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Abstract 

Abstract 
Human gait cycle can be affected by a wide variety of factors, including neurological, 
orthopaedic, and pathological impairments. Therefore, Gait Analysis has a wide range of 
applications, including the diagnosis of neurological illnesses, the analysis of disease 
progression, the evaluation of the effectiveness of a therapy, postural adjustment and athletic 
performance evaluation and improvement. 
The application of new technologies in this field has resulted in significant improvement, but 
these systems are still struggling to come up with solutions that strike a proper balance between 
cost, accuracy of analysis, speed and convenience. 
The goal is providing low-cost assistance to persons with motor impairments to enhance their 
quality of life. The study proposes a new automatized technique for motion characterization 
that employs Artificial Intelligence including real-time analysis, full automation, and a non-
invasive, markerless analysis. This automatized approach allows rapid diagnosis and avoids 
human errors. 
Subjects were recruited and instructed to walk at various speeds while video footage was 
collected using both the traditional gait analysis method and the improved SANE System. This 
procedure enabled for biomechanical analysis of the movement and for the evaluation of 
biomechanical parameters of clinical importance. All of this allowed the gai t metrics derived 
by the two motion tracking systems to be compared. 
All in all, the proposed system and its evaluation in this work of thesis allows to state that the 
use of Artificial Intelligence will assist rehabilitative medicine in “taking a step forward.” 
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Introduction 
1. Fundamentals 
1.1. What is Artificial Intelligence (AI) 

AI (Artificial Intelligence) is a branch of computer science that studies the theoretical 
foundations, methodologies, and techniques that enable the development of hardware 
and software systems capable of providing computers with capabilities that, to the 
untrained eye, appear to be the sole domain of human intelligence, [1]. The goal of this 
field is to recreate or imitate human intellect rather than to duplicate or simulate it. 
Because of this theoretical distinction, it is feasible to decrease conceptual restrictions 
and improve the AI 's autonomy by implementing tasks that aren't necessarily done as a 
human would do. AI can also be defined as a branch of study that focuses on the problem 
of how to represent, manipulate and construct knowledge about facts, actions and laws 
of causality. One of AI’s most important contributions is to intimately link the notion of 
algorithm to the problem-solving process. This new philosophy requires man to be able 
to provide the machine with an algorithm capable of generating an algorithm on its own, 
thus creating meta-algorithms or inferential algorithms. 

“With automatic problem-solving, we conceive the machine as having the ability not 
only to be fast in executing human-made algorithms, but also to construct autonomously 
the algorithms needed to solve problems.”, [2]. 

As a result, AI researchers aim to create computer programs that execute intellectual 
tasks while also attempting to explain the fundamental concepts of intelligence. AI has 
recently taken on the role of a discipline. Its formal beginnings can be traced back to the 
Dartmouth Summer Seminar in 1956. However, trying to establish an official date of 
birth and an exhaustive categorization is fairly difficult. As can be deduced from its very 
definition, indeed, AI as an effort to reproduce the human intellect in its infinite nuances, 
is in fact a dream belonging to our species since the early days of automation. As a 
result, it is not uncommon to come across ontological debates about Artificial 
Intelligence that attribute its origins in a variety of ways: some cite Leibnitz’s calculus 
ratiocinator, capable of reducing reasoning to a kind of algebra of thought, others 
Warren McCulloch and Walter Pitts with the first model of artificial neurons in 1943, 
others even go back to the time of the self-propelled automata of Heron of Alexandria 
(1st century AD). 

In the end the diversity of techniques is what survives today of early AI’s 
characterization. There is also a continuous pragmatic extension of the boundaries of 
the discipline whenever new results are achieved. This last concept becomes 
increasingly true because of the exponential increase in both the number of applications, 
the variety of implementations, and the apparent interest expressed by the public in this 
discipline in recent years, as can be noticed in Figure 1. 1. 
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Figure 1. 1 - number of peer-reviewed ai publications, [26] 

 

Therefore, AI turns out to be a rapidly evolving subject both as a whole and in its 
elements. This gives rise to more and more fluid subcategories that can only be 
discerned at the most basic level.  

“AI is simultaneously a science and an engineering product.”, [3]. 

In this scenario, two sorts of AI categorizations are recognized, each approaching the 
subject from a different angle: 

The first one looks at it from a capability perspective and contains three fields (Figure 
1. 2) [21]: 

 

- Narrow AI (ANI): 

also called “Weak AI”, focuses on one narrow task and cannot perform 
beyond its limitations. It targets a single subset of cognitive capabilities and 
progresses along that spectrum. 

 

- General AI (AGI): 

also known as “strong AI”, is capable of understanding and learning any 
intellectual task that a human can perform. It enables a machine to apply its 
knowledge and skills in different situations. AGI has the ability to reason, 
plan, solve problems, think abstractly, comprehend complex ideas, learn 
quickly, and improve through experience. This branch is still under 
development. 

- Super AI (ASI): 
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Super AI its meant to surpass human intelligence and perform any task 
better than a human. The concept of artificial superintelligence sees AI 
evolved to be so akin to human sentiments and experiences that it doesn’t 
merely understand them; It also elicits its own emotions, needs, beliefs, and 
desires, such as scientific creativity, general wisdom, and social skills. This 
branch is still theoretical. 

 

 
Figure 1. 2 - AI 3 main categories - capabilities perspective 

 

 

The second section examines AI from a functional standpoint and contains four macro-
sets (Figure 1. 3): 

 

- Reactive Machines: 

The most basic type of artificial intelligence that does not store memories. 
It acts only in the immediate present and does not make predictions. 

- Limited Memory: 

Limited Memory AI trains from past data to generate new decisions. The 
memory of such systems is short-lived.  

- Theory of Mind: 

Represents a high-level technology that only exists as a concept. Such an AI 
requires a thorough understanding of the processes of mutual influence 
between objects and people in a given environment. It should be able to 
comprehend people's feelings, sentiments, and thoughts. 

- Self-awareness: 

Self-awareness AI only exists hypothetically. Such systems are capable of 
not only comprehending their own internal characteristics, states, and 
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conditions, but also of perceiving human emotions. It is an all-round 
artificial consciousness 

 
Figure 1. 3 - AI 4 main categories - functionalities perspective 

Then there is another possible categorization (not strict) of AI in subdomains based on 
its approach to learning and its applications. We distinguish Natural Language 
Processing, AI in Learning (Machine Learning, Expert Learning), AI applied to 
probabilistic reasoning, AI with Natural/Genetic Approach, AI for problem Solving, AI 
in healthcare, AI in robotics and Control, AI in e-commerce, AI in human resources, AI 
in agriculture, AI in Social Media, AI in Marketing, AI in gaming, AI in Navigation, AI 
in Planning, AI in Perception, AI in Computer Vision, AI in Data Mining, AI in 
multiagent Systems, AI in cognitive modelling, AI for Knowledge Representation, AI 
in motion, AI in social Approach... The list could be much longer and each of its entries 
would have shared sections with the others. This aspect makes their discernment less 
defined.  

For the purpose of our discussion, we will put the emphasis only on Machine 
Learning and especially in one of its subsets: Deep Learning. 

We define Machine Learning (ML) as 

“The field of machine learning is concerned with the question of how to construct 
programs that automatically improve with experience.”, [4].  

It differs from the less recent Expert Systems by the fact that, although it has the purpose 
of learning and continuously improving performance through experience too, it does not 
provide a highly structured system to simulate step-by-step a decision-making process 
in a specific domain, but can perform solely data driven decisions with a less structured 
but more complex conceptual skeleton, without knowing explicitly at its base what to 
do and how to do it. 

ML is also divided into Supervised and Unsupervised. Namely: the first requires the 
learning process to be based on experience with external bias and requires an initial 
input dataset that has already explicitly stated the correct expected output. Future 
assumptions about new inputs will be based on the function that the AI has created based 
on the already known in\out dataset. The second is conceptually more complex since it 
does not involve an initial dataset expressing a priori the correct outcome for each 
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example, but only a very large list of inputs and outputs whose relationship has never 
been indicated. It will be the task of the AI not only to connect the in’s and out’s but 
also to recognize and infer the most likely correct patterns that will define their nexuses. 
Also, in this case there are hybrid categories between the subsets of Supervised and 
Unsupervised ML. 

To this micro-universe of Machine Learning belong: 

- Reinforcement Learning (RL) 

Helps a computer (agent) to learn a behaviour through repeated trial-and-
error interactions with a dynamic environment. This allows the agent to 
implement a series of decisions that maximize a reward metric for the task, 
without ever being explicitly programmed for that specific task and without 
human intervention 

-  Deep Learning 

It can be both Supervised and Unsupervised and hybrid. It exploits the 
branch of neural networks to create a network at multiple levels (Figure 1. 
4). The structure that characterizes and distinguishes it is made up of a level 
with an array of neurons associated with the pure reception of input, a level 
associated with the pure representation of the output with the relative index 
of confidence of the answer and a variable number of intermediate levels 
hidden where the activity of elaboration of the nexuses takes place and that 
covers the apparent role of intelligent inference [29].  

 
Figure 1. 4 – Deep Learning multiple layers neural network example, [29] 
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1.2. AI applications in healthcare 
In recent years there have been numerous studies in the literature examining the 

potential of AI in applications to support clinical practice. Meanwhile the digital 
information around the world has more than doubled.  

Medicine is a major player in this growth. Evidence shows that AI-based 
technologies have the significant potential to transfer various diagnostic procedures into 
the primary care setting. In addition, the digitization of health data, complemented by 
computer analytics, enables intelligent and effective management of the chronic patient 
by introducing new potential in clinical research, frontier medicine, and personalized 
medicine. 

Through it is now feasible to give a better and more customized treatment based on the 
unique characteristics of each patient [5, 6]. By doing so, it is possible to pursue the 
goals of effectiveness, efficiency, and appropriateness that are typical of today's 
medicine. 

Schematically, 4 areas of application of Artificial Intelligence can be strictly defined 
(Figure 1. 5): Patient Care; General Imaging Diagnostics; Management; Research and 
Development, [7]. 

A few examples to frame the current state of research [8]: 

- AI in Neuroimaging: 

The ability to recognize patterns and classify input through ML is useful in 
the field of Neuroimaging. 

 

 
Figure 1. 5 - AI applications in healthcare: 4 areas  

Patient Care

General Imaging 
Diagnostics

Management

Research and 
Development
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Currently, the initial step in a patient's diagnostic process is a qualitative 
assessment of brain MRI. The resulting mapping is generally analysed by 
radiologists and experts and finally, in case of doubts about the nature of 
any masses or abnormal images, it could be necessary to proceed with more 
invasive investigations such as biopsy. In this context, there is the potential 
to assist in the analysis and understanding of MRI through AI and to have a 
greater likelihood of averting unnecessary interventions. In the specific case 
of the treatment of tumour masses, for example, AI has already presented 
itself as a valuable tool not only for their recognition but also for the 
estimation of their extent and nature, providing vital information for 
operations. 

To this has also been added the advantage of the creation of databases on 
the acquisitions made more interconnected and fluidly categorized, allowing 
to filter huge amounts of information under new and multiple aspects. 

- AI in Radiology, Cardiology and Dermatology 

There have been many applications in these areas.  

For example, leveraging the same principles that have made AI useful in 
neuroimaging, radiology has developed automated triage techniques by 
classifying radiographs using ML. [9] 

Using the same criteria in cardiology, excellent results have been obtained 
in terms of sensitivity and specificity in the diagnosis of acute coronary 
syndrome by ECG compared to cardiologists [10]. It has even been 
demonstrated a statistically superior diagnostic accuracy of cardiology 
medical staff in a case of diagnosis of arrhythmia patterns in 
electrocardiographic tracings [11]. DL approaches have also been recently 
applied in echocardiographic imaging and tested in cases such as 
hypertrophic cardiomyopathy, cardiac amyloidosis, and pulmonary arterial 
hypertension [12, 13]. 

The ability to recognize patterns is, even with these examples alone, 
increasingly useful in a boundless number of fields. Wherever there is data 
analysis, AI becomes a powerful tool that can no longer be ignored. It is 
therefore no surprise that it has also been used in dermatology, [14]. Where 
analysis of epithelial tissue images returned excellent results providing fully 
automated accurate and congruent diagnoses, [15]. 

- AI and Robotics in Surgery 
The availability of instruments that increase the precision of surgical 
resection, minimizing the surgical access, and that allow to respect or 
increase the safety of the intervention, is immediately reflected in practice: 
in fact, surgical robots have now become a technological tool of choice. 
An exhaustive example among many is the surgery of the pelvic district: this 
is one of the cases in which the dexterity of each single gesture is 
fundamental. The intervention, through an artificial terminal articulation 
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like that of the anatomical wrist, is safer and guarantees high precision and 
reliability. Other advantages are the reduction of invasiveness and lower 
risks due to distraction or fatigue of the human operator. 
 
Artificial intelligence technologies are able, however, to take a further step 
forward. AIs can “reason” about data far beyond human senses, allowing 
them to “see” things that a human operator cannot. When it’s time to suture, 
the machine, for example, might determine the best locations in the tissues, 
design the sequence of precise micro-actions required, and then do them all 
by itself. 
 

- AI in Emotion Recognition and Mental Health 

AI has often been cited in applications requiring logical-mathematical 
inference or categorization, especially in the past. Nowadays, however, it 
also finds applications in other fields of intellect, increasingly expanding its 
limits. This is the case of AI in Emotion Recognition. The ability to 
recognize and connect patterns proves to be useful in partially emulating 
emotional intelligence and of great help also in the medical field to 
understand both the verbal and non-verbal language of the patient and to 
distinguish and monitor emotions and feelings during any therapy.  

“Emotion recognition in conversation (ERC) is becoming increasingly 
popular as a new research frontier in natural language processing (NLP) 
[…]. Moreover, it has potential applications in health-care systems (as a tool 
for psychological analysis), education (understanding student frustration), 
and more. In Addition, ERC is also extremely important for generating 
emotion-aware dialogues that require an understanding of the user’s 

emotions.”, [16]. 

For the mentioned reasons software based on intelligent algorithms have 
been created to analyse and monitor the emotional state of the patient 
through automatic and dynamic recognition of facial expressions, breathing 
patterns, analysis of written text, tone of voice and monitoring of sleep-wake 
activity.  
For example, it has been demonstrated that through the automated analysis 
of texts published in posts and comments on social networks such as 
Facebook, Instagram, YouTube, Reddit, Twitter, and others, it is possible to 
accurately predict (AUC 0.72) the onset of a patient’s first depressive 
episode up to 6 months in advance of the first clinical diagnostic 
detection.[17] Similar results were also obtained from the sole analysis of 
photographs posted on social media, [18]. 
Other applications for AI can be found in automated chat rooms (Chatbots) 
trained to perform cognitive behavioural therapy through interlocution with 
the patient. In one case, the tool was even used to significantly reduce 
symptoms of depression and anxiety by successfully acting on the based on 
the common scales PHQ-9 and GAD-7, [19]. AI in this field, moreover, 
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together with the development of digital therapies (Digital Therapeutics or 
DTx) is proposed as a support tool not only for depression but also for many 
other disorders such as the treatment for alcohol, opioid or substance abuse 
disorder [20]. 

- Ai in Motion Capture (MoCap) 

Motion capture is used by doctors and therapists to help diagnose and treat 
their patients. This method has proven useful in improving the quality of life 
for patients with both physical and psychological disorders and disabilities. 

Motion capture is the process of digitally recording human movements and 
then mapping the motion data onto a 3D digital model. There are several 
capture methods. One of the most promising methods leverages AI to 
recognize an individual’s joints. 

1.3. AI approaches in Human characterization 
The acquisition of an individual’s whole or partial body posture and the kinematic, 

and dynamic information plays a critical role in the treatment process of a wide 
spectrum of patients. Here some examples: 

- Motion Capture in Orthopaedics 

Using this technology, physicians and scientists are able to create a 
visualization of musculoskeletal dysfunction and modify their treatments to 
meet individual needs. It can be used to capture information about joint 
angles, axis symmetries, accelerations and joint stress. This data can then be 
compared to standard biomedical values to help identify orthopaedic 
dysfunction. 

- Motion Capture in Injury Diagnosis and Treatment 

Injury diagnosis and treatment have also benefited greatly from the use of 
motion capture. As in orthopaedics, motion tracking technology helps 
physical therapists visualize a patient’s movements in order to assess their 
individual needs and ensure that patients are using the correct technique 
during treatment exercises. With this data, corrections can be made until the 
right posture is used to speed recovery time and avoid further injury. 

- Motion Capture in Preventive Medicine 

Similar to its use in physical therapy, motion capture can be used to prevent 
injuries before they happen. This technology is often used in athletics, as it 
can analyse an athlete’s performance and ensure proper movements. In 
addition to identifying movements that could cause a sprain or fracture, 
MoCap can avert chronic injuries. The same procedures are also used to 
treat patients with concussions.  

- Motion Capture and MRI Diagnostics 
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Motion capture along with MRI allows physicians to have a patient perform 
specific actions while brain activity is documented in order to analyse how 
these actions affect the individual’s activity. 

- Motion Capture in Medical Staff Training 

Motion Capture data allows trainees to visualize and refine their movements 
as they perform a variety of procedures. 

In summary, wherever there is a patient or an operator action, motion analysis 
emerges as a powerful and valuable tool. For these reasons, many solutions have been 
proposed to capture this kind of data and many innovations in this field occur frequently.  

The acquisition of information on an individual’s joints in their totality is also known as 
“Skeleton tracking”. This is because, ideally, a virtual skeleton is projected onto the 
acquired body image and the 3D location of each joint is tracked to reconstruct the 
movement in space of the entire subject. 

The most recent solution to perform this type of acquisition makes use of AI tools 
such as Cubemos, Nuitrack, OpenPose and PoseNet.  

In detail: 

- PoseNet 

PoseNet is an open-source code. This AI was coded by making use of 
TensorFlow, which is a commonly used machine learning library in Python 
that is developed and maintained by Google. It is designed to be used in 
real-time with commercial and readily available acquisition systems. There 
are two versions of this tool: The single person pose detector, which is faster 
and simpler but requires only one subject present in the image and the 
multiple persons pose detector. The key points that PoseNet is able to 
recognize are 17 (Figure 1. 6): eyes, ears, nose, shoulders, knees, wrists, 
hips, elbows and ankles. It is therefore not able to provide information about 
hands and feet or some rotations. PoseNet can make use of both the CPU 
and the GPU. According to the statements of TensorFlow, one of the most 
appealing aspects of this skeleton tracking tool is its ability, in the presence 
of multiple individuals, not only to return false pose estimates with less 
probability, but also to perform almost independently of the number of 
subjects analysed simultaneously[22]. 
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Figure 1. 6 - PoseNet key points and skeleton, [22] 

- OpenPose 

OpenPose is an open-source code. It is a real-time 2D multi-person 
estimator. It is based on the usage of a parametric representation called Part 
Affinity Fields (PAFs), which uses a set of two-dimensional vector fields to 
identify the portions of the body of all the people in the image.[27]. 
Currently, 2 models are available in the framework: the COCO MPI model 
(faster but less accurate) and the BODY 25 model. This skeleton tracking 
tool is one of the few that can provide a larger and more detailed number of 
points such as key points on the feet and their angle, Figure 1. 7. The higher 
the number of points, the lower the performance in terms of sampling 
frequency. Moreover, it can be used to discern entire body areas instead of 
only track key points[23]. 
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Figure 1. 7 - OpenPose key points and skeletons: a) BODY-25 Model, b) COCO Model, [23] 

- Nuitrack 

Nuitrack is a closed-source proprietary program. It is an AI that is built on 
deep learning. It’s cross-platform, with 3D full-body skeleton tracking, 
gesture recognition, and facial tracking capabilities. Nuitrack recognizes 19 
key points (Figure 1. 8): it does not track the feet, but it does track the hands.  
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Figure 1. 8 - Nuitrack key points and skeleton, [24] 

- Skeleton Tracking SDK by Cubemos 

Skeleton Tracking SDK by Cubemos is a closed-source proprietary program 
powered by Intel® Distribution of OpenVINO™ toolkit. It is a deep 
learning-based AI. It is a real-time, cross-platform, multi-person, 3D full-
body pose estimator, but its use should be bounded to up to 5 people in a 
scene. The key points that Cubemos is able to recognize are 18               
(Figure 1. 9): eyes, ears, nose, shoulders, knees, wrists, hips, elbows, ankles 
and spine.  It is therefore not able to provide information about hands and 
feet or some rotations. It can make use of both the CPU and the GPU. As an 
Intel partner the Skeleton Tracking SDK of Cubemos is meant to be optimal 
in combination with Intel’s products. 
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Figure 1. 9 - Skeleton Tracking SDK by Cubemos key points and skeleton, [25] 
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2. State Of Art 
2.1. Gait Analysis  

As mentioned in Chapter 1, the Gait Analysis has several applications also in the 
neurological field. The reason behind this is the close relationship between muscle 
activation, human locomotion (especially in the lower limbs), and the ability of the 
neural network's sensory input to allow articular movement and control of muscular 
contraction. 
The fundamental unit of gait is the Gait Cycle (GC), which is defined as the period 
between a foot's initial contact with the ground and its next touch with the ground. 
During each GC one lower limb propels forward while the other acts as a support and 
vice versa.  
The gait cycle has two phases that can be defined, for a healthy person, as follows 
(Figure 2. 1) [23]: 

− The Stance Phase 
it begins with the initial contact of the foot with the ground and represents 
the period of adjacency to the ground where it supports all or part of the 
body weight. It represents approximately 62% of the entire walking cycle. 
The Stance Phase is further subdivided into two sub-phases: 

a) The phase of weight acceptance, which extends from the beginning to 
12% of the CG. This is subdivided even more into:  

• Initial Contact (IC): the moment when the heel of the foot makes 
contact with the ground (Heel Strike) and continues until the entire 
sole of the foot is in contact (Foot Flat). The ankle is dorsiflexed, the 
knee is extended, the hip is flexed, and the centre of gravity is at its 
lowest point. 
• Loading Response (LR): It begins with a flat foot and progresses 
until the opposite foot elevates. Knee flexion corresponds to the 
limb's cushioning response, which allows the body's weight to be 
transferred to the front leg. The ankle is in plantar flexion, while the 
hip is still flexed. 

b) The single limb support period, in which the body weight is loaded on 
one lower limb only. The events that characterise it are:  

• Mid-Stance (MST): The centre of gravity is at its highest position 
when the swinging limb passes the supporting foot. The ankle is 
dorsiflexed and the knee and hip begin to extend.  This transition 
ranges from 12% to 31% of the GC. 
• Terminal Stance (TST): ranges from 31% to 50% of the GC, in 
other words from the lifting of the heel to the contact of the opposite 
foot with the ground. The calf pushes by pressing on the plantar 
flexion of the ankle, the knee extends again and then flexes slightly 
and the hip is more extended. 
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• Pre-Swing (PSW): id the final phase of the stance period, also 
known as the weight transfer phase, occurs when the foot leaves the 
ground (Toe-Off) and accounts for 50-62 % of the GC. It is 
characterized by increased knee flexion and ankle plantar flexion, as 
well as a loss of hip extension. 

− The Swing Phase 
The interval during which the foot does not rest on the ground but is in the 
air and the leg extends towards the next foot contact accounting for the 
remaining 38% of the stride cycle. It is therefore linked to limb 
advancement. It constitutes the entire period of step advancement, along 
with the prior pre-swing sub-phase. It is divided into: 

• Initial Swing (ISW): The limb progresses by raising the foot 
through hip flexion and increased knee flexion, resulting in a period 
of acceleration (62-75 % GC). It is characterized by a slight 
dorsiflexion of the ankle. 
• Mid-Swing (MSW): starts with both swinging and bearing limbs 
aligned and ends with the first limb in front of the second (75-
87% GC). The hips are flexed even further, the knee is extended, and 
the ankle is still dorsiflexed. 
• Terminal Swing (TSW): It runs from 87% to the end of the overall 
cycle and is the final phase of the swing but also of the deceleration. 
Bending the knee completes the limb progression, which finishes 
when the foot reaches the ground and prepares for the following 
stance. The hip is flexed and the ankle is dorsiflexed in a neutral 
position. 
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Figure 2. 1 - Phases division of Human Gait Cycle, [35, 40] 
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Anatomically, the joints involved in GC, in brief, are (Figure 2. 2)[23]: 
− Hip 

It has 3 degrees of freedom. 
a) In the sagittal plane, it has the greatest range of motion (0-140° flexion 

and 0-15° extension) and reaches maximal flexion during the swing 
phase, when the foot detaches. 

b) In the frontal plane, abduction and adduction of approximately 0-25° 
and 0-30°, respectively, are allowed. 

c) In the transverse plane, internal and external rotation are both allowed. 
During the static phase, the hip is almost always internally rotated, then 
externally rotated at the end. 

− Knee Joint 
It is composed of the tibiofemoral and patellofemoral joints. The first joint 
allows movement in all three planes, especially in the sagittal plane which 
offers flexion-extension from 0° to 140°. [30]. 

a) In the sagittal plane, Knee extension is present with a flexion-extension 
range of approximately 0° to 70°. 

b) In the frontal plane there is maximum abduction up to maximum flexion 
in the Mid-Swing phase 

c) In the transverse plane, external rotation begins during knee extension 
in the stance phase and peaks at the end of the swing phase. Internal 
rotation in the transverse plane and adduction in the frontal plane occur 
in tandem with flexion in the swing phase.  

 
− Ankle joint 

It is divided into the tibiotarsal joint, the proximal tibiofibular joint and the 
distal tibiofibular joint. They have fewer degrees of freedom. The first, for 
example, only allows dorsal and plantar flexion in the sagittal plane. 

 

 
Figure 2. 2 - Example of the possible movements of the joints, [23]. 
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In the literature, Gait Analysis provides three categories of parameters for the 
evaluation of the gait cycle. Although there are no well-defined official canons on the 
values to be provided by the analysis, there are some gold standards: 

− Spatial-temporal and static parameters (Figure 2. 3) 
They allow an initial evaluation of the average characteristics of the GC. 
They are divided into: 

a) Temporal 
They provide the average timing of the events of a GC. They include: 
the cadence [steps/min]; the time span, expressed as a percentage, of 
each GC phase mentioned above; the patient's speed, which can be 
expressed in several ways (either in [m/s] or as a proportion of height 
[%height/s]); and the total duration of the GC [s]. Sometimes 
emphasis is also put on the duration of the total support phase in [s] 
and the total swing phase in [%height/s]. 

b) Spatial 
They provide the average distances covered in a cycle. They include 
step length and width expressed in [m] and cycle length which can be 
expressed in various ways (either in [m] or as a proportion of height 
[%height]).  

c) Standing Angles 
They represent the static measures of Gait Analysis. In the typical GC 
study technique, their acquisition provides clinically key info. 
They are rarely expressed in [deg] or [rad], although they are 
frequently represented in [grad]. They include, in the case of the BTS 
Motion Analysis Lab: pelvic obliquity; pelvic tilt; pelvic rotation; hip 
abduction or adduction; hip flexion-extension; hip rotation; knee 
flexion-extension; ankle dorsiflexion or plantarflexion; foot 
progression.  

− Kinematic parameters (Figure 2. 4, Figure 2. 6)  
They provide a clinical evaluation for Gait Cycle analysis, already to a 
significant extent, when combined with the previous dataset.  
They are frequently provided in the form of a 2D matrix. One of the two 
dimensions represents the planes (frontal, sagittal, transverse). The matrix 
is then completed by the ordered inclusion of kinematic information 
associated with the same angles acquired in the static phase. In addition, 
kinematic data related to the obliquity of the trunk (in the data sector 
dedicated to the frontal plane), the tilt of the trunk (in the data sector 
dedicated to the sagittal plane), the rotation of the trunk (in the data sector 
dedicated to the frontal plane), the varus-valgus of the knee (in the data 
sector dedicated to the frontal plane), the rotation of the knee (in the data 
sector dedicated to the frontal plane), the rotation of the knee (in (in the data 
sector dedicated to the transversal plane) are provided. It's also typical to see 
values in [grad] here. 

− Kinetic parameters 
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They are formed by the moments associated with certain angles in the 
kinematic analysis in the sagittal plane. They constitute the data set that 
completes the entire Gait Analysis, along with the ground reaction forces 
(Figure 2. 5). However, they are not always provided as they require 
instruments for measuring the dynamic information different from those 
already used and sufficient to obtain the data described above. Estimates of 
these parameters based on kinematics and anthropometric data (including 
weight) are sometimes used, although they lack the same level of accuracy 
and precision as data obtained through direct measurement. 

 
Finally, it is the usual to represent these measurements in comparison with the range 

of average normal values of the patient considered healthy. Although the assessment of 
the GC cannot be limited to a comparison of the acquisitions with those that in the 
literature are associated with a patient without motor pathologies, it must provide the 
basis for a correct and contextualised clinical diagnosis. 

 

 
Figure 2. 3 - an example of Spatial-temporal and static parameters from BTS GAITLAB 
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Figure 2. 4 - an example of the Kinematic Parameters matrix from BTS GAITLAB: The grey area stands for the normal 

range of values, the other colours represent the left and right limb acquisitions of the specific patient 

 
Figure 2. 5 - an extract of Kinetic Parameters plots from BTS GAITLAB 



Chapter 2  State of Art 

 
30 

 

 
Figure 2. 6 - an example of the Kinematic Parameters matrix from Ball State Biomechanics Laboratory: “Joint angles of the 
pelvis, hip, knee, and ankle normalized to the gait cycle. The first column represents sagittal plane motion, the second column 

represents frontal plane motion, and the third column represents transverse plane motion.”, [42] 

 

2.2. Traditional gait analysis 
Human movement and its alterations can be assessed with various techniques. 

Depending on the needs and contexts, evaluations can be qualitative or quantitative with 
the application of different systems or instruments. 

Although qualitative assessments are still common, there is no doubt that 
instrumental measurements, including cheaper ones, are more reliable and objective. 
Therefore, in recent years the approach for gait analysis has shifted from a qualitative 
to an almost entirely quantitative method. This type of evaluation avails itself of analysis 
tools that are divided into two macro-categories: optical and non-optical systems. [23, 
39] 

− Non-optical systems  
a) For kinematic analysis: 

Instruments that are magnetic, inertial, or electromechanical. These 
include different types of electro-goniometers that measure both 2D 
and 3D angular movement of joints; accelerometers that deduce 
angular and linear movements of joints up to six degrees of freedom 
from accelerations. [31, 32] 



Chapter 2  State of Art 

 
31 

 

b) For dynamic analysis: 
Dynamometric and pressure plates. Consisting of strain gauges or 
piezoelectric transducers to acquire information associated with the 
forces applied in the path and the movement that generated them.[33] 
 

c) For electromyographic analysis: 
Electromyographic sensors (EMG). They provide a measure of the 
action potentials generated by motor units and an index of the 
neuromuscular activity behind the movement. [33] 

 

− Optical systems: 
These are Optoelectronic Systems based on the principles of 
stereophotogrammetry (Figure 2. 7).  
At the HW level, cameras that can acquire images at different light 
frequencies and markers are used for image acquisition. 
In detail: 

a) The number of cameras varies depending on the analysis to be carried 
out.  

Typically, the number of cameras is around ten and can reach fifty. 
Mathematically speaking the number of devices must be at least 2 for 
a 3D reconstruction through image triangulation or through the use of 
information on different spectra (such as the combo depth camera + 
RGB). The greater the quantity of instruments in use, the greater the 
quality and frequency of acquisitions without the need for complex 
reconstructions or filtering at the software level. 
By means of the motion tracking techniques mentioned above, it is 
possible to obtain the evolution of the position over time of each point 
traced by the markers and associate them with a model of the human 
body to trace the patient's three-dimensional movement. 

b) Markers can be passive or active 
• Passive markers typically have a spherical or hemispherical shape 
coated with a retroreflective material to reflect light or a specific 
frequency of light. They are often used for a system that also works 
in the infrared (IR) to reduce the number of possible disturbances for 
acquisition. 
• Active markers, instead, are powered by a battery and have an 
LED (that usually emits in infrared light as well Larger or more 
expensive than the passive solution, they halve the distance that light 
must travel to be captured by cameras. 

At the SW level, the aforementioned motion tracking techniques with 
computer vision are used. In detail, some image processing techniques such 
as linear threshold, morphological operators and so on can be used for this 
task.[34] 
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Among the Gait Analysis systems that exploit the gold standard procedures, 
the best known are: Vicon, Optotrack and BTS Motion Analysis Lab.  
The BTS as a representative mechanism will be discussed further down. The 
BTS GAITLAB is a motion-tracking-specific laboratory model. It employs 
at least 8 infrared cameras, 6 sensor platforms, 8 electromyographic sensors, 
2 RGB cameras, at least 20 markers, and computer vision software (Figure 
2. 8) [41]. 
For the acquisitions, the system follows clinical protocols that have been 
well-established in the literature. Each acquisition is preceded by two phases 
of preparation: One is done on a daily basis for system recalibration, and the 
other is done before each patient's analysis.  
The recalibration phase is divided into a part dedicated to cameras, one for 
pressure plates and another for EMGs. 
The first sub-phase is divided into a dynamic section that consists of 
multiple acquisitions “empty” of an operator who moves a wand consisting 
of markers and a static section in which a new system of Cartesian axes is 
manually rearranged through video recordings of an object consisting of 3 
of the above-mentioned wands, identical, arranged orthogonally to each 
other and generally positioned in a standard point of the room to make the 
analyses compatible (Figure 2. 9, Figure 2. 10). 
The second sub-phase consists in indicating to the processing software the 
precise arrangement of the pressure plate in relation to the Cartesian plane 
generated previously (Figure 2. 11). 
The third and last sub-step is optional, and it is determined by whether the 
use of EMG sensors is needed. It consists in their activation and in a quick 
check of the correct functioning of each emitter and receiver (Figure 2. 12). 
The preparatory phase for each session consists in creating the specific setup 
for the analysis of the patient. It requires the acquisition of anthropometric 
measurements and the simultaneous selection and demarcation on the skin 
of the areas of the patient's body that will be covered by EMG sensors 
(Figure 2. 13). It is sometimes associated with a simultaneous depilation of 
the areas involved for an optimal acquisition of muscle signals (Figure 2. 
14).  
This is followed by the marker positioning phase which must be consistent 
with the clinical protocol chosen for the analysis of the patient's images. 
This is the most critical phase of the setup. The protocol is then indicated in 
the analysis software (the most used is the Davis or a variant of it but 
recently new protocols specialized in the joint measurement of back 
movements have also appeared) (Figure 2. 15). 
After a further optional check of the EMG signals, the acquisition of the 
actual step is carried out with a section dedicated only to the static standing 
phase. 
The walk is then recorded and the foot contact event with the ground and 
the associated optimal gait cycle are manually selected off-line. For each 
recording, the information of a single step cycle is used (the most correct 
according to the operator). Finally, it is checked that each foot has rested 
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correctly, completely on the area inside the frame of the platforms and the 
software indicates by hand which foot has come into contact with the 
platform (Figure 2. 16). 
The analysis session ends with the creation of a file that summarizes the 
average behaviour of the patient's gait cycle. 

 
Figure 2. 7 - Illustration of a motion capture system with stereophotogrammetry, [34, 43] 

 
Figure 2. 8 - some of the BTS GAITLAB basic tools, [41] 
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Figure 2. 9  - on the left: Vicon Active Wand, [45]; in the middle: BTS passive Wands, [44]; on the right: cartesian axes 

associated with the BTS Wands, [44] 

 
Figure 2. 10 - on the left: BTS cameras dynamic daily setup and calibration; on the right: BTS cartesian frame setup, [44] 

 
Figure 2. 11 - BTS digital sensory floor setup, [44] 
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Figure 2. 12 - BTS EMG sensors activation, [44] 

 
Figure 2. 13 - anthropometric measurements and skin demarcation, [44] 
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Figure 2. 14 - EMG sensors positioning routine and signal, [44] 
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Figure 2. 15 - on the left: Marker Davis Protocol; on the right: a section of the patient fully covered with markers and EMG 

sensors, [44] 
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Figure 2. 16 - BTS Gait acquisition and manual heel strike detection, [44] 
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2.3. Automatized gait analysis 
In response to the standard solutions described so far, many, increasingly high-tech, 

alternatives have emerged in recent years. In the field of automation, attempts have been 
made to provide various yardsticks for the evaluation of the gait while avoiding human 
error as much as possible. 

Attempts have been made at the research level to provide data other than the gold 
standard [33], in order to recognise attitudes typical of certain diseases without a 
complete gait analysis. One simple example is an academic study aimed at recognising 
Parkinsonian attitudes and related neurodegenerative diseases. In this case, a study of 
acquisitions using offline Image Processing and the opensource AI TensorFlow was 
proposed. The finished product provides in a completely automatic way 3 values in 
percentage: "Upper body inclination rate", "Arms inclination rate", "Knees inclination 
rate". These behaviours cannot be associated with a standard Gait Analysis but are 
qualitatively useful indicators and above all a form of automation. [35] 

Going from academic citation to commercial applications, among the products taken 
into consideration there is PosturaLab 3D. The analyses provided by the projects of this 
laboratory achieve a high level of automation while maintaining a clinically 
acknowledged output. In this case, the laboratory itself provides several alternatives for 
automated gait analysis: a solution implementing AI in combo with multiple Kinect 
cameras is still under development; a portable solution using a computer vision system 
with marker and portable platform; a stationary solution, the company's flagship, with a 
treadmill equipped with sensors and a 12-camera setup, also based on computer vision 
(Figure 2. 17). Each acquisition, even in this case, involves a preparatory phase that 
includes anthropometric measurements and the positioning of the markers on the 
patient, as well as the setting of the clinical protocol associated with the chosen 
arrangement of the markers. Moreover, in the case of the portable system, a standing 
position acquisition is used to reconstruct the relative 3D position of all the markers on 
the patient to avoid an excessive reduction of the information loss in the walking blind 
spots. The output is in this case completely automatic and does not require the selection 
of the gait cycle by the operator, the dynamic information provides not only the total 
vector of the standing position, but a whole vector field of the weight distribution on the 
ground. The instrumentation used is deliberately redundant and with a high sampling 
frequency to provide, especially in the case of the non-portable system, a high level of 
accuracy and reliability of the data. [36] 

Finally, there are forms of automation that do not involve the use of computer vision 
but wearable sensors. 

The study by the Intelligent Automation Laboratory of the Department of Electrical 
Engineering at the Federal University of Espirito Santo in [37]  (Figure 2. 18). 

The system involves the use of a UEFS smart-walker in combination with MARG 
sensors from a previous study [38] and Laser Range Finder sensors. The project is able 
to provide a real-time analysis of walking at a low sampling rate, fully automated 
through the support of MATLAB real-time, Python and PyQt for graphical interface.  
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The use of the walker and low-cost wearable technology can provide access to analysis 
not only in an ambulatory setting, but also at home. 
These types of analysis are not exempt from problems which will be introduced in the 
next chapter along with possible alternatives. 
 

 
Figure 2. 17 - PosturaLab baropodometric analysis and weight distribution, [36] 

 

 

 
Figure 2. 18 - UFES’s smart walker system, [37] 
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3. AI-assisted Gait analysis 
3.1. Attached problem 

As mentioned in the previous chapter, each device used for gait analysis has its own 
strengths and weaknesses. Among the basic non-optical instruments there are often 
difficulties deriving from their own nature: since they must be applied directly to the 
human body, non-optical devices are prone to placement errors by the operator, who has 
to be well trained. Furthermore, any type of friction might compromise the wearable 
arrangement, and tissue movement makes sampling unstable. All instruments, whether 
magnetic, inertial or electromechanical, are not a priori compatible with every kind of 
patient or area to be examined. 

Many of them, and in particular electrogoniometers, often present crosstalk 
problems. Regarding dynamometric platforms, although they do not suffer from the 
problems associated with wearability, they are constrained, on the other hand, by the 
sampling perimeter: here, it is no longer possible to enjoy an unlimited space for analysis 
and the heel strike is conditioned by the patient’s need to fully centre the acquisition 
plates with his foot. They do, however, provide low-cost, low-computing-complexity 
measurements that do not require acquisition in a limited area.  

Normally Surface electromyography (sEMG) sensors are used in parallel with other 
sensors to understand muscle activation while walking. sEMG sensors known for their 
highly disturbed signal, sometimes invasive and sometimes requiring special treatment 
following skin demarcation during anthropometric measurements. 
SEMGs provide support data for analyses that would otherwise be unobtainable, and 
dynamometric platforms, in particular the most advanced ones, greatly facilitate the 
recognition of gait stages by producing dynamic data and vector fields in the stance 
phase, often with high precision. 

For these reasons, research is still pushing in recent years to find more and more 
ergonomic, comfortable, miniaturised, biocompatible and less perceivable solutions in 
order not to alter the measurements and to combine the analysis with the actions of daily 
life to minimise the stress of the patient and enrich the data set on movements performed 
in the most varied contexts.  
Many non-optical data may still be estimated using the accelerometers and gyroscopes 
built into mobile phones, allowing for a first level of evaluation of movement 
performance that is not clinically sufficient but beneficial for an initial analysis.  
As accuracy and complexity increase, fully portable and wearable technologies that can 
be incorporated into daily apparel become possible. These non-optical systems belong 
to a separate category; they are more complex, recent, and advanced, and are often 
integrated with software at various levels: from lowest level for real-time hardware 
management, to the highest level for data analysis and reconstruction, which however 
rarely takes advantage of machine learning techniques for this purpose.  

Some examples among all are Xsens MVN [46] based on inertial sensors (Figure 3. 
2) or the wireless M3D gait analysis system developed by Tec Gihan Co [47]  (Figure 
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3. 1), flexible platforms equipped with sensors to overcome the limitation of 
dynamometer plate frames or soles equipped with sensors such as piezoresistive 
pressure sensors by FlexiForce [33] or the Veristride insoles (Figure 3. 3) developed by 
Bamberg et al. [48] to overcome both criticalities of fixed dynamometer plates. 

However, per capita costs and consumption for a gait analysis are raised, the motion 
estimation algorithms become more complex, the signals are always susceptible to 
external disturbances and the motion itself, and the power supply, size and battery life 
remain limiting factors. Furthermore, as with the UEFS smart-walker in combination 
with MARG sensors, real-time data is provided with a lower sample rate due to the 
hardware restrictions of a compact wearable system. 

The category of systems with quantitative, semi-subjective or fully qualitative 
techniques forms a universe of its own with its advantages and disadvantages that are 
heavily dependent on specific cases. In general as in the case of the research of Pirlo, 
G., & Luigi [35], the T25-Fw method, the MSWS-12 method, the POMA test, etc. [49-
52], whatever the means used for the analysis, if on one hand they have the advantage 
of providing results that are less purely mathematical and closer to the act of diagnosis; 
on the other hand, for the same reasons, they cannot be considered sufficient for a 
rigorous evaluation, as they are hardly comparable and repeatable. Furthermore, the last 
of the mentioned ones have varying levels of reliability and accuracy and are susceptible 
to changes in the types of population under examination. 

There are many different types of optical systems such as those mentioned in Chapter 
2, but the vast majority share the same pros and cons. In general, stereophotogrammetry 
and basic optoelectronic systems, which rely only on computer vision software, are 
extremely susceptible to instrumental, human and systematic errors in setup. In addition, 
these systems have many of the same shortcomings as wearable systems due to markers, 
both passive and active, although in this case they can be fixed by supporting software 
and the variety of visual feedback. They are typically extremely expensive, require 
specialized infrastructure and personnel, have long analysis times, and do not allow for 
observations in non-clinical contexts. 

However, these systems excel in accuracy in the acquisition phase and often have a 
high sampling rate. Moreover, they often do not need any signal reconstruction due to 
systems that synchronise the data of a high amount of cameras. A more detailed 
description will be provided in the section dedicated to BTS GAITLAB. 

For a comparison on the vast world of Gait Analysis using optical systems, the study 
by Alvaro Muro-de-la-Herran et al. [33] gives an example table of the advantages and 
disadvantages of the systems that can be categorized in this field (Table 1). 
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Table 1 - Optical Systems comparison based on depth measurement performance, [33] 

Method Advantages Disadvantages Each Sensor 
Price (€) 

Ref. Accuracy 

 
Camera 

Triangulation 

- High image resolution 

- No special conditions in 

terms of scene illumination 

 
- At least two cameras needed 

- High computational cost 

 
 

400 to 1,900 

 
 

[53,54] 

 
 

70% [54] 

 
 
 

Time of Flight 

- Only one camera is 
needed 

- It is not necessary to 

calculate depth manually 

- Real-time 3D acquisition 

- Reduced dependence on 

scene illumination 

 
 

- Low resolutions 

- Aliasing effect 

- Problems with reflective 
surfaces 

 
 
 

239 to 3,700 

 
 
 

[33] 

 
 

2.66% to 

9.25% (EER) 

[33] 

 
 
 
 

Structured Light 

- Provide great detail 

- Allows robust and 

precise acquisition of 

objects with arbitrary 

geometry and a with a wide 

range of materials 

- Geometry and texture can 
be 

obtained with the same 
camera 

 
- Irregular functioning with 

motion scenes 

- Problems with transparent 

and reflective surfaces 

- Superposition of the light 

pattern with reflections 

 
 
 
 

160 to 200 

 
 
 
 

[55,56] 

 
 
 

<1% (Mean 

diff) [56] 

 
 
 

Infrared 

Thermography 

- Fast, reliable & 

accurate    output 

- A large surface area can 

be  scanned in no time 

- Requires very little skill 
for monitoring 

 
- Cost of instrument is 

relatively high 

- Unable to detect the inside 
temperature if the medium is 

separated by glass/polythene 

- Emissivity problems 

 
 
 

1.000 to 
18.440 

 
 
 

[57] 

 
 
 

78%–91% 

 

 
In the case of more advanced optical systems such as those proposed by PosturaLab 

3D, the benefit of simpler, automated, relatively faster and slightly lower cost analyses 
is beginning to emerge. The decision to continue using marker and computer vision 
systems preserves the high levels of quality and accuracy of output, but also the critical 
issues associated with the patient preparation phases and those intrinsic to the nature of 
markers. Automation in the analysis phase significantly reduces subjective operator 
errors, increases test repeatability, optimises acquisitions, and exploits the maximum 
number of gait cycles available. 

In order to investigate the difficulties associated with the gold standard analysis 
methods, the BTS will again be used as a representative system below describing all the 
procedure in detail. 
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Let us start with the calibration phase. The negative aspects of this phase are among 
the least impactful. Both the reset phase of the Cartesian system and the check of the 
correct functioning of the cameras can require variable time spending to make sure that 
the whole acquisition volume perceives all markers correctly with the right conventions, 
as similar as possible to those used for the previous tests. This step may not, for 
convenience, be executed as often as planned on a daily basis, but at the cost of a loss 
in rigor and an increased risk of incorrect acquisition in the actual analysis phases. 

Follows the patient preparation phase. Here there is not only additional time spent on 
taking anthropometric measurements and body demarcation and, if used, checking used 
sEMG signals. In this particular context, the most critical problems are encountered in 
the definition of these measurements, which are often made spannometrically with 
inadequate equipment such as simple rulers. This introduces into the system several 
orders of measurement error that are far from negligible, such as the sensitivity of the 
instruments, parallax, procedural and human errors. This is compounded by increasing 
stress on the patient subjected to this meticulous process, which extends to the lengthy 
palpation phase, often in a standing position for marker placement. In the patient 
preparation phase, several movements and flexions are required of the patient for the 
correct identification of the keypoints and joints provided in the chosen protocol. 
Validation of the correct alignment of the markers is equally inaccurate, rarely 
performed with laser beams projected onto the patient’s skin and much more often with 
simple rulers. 

The analysis phase is not as well exempt from complications. After an initial 
acquisition of the patient’s standing pose, which can be used for yet another calibration, 
the dynamic and kinematic gait analysis is conducted.  

In the dynamic component, the acquisition plates introduce a further obstacle: either 
the patient is forced to walk in an unnatural way, striving to centre the frames of the 
load cells with his foot, introducing a cause of falsification of the measurement, or 
sometimes the heel strike occurs spontaneously and randomly in non-sensitive points 
on the floor, forcing the operator to discard a step or an entire acquisition and to ask for 
a measurement repetition. 

In the kinematic component the problems are similar because of the markers. The 
analysis can be unnatural because of the artificial movements that many patients are 
forced to make to avoid excessive displacement of the markers. The most critical are 
those in the quadriceps and calf area, which are bound with bands that are at times tight, 
at times too loose, and which often become misaligned due to friction with the inner 
thigh. Even in this case, changing the pattern on the patient requires a new acquisition. 
In addition, real-time feedback is not complete and is also not recommended by the BTS 
itself after the first measurements in order to avoid putting more stress on the test 
subject. Finally, one and only one step is chosen from each acquisition (the best 
according to the subjective choice of the operator) and the recognition of the gait cycle 
events is recursive and completely manual. The times are further lengthened, and yet 
the criticalities do not stop at the numerical, economic and procedural ones. Nor do they 
imply mere convenience, but a far more serious problem emerges from this picture: 
many patients, especially the most fragile ones and those who need gait analysis the 
most, are physically unable to undergo the examination and return fatigued and without 
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any results. Furthermore, there is very limited guarantee that, despite taking several 
measurements, all values for the patient are finally complete and available. 

In conclusion, with the standard stereophotogrammetry method, users deal with a 
system designed for extremely precise, reliable and highly sampled measurement, which 
paradoxically, however, requires for its use inaccurate methods, tools and preliminary 
information. 

For a concise picture of the pros and cons of the aforementioned categories of 
systems, reference is again made to the study by Alvaro Muro-de-la-Herran et al. [33] 
with the following table (Table 2): 

 
Table 2  - Comparison between Not Wearable and Wearable systems, [33] 

System Advantages Disadvantages 
 
 
 
 
 

NWS 

- Allows simultaneous analysis of multiple gait 
parameters captured from different approaches 
- Non restricted by power consumption 
- Some systems are totally non-intrusive in terms 
of attaching sensors to the body 
- Complex analysis systems allow more precision and 
have more measurement capacity 
- Better repeatability, reproducibility and less external factor 
interference due to controlled environment. 
- Measurement process controlled in real-time by 
the specialist. 

- Normal subject gait can be 
altered due to walking space 
restrictions required by the 
measurement system 
- Expensive equipment and tests 
- Impossible to monitor real life gait 
outside the instrumented 
environment 

 
 
 
 

WS 

- Transparent analysis and monitoring of gait during daily 
activities and on the long term 
- Cheaper systems 
-Allows the possibility of deployment in any place, not 
needing controlled environments 
- Increasing availability of varied miniaturized sensors 
- Wireless systems enhance usability 
- In clinical gait analysis, promotes autonomy and active 
role of patients 

- Power consumption 
restrictions due to limited 
battery duration 
- Complex algorithms needed to 
estimate parameters from inertial 
sensors 
- Allows analysis of limited 
number of gait parameters 
- Susceptible to noise and 
interference of external factors not 
controlled by specialist 
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Figure 3. 1 - WS system based on (a) inertial sensors and (b) wearable force plates, [47, 33] 
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Figure 3. 2 - Commercial WS system based on inertial sensors: Xsens MVN, [46, 33] 

 
Figure 3. 3 - Instrumented insole: (a) inertial sensor, Bluetooth, microcontroller and battery module; (b) coil for inductive 

recharging; and (c) pressure sensors, [33, 48] 
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3.2. Proposed methodology  
The purpose is of this project is to provide low-cost tool for the gait analysis. This research 

presents a novel AI-based automated motion characterisation approach that includes real-time 
analysis, full automation, and a non-invasive analysis. This automated method enables for quick 
diagnosis while avoiding human mistakes, with the aim of providing an alternative, markerless, 
portable, testing tool adapted to the needs of the frailest patients. 

As an intuitive system, SANE system allows the acquisition of scalar and kinematic data with 
a few simple clicks. Before the actual acquisition, a blank recording is recommended for the 
simple purpose of orienting the camera (4) towards the designated analysis area. With reference 
to Figure 3. 4 SANE through the support of artificial intelligence modules (5) detects and 
analyses the movements of each patient. 

Specifically, the operator in charge of the analysis (3) activates the system through its interface 
(2) which creates the patient record (9) and activates a stream of signals from the RGBD camera 
(4). The RGB information is calculated in real-time by the AI (5) provided by Cubemos, each 
frame is then reconstructed with a two-dimensional projection of the patient’s virtual skeleton 
keypoints. The data obtained with the Depth Camera (4) are combined with the information in 
(5) to deduce the third dimension of each point. This whole process appears as a video to the 
operator who, in real-time, can evaluate the quality of the acquisition, with the use of a real-
time plotter (10), evaluating whether the acquisition is noisy or normal. The process is 
supported by a Logging module (6), a module for managing communication between the 
operator (3) and internal events (7). In detail, any error committed by the operator (3) or by the 
system itself, whether expected or unexpected, is notified in real-time through an abstract User-
Friendly description (7) and recorded in a SANE private folder (9) with more specific details 
regarding the code location where the exception occurred (6). Moreover, at the end of each 
acquisition, always in real-time, a partial computation of the data is made (10) which provides 
the operator (3) with both the representation of the signals automatically filtered by the 
disturbances and the estimate of the number of steps, which can be considered valid by the 
system for each signal. If the number of data is not significant for the most relevant signals, the 
acquisition is automatically discarded notifying the operator (7) of the reasons for  the choice so 
that he can make the necessary modifications. Thus, the operator is completely consciousness 
of what is happening and is guided in his actions so that he can always record complete and 
consistent data in real-time for subsequent offline analysis (12). The so far described process 
(1) can be repeated for several patients and by several operators at different times (11) 
increasing the volume of data stored in the SANE program directory. In the operational block 
(12) the operator (14) can access the data of a specific patient in a specific session (19) in 
deferred mode, via a new page of his GUI (16). All actions in (16) are monitored and strictly 
guided by the Logging module (17), Message Box (18) modules and GUI Widgets (16). After 
the acquisition phase (1) an offline computational phase (15) follows. Each signal in each 
section is averaged through a normalized scale of times and within a few seconds the operator 
is provided with a complete consciousness of the patient and its gait mean behaviour, both 
scalar and kinematic. The computational offline phase (15) allows a simple, fast, repeatable and 
unaffected by human error monitoring of patient’s performance.  Using this data, the operator, 
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or a medical doctor on his behalf, can independently assess the clinical picture associated with 
the gait analysis.
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Figure 3. 4 - Proposed Methodology
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3.3. Methodology implementation 
Several tools were used to create the system described here. Below is an overview of the 
components that played a crucial role in the realisation of SANE. With regard to hardware 
choices, the Intel RealSense d435i RGBD camera has been chosen for its compatibility in terms 
of cost and performance within the project requirements. The camera d435i is a Kind of all-in-
one depth sensor with RGB information associated. A stream of information is provided in four 
channels, the first three related to the three standard channels of a normal RGB camera (red, 
yellow, blue) and a fourth channel representing a matrix of values that can be associated with 
depth (D), [58]. First, depth information is reconstructed using traditional triangulation methods 
combining the two stereocamera lenses data (Figure 3. 10). Already known to the sensor are 
the relative position data of the stereocameras as a result of a fine calibration during assembly. 
This data is combined with that of an integrated IMU inertial sensor, which makes it possible 
to deduce the arrangement of the entire camera body in 3D space. This information is 
automatically captured and processed by the d435i’s internal PCB (Figure 3. 7) to create an 
array of depth information that is consistent with itself and also well aligned with the RGB 
images. This first level of processing is supplemented by additional information associated with 
an independent infrared (IR) projector. The purpose of this data stream is to make the depth 
information even more precise. In the case, in fact, of an acquisition by the stereocameras of an 
image with a pattern that is not very distinguishable, because it is very homogeneous in its parts, 
the channel associated with the depth could have difficulty in identifying features common to 
the stereocameras and therefore resolve the data of the depth associated with the framed subject.  
The projector irradiates a pseudo-random infrared cloud of points in the acquisition zone and, 
from the pattern of the image returned to the sensor, deduces the differences between the 
predefined and the irradiated cloud, adding detail even to poorly defined subjects (Figure 3. 5). 
The IR cloud is, however, a support data and not essential to the generation of the RGBD data 
stream. This choice makes the camera self-sufficient and robust in output, even in case of 
intense sunlight, which can disturb the point cloud with its infrared component  (Figure 3. 6, 
Figure 3. 8, Figure 3. 9). Furthermore, the Intel RealSense d435i is fully compatible with any 
deep learning software that is designed for image reconstruction. If the stream already provides 
well-aligned data, it can be further processed by neural network software to recognise more 
complex features common to the four RGBD channels and make the information even more 
consistent. Finally, it is possible to decide to provide a video stream either of the processed 
RGB data only, or of the processed RGBD data, or of the depth image data only, or of the same 
information aligned directly by the sensor without a neural network inside the PC.  

In addition, in Figure 3. 6 it can be noticed that the depth acquisition is still feasible although 
it suffers from the lack of the infrared projector data. To be precise, clearly distinguishable 
silhouettes such as the human figure continue to be well distinguished while more homogeneous 
areas such as the ceiling now have regions where the depth matrix has unresolved data. For 
these reasons, on the software side, the suggested AI has been chosen. The AI has been 
developed by a partner of Intel itself: Cubemos. The latter, already described in the previous 
chapters, has the advantage of presenting a very basic Python package already prepared to 
convolve the RGB and D data with the skeleton tracking program and generate an image with 
the skeleton of the framed subject with a map of the three dimensions of each keypoint of the 
human skeleton model of Cubemos. 
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All in all, the Intel RealSense d435i sensor has been chosen for: 

− The size (Table 3) 
 The compactness of the apparatus makes it extremely compatible with the 
desire to create a portable and simple to set up system 

− Sampling frequencies (Table 4) 
They are very well compatible with the requirements of gait analysis in both 
clinical and sporting contexts, as will be seen in Chapter 4 dedicated to the 
description of the signal, the frequencies of the filtering of the signal and the 
design choices  

− Costs [59] 
Two orders of magnitude lower than those of a laboratory used for Gait 
Analysis and one order of magnitude lower than the most advanced, portable 
and recent solutions with multi-chamber and Lidar. 
This characteristic makes the sensor perfectly compatible with the design 
criterion of a low-cost system, less and less restricted to the clinical 
environment and with a low economic risk of usage. 

− The ideal sampling distance range (Table 5) 
This characteristic makes the sensor sufficient for the analysis of few gait 
cycles of a person of average height. However, the system was subjected to 
the tests presented in Chapter 0 to demonstrate in detail the compatibility of 
the sensor assisted by a deep learning analysis to demonstrate its conformity 
with the accuracy requirements of the context. 
 

On the software side, the tools chosen to develop the system are: 
− PyQt  

for a simple but modern graphical interface, an ample, complete and 
performance-reliable package. Initially created in C++, in recent years the 
Qt library has also made a name for itself in Python, although the 
documentation in the new language is still largely to be enriched. The Qt 
libraries are constantly being updated, with a very active community and a 
very large number of efficient modules suitable for cross platform, almost 
as if it represented a whole new standard library. This choice was made in 
order to preserve design and performance and to provide a fully intuitive 
and guided experience for the operator without affecting Real-Time 
acquisition performance. 
For this purpose, we will also use the built-in Multithreading module in 
PyQt for compatibility and efficiency. 

− Pyqtgraph  
for real-time plots with very low computational impact  

− Pandas  
for convenient manipulation of large data structures in offline 

− SciPy  
to benefit offline of an open-source library well known in the literature for 
algorithms and mathematical tools for the Python programming language 
Also with very good performance. 
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− Simpy 

for offline equation solving 
 

− Matplotlib with the PyQt interface  
for offline plots and plot animations that are more complex and therefore 
less suitable for real-time use, although attractive, flexible and with a wide 
range of useful associated functions. 

− MATLAB  
for tests and preliminary simulations in the early stages of the project and 
which is not in any way integrated into the current complete SANE system 
since any function exploited is completely written in Python and free of 
external licenses (except for the license required for the SDK associated 
with Intel, Cubemos). 

Table 3 - Intel RealSense d435i, Mechanical Dimensions, [58] 

 
Table 4 - Intel RealSense d435i, image format and stream rate with USB 3.1 Gen1, with fps column highlighted, [58] 

 
 

Table 5 - Intel RealSense d435i features, with the ideal range highlighted, [58] 
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a)   b) 
Figure 3. 5 - Intel RealSense d435i - Biomechatronics Lab, Neuromed Technology Park - a) RGB acquisition; b) Depth 

acquisition with both stereo cameras and IR projector. 

 

 

a)  b) 

 
Figure 3. 6 - Intel RealSense d435i - Biomechatronics Lab, Neuromed Technology Park - a): RGB acquisition; b): Depth 

acquisition with stereo cameras only.  
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Figure 3. 7 - Intel RealSense d435i, components, [58]  

 

Figure 3. 8 - Intel RealSense d435i, the lenses in order from the left: the right stereo camera, the infrared projector, the left 
stereo camera, the RGB camera, [59] 

 

 
Figure 3. 9  - Intel RealSense d435i, depth and -Z axis definition, [58] 
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Figure 3. 10 - Intel RealSense d435i, stereo cameras depth recognition via triangulation, [58]



Chapter 4  A novel approach 

 
57 

 

 

4. A novel approach 

 

 

Figure 4. 1 - Human Machine Interface Flow Chart  
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4.1. Human Machine Interface  
The graphic interface has developed significantly over the course of the project, becoming 

increasingly minimal as the logging and computation automation component has evolved. 
For example, if the operator was required to force the patient to place one foot ahead of the 

other and to specify it in the interface or to indicate the characteristics of the patient’s session 
in the beginning, as the work progressed, all of these decisions were automated, allowing the 
patient to be analysed by walking in an arbitrary and natural manner (Figure 4. 2, Figure 4. 3). 

The graphic base and the Stylesheet have been pre-set in a neat configuration by means of 
the QtDesigner tool and introduced into the project storing the user interface configuration for 
a program; saved in an XML format and contains definitions of Qt widgets in the form of a .ui 
file with its resources and private icons, in order to make the most significant modules and those 
with the most logical contribution easy to read at code level. Each .ui file is imported by 
modules responsible for controlling the signals connected with each object present in the pre-
set Widget, providing a second, more abstract level of graphic management and allowing 
modular and organized code coordination. At this level the input controls that the Gait Analysis 
program requires are performed. For example, the possibility to execute an acquisition via the 
start and stop button is blocked, as the ability to save if the patient’s name does not match the 
folder’s naming requirements. In addition, in this phase dynamic tooltip messages are generated 
upon the mouse hovering signal and modified each time the program enters a different 
execution state, in order to let the operator, know what SANE expects or why a signal  has been 
disabled. Finally, each icon is dynamically updated in this stage in order to make the interface 
even more intuitive. The start and stop button, for example, has four icons: active, active, 
deactivated, and start without “previous saving” (i.e.: delete and restart). 

The link between the signals of the interface and the functions of all the other control, 
calculation, and logic packages of the code is handled by a third level of the modules designated 
to control the GUI, which inherits from the modules indicated above. For this reason, the project 
main is one of the modules that belong to this level. 

This level also includes customised modules in the GUI package, namely either the ones that 
have inherited from the standard PyQt classes and perform similar but not identical functions 
(such as the QDialog modules that dynamically define the style and icons of all Message Boxes 
or the Widgets that simulate the Matplotlib windows in the Qt environment and assign a default 
Navigation Toolbar for a complete, dynamic, customisable, exportable plot analysis) or the ones 
that override some standard Qt methods. 

The flow chart in Figure 4. 1 describes the various GUI stages from the user’s point of view: 

− Phase 1 (Figure 4. 4) 
The program opens on the first page of the QStackedWidget associated with 
the Main Window and does not allow navigation to other pages. All the 
buttons are disabled and show the same Tooltip “Disabled. Please, provide 
a Folder Name” and will remain disabled until an alphanumeric string 
corresponding to the patient's name is entered in the “Enter Name” text box. 
If the name entered does not match the required format, a new tooltip is 
generated, explicitly stating that the input must be alphanumeric. 

− Phase 2 (Figure 4. 5) 
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The start and stop button is activated both graphically and with a new 
tooltip. When clicked a new threaded window associated with the Intel 
RealSense video is opened.  

− Phase 3 (Figure 4. 6) 
The start and stop button are updated both graphically and with a new tooltip 
so that the acquisition can be concluded when the registered stream is 
considered sufficient and satisfying. Meanwhile, the Skeleton Tracking is 
performed and the Widgets associated with the Real-Time Plotter are 
updated at the same frequency of the video stream with a maximum 
accumulation of data of up to five seconds of acquisition, guaranteeing a 
lag-free stream throughout the whole acquisition time, regardless of its 
length. Here the module inheriting from Pyqtgraph is employed. 

− Phase 4 
The save button is activated both graphically and with a new tooltip. The 
tooltip associated with the graphs is now updated to allow guided navigation 
once the acquisition has been completed. The operator is therefore able to 
evaluate the quality of the walk on the basis of the “Ankle Distance” signal 
and the evolution of the three dimensions of the “Spine” (of which the 
projection in Z can be identified as the approximate distance covered by the 
patient's centre of gravity towards the camera). Another window is finally 
opened to visualize on Matplotlib with QtAgg and Navigation Toolbar all 
the filtered signals and the estimation of the number of valid steps for each 
signal.  

− Phase 5 
The operator is then free to repeat the acquisition by means of the start and 
stop button, which is updated again, both graphically and with the tooltip, 
to the status of delete and restart or save the acquisition. 
In the case of saving, different message boxes are called depending on 
whether the folder already exists, whether there are cases of homonymy, or 
whether the patient's name has been changed to an unsuitable format. 

− Phase 6 (Figure 4. 7, Figure 4. 8) 
After multiple acquisitions, the Data Analysis button can be used to access 
the second page of the Stacked Widget in the Main Window. 

− Phase 7 
The page will display a Label to insert the name of the patient whose average 
values are meant to be measured in a specific session and benefiting from 
the same textual controls as the Label used in real-time, multiple plots 
Matplotlib with QtAgg and Navigation Toolbar, ready to show the 
associated data, and a button that will open a custom QFileDialog such that 
only one and only one session can be selected for that specific patient 
indicated. Other Message Boxes are here responsible for verifying the 
existence of that folder, checking that the files in the folder in question are 
not corrupted, analysing foreign files, and guiding the user in the process. 

− Phase 8 
The Data Acquisition button can be used at any time to return to Phase 1. 
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Finally, the Main Window has all the buttons and functions of a standard window, such as 
split screen, window minimisation, full screen expansion and, naturally, the close button.
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Figure 4. 2 - SANE first prototype version 
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Figure 4. 3  - SANE second prototype version 
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Figure 4. 4  - SANE final version - Phase 1 and tooltip example 



Chapter 4  A novel approach 

 
64 

 

 
 

Figure 4. 5 - SANE final version - Phase 2 and tooltip example 
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Figure 4. 6 - SANE final version - Phase 3 at the very beginning of a gait cycle 
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Figure 4. 7 - SANE final version - Phase 6 and tooltip example 
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Figure 4. 8 - SANE final version - Phase 6, Message Box example 
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4.2. Real-Time Data Analysis and Acquisition Modules  
This is the most delicate phase of the project since it is extremely important to provide a 

sampling time that is sufficient for the analysis of each type of gait, facing with the heavy 
computational effort required by an artificial intelligence and avoiding all interrupts of 
excessive duration coming either from the interface or from any other concurrent application 
not making part of the system. 

As already mentioned in Chapter 4.1, multicore features of the Cubemos libraries are used 
in order to reasonably exploit the computational power of the CPU to the maximum of its 
possibilities and at the same time exploit the QThread module of PyQt5 in order to make the 
real-time skeleton tracking section independent and asynchronous. In this way the acquisition 
loop is untied from the graphical interface loop, avoiding application freeze and at the same 
time improving performance and robustness in acquisition. Everything that has been written 
and that will be described below takes place in the module designed to the sole management of 
inputs and outputs between the system and the Intel RealSense d435i camera, io_hadler.py. 

In order to formulate the code and determine the optimal parameters, several performance 
tests were conducted on the skeleton tracking module supplied by Cubemos and, in parallel, on 
the module created for SANE using the functions made available by the cProfile library in order 
to understand the maximum performance that can be achieved independently from the code 
written for SANE. The tests were carried out on a desktop computer equipped with an Intel 
Core i5-4590, 4th Gen, @3.30 GHz CPU and with the USB 3.1 Gen1 cable provided by Intel 
for its sensor. All the assumptions and calculations that follow from these tests assume that any 
other hardware structure on which the SANE program is installed will behave similarly to those 
observed and linearly proportional to the performance that it can provide with respect to the 
setup available for the test.  
Furthermore, the hardware conditions under which the system was tested proved to be very 
close to the minimum ones that this software can accept, by virtue of the performance reasoning 
provided in Chapter 4.3. This gives even more robustness to the choices made on the various 
parameters that will be described below, since the testing conditions correspond precisely to 
those necessary for everything to run properly in the worst-case scenario. 
First, each function and its internal call in all modules of the Cubemos package exploited by 
skeleton-tracking-realsense.py, the higher-level code provided by the skeleton tracking library, 
were analysed. 

Through a run of the given example, with the function cProfile.runctx(), a comma-separated 
values (CSV) file was created for every test containing the name of each analysed function, the 
line of code and the module in which it is present, the number of times it was called, the total 
time taken in milliseconds per call and many other statistics for the performance analysis as 
described in [60]. Next, the CSV was converted into Excel file in .xlsx format for a convenient 
sorting of the data according to each statistical criterion provided in each column by cProfile. 
From this last file that it can be inferred that (excluding the function for checking the licence 
by Cubemos, whose execution time is around 2.7 seconds, called only once at the beginning of 
the programme) the native wrapper.py module, which exploits the core function of the 
programme for the estimation of keypoints, used iteratively for the analysis of each frame of 
the video, is the unmodifiable bottleneck of the AI responsible for the skeleton tracking. It 
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spends an average of 64 ms per call in a 100-call test with 1 frame per call. Therefore, taking 
into account that the cProfile queue partially slows down performance, the maximum frames 
per second (FPS) that SANE could ever hope to provide on the computer being tested and with 
the source code provided by the Cubemos API would be a few Hz greater expressed by Eq. 4.1 

1000

64
𝑚𝑠 = 

1 𝑠

𝑇_𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘
= 𝑓𝑚𝑎𝑥 = 15,625 𝐹𝑃𝑆   (4.2.1) 

The result of Eq. 4.2.1 will be used to estimate the quality level of the real-time acquisition 
code created for the SANE system. 

The tests using the cProfile library are very good for estimating bottlenecks, especially 
considering the time spent on each function in relation to the others, but they are less accurate 
for evaluating times in an absolute way, since the testing itself implies a non-negligible 
computational effort. 

Therefore, a further frequency test will always be done both for SANE and for the Cubemos 
skeleton-tracking-realsense.py module through the simpler datetime library, with a much lower 
computational load, not to evaluate the times used by each function in each module, but to 
analyse the time with which each frame of the video is returned after being submitted to analysis 
by the AI. This test therefore reflects in absolute value the sum of all the delays of all the code 
exploited frame by frame for the analysis of the video and is not only dependent on the 
estimation times of the AI but also on the whole structure of the code around it. From this it 
emerges that the implementation of the skeleton tracking, proposed as an example by Cubemos, 
sequential through a while loop and shown on display Using OpenCV inbuilt function, provides 
on average a data at the frequency of 12Hz, 3 less than the frequency of the pure AI point 
extraction calculated conservatively through cProfile. Since, as already mentioned, the 
sampling frequency is a crucial aspect for a good analysis, it was decided not to directly employ 
the module provided by Cubemos, which has shown to have margins for improvement, but to 
make changes, wherever possible, to the Cubemos Python package and then to integrate them 
into SANE in the least possible impactful way on the pure AI analysis times.  

 
The io_handler.py is therefore the transposition in form of class, the adaptation to PyQt 

environment and the optimisation for real-time and in thread of the code proposed by Cubemos 
for the analysis of an image. Here, all the preliminary settings for the licence check, the 
resolution configuration, the analysis confidence settings for the tracker, the graphic settings 
for the acquisition window, the settings for the alignment of the camera stream and the 
frequencies required for the Depth and RGB channels are moved to the initialisation section of 
the object created by this class. The last one is called by main.py at the opening of the interface 
and maintained for the duration of the Main Window loop. This very choice shifts all the delays 
of the functions that do not need to be called at the opening of the program, makes all the calls 
to the skeleton tracker with immediate response without any lag at the beginning of the analysis, 
to allow the operator to acquire data at the exact moment he decides to activate the start and to 
communicate to the patient the beginning of the walking. As instructed by the Intel RealSense 
documentation for Python environment, the acquisition is configured so that both RGB and D 
information are available. In detail, the maximum frame frequency request common to both 
channels is imposed at 60 FPS [58], in order to prevent software bottlenecks if the SANE code 
would be used on a computer equipped with hardware with high computational performance 
and capable of resolving skeleton tracking in less than 0.01 seconds. The highest possible 
resolution has been set. The latter is also still optimal in terms of performance (in other words, 
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that does not affect at all the maximum frame rate of the skeleton tracker) at  640 × 480 𝑝𝑥, 
found empirically after testing all combinations of frequency and resolution using the testing 
functions provided by the cProfile library (Figure 3. 6). Then the frames are aligned and the 
pipeline is initialised ready to start at the immediate creation of the recording window. The rest 
of the code for the generation of a video in which skeleton tracking is performed is incorporated 
in the run() method of the thread. This last one includes the start of the pipeline, the control of 
the correct alignment of the frames, the queue of new frames waiting for a certain time limit in 
order to find out if there is a connection problem with the camera, the 2D skeleton tracking 
functions and the 3D data extraction function by knowing the 2D coordinates. At each frame is 
sent, as thread safe pyqtSignal, to the modules called by the io_handler.py:  

− a timestamp of both the time elapsed between two consecutive frames and the 
time elapsed since the start of the acquisition, performed by means of a custom 
class derived from PyQt’ s built-in QTimer 

− the list of keypoints of the 3D skeleton in that frame  
− the processed image  

to display (via QLabel and Pyqtgraph) and save real-time data and calculate a few new real-
time data with negligible computational cost (via the csv_handler.py and 
computation_handler.py modules). 

To guarantee good levels of efficiency, the real-time management of the plots is 
implemented as described in Chapter 4.1, the update of the image occurs as soon as a frame is 
available and consists only in the modification of the QPixmap of the QLabel that simulates the 
video, meanwhile the .csv file that stores the real-time data has already been generated by 
csv_handler.py, opened and left in append at the beginning of the video stream. The file will be 
closed only when the video stops and deleted in case of any unexpected interruption. 

During the frame-by-frame addition of new data, the csv_handler.py is predisposed to generate 
a NaN data in case a Keypoint has not been provided by the IA at that instant; moreover, through 
the support functions provided by the computation_handler.py module, it generates six new 
signals:  

− the signal associated to the “Pelvis” keypoint: 
a) is calculated as the midpoint between the “Right Hip” and “Left Hip” 

signals. 
b) is fundamental for the calculation of different angles during gait 

analysis and a commonly provided point in the literature of motion 
tracking programs. However, it is not generated by Cubemos, so it is 
calculated at this stage.  

c) is in turn formed by three signals: the projection of the “Pelvis” on the 
X axis, the projection of the “Pelvis” on the Y axis and the projection 
of the “Pelvis” on the Z axis. 

− the “Ankle Distance” trend 
a) is calculated as the distance between the Left Ankle and the Right Ankle 

signals projected onto the Z axis. It is obtained by subtracting the first 
with the second and is the key signal for gait recognition. In fact, every 
time a gait cycle is performed, regardless of how unsteady or 
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asymmetric the stride is, the Ankle Distance signal will have completed 
a period and will have a sine-like shape with variable amplitudes. 
See Chapter 4.3 for a description of how this data will be used. 

− the Total Displacement signal 
it corresponds to the Range (R) of Intel RealSense, it is calculated from the 
3 dimensions of Spine as  

√(𝑆𝑝𝑖𝑛𝑒𝑋2 + 𝑆𝑝𝑖𝑛𝑒𝑌2 + 𝑆𝑝𝑖𝑛𝑒𝑍2 )   (4.2) 
considering, as common in the literature, the “Spine” Keypoint as the 
reference keypoint for the movement of the whole skeleton. 

− the FPS  
obtained by the simple reciprocal of the timestamp of the period between 
two frames, using standard numerical controls for a real time division. 

For a reliable analysis all these given parameter generate a datum if and only if all the events 
from which they originate are not NaN. If at least one of these is NaN, the calculation at that 
instant will not be performed and the result will also become NaN. 

Through repeated tests with both the cProfile library and the datetime library it has been 
proven that the FPS, with and without the calculations included in the csv_handler.py and the 
lines of code of the module for plot time and video display, remain almost completely 
unaffected since each of these sections has a total execution time slightly varying depending on 
the number of keypoints acquired at a given time, but always almost two orders of magnitude 
less than that employed by the wrapper.py of the IA. 

It was therefore decided to leave these modules running sequentially with respect to each 
thread cycle and not to implement a multithreading solution. Even if, indeed, the second option, 
in the case of a hardware architecture with high computational power, would have been possible 
in terms of: 

− limit video and plot updates with an asynchronous sample of the data acquired 
at 30 FPS 

− save synchronously and sequentially only the numerical data at the highest 
possible frequency 

− release frames immediately after the analysis by the AI so that new ones could 
be called from the pipeline 

this choice would have been too unsafe for an improvement of limited relevance.  
In the best-case scenario, this idea, on the basis of the execution reports obtained with 

cProfile, would have improved the representation time of each frame slightly over than 1%. 
However, in first place it would have introduced constraints to the project by making many 
parameters no longer customisable, such as the time span of the plot that can be represented in 
real-time, because, with the growth of the data to be represented at each new frame, both for 
the rise of the span and of the sampling frequency, there would have been a risk of making the 
output thread slower than the input thread, resulting in asynchrony and inconsistency between 
plots and images, and data accumulation, resulting in a memory consumption fault . Secondly, 
it would not greatly provide an improvement even if Cubemos would have made its AI far more 
efficient and faster, since the d435i’s camera would still deliver images at a maximum rate of 
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60 FPS, which, for instance, is still recommended and not unreasonable for video and plot 
representation according to the Nyquist criterion applied to the sampling rate of the human eye.  

At the end of the acquisition the last real-time check takes place, which simulates the first 
part of the post-processing calculations, via the check_signal_minimal_requirements() function 
in the computation_handler.py module, over all the saved data in order to notify the operator 
whether the gait can be used for the calculation of average values, how many steps have been 
recognised and how many signals have a valid data set in the period of these steps. If the total 
number of steps is zero, the acquisition cannot be saved among the folders for the calculation 
of the average and the operator will be invited to repeat the analysis of that gait, letting him 
know whether: 

− The number of steps is zero because the signal shape has never been that of a 
gait cycle, highlighting that a gait analysis cannot be conducted by its own 
definition if the patient is not able to perform all the gait phases 

− The number of steps is zero because the patient stopped himself during each 
cycle, making the acquisition non-continuous and unsuitable for the criteria of 
analysis by its very definition  

− There is too much noise in the video and too many NaNs from the AI to consider 
the signal reliable 

− The video was conducted on an outdated architecture or on a PC where too many 
programs were running at the same time in SANE, to the extent that the sampling 
time was reduced below the minimum 16 FPS threshold (Chapter 4.3). If the 
number of steps is not zero but in each of them some keypoints have generated 
signals that are not good enough because of the noise, then the operator is warned 
that the system will still be able to give reliable averages as long as in at least 
one of all the acquisitions of the session there will be acceptable data for that 
signal. Furthermore, the operator is also warned that the acquisition is affected 
by noise. 

SANE showed at this final step that it could analyse the 3D skeleton at a frequency of 
between 16 and 18 FPS with an average of 17.2 FPS on a 10-walk test. Six more FPS were 
gained compared to the original Cubemos example, using the CPU only and within an 
environment with the hardware characteristics mentioned above. Furthermore, a higher 
frequency was achieved with respect to the maximum one conservatively estimated via cProfile. 
These data are a good indication to assume that close to ideal and optimal real -time 
performances are delivered in this context. 
 

4.3. Post-Processing Data Analysis Modules  
This chapter is dedicated to all the data calculation processes performed off -line, the 

mathematical criteria that made possible the automation and the definition of the minimum 
design requirements for the analysis to be robust. This description will adopt a top-down 
approach. 
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The final purpose of this section is to provide:  
− scalar data such as speed, step duration, step length, cadence, cycle duration, 

mediated over all the steps of all the acquisitions of a single session.  
− The kinematic data concerning the development over time of some angles 

associated to the step, also mediated and normalised over all the steps of all the 
acquisitions of a single session. In particular, all the angles present in the 
description in Chapter 2.1 and shown in Figure 2. 4 are given, with the exception 
of the hip and knee rotations, the pelvic obliquity and the two angles associated 
with the feet, due to the limitations imposed by the points provided by Cubemos, 
which are either not sufficient for the mathematical definition of an angle or for 
the recognition of a body section (as in case of the feet). 

 

In order to produce this data, it is essential to store the averages of each acquisition associated 
with each CSV file in the session folder. Then every mean value is saved in the private “self” 
parameters of an object generated from the class inside the computation_handler.py module. 
Also saved is the total number of valid steps for each signal in the entire session. So that it is 
clear at the end of the calculation how many samples and steps the measured values were 
averaged over and their reliability. Thus, a vector is obtained for each parameter of each walk, 
from which the total average value in the session and its standard deviation can be deduced. 
However, in order to define the averages of signals that have the same conceptual value and the 
same behaviour, but that may have been generated at different times, it is necessary to normalise 
the time vector associated with the signal so that all behaviours are plotted against a common 
range. It is therefore chosen to normalise from 0 to 100 each signal of each step of each CSV 
and resample them to a common and fixed frequency. Such resampling value is evaluated 
before any calculation and is based on the frequencies of all the acquisitions of the session, it is 
then passed to the calculation section during the generation of the object belonging to the 
computation_handler.py module. 

It is, therefore, necessary to iteratively analyse in a loop for each CSV file and have an 
average value of it for each signal. Hence, of each signal it is necessary to know in how many 
steps it was well acquired and in which time span, then, store these data and iterate over this 
list for each CSV for each signal. This leads to the need to determine how a “good signal” 
section can be defined, how a step can be recognised and how to deal with the times associated 
with this information. For example, in order to know the list of times when a given angle started 
and ended its period in an entire acquisition, it is essential to know the same data for those x, y 
and z signals associated with the points generating the angle, then find out which time spans in 
this list are common to all these points and finally define the list of common time spans as the 
vector of information sought for these angles. Briefly, with each CSV a list of good steps for 
each angle will be saved in a data frame, which is itself derived from the list of good steps for 
each point recognised by Cubemos. It is therefore necessary to define the concept of a “good 
step” in terms of code. The ideal situation is to have a matrix representing all the signals of an 
acquisition in the form of a list of ordered Time Series. To this matrix must correspond a second 
one that has the same number of rows and columns and whose elements hold a single binary 
value that expresses whether the data in the acquisition matrix, in the same position, deserves 
to be considered or not. The first step to create this matrix is simple: each NaN entry in the data 
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matrix must be matched by a False entry in the mask matrix related to this data. A further 
criterion is to find the outliers in the data matrix and set the corresponding data in the mask 
matrix to False as well. Also, this step is straightforward and is the reason why it was decided 
to use a second matrix and occupy extra memory with a second temporary structure. To remove 
the obvious disturbances and outliers, the acquired signals can be filtered at the beginning by 
means of an IQR filter that automatically creates a mask vector by itself filtering all values that  
are not included between the 25th and 75th percentile. It is then sufficient to add to this data, 
which we already have, the information on the position of the NaNs as described above to 
complete the matrix. After that, in each Time Series vector, namely in each signal that 
corresponds to the projection on X, Y or Z of a Keypoint, it is necessary to recognise the 
portions that are contemporary to the event of a recognised step by means of the Ankle Distance, 
for each step, and on the basis of the distribution of the True and False values in the section of 
the associated mask matrix, assess whether that range of values is a good step for the current 
signal. Precisely, in each signal section contemporary to the cycle of a step, the maximum train 
of consecutive False is found, its elements are counted and it is measured whether this number 
is less than or equal to 30% of the total number of points needed to reconstruct the highest 
frequency component of the signal, given the average sampling frequency in real-time.  
New needs are enforced by this criterion: 

− Define the maximum frequency of the Time Series that can be considered a 
component of the signal 

− Evaluate signal data with these criteria only after it has been well filtered (Figure 
4. 10, Figure 4. 11) 

− Identify step events and create a list of each start and end point of the cycle 

The first two points are resolved in the same section of code that is responsible for data 
processing, the same section that includes the IQR filter already mentioned. This is where the 
data frame of the Time Series values of the real-time acquisition is passed through three filters: 
the IQR which acts as already described, a median filter of width 3 and a Butterworth backward 
and forward low pass filter with an adaptive cut-off frequency. Both the width of the Median 
Filter and the frequency and type of the low pass filter, as well as the limit, as a design 
specification, imposed during real-time for the sampling frequencies, are derived from the 
analysis of the frequencies of an average gait cycle and a gait in the worst-case scenario.  

An ideal system meets the Nyquist conditions on frequency even in the case of the fastest 
possible movement in front of the acquisition system and is robust especially in the case of 
walking with a standard performance. According to the study by Luis M. Silva & Nick Stergiou 
[61], the average frequency of a standard gait cycle of a healthy individual is around 1.07 Hz, 
and associated signals possess dominant components in comparable low frequencies. So, it is 
in general completely unacceptable to have an analysis system that is not significantly faster 
than 2 Hz. Furthermore, this is why the filtering requires a Butterworth type which has no 
distortion of any kind in modulus in the low frequency section, i.e. in band. It is also desirable 
that all frequencies of a filtered signal are not disturbed by the filter in magnitude. If, therefore, 
a Butterworth of order 𝑛 = 5 is used and applied forward and backward, reaching already an 
appreciable filtering order (2𝑛 = 10), it is necessary to impose that the gain 𝐺(𝜔)  of a signal 
at 𝜔 = 1.07 𝐻𝑧 is at the very least in these conditions almost unvaried 𝐺(𝜔) → 1 = 0,999  and 
from this data deduce the cut-off frequency 𝜔𝑐. From the latter we then deduce the minimum 
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sampling frequency for the whole system, which must be twice the cut-off frequency for 
adequate sampling by a digital Butterworth filter.  
The following equation, typical of the LP filter mentioned above, is then applied:  

𝐺(𝜔)2 = 
𝐺0

2

1+
𝑗𝜔

𝑗𝜔𝑐

2𝑛 (4.3) 

From which we obtain, by substituting, an 𝜔𝑐 = 3,38 𝐻𝑧 and a new minimum limit for the real-
time FPS of the project that rises to at least 6.77 𝐻𝑧.  

The worst-case scenario, however, has frequencies greater than 1.07 𝐻𝑧. For this study, 
therefore, we consider the frequency with which the stride cycle of the fastest man in the world 
occurs during his peak performance in instantaneous speed: 𝜔 = 4.29 𝐻𝑧, Bolt [62].  
The minimum sampling frequency for the system therefore rises, applying the Nyquist criterion, 
to 8.58 𝐻𝑧. Furthermore, to apply the second level of outlier filtering by a median filter of width 
3, a signal with a frequency greater than 𝑓𝑝𝑠𝑚𝑖𝑛 ≈ 3 ∗ 𝜔 ≈ 12.87 𝐻𝑧 is at least desirable. 
Approximating to the nearest integer, a similar number for minimum FPS is obtained by 
applying Eq. 4.3 to this case, imposing a 𝜔 = 𝜔max _𝐵𝑜𝑙𝑡 = 4.29 𝐻𝑧 and 𝐺(𝜔)2 = 0.99. 
Finally, to be conservative with respect to the minimum acceptable frequency, we choose a 
number arbitrarily slightly higher than the calculated minimum limits, which amounts to 
𝑓𝑝𝑠𝑟𝑒𝑎𝑙_𝑡𝑖𝑚𝑒 = 15. 
To summarize, these very same reasonings in the code for off-line computation have been 
applied. The Median Filter and the IQR filter are followed by a polynomial interpolator of order 
3 of the eliminated outliers (Figure 4. 9), after which Eq. 4.3 is used to define the 𝜔𝑐 of the 
adaptive LP filter where (Figure 4. 12): 

− as 𝜔, this time, the maximum signal frequency 𝜔𝑤𝑜𝑟𝑠𝑡 _𝑐𝑎𝑠𝑒_𝑓𝑟𝑒𝑞  mentioned 
above is imposed, obtained as the maximum frequency that has the related 
magnitude in dB of at least 30% of the modulus of the absolute maximum of the 
Fast Fourier Transform (FFT) of the signal and searching between those 
included between 0 Hz and the 𝜔max _𝐵𝑜𝑙𝑡    

− as 𝐺(𝜔)2 a value proportional to the weight of the magnitude related to that 
frequency with respect to the maximum modulus of the signal FFT 

This filtering is applied both on the original signals and on the distance-normalised ones, and 
the solution is chosen between the two that proposes the Time Series set less corrupted by the 
filters, but free of the frequency components that are not expected in a Gait Cycle associated 
signal. The reason for this choice derives from the fact that, in the first case, during a long walk, 
the adaptive filter can recognise as the maximum frequency of the FFT the component of the 
signal that corresponds to the influence of the approach of the point in a system with a moving 
frame, while in the second case the problem is avoided but in the case of frequent NaN, the 
normalisation and the consequent interpolation could still introduce a new low-frequency 
component and lower the cut-off frequency. In case the walk is both long and with frequent 
disturbances, it will be discarded.  

The filtering is followed by the recognition of the step events, which completes the list of 
ingredients necessary for the evaluation of the averages and the automation of the analysis.  
The function is simple: knowing that the Ankle Distance trend must have concluded a period 
with a sinusoidal-like shape, to recognise a cycle the signal is divided into sections each time it 
crosses the 0 axis and a succession of absolute maximum-minimum-maximum or minimum-
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maximum-minimum is searched for in these sections, eliminating all those sets that are not 
always contemporaneous with the patient’s approaching, i.e. all those that do not occur while 
the patient's speed remains continuous, negative and non-zero throughout the cycle (Figure 4. 
13, Figure 4. 14).  
 

 
a) b) 

Figure 4. 9 - SANE’ s first level of filtering for outliers - a) Ankle Distance trend; b) an example of a keypoint signal 
(the projection on X of the signal related to the Spine joint) 

 

 
a) b) 

Figure 4. 10 - SANE’ s completely filtered signal (green line) vs raw data interpolation (red line) - a) Ankle Distance 
trend; b) an example of a keypoint signal (the projection on X of the signal related to the Spine joint)  
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a) b) 

Figure 4. 11  - SANE’ s completely filtered signal (green line) vs raw data point cloud (red line) - a) Ankle Distance 
trend; b) an example of a keypoint signal (the projection on X of the signal related to the Spine joint)  

 

a) b) 

Figure 4. 12 - SANE’ s completely filtered signal with IQR, Median and LP adaptive Butterworth (green line) vs signals 
filtered by IQR and Median (red line) - a) Ankle Distance trend; b) an example of a keypoint signal (the projection on X 

of the signal related to the Right Ankle joint) 
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a) b) 

Figure 4. 13 - SANE’s detection of movement’s start and stop (green vertical lines) through the projection on Z of the 
signal related to the Spine joint and its relative maxima and minima (red dots) - a) a low-noise acquisition while 

walking; b) a different, slightly noisier acquisition while walking with a maximum and a minimum that are not correctly 
taken into account during the walk recognition  

 

 
a) b) 

Figure 4. 14  - SANE’s gait detection (red vertical lines) through the projection on Z of the trend related to the Ankle 

Distance - a) Ankle Distance trend; b) an example of a keypoint signal cut within the time span associated with the gait 
(the projection on X of the signal related to the Right Ankle joint) 
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5. Experimental Tests and results 
5.1. Experimental layout  

In order to validate the results obtained from SANE, multiple tests were conducted on two 
separate occasions at the Gait Analysis laboratory of the Clinical Research Centre Neuromed 
in Pozzilli, IS. 

The site is equipped with all the instruments required by the latest BTS GAITLAB protocol, 
except for the number of dynamometric plates, which amounts to two. The latter, however, 
were only used to simulate a complete analysis process but are not relevant for the evaluation 
and comparison of kinematic and scalar data between BTS and SANE. Dynamic data, therefore, 
as not provided by SANE, will not be reported in this chapter dedicated to comparison tests. 
Therefore, four sessions of ten acquisitions by two different operators on the same healthy 
patient in different modalities were performed for a total amount of 40 acquisitions by SANE 
and another 40 simultaneous acquisitions by BTS. 

More specifically, the procedures for (Table 6) have been followed: 
− inter-rater test  

with two different operators who carried out, on the same patient on the 
same day, ex novo, the whole procedure for the positioning of the markers 
foreseen by the BTS for the acquisition of two consecutive sessions, one 
each, of 10 walks, using BTS and SANE simultaneously. The purpose of 
these tests is not only to provide results from the two systems, but, above 
all, to highlight through them the error between the measurements due to the 
operator. In other words, it is an estimate of the dependence of the systems 
on the operator and their reliability and availability in this regard. 

− test-retest 
executed by the same operator who performed, on the same patient, on two 
separate days, two days apart [63], ex novo, all the procedure for the 
positioning of the markers foreseen by the BTS for the acquisition of two 
discontinuous and distant sessions of 10 walks using of BTS and SANE 
simultaneously. The purpose of these tests is to show the variation between 
measurements taken at different times, but with the same operator and the 
same patient. It is in other words an estimation of the dependency of the 
systems in relation to time, their reliability and availability in this regard. 

− intra-rater test 
executed by the same operator who performed, on the same patient on the 
same day, ex novo, all the procedure for the placement of the markers 
foreseen by the BTS, for the acquisition of two consecutive sessions of 10 
walks, using BTS and SANE simultaneously. The purpose of these tests is 
to show the variation between repeated measurements, with the same 
operator and the same patient. 

For an optimal acquisition the Gait Analysis was performed in the centre of the capture area 
of the BTS laboratory, the Intel RealSense d435i sensor was positioned along the patient path 
trajectory delineated on the ground, three metres long and centred on the dynamometer plates. 
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The RealSense camera was placed on a tripod 1.63 metres from the end of the patient path, 1.30 
metres above the floor and at an angle of +13° along its X-axis and 0° for the remaining axes, 
facing the patient and aligned with its intended trajectory (Figure 5. 1).  

Non-reflective tape was used on the floor for marking the path to avoid any form of light 
disturbance. The chamber is isolated from sunlight in order to avoid infrared disturbances and 
every object in the acquisition zone has been removed (Figure 5. 2, Figure 5. 3, Figure 5. 4). 

The Davis protocol standard was followed for the marker arrangement. 
This setup was kept constant and unchanged during the execution of all tests. 
 

 
Figure 5. 1 - Intel RealSense d435i and SANE’ s axis   

 
Figure 5. 2 - gait analysis laboratory before the experimental layout was set up. 
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Figure 5. 3  - Experimental layout and demarcation of the path. Following the creation of the start and stop lines, the black 

reflective tape was removed while the opaque white tape remained. 

 
Figure 5. 4 - Experimental layout - on the left: SANE’s Interface; on the right: BTS GAITLAB Smart Clinic Interface  
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5.2. Experimental tests 
Table 6 - descriptive table of sessions 

 

 

As can be seen in Table 6, by virtue of what has already been said in Chapter 5.1, Sessions 
number 1 and 2 were used for the inter-rater test, Session 2 and 3 for the test-retest, and Session 
3 and 4 for the intra-rater test.  

Both operators followed the BTS protocol for preliminary patient preparation and offline 
analysis. 

During the execution of the tests, BTS vulnerabilities emerged. Phantom markers appeared 
from time to time and some walks, despite appearing to be well captured through the 3D visual 
feedback window, were not selectable during the offline phase. Based on the recording of the 
3D skeleton constructed by the markers in real-time, data was reacquired with both systems 
whenever the BTS dataset was visibly disturbed. The manual gait selection process was 
concluded following the meticulous selection and recognition of 20 right stances, 20 left 
stances, 10 right detachments, 10 left detachments over three sessions and a total of 180 manual 
signal selections via the 3D window provided by the BTS Smart Clinic program. Occasional 
crashes of the offline analysis program were also experienced, but none occurred during the 
real-time acquisition phase. 

The SANE system, on the other hand, required the reacquisition of the walks only twice, one 
of them simultaneously with the BTS. Also in this case, in order to preserve the comparability 
of the tests, the acquisition was repeated with both systems. 

Once all the real-time measurements were completed, the offline averaging for both systems 
was generated. In this second step, the walks that have been discarded by one system have not 
been discarded in the other as well, since the comparison of the two methods has to include 
only the real-time acquisition procedures. 
Therefore, after selecting the steps, during the BTS consistency analysis phase for Session 1 
of operator 1 it was necessary to discard the acquisitions number 01, 06 and 07; for Session 2 
of operator 2 the acquisitions number 02 and 03; for Session 3 of operator 2 the acquisitions 
01, 06, 07, 08, 09; for Session 4 of operator 2 the acquisitions 01, 03, 04, 05, 06, 09, 10. 
It is important to notice that SANE system did not require the elimination of any of them. 
The averages thus obtained are as follows: 

First Day Two Days Later

Eval 1 Session 1

Session 3

Session 4
Eval 2 Session 2
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Table 7 - Results for Gait Cycle Duration, highlighted the higher REM% values 

 
Table 8 - Results for Results for Step Duration, highlighted the higher REM% values 

 
Table 9 - Results for Cadence (named Rate in SANE), highlighted the higher REM% values 

 
Table 10 - Results for Gait Cycle Length, highlighted the higher REM% values 

 
Table 11 - Results for Mean Velocity, highlighted the higher REM% values 

 

Where SD stands for Standard Deviation and REM% for Relative Mean Percentage Error, 
defined as in Eq. 5.2.1: 

 
𝑅𝐸𝑀% = 

𝑥𝑆𝐴𝑁𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑥𝐵𝑇𝑆̅̅ ̅̅ ̅̅ ̅

𝑥𝐵𝑇𝑆̅̅ ̅̅ ̅̅ ̅
× 100 (5.2.1) 

 

Mean ±  SD (s) REM % Mean ± SD (s) REM %

Session1 1.33 ±  0.10 1.35 ± 0.11

Session 2 1.44 ±  0.07 1.45 ± 0.04

Session 2 1.44 ±  0.07 1.45 ± 0.04

Session 3 1.38 ± 0.06 1.38 ±  0.04

Session 3 1.38 ± 0.06 1.38 ±  0.04

Session4 1.40 ± 0.06 1.43 ± 0.03

7,41

4,83

3,62

SANE BTS system

8,27

4,17

1,45

Inter-rater relative error measurement 

Test-restest relative error measurement 

Intra-rater relative error measurement 

Mean ±  SD (s) REM % Mean ±  SD (s) REM %

Session1 0.66 ± 0.05 0.70 ± 0.12

Session 2 0.72 ± 0.04 0.86 ± 0.02

Session 2 0.72 ± 0.04 0.86 ± 0.02

Session 3 0.69 ± 0.03 0.81 ± 0.02

Session 3 0.69 ± 0.03 0.81 ± 0.02

Session4 0.70 ± 0.03 0.85 ± 0.02
4,94

22,86

5,81

SANE BTS system

9,09

4,17

1,45

Test-restest relative error measurement 

Intra-rater relative error measurement 

Inter-rater relative error measurement 

Mean ±  SD (step/min) REM % Mean ±  SD  (step/min) REM %

Session1 91.48 ±  8.94 90.09  ± 5.24

Session 2 83.62 ±  4.30 82.80 ± 2.29

Session 2 83.62 ±  4.30 82.80 ± 2.29

Session 3 87.30 ± 3.57 87.36 ±2.34

Session 3 87.30 ± 3.57 87.36 ±2.34

Session4 86.34 ± 3.98 84.00 ± 1.77

8,59

4,40

1,10

8,09

5,51

3,85

SANE BTS system

Inter-rater relative error measurement 

Test-restest relative error measurement 

Intra-rater relative error measurement 

Mean ±  SD (m) REM % Mean ±  SD (m) REM %

Session1 1.40 ±  0.17 1.33  ± 0.16

Session 2 1.45 ±  0.11 1.35  ± 0.04

Session 2 1.45 ±  0.11 1.35  ± 0.04

Session 3 1.46 ± 0.07 1.43 ± 0.03

Session 3 1.46 ± 0.07 1.43 ± 0.03

Session4 1.42 ± 0.08 1.39 ± 0.02

5,93

2,80

0,69

1,50Inter-rater relative error measurement 

Test-restest relative error measurement 

Intra-rater relative error measurement 2,74

SANE BTS system

3,57

Mean ±  SD (m/s) REM % Mean ±  SD (m/s) REM %

Session1 1.05 ±  0.08  1.00± 0.10

Session 2 1.01 ±  0.07 0.90  ± 0

Session 2 1.01 ±  0.07 0.90  ± 0

Session 3 1.06 ± 0.07 1.00 ± 0

Session 3 1.06 ± 0.07 1.00 ± 0

Session4 1.02 ± 0.06 1.00 ±0

10,003,81

4,95 11,11

3,77 0,00Intra-rater relative error measurement 

Inter-rater relative error measurement 

Test-restest relative error measurement 

SANE BTS system
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5.3. Results 
From what can be inferred from Chapter 5.2 the data are quite promising.  
In all test-retests SANE has a lower relative percentage error than BTS, lower than 5%, with 

a maximum value of 4.95% when calculating the average speed against the BTS maximum of 
11.11% with an improvement of more than double. This is the first clue that might suggest that 
SANE enjoys greater repeatability. 

Regarding intra-rater tests SANE returns very positive results, always less than 5% REM% 
and always lower than those of BTS except in the case of the average speed table. On the other 
hand, the latter measure of the REM% for the BTS is not at all plausible and derives from two 
factors: the tendency by the BTS to truncate too many digits of the standard deviation, 
declaring, very often, an unrealistic standard deviation of 0 and the smaller number of 
acquisitions present in session 3 and 4 for the BTS, discarded for the reasons in Chapter 5.2. At 
the same time, the same dataset was fully averaged by SANE without any deviation. This is the 
second clue that could tip the scales in favour of SANE, not only from the viewpoint of 
repeatability, but also from the aspect of the mathematical rigour of the measurements .  

In the inter-rater tests SANE returned two times out of five a better value in terms of REM% 
than BTS up to a gap of 7%, three times out of five a slightly higher value than BTS making 
the measurements comparable between the two systems, with a maximum gap of 0.5%, 0.86% 
and 2.07%. SANE, however, meanwhile, has a maximum REM% of 9.09% while BTS reaches 
22.86%. This third term of comparison leaves margins for interpretation. 

For what concerns the mean and standard deviation measures of SANE, they appear 
comparable to those of BTS. While it is, however, difficult to understand which of the two 
systems returned the closest measurement to reality in terms of absolute value, given the nature 
of a human step, it is much easier to assess the value of repeatability and reliability of both 
systems, emphasising that the latter evaluation is more important than the numerical accuracy 
of the measurement. After all, an inaccurate measurement from a repeatable system can be 
corrected by calibration, while a fortuitously accurate measurement from a non-repeatable 
system will never have a guarantee of reliability, nor can it be improved in any way. 

By virtue of what has been observed, in several cases SANE has been shown to enjoy greater 
repeatability and less susceptibility to human factors, giving reason to conduct further future 
experiments on the system to substantiate this thesis. 
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6. Conclusion 
In conclusion, as shown in the results of the study, SANE is an appropriate system for Gait 

Analysis. According to the test findings, what was lost in accuracy due to the employment of 
Artificial Intelligence and a frontal camera with a lower sample rate than stereophotogrammetry 
systems is regained due to the elimination of human error, automation, and high repeatability. 

Furthermore, because the patient does not have to go through long marker preparation and 
wearing processes, the method has shown to be significantly less stressful for the patient. 
During the experiments conducted at the Clinical Research Centre Neuromed, a decreased 
incidence of acquisition failure was observed, due to the smaller number of factors that may 
affect the measurement while walking. 

Positives also include a significant improvement in terms of time and costs, two orders of 
magnitude cheaper than those of the BTS. 

The system’s portability is another key benefit, allowing acquisitions to take place even in 
non-clinical contexts. Furthermore, the system’s high level of automation and completely 
guided interface enable it to be utilized by an untrained operator, further lowering costs and 
system limitations. 

The system’s robustness is also attributable to its real-time feedback and auto-debugging 
capabilities, which allow it to detect the presence of a problem and its nature at the moment of 
the acquisition. 

 The usage of a frontal camera can have its limitations as it is possible to have moments of 
non-direct detection of a point with the consequent reconstruction of the latter by Artificial 
Intelligence.  

Therefore, the use of SANE would be in the field of preliminary Gait Analysis systems to 
get immediate feedback on the characteristics of a patient and decide on the basis of these 
whether to perform more in-depth examinations.  

Furthermore, SANE appears to be an extremely useful system for analyzing the gait of 
weaker subjects who are unable to physically support the preparatory processes for marker 
analysis, opening up new opportunities for a portion of the population who previously had no 
access to this type of examinations. 

 The use of Cubemos as Artificial Intelligence poses, however, some limitations to the 
system. Firstly, as mentioned in Chapter 4.3, there is a subset of BTS angles that cannot be 
analysed using SANE due to the absence of sufficient points provided by Cubemos. 
Furthermore, in terms of performance, the AI has known problems in the use of the GPU, to 
the point where it is impossible to do so, making the code produced for SANE potentially more 
promising on one hand, but limited by external modules on the other. Cubemos has not 
produced any updates for its software lately, and its relationship with Intel has soured. In 
addition, Intel has decided to stop focusing on the sensor sector such as the RealSense camera, 
endangering the future of the project. 

For these reasons, in the final phases of development, SANE was made highly scalable, 
adaptable, and modular, allowing it to be utilized with different kinds of AI and acquisition 
systems with just minor modifications. 
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SANE, moreover, being an optical system, cannot provide dynamic information, so the lab 
team’s future plans include the integration of dynamometric systems such as smart insoles or a 
portable sensorised mat.   

Future objectives for the system include testing potential enhancements, implementing AI 
to recognize patterns other than skeletal tracking, adapting SANE to analyze other regions of 
the body, recognizing geometries in the pathway, or recognizing the patient's emotional 
response during therapy. The options for AI training, deployment, and enhancement are nearly 
endless.  

Research takes a step forward. 
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