forms of network structures can be tried in the impact condition 

recognition procedure. Convolutional neural networks can formally match two-

dimensional models such as plates better, but they cannot reflect the temporal 

properties of the impact; at the same time, due to the limited computational efficiency, 

the hidden layers of the network used in this paper are small, therefore, CNN with 

other forms of network structures (such as RNN with temporal correlation) can be 

tried to build deeper and more computationally efficient recognition procedures and 

algorithms. 
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