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ABSTRACT

Composite is often subjected to various loads (such as impact load) from outside,
resulting in fracture, delamination and other damages. Traditional continuum
mechanics theory based on partial differential equation is difficult to deal with
discontinuous problems such as fracture and damage because it involves space
derivation. Peridynamics (PD) is a nonlocal theory based on integral equation. It uses
space integration to describe the material function, which has great advantages in
dealing with the above problems. But there is "surface effect" in traditional PD
methods. That is, when discretizing the material points, the horizon of the material
points in the boundary area is incomplete, which will cause calculation errors. Based
on this, the paper analyzes the problem of the problem, a more concise surface
correction factor is proposed.

In the design process of composite materials, accurate load information is needed,
such as the direction and velocity of external impactor, for example, for aircraft, it is
convenient for engineers to design enough strength in appropriate positions, or
estimate the residual strength of structures subjected to load and evaluate the
probability of its continued use. Therefore, it is of great significance to identify the
impact condition based on the damage data, and to improve the design of composite
materials and ensure its safe use. Based on this problem, this paper develops a set of
impact condition identification model based on deep learning, which can use the
impact damage evolution data of composite materials under different impact
conditions for training, and realize the identification of unknown impact conditions,
so as to provide more detailed reference and basis for improving the design method of
laminated plates.

The main contents of this paper include:

(1) Aiming at the problem of impact damage discontinuity of composite
laminates, a numerical analysis model of impact damage evolution of composite
laminates based on peridynamics theory is established, and the corresponding
calculation program is developed. Moreover, in order to solve the problem of
incomplete horizon of material points in the boundary region, an improved "surface
correction factor" is proposed, which can improve the calculation accuracy. On the

basis of the above model, the damage evolution of composite materials under different



impact conditions of cylindrical and spherical rigid bodies is analyzed.

(2) In order to identify the impact condition of composite laminates, a model
based on machine learning convolution neural network (CNN) is developed under the
framework of TensorFlow and Jupyter Notebook. The recognition model uses the
impact damage evolution data of peridynamic composite laminates under different
impact conditions for training, realizes the recognition of unknown impact conditions,

and can control the relative error within 5% and reach a high accuracy.

Key Words: Peridynamics theory, composite laminate, impact damage analysis, Deep

learning, TensorFlow
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background and significance of the study

Composite material is an important product of modern material industry and
technology development. It is a new type of material made by combining material
components with different properties and attributes according to a certain ratio, level
and structure by using advanced material preparation technology. The material
components can be divided into Matrix materials and Reinforcement materials
according to the different functions in the preparation process, the former is the carrier
of the latter, while the latter is the functional or structural complement of the former.

Composites have been used in a wide range of engineering and technical
applications, including.

(1) Aerospace.

Composites are not only extremely strong, but also more thermally stable than
conventional materials, making them ideal for the various extreme environments in
which spacecraft are placed. Therefore, they are widely used in components and parts
such as fuselage shells and glass of aircraft, wings, antennas of satellites, and shells of
launch vehicles.

(2) Automotive and delivery engineering.

The automotive industry is more relevant to our daily life than the
aforementioned fields, and is also a field where composite materials are very widely
used. In addition to better fatigue resistance and mechanical strength, composite
components are more resistant to impact than ordinary materials, and can therefore be
used in automobile bodies, windshields and other stressed components.

(3) Construction industry

With the low price of composite materials and related products, they have been
more widely used in the field of construction engineering. At present, the composite
materials used in the construction industry are mainly non-metallic, including fiber
reinforced materials (glass fiber, carbon fiber, etc.), synthetic resins (rubber), etc. Due
to their low density, these materials can significantly reduce the weight of buildings,
improve structural design and architectural design, reduce costs and improve

economic efficiency.
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(4) Other areas

Composite materials can also be used to produce and manufacture a number of
other components or equipment, such as helmets and body armor for military and
civilian use. In the military, composite materials are also often used in a variety of
disaster prevention and hazard avoidance buildings or components.

In summary, composite materials are often used in structural members due to
their own characteristics, and therefore, they are also the first to suffer external loads
or effects during their use, and once damage occurs to these key parts of the
composite material, it can lead to major accidents.

To aircraft, for example, one of the major hazards of aircraft in flight is flying
birds and other outside flying objects, due to the relative speed of the two is great,
therefore, once the impact of outside flying objects and the aircraft's front windshield
and other key parts, it is very likely to break these parts and invade the interior of the
body, thus causing accidents.

In construction projects, for example, composite materials are often used in
curtain walls of high-rise and super high-rise buildings, and load-bearing elements of
buildings, such as floor slabs and roof panels. These components have an obvious
characteristic, that is, they are exposed to the external environment and are very
vulnerable to various kinds of external effects, such as explosive loads, impact effects,
etc. At the same time, once such events occur, they will lead to serious consequences,
such as falling curtain walls, collapse of floor panels, etc., resulting in casualties.

For the automotive industry, once the car suffers a sudden impact from the
outside world during the high-speed driving process, these parts often bear the brunt,
thus threatening the safety of the driver and passengers. A large number of traffic
accidents at home and abroad are from external foreign objects, such as stones and
other broken car glass or body, threatening the safety of the driver's life. Therefore,
the application of composite materials with excellent load-bearing capacity and
impact resistance to these parts can greatly protect the safety of pedestrians, thus
reducing the danger of traffic accidents to people.

Composite materials almost naturally possess certain defects due to their
preparation processes and composition principles, including the differences in the
respective physicochemical properties of the constituent materials, and these defects
constitute the initial damage of the material, and damage evolution is an important

topic in the field of engineering. Damage refers to the material or structure under
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external loading or action, from the fine structure defects (such as microcracks,
microvoids, etc.) sprouting, expansion and other irreversible changes caused by the
deterioration of the macro mechanical properties of the material or structure. From the
traditional point of view, damage analysis is mainly handled by the theory of
continuous medium mechanics, but this traditional theory is based on partial
differential equations, and thus encounters setbacks in dealing with spatially
discontinuous problems such as damage and fracture, while Peridynamicss (PD) is a
non-local theory based on integral equations, which uses spatial integration to
describe the action of matter, instead of the traditional continuous medium mechanics.
The traditional peridynamics theory has a "surface effect" in the application process,
i.e., the incomplete range of the material points located in the material boundary
region, and thus the real results are inaccurate. Based on this, a variety of solutions
have been proposed, such as modeling the internal region only by the peridynamics
method, while the boundary region is simulated by the finite element method;
introducing correction coefficients or attenuation factors to correct the material
properties (micromodulus), etc. In this paper, based on the related research, a more
concise surface correction factor is proposed to improve the model.

In addition, due to the wide application of composite materials, improving the
design of composite materials has also become a very important research content. The
improvement of the design, in general, needs to be carried out from two aspects, one
is the possible external load or action, and the other is the properties of the material
itself, however, the current situation is that once an accident occurs, the information
we can obtain is often only a series of discontinuous damage data (such as fracture,
deformation, etc.) on the structural member (e.g., composite laminate) that suffers
from external load or action, and for the impact object before the accident However,
these parameters are important factors that can help us analyze the cause of the
accident. For example, when a car is hit by a stone, we can analyze the source of the
stone through the cracking of the front windshield, including the direction and speed
of flight, so as to help relevant agencies and units clarify For aircraft, satellites,
rockets and other vehicles, we can also analyze the damage on their shells to
qualitatively determine the form of impact or quantitatively calculate the size and
direction of the impact, so as to provide more basis for engineers in designing the
shells of these vehicles.

In summary, in addition to passively studying the damage of composite materials
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after being subjected to external loads or effects, and arbitrarily enhancing the
strength and other properties of the materials themselves, we should consider whether
we can obtain some parameters of the impact based on the existing damage, with
emerging technical methods, to help us analyze and restore the information on the
working conditions of the impacted materials at the time of impact and before the
impact, and invert the information on the form and size of the impact loads on the
materials, and other working conditions It is a more important topic to improve the

design of composite materials.

1.2 Current status of related research

As a new theory and method in the field of computational mechanics,
peridynamics has natural advantages in the direction of solving damage evolution,
crack sprouting, fatigue, fracture, etc. Although it has only been proposed for a short
period of more than ten years, and has been introduced to China for only about ten
years, there are still many scholars at home and abroad who have produced a lot of

results in this field.

1.2.1 Status of research on peridynamics theory and

impact damage

As mentioned earlier, peridynamics theory has a natural advantage in impact
damage studies, but traditional PD faces the so-called "surface effect" problem, which
means that when discretizing material points, the near-field range of material points in
the boundary region is incomplete, which leads to greater computational errors.
Therefore, since PD theory was proposed, scholars at home and abroad have carried
out extensive research based on it, proposed a variety of improved models, and carried
out simulations and tests for a variety of materials and components, and produced a
large number of meaningful results.

In terms of foreign scholars' achievements, early in the research, Madenci et al'!l
combined the PD method with the traditional finite element method, and used finite
element modeling for the boundary area, thus avoiding the problem of "boundary
effect", and modeled and analyzed the structures such as steel plates based on the

above method, and achieved better results.
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Florin et al®?! proposed a modified "bond-based" peridynamics model based on
brittle materials for "boundary effects", simulating the damage evolution and
development of multi-layer tempered glass (MgG) under the action of high-speed
impact. The damage evolution and development of multi-layer tempered glass (multi-
layer glass) under high-speed impact is simulated, and most of the numerical results
of Bl are reproduced, such as stress waves, crack development, deflection, etc. At the
same time, the damage evolution of the three-dimensional structure of multi-layer
tempered glass with time is simulated, and the damage and destruction mechanism of
this typical brittle material of glass is revealed.

Akbari et al™ investigated the impact response of polymers. They selected
poly(methyl methacrylate) (PMMA) as the object of study and developed a modified
"bond-based" PD model based on this material to simulate the impact of PMMA
beams with initial cracks at different impact velocities and fracture toughness, and the
results were in good agreement with other related literature %!

Butler et al ! predicted the compressive and impact strengths of carbon
reinforced plastic flat laminate with initial circular holes by using the PD method.
Baber et all'” roposed an improved "bond-based" peridynamics model, taking into
account bond nonlinear shear deformation and "boundary effects", to simulate the
deformation and damage of composite laminates under low-velocity impact. The
deformation and damage response of composite laminates under low velocity impact
was simulated by Baber et al.

Bobaru et al'!! proposed a virtual node method for the PD model of elastic
materials to reduce the effect of "boundary effect" and compared the effect of various
methods and selected the one with the best correction.

Bartlett et all'?l improved the virtual node method proposed by Boraru et al. to
make this method applicable to objects with arbitrarily shaped boundaries, which can
better eliminate the "boundary effect”, and compared the results with those of related
literature and achieved better results.

The domestic results mainly focus on the simulation and analysis of complex
materials or structures such as concrete, ice bodies, and composite materials. Qing
Zhang!"! was the first to introduce the concept and method of PD to China, and also
the first to conduct related research in China, improving the calculation method of
micro-modulus in the traditional PD model, solving the problem of "boundary effect"

in the model, and based on this improved PD method, simulating concrete structures
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and members under different working conditions, such as Based on this improved PD
method, the damage of concrete structures and members under different loading

14161 tensile!'”!, and intrusion!'® is simulated with good

conditions, such as impact
accuracy.

Cheng et all' used an improved damage factor with a modification of the
conventional intrinsic force function to model and simulate the cracking process of
engineered cement matrix composites (ECC) and compared it with relevant tests with
good results.

Based on the "bond-based" PD theory, Xiong Weipeng et al®®constructed an
improved PD model and realized the simulation of the mechanical behavior of a
complex mixture of ice body under the action of high-speed impact by self-
programming, reproduced the damage characteristics of the ice ball with high strain
rate during the impact process and the complete damage process of the sphere, and
accurately simulated the development of surface cracking and overall cracking of the
sphere. The surface cracks and the development of the overall cracking were
accurately simulated, while the time course curve of the impact force during the
impact was identified by the PD program, which was in good agreement with the
measured values.

Xiaoping Zhou?!! established a "conjugate bond" base PD model based on the
traditional "bond base" PD theory, introduced the rotation angle, and derived the
relevant parameters to realize the damage characteristics of the rock under the blast
impact load, and achieved a The relevant parameters are derived, and the damage
characteristics of the rock under the blast impact load are realized with good results.

In the field of composite materials, Guogun Zheng et al [**) proposed an
improved BPD model for the problem of the limitation of Poisson's ratio in the
peridynamics (BPD) model, which can be used both for the simulation of deformation
and crack extension of orthotropic anisotropic monolayers and for the prediction of
deformation and crack development of carbon fiber composites with high accuracy.

Jinsong Zhang!*}! derived a new type of iterative formulation for a heavy-headed
quasi-static intrusion plate based on the punch extrusion model in finite element
theory, and introduced a volume correction factor in the intrinsic force function to
establish an impact dynamics model for composite laminates, studied the impact
damage problem of composite laminates, and simulated the damage evolution process

of various peer brittle materials.
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Wang Fuwei et al*4!

introduced interlaminar shear and long-range force terms on
the basis of the traditional laminate model, modified the "boundary effect" in PD
theory, and derived the relevant equations and parameters to improve the traditional
model, and used the model to simulate the tensile and impact of each homogeneous
and each anisotropic laminate, and obtained the The damage evolution of the
composite laminates was obtained, and the damage pattern of the composite laminates
was further obtained.

Qin Hongyuan et al®*! introduced a kernel function correction term reflecting the
dimensional effect of the long range force in the matrix bond on the basis of the
traditional intrinsic structure model, which solved the problem of "boundary effect" in
the traditional PD theory, and simulated the deformation and damage of the composite
single-layer plate with higher accuracy than the traditional model. It can simulate the
deformation and damage of composite monolayers with higher accuracy than the
traditional model.

The application scenarios and environments of composites are often very
complex, and a number of domestic scholars have conducted PD simulations for
composites in different use environments. Zhao Tianyou 1> proposed an improved PD
model based on composite materials commonly used on ships, and simulated the
damage evolution of composite laminates and reinforced laminates under the action of
underwater fragment intrusion laminates and blast impact based on the boundary
constraints of laminates and underwater environment, and obtained the damage
evolution of laminates under different impact conditions (impact velocity, impactor
shape, mass) and lay-up direction; and analyzed the damage evolution law of
laminates with reinforced bars. The damage evolution of laminates under different
impact conditions (impact velocity, impactor shape, mass, and layup direction) was
obtained, and the influence of the size and distribution distance of the reinforcement
on the strength of laminates with reinforcement was analyzed. Su Boyang et al®’!
also for composite materials in ships, improved the principal structure equation by
introducing a hygrothermal elongation correction term describing humidity and
temperature, and used this equation to simulate the evolution of impact damage of this
material in different hygrothermal environments, and analyzed the effect of impact
velocity on the energy absorption performance of composite laminates, and obtained
some relevant laws with certain application values, which can be used to improve the

design method of composite materials on ships. The impact velocity effects on the
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energy absorption performance of composite laminates are analyzed, and some
application rules are obtained, which can be used to improve the design method of
composite materials on ship hulls.

Due to its good ductility, composite materials are often prepared into a variety of
shapes according to the actual use scenarios, and most of the domestic and foreign
studies are carried out based on flat structures. Chen Xiaofeng et al. studied the
response of curved plates under the impact action based on the study of impact

damage of composite flat plates?81(2°]

. A program was written in Fortran to simulate
the impact damage evolution of laminates with different impact conditions (velocity
and angle) for various lay-up forms of laminates; meanwhile, the impact resistance of
sinusoidal curved plate models with different heights was studied and the best
performing curved plate height was optimized.

Since the traditional PD theory faces the problem of "surface effect", the current
impact simulation studies based on peridynamics are mostly based on the traditional
model, and the form of the intrinsic force function is modified, such as the
introduction of correction coefficients, attenuation factors, etc. Therefore, we address
this problem by introducing a more concise expression for the surface correction
coefficients in the model, based on the existing studies. Therefore, to address this
problem, we introduce a more concise expression for the surface correction coefficient

to simulate and analyze the impact damage of laminated plates based on existing

studies.

1.2.2 Status of research on impact condition identification

The impact condition refers to the "Inverse problem" based on the above-
mentioned impact damage simulation work, and many scholars at home and abroad
have started to study this problem, i.e., to identify the impact condition (such as
energy, velocity, angle, load, impact force time range and other parameters) based on
the known data, such as the observed damage evolution, the various types of impact
response (displacement, strain, etc.) monitored by sensors. In this study, the impact
conditions (e.g., energy, velocity, angle, load, impact force time range, etc.) are
identified based on known data, such as the observed damage evolution, various types
of impact responses (displacement, strain, etc.) monitored by sensors. The current
research mainly includes the identification of impact velocity and direction, the
reconstruction of the time course curve of the impact load, and the localization of the

8
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impact point.

Liu et al®® proposed a time course identification method for impact loads that
combines the L-curve criterion (RCBSC-ML) and the cubic spline configuration
method (RCBSC), taking into account the inconvenient installation of sensors and so
on, and attempted to reconstruct the time course curve of impact loads by
approximating the unknown force with a linear combination of cubic spline curves
with good results.

Inman et al®!! developed a load and damage identification system based on a
one-dimensional convolutional neural network (CNN) that is capable of monitoring
and localizing vibration damage in structures in real time (Real-time) and predicting
the magnitude and location of impact forces.

2] on the other hand, determined the analytical solution of the

Guan et al
displacement function of the plate under impact loading based on Reddy's higher-
order shear deformation theory and the classical laminate theory, and proposed a set
of impact condition models based on this, which can identify the vibration and impact
responses in fiber-reinforced metal laminates, and also predict the impact loads and
displacements to which the laminate is subjected with high accuracy.

Abraham et al’** used a hybrid learning approach to build a set of neural network
models based on the damage data of vehicles in crashes, capable of classifying the
severity of traffic accidents according to the type and extent of vehicle damage, thus
providing a reference for researchers and engineers in the automotive industry in their
designs.

Kalhori et al®* completed a series of impact load reconstruction and impact
location determination using a signal processing approach, including for a multi-story
tower structure, where the dynamic response signal of the response was measured by
multiple sensors, including acceleration sensors, vibrometers, and displacement
sensors, and based on this signal and the superposition principle, the magnitude and
location of the impact load applied to the tower were reconstructed. In addition, a
similar method was used to complete the identification of the impact load time course
curve and the impact position localization on the composite sheet in the field of action
[35], which achieved high accuracy and engineering application value.

Kawabata et all*®) optimized the strain sensor based on the observation spillover
minimization criterion and reconstructed the time course profile of the impact load

applied to the structure by measuring the obtained low-order modes.
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Li et all®”) built a program that can identify the car impact velocity (Velocity),
angle (Angle) and deviation (Offset) from finite element simulation, combined with
deep learning, which carried out the finite element simulation of car collision through
ABAQUS, taking the extracted car sound plastic deformation as input, and after
training in the model, the output obtained the above The identification results of the
parameters are compared with the real values with high accuracy and good error
control.

Fang et all®® used the small mass impact (Small mass impact) theory, and based
on the impact force calculation model of plate deflection in this theory and the spring-
impact force prediction model based on impact crater, the impact force was predicted
using the force, displacement and acoustic emission signals collected by sensors
during the impact, and the time course curve and energy spectrum of the impact load
were obtained.

Zhu et al®! used ABAQUS to establish a model of low-velocity impact
composite laminates in the hemisphere and to approximate the location of the impact
loads by using the stress, strain, and vibration modal data of each layup extracted
from the software, so that protection against the hazards caused by low-velocity
impact and repair of the corresponding damage can be carried out, which has some
practical application value.

Yan Gang et al. proposed a recognition technique based on Bayes compressed
sensing (Bayes compressed sensing) method*’! , which reconstructed the time course
of the impact load based on the impact response measured by the sensor, and the
shape, duration, and peak value of the time course curve of the recognition result are
basically the same as the actual impact load, which has certain applicability.

Jia et al"*!! proposed a novel regularization method based on the alternating
direction multiplier method for the problem of too many dimensions of the
identification matrix and severe pathologies during impact loading, and successfully
identified impact loads in cantilever beams and high-speed presses.

Su et al*? introduced the Array signal processing technique (ASP) to the field of
impact condition identification, and used Wavelet transform (WT) and Multiple
Signal Classification algorithm (MUSIC) to achieve the impact localization of
composite results with high accuracy and Real-time monitoring is achieved.

With the development of deep learning, related concepts and methods have been

introduced into the study of impact condition identification. Shou-Ju Li et al*’!

10
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addressed the blast impact loads that may be encountered in protection engineering,
and the response of the structure (e.g., displacement, velocity, stress, etc.) was used as
input to obtain the impact loads (magnitude of initial pressure) acting on the structure
by inversion through the idea of least squares, so that the relevant damage, damage
mechanisms and further guidance for the design of the relevant protection structures
could be obtained.

Guo et al*l used FBG fiber grating sensor, combined with Wavelet Packet
Transform and Correlation coefficient method (Correlation coefficient) to achieve the
impact position identification of composite laminates, to a certain extent can be more
localized to the exact position or the position adjacent to the exact position, there is
Certain application and promotion value. Wang Liheng!*! proposed a series of new
identification indexes, such as pulse rise time and pulse rise area, based on the pulse
strain signal obtained during the impact process, and found that the time-related
indexes can be used to identify the damage degree, while the area-related indexes can
be used for impact location identification.

Damage evolution of composite materials is a very complex nonlinear problem,
and the inverse problem of this problem, impact condition identification based on
damage evolution data, also encounters great challenges. Therefore, in this paper, we
try to use a deep learning approach to identify unknown conditions based on damage

evolution data of composite laminates.

1.3 Development and organization of this paper

This paper can be divided into two parts according to the work, the first part is
numerical calculation and the second part is deep learning based impact condition
identification.

Composite laminates generate complex discontinuities during the damage
process, such as fiber fracture, matrix cracking and delamination damage!*®! . And due
to the use of integral form to construct the equations of motion of the object, the
peridynamics method is well suited to deal with these discontinuities, and through
bond-by-bond destruction, the peridynamics method can effectively simulate the
complete process of composite materials from initial damage to final destruction.
Therefore, in this paper, the peridynamics method is used to develop the study of

progressive damage and deformation characteristics of fiber-reinforced composite

11
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laminates, which are widely used in engineering.

In Chapter 2, some basic theoretical knowledge of the peridynamics theory is
briefly introduced®’*°! | which mainly includes the basic equations of motion of
peridynamics and the physical quantities in the equations, especially some basic
theories of the intrinsic force functions, including some different forms of the
functions and the improvements and modifications made by domestic and foreign
scholars for the traditional intrinsic force functions.

In Chapter 3, firstly, the basic knowledge of composite laminates is introduced %
#1 including the intrinsic constitutive equations of the plate, and based on this, a rigid
body impact damage evolution analysis model of composite laminates based on
peridynamics theory is developed for the impact damage discontinuity mechanics
problem of composite laminates in combination with the PD method*”-°%, | and the
corresponding computational program is developed . Moreover, in order to solve the
problem of incomplete near-field material points in the boundary region, an improved
"surface correction factor" is proposed, which can improve the calculation accuracy.
After the calculation system was built, the impact damage evolution of composite
laminates under different working conditions (including different shapes, velocities
and angles) was simulated, and the impact damage results at each intermediate step
were recorded and analyzed.

In Chapter 4, a deep learning-convolutional neural network (CNN)-based
recognition procedure was developed in the framework of TensorFlow and Jupyter
Notebook to address the problem that the impact damage evolution of composite
laminates exhibits nonlinear characteristics and the impact condition recognition
encounters great challenges [*! 32 In this chapter, we build a database with 1800
samples by modifying the impact conditions of rigid impact balls and adding "pretzel
noise"*! based on the computational procedure in Chapter 3, and use this dataset for
training to achieve the recognition of unknown impact conditions, and the relative
error of the recognition results is The relative error of the recognition results is
controlled within 5%, while the accuracy rate reaches more than 90%, which has
certain applicability.

In Chapter 5, we summarize some of the preliminary results obtained in the

previous chapters and provide an outlook on some future work.
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Chapter 2 Introduction to Peridynamics Theory

2.1 Introduction

The theory of peridynamics was proposed specifically to deal with
discontinuities such as damagel*’! | where traditional mechanics of continuous media

(54551 describes the motion of objects by introducing partial differential equations®*

531 so that at points of spatial discontinuity, there is a problem of non-existence of
partial derivatives. Peridynamics is a new subject in the field of computational
mechanics and opens up a new direction for solid mechanics.

In this chapter, the basic framework of the peridynamics theory originally
proposed by Professor Silling 7 1 | je. the traditional "bond-based"
peridynamics®®” | including the PD equation of motion, the intrinsic force function,
and some modifications and improvements of the traditional intrinsic force function
by domestic and foreign authors. However, the "bond-based" peridynamics theoretical
approach has obvious drawbacks % | including material properties (e.g., Poisson's
ratio) limitations, etc. Therefore, an improved "Stated-based" peridynamics was
briefly introduced afterwards 7. Although the "Stated-based" theory compensates
for the shortcomings of the "Bond-based" theory, it has its own limitations, such as
the difficulty of mathematical derivation.

Although the "Stated-based" theory compensates for the shortcomings of the
"Bond-based" theory, it has its own limitations, such as the difficulty of mathematical
derivation.

After that, this chapter continues to introduce the numerical calculation method
and solution system of PD, including the discretization of the equations of motion and
the corresponding stability condition, i.e., the condition that the discretized equations
of motion can converge to a stable solution by the explicit integration method 47-%],
and this stability condition gives the range of values of the time step A¢ that we need

to set in the subsequent calculations.

2.2 Theoretical framework of peridynamics

13
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2.2.1 Overview of "bond-based" peridynamics theory

Peridynamicss (PD) %! was proposed in 2000 by Professor Stewart A. Silling of
Sandia National Laboratories, USA, and has subsequently rapidly become an
emerging method for modeling and describing the mechanical behavior of matter by
solving spatial integral equations based on the idea of nonlocal action

The early PD theory is called "bond-based" theory, which is generally translated
as "bond-based" theory in China, that is, the interaction only considers the axial force
between a single material point pair, but the single-parameter model derived from the
energy equivalence method has the limitation of Poisson's ratio>’].,

The traditional solid mechanics theory is constrained by the local idea, which
introduces partial differentiation and spatial derivation in the solution process’*! thus
requiring spatial continuity of the object, and such requirement leads to greater
difficulties in dealing with ¢! \PD theory, on the other hand, introduces the nonlocal
idea [9-62]  which is derived from the traditional continuous medium mechanics and

classical molecular dynamics 6641

, which combines the advantages of macroscopic
mechanics and microscopic dynamics.

According to the theory of peridynamics, the conventional continuous medium is
first discretized into an ensemble of matter points and it is assumed that any matter
point occupies a part of space R. Also, referring to the theory in classical molecular

mechanics!®!, PD theory assumes 47> ]

, that at any moment ¢, a material point x
interacts with other matter points within a certain range dof its surrounding space x .

there exists an interaction, as shown in the following figure:

Fig.2.1 Material points and their interactions

14
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This point is similar to the intermolecular forces in molecular dynamics!®> | and
is the core of PD theory, on which the subsequent construction of equations of motion
and mechanical calculations are based. In the above force relation, dis called the
horizon of the material point, all such points constitute a region called the "family" of

material point as H

(o » denoted by the following figure:

Viy Vs

Fig.2.2 range

The material points x() and X occupy a certain volume V) and Vjj respectively,

while their near-field ranges are Hx( : MH X °

This interaction, which is also known as the near-field kinetic force, can be
referred to traditional mechanics!®®8l by introducing a function to describe the
direction of the magnitude of this force, which is often referred to as the intrinsic

471 | Similar

force function, the force density function, the force vector function, etc. !
to the traditional mechanics of continuous media - %®] the magnitude of this force is
related to the change in the position and relative position of the material point, so that
this force function can be denoted as f(n,§), where: n=u'—udenotes the relative
position of the material point, £ =x"'—x denotes the relative displacement of the

'

material point, and the material points x « x', which each undergo displacement

under the interaction, are denoted as u. u', respectively, as follows:
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X

Fig.2.3 Relative position and relative displacement

From the viewpoint of classical Newtonian mechanics, it is clear that the change
of the state of motion of a material point is the result of the combined action of

external forces as well as the interaction forces between the material points within

H

(v » and therefore, according to Newton's second law (681 we can establish the

dynamical equations *” under PD theory as follows:

pi(x.0) = [ F(.E.0dH +b(x.1) @1
Where: H is the family, expressed as theset of matter points concentrated in

the local area of the matter point x: {x' eR: Hx - x'|| < 5} ; b(x,?) is the external load

per unit of matter, i.e., the external load density; p(x) is the density.

force function

The construction of the intrinsic force function is the core and key of
peridynamics modeling and has been the focus of research since the birth of PD
theory, because it contains the intrinsic information of the material and directly
reflects a series of properties of the material itself; therefore, the selection or
construction of different intrinsic force functions for different materials'®: 7°! enables
PD theory to simulate different materials’!! for static’?! | quasi staticl”>7%lor
kinematic!!® %7177 phenomena.

he intrinsic force function itself follows Newton's law in classical mechanics [68]

and first satisfies the Linear Admissibility Conditions, i.e.:
f(n,8) =—f(—,-9) 22)

The physical meaning of this equation is that the near-field kinetic forces in the
material point pairsand and should occur in pairs with equal magnitude and opposite

16
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direction, which is one of the most essential and central features of the "bond-based"
near-field kinetic theory!’!,
In addition, the principal structure forces should also satisfy the Angular

Admissibility Conditions:
f(n,8)x(n+&)=0 (23)

This equation states that the intrinsic forces between the material points are
parallel to their relative positions, i.e., the lines of action of the forces coincide with
the lines of the material points.

Therefore, in summary, in the "bonded base" near-field kinetic theory, we can
introduce a scalar function F(n,&)to describe the intrinsic forces 71 | expressed as

follows:
f(n,&) = F(,&)(n+E) (2.4)

This formula combines the two compatibility conditions mentioned above, where
the scalar function F(n,&) characterizes the magnitude of the intrinsic force and the
vector (n+§)describes the direction of the intrinsic force.

Based on the above description, the study of the present constitutive force
function can be reduced to the study of the scalar function. In the very first model

proposed by Silling /1 | this function is further reduced to a linear function, i.e.:
Fm.&)=c(||g)s(n.2) 2.5)

Where , s(n,&) is the elongation of the material point pair; c(”&”) is the
micromodulus, , which is a concept similar to the elastic modulus in traditional
continuum media mechanics and is related to the material itself as a property of the
material, and many different micromodulus models have been proposed by scholars
for one-dimensional structures (e.g., rods) and two-dimensional structures (e.g.,

plates), etc. [7832] "as shown in the following figure:

([&f) ([l ([l

N 0 O e 0 o 0 0 O el

Fig.2.4 One-dimensional structural micromodulus model
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el

Fig.2.5 Two-dimensional structural micromodulus model

81 and is

This formulation is a generalization of the classical Hook's Law!
therefore formally very concise, and because of this simplicity, PD theory has better
results in dealing with some simple problems, especially nonlinear ones.

However, it is also because these micromodular forms are very simple and are
stretched in the face of more materials that are slightly more complex in terms of their
intrinsic  structure (e.g., concrete, composites), therefore, some scholars have
introduced various forms of decay terms based on Silling's basic intrinsic force
functions®!%3! and proposed some kernel function models that can reflect the long-
range force properties, which refer to the intermolecular force variations, which can

be interpreted as the mesoscopicization of the microscopic model, enabling the PD

forces to exhibit decaying properties with distance, as follows.:

e

0 Yot s e

Fig.2.6 Decay of the action force with distance

This modification has improved the accuracy of the PD model and has been more
widely used. In China, some scholars constructed a quadratic polynomial-type

intrinsic force kernel function under the framework of PD theory [¥2! | which extended
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the capability of PD theory in the nonlinear field and could better simulate the
response of some nonlinear materials. Some scholars!’” also compared different
kernel function correction terms and identified the kernel function correction term
with the highest accuracy, and applied it to the simulation of cracking test of concrete
Brazilian discs, which achieved better results.
Damage Description

PD theory was originally proposed to describe discontinuous phenomena such as
damage, so the definition and description of damage is also a fundamental concept of
PD theory. Instead of using the concept of "strain" as in the traditional continuous
medium theory ! | PD theory introduces a new concept, namely elongation s, when

S [47, 84]

considering deformation, and defines elongation a , , following the definition of

strain ¢ in the mechanics of materials.:

_In+g—n
|

The parameters in Eq. are defined as above.

s(n,%) (2.6)

Further, PD theory uses { to denote the disruption of a given bond at a material

point 471, H[J.
1 s(2.8) <s5y,t'€(0,0)
gE = {0 h 2.7)

Where: s denotes the critical elongation of the material point pair, which for a two-

dimensional model can be defined by the following equation!*’l:

G
£ 2.8)

S0=
6 16
(ﬂﬂ+z(k_2ﬂ)j5

137/4

Where: £k is the bulk modulus of elasticity of the material; u is the shear modulus;
G, is the critical energy release rate; o is the near-field radius.

The meaning of this formula is very clear: when the relative position between the
material point pairs exceeds the critical elongation, the "bond" between the two points
is broken and the material is damaged. But this is often the microscopic level of
"damage," when the "bond" damage gradually accumulate to form a surface, the
material will also produce macroscopic "cracking". Another function was introduced

in PD theory to describe this local damage!*’:
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[¢@nar

¢(X,I):1— =

J-T (2.9)
H

The parameters in Eq. are defined as above.
The statistical significance of the above equation is the ratio of the number of
broken bonds to the total number of bonds in the near-field range, with a higher ratio

indicating more broken bonds.

2.2.1 Overview of "state—based" peridynamics theory

The aforementioned "bond-based" PD theory is the mainstream PD theory
nowadays due to its simplicity, procedural simplicity, and fast computational speed,
and it has been used for the simulation of various practical problems with different
materials and working conditions. However, this theory has a very fatal theory,
namely, the Poisson's ratio of the material is fixed under the assumption of online

(47. 571 "1/4 for a one-dimensional structure (rods, etc.), and 1/3 for a

elastic isotropy
two-dimensional material (plates, etc.), it is .

The traditional "bond-based" peridynamics theory suffers from a limited
Poisson's ratio, an inherent defect that led Silling et al. to refine it in a paper in 2007.
The refined PD theory is called "state-based" theory 7!, and overcomes the above-
mentioned shortcomings of "bond-based" theory. The "bond-based" theory has
overcome these shortcomings.

rofessor Silling proposed the concept of "state" to replace the "tensor" in the
traditional theory of continuum mechanics, and the tensor*- 3! and the "state" can be

compared and described as follows The comparative description of "state" can be

represented in the following figure.
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Fig.2.7 Tensor mapping

Fig.2.8 "State" mapping

As shown above, "state" was proposed by Silling et al. to compensate for the
shortcomings of the traditional tensor concept, which can only map a cluster of
vectors &to another cluster of vectors continuously F§&; while "state" can map the
vectors to another cluster of vectors \_((é) discontinuously. The "state" can map the
vector discontinuously to another cluster vector. This is consistent with the original
purpose of the peridynamics theory, which is to solve the discontinuity problem.

However, the so-called "state" is only a mathematical concept proposed by Dr.
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Silling and his co-workers, which is a mapping from a space vector to a tensor set. At
present, however, the "state-based" peridynamics theory is mathematically difficult to
derive, so the current literature output is much less than the traditional "bond-based"

theory.[85-87]

2.3 Computational methods and solution systems for

per idynamics

2.3.1 Discretization of the equations of motion

The computational methods of PD theory are also being developed and refined.
In the most generalized way, we first consider a uniform discretization of the
equation*”! | which yields.:
p(X)ii(x,1) =D f(,&,1)AH +b(x,1) (2.10)
H

Thus, the integral calculation in the near-field range of the material point is
transformed into a volume summation operation for the material point.
Most of the problems described by PD theory are dynamical damage problems,

and under dynamical problems, applying the central difference formulation of

acceleration!®® °°]

i = ut =2u’ +ul @.11)
i AP '

The dynamic equations can be solved. However, for the static or quasi-static
problems, the stiffness matrix can be constructed by imitating the finite element
method and then solved by solving a nonlinear system of equations, but this approach
generally requires a harsh computer memory machine and has a lower computational
efficiency. To solve this problem, the earliest foreign scholars*”) effectively solved the
quasi-static problem under PD by introducing a damping term. Domestic Shen Feng et
al P! borrowed the dynamic relaxation method of solving static problems in classical
dynamics, introduced artificial damping, and constructed a graded loading algorithm
and related system imbalance judgment criteria, which is the peridynamics method
can be applied to the computational analysis of quantitative quasi-static deformation.

Dan Huang et al %2 modified the original PD theory, considered the relative rotation
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of material point pairs, and developed the corresponding discrete, add-in and time-
integrated algorithms to realize the simulation of composite crack extension process in
typical concrete members. Qing Zhang et al [["*) elaborated the solution method of PD
micropole model and gave the static solution format of PD micropole model, which
improved the computational efficiency without introducing damping terms in solving
the static problem and provided a new idea of solving the static problem based on the
PD theory.

2.3.2 Stability conditions for numerical methods

Although the explicit integral solution method is simpler, this method can only
converge the result to a stable solution under certain conditions. Therefore, we need to
study the stability conditions of the above equations.

In a related paper™’]

, Professor Silling et al. obtained stability conditions on the
time step At by standard von Neumann stability analysis.
First write the displacement ! of the material point i at the n-th time step

(¢t =nAt ) in the form of an exponent:
u' =" D (2.12)

Where, x and k are positive real numbers and complex numbers, respectively.

According to the stability requirements of the PD numerical system, there are.:

|£]<1 VkeR' (2.13)

Substitute equation (2.12) into the equation of motion and note that:

M, =Y C(x] —x")cos(xk —1)AV (2.14)
It is obtained that:
42—2(1——%(“)2);“:0 (2.15)
Solving this quadratic equation yields:
glwﬂlel oo
P e

From equation (2.13), §| <1 VxkeR",itcan be derived that:

Ar< |22 2.17)
M

K
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The above equation should hold for all x.
Eq. (2.17) is the stability condition for the time step in the numerical method of
peridynamics, i.e., for the time step Az satisfying the equation , the equations of

motion can be converged to a stable solution.

2.4 Summary of this chapter

In this chapter, the basic theoretical framework of the peridynamics theory,
namely, the traditional "bond-based" peridynamics, including the equations of motion,
the intrinsic force functions, and some modifications and improvements of the
traditional intrinsic force functions by domestic and foreign scholars, is introduced. At
the same time, it is pointed out that the "Bond-based" peridynamics theory has
obvious shortcomings, including material properties (e.g., Poisson's ratio) limitations,
and the improved "Stated-based" peridynamics theory is introduced.

After that, the chapter continues with the numerical calculation method and
solution system of PD, i.e., the explicit integration method, and analyzes the stability
condition of the method, i.e., the range of values of the time step derived based on the

von Neumann stability condition.
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Chapter 3 Impact damage analysis of laminates based

on peridynamics

3.1 Introduction

Composite materials have been widely used in many engineering fields. This
chapter firstly introduces the basic theory of composite laminates, and based on this,
an analytical model based on the peridynamics theory of composite laminate rigid
body impact damage evolution is established for the problem of discontinuous
mechanics of composite laminates impact damage, and a corresponding calculation
program is developed. Moreover, in order to solve the problem of incomplete near-
field material points in the boundary region, an improved "surface correction factor"
is proposed, which can improve the calculation accuracy. After the calculation system
was built, the impact damage evolution of composite laminates under different
working conditions (including different shapes, velocities and angles) was simulated
in the above model, and the impact damage results at each intermediate step were

recorded and analyzed.

3.2 Development and Computing Environment

3.2.1 Development environment construction

The peridynamics theory has been proposed for more than ten years, but the
computational resources applicable to the theory are extremely limited, and the
computational software and mechanical solution software developed specifically for
the PD method are still in the research stage. There are several software developed by
domestic scholars that can deal with simple peridynamics problems, such as
PdynaComp ®! from Shanghai Jiao Tong University, which can deal with the PD
theory of damage problems of composite laminates.

At the same time, the computational procedures and algorithms that can
effectively improve the computational efficiency are yet to be improved. For general

problems, researchers need to design and program their own programs, which is time-
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consuming and laborious. For slightly more complex problems, the number of "keys"
in the model often reaches millions or even tens of millions, which makes it difficult
for general home computers to handle this level of computation and requires the use
of more expensive computing resources such as supercomputers.

Among the available computational software that can perform peridynamics,
LAMMPS “7 was developed by Sandia National Laboratories in the U.S. LAMMPS
is called Large-scale Atomic/Molecular Massively Parallel Simulator. Silling et al.
developed the PDLAMMPS toolkit on the basis of the original framework, which can
directly call the relevant function libraries to complete the modeling and analysis of
peridynamics, but this software is based on the LINUX platform, and the building
steps and processes are However, this software is based on the LINUX platform, and
the steps and procedures are cumbersome, and the computational power is not
available on the Windows platform. Therefore, in this paper, we consider using
Microsoft's Visual Studio Community with Intel's parallel computing software Intel
Parallel Studio for development and computation, and after the installation and
integration of the two software, we can directly add the program files of related
projects.

Intel Parallel Studio is a professional compiler developed and launched by Intel
for parallel computing, supporting programming languages such as Fortran, C++, C,
etc. It also inherits a large number of computational libraries commonly used in
scientific computing, such as MKL.

Fortran is an old programming language, but it still has a strong vitality in
the field of scientific computing due to its fast computation speed, simple syntax, and
wide range of related programs. The computational programs in our paper are all
based on the Fortran language, and both Visual Studio Community development
environment and Intel Parallel Studio parallel computing software have good support
for Fortran.

After obtaining the computational results obtained by the above
environment, we consider the visualization operation using MATLAB software.

In summary, the computing platform and software development platform

used in this paper are as follows.

Table3.1 Table of hardware information of computing platform

Hardware Type

PC MSI GE62-2QD Apache

26



Chapter 3 Impact damage analysis of laminates based on peridynamics

CPU Intel Core i7-5700HQ(2.7GHz/L3 6M)
GPU NVIDIA GeForce GTX 960M
RAM 8GB DDR3L 1600MHz

Hard Disk H3Z 1TB HDD

The software configuration of the platform is as follows:

Table3.2 Computing platform software information table

Software Type
0S Microsoft Windows 10 Basic
IDE Visual Studio Community 2019
Compilers and solvers Intel Parallel Studio XE 2019
Plot software MATLAB

3.2.2 Computational flow and algorithm design

The content of this chapter involves PD calculations, including the determination
of bond breakage and the calculation of the velocity and displacement of the material
point, we can draw the calculation flow of the numerical simulation in this chapter,

and the detailed process can be shown by the following flow chart:
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Fig.3.1 Computational flow and algorithm design

3.3 Modeling of composite laminates and impactors

3.3.1 Theory of anisotropic composite laminates
28
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With the birth and use of high-strength materials such as carbon fiber, composite
materials, a new type of material, have also begun to be widely used in various
industrial sectors. Composite materials refer to new materials prepared by using
various advanced material preparation technologies and methods to synthesize a
variety of materials (components) with different properties and attributes in a certain
ratio. Composites have the properties of the original component materials, but often
have new properties that these materials do not have, such as alloys, which inherit the
strength of the original component metal materials, while far better than the raw
materials in terms of fatigue resistance, fire resistance, ductility. .

Composite single-layer panels are generally made by arranging reinforcing fibers
(Fiber, such as carbon fiber, glass fiber) in the matrix material at a certain angle, and
the common structure of composite single-layer panels can be represented in the

following figure:

N y

| \ & .

Fig.3.2 & Schematic diagram of composite single-layer plate structure

The matrix material and the fiber material each have almost completely different

41| the former generally cannot withstand large tensile forces,

material properties |
while the latter has extremely strong tensile properties, the combination of the two
makes the formation of composite materials in addition to having notable mechanical
properties, often also has some special properties that neither material has, such as
strong resistance to vibration, fatigue resistance, etc.

Composite laminates are obtained by bonding single-layer laminates together

using certain adhesives and in certain orientations, as shown in the figure below:
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h

Fig.3.3 Schematic diagram of composite laminate structure

Composite laminates are typically anisotropic materials, meaning that the
material has different material properties and strengths in almost all directions, with
the strongest along the fiber direction and weaker in the remaining directions.

Classical composite mechanics has a very detailed study of composite laminates.
For orthotropic anisotropic composite laminates, the general stress-strain relationship

can be expressed as:

6=Q ¢ 3.1)
Each quantity in the equation is a tensor.
Expanding gives:
O-l Q] 1 Q12 0 gl
0, =0y On 0 |16 (3.2)
T 0 0 Oll7
Where:
E
Oy =—— (3.3)
1- Uy
E
0,=—2>— (3.4)
1- P
E
0, = i (3.5
1 012021
Q66 = 612 (3.6)

The stiffness matrix of the material Q consists of four independent elastic

constants. Also, considering that the elastic moduli are all positive, the Poisson's ratio

v, and v, should also satisfy the relationship satisfying:
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= Yo 3.7)

U _ Yy
El EZ

1-0,0,>0 (3.8)

Based on the conventional composite material theory and peridynamics theory,
we can develop a PD model for anisotropic composite laminates.

In fiber-reinforced laminates, three types of bonds are considered to be defined -
fiber bonds, matrix bonds and interlaminar bonds, where interlaminar bonds also
belong to matrix bonds in a broad sense. According to the relevant literature, the bond

constants of each of the two bonds and can be given by:

29(Q11_Q22)
= 3.9
€ Arts’ 3.9)
80,
c = 3.10
" nts’ G.10)

3.3.2 Description of damage to composite laminates

For composite laminates, we can establish two damage description models, one
is the overall damage, which is to record the fracture of all bonds at the material point,
including fiber bonds, matrix bonds and interlaminar bonds; the other is the
interlaminar damage, which is to record the fracture of interlaminar bonds on both
sides of the material point.

As mentioned earlier, PD theory introduces the variable { to represent the
destruction of the material point, i.e.:
s(t',8)<s,,t"€(0,1)

1 (3.11)

1
é“(ﬁyt)={0

Where: s, denotes the critical elongation of the material point pair, which for the

plate model can be defined by the following equation.

G
¢ (3.12)

Sy =
6 16
(wz(k—zm)é
T 97

Where: £ is the bulk modulus of elasticity of the material; u is the shear modulus;
G, is the critical energy release rate; ois the near-field radius.

The above equation can be more visually illustrated in the following figure.:
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Fig.3.4 Bond breakage

Equation (3.11) shows that at a certain point, when the elongation of the bond is
greater than the critical elongation, the bond is permanently fractured.

Introducing another parameter to describe the bond breakage at a given material
point:

[¢@nan

p(x,0)=1-%

IT (3.13)
H

The parameters in Eq. are defined as above.

The statistical concept of Eq. (3.13) describes the proportion of bonds that have
been broken in the domain of the material point, and the magnitude of this value
implies the extent to which the damage has developed at that point, when the value is

1, it means that all bonds around that point have been broken.

3.4 Shock theory based on peridynamics

3.4.1 Shock model ing

Professor Silling et al. proposed a shock theory based on the principle of
peridynamics in the related literature, and the shock model contains two parts, i.e., the

impactor and the impacted structure (generally regarded as a deformed body). The
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latter is the object of our study and analysis and can be discretized by the PD method;
for the former, we generally assume that it is an ideal rigid body, i.e., during the whole
impact process, the impactor only undergoes rigid body displacement and does not

produce any deformation itself, and the PD-based impact model can be shown as

U I,

LI

follows:

Time, ¢ Time, 1+Af Time, (+Af

Fig.3.5 Schematic diagram of the impact model based on PD theory

According to the schematic diagram, the impactor collides with the deformed
body at a velocity vo. The impacted deformed body is controlled by the equations of
motion of peridynamics. When the impactor makes contact with the deformed body, a
part of the impactor penetrates into the deformed body and occupies the position of
some of its original material points (e.g., point i in the figure). In order to reflect this
physical phenomenon, we need to reset the position of the occupied material points.
Again, taking point 1 in the figure as an example, according to the PD-based impact
theory, this point should be transferred outside the impacted body along the shortest
path (as shown in the figure above). From there, we can calculate the velocity at the

moment (t + At) by the following equation:

—t+At ==t
_ Uy —U,
v =@ v sl (3.14)

Where:
—I+At

u,)', U, : the displacement of the material point at the moment (+Ar) and

the moment #;

Vi : the velocity at the moment (7 + Ar) of matter point;

Similarly, at the moment of time (t + At) , the reaction force of the material point

X, against the impacting body can be calculated by the following equation:
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—t+At —t
Voo = VYw Vv

v o (3.15)

t+Ar
Foy ==1xpy

Where:

—t+At =t :

Vi s Viz: point of material moment by moment (Z+Af)and ¢ the velocity

at the moment of time;

F(’,:)A' : the reaction force of the material point (k) against the impactor;

Py ¢ Density at substance point (k);

V.

¢ the volume occupied by the substance point (k);

The inverse force sought to be summed for all material points within the range of
the impacting body can be obtained (t+ At) moment, the reaction force on the
impacting body is:

Ft+At — ZFtJrAt/lt+At (3 16)

(k) “H(k)
k

Where:

(3.17)

/I”A’z{l IR A
@0 phETEYESL

That is, if the value is 1, the material point is occupied by the impact and the
response of this material point needs to be corrected according to the above process.
The above equation can be used to describe the variation of the velocity of the

impacting body movement during the impact.
3.4.2 Examples

Professor Silling layer proposed several benchmark problems based on the above
impact theory, simulated using the PD method, and visualized the results using
MATLAB software, with the following results:

Example 1: Rigid circular plate impact test

In this example, the rectangular plate is impacted by a rigid circular plate, and

the initial positions of both are as follows:
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Fig.3.6 Geometric model of the rigid circular plate experiment

The geometric parameters of the steel plates in the experiments are set as follows:

Table3.1 Laminate geometric parameters

S8 S e ol L2
L i 200 mm
w = 100 mm
h ML JE 9 mm

In addition, the material properties of the impacted steel plate are set as follows:

Table3.2 Material properties of steel plates

Property Note Value
E Modulus 191MPa
v Poisson’s ratio 0.33
p Density 8000kg/m?

The cylindrical impact object is treated as an ideal rigid body, i.e., it does not
undergo any deformation under the impact, only rigid body displacement occurs, and

its material properties are set as follows:

Table3.3 Material properties of the impactor

Property Note Value
D Diameter 50mm
H Height 50mm

Using the PD method for simulation, in this example, we do not consider bond

fracture, i.e., the material does not appear to break, so the relevant parameters are set
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as follows:
Table3.4 PDParameter settings of PD method
Property Note Value
Y| Size of point Imm
0 Range 3.015mm
At Time step 1x1077s
Number of steps 2000

After reproducing this experiment using the PD method, the following results

were obtained:

0.05
0.04
0.03
0.02

0.01

[m]
=

-0.01

-0.02

-0.03

-0.04

-0.06

Fig.3.7 Vertical (y-direction) displacement contour of steel plate

We note that the vertical displacement in the middle of the plate is larger than the

sides, which is in accordance with the expected results.

Example 2: Kalthoff-Winkler impact experiment
Kalhoff and Winkler in 1988 had simulated the crack development of a steel
plate with two initial cracks subjected to a cylindrical impact by an experiment. The

geometric model of the experiment is shown in Fig:
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Fig.3.8 Geometric model of the Kalhoff-Winkler experiment

The geometric parameters of the steel plates in the experiments are set as follows:

Table3.5 Laminate geometric parameters

Parameter Note Value Unit
L Width 200 mm
w Height 100 mm
h Thickness 9 mm
d Space of crack 50 mm
ao Height of crack 50 mm
ho Width of crack 1.5 mm

In addition, the material properties of the impacted steel plate are set as follows:

Table3.6 Material properties of steel plates

Property Note Value
E Modulus 159.96MPa
v Poisson’s ratio 8.96MPa
p Density 0.02

The cylindrical impact object is treated as an ideal rigid body, i.e., it does not
undergo any deformation under the impact, only rigid body displacement occurs, and

its material properties are set as follows:

Table3.7 Material properties of steel plates

Property Note Value

D [+ EAF 50mm
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H 54 #F: v 50mm

The simulation is carried out using the PD method, and the relevant parameters are set
as follows:

Table3.8 Parameter settings of PD method

Property Note Value
Y| Size of point Imm
0 Range 3.015mm
Sc Critical stretch 0.01
At Time step 8.7 x 10785
Number of steps 1350

After reproducing this experiment using the PD method, the following results were

obtained:
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0.01

[(m]
o
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-0.04

-0.05
0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

[m]

Fig.3.9 Crack development in steel plate with initial cracks

From the above figure, we can observe that, due to the principle of stress
concentration, the crack starts to sprout from the initial crack tip and spreads to both
sides according to a certain angle; the measurement can be obtained that the angle
claimed between the crack and the vertical direction is about 68°, and it is

symmetrically distributed.

3.5 Determination of surface correction factor

At the beginning of the PD model, some scholars found that the calculation
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results of PD often have certain errors with the finite element software or
experimental results, mainly due to the incomplete domain of the material point in the
boundary region, a phenomenon also known as the "surface effect" (Surface effect), as

shown in the following figure:

Surface

Fig.3.10 "Surface effect”

To make the PD calculations closer to those of conventional continuum media
mechanics (CM), some authors!®> 8! 841 introduced the concept of long-range forces
from molecular physics into PD, while Professor Silling et al. introduced a surface
correction factor to correct the microelastic modulus in the literature!*’! | using the
principle of controlling the strain energy density of the two to be equal to determine
this factor.

For fiber-reinforced laminate materials, we propose a more concise expression to
describe this coefficient based on the above principles, derived as follows.:

Take the x -direction as an example:

As shown in the figure below, let the fiber direction of the i-th ply of the laminate

be ai. An elongation ¢ is given to the laminate along the x-direction:
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Fig.3.11 Small deformation assumption

Then, from the geometric relationship, the elongation along the fiber direction is:

o,, =0cos(a;) (3.18)

In addition, according to the relevant literature (4! | the strain energy density of a

fiber bond in a laminate under PD theory can be expressed by the following equation:
1 1
Wpp. s =5><5><bfx(s(n,é))2x|§|xAfoac (3.19)

Where, facis used to describe the decay of the micromodulus with distance,

which can be expressed by the following equation *71:

1 dx
dx U<A_?
A+7_VU dx dx
fac: T A+7ZI’;/ZA—? (320)
0 1;,/>A+@
‘ 2

Substituting the relevant variables and simplifying gives:

1 b, x (5005(0@) —[¢|

WPD,f ZZX T

Summing over all the bonds in the plate, the strain energy of the laminate is

2
J ><|§|><AV><fac (3.21)

obtained as:
Wep,, = ZWPD,f (3.22)

Also, we have the relevant equations in the traditional continuum media
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mechanics. According to the knowledge of composite mechanics, the strain energy in

the fibers of the laminate and in the matrix can be expressed by the following equation:

(3.23)
Werr = %(Q“ -0,,)6 (3.24)
1 o
Werrm = 5 Q225 (3.25)
Substituting the variables, we have:
Wer i = %(Q11 ~0,,)(6cos(e,))’ (3.26)

Thereby, summing the strain energy of all the layers, the strain energy stored in the
fibers and matrix in the laminate can be found as:

Wery = ZWCM,f,i (3.27)

Wersn = 2 Werrms (3.28)

Where, nis the number of plies of laminate.

The ratio of w,,, and w,,is the correction factor, and the correction factors of fiber

bond and matrix bond can be obtained as:

N

. M, f
lcor,f = W ! (329)
PD,f
W,
b = (3.30)
WPD,m

3.6 Geometric model and material parameters

After determining the surface correction coefficients, we introduce them into the
program and perform the numerical simulation work. The composite laminate for the
numerical simulation in this paper is in the conventional form, i.e., it consists of
composite single-ply sheets superimposed by correlated interactions (e.g., gluing), and
interlaminar action bonds are introduced to describe this interlaminar correlation.

In this paper, we will study the damage caused to the laminate by two different
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shapes of impact objects, cylindrical and round ball, the relative positions of the two

at the beginning of the impact are shown in the following figure:

Fig.3.12 Schematic diagram of the initial relative position of the impactor and the laminate

The specific geometric parameters of the laminate model can be summarized as
shown below:

Table3.9 Laminate geometric parameters

Parameter note Value Unit
b Width 200 mm
h Height 100 mm
t Total thickness 9 mm
to Thickness of layer 1 mm

The specific geometric parameters of the rigid cylinder are as follows:

Table3.10 Cylindrical geometric parameters

Parameter note Value Unit
(e} Diameter 50 mm
H Height 50 mm

The geometric parameters of the rigid sphere are as follows:

Table3.11 Geometric parameters of the sphere

Parameter note Value Unit

()] Diameter 20 mm

The composites used in this paper are all aramid/epoxy (K49/EP) materials, with
reinforcing fibers lay out in:

Table3.12 Lay out method of reinforcing fiber
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Direction

Example [0/45/90/-45/0/-45/90/45/0]

As shown in the picture below::

3
ZPlot of plies 1to 9, of 9.

1

Fig.3.13 Laminate lay out method

In this paper, the following intrinsic model is used for the composite material as

shown in [47];
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f(m,%)

OSD__: Sn,au\ So.r S(l],é)

Fig.3.14 Constitute model of the material

We do not consider the residual bearing capacity of the material after
deformation, which is the same in both directions of compression and tension.

Based on data from the relevant literature, the specific material properties are set

as follows:
Table3.13 Material properties
Parameter Note Value
Ef Modulus-Fiber 159.96MPa
En Modulus-Matrix 8.96MPa
Sf Critical stretch-Fiber 0.02
Critical stretch-
Sm Matrix 0.01
5 Critical stretch- 0.05
Interlayer

3.7 Numerical simulation results under impact conditions

3.7.1 Simulation results of cylindrical impact damage

After determining the relevant parameters and variables, we started to
numerically simulate the composite laminate model in the example. The laminate

damage includes both intra-ply damage and inter-ply damage, where the intra-ply
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damage contains both fiber fracture and matrix cracking, while the intra-ply damage
mainly refers to the delamination of two adjacent layers due to extrusion,
misalignment, and slip. As mentioned in the previous section, when the deformation
of the fiber bond or matrix bond reaches their respective limits, fracture occurs in the
phase key, and damage occurs in the region when a large number of bonds break in
the region.

We selected the time step of numerical simulation 8.7 X 10785(0.087us), The
total number of calculation steps is 3000, and the damage evolution of each layer is
recorded in the middle of 500, 800, 1000, 2000 and 3000 steps, respectively, and some
of the fiber layers with more obvious damage evolution are selected.

Overall damage
The damage contour can be shown in the following figure.:
(1) 500 step

The damage to the laminate at 500 steps is shown in Fig:

n |
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-0.1 -0.08 -006 -004 -002 0 0.02 0.04 0.08 0.08 0.1
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[m]

4]

-0.01

-0.02

-0.03

-0.04

Fig.3.15 Damage cloud at 500 steps

At 500 steps, the impactor has a short stroke and only makes initial contact with
the upper surface of the laminate. Therefore, the damage is almost only concentrated
in the first layer of the laminate. At the same time, the cylinder will squeeze the
laminate during the impact, so although the contact area produces obvious damage, it
is not the most serious part of the damage. With the above image, it can be seen that
the most serious part of the damage is concentrated at the upper and lower surfaces of
the cylinder, which will produce a large tensile stress due to the traction on the plate
surface generated by the movement of the laminate, thus causing tensile damage to

the substrate material, so the damage is most obvious, which is consistent with our
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knowledge and relevant test data.
(2) 800 step

The damage to the laminate at 800 steps is shown in Fig:
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Fig.3.16 Damage cloud at 800 steps

At 800 steps, the damage continued to develop, and the direction of development
was roughly the same as the direction of the fibers in this layer; at the same time,
along the depth direction of the laminate, the damage began to gradually expand to the
first three layers, and the damage in the latter layers was not yet obvious due to the

fact that the base had not yet been created with the impact, as well as the extrusion of

the column.

(3) 1000 step
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Fig.3.17 Damage cloud at 1000 steps

At 1000 steps, we can conclude similarly to the above, that the damage is carried
out along the fiber release line of this layer, which is especially evident in the results
of the first three layers, with the most severely damaged yellow areas in the first three
layers being 0°, 45° and 90°, respectively, in the same direction as the fibers of this
layer; at the same time, the damage begins to spread down layer 4 with the motion of
the impactor.

(4) 2000 step
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Fig.3.18 Damage cloud at 2000 steps

In the first three layers, the damage had been carried out along the fiber direction
to the edge of the laminate, especially in the third layer is the most obvious, because

the fiber of this layer is parallel to the short side direction, the fiber length is the

47



Politecnico di Torino

shortest; also the fiber direction is parallel to the direction of the cylindrical bus,

which means that the damage of this layer is the easiest to carry out, and the damage

is the most This was confirmed by the final test results.
(5) 3000 step
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Fig.3.19 Damage cloud at 3000 steps

At 3000 steps, the column almost completely invaded the laminate, and the
bottom layer of the laminate (layer 9) started to show damage, and the location of the
damage was concentrated in the contact position between the two, especially the
location of the top and bottom surface of the column was the most obvious, which is
consistent with the previous conclusions.

In the first four layers, the damage cracks were roughly spider-webbed in layers
2 to 4, where the damage evolution was more obvious; at this point, the damage was
carried out along the fiber direction to the edge of the laminate, indicating that the
matrix of the layer was almost completely fractured at this point and the layer of fiber-
reinforced composite had lost its load-bearing capacity.

Simulation results of interlayer damage

Here, we define interlaminar damage as the fracture of the "interlaminar bond"

between the two adjacent layers above and below a given layer. We have introduced

interlaminar bonds to describe the interlaminar action, so that the results of

001 08

interlaminar damage can also be obtained, as shown in the following figure.
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Fig.3.20 Schematic diagram of interlaminar damage of composite laminates
Observing the above damage contour diagram, we can find that the interlaminar
damage evolution form of laminate is similar to that of intra-laminar damage and

overall damage, but the interlaminar damage tends to be more uniform and blocky.

Deformation of laminate

50



Chapter 3 Impact damage analysis of laminates based on peridynamics

In addition, we can obtain the displacement of each material point on the
laminate in the vertical direction, and thus we can obtain the vertical deformation of
the laminate. Taking the vertical displacement of each material point at 3000 steps as

a variable, we can plot the deformation of the laminate as shown below:

Fig.3.21 Vertical deformation of laminated panels

Observing the above images, it can be found that the laminate undergoes
significant deformation under the impact, and the most obvious is the contact area
with the impactor, where the deformation profile is "cylindrical", i.e., consistent with
the shape of the impactor. At the same time, the deformation shows an obvious
"groove" shape, i.e., the deformation of the laminate is deeper on the impacted side
and shallower on the back side, which is consistent with the findings of the related

literature 24

3.7.2 Simulation results of round ball impact damage

Based on the above procedure, we replaced the impactor from a cylinder to a rigid
sphere, with the geometric parameters of the sphere as described before and the rest of
the parameters remaining the same.

Considering the symmetry of laminate layup, we choose two different typical
working conditions to show the simulation results of impact damage under different
shapes.

Case 1 (»=0m/s, v=24m/s, v.=32m/s):

In the 1% case, we set the initial verlovity as vv=0m/s, v=24m/s, v.=32m/s,
which is equivalent to v=40m/s, a=36.5° , ais the angle between the velocity and
the normal direction of the laminate, i.e. the angle with the surface of the laminate is
63.5° .The rest of the initial conditions remain the same as the previous test.

In order to demonstrate the results of the development of damage at different
stages, the results of damage evolution at two different stages were selected, 1000

steps and 3000 steps, the former at the early stage of the impact effect, and the latter at
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the late stage of the impact effect, and the results of damage evolution at the two

stages are shown in the following figure:
1000 step:
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Fig.3.22 Schematic diagram of the overall damage to the composite laminate

3000 step:
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Fig.3.23 Schematic diagram of the overall damage to the composite laminate

Deformation of laminate

In addition, we can get the displacement of each material point on the laminate in
the vertical direction, and thus we can get the vertical deformation of the laminate.
Taking the vertical displacement of each material point at 3000 steps as a variable, the

deformation of the laminate can be plotted as shown below:

Fig.3.24 Vertical deformation of laminated panels

Observing the above damage evolution and deformation, it can be found that at
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1000 steps, the normal travel of the impactor is short, estimated to be about 3 mm
based on the initial velocity, and only the first three layers of the model produce
contact with the laminate; at this time, the overall damage situation of the laminate is
shallow, and the damage area of each layer is small and almost concentrated at the
contact position between the impactor and the laminate, which is roughly circular, i.e.,
the damage shape is roughly the same as the impactor; when When the program enters
3000 steps, the rigid round ball almost completely invades the laminate, and at the
same time, comparing the results of 1000 steps, it can be clearly observed that the
damage area increases significantly, and the damage of each layer is carried out
roughly along the fiber direction, which is consistent with the results of other related
literature.

Comparing the results under the action of cylindrical impact, it can be found that
there is a clear relationship between the damage development and the motion
parameters (velocity, angle) of the impactor. In the cylindrical impact experiment, the
impact velocity of the impactor is perpendicular to the plate surface, which means that
the velocity is spatially symmetric, and the damage evolution is also symmetrically
distributed considering the symmetry of the laminate lay-up direction; while in this
test, the motion parameters of the impactor do not have symmetry, so the damage
development also shows a certain generality and correlation with the velocity
magnitude and direction. The sphere has a horizontal velocity pointing in the negative
direction of the y-axis and parallel to the direction of the plate; therefore, the damage
1s more pronounced in the negative position of the y-axis than in the positive position,
1.e., the damage arises roughly in the direction of travel of the impactor.

Case 2 (»=18m/s, »=24m/s, v.=32m/s):

In this condition, the initial velocity v=18m/s, v,=24m/s, v.=32m/s, , i.e., the

velocity along the x-axis is increased, and the rest of the initial conditions are the

same as above, showing the damage evolution results for 1000 steps and 3000 steps as

well.
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Fig.3.25 Schematic diagram of the overall damage to the composite laminate

3000 step:

56



Chapter 3 Impact damage analysis of laminates based on peridynamics

005 1 X 1
: o X s
s 06 [
or 4 0
) - 08 3 08
E - 05 E 5
001 04 04
002 03 03
002 oz vz
0. o 0
008 o 005
« 02 0 Q02 004 006 008 01 a

1008 006 04 0 1 008 D06 002 D02 0 002 D04 006 00d 01
[m] [m

(1) 150° (2) 219/45°

005 1
X og ¥ 08
Bk xS ua
o7 ! ur
3 0 : 13
E 05 05
001 04 04
002 [ 03
003 0z g 02
1 o o

008 o

Q

1 098 006 0m4 002 0 002 O04 008 008 Q1 1 008 008 004 002 0 002 0p4 008 008 Q4
[m] [ml

(3)30° (4) 4/-45°

o0g
08 !
08 o 28
i (x4
i 0s ) be
05 it 03
04 04
03 03
02 02
01 o o1
[

008,
008 006 004 002 0 002 004 006 008 01 01 008 006 004 002 0 002 004 Q06 008 Od
[m] [m

(5) 5%0° (6) 61/-45°

Cas oo ..

4 X3 0

o7 [

06 Wi

o5 05

0.0 o 0d

00z o 03

003 0 / 02

v o ot

.05, o o
@ 02 0 002 004 006 002 ad

4 088 006 D04 002 0 00z O04 006 008 0f 1 -008 006 004 -0
[m] [m]

[ml

(7) 7%/90° (8) 8™/45°

[ml

57



Politecnico di Torino
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Fig.3.26 Schematic diagram of the overall damage to the composite laminate

Observing the overall damage contour of the above laminate, we can find that the
damage is carried out similarly to that under the action of cylindrical impact.

At 1000 steps, the ball as the impact object has limited travel, the damage to the
laminate has not yet been carried out, and the more serious damage is almost always
concentrated in the contact area between the ball and the laminate.

Also, due to the spatial asymmetry of the impact velocity, the damage is carried
out more irregularly in the plane, but the overall conclusion remains the same, i.e.,

more pronounced damage occurs in the direction of travel of the impactor.

3.8 Summary of this chapter

This chapter focuses on the simulation of impact damage of composite laminates
based on peridynamics, with specific work on:

((1) A more concise surface correction factor for composite materials is
proposed. The traditional peridynamics method faces the problem of "surface effect",
which means that the near-field range is often incomplete for the material points in the
boundary region, which leads to large calculation errors.

(2) To address the problem of discontinuous mechanics of composite laminate
impact damage, an analytical model of rigid body impact damage evolution of
composite laminate based on the peridynamics theory was established, and a
corresponding PD calculation program was developed. Based on this model, the
damage evolution of the composite laminate is simulated under different impact
conditions (shape, velocity and angle of the impactor). During the simulation, the
impactor is assumed to be rigid, i.e., only rigid body displacement occurs, and no
deformation occurs in itself. During the impact process, we record the results of the
laminate at different time steps, analyze the evolution of the impact damage and the
deformation of the laminate, and obtain the damage law of the laminate under the
action of rigid body impact, i.e., the damage is carried out roughly along the normal
direction of each ply fiber, the fracture of the matrix precedes the fracture of the fiber,
the damage area increases with the increase of the impact velocity, and its shape is

consistent with the shape of the impactor.
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Chapter 4 Deep Learning Based Impact Condition

Identification

4.1 Introduction

In the previous chapter, we simulated the impact action of a rigid body on a
laminate under different working conditions through an analytical model of laminate
impact damage evolution based on peridynamics, and analyzed the development and
form of laminate impact damage. We found that the damage evolution of a laminate is
not only related to its own properties and parameters, including factors such as layup
direction, geometry, and material properties, but also to the impact working conditions,
such as velocity, angle, and position of the contact area. Therefore, for this
phenomenon, we consider an "Inverse solution" - based on the damage evolution of a
plywood layer, we infer the size and direction of the impact it was subjected to in the
first place. This is a very practical problem in engineering, i.e., some structures
represented by composite laminates are often subjected to impacts from the outside, in
different directions and at different speeds, such as front windshields or shells of cars
and airplanes, which may be hit by birds or rocks, thus causing accidents. The study
of this phenomenon will help to analyze and restore the working conditions when
such accidents occur, and provide some theories and evidence for a series of
subsequent improvement measures or engineering studies. However, since the impact
damage evolution of composite laminates presents complex nonlinear characteristics,
the identification of impact conditions encounters great challenges, so we address this
problem by trying to identify unknown impact conditions using deep learning

methods.

4.2 Introduction to Deep Learning Theorys

Deep learning®! is a way of Machine Learning (ML), and the main research
directions of machine learning include decision trees, random forests, and deep
learning. Its ideas have existed for almost centuries, and as early as the 17th century,
Thomas Bayes, Pierre-Simon Laplace and others proposed some derivations and
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conclusions about the method of least squares (Ordinary least squares), and these
theories also constitute the most These theories form one of the core and essential
theoretical foundations of machine learning theory today.

In the 1950s, Alan Turing, the father of computer science, asked in one of his
papers!®> "Can machines think?" (Can machines think?), asking whether machines
could learn and become self-aware like the human brain. This question continues to
plague today's academic community and has, in part, inspired today's work on deep
learning. At the beginning of this century, Hinton et al. formally introduced the
concept of Deep Learning (DL). Meanwhile, with the dramatic improvement of
computer hardware and the birth and practical application of some network models
(e.g., AlexNet® proposed by Hinton in 2012) , deep learning has made great
progress and become the most popular research direction in machine One of the
hottest research directions in the field of learning has intersected with almost all
disciplinary disciplines, and algorithms refined by deep learning have shone in the
fields of finance, medicine, autonomous driving, drones, and even art, with notable
results. Today, deep learning is the most widely used term in science, engineering, and
even the online community.

Deep learning discovers the intrinsic distribution of data by combining low-level
features to form more abstract categories or features of higher-level representational
attributes that can inform the study of similar features in other data. The essence is to
learn from sample data to discover its intrinsic patterns and levels of representation,
and the information obtained from this learning process can be of great help in the
interpretation of data such as text, images, and sounds. The ultimate goal of deep
learning is to enable computers to learn analytically like humans, and to train various
types of data to perform subsequent predictions, including recognition, classification,
regression, etc.

As one of the methods in deep learning theory, neural networks are one of the
popular research at present, and many researches related to deep learning are carried
out on neural networks. Typical neural network models include fully connected neural
networks (FNN), convolutional neural networks (CNN), recurrent neural networks
(RNN), and so on. Each of these networks has its own characteristics and strengths,
and it is often necessary to select the appropriate network according to the specific
research problem.

At present, the code of deep learning is mainly presented in the form of Python
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language. At present, there are already a large number of libraries and platforms
developed for deep learning internationally, and these libraries and platforms
constitute the development framework of deep learning, and the related development
work can be carried out on the basis of the above framework, among which some
more popular frameworks have been widely popularized and applied, abroad,
including TensorFlow developed by Google, Caffe developed by UC Berkeley Caffe
developed by Google, Theano developed by Polytechnic Institute of Montreal,
PyTorch launched by Facebook AI Institute, etc. In addition, domestic research
development frameworks include the deep learning platform Flying Paddle
(PaddlePaddle) launched by Baidu with years of deep learning technology and
business applications, Jittor developed by Tsinghua University, MindSpore launched
by Huawei, etc.

TensorFlow developed by Google is one of the most widely used frameworks,
and the computational libraries, software packages and other related data materials
based on this framework are the most complete, so the deep learning models in this

paper are all developed and built based on TensorFlow.

4.3 Model Selection

As mentioned earlier, the development of deep learning so far has given birth to
a large number of network models, including the classical BP model, CNN model,
RNN model, FNN model, GAN model, etc. These models have different
characteristics and are also applicable to different practical problems, and choosing a

suitable class of network models is our first job.

4.3.1 Common Network Models

1. Fully connected network, FNN

A fully connected neural network is one of the most traditional neural networks
in which two neurons in any two adjacent layers are interconnected, and its structure

1s shown in the following figure:
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f =

Fig. 4.1 Fully connected neural network model

In each iteration, the data in the input layer is first passed one-way until the
output, the error is calculated, and then the parameters are updated by the back
propagation algorithm and a second iteration is performed, cyclically advancing the
above process until the final error converges.

2. Convolutional Neutral Network, CNN

Convolutional neural networks (CNNs) are a clever combination of computer
science and mathematics, and have now become a highly influential part of the
computer vision field, with a wide range of applications in many areas, such as image

recognition and behavior classification.
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3. Recurrent Neural Network, RNN

Recurrent neural networks are also known as recurrent neural networks. Such
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networks can be used to deal with a more specific class of problems where there is a
clear Sequence relationship between feature data, a typical example being the
language used by humans. Almost all languages contain certain grammatical rules,
which means that words can only be arranged in a specific order to produce a specific
meaning, and different orders often mean different meanings. Therefore, recurrent

neural networks are born.
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Fig.4.3 Schematic diagram of the recurrent neural network timeline

Comparison of the models
We list the characteristics and the most important usage scenarios of the above

three neural networks in the following table:

Table4.1 Comparison of three types of neural networks

FNN CNN RNN
Features Connections exist CNN can There is a recurrent
between each significantly reduce layer, i.e., the
neuron on two the number of output of this layer

adjacent layers of =~ parameters to be  and the sample data

the network, with measured are used together as
a simple structure  compared to FNN the input of the
and wide by extracting and  next layer, so there
applicability, but enhancing data 1s a memory
a large number of  features through function for the
parameters convolution and sample data

pooling operations
The type of In terms of Suitable when the Such as text

problem suitable principle and input data is two-  recognition, natural
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for structure, the dimensional, such language
most traditional as image processing, text
FNN is suitable recognition, face padding, time
for all problems recognition, etc. series related

problems Select

Selection J

As described in the table above, we consider the damage data of the laminate as a
multi-channel number of pictures, so the convolutional neural network is best suited

for our work.

4.3.2 Convolutional neural network and image recognition

Deep learning theory has a wide range of applications and has yielded numerous
results in search techniques, data mining, machine translation, natural language
processing, multimedia learning, speech, recommendation and personalization
techniques, and other related fields.

Image recognition, on the other hand, is a technical area of great interest to deep
learning. Image recognition refers to the technology of using computers to process,
analyze and understand images in order to recognize various targets and objects with
different patterns, which is a practical application of deep learning algorithms. At this
stage, image recognition technology is generally divided into face recognition and
commodity recognition. Face recognition is mainly used in security inspection,
identity verification and mobile payment; commodity recognition is mainly used in
the process of commodity circulation, especially in the unmanned retail field such as
unmanned shelves and intelligent retail cabinets.

The traditional image recognition process is divided into four steps: image
acquisition — image pre-processing — feature extraction — image recognition, as

shown in the following figure:

b [ o b

Fig.4.4 Image recognition process
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Convolutional neural networks (CNN), recurrent neural networks (RNN), RNN-
based long-short term memory model (LSTM), deep confidence networks, generative
adversarial nets (GAN) and other common network structures are widely used in the
field of image recognition. The traditional classical models have not disappeared, but
are being updated, and there are many related researches. Hinton, a leading figure in
deep learning, and his student Alex Krizhevsky designed a new model called
AlexNet® based on the traditional convolutional neural network (CNN), and applied
ReLU, Droupout and LRN techniques in CNN for the first time, and applied the
model to super large-scale image recognition. achieved better recognition accuracy
than traditional networks and won the championship in the ImageNet competition in
2012; after that, results born on this basis began to emerge. Domestic scholars Zhou et
al %! developed a set of migration learning algorithms based on AlexNet and applied
them to image recognition in industrial environments, solving the problems of
complex maintenance and poor environmental adaptability of traditional methods. in
2013, Zeiler's team®” further updated AlexNet in that year's ImageNet competition.
Google, Microsoft, Facebook, and other Internet giants Google's Al team®”! designed
and proposed the model of GoogleNet in 2014, which further reduced the error rate of

image recognition to about 6.7%.
Channel

Channel is a very important concept in image theory, initially referring to the
display scheme of a computer or print for pictures, the former mainly being the RGB
channel and the latter commonly being the CMYK channel. The essence of a two-
dimensional image is a collection of pixel dots, each of which displays only one color,
which in turn is a superposition of the grayscale values of the R (red), G (green) and B
(blue) color channels.

Take RGB channel as an example, for any picture, each of its pixel points is
displayed through a three-dimensional array (R,G,B) to show the corresponding color,
where R,G,B that represents the value of the three color channels of red, green and
blue, known as grayscale value, the range is [0,255], the operation of the channel is
reversible, that is, a picture can be separated into three channels on the sub-picture,
and the three sub-pictures can also be be superimposed into the original picture in

some way, as shown in the following figure.:
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-

Fig.4.5 RGB channel

Based on this theory, we propose a channel division method for laminate damage,
i.e., the damage of each layer is input to the neural network as a channel, and the

damage is divided as shown in the following figure:

Fig.4.6 Damage channel division

Convolutional layer

Convolutional layers are the core of convolutional neural networks. When the
number of layers of fully connected neural networks increases and the number of
neurons in the hidden layer gradually increases, the number of parameters to be
optimized also increases exponentially, which is a great test for the computer's
computational power. Convolution operation avoids this crisis. Take image
recognition as an example, there is often a lot of repetitive or useless information in
the image summary, so we apply convolution to the image, the essence of which is to
extract the significant features (such as edges) in the image to reduce the number of
features and thus the number of parameters.

The principle of the convolution operation can be represented in the following
figure:

Take a 4x4 grayscale image, the number in the image represents the grayscale
value of the pixel, 0 is all black and 255 is all white. We take a 3%3 convolution kernel
to convolve the image with a step size of 1, i.e., the convolution kernel moves to the

right or down one at a time, and the convolution operation can be shown as follows:
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stride = 1
kernel = 3x3 53 9

Fig.4.7 Schematic diagram of convolution operation

The size of the image obtained after the convolution operation is related to the
size of the convolution kernel, the step size of the convolution operation, etc., and
satisfies the following equation:

O{MJH 4.1)

s
Where, he input image size is nxn ; the convolution kernel size is fxf ; the

thickness of the fill layer is p; the step is s; the size of the output image is 0; “| |”

is the downward rounding sign.

Observe the above process, and then combine with the above formula, we can
find that after the convolution operation of the original 4x4 grayscale image, the
image size becomes 2x2, which also means that some grayscale information of the
original image edges is lost, and in most cases, we want to keep the image size
unchanged after the convolution operation. To meet this requirement, we try to expand
the image size by filling "0" value points around the original image, as shown in the

following figure:

-1 0 1

2|0 2

-1 0 1

0 164 0 0 164 0 stride = 1 89 | -9 | 98 |-209
kernel =3x3
213 | -53 | -46 [-314
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Fig.4.8 Diagram of filling operation

With this method, an image of the same size as the original image can be

obtained after the convolution operation.
Pooling layer

Pooling is necessary in convolutional neural networks, especially when the
amount of data is large, and pooling is also called Downsampled. Too much data in
the input model often means too many parameters, which means it is very easy to
cause overfitting. Therefore, we consider introducing a pooling layer to downsample
the features, compress the number of data and parameters, reduce overfitting, and
improve the fault tolerance of the model.

The two common pooling methods used today include Max pooling and Average

pooling.

+ stride * * stride +

stride =2 stride = 2
o o a 7 Filter =2x2 a 0 a 7 Filter =2x2 3
> >

(a) Max pooling (b) Average pooling

Fig.4.9 Pooling

In general, the two pooling methods do not have an essential effect on the results.

In this paper, we consider using maximum pooling.

4.4 Convolutional neural network construction

We build our impact work recognition network on the basis of classical image
classification convolutional neural network, and before that we need to determine

some parameters in the network.

4.4.1 Activation Function

The activation function is a very important concept in deep learning networks

and is also known as the "transfer function" in artificial neural network theory. It acts
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directly on the neuron, mapping its original linear input to the output.

For neurons that do not add an activation function, we call them

"Perceptron”, which is a very primitive learning network that is also capable of

performing some learning and regression work, and whose principle can be
represented in the following figure:

-

W

Wy )

NE

LT
Fig.4.10 Perceptron model

7f In the above figure, the input layer elements x, . x, with weights w, . w,

and bias b, are transformed by a simple linear transformation to obtain the output of

this neuron X, i.e.:
xl
S=[w w]| " |+b (4.2)
Xy

From the above figure and a simple mathematical derivation, it is clear that if
only the perceptron model exists in the network, the model remains linear even if the

number of neurons and hidden layers is increased. This model is then extremely
biased when fitting nonlinear events.

Therefore, the most important point of the activation function is to introduce

nonlinear properties into the network, so that our network can learn and understand
those complex nonlinear models.

Activation functions commonly used in deep learning include:
1. Sigmoid

f(x)=—

1+e™

(4.3)
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Fig.4.11 Schematic diagram of the Sigmoid function

The Sigmoid function is also known as the "logistic function" and is also known
as the S-shaped growth curve in the field of biology. As a very common activation
function, it can map the continuous value of the input to the output of the interval.
This feature makes the Sigmoid function extremely useful for binary classification
problems, i.e., to determine the class of the input by judging the magnitude of the
function value and 0.5.

Sigmoid was once widely used, though in recent years it has been used less
and less frequently because of some of its inherent drawbacks. One is that it tends to
lead to gradient explosion and gradient disappearance when gradients are passed
backwards in deep learning networks; the second is that its parsing formula contains
power operations, which can significantly reduce the training efficiency of the
computer for larger data sets.

In addition, the output values of Sigmoid are all greater than 0, making the
output not zero-centered, which in a way causes the "bias phenomenon".

2. Tanh

The Tanh function is mathematically known as the "hyperbolic tangent function"
and has the following functional equation:

F= (4.4)
e +e
The image of the function is shown below:

1
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Fig.4.12 Schematic diagram of Tanh function

From the above function image, it can be seen that the Tanh function maps the
input to the interval (-1,1) and, according to the symmetry of the image, implies that
the output of the Tanh function is a distribution with 0 as the mean. Compared with
the Sigmoid function, the problem that the latter is not zero-centered is solved, and the
problems of power operation and gradient disappearance still exist. the Tanh function
has a similar image trend to the Sigmoid function, which means that the function is
also applicable to the binary classification problem. combining the above advantages,
disadvantages and common points, we will be accustomed to using the Sigmoid
function on occasions when it can be Tanh function instead.

3. ReLU(Rectified Linear Unit)
The ReLU function is a very simple function to take the maximum value with the

following functional equation:
f(x) = max(0,x) 4.5)

The image of the function is shown below:

Fig.4.13 Schematic diagram of the ReLU function

The ReLU function is essentially a take maximum function in mathematics - for
positive values, the function value is equal to itself, and for negative values it is 0.
ReLU is currently the most widely used activation function in deep learning,
especially in convolutional neural network models, and almost all such models use
ReLU as the hidden layer ReLU is the most widely used activation function in deep
learning.

Thanks to the simple form of ReLU, it converges faster than the first two
and solves the problem of gradient vanishing at the same time. But the ReL.U function
also has two problems. One is that it is not fully interval derivable, and the derivative
function is not continuous at the origin; second, its output is still not a distribution

with 0 as the mean; third, ReLU maps all negative inputs to 0, meaning that it ignores
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the contribution of negative features.
In the model of this paper, we use ReLU as the activation function in all the

two convolutional layers except the final linear output layer.

4.4. 2 Hyperparameter setting

Hyperparameter refers to a set of parameters that need to be specified before the
network starts training. It is different from another type of parameters that need to be
updated through learning, because once the hyperparameter is specified, it will not be
changed during training. Therefore, the setting of hyperparameters is also a very
important issue in the construction of deep learning networks. The hyperparameters
involved in deep learning include Learning rate, Batch size, etc. In a broad sense,
hyperparameters also include non-numerical parameters such as Loss function,
Optimizer, etc.

Since the hyperparameters need to be set before the network starts iterative
training and will not be modified during the training process, and since the training of
deep networks is generally time-consuming, selecting a better set of hyperparameters
as much as possible can significantly improve the learning efficiency and of deep
learning networks.

A series of hyperparameters are determined in this paper as follows:

1. Learning rate
The learning rate determines the magnitude of parameter updates during each

iteration of training:

0.=0-aV (4.6)

Where 6,,, . 6,——parameters to be learned;

a ——Learning rate;

B Oloss

, the partial derivatives of the loss function with respect to the

parameters.
The effect of learning rate on training is shown in the following figure.:

Learning rate too small:
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Loss

Jey R LA
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Fig.4.14 Learning rate too small

As shown above, when the learning rate is too small, the training process iterates
slowly and tends to fall into a local optimum solution, i.e., the loss function converges
when the gradient decreases to a very small value.

When the learning rate is too high:

Loss

AR

Fig.4.15 Excessive learning rate

And when the learning rate is too large, the gradient oscillates repeatedly around
the optimal solution and sometimes fails to converge. Therefore, it is crucial to choose
an appropriate learning rate.

In deep learning, we use a very basic strategy of choosing the learning rate, i.e.,
choosing a larger learning rate at the beginning of training to make the gradient
converge to the optimal solution first, and then using a smaller learning rate to
converge to the optimal solution. Therefore, we consider the "exponential decay
learning rate" to describe this kind of adjustment. tensorFlow framework provides the
corresponding function tf.train.exponential_decay. based on this function,

the learning rate is adjusted during the iterative process by the following equation:
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global _step

Lr=Lr basexLr decay ™" (4.7)

2. Batch size

Batch size refers to the number of samples selected for training at one time. In
particular, when the total sample size is extremely large, it is not physically possible
to feed all samples into the model at once. In addition to this factor, the batch size also
affects the degree of optimization and training speed of the model, and an

inappropriate batch size may cause the model to converge to a local optimum.
3. loss function

The loss function can quantitatively evaluate the degree of difference between
the recognition result of the model and the true value. Generally speaking, the smaller
the loss function is, the stronger the model is and the better the performance is. The
loss function used varies for different models. For example, for a series of
classification problems such as image recognition problems, we tend to use the cross-
entropy loss function, while for continuous output problems such as regression, we

use the mean square error (MSE) loss function.
4. Optimizer

The optimizer is a class of algorithms used to find the optimal solution in deep
learning network models. Its main role is to guide the parameters of the loss function
to update the appropriate size in the right direction during the backpropagation
process of deep learning, so that the updated parameters can keep the loss function
value close to the global minimum.

The most central optimization idea of almost all optimizers is the use of gradient
descent (Gradient descent). Currently, the commonly used optimizer algorithms
include Stochastic gradient descent (SGD), Adaptive learning rate algorithm
(AdaGrad), etc. In this paper, we use the Adam optimizer based on the self-using
learning rate algorithm, which is also a widely used optimizer in deep learning. Adam
is a set of the aforementioned methods, and its main advantages include:

Simple implementation, efficient computation and low memory requirements.

The update of the parameters is not affected by the scaling transformation of the

gradient.

Suitable for scenarios with large-scale data and parameters, etc.

5. Dropout
Dropout technique was first introduced in AlexNet in 2012 by Hinton and his

team, the titan of deep learning. This technique means that during the training process
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of a neural network, for each layer of neurons, a portion of the neurons are randomly
dropped according to a ratio (called "Dropout rate") set by the implementation. The
main purpose of introducing dropout is to prevent overfitting of the convolutional

neural network during training, as shown in the following figure:
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Fig.4.16 Normal fit, underfitting and overfitting

verfitting means that the model learns the features of the data in the training set
excessively and is less sensitive to the unexpected data features in the training set.
During the training process, although the loss function is converged to a very low
level, however, the real recognition ability of the model is poor.

A comparison of the neural network with and without the dropout added is

shown below:

=
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Fig.4.17 Adding dropout

Through the above comparison, it can be noted that the network after dropout is

more streamlined than the original network, thus reducing the probability of

overfitting.
After clarifying the above concept, and after several rounds of attempts, we

finally selected the hyperparameter settings as shown in the following table:

Table6.2 Hyperparameter setting table

Hyperparameter Value
Learning rate base 0.001
Learning rate decay 0.99

Training set 1440
Validation set 180
Test set 180
Batch size 18
Training epoch 3000
Dropout rate 0.025/0.2
Loss function MSE
Activation function ReLU
Adam

Optimizer

4.4.3 Network Structure

After determining the neural network type and all hyperparameters in the

network, we can draw the neural network structure of the response, as shown below:

Fig.4.18 Neural network structure diagram

76



Chapter 4 Deep Learning Based Impact Condition Identification

In the first fully connected layer, we set up with 1024 neurons, and in the second

fully connected layer, with 256 neurons.

4.5 Impact condition identification

The main content of this chapter is deep learning-based impact condition

recognition, and the computational flow of this part is shown in the following figure:
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Fig.4.19 Calculation flow of this chapter

4.5.1 Dataset construction and partitioning

1. Dataset construction and partitioning

First, we specify the coordinate system settings for the laminate as shown below:

y

Fig.4.20 Coordinate system setting of laminate model

After that, we construct the data set based on the calculation procedure in the
7



Politecnico di Torino

previous chapter by modifying the ball impact velocity and angle, where the velocity
is from 30 to 70 in size with a step size of 5, for a total of 10 groups. The angles range
from 0° (perpendicular to the plate) to 85° (almost parallel to the plate) in steps of 5°,

for a total of 18 sets. The following figure shows:

85 Za=>0°

\

\

75m/s>v >30m/s Y
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Fig.4.21 Schematic diagram of speed and angle

2. Data enhancement

With the combination of speed and angle described above, we can obtain a
sample set consisting of 180 data sets. According to the experience related to deep
learning, this amount of data is low, therefore, we consider obtaining more data by the
method of Data augmentation.

The traditional data enhancement methods include SMOTE (Synthetic

Minority Over-sampling Technique) method, adding noise (Gaussian noise, pretzel
noise, Poisson noise, etc.), and the traditional data augmentation methods are used to
expand the number of sample data sets (Data set) when they are small. Sample pairing
method, Mix up method, etc.

In this paper, we consider data enhancement by adding "Salt and Pepper" to
the data.

"Pepper noise" is divided into "pepper noise" and "salt noise", which refer
to white dots with a gray value of 1 and black dots with a gray value of 0, respectively.
We add a given percentage of noise to the image by controlling the value of signal-to-
noise ratio (SNR).

In this paper, we set SNR=0.99, and add noise to all damage images
according to this ratio, i.e. "pepper noise" or "salt noise" is added to 1 out of every

100 data. The damage contour after adding noise is shown in the following figure:
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Fig.4.22 Damage contour after adding noise to layer 1 in case 1 (v=30m/s, o=0° )

A comparison with the original image is shown below:
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(a) No noise added (b) Noise added

Fig.4.23 "Pepper noise" effect diagram

The yellow and blue dots in the figure are the added "pretzel noise", which
accounts for 1% of the total number of points. This percentage is very small and will
not blur the features of the damage contour. The above operation was repeated 10

times for each damage image, as shown in the following figure:

@ @ @

Fig.4.24 Data enhancement
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Then, for each condition, we can obtain 10 different sets of noise added damage
contours, which can expand the sample capacity from 180 to 1800 sets, thus achieving
the effect of data enhancement.

3. Partitioning of the data set

With the initial construction and data augmentation described above, we obtained
1800 sets of sample data, and these constitute our subsequent deep learning dataset.

According to the deep learning theory, we need to divide the 1800 sets of data
into three groups, i.e. Training set, Validation set and Test set.

The three data sets serve the following purposes.

(1) Training set: the training set is input into the model at the beginning of the
phase for training, helping the model to keep updating its parameters during the
training process; in terms of quantity, it accounts for the largest share of the data set.

(2) Validation set: The main function of the validation set is to prevent the model
from "overfitting" and to verify that the model has sufficient generalization ability, i.e.,
similar sensitivity to different data sets.

(3) Test set: The role of the test set is to test the recognition ability of the model
using the trained model after the training is finished.

According to the related literature, the ratio of the three data sets can be set to
8:1:1. According to this ratio, we randomly select 1440 sets as the training set and
input them into the constructed neural network for training; then randomly select 180
sets as the validation set to verify the generalization ability of the model after each
round of training to prevent overfitting; and the last 180 sets as the test set to test the
accuracy of the model after the training is completed. model recognition accuracy.

In the aforementioned division of material points, the laminate was divided into
more than 180,000 material points in total. However, according to the damage
evolution contour obtained in the previous section, almost all the damage of the plate
is concentrated in its central area, i.e., the area in contact with the impactor and its
peripheral part, while the other areas, especially its edge areas, hardly produce any
damage. Based on this, we consider cutting the original laminate by cutting off 20%
of the length of each side of the plate, and selecting only the damage data of the
material points in the central part as the input of the neural network.

The discarded areas have zero damage values, so they do not affect the
distribution of the damage data, and at the same time, the amount of input data is

reduced by about 40%, which also improves the computational efficiency. The
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laminate is cut as shown in the following figure.:

Fig.4.25 Schematic diagram of laminate cutting

4.5.2 ldentification based on the whole dataset

After building the model and getting the training data set, we can input 144 sets
of training set data into the input layer of the model and start the training. After 3000
rounds of iterative training, the time-course curves of the damage functions of the

training and validation sets can be plotted as shown below:
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Fig.4.26 Training loss for the training and validation sets
Observing the loss function curves, we can find that after 3000 rounds of
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iterative training, the loss functions of both have converged to very small values.
Unlike the classification problem, we define the accuracy rate in this paper

as follows: the recognition result is considered accurate when the absolute error

between the recognition result and the true value is not greater than 5 (° /m/s ) .
Based on the above definitions, an image of the 3000-round accuracy time

course curve can be plotted as shown below:
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Fig.4.27 Accuracy of training set and validation set

After 3000 rounds of training, the accuracy of both the training and validation
sets reached about 95%, indicating that the model has a high recognition accuracy and
no "overfitting" phenomenon.

We used the trained model to recognize the remaining 180 test sets and

selected 18 of them to show the recognition results as follows:

Table4.7 Table of identification results

No. vim/s ] al° ]
1 64.98 35.96
2 54.90 47.32
3 60.47 78.04
4 58.06 80.45
5 74.09 54.50
6 37.82 22.84
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7 56.65 18.78
8 53.26 34.64
9 45.73 10.42
10 75.96 60.93
11 69.48 55.46
12 46.91 22.58
13 63.77 10.87
14 57.56 51.56
15 35.84 48.01
16 51.32 53.99
17 35.16 10.84
18 62.13 25.73

The label values (true values) corresponding to each working condition are

shown in the following table:

Table4.8 Table of label values

No. vim/s ] al° ]
1 65 35
2 55 50
3 65 80
4 60 80
5 75 55
6 35 20
7 55 20
8 55 35
9 45 10
10 75 60
11 70 55
12 45 20
13 60 10
14 60 60
15 35 45
16 50 55
17 35 10
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18 60 25

From there we can calculate the relative error as shown in the following table:

Table4.9 Relative error table

No. v a
1 0.04% 2.74%
2 0.18% 5.35%
3 6.96% 2.45%
4 3.23% 0.57%
5 1.21% 0.91%
6 8.06% 14.21%
7 3.00% 6.08%
8 3.17% 1.02%
9 1.63% 4.17%
10 1.28% 1.54%
11 0.74% 0.84%
12 4.24% 12.92%
13 6.28% 8.66%
14 4.07% 14.06%
15 2.41% 6.69%
16 2.65% 1.84%
17 0.45% 8.37%
18 3.55% 2.90%
Average 2.95% 5.30%

The absolute errors are shown in the following table.:

Table4.10 Absolute error table

No. vim/s ] al® ]
1 0.02 0.96
2 0.10 2.68
3 4.53 1.96
4 1.94 0.45
5 0.91 0.50
6 2.82 2.84
7 1.65 1.22
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8 1.74 0.36
9 0.73 0.42
10 0.96 0.93
11 0.52 0.46
12 1.91 2.58
13 3.77 0.87
14 2.44 8.44
15 0.84 3.01
16 1.32 1.01
17 0.16 0.84
18 2.13 0.73

Average 1.58 1.68

Standard

deviation 1.24 1.92

Reading the data in the error table, we can get, in the speed identification results,
the maximum relative error is located in working condition 6, 8.06%, the minimum
error is located in working condition 1, only 0.04%, the average relative error is
2.95%; the maximum absolute error is located in working condition 3, 4.53 m/s , the
minimum error is located in working condition 1, only 0.02 m/s , the average absolute
error is 1.58 m/s .

In the angle identification results, the maximum relative error is also located in
working condition 6, 14.21%, the minimum is located in working condition 4, only
0.57%, the average relative error is 5.30%; the maximum absolute error is 8.44° |, the
minimum is only 0.5°, the average absolute error is 1.68°.

Analyzing the above error data, we find that for the vast majority of results, the
identification results have extremely small errors relative to the labeled values (true
values). According to the accuracy formula proposed in this section, 18 sets of data,
for a total of 36 sets of identification results, 35 sets will have an absolute error within
5[° /m/s], with an accuracy rate of 97.2%.

The above results prove that the fitting effect and recognition ability of the model

have reached a high degree and meet the requirements of engineering practice.

4.5.3 ldentification based on partial dataset

In practical engineering, due to the limitation of the technology level, we cannot
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get the damage of all data points, so we started to study the change of the model
accuracy when the number of samples in the input data set is reduced.
We consider the selection of material points by controlling the step size. The

selection process is shown in the following figure:

Ny

stride

Fig.4.28 KX/~ & Fig.

We start from the lower left corner and select a material point every dx points
along the x-direction and every dy points along the y-direction. Since two pooling
layers are set in our neural network structure, the dimension of the input matrix
becomes 1/2 of the original one in the length and width direction for each pooling
layer, i.e., both dimensions should be a multiple of 4. We control the dimensionality of

the output data by the following equation:

F

m= % x4 (4.8)
5

"= ‘Zy <4 (49)

where m, n are the dimensions of the sampled matrix; dx, dy are the sampling spacing
in the x and y directions, respectively.

To investigate the relationship between the recognition error of the model and the
sampling spacing based on data reduction, we adjusted the values of dx, dy according

to the data in the following table.:

Table4. 11 Sampling spacing table

dx dy
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2 2
3 3
4 4
6 6
8 8

By adjusting the sampling spacing according to the above table and repeating the
identification process in Section 4.3.2, we can obtain the variation of the loss
functions of the training and test sets under each set of spacing as shown in the

following figure:
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Fig.4.29 (a Training set loss (b) Validation set loss

From the above images, it can be found that as the sampling spacing increases,
the loss value obtained by the model convergence also gradually increases, and when
the sampling spacing is taken (dx, dy) as (8, 8), the loss value converges to about
60, which is nearly 10 times more than the initial value.

Also, the accuracy of the training and validation sets can be plotted as shown

below:
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Fig.4.30 (a) Training set accuracy (b) Validation set accuracy

Also, the change in accuracy of the training set can be plotted as shown in the

following figure:

FREi/ox=dy

Fig.4.31 Training set accuracy

and the trend of the relative error is shown in the following figure.:
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Fig.4.33 Angular relative error

Observing the above images, we can also draw similar conclusions, i.e., as the
sampling spacing increases and the number of samples decreases, the model shows
the following changes.

(1) Convergence of the damage function to a larger value, indicating a decrease
in the optimization capability of the model and convergence to some less optimal
local optimum point.

(2) The accuracy rate tends to decrease significantly, but the model still has an
accuracy rate of about 75% when the selected material points are trained, while when
the sampling spacing (dx, dy) is (8, 8), the number of samples used as input is about
1/64 of the initial one, and for this order of magnitude, the recognition accuracy rate
of the model has decreased to about 50%, which basically does not have practical
application value.

In summary, constructing the dataset by sampling reduces the amount of input

data and also significantly reduces the model recognition accuracy, but when the
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amount of data is reduced to a certain degree (around in this paper), the model still has
a high accuracy, and the amount of input data can be adjusted according to the actual

needs.

4.6 Summary of this chapter

In this chapter, we further investigate the inverse problem of identifying impact
conditions from damage evolution data, which is of great importance and has wide
application in engineering. At the same time, impact condition identification
encounters great challenges due to the complex nonlinear characteristics of composite
laminate impact damage evolution, and attempt to identify unknown impact
conditions using deep learning methods.

To solve this problem, we first analyzed the type of damage data and the form of
impact, and briefly reviewed and analyzed various types of neural network structures
widely used in the current deep learning field, from which we selected the most
suitable class of neural network structure, convolutional neural network (CNN), based
on the characteristics of various models and the actual problem of this paper. ).

Then, we developed a deep learning-convolutional neural network (CNN)-based
laminate impact recognition program in the framework of TensorFlow and Jupyter
Notebook, inspired by image recognition techniques. Based on the PD program in
Chapter 3, we expand the dataset to 1800 sets by modifying the velocity and angle of
the impact and adding "pretzel noise", and the program uses this dataset for training
and recognition of unknown conditions. The relative error of the final recognition
result is controlled within 5%, and the recognition accuracy is over 90%, which has
high application value.

After that, the damage evolution data of some material points were selected as
the training set, and the changes of the model accuracy and error were analyzed under
different sample numbers and patterns. It was found that the accuracy of the model
decreased significantly as the number of samples decreased, and the error increased
accordingly, indicating that the recognition ability of the model decreased
significantly with the decrease of the number of samples, and it was also found that
the model still had an accuracy of about 75% when the material points were selected
as the input, while the accuracy of the model decreased to about 50% when only the

damage data of the material points were selected as the input, indicating that The
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model is unable to learn the effective information from the data, and this procedure
does not have practical application value. It is necessary to further improve the
accuracy by other means, such as increasing the number of hidden layers, modifying

the network structure, and data enhancement.
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Chapter 5 Conclusion and Outlook

5.1 Conclusion

In this paper, we use the traditional peridynamics model and deep learning theory
to investigate the relevant positive and negative problems based on the impact damage
evolution of a composite laminate model. Firstly, for the problem of discontinuous
mechanics of composite laminate impact damage, an analytical model of composite
laminate rigid body impact damage evolution based on peridynamics theory is
established, and the corresponding computational procedure is developed. Moreover,
in order to solve the problem of incomplete near-field material points in the boundary
region, an improved "Table surface correction factor" is proposed, which can improve
the calculation accuracy. Based on the above results, a deep learning-convolutional
neural network (CNN)-based impact condition recognition model is built to address
the problem that the damage evolution of composite laminates exhibits complex
nonlinear characteristics and the impact condition recognition encounters great
challenges. A deep learning-convolutional neural network (CNN)-based impact
condition recognition model was developed, and the laminate damage evolution data
obtained under different impact conditions were used for training, and the recognition
of unknown impact conditions was successfully achieved with high accuracy and
precision. The specific research results are summarized as follows:

(1) The impact damage evolution of composite laminates is related to the impact
conditions (shape of the impactor, impact velocity, direction) and the form of ply lay-
up of the laminate. The damage tends to spread along the fiber direction of each ply,
and the damage area of each ply of the laminate is larger for different impact
conditions when the impactor volume is larger and the impact velocity is higher.

(2) The deep learning-convolutional neural network (CNN)-based impact
condition recognition procedure can effectively identify the unknown impact
conditions and control the recognition error within a small range with a high accuracy
rate. We built a deep learning-convolutional neural network (CNN)-based laminate
impact condition recognition program, and selected several sets of conditions that did
not appear in the training and validation sets to test the recognition ability of the
model, and found that the average error between the recognition results and the real
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values was controlled at about 3%, and the accuracy of the recognition results reached
about 90%, thus verifying the effectiveness and applicability of our recognition
program. validity and applicability.

(3) The recognition accuracy of the model is related to the size of the sample. By
selecting damage data from different locations of material points and studying the
effect of sample size on the accuracy, it was found that the accuracy of the model
began to decrease as the number of selected data points became smaller, while the
error increased, indicating that the recognition ability of the model decreases as the
number of samples decreases, and the model still has an accuracy of about 75% when
1/4 of the material points selected for training are selected, while the accuracy of the
model is about 75% when the material points selected for training are selected. The
accuracy of the model decreases to about 50% when 1/64 of the material points are

selected for training, which is basically not applicable.

5.2 Outlook

In terms of the present results, the research work of this paper has achieved
certain results and the accuracy of the relevant identification procedures is good, but
there are still many defects and debatable points based on the above work, which are
now briefly described as follows.

(1) The numerical method of PD is less efficient, the calculation of PD depends
on the discretization of material points, for the finer the model, the more the number
of material points and the number of "keys" involved in the calculation procedure,
take this paper as an example, the laminate model in this paper is divided into 182,709
material points, the number of "keys" in each material point field is in hundreds. In
this paper, for example, the laminate model is divided into 182,709 material points,
and the number of "bonds" in each material point field is recorded in hundreds, and
the whole model involves nearly 10 million PD bonds. For more detailed models, or
when the model size is even larger, the number of keys will be even larger and the
time required will also increase proportionally.

(2) Damage data collection and evaluation is more difficult. Due to technical and
capability limitations, our work is limited to numerical values, especially in the
methodological area of damage identification techniques. Damage identification is

still a difficult problem in engineering, and there are numerous researches in related
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fields. In particular, refined damage identification methods for small and micro
structures and components still need to be researched and developed, and many
structures are not visible and open to the outside, and are difficult to cut, thus making
it difficult to discover and monitor their internal damage evolution; at the same time,
there are difficulties in calibrating the damage degree of the test structure. The
aforementioned difficulties also make it difficult to obtain training datasets for the
neural networks we build, despite their notable efficiency and accuracy, and it is well
known that a sufficiently large dataset is the basis for us to continuously update and
improve the network structure. Therefore, the methodological field of damage
recognition still needs further work and efforts from scholars.

(3) Attempts and applications of "state-based" peridynamics theory. "The "state-
based" PD theory has been published for some isotropic single-media materials, in
which the derivation of the physical quantities of such materials is given, but for each
anisotropic material with composite materials as a proxy for Table, this method has
not been studied in depth. Therefore, it is hoped that the near-field kinetic theory and
the study of anisotropic materials will be further explored in the future.

(4) Other forms of network structures can be tried in the impact condition
recognition procedure. Convolutional neural networks can formally match two-
dimensional models such as plates better, but they cannot reflect the temporal
properties of the impact; at the same time, due to the limited computational efficiency,
the hidden layers of the network used in this paper are small, therefore, CNN with
other forms of network structures (such as RNN with temporal correlation) can be
tried to build deeper and more computationally efficient recognition procedures and

algorithms.
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