
POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

IP networks monitoring with
BigData

A passive approach for large-scale networks’ performance analysis

Supervisor:
prof. Riccardo Sisto
Co-supervisor:
prof. Guido Marchetto

Candidate:
Roberto Bressani

Company supervisors:
dott. Mauro Cociglio
dott. Massimo Nilo

December 2021

Abstract

Monitoring of traffic in an IP network is a crucial point to prevent big failures
of the system and to deliver a good quality of service to end-users. This is a key
factor of success for large-scale Internet Service Providers. For this reason, Telecom
Italia developed a series of techniques that have been defined as Alternate Marking
Performance Monitoring. The main requirements of this system are scalability,
robustness, and flexibility. This work aims to develop and test a system able to
perform passive network monitoring exploiting Alternate Marking techniques in a
multipoint environment.

Starting from several works that have been carried out in the past, critical points
that have been highlighted has been addressed, proposing a solution for some of
them. In order to powerfully monitor performances, it is necessary to split the
network into balanced parts, so that the same level of detail can be detected in
each of them. To tackle this problem, it has been necessary to formalize it, and
then propose a possible solution that exploits Deep Reinforcement Learning.

The importance of performance metrics is strictly related to the time needed
for producing them: data that have been generated almost in real-time can help
to anticipate problems. In this work, a possible architecture that is robust and
deployable in a real environment has been proposed, also providing the possibility
to produce data in a real-time manner.

The proposed architecture has been emulated on a large-scale network, obtaining
metrics that have been compared with expected performances. Thanks to these
results, the viability of the implemented solution has been shown.

Finally, possible future works have been highlighted in the direction followed by
this thesis in order to close the gap between a research and development environment
towards a real deployed network.

iii

Table of Contents

1 Introduction 1
1.1 Goal of the thesis . 3
1.2 Chapters description . 4

2 Alternate Marking Performance Monitoring 7
2.1 Metrics under analysis . 8
2.2 Alternate Marking . 9

2.2.1 Packet loss . 10
2.2.2 One-way mean delay . 11

2.3 Multipoint Alternate Marking . 12
2.3.1 Clustering . 12
2.3.2 Packet loss . 14
2.3.3 Packet loss probability . 14
2.3.4 One-way mean delay . 15
2.3.5 Dynamic hashing . 15

3 Network modelling for performance monitoring 17
3.1 Extended network . 17

3.1.1 Reduced extended network 18
3.1.2 Border interface selection . 19

3.2 Monitored network . 22
3.3 The dataset . 23

3.3.1 Border routers generation 25
3.3.2 Monitored network algorithms comparison 26

4 Clustering 29
4.1 Clustering algorithm . 29
4.2 Clustering optimization . 31

4.2.1 Problem desiderata . 31
4.2.2 Clustering approach . 32
4.2.3 Clustering evaluation . 32

v

4.3 Clustering via reinforcement learning 33
4.3.1 Reinforcement learning . 33
4.3.2 Deep Q-learning . 35
4.3.3 Graph processing through Neural Networks 36
4.3.4 Optimization framework implementation 39

4.4 Optimization results . 40
4.4.1 Transfer learning application 42
4.4.2 Final considerations . 44

5 Overall system architecture 45
5.1 Network probe . 45
5.2 Message queue . 46
5.3 Cluster manager . 47
5.4 Real time preprocessing . 48

5.4.1 Data synchronization . 49
5.4.2 Results organization . 49

5.5 Per flow post processing . 54
5.5.1 Loss computation . 54
5.5.2 Time based measurements 55

6 System implementation 57
6.1 Network probe . 57

6.1.1 eBPF and BCC . 57
6.1.2 Architecture . 58

6.2 Message queue . 61
6.2.1 Apache Kafka . 61
6.2.2 Configuration . 62

6.3 Cluster manager . 64
6.3.1 REST endpoints . 64
6.3.2 Message handling . 65

6.4 Real time preprocessing . 65
6.4.1 Apache Spark . 66
6.4.2 Hadoop Distributed File System and Hive database 66
6.4.3 Architecture and implementation choices 68

6.5 Per flow post processing . 70
6.5.1 Queries’ and results’ format 70

7 Test environment 73
7.1 Network emulation . 73

7.1.1 Mininet . 73
7.1.2 IPMininet . 75

vi

7.1.3 Naming conventions . 75
7.2 Traffic generation . 76

7.2.1 Iperf network measurement tool 76
7.2.2 Flows emulation . 76

7.3 Test hardware setup . 77

8 Results 79
8.1 Preprocessing . 79

8.1.1 Timing results . 79
8.1.2 Loss related measures . 80
8.1.3 Delay measures . 82
8.1.4 Jitter metrics . 85

8.2 Post processing . 88
8.2.1 Loss related measures . 88
8.2.2 Delay measures . 89
8.2.3 Jitter metrics . 90

8.3 Overall results considerations . 91

9 Conclusions 93
9.1 Possible future works . 93

Appendix A Practical simulation instructions 97

Bibliography 103

vii

Chapter 1

Introduction

Internet applications nowadays require more and more demanding requirements
to support real time applications, such as video conferencing systems, multimedia
streaming and online gaming. This problem is growing day by day, with new
technologies introduced and increasing network traffic.
It is crucial for every Internet Service Provider (ISP) to supply to users a quality of
service that satisfies them and complies with business contracts’ requirements. To
ensure that, loss, delay and jitter of network packets belonging to these real time
applications should be constantly monitored and kept as low as possible. Another
key point is to detect problems in the network as soon as they occur. In order to
do so, both a complete overview and a detailed one is necessary to address the root
cause of each problem that occurs.

Several tools for performance monitoring exist, but have some limitations, start-
ing from the fact that usually they are proprietary, forcing companies to stick to
a single vendor, representing a big business risk. In addition, they are usually
protocol specific and not capable to scale up to deal with the amount of traffic that
characterizes a national ISP.
Another peculiarity is that performance monitoring is usually carried out as correc-
tive action to respond to a network failure. Typically, probes are activated inside
the network to capture flows of traffic that has been affected by a network problem,
monitor them and analyse the results to address the source of the problem. This,
however, requires manual configurations, thus implying a non-negligible time to
solve problems.

In this context, TIM - Telecom Italia has proposed and developed a series of
theoretic foundations to provide a different approach to tackle network monitoring
problem. The main idea is to constantly monitor the whole traffic across all the
network, thus limiting the manual configuration need to monitor single flows of

1

Introduction

traffic and being able to rapidly address the root causes of problems and even
anticipate them. These techniques, which find their basis in RFC8321 [26], emphasise
several aspects:

• ease of implementation: the system should be deployed on a real existing
network, without the need to build it from scratch

• flexibility: the system should be able to provide data at different level of detail,
that can be configured and rapidly deployed in the network

• multiflow analysis: the system should be able to analyse flows of traffic of a
real network, with several sources and destinations, possibly also the whole
traffic that crosses the network

• robustness: data generated should not be biased from out-of-order packets
and from traffic generated by the network itself (e.g. routing packets end in
internal routers, and can be marked as lost packets)

• applicability: network stack should not be relevant, so the system can work
with every kind of Internet protocol

• low computational effort: the impact of the system on the overall network
performance should be negligible

In addition to this standardization process, several thesis works have been previously
done to validate and test this methodology. Among them, the ones that are at the
basis of this work are:

• [19] developed a complete system proof of concept, by using a network probe to
capture traffic flows from another work [28]. This is key point in the definition
of the BigData approach. It consist in a framework that allows to analyse the
whole traffic flowing across the network, collecting a subset of packets to be
stored in a huge database. These information can be processed whenever they
are needed.
The probe that has been used however, has some limitations and was developed
in parallel with the standardization phase, when the idea of this technique
was not completely defined.

• [23] provides a fresh implementation of the network probe, developing an
ad-hoc solution to a technique that during the years has been more clearly
defined.

• [16] which integrates work done by [19] and [23] and was carried out partially
in parallel with this thesis. This is a step towards a deployment in a real
system: work by [19] provides a good overall architecture for the BigData, but

2

1.1 – Goal of the thesis

technologies and assumption made are far from a real and scalable solution.
[16] tries to close the development gap by modifying the technology used to
send data from the network probe to the processing system, which will be
further discussed later on.

1.1 Goal of the thesis
This thesis finds its main objectives on the problems that mainly arose during the
previous work [19]. These are mostly focused on two big areas:

1. where to place the measure points so that as meaningful as possible data will
be obtained by capturing traffic. This implies primarily two aspects:

• the network probe [23] has very low performance when capturing traffic
that flows out a Network Interface Card (NIC), due to a missing Linux
kernel primitive to obtain timestamp for packets on output interfaces. All
the analysis and system will be carried out by intercepting only packets
coming into the NIC

• network probes should be inserted in crucial points in the networks, so
that monitoring areas, that later on will be defined as clusters, should be
in some way balanced and the network should be split in similar subparts

An optimization technique to give such improvements has been researched
during this work, allowing to produce results with higher quality. Since no
analytic method has been found to derive an optimal solution for this problem,
a technique based on deep reinforcement learning was proposed.

2. the analysis system developed by [19] was just a proof-of-concept to validate
multipoint analysis [20] and big data approach [18], but it has not been
designed to be deployed in a real system.
In order to overcome this limitation, a system made up of two different
components has been propose. The first one aims to:

• build an online system, able to consume data and produce results as soon
as data are collected. To do that, some synchronization mechanism has
to be implemented

• obtain all the metrics that have been theorized in [20] and [18]
• have the possibility to process data also in case of missing captures from

probes, since failures may arise in a real and distributed environment and
the system should be robust enough to deal with these situations

3

Introduction

The main strength that the implementation of this component aims to provide
is to produce and store as much detailed as possible network performance
metrics that have been periodically measured in real time. This can allow to
analyse and react rapidly to problems that may arise.
The second component, which has been designed to deal with a big amount
of data and to scale up, satisfying a huge number of parallel queries, thus
optimizing its performance. Additionally, the aim of this component is to
produce metrics to be used in reports for end-users about the quality of service
of their traffic. Thus, differently from the proposal by [19], there is no need to
analyse this kind of traffic in every part of the network, but the main goal of
the results is to provide a global vision of this performance.

In addition to those improvements, this work has also designed an architectural
component to manage the network of probes, that tries to close the gap between
a test environment and a real deployment. It will allow in a real environment,
to provide an automatic configuration of probes, to notify their status to other
components, thus providing a robust system that may also deal with probe fail-
ures. This part, however, is not complete and is just to demonstrate a possible
implementation, leaving space for future works.

1.2 Chapters description
In this section, a brief overview of each chapter will be given.

• Chapter 2 will present the theoretic background of performance monitoring
techniques developed by Telecom Italia, starting from the Alternate Marking
and following its evolution

• Chapter 3 will describe how a network has to be modelled in order to apply
Alternate Marking Performance Monitoring techniques. The target formaliza-
tion of the network is a model that represents from a logical point of view the
possible links among measurement points. In order to reach this goal, it has
been necessary to define an intermediate model that represent the network
from a point view of devices’ interfaces. In this chapter, these formalizations
will be exposed in detail, together with the available algorithms. Additionally,
an adaptation to support the goals of this thesis and a brief analysis on
algorithms’ performance will be presented

• Chapter 4 will define the algorithm to divide a network into clusters, that
is to say portion of the network that will be the base units on which to
compute metrics. In addition, a possible technique to optimize the network
clusterization will be exposed, presenting all the theoretic foundation behind
it and the results that can be obtained

4

1.2 – Chapters description

• Chapter 5 will describe the overall architecture of a system able to support
Alternate Marking Performance Monitoring, highlighting the improvements
that have been carried out during this work

• Chapter 6 will deepen the implementation of elements that have been exposed
in chapter 5, also describing all the technical aspects that have been used to
provide a functioning system

• Chapter 7 will analyse the environment in which tests have been carried out,
describing issues that have been faced to have meaningful results, without
having the possibility to deploy the system in a real core network

• Chapter 8 will include all the results that have been collected during this
work, comparing them with the expected values that can be derived by the
simulation environment that has been used

• Finally, chapter 9 will summarize the results that have been collected during
the whole work, highlighting the strength and weakness of this implementation,
providing also some hints on possible future works that can be carried out
during other thesis

• In addition, appendix A has been provided as practical explanation of com-
mands and useful code to carry out a complete simulation of the system that
has been implemented during this work, together with the previous ones

5

6

Chapter 2

Alternate Marking
Performance Monitoring

Collection of data about network performance is a key point for an ISP business,
so it is fundamental to collect them as reliably as possible. Several techniques over
the last decades have been developed to satisfy this need, that can be classified as
passive and active. According to [32], the former techniques’ methodology consists
in the observation of existing data traffic to determine the metrics to analyse
the network. On the other hand, active techniques use network traffic that has
been synthetically generated to measure all the metrics. This solution is easy to
implement, it does not require specific network configuration and several well-known
tools exist (e.g. ping, traceroute). However, this method introduces some kind
of bias in the measures themselves, since generated traffic influences the network
condition. Also some hybrid techniques can be implemented, by observing traffic
that is already crossing the network, cloning it and applying active techniques to
extract performance measures.
Considering these points, in 2008 Telecom Italia started to develop a passive
technique defined as Alternate Marking Performance Monitoring (AM-PM) that
aims to scale up in terms of quantity of data and number of different flows that it
is able to analyse, also minimising size of storage that has to be used. During the
years, several publications, RFCs and IETF drafts has been submitted. This work
is mainly based on some of them:

• [26] and [25] introduce the Alternate Marking technique, which will be ex-
plained in section 2.2 and is the starting point to measure performance of a
single flow of traffic

• [20] and [24] extends the Alternate Marking technique to support the analysis
of multiple flows of traffic that will be exposed in section 2.3

7

Alternate Marking Performance Monitoring

• [18] formalises what has been done during a previous thesis [19], providing the
description of a working architecture that is the starting point for this work
and will be described in details in chapter 5

During this chapter an overview of this theoretical foundation will be given,
analysing the evolution of the Alternate Marking over time.

2.1 Metrics under analysis
Before describing the enabling technologies for this thesis, a brief overview and a
clear definition of the metrics to evaluate the performance is given.
Considering a flow of N packets between two hosts A and B, the crucial metrics for
network monitoring in this work are:

• packet loss: for a flow is defined as

NØ
i=1

pi (2.1)

where pi is the packet loss for a single packet defined in [31] and has value 0
when the packet reaches host B, and is 1 whenever either the packet has not
reached the destination after a bounded delay (typically its lifetime) or one of
its fragment or the whole packet itself are corrupted.

• one-way mean delay: is computed for each flow as

Ei[di] (2.2)

where di is the delay for each packet and Ei is the mean operator over a series
of data obtained varying the value of i. As defined in [30], it is computed for
each non-lost packet as the difference between the timestamp at host B when
last bit is received and the timestamp at A when the first bit is sent and is
undefined whenever a packet is lost (a condition exposed at previous point
occurs). Considering that, in this work will be computed for every packet
that has a match in host B. Additionally, it is not possible to apply literally
the definition of [30], since only input traffic flowing into interfaces will be
captured. As a result, the delay will be the difference among the timestamps
captured when the packet is completely received into two different network
devices.

• mean jitter: is computed for each flow as

Ei[di+1 − di] (2.3)

8

2.2 – Alternate Marking

where di is the packet delay used at previous point. This definition given
in [39] represents the variability in packet delay traversing the path from A
and B. Even though this metric has not been directly used during Alternate
Marking definitions, it will be part of the analysis and implementation of the
system. In this work, also the standard deviation of this data distribution will
be considered to evaluate its variability.

2.2 Alternate Marking
The Alternate Marking has been defined in RFC8321 [26] and proposes a framework
to measure performance of a group of packets. The technique has been designed to
work at different levels to monitor different quantities:

• per link values: all the traffic that crosses a link is considered and all the
packets have to be taken into account to monitor the status of a link. Data
should be collected both on the incoming router and in the out-coming one to
monitor the performance

• per flow values: packets belonging to a specific flow, that is to say a group of
packets that follows the same path and meets specific constraints is considered.
In this case the aim of the analysis is the performance of the flow itself.
Depending on the desired level of detail, data should be collected only analysing
traffic on some network interfaces in the path traversed by the considered flow

Packet colouring is the main foundation of the Alternate Marking. It consists of
marking groups of consecutive packets with a common label (or colour), that will
be changed basing on different criteria and can be obtained by modifying some bits
of the packet:

• fixed number of packets: the colour of the group of packets should be changed
when the same colour has been applied to N packets

• temporal: a single colour is used for a fixed period of time, then changed. In
this way the analysis will be carried out for a varying number of packets, but
will be representative for a fixed time period. This is the approach preferred
by the authors of [26] and that will be used in this work, since it can be easily
extended in case of multiple flows

The number of labels that should be considered, whether the period is great enough,
to doubtless distinguish blocks among the others is two (possibly having a label for
packet that are not marked, especially for flow based measures). Thus, the traffic
observed by a router that monitors looks like figure 2.1.
For every block, some statistics about packets that have been marked can be

9

Alternate Marking Performance Monitoring

Figure 2.1: Example of coloured flow [26]

computed by analysing traffic thanks to network probes. In an ideal case, when the
period ends these values are stable and can be correctly collected to be aggregated
with data coming from the other routers. In a real case, however, this assumption
is not valid, since delays may occur and, during periods’ transition, interleaved
out of order packets may be found and also clocks’ skews between different devices
may arise. Therefore, the best moment in which statistics about the block can be
considered stable is L/2 after the end of the period of this block, where L is the
duration of the period. Under these conditions, delays d < L/2 can be correctly
detected and won’t affect the measures.

2.2.1 Packet loss
Packet loss is the simplest metric that can be computed with the technique that
has been previously exposed. Given a single link starting from R1 and ending in
R2, just two counters for each period should be considered to estimate the loss that
has affected the link for that period. By defining C(j)Ri the value of the counter
for packets of colour j for the i-th device, the packet loss for each colour for each
block will be defined as:

C(j)R1− C(j)R2 (2.4)

Obviously, the loss will be alternatively computed on the two colours, depending on
the colour that has been assigned to a specific block. By considering this, figure 2.2

Figure 2.2: Example of packet loss computation between two devices [26]

10

2.2 – Alternate Marking

is showing a possible condition that may arise.
The fact that this method allows to compute data for a single direction of the
traffic should be considered. To detect measures in the opposite direction, analogue
counters and also data structure that will be exposed in following subsections
should be taken into account, by reversing the order of nodes considered and adding
other counters.

2.2.2 One-way mean delay
In Alternate Marking definition [26], several techniques to compute mean delay are
proposed:

• single marking: a packet every N in the block should be captured and its
timestamp should be stored on each measure point. Then, by coupling
those packets, the delays can be computed and the mean delay obtained by
averaging these values. This technique is sensitive to loss, since packets that
will be considered may not match each other on different devices. In addition,
depending on N value, several packets should be collected, without any upper
bound, since it depends on the amount of traffic that flows into the considered
area of the network

Figure 2.3: Example of mean delay computation with single marking
(considering just one packet for each period)[26]

• mean timestamp: equation (2.2) can be rewritten as:

Ei[di] = Ei[tOUTi
− tINi

] = Ei[tOUTi
]− Ei[tINi

] (2.5)

where tOUTi
and tINi

are respectively the timestamp of the i-th packet captured
at the end and at the beginning of the link (or of the flow). By simply collecting
the average timestamp of marked packets on each node, the delay can be
computed, even though packet losses may influence it. This is one of the
techniques that has been considered during the implementation of this work.

11

Alternate Marking Performance Monitoring

• double marking: by introducing another marking bits in each packet, some
packets may be selected at the source node as target for mean delay computa-
tion as shown in figure 2.4. Timestamp of these packets are stored similarly to
single marking case, but an upper bound for packets that has to be collected
can be imposed.

Figure 2.4: Example of double marking for delay computation [25]

Even tough this solution is not directly used in this work, it will be the basis
for sampled measures, that will use dynamic hashing, thus removing the need
of an additional marking bit

2.3 Multipoint Alternate Marking
Alternate Marking as defined in [26] provides a methodology to monitor a single
flow of traffic. In order to apply these techniques on several flows of traffic, a probe,
with all relative data structures (packet counter and mean timestamp) has to be
set up for each monitored flow. However this solution cannot fit the needs of a
large ISP, since number of flows can be unbounded and flows change very rapidly
and it is not possible to monitor all of them under these conditions.
To fully satisfy these needs, RFC8889 [20] has been introduced. It defines a method-
ology that allows to compute performance metrics also on traffic that does not
follow a single path.
This kind of traffic, together with the description of the one of an entire network,
has been categorized in several different ways as described in figure 2.5.

2.3.1 Clustering
Before defining how to compute the metrics for performance monitoring when deal-
ing with multipoint flows, it is fundamental to introduce the concept of clustering.

A cluster is a subnetwork that allows to coherently compute performance moni-
toring. Its fundamental property is that all the traffic that is captured on its input
monitoring points must be detected also on the egress ones or possibly it will be

12

2.3 – Multipoint Alternate Marking

Figure 2.5: Definition of possible multipoint flows[24]

lost inside it.
As also for unicast flow of traffic on a single path, monitoring nodes can be cat-
egorized as input, output and intermediate for every cluster, depending on the
position they occupy inside the cluster.
The example in figure 2.6 shows a subnetwork (selected via red and green nodes)
that does not satisfy the requirements to be classified as cluster: traffic that goes
from node b to node d is only detected when passes through b, thus breaking the
idea behind clusters. By including node d as output node, will result in a clustering
that respects the definition.

Figure 2.6: Example of wrong clusterizaion

13

Alternate Marking Performance Monitoring

Inside a single network, several possible clusters can be found: clusters can be
grouped together to form a bigger one, maintaining the right property previously
exposed. Thanks to this, is it possible to monitor a network with various zooming
levels, without the need to define different algorithms to compute the metrics.
Here, a brief introduction of clustering has been given, but there are other founda-
tions, such as clustering algorithm and how to partition a network into several and
balanced clusters, that will be exposed in the following chapters.

2.3.2 Packet loss
Packet loss can be easily generalized to multipoint case. Counters to measure
number of packets that flows in and out the network has to be kept, one on each
monitoring point in the network. Defining bi(p) the value of this counter at period p
for the active colour for the i-th monitoring point and defining two sets of measure
points IN and OUT including respectively input and output nodes of the cluster,
packet loss can be computed as:Ø

i∈IN

bi(p)−
Ø

i∈OUT

bi(p) (2.6)

2.3.3 Packet loss probability
When dealing with a unicast flow of traffic, the root cause of a packet loss can be
theoretically found immediately: a loss that occurs in the path from a router R1
and a router R2 may be due to a link failure or possibly to a buffer overflow in the
destination node.
In a multipoint environment instead, a loss in a cluster may arise in different
positions. In [24] the number of packets that have been probabilistically lost around
a measure point at the border of the cluster has been proposed. This value is
defined differently, depending on the nature of the measure point. For an input
node i for a period p, the downstream loss lds(i, p) value corresponds to the number
of packets that traversed this node and will be probably lost afterwards in a given
period is computed as

bi(p) · Lq
j∈IN bj(p) (2.7)

where bi(p) is the packet counter of active colour and L is the loss of the cluster,
as previously defined.
Similarly, for every output measure point in the cluster an upstream loss lus(i, p)
value can be computed to represent the packets that are probably lost during the
path towards the node i at period p. It can be obtained as:

bi(p) · Lq
j∈OUT bj(p) (2.8)

14

2.3 – Multipoint Alternate Marking

Both values, if collected separately for nodes belonging to input and output set of
nodes, will sum up to L and consequently represents a possible split of lost packets
between different paths in the cluster.

2.3.4 One-way mean delay
A procedure similar to the one used for loss can be followed to extract one way
mean delay. Other strategies such as double marking or single marking that have
been exposed before should be abandoned, since packets can follow several paths.
By having only the information about the timestamp, packets cannot be coupled
and consequently delay metrics cannot be computed.
To extract the one-way mean delay, average timestamps ti should be collected at
every measure point, then these values should be further aggregated for the input
and the output, weighting them for the number of packets that flows into each
node. As a result, the mean delay for a given period p will be computed as:q

i∈OUT ti(p) · bi(p)q
i∈OUT bi(p) −

q
i∈IN ti(p) · bi(p)q

i∈IN bi(p) (2.9)

This result is meaningful only in the case that no loss occurs. In order to have an
accurate and robust metric, it is not possible to rely only on aggregate values, but
it is necessary to sample packets that have to be coupled between input nodes and
output nodes. To overcome limitation of double marking technique, dynamic packet
hashing has been introduced and will be analysed in the following subsection.

2.3.5 Dynamic hashing
As previously exposed and as will be proven later on in this work, loss is the only
metric that have been proposed in Alternate Marking definitions to be robust
enough to work in every condition. Delay values instead give useful results only in
case of a network that does not produce any loss, which is quite impossible in a
real network.
RFC8889 [20] also combines the strength of Alternate Marking for multipoint flow
analysis with packet sampling [38, 37], another powerful technique that has been
developed in the last decades to collect random data packets.
Packet hashing can be used to select packets to be used to compute network
performance measures, but [37] does not give any advice on how to distinguish
packets in blocks and give bounds to the number of collected packages. With
Alternate Marking and dynamic hashing, these problem has been addressed.

The target of dynamic hashing is to select at most NMAX packets for each mea-
sure point and every period. In order to do this, a common reference hash has

15

Alternate Marking Performance Monitoring

to be defined for all the nodes. In addition a number of bits n to be matched
has to be stored inside every measure point: this value is initialized to 0 at the
beginning of the period and possibly incremented later on. As soon as a packet is
captured by a node, its hash is computed and whether its first n bits are equal to
the corresponding bits of the reference hash, the packet is sampled and relevant
information about it are temporary stored.
Once that NMAX packets have been collected by a single measure point, the value of
n is incremented by 1 at the measure point and all the packets previously collected
are re-evaluated with this more restrictive filtering. By considering hash distri-
bution as uniform, most likely half of the packets will survive. By repeating this
procedure until the end of the period, a number of packets that with high probabil-
ity is above NMAX/2 and less than NMAX will be collected and can be further processed.

This technique will be applied to Alternate Marking as improvement of double
marking technique for one-way mean delay computation in the implementation of
the system.

16

Chapter 3

Network modelling for
performance monitoring

In order to analyse a network, a proper modelling for it is fundamental: it is not
sufficient to formalise the network as a graph made of nodes to represent network
devices and links to model the physical wire that put two nodes in communication.
This is not the most precise level of detail that can be obtain. The target of the
monitoring phase are interfaces of network devices. It is so necessary to provide
a deeper model to consider that situation. Additionally it is possible to build a
model, starting from the previous that allows to represent a logical structure that
stands behind monitoring points, thus not considering the interfaces that are not
monitored. This model is crucial, since it is the one that allows to build clusters
and the one considered by the monitoring system for the analysis.
In this chapter, all the necessary models of the network and algorithms to generate
them that have been previously formalized in [24] will be recalled.
Considering the requirement of using only traffic captured in input interfaces to
produce results, during this work, some algorithms and models have been adapted
to better match this situation.
In conclusion, an overview of the datasets that have been used in this thesis will
be given, together with all the needed transformations that have been applied to it.
Additionally, tests were carried out to evaluate the time performance of different
implementations of the same algorithm so that it can be possible to derive the
condition where to apply each implementation.

3.1 Extended network
At a first glance, the network can be simply modelled as an undirected graph,
where nodes are network devices (routers, switches or any other, depending on the

17

Network modelling for performance monitoring

protocol that is the target of the monitoring) and edges are the physical links that
put them together.
Network devices, however, are not the simplest part of the network that can be
monitored. When dealing with the IP stack, for example, there may be no need to
capture traffic flowing into routers from all directions and going towards all the
others. Here comes the need of having the possibility to select only some network
interfaces on which packets will be monitored and statistics will be computed. For
this reason, it is necessary to build a model that has a greater level of detail.
It is so possible to define a directed graph, that has been defined as extended network
in [24], whose nodes are network interfaces. Precisely, each network interface should
be split into two nodes, one that will represent its input part and one representing
the output. Each input interface is linked to all the output interfaces of the
corresponding router and each output interface is linked to the input interface of
the router at the other end of the physical link, as it has been reported in figure 3.1.

Figure 3.1: Example of extraction of extended network from a simple network
topology. Inspired by [24]

By following this definition, every possible sequence of interfaces that packets
encounter can be replicated correctly on this model.

3.1.1 Reduced extended network
Considering the requirement to use only input interfaces and the fact that graph
processing has high complexity, during this work it has been considered to update
the network extension, halving the number of nodes and consequently also edges.
This model has been defined as reduced extended network.
In this scenario, to generate a model with the same properties of the previous
one, but that contains only the input part of each interface, algorithm 1 has been
defined.
Following this approach, the example shown in figure 3.1 will be update as shown
in figure 3.2. As before, the logic sequences of interfaces that packets can follow
can be reproduced also on this model.

18

3.1 – Extended network

Figure 3.2: Example of extraction of reduced extended network

Algorithm 1 Algorithm proposed in this work to extract the reduced extended
network for a network topology G considering only input captures.
1: procedure Extract reduced(G)
2: ó Initializing the resulting graph as empty graph
3: reduced_graph ← DirectedGraph()
4: ó Iterating over all interfaces in the network graph G
5: for all interface ∈ G.interfaces do
6: ó Considering the router to which the interface belongs
7: router ← interface.router
8: ó Iterating over the set of interfaces that are connected to router under

analysis
9: for all interface2 ∈ router.linked_interfaces do

10: ó Adding a new link between interface and interface2 link to
resulting graph

11: reduced_graph.add_link (interface, interface2)
12: end for
13: end for
14: return reduced_graph
15: end procedure

3.1.2 Border interface selection
Another fundamental point in performance monitoring is to define the border of the
monitored area. This interfaces will be fundamental in the monitoring phase and a
measure point must always active on them. During this work formal definitions to
these elements have been given, that will previous work were not deepened:

• ingress interfaces will be the first one that a packet crosses entering the
monitoring area. They must be responsible of marking the incoming traffic

• egress interfaces will be the last monitored interface crossed by packets. They
possibly should be configured to unmark packets, so that traffic is not seen
altered from a point of view that is external to the monitored network

19

Network modelling for performance monitoring

During this work, a case of network made up of a backbone area, and a surrounding
access one has been considered. Access devices, such as DSLAM, will represent the
edges of the network.
When analysing also traffic on the output of the interface, it is just a matter of
selecting the interfaces of the access devices that are linked to the core monitored
area, thus enclosing the whole network target of the monitoring. In other words, in
case of no loss, all the traffic that flows out from ingress interfaces must be detected
flowing in at another egress interface as depicted in figure 3.3.

Figure 3.3: Example of capture on borders on an access device when it is
possible to capture also output traffic

In the case of captures only in input part of each interface, this solution cannot
be applied. Capturing both traffic that flows in and out the network in the access
devices (as depicted in figure 3.4) has not been considered as a viable solution:
access devices can have hundreds of ingress interfaces and configuring a probe
on each of them may not be trivial. This is because devices may have limited
performance that does not allow to support a huge amount of probe instances or
simply, they may also evolve so rapidly that reconfiguration will be needed too
often.

Figure 3.4: Example of capture on borders on an access device

In order to overcome these limitations, the capture of traffic that flows into the
network has been moved a step forward in the network. Considering as first

20

3.1 – Extended network

monitored interface the one belonging to the first core router a possible workaround
can be found. This structure however has a strong limitation: considering a
bidirectional flow of traffic, the areas of the network that will be monitored in
the two direction will be different. Observing figure 3.5, where an example of this
principle is shown, traffic that goes from host A towards B will be monitored in
its path between interfaces b and d. In the opposite direction, in contrast, the
path that will be monitored is from c and a. This issue has prevented this work
from dealing with round-trip measures: values obtained would be biased from the
architecture itself and would be meaningless.

Figure 3.5: Example of capture on borders on core network devices

As a result, a minimal reduced extended network that will be considered as target
of the analysis from now on is depicted in figure 3.6.

Figure 3.6: Example of capture on borders on core network devices

21

Network modelling for performance monitoring

3.2 Monitored network
Inside the monitoring area, potentially, not all the interfaces will be monitored.
This may due to different needs, such not overloading devices, incompatibility of
existing devices with the probe software or the need of not producing too much
data to be processed. From a logical point of view, it is necessary to introduce
another network model, that will include among its nodes only interfaces that are
measure points.
In [24] this model has been defined as monitored network and it is computed
starting from the extended network. In the monitored graph, each monitored
interface will have a directed link towards another monitored one whenever there
exists a path between them that does not cross any other measure point. From
this definition comes the algorithm 2 to extract this model from the extended one
and the resulting modelling can be seen in figure 3.7.

Algorithm 2 Algorithm to extract the monitored network from an extended graph
Ḡ and the list of monitored interfaces monitored_list [24]
1: procedure Extract monitored v1(Ḡ, monitored_list)
2: ó Initializing resulting graph as empty graph
3: monitored_graph ← Graph()
4: ó Iterating over all possible couples of monitored interfaces
5: for all interface1 ∈ monitored_list do
6: for all interface2 ∈ monitored_list do
7: ó Verifying that are not the same interface
8: if interface1 /= interface2 then
9: ó Searching whether exists a path among them

10: path ← Ḡ.path(interface1, interface2)
11: if path exists and path ∩ monitored_list = ∅ then
12: ó Building a new link whenever a non monitored link exists
13: monitored_graph.add_link(interface1, interface2)
14: end if
15: end if
16: end for
17: end for
18: return monitored_graph
19: end procedure

Algorithm 2 has a quadratic complexity in the number of monitored interfaces,
which has to be multiplied by the path search algorithm one. It may not be
convenient when number of monitored interfaces is too high. To overcome this,
algorithm 3 was theorized by one of Alternate Marking authors while developing a

22

3.3 – The dataset

Figure 3.7: Example of monitored graph extraction starting from the previous
example of reduced extended

work on a different field [17] but sharing the same principles, basing on the concept
of merging links that involve non monitored nodes. It has a complexity that may
be represented as O(n ·maxin ·maxout), where n is the number non monitored
interfaces, maxin is the maximum number of input links in every node in the graph
and maxout is the maximum number of output ones.
It has to be noticed that the extraction of the monitored network can be carried
out either using as starting point the extended graph or considering the reduced
version. The second approach will just decrease the complexity of the problem,
since in case of algorithm 2 the path search will be applied to a simpler graph,
while in case of algorithm 3 the number of non monitored interfaces will not include
the output ones.

3.3 The dataset
All the analysis that have been carried out during this work are based on network
topology that are freely available in Zoo dataset [36]. It includes several network
topologies represented as graphml files1 that have been collected from different
sources, representing real networks at various scales spread all over the world.

1https://en.wikipedia.org/wiki/GraphML

23

https://en.wikipedia.org/wiki/GraphML

Algorithm 3 Improved algorithm to extract the monitored network from an
extended graph Ḡ and the list of monitored interfaces monitored_list [17]
1: procedure Extract monitored v2(Ḡ, monitored_list)
2: list_1 ← [] ó Will contain edges that have at least a non monitored node
3: list_3 ← [] ó Will contain edges that have only monitored nodes
4: ó Iterating over edges of extended graph to assign them to the correct list
5: for all (start, end) ∈ Ḡ.edges do
6: if start ∈ monitored_list and end ∈ monitored_list then
7: list_3 ← list_3 + (start, end)
8: else list_1 ← list_1 + (start, end)
9: end if

10: end for
11: ó Computing nodes that are not monitored by difference between all nodes

and monitored ones
12: non_monitored ← Ḡ.nodes r monitored_list
13: for all node ∈ non_monitored do
14: ó Initializing list with nodes that are directly reachable from current node
15: start_list← []
16: ó Initializing list with nodes that can reach directly current node
17: end_list← []
18: for all (start, end) ∈ list_1 do
19: if start = node then
20: start_list ← start_list + end
21: else if end = node then
22: end_list ← end_list + start
23: end if
24: end for
25: list_2← [] ó Will contain merged edges
26: for all node1 ∈ end_list do
27: for all node2 ∈ start_list do
28: ó Creating new virtual link to be added to merged links list
29: list_2 ← list_2 + (node1, node2)
30: end for
31: end for
32: ó Dispatching merged links on correct list, depending on their properties
33: for all (start, end) ∈ list_2 do
34: if start ∈ monitored_list and end ∈ monitored_list then
35: ó Link contains only monitored node
36: list_3 ← list_3 + (start, end)
37: else list_1 ← list_1 + (start, end)
38: end if
39: end for
40: end for
41: ó Building resulting graph from list of edges
42: return Graph.from_edges(list_3)
43: end procedure

3.3 – The dataset

The dataset has been processed as exposed in following chapters to match the
requirements for this work.

3.3.1 Border routers generation
Firstly, available networks have been analysed, by looking at their geographic
organization and by comparing them with the description that have been given
by providers on their websites. From this analysis, it has been highlighted that
topologies represent just the core network, without the surrounding access part.
This lack does not allow to apply network monitoring as defined in the section 3.1.2,
so a technique to synthetically expand network topologies has been implemented
during this work.

First of all, an access device as been added to each core device. In addition,
given N the number of core devices, a set of additional M access devices has been
attached to a corresponding number of core devices. This set is randomly sampled,
with replacement from the set of core devices, according to a discrete probability
distribution with a probability mass function defined as:

P (k) =
1
lkqN

i=1
1
li

(3.1)

where li is the number of links to core devices of the i-th device. By following
this approach, devices that have many core links are most likely belonging to the

Image derived from http://www.topology-zoo.org/explore.html

Figure 3.8: Example of discrete probability distribution that have been used
applied to Abilene topology.

25

http://www.topology-zoo.org/explore.html

Network modelling for performance monitoring

central part of the network, thus having less access devices attached to them. Vice
versa, devices closer to the periphery of the network will have more access devices.
An example of this probability distribution that can be easily representable is
shown in figure 3.8.
Furthermore this set of M access devices, will be, with probability p, attached to a
neighbour of the core devices they have been linked to. This behaviour has been
introduced to emulate dual homing of access devices.
This generation algorithm has been designed to generate network as close as possible
to the TIM - Telecom Italia network [21], even though on a smaller scale, to allow
faster processing. In particular, during this work equal values of M and N has
been considered and p has been used with value 0.7.

3.3.2 Monitored network algorithms comparison
After having defined the complete structure of the network topologies that have
been produced, performance of the two previously exposed algorithm to extract
monitored graph has been analysed, varying the percentage of network interfaces
monitored. The choice of the algorithm to use will be crucial, since it will be run
several times during the optimization phase.
Tests have been performed on networks generated starting from different topologies.
Monitored interfaces are randomly sampled, incrementing monitored percentage of
5% each step (starting from a network monitored only in border interfaces), and
5 tests have been executed for each percentage level, since random sampling may
produce results with relative high variability.

Figure 3.9: Algorithm comparison on AbileneExtended topology (execution
times are expressed in s)

26

3.3 – The dataset

Figure 3.10: Algorithm comparison on GeantExtended topology (execution
times are expressed in s)

Figure 3.11: Algorithm comparison on GarrExtended topology (execution times
are expressed in s)

27

Network modelling for performance monitoring

Figures 3.9 to 3.11 show average execution times (with a timeout in the execution
of 20 s) for topologies that will be of interest in the following chapter. Trends are
always the same (in figure 3.9 the effect is less evident due to the very limited time
needed). algorithm 3 shows better performance only when the network is monitored
with high percentage of nodes, while the other one (algorithm 2) performs well at
lower percentages, but in this case the difference is more relevant.
For every value of monitoring percentage, also the standard deviation of the
measurements has been reported as error bar:

• algorithm 3 presents an high variability: this is due to the fact that non
monitored nodes may have variable number of in and out links, thus varying
the number of merging that is necessary

• algorithm 2 instead, has a very low variability. This has been attributed to
the fact that path searches inside the graph have almost the same complexity,
thus providing a lower standard deviation

In conclusion, it can be clearly seen that a well defined threshold can be found
for every topology that is considered: depending on the monitoring percentage, it
would be preferable to use one algorithm or the other.

28

Chapter 4

Clustering

Clustering is a key point for performance monitoring. The value of data that the
system will generate depends on how uniform clusters are.
Considering a network that has just two clusters, cluster 1, which is huge, and
cluster 2, which has just few nodes. Surely, in the same network conditions, the
loss that will be detected in cluster 1 will be considerably higher with respect to
the one detected on cluster 2. Clearly, it is not possible to define a single threshold
to signal a problem that has eventually occurred in the network. In other words,
a loss that may result normal in cluster 1 can highlight an anomaly in cluster 2.
Loss has been taken as an example, but same arguments can be discussed for all
the performance metrics.
For all these reasons, clustering problem has been carefully analysed during this
work. This chapter is completely devoted to this theme. Firstly, clustering algorithm
will be described, then a possible viable optimization will be presented and relative
results will be exposed.

4.1 Clustering algorithm
After having defined the monitored network by assigning measure points in the
network, it is necessary to divide it into as many clusters as possible, so that
detailed metrics can be computed for them.
The algorithm that splits the network in clusters have been developed in [20]. It
starts from analysing the edges of the monitored graph and it is divided into two
phases:

• group together all edges that have a common starting node

• merge groups that share at least one final node into a single cluster

29

Clustering

Figure 4.1: Example of monitored graph [19]

Considering the monitored network represented in figure 4.1, the groups that have
to be created as first step to split the graph into clusters are:

1. (R1, R2) (R1, R3) (R1,R10)

2. (R2, R4) (R2, R5)

3. (R3, R5) (R3, R9)

4. (R4, R6) (R4, R7)

5. (R5, R8)

Groups should be merged as follows:

• Group 1 has no ending nodes in common with other groups and is left as it is:
(R1, R2) (R1, R3) (R1,R10)

• Group 2 and 3 are merged because they have R5 in common: (R2, R4) (R2,
R5) (R3, R5) (R3, R9)

• Group 4 is not merged: (R4, R6) (R4, R7)

• Group 5 too is not modified: (R5, R8)

30

4.2 – Clustering optimization

4.2 Clustering optimization
Main requirements of optimization of network clustering is to produce balanced
clusters, such that the number of nodes and edges that each cluster contains is as
similar as possible. Possibly, it may also be desirable to use the smallest number
of measure points in the network, so that computational resources’ needs are
minimized.
While in all previous works, measure points set was randomly built by selecting N
nodes of extended graph, where N was selected by users themselves, in this work a
more precise approach has been researched.
The idea that has been deepened is the one of training a neural network that is
able to select the best nodes where to place the measure points via reinforcement
learning algorithm.

4.2.1 Problem desiderata

The user’s input of this approach are the maximum number of nodes and the
maximum diameter that a cluster should have. Nodes are considered as the total
number of nodes in the cluster, among the monitored ones and non monitored ones.
The diameter has been computed as the maximum number of links in the extended
graph that has to be traversed from the input of the cluster and its output.
First of all, the domain of these values have been analysed: the lowest value for
both can be obtained by computing those metrics for the current network where
all nodes are monitored, while the upper bound can be found by selecting only the
border interfaces as measure points.
Since no analytical relation exists among these quantities, in order to choose these
values coherently with each other, a difficulty coefficient has been introduced. Its
value is between 0 and 1 and represents the distance between the minimum value
and the one chosen as shown in figure 4.2.

Figure 4.2: Difficulty coefficient definition

As an example, by considering a difficulty coefficient d, the number of nodes that

31

Clustering

will be selected is:

numNodesmin + d · (numNodesmax − numNodesmin) (4.1)

where numNodesmin is the number of nodes that is obtained with the network
completely monitored and numNodesmax is the one obtained considering only
border nodes as monitoring point. The same equation can be applied to the
diameter value.

4.2.2 Clustering approach
Reinforcement learning is a machine learning framework that is used in contexts
where decisions have to be taken one at a time, with the aim of maximizing a reward
function. This is the technique that has been chosen to allow the optimization of
network clusterization.
In this section, the clustering problem will be formalized so that reinforcement
learning algorithms can be applied to maximise some quantities that will be exposed
later on. The approach that has been pursued has been defined as follows:

1. consider the network as fully monitored

2. select a node that will be removed from the set of measure points

3. compute the new clusterization of the network

4. evaluate maximum number of nodes and diameter that have been obtained

5. if computed values are still below the desired ones, repeat from point 2

6. otherwise, reinsert last node in the set of measure points and terminate

This approach has been preferred to the opposite one, that would suggest to
place one measure point at a time in the network only for computational reason.
Algorithm 3 can be used incrementally: the value of list_3 of previous iteration
can be stored and passed to clustering algorithm of following iteration. Thus, it is
possible, starting from values present in list_3 to merge only the links in which
the removed measure point is involved.

4.2.3 Clustering evaluation
It is necessary to define also a metric that will be the target of the optimization
problem. As said before, the aim of this analysis is to obtain clusters that share
the same characteristics. During this work, it has been formalized as:

uniformity =
A

σi[numNodesi]
Ei[numNodesi]

+ σi[diameteri]
Ei[diameteri]

B
(4.2)

32

4.3 – Clustering via reinforcement learning

where numNodesi and diameteri are respectively the number of nodes and the
diameter of cluster i. Standard deviation is by itself a good indicator of variability
in data, but is not normalized on the scale of data. Standard deviation values
have been consequently scaled by the average of the data, making these two values
comparable and avoiding that one of the two parts involved in the sum would be
more relevant than the other.

4.3 Clustering via reinforcement learning
In this section, all the theoretic foundations that are behind the reinforcement
learning algorithms that allow the optimization of the clustering problem and the
results that have been obtained will be exposed.

4.3.1 Reinforcement learning
Reinforcement learning allows to solve sequential decision-making problems. In
this context it is defined agent the component that has to learn how to behave in
the environment, which is a formalization of the problem itself.

Figure 4.3: Explanation of components involved in reinforcement learning
problems [27]

As shown in figure 4.3, the agent iteratively interacts with an environment. The
aim of the agent at each step t is to produce an action at that has to be executed
in the environment. This produces a state transition in the environment, that goes
from state st to state st+1. The environment also produces a reward rt for the
current action to evaluate its quality and an observation of the new state ωt+1

1.

1In case of environment that is fully observable, which is the simplest condition and the one
that has been considered, ωt+1 = st+1

33

Clustering

By receiving as input the values, the agent is now able to proceed a step forward,
by selecting a new action at+1 and so on.

Markov Decision Process The simplest problem’s conditions are the one
of Markov Decision Process (MDP), where environment evolves only basing on
previous action and state, without looking to the whole history of actions and
states. Thus the agent can just receive the current state to base its decision without
the need of receiving the whole history. As stated in [27] in order to completely
define a MDP, it is necessary to provide:

• a set S of all possible states that the environment can assume

• a set A of all possible actions that can be performed on the system

• a transition function T : S × A × S → [0,1] that given the current state st,
an action at and the possible future state st+1 gives the probability that the
transition st =⇒ st+1 will happen, having applied the action at

• a reward function R : S ×A×S → R that takes as input the same parameter
of the transition function and produces a continuos value in the finite range
of R, that depends on the problem, as reward of the current action

• a discount factor γ ∈ [0,1), to weight the give reward basing on the time that
has passed from the beginning. Total reward, finally will be given as

∞Ø
i=1

γtrt

the range [0,1) that γ can assume is the only possible one that will guarantee
that the reward given is finite.

MDP definitions for clustering problem It is now possible to expose how a
Markov Decision Problem has been fit to the clustering problem during this work:

• S corresponds to every possible configuration of monitoring points in the
network. Practically every node in the reduced extended graph will get value
1 to indicate an active monitoring point, otherwise will be 0.

• A is the set of nodes of the extended graph. The one among them that is
selected will be considered as measure point to be removed from the state. It
has to be noticed that at each step the action has to be selected only among
nodes that are currently measure point and do not belong to the set of border
interfaces

34

4.3 – Clustering via reinforcement learning

• T is a deterministic function and has no stochastic behaviour. Starting from
a state st and having selected a node at to be removed from measure points
set, there will be only a state ŝt+1 for which the transition function will be
equal to 1. All other future states will have value 0.

• R only gives non-zero rewards whenever the clustering process with a unifor-
mity coefficient u is terminated and value will be equal to

1
1 + u

(4.3)

this formulation will allow to give greater rewards whenever the uniformity is
lower and vice versa. In addition, reward will be limited to the range (0,1]

• discount factor γ is equal to 1. Despite it is in contrast with MDP formu-
lation, unitary value always provides a total reward that is bounded and
simply corresponds to the final reward of equation (4.3). During this work,
some experiments run with γ > 1 (e.g. 1.001) have been tried to force the
optimization process to remove as many measure points as possible. Even
these values of γ allow the reward to be non-infinite: number of steps of the
decision making process is at most the number of nodes that are not border
nodes. This however did not give satisfying results, uniformity was higher
than simply using γ = 1, and higher reward is obtained with non uniform
clusterization, but with smaller number of measure points used.

4.3.2 Deep Q-learning
Q-learning is an approach that can be followed to solve sequential decision-making
problems by exploiting a Markovian Decision Problem. It finds its foundation in
Bellman equation, that has been defined in [42]:

Q∗(s, a) = EsÍ∼ε

è
r + γ max

aÍ
Q∗(sÍ, aÍ)|s, a

é
(4.4)

where sÍ is the distribution of possible states that the transition function would
produce.
This equation estimates the potential total reward that can be obtained from
current state s by performing action a as the sum of reward given at current step,
that is added to the maximum potential reward that can be obtain by choosing
the optimal action that could be taken at following step, rescaled for the discount
factor. As a result, by knowing Q∗ function is it possible at every step to choose as
action the one with highest Q-value.
Equation (4.4) can be simplified in the case under analysis, since the transition

35

Clustering

function is not stochastic, thus the following state will be deterministically obtained
(s will always evolve to sÍ when action a has been applied):

Q∗(s, a) = r + γ max
aÍ

Q∗(sÍ, aÍ) (4.5)

The idea of Q-learning is to estimate this value function Q∗ iteratively. By min-
imising the error A

Qi+1(s, a)−
1
r + γ max

aÍ
Qi(sÍ, aÍ)

2B2

(4.6)

it has been demonstrated in [42] that Qi → Q∗, i→∞. The concept is to keep two
estimations of the value function Qi and Qi+1 and periodically update Qi = Qi+1.
First choice of Q can be randomly carried out.
Deep learning has been applied to Q-learning, thus allowing to approximate value
function with complex non linear functions. [35] is the most common example
where a neural network has been used to solve a problem through Q-learning. It
also introduces the concept of replay memory, where to store tuples (st, at, rt, st+1)
that will randomly sampled in batches to perform neural network optimization
through stochastic gradient descent.
Algorithm 4 represents in pseudo code the approach that has to be followed to
train an agent in a generic environment with deep Q-learning.

4.3.3 Graph processing through Neural Networks
Among all the available examples of graph processing exploiting deep reinforcement
learning that can be found in literature2, none of them perfectly matches the need
of clustering problem. It is necessary to introduce some concepts and formalizations
to allow to fully understand the problem and the resolution that has been proposed
during this work.

Graph formalization In order to correctly and completely represent a graph,
some elements are necessary:

• a set V that contains all the nodes v, that possibly have features hv ∈ RD

that convey information about them

• a set E ⊆ V × V that includes edges e = (vi, vj) to indicate that node vi

is linked to node vj (depending on graph nature this may be directed or
not). Also edges may have additional features he ∈ RC to describe the edge,
providing for example a weight

2https://github.com/SunQingYun1996/Graph-Reinforcement-Learning-Papers is a quite up-
dated overview of possible techniques that have been recently implemented

36

https://github.com/SunQingYun1996/Graph-Reinforcement-Learning-Papers

Algorithm 4 Algorithm to perform deep Q-learning optimization. Adapted from
[35]
1: D ← memory with capacity N
2: policyNetwork ← randomWeightFunction
3: targetNetwork ← policyNetwork
4: for episode = 1, M do
5: ó Initializing state to the initial value for the problem
6: st ← s0
7: while not isEpisodeCompleted do
8: ó Computing next action
9: if random() < Ô(episode) then
10: ó Taking random action with probability that depends on episode

number
11: at ← randomAction()
12: else
13: at ← argmax

a
policyNetwork(st, a)

14: end if
15: st+1, rt ← executeActionOnEnvironment(st, at)
16: ó Storing current action in memory
17: D.add(st, at, rt, st+1)
18: ó Getting batch of S samples from memory
19: samples← D.sample(S)
20: y ← []
21: ó Compute Q values with previous estimation
22: for j ∈ samples do
23: if sj is terminal then
24: ó Whenever the action is terminal, the reward is simply the one

given at current step
25: yj ← rj

26: else
27: yj ← rj + γ ·max

aÍ
targetNetwork(sj+1, aÍ)

28: end if
29: end for
30: ó Updating policy network to minimise error
31: gradientDescentOn(yi −max(policyNetwork(samples.sj, samples.aj)))
32: end while
33: if episode % U = 0 then
34: ó Updating value function every U episodes
35: targetNetwork ← policyNetwork
36: end if
37: end for

Clustering

Clustering framework A possible network architecture that may be built is
shown in figure 4.4: it will receive the network graph, which embeds as node feature
a single value that can be 0 or 1 to represent respectively the absence or presence
of a measure point inside it. Edges, instead does not convey additional information
apart from the link itself.

Figure 4.4: Possible architecture that can be used for processing optimization
task

The output of the neural network is an array that represent the estimate Q function
for the input graph and for every possible actions. As reported in section 4.2.2, the
action for the element i in output array consists on removing the measure point
from the i-th node. The output should be masked: with a mask that varies over
time, it includes the elements that are border routers (which is a fixed part of
the mask and by definition are measure points) and nodes that have no more a
measure point. Values that have not been masked have an estimation of Q value
that, according to algorithm 4, represent the reward that can be obtained at the
end of the problem by choosing current action at this step. The best solution can
be found by selecting at every step among valid elements, the one with highest Q
value.

Message passing architecture Graph processing with neural networks is quite
a recent topic. The approach that in the latest years has shown its performance
and prevails in several works related to this kind of problem is message passing
and was firstly applied in deep learning in 2015 in [33] and some years later in [29].
The work that claims to provide best performance with very deep networks and
that has been chosen as base layer to build the neural network for this optimization
is [22]. The strengths that this implementation provides are the resistance to
vanishing gradient effect and to over-fitting when building very deep architectures,
that potentially may be built.

38

4.3 – Clustering via reinforcement learning

Message passing is based on transferring information towards a node from its neigh-
bours, in order to provide a compact, complete and structured graph representation
in node features to convey some value or to be further processed by a traditional
neural network architecture.
Firstly, in the implementation by [22] each neighbour u of node v sends a message
mvu that depends on features of both nodes and of the linking edge:

mvu = ρ(hv,hv,heuv) (4.7)

The set of all the messages that have been received from node v has to be aggregated
as a single message mv:

mv = ζ({mvui
}i) (4.8)

A new set of features of the node will be generated basing on the aggregated
message and the original features:

hÍ
v = φ(mv,hv) (4.9)

Functions ρ, ζ and φ are learnable and non differentiable. This allows to build a
neural network layer that takes as input a graph structure, with nodes’ features
{hvi
}i and generate a new aggregate set of features of nodes {hÍ

vi
}i that can be

a compact graph representation or can be further processed. The power of this
structure is that by learning different sets of function, it is possible to fit different
kinds of tasks.

4.3.4 Optimization framework implementation
After having exposed all the parts that compose the proposed framework, it is
possible to provide an overview of the implementation of the optimization technique
proposed in this work. Several lines of code were already available from previous
works and have been collected in a repository3.
Provided the availability of functions already implemented, machine learning frame-
works and graph processing libraries, Python has been chosen as programming
language to implement this technique.
The neural network has been built with torch_geometric library4, which is fully
integrated with Pytorch framework5. torch_gemotric library contains the imple-
mentation of several layers that are able to process graphs, including the one by
[22].

3https://github.com/netgroup-polito/Multipoint-monitoring
4https://pytorch-geometric.readthedocs.io/en/latest/index.html
5https://pytorch.org/

39

https://github.com/netgroup-polito/Multipoint-monitoring
https://pytorch-geometric.readthedocs.io/en/latest/index.html
https://pytorch.org/

Clustering

The neural network model has been built with 6 graph convolutional layers previ-
ously exposed, interleaved with a tanh activation function to provide additional
non-linearity to the model. For the last layer, instead, a sigmoid activation function
has been used, so that the output of the network will be in range (0,1), that is the
correct range of reward as defined in equation (4.3).
This architecture has not to be intended as the best possible one. It has been
chosen since it performs quite well, but architectures that are more complex, deeper
or that include also fully connected layers may be further analysed.
Tests were performed taking a single network topology in consideration. A more
general approach has been considered, by using an environment in which the
network has to learn a group of topologies that were sampled one at a time: this
requires to define a reward that is not topology-specific and the uniformity coeffi-
cient should be in some way normalized. Some attempts have been done in this
direction, but results are not good. Additionally, providing a network trained by
reinforcement learning in this way, it is not a trivial solution: in literature, no work
that exploits a direct training on different environments together has been found.
Despite several works can be found in the field of multi-task reinforcement learning,
this has not been considered as the desired solution: the task to learn is always the
same, but applied on different environments.

4.4 Optimization results
Optimization process has been carried out with different network topologies. Uni-
formity of the obtained clusterization has been computed every time the target
network is updated with the policy weights (that is to say every U episodes accord-
ing to algorithm 4). The trend followed by this metric during the training phase
has been observed and has been compared to the value that can be obtained in
average by applying a random policy (choosing nodes with a random function).
Obtaining a value that is stably under this threshold is considered as good result
for this problem.
First trial of the technique has been carried out on a network topology derived
from Abilene one from [36], which is quite a small network for 1000 episodes (it
corresponds to value of M in algorithm 4). A difficulty value of 0.7 has been chosen
in order to maximise the number of measure points that should be removed from
the network. Obtained results have been reported in figure 4.5: the trend is quite
good and converges rapidly. The execution time required is about 1.5 h relying
only on a CPU6 and the optimal clusterization has been obtained twice (episodes
150 and 435). This shows the validity of the solution, despite the fact that during

6Server2 exposed in chapter 7 has been used

40

4.4 – Optimization results

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 200 400 600 800 1k

Evaluated uniformity
Uniformity trend
Random average uniformity

episodes

u
n
if
or

m
it
y

Figure 4.5: Results obtained on AbileneExtended network with difficulty
coefficient of 0.7

last hundreds of episodes the trend has started growing.
A second trial has been carried out on a topology derived from Geant2012, the
model of the network of an European project aiming to link research and instruction
networks across the continent7. This is the network that has been used during pre-
vious works and will be the reference one for all of this work due to the dimensions
and topological structure that is similar to the TIM Italian core network. The
difficulty has been chosen by trying different values (from 0.3 to 0.7): 0.5 seems
to be a good compromise between the number of measures points that are used
in the clusterization and the number of generated clusters (that are considered
acceptable in a range [10, 20]). The simulation took about 1 day, due to greater
complexity of the generated network. Results are reported in figure 4.6: the trend
is slightly more fluctuating and has a lower margin towards the threshold. Good
results however can be found: although at step 930 there is a better solution, this
is not been considered as the best one, since number of clusters was very small
(these value has not been taken into account in the optimization metric). The
solution that has been taken into account for future experiments is the one of steps
780, which provides 14 clusters with a uniformity of 1.66. Surely this has not the
best possible solution that can be obtained, but it can be a good starting point for
possible future works and improvements.

7https://www.geant.org/

41

https://www.geant.org/

Clustering

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

200 400 600 800 1k

u
n
if
or

m
it
y

episodes
0

Evaluated uniformity
Uniformity trend
Random average uniformity

Figure 4.6: Results obtained on GeantExtended network with difficulty
coefficient of 0.5. Considered solution is highlighted in green

4.4.1 Transfer learning application
Considering the execution time that may be huge, an additional trial has been
carried out to evaluate the possibility to apply previously acquired knowledge on
another topology to speed up following run of the algorithm.
Some works that apply transfer learning in reinforcement learning exist and a good
global review, although it has been written about ten years ago, has been given
by [34]. In several works, different effects on performance’ improving have been
observed and have been shown in figure 4.7:

• learning speed: performance becomes stable in a reduced number of epochs

• asymptotic improvement: performance that can be reached when the agent
converges are better with respect to a simple training

• jumpstart improvement: initial performance obtained without any training on
transferred environment is better, but the asymptotic result is the same

However, it is not possible to define a priori whether some of these effects will be
observed or even whether the outcome of this technique will be positive or negative.
In order to evaluate the effect of transfer learning the Garr network topology8

has been extended and used: it is the network that links together Italian research
centers and universities and has a geographical distribution that quite overlaps the

8https://www.garr.it/it/infrastrutture/rete-nazionale/infrastruttura-di-rete-nazionale

42

https://www.garr.it/it/infrastrutture/rete-nazionale/infrastruttura-di-rete-nazionale

4.4 – Optimization results

Figure 4.7: Possible improvements that transfer learning may bring in a
reinforcement learning context [34]

one of TIM [21].
Two separate runs have been carried out on this topology, which is more computa-
tionally expensive with respect to the previous case (simulations took about 2.5
days): one with an agent that has been been initialized with random weights and
another one using the weights in step 780 of run performed on Geant topology.
Uniformity results’ trend has been reported in figure 4.8: it seems that no positive
effects can be obtained with this approach. A slight jumpstart improvement can
be noted during the first 300 episodes: first episodes however depend on random
choices that have been taken (at the beginning decisions are kept with more stochas-
ticity to explore every possible solution) and this results in high initial performance
variability. In conclusion, this has to be considered as a trial towards transfer
learning application and future deeper studies in this direction may reveal a real
benefit.

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

200 400 600 800 1k0
episodes

u
n
if
or

m
it
y

Random initialization
Pretrained network initialization

Figure 4.8: Trend comparison between pretrained agent and randomly initialized
one

43

Clustering

4.4.2 Final considerations
In conclusion to this chapter, it is possible to state that the optimization technique
that has been proposed shows its validity. Since there is no ground truth to
compare, the only consideration that can be done is that results obtained through
the solution given are better than the random ones after an initial learning phase,
the duration of which hugely depends on the complexity of the network.
Some weak points, however, have been highlighted:

• the behaviour is not completely stable under the random threshold and even
from a certain point, the trend starts increasing, showing that the agent is no
longer learning the right optimization of the problem

• the uniformity measure that has been provided does not take into consideration
the number of generated clusters. Furthermore the oscillating behaviour of
the uniformity, requires a manual search of a solution that can be considered
the best one to apply

• no generalization is provided to work with every possible topology and it is
not possible to exploit knowledge acquired during the training on a network
topology to solve the same problem on another one

44

Chapter 5

Overall system architecture

In this chapter, an overview on how the system developed during this work should
be deployed in a real environment will be given. All the technicalities that stand
behind each component will be later on exposed in chapter 6.
The base structure of the system is the one provided by previous thesis work [19]
and formalized in an IETF draft [18], with the adjustment that have been provided
in [16]. Some weak points have been found and analysed, providing in this work
possible improvements.

5.1 Network probe
Probes are the key component for Alternate Marking that provides data for each
monitored network interface. Specifically, generated data will be sent to Network
Management System (NMS), that will process them to extract network performance
metrics. Those values that are generated may be divided into:

• aggregate that encloses statistics for each period. Among the values, a
counter for marked packets and the corresponding mean timestamp is provided
coherently with the metrics exposed in RFC8889 [20]

• sampled values that report relevant information about packets. Probabilis-
tically up to N entries will be sampled thanks to dynamic hashing for each
period at every interface. These data will allow to compute more precise values
for cluster metrics and also some of them will be stored to allow post-processing
to obtain measures that are relative to a single flow

• keep-alive messages have been introduced during this work: previous data
are generated only in case of traffic flowing through that interface. Whenever
no data are coming from an interface, it is not possible to distinguish whether

45

Overall system architecture

no traffic has been captured or the probe is not running properly any more on
that interface. The easiest solution is to introduce a message for every period
that signals that current data for a specific interface and period were correctly
generated

In order to perform correct network measurement, probes should be configured on
the basis of the needed clusterization, providing them with:

• reference hash on which to perform dynamic hashing filtering

• (probabilistic) maximum number of packets N to collect for each period

• period duration after which to switch label value

• values for marking labels, to select packets that have matching label and assign
them to correct block

• possibly, also a filter to select only a subset of packets to monitor. This value
should be meaningful only whenever is not possible to distinguish a marking
label within the traffic that is not marked

Those values must be equals in the entire network to provide coherent data. Thus
aggregates will refer to the same packets and values that are sampled will target
the same packets.
In addition probe may be configured by providing a list of interfaces that should
be monitored: as stated before, there is the need of capturing traffic only on some
of them.

5.2 Message queue
During previous thesis work [16] the usage of a publish-subscribe mechanism to
send data to the NMS has been introduced. This has became necessary to overcome
the temporary storage into routers’ filesystem used in [19], which represents a quite
unusual situation on this kind of devices. This mechanism have also introduced
data decoupling, thus allowing the probe to generate data independently from
when and how the data will be consumed.
Data that are generated by probes are saved into different queues, depending on
their content. In an ideal case, when no transmission delays occur, data of different
periods will be correctly enqueued. In a real network instead, where latency may
be relevant, transmission time cannot be considered negligible. Due to these delays
and also to generation times on different routers that may vary, data of consecutive
periods may be interleaved. In order to overcome this issue, messages have been
further dispatched to different queues.

46

5.3 – Cluster manager

For each type of data, N queues may be defined, assigning them an index from 0
to N − 1. Data belonging to a period P will be enqueued on the queue that have
index P % N as can be shown in figure 5.1.

Figure 5.1: Example of data assignment to queue in case of 1 and 2 queues

This organization of queues will allow the preprocessing component to avoid reading
multiple times the same data: whenever the processing for period P starts, it will
start reading from the end of this period, possibly without having to read data
that comes from other periods. Value of N should be considered on the basis of
period duration and on the delays to reach the message queue that are considered
acceptable in the network.

5.3 Cluster manager
A new component has been implemented during this work. It has been designed to
satisfy different requirements:

• manage currently active probes: by analysing keep-alive messages, it will
understand if a probe is faulty and remove it from the measure points set

• provide the current clusterization of the network under analysis

• management of measure points: they could be manually reconfigured while
the system is running. This component will take care of this kind of situations

• manage the topology: network can evolve in time and the system should
be able to deal with it. By providing to the cluster manager a change in
the topology, it should respond, updating the clusterization and possibly
also selecting the best placing of measure points to minimize the uniformity
coefficient

47

Overall system architecture

This part has been designed to be a separate component, to provide low cohesion
between system parts, facilitate each implementation (providing more freedom
in technological choice for each of them) and provide modularity in the whole
architecture.

5.4 Real time preprocessing
The principle on which this software is based is the BigData approach for Alternate
Marking that has been standardized in the IETF draft [18]. This should work
as NMS and has the aim of collecting results from all the probes that captured
traffic and, due to the huge amount of data that will be generated, process them
with BigData techniques, providing a scalability of the system. Processing of data
should provide useful information that highlights the status of the network and the
performance of flows of traffic, both minimizing the storage size and maximizing
their value as shown in figure 5.2.

Figure 5.2: Organization of preprocessing component [18]

This component has been designed during the work of [19] to be run periodically,
processing data that had been previously stored in the filesystem. Its aim was to
aggregate packet captures by following their paths in the network and no metrics
were actually computed.
During this work, this component has been improved so that:

• data are processed as soon as they arrive, without the need to store temporary
files: this requires that data processing is completed in single period or that
some pipelining mechanism is adopted. In this way, the system will always be
ready to new data of each period

• results that involve per cluster metrics are computed just once, since they

48

5.4 – Real time preprocessing

are relevant to detect the status of the network in near real-time, and this
structuring allows to run some kind of predictive maintenance algorithm
that uses those results, so that possibly failures can be detected immediately
and corrective actions can be taken as soon as possible, minimising network
malfunctioning

5.4.1 Data synchronization

As for every distributed system, it is necessary to provide some synchronization
among different components. In order to build an online component that aggregates
data from different probes, in this work a synchronization mechanism has been
implemented to correctly wait for the generation of all the data for every period.
The preprocessing system will implement the logic to detect whenever all data
have been correctly collected. Assuming that keep-alive messages are sent by each
probe after every other messages of the same period, it is possible to store which
interfaces have correctly processed data for that period, by looking at keep-alive
messages in the relative queues. Whenever all confirmations have been received for
a period, its data is stable and performance measures can be extracted.
The processing can be assigned to a specific thread, so that the component is ready
to process other data and does not block and keeps the pace even though the
processing requires more than a single period duration.
Expecting data from all interfaces that are considered active, however, may produce
unbounded waiting: probes or devices executing them can have unrecoverable
failures and data from a certain period may be missing. In order to deal with those
cases, it has been introduced a timeout for each period that will be renewed at each
new data belonging to that block. Whenever the timeout expires, the processing
will be started in any case: by knowing that data from a given node is missing, it
is possible to signal for data belonging to cluster involved in data loss a warning
flag, so that those data can be considered with a lower level of confidence.

5.4.2 Results organization

The design of results carried out during this work will be exposed in following
paragraphs, basing on their content and on data used to produce them. As already
highlighted, the main idea about the preprocessing phase is to produce detailed
data about the status of each cluster in the network that has received traffic and
also to filter out data, storing only those that can be useful in the postprocessing
phase.

49

Overall system architecture

Aggregated measures

First part of results that are generated and defined aggregated measures can be
extracted by simply looking at the aggregated data generated by network devices.
This will mainly represent the implementation of what have been theorized in
RFC8889 [20]. It has been organized in two different data types:

• AggregatedMeasures: table 5.1 shows how global metrics for each cluster
can be produced:

– date and period univocally identify the period to which the datum
belongs to

– clusterId is the identifier of the cluster that the datum refers to
– loss has been represented as percentage of lost packets (obtained using
equation (2.6)) with respect to the number of packets that entered the
cluster (numberPacketsIn) to provide results that may be easily inter-
preted without any further computation with respect to the absolute
value

– meanDelay will be computed by aggregating mean timestamp as exposed
in equation (2.9)

– warning identifies whether data can be wrong due to missing data from
a probe in the cluster

One value for each cluster that has encountered traffic will be produced at
every period

AggregatedMeasures
date period clusterId loss meanDelay numberPacketsIn warning

Table 5.1: Details of measures reports for each cluster

• AggregatedProbability: table 5.2 shows how loss probability can be exposed
for each non internal node in every cluster:

– routerId represents the interface identifier the metric refers to
– lossProbability will be computed as exposed in section 2.3.3 to indicate
the number of lost packets that have been lost upstream or downstream
that interface

– direction will represent the direction for which data are computed:
depending on whether the node is an ingress one or it is an egress one, it
will have value D (downstream) or U upstream

50

5.4 – Real time preprocessing

One or two values (depending on whether the interface is at the border on the
network) for each interface that has encountered traffic will be produced at
every period

AggregatedProbability
date period clusterId routerId lossProbabillity direction warning

Table 5.2: Details of measures reports for each non internal device

Sampled measures

Another part of the results that are generated, has been defined as sampled measures
and can be derived from information that are extracted from packets’ sampling.
These results have been inspired by [18, 19] and further extended to provide useful
information at different level of granularity across the network:

• link level: this is the most detailed metric that can be obtained. However,
links cannot be considered at physical level, but at a logical one. A monitored
link corresponds to a directed edge in the monitored graph and practically
may involve more physical links and also network devices traversing. Table 5.3
shows how those quantities can be organized:

– routerStart and routerEnd represent the interfaces that define the
monitored link

– meanDelay, jitterMean and jitterStd represent the performance met-
rics. Also the value of the standard deviation of jitter has been introduced,
since it can give a clearer idea on delay variation. These values can be
further extended. By having a series of packets’ data, it is possible to
compute several statistics basing on the specific requirements, without
the need to modify the architecture of the whole component

– packetCount represents the number of packets on which those statistics
have been computed. Due to the dynamic sampling mechanism, this does
not correspond to the number of packets that traversed the link. Surely,
the greater it is, the more those values can be considered as reliable

One value for each monitored link that is not definable also as path (following
the definition that will be given in the subsequent point) and has encountered
traffic that has been sampled, will be produced at every period

• path level: it is an intermediate detail level. A path has been defined as the
route followed by packets from an ingress node in a cluster to an egress one in

51

Overall system architecture

PerLinkMetrics/SampledClusterPath
date period cluster router

Start
router
End

mean
Delay

jitter
Mean

jitter
Std

packet
Count

Table 5.3: Details of metrics obtainable at monitored link or path level

the same cluster. The same structure defined in table 5.3 can be reused for
this level of detail. Additionally, some link metrics may result to be also valid
for per path ones: a link in case involves both ingress and egress nodes may
also be a path. Since data would be replicated unchanged in this case, it has
been decided, in order to save data storage, to consider this case only for path
metrics, not including it in link level results.
One value for each path encountering traffic will be generated at every period

• cluster level: this is the highest level of detail that has been considered
during this work. Despite it is possible to obtain metrics for all the network or
by group of clusters, those have been seen as not so relevant. Traffic can vary
rapidly and analysing it at level of the entire network can be misleading.

SampledClusterMetrics
date period cluster meanDelay jitterMean numberPackets

Table 5.4: Details of metrics obtainable at cluster level

Table 5.4 shows how this metrics can be organized. While meanDelay can be
obtained as average of all delays of packets that flow through the cluster, the
same cannot be done for jitterMean. It is not possible to give a global sorting
mechanism that looks coherent and then compute jitter between packets. For
this reason, jitter should be computed as weighted mean of per path jitter
values. Contrarily, it has been considered that is not possible to compute a
meaningful standard deviation for jitter values.
One value for each cluster with traffic will be produced at every period

Loss metrics have not been taken into account starting from sampled data, since
in case of per link and per path metrics this problem is not trivial. In order
to detect a packet that have not been detected at the end of the link or of the
path, it is necessary to know which are the interfaces that should have captured
it. Afterwards, the packet hash has to be compared with the reference one and
together with the matched bits of this target interface, detect whether the packets
would have been captured or not by the probe running on it. This mechanism is
only possible by knowing routing information. Due to its dynamic and distributed
nature, it has not been considered as a viable solution.

52

5.4 – Real time preprocessing

Cluster metrics, however, may involve packet loss information, by following an
approach similar to the one that will be exposed in section 5.5.1. This metrics may
result as quite useless: loss on packet sampling, as will be reported in chapter 8,
will be quite imprecise. Since packet loss computed on aggregated data produces
good and reliable results, this would be a preferable solution for per cluster metrics.

Packet captures

Information obtained from packet sampling can be collected to be later on processed
to satisfy custom queries on data traffic. Storing all captures that have been
generated by each probe may demand too much storage.
Measures related to network status are generated in near real-time. Thus, as a big
improvement with respect to previous work [19], it is not necessary to store all
captures.
Only a small subset of sampled data has to be stored by this component. To
perform analysis at flow level, only the packets captured on border interfaces are
relevant for further analysis that will be exposed in section 5.5.

OutPacketCapture
date period hash capture

Router
direction src

Ip
dst
Ip

src
Port

dst
Port

proto capture
Timestamp

useFor
Loss

Table 5.5: Structure of packet capture information to store

Table 5.5 shows how those data have been organized:

• hash is necessary to distinguish captures of different packets and to couple
the ones that belong to the same packet

• captureRouter indicates the interface that captured data

• direction indicates whether the capture has been done when packet was
flowing in (I) or out (O) the monitored network

• srcIp, dstIp, proto, srcPort and dstPort represent the 5-tuple that is
needed to identify the flow of traffic in a TCP/IP stack. These information
should be extracted by each packet that has been captured

• captureTimestamp indicates the time in which packet has been captured

• useForLoss is a boolean value that will be needed in section 5.5 to compute
loss value

A greater amount of data will be generated for these values with respect to the
results that have been previously exposed: for every border interface, probably at
most N packets will be stored.

53

Overall system architecture

5.5 Per flow post processing
This component has been designed to produce, when required, statistics relative to
specific flows of traffic. Differently from work done in [19], it has been considered
that metrics that are relevant at this level, are the end-to-end ones. A possible
application of that is to produce periodical reports for business customers to
summarize performance that has been measured for their traffic to proof the
compliance with Service Level Agreement. In order to produce this kind of data, it
is necessary to build a component that can be queried on demand to produce them.
A flow of traffic that will be analysed can be seen as a group of packets that share
common characteristic. In IP networks, that have been considered during this work,
a unique identifier for a flow is given by the 5-tuple that is commonly used: source
and destination address, protocol and source and destination port.
Different levels of detail can be given also for flows: by considering, for example, a
subnetwork as address, it is possible to include packets that comes from several
elementary flows. This will provide a flexibility in the use cases of this component:
for instance, queries can be generated both for a single user querying a web server
and also for a business site that has set a VPN tunnel towards another site of
the same company. Furthermore, this part of the system, when queried about a
flow, will produce statistics separately for each elementary flow that matches the
request filter: it will be always possible for client applications that use those data
to aggregate data depending on their needs.
Results that will be generated during this phase, by using packets’ information
collected during previous stage, can be divided between loss and time based, for
which it is necessary to have a packet capture at the ingress and the egress of the
network. Packet loss will necessary rely also on packets that have been captured
only at one end of the network. In the following sections the approach that has
been pursued during this work for each category of metrics will be exposed.

5.5.1 Loss computation
Lot of attention has to be taken when computing loss for each flow. Due to the
randomicity of sampling process and independence of number of bits in different
measure points, a packet that has not been detected in output interfaces can be
lost or can have crossed an interface when exiting the monitored network that was
running a filter too selective (that is to say an higher number of matched bits with
respect the interface crossed at the ingress of the network) that would have not
captured the current packet.
In order to limit this problem, it is possible to define an algorithm to detect packets
that will be surely lost. A packet with a given hash h1 that has been detected only
in input, can be surely considered as lost whenever there is the guarantee that the

54

5.5 – Per flow post processing

interface that should have been crossed at the egress of monitored network was
configured with a number of bits n such that h1 matches at least n bits.
As stated before, knowing which interface should have captured this packet is not
trivial at all: routing information should be queried, but this is not considered
feasible. As possible workaround, all the egress interfaces can be considered as
possible target. By following this approach, a number of bits of match equal to the
maximum value (that will be defined nmax) among all these interfaces should be
considered.
As a result, the number of potentially matching bits of packets hashes has to be
computed, by knowing the reference hash, and compared with nmax value. Whenever
this is greater than nmax, the information about packet loss will be reliable and
the value useForLoss exposed in table 5.5 will be set to true, otherwise will be
false.
In conclusion, considering only packets that have useForLoss value set to true will
result in an underestimation of the loss, while considering all packets will produce
a result where loss is overestimated. In this latter case, packets can be marked as
lost even though they have reached the destination correctly, since they have not
been sampled by any measure point while exiting the network. These two different
approaches will provide bounds to the estimation of loss value and their precisions
will be evaluated in chapter 8.

5.5.2 Time based measurements
Once that packets’ captures have been isolated for each flow, they have to be
coupled between input and ouput, then sorted by ingress timestamp. After this
processing, one way mean delay and jitter values can be computed as by their
definition.
As already stated, only one way metrics will be provided with this kind of architec-
ture: considering the different portions of the network that are monitored in the
two directions of the same flow, round trip delays would be biased by this problem
and for this reason have not been implemented.

55

56

Chapter 6

System implementation

During this chapter, components that have been previously described in chapter 5
will be analysed from a technological point of view. Software, framework and
implementation measures that have been deepened during this work will be exposed.

6.1 Network probe
Probe that was used during this work was developed by [23] and already integrated
by [16], with improvements to support message publication in queues and updating
the configuration.
During this thesis, some little changes have been done to support the keep alive
messages, to fully integrate packet captures with the architecture of cluster manager
and the synchronization mechanism of preprocessing part.
The development of the probe is based on eBPF, to provide access to network data
at a kernel level, and BCC tools to easily integrate kernel modules with high level
Python code.

6.1.1 eBPF and BCC
Extended Berkley Packet Filter (eBPF) [7] is an extension of BPF framework,
that was developed for packet capture analysis. The improved version provides
generalization for all kind of system tracing in Linux and the possibility to inject
code at runtime, providing customizable applications.
eBPF has been developed in the context of IOVisor open source project [9], that
provides also tools to help developers in implementation of this kind of tools.
Among them, BPF Compiler Collection (BCC) [6] provides a way to inject limited
C code that can be compiled and injected in kernel through a Python interface.
Limitations about the code are due to the fact that this code will run in kernel mode.

57

System implementation

Thus it must be safe, provide high-performance in order not to block indefinitely
the whole device and must not interfere with other programs: as an example, it
cannot have loops, while it must have a limited size and memory accesses that are
executed must be always valid.

6.1.2 Architecture
The organization of probe can be seen in figure 6.1 and it is mainly composed by:

• a REST API that will receive a configuration file to run the capture coherently
with other instances of the probe in the network. Specifically, during this
work, it has been configured as shown in listing 6.1

• PNPM Manager (Packet Network Performance Monitoring was a previous
definition for AMPM framework) is responsible to interface the REST API to
the other parts of the system, to collect data and process their storage, on the
base of the chosen communication protocol

• BPF Manager that is in charge of configuring the actual behaviour of the
probe starting from the configuration. It sets up the eBPF program that will
be injected in the kernel space and initialises maps in which to store results

Image derived from [23]

Figure 6.1: Probe code structure

58

6.1 – Network probe

{
// dynamic hashing program id
" prog_id ": 3,
// duration of a period
"mp": 30,
// total duration of a run
"mpc": 120,
// alternate marking values
" starter_mark ": 1,
" next_mark ": 2,
// filter on UDP traffic
"proto": "udp",
// reference hash (as decimal value)
" match_value ": 383146267,
// starting number of matching bits
" match_length ": 0,
// hash function to use
" hash_function ": "bob",
// probabilistic upper bound on packets to sample
"npkts": 100,
// the interfaces on which capture traffic
" netifs ": [...]

}

Listing 6.1: Configuration file used for current system implementation

• maps, which can be accessed both from user and kernel, are the part that allows
to store and access results about captures. Those are particular structures,
whose primitives are provided by eBPF giving a controlled access to kernel
space

• eBPF program is the code properly configured by BPF manager, that will
be compiled at runtime to be run on each packet capture. This will store its
results in maps, that will be later on read from the user space. The main
advantage of running this part of the probe directly in kernel mode is from
a point of view of performance. Continuous privilege changes from kernel
(where packets are received and initially processed) to user space and vice
versa will require hundreds of CPU clock cycles for each of them, greatly
reducing the throughput of packets that can be analysed. This is one of the
key point that lead to the development of BPF framework and its extension1.

1For more details visit https://ebpf.io/what-is-ebpf

59

https://ebpf.io/what-is-ebpf

System implementation

Another possibility to exploit this performance would have been to modify the
kernel code, which can be quite challenging, especially from a maintenance
perspective

• hook points are kernel event handlers to which code that is running is attached.
Whenever one of these events is triggered, the program is executed. Two
different hook points have been used during the development of the probe: one
for packets that flow in the network interface and one when packets flow out.
The latter case is the one that caused degraded performance during probe
development: no primitive has been provided to get the timestamp of packet
and it is not directly provided among the information as happens in input
case. As already explained before, the output hook is not used during this
work

• the Network Interface Card through its driver triggers BPF program that is
linked to hook points. From a logical point of view, probe distinguishes each
interface into two different parts: the input one, that will have _IN suffix and
output one, with _OUT

Marking bits

A brief analysis on bits that have been used to provide marking while dealing
with IPv4 traffic has to be carried out. Two possibility have been provided while
developing the probe [23] and are represented in figure 6.2:

• using two bits: a good candidate is the Type Of Service header field. Histori-
cally, this field has evolved over time: with RFC2474 [41] it was split into DSCP
field (first 6 bits) and 2 unused bit (later on defined ECN bits in RFC3168 [40])

Image derived from https://en.wikipedia.org/wiki/IPv4

Figure 6.2: Viable solutions for packet marking: one bit in green and two bits in
red

60

https://en.wikipedia.org/wiki/IPv4

6.2 – Message queue

to provide a coherent definition of Differentiated Service between different
versions of IP protocol. These unused bits have been marked with values 0x01
and 0x10 or left untouched as 0x00 when packet has not to be monitored

• using a single bit: by providing a filter to exclude some kind of traffic (that
corresponds to discarded probe’s configuration parameter) it is possible to
distinguish traffic that won’t be marked. Exploiting the last bit of flags field
in IP header, it is possible to mark alternately the traffic with 0 and 1. This
approach has not been considered as scalable as the previous one since a filter
has to be set up in every probe, so the first one has been preferred during this
work

6.2 Message queue
During previous work [16], the message queue has been added to the system. Among
the possible implementations of a publish subscribe software, such as MQTT or
ZeroMQ, the one that fits the requirement of the system is Apache Kafka [4].
Additionally, libraries for several programming languages are available and will be
exploited when integrating following components.

6.2.1 Apache Kafka
Apache Kafka is an open source software, firstly developed by Linkedin and then it
has become part of projects of Apache Software Foundation. It has been designed
as a message queue that aims to provide high throughput, to be scalable, persistent
and highly available. It is usually used, among several use cases, for messaging,
metrics sending, log aggregation and commit log. These design choices and possible
use cases are the ones that meet the scalability and robustness of AMPM system.
In order to provide these properties, Kafka is provided as cluster of servers, that
are defined brokers. As for all distributed system, a coordinator has to be present,
and Zookeeper plays this role in a cluster as central manager. It is in charge of
monitoring the status of each node and of all the structures that each of them
manages and it has to synchronize all of these elements. It is also responsible of
restoring data whenever a failure of a node occurs.
Messages have been defined as events in Kafka terminology. They are composed by
a key, a message (both these value should be represented as string), a timestamp
and optionally also headers to describe them. Events are generated by client
applications (producers) and used by other ones (consumers).
Queues are defined as topics, which are divided into several partitions. Inside
a single partition, messages are processed in their generation order. Events are
assigned to partitions basing on event’s key, so its definition is relevant for the

61

System implementation

order in which events will be processed.
A key point in Kafka features is partition replication along different brokers.
Whenever one of these fails, information is not lost and system can continue
working. Additionally, replicas can be used to span data geographically to make
them more easily available to data consumers.
When dealing with replicas, it is necessary to set some level of guaranties on
acknowledgment from brokers. Data can be considered sent without any ack
message from the servers (just relying on TCP acknowledgments), with just one
from a server (so that there is the certainty that event has been correctly processed
by the application itself) or with acks from all the servers that have to process the
event. These options represent an increasing level of confidence on persistence of
data, but also show decreasing performance.
Another feature provided by Apache Kafka is data retention. It is possible to
preserve events for a fixed amount of time instead of deleting them whenever they
have been processed by consumer application. In this way it is possible to provide
robustness in case of failure of client applications, even for a quite long time.

6.2.2 Configuration
Once that features provided by Kafka have been described, the configurations that
involve the message queue and used during the implementation, will be analysed.

PNPM manager

Probe has been set up to be a Kafka producer. Particularly, different topics have
been defined to distribute various data accordingly to what exposed in section 5.2:

• avg_metricsi (with i ∈ [0,1]) will contain aggregated data. The key that is
used is period_interfaceID and the value is the aggregate itself

• metricsi will contain sampled values. The same key-value definition of
previous point has been used

• probe-alive have been added during this work to support the management
of active probes. Differently from other topics, these data will be sent with
key period and value interfaceID, so that whenever multiple instances of
consumers applications will be set up, data coming from the same period will
be processed by the same instance. The same reasoning was not necessary
for other topics: as will be seen in following sections, accesses to them will
be subordinated by an access to probe-alive topic, so that only an instance
will be responsible to process it. Additionally, those kind of data can be read
from other applications in every order, so it is not necessary to use multiple
queues for this kind of data

62

6.2 – Message queue

Additionally, the producer has been set up to wait a single ack message from brokers:
it is a good compromise between performance and reliability. Messages that are
not acknowledged correctly will be retransmitted up to twice before signalling an
error about cluster not reachable.

Brokers

Some configurations, that can be seen in listing 6.2, have been customized on Kafka
cluster:

• num.partitions is set to 3 since data processing part will read topics, as will
be explained in devoted section, in a distributed manner, by using several
workers

• default.replication.factor equal to 3, that is the suggested value from
Kafka developers, so that up to 2 brokers may fail without loosing data. This
introduce the need of at least 3 brokers

• log.retention.hours is set so that data are persisted for 12 hours. These
can be customized on the basis of the available space on brokers.
By considering B brokers, given P the number of monitored interfaces and
data equally distributed across partitions, data occupation for each period on
each of them will be made up of several contributions, weighted by a factor 3

B
:

– at most P aggregated messages, since not all interface may encounter
traffic

– probably at most P ·N sampled data, where N is max number of packets
to sample in each interface

Log Basics
A comma separated list of directories under which to store log files
log.dirs= #to be set up on every node
The default number of log partitions per topic . More partitions allow greater
parallelism for consumption , but this will also result in more files across
the brokers .
num. partitions =3
default . replication . factor =3
Internal Topic Settings
offsets . topic . replication . factor =3
transaction . state .log. replication . factor =3
Log Retention Policy
The minimum age of a log file to be eligible for deletion due to age
log. retention . hours =12

Listing 6.2: Extract for the configuration file used to set up Kafka nodes.
Modified from [16]

63

System implementation

– P probe alive messages

By further investigating the maximum occupation of data per period, it is
possible to precisely compute the possible amount of time that can be set as
retention period according the available space on each broker

6.3 Cluster manager
In order to satisfy requirements that have been previously highlighted for this
component, the solution that has been implemented can be mainly divided into
two parts:

• a REST API that has been considered as a valid solution for the purpose of
giving access to information about the clusterization of the network and also
allows modifying its state

• a Kafka listener that interacts with keep-alive messages from probes and
manages the activity of each of them

Considering these requirements and the availability of some functions’ implementa-
tion as part of clustering optimization, Python has been chosen as base part for
this implementation. Additionally, some libraries have been targeted to provide a
fast and reliable implementation: Flask2 for the implementation of the web server
part and Flask Kafka3 for message handling.

6.3.1 REST endpoints
The REST interface that has been designed during this work is just a proof of
concepts of possible operations that this component can carry out and may be
further extended. Basically, it involves three main separate resources:

• clusters allows to retrieve all the information about clusterization. It provides
a single GET to browse its status. All modifications can be done by modifying
following resources

• topology represents the underlying network that the manager should handle.
For the sake of simplicity, it allows a PUT, to which to send the filename
of the topology graphml that should be used to load the current topology
of the system. Surely, it is not a definitive solution: file should have been

2Full documentation is available at https://flask.palletsprojects.com/en/2.0.x/
3Details at https://github.com/nimzymaina/flask_kafka

64

https://flask.palletsprojects.com/en/2.0.x/
https://github.com/nimzymaina/flask_kafka

6.4 – Real time preprocessing

previously loaded in the filesystem of the server that runs this component. In
a real environment it would be necessary to introduce endpoints to manage a
complete set of CRUD4 operations at level of nodes and edges of the graph

• measure_points represents the status of measure points in the network. It
provides methods to retrieve, add, delete or update measure points. Starting
from this information, the clusterization can be derived. A part that has
not been developed concern the configuration of the probes: for current
implementation, cluster manager assumes that probes have been configured by
hand. When the system will be deployed in a real environment, configuration of
the probes will represent a task that is in charge of this component. Knowing
addresses of probes, their status and credentials, it would be possible to
configure probes, interacting with routers (whenever they are already running
the web server) or remotely connecting to them (via protocols such as ssh,
telnet or also others)

At every change of clusterization, the cluster manager must notify, through a
specific topic, other components that are interested in the current topology of the
network. As for the implementation of this work, only the preprocessing system
will be interested in these updates.

6.3.2 Message handling
Cluster manager follows a timeout handling mechanism that is similar to the one
described in section 5.4.1. For every period, a timeout is set at each new message
received, so that when it expires and no other messages have arrived, a check is
performed to detect which interfaces have not sent the keep alive message: whenever
this occurs for N periods consecutively, the probe is considered as not running
anymore and the clusterization of the network is recomputed.

6.4 Real time preprocessing
This component has been heavily updated, also basing on the modification that has
been carried out in [16]. Apache Spark has been considered a choice that can be
maintained in current implementation. Some additional considerations instead have
been carried out on the persistence layer, to fully provide scalability and efficiency,
also by looking at the needs that the new implementation of the post-processing
part requires.

4Create, Read, Update and Delete

65

System implementation

6.4.1 Apache Spark
Apache Spark [5] is a well known framework currently part of Apache Software
Foundation’s projects, that is commonly used when dealing with huge amount
of data. It is based on MapReduce paradigm, that processes intermediate data
directly in memory, thus providing performance up to 100 times faster than basic
applications implemented in Hadoop environment, and providing several high level
APIs that allow functional programming which facilitates the implementation of
applications.

Image derived from
https://spark.apache.org/docs/latest/cluster-overview.html

Figure 6.3: Organization of a Spark Cluster

As shown in figure 6.3, Spark is organized in a series of nodes, that are called work-
ers, that interact with a manager that coordinates their work. This architecture
allows to exploit parallel processing of data that the application (that is called
Driver Program) needs to perform.
Additionally, it offers natively the integration with Apache Kafka, so that some
integration work will be directly done to optimise the pipeline that data has to
traverse to produce results.
Using Spark framework, it is possible to manage large collections of data that
are distributively stored in the memory of the workers in object defined as RDD
(Resilient Distributed Dataset) that are one of the main abstraction that the frame-
work provides. It is possible to write programs that exploit these functionalities in
several programming languages (Java, Scala and Python).

6.4.2 Hadoop Distributed File System and Hive database
Some studies about data persistence have been carried out to improve the system
that has been integrated in [16], which has left this component untouched, to allow
this thesis work to be run in parallel:

66

https://spark.apache.org/docs/latest/cluster-overview.html

6.4 – Real time preprocessing

• firstly, data coming from the message queue have no need to be persisted again
(after having been stored in Apache Kafka server) before the preprocessing
phase

• secondly, results that have been generated by the application itself, have to
be persisted. During work by [19] the choice that has been pursued is to use
Hadoop Distributed File System (HDFS), which provides good reliability of
persistence, scalability and capability to process great amount of data. Some
weak points of this choice will be highlighted later on, but as shown, it will be
a good starting point to evolve the system

HDFS [8] has been developed as part of Hadoop environment to allow persistence of
data in a distributed manner. It has been designed to provide horizontal scalability.
Several servers (that in Hadoop terminology are defined datanodes) can be merged
to form a cluster: at high level, this can be seen as a unique persistence layer, that
can be evolved over time by providing additional hardware. As for all distributed
systems, some coordination elements should be inserted, to provide the management
and coherency of the system. In Hadoop environment, namenode is the server
devoted to this task, which manages blocks’ replication and logical filesystem
organization, thus allowing to hide the complexity that stands behind real space
organization.
Files that have to be stored are split in chunks of data called blocks with fixed
dimension. Each of these will be replicated in R replicas (R depends on the
configuration of the system) and stored into R datanodes as it is represented in
figure 6.4.
HDFS usage presents some drawbacks that have been analysed during this work.
Each block (which is by default 128 MB) can be assigned only to a single file:
whenever a file is smaller or simply it does not fit exactly N blocks, some space
will be left unused. Especially when the system has to deal with small files, a
huge overhead is introduced in the storage system. Looking at results by [19] file
generated are greatly below the block size. Whereas those behaviour may be due
to the limited amount of data that is generated by the simulation, results that
will represent cluster metrics will not exceed at most thousands of entry per each
periods: this will surely result in a small file.
Additionally, in order to perform query on data to extract later on per flow metrics,
a full search in data will be needed. This will surely degrade performance.
The solution that turns out to solve these problems is to rely on a Relational
Database Management System. Among the one that provides data distribution
and replication, the one that best fits problem requirement is Apache Hive [3]. A
great integration with other Apache products is given and it can also be built on
top of the HDFS.
This choice allows to maintain all the benefits of HDFS that have been previously

67

System implementation

Figure 6.4: Example of HDFS file organization (R = 2)

exposed, leveraging on a product that tries to overcome weak points: the Hive
server will allow to manage data organization, that will no more be divided in files,
but it is managed by the database management system. Additionally, although
some functionalities are not fully supported yet, standard SQL structures can be
defined:

• data will be organised in tables with the structure that has been exposed in
section 5.4.2

• indexes may be built to improve performance of data retrieving without the
need to perform a full data scan

Furthermore, it is possible to implement a solution to clean periodically data, which
can reach very huge amount of data: leveraging on triggers, built-in SQL procedure
it is possible to easily delete data that can be considered too old.

6.4.3 Architecture and implementation choices
The choice of the programming language to use has been Java, due to great
availability of libraries and also to be easily maintained in possible future works.
The main part of the application has been implemented as simple Java program
that listen on probe-alive topic to detect whether data of a given period has

68

6.4 – Real time preprocessing

been completely generated accordingly to algorithm that has been described in
section 5.4.1. It also listen on clusters-details to be notified about clusterization
of the network.
For this part, the choice not to use Spark framework is given by the fact that using
batch processing in a stateful manner is not trivial (whenever new data arrives,
an RDD should be updated and this operation is quite slow). Also the amount
of data that has to be analysed has influenced the choice: considering a decade
of periods that has to be completed yet (it is a very pessimistic assumption) and
some thousands of active interface, this will results in some MBs of data, which is
quite a reasonable value to be analysed in a single node, without adding useless
synchronization overhead.
Whenever a period is ready to be processed, the analysis is assigned to a thread
from a thread pool: this allows the main code to be executed without blocking and
also to process several periods in parallel keeping the pace of new generated data.
In order to keep all the necessary variables inside a single thread, ThreadLocal
class has been exploited5. This allows easily to store value that can be accessed
with a thread scope. Each thread will have different values for its configuration
variables: those are stored in an object of class ThreadContext, that contains the
period number and current clusterization of the system. The overall architecture
of this part of the component is shown in figure 6.5.

Figure 6.5: Overall architecture of thread organization in preprocessing part

The processing of a period is done through Spark framework in Analysis class.

5An interesting article that explains their behaviour is https://www.baeldung.com/java-
threadlocal

69

https://www.baeldung.com/java-threadlocal
https://www.baeldung.com/java-threadlocal

System implementation

In order to read data from the topics (for class TopicReader), a tricky solution
has been implemented, due to limited offset management in Spark libraries: the
ending timestamp of a period is computed and data are read from that instant on.
It is possible that some data of following periods is read, but filtering them, using
multiple queues and having periods of 30 s, limit this effect.
Some expedients have to be found also for final result storing in Storage class.
The API to interact with Hive database is quite recent and not sufficiently mature:
when saving an RDD into an Hive table, it is necessary to convert it into a Dataset,
which has a behaviour similar to RDDs, but has been designed to store data in a
tabular format. In order to later on write the data in the table, the function that
allows this, considers the columns’ order and not the variable name. This will not
allow to write a generic and robust function. A workaround for this problem is
to create a temporary table (which is visible only by current thread) and later on
insert all its values in the main one (this operations relies on column name).

6.5 Per flow post processing
As already described in chapter 5, this component is designed to support queries
that provide performance of flows of traffic. The choice that seems more adequate
for this kind of task is to provide a REST API, so that this component will be
always up and running, ready to process new query requests.
Basing on the huge number of data that will be generated by preprocessing phase
and technological choices previously done, it has been necessary to deploy a software
that relies on Apache Hive through Apache Spark.
In order to deploy a web server, the choice that provides a fast and reliable
implementation of the system has been Spring Boot6. It is a very common Java
framework that allows to build robust applications, without the need to write low
level and repetitive code to parse HTTP requests.

6.5.1 Queries’ and results’ format
The parameters that the postprocessing query will receive are:

• temporal range (start and end) for which data have to be analysed: it should
be specified as date_period to provide a variable granularity (from a single
period to several days)

• topological information as source and destination IP subnets. Traffic that
matches the filters that have been specified in one of the two directions will

6https://spring.io/projects/spring-boot

70

https://spring.io/projects/spring-boot

6.5 – Per flow post processing

be carried out. This allows to provide different levels of detail that satisfy the
various requirements exposed in section 5.5

Data that match those filters will be analysed separately for each period by grouping
them into separate flows (basing on the IP 5-tuple identifier). Only flows that
result to be relevant, with an overall number of captured packets greater than a
given threshold, are considered for further processing. A coupling phase is then
necessary, to analyse together group of packets that belong to the same flow, but
to different directions. Afterwards, statistics are computed for these elementary
flows and returned as result of the query. No aggregation of flows is performed, so
that it is possible to manipulate the result as needed to extract custom reports
without modifying this part.
Consequently, a possible result that may be returned by the postprocessing compo-
nent will look like listing 6.3.

[{
" period ": "2021 -11 -20 _15",
"flows":[{

// indicating the elementary flow
" flowId ": " 10.0.10.5 _10 .1.56.2 ",
" numPacketsUp " : 55,
" numPacketsDown " : 51,
// bounds for upstream flow
" lossLowerUp " : 0.052,
" lossUpperUp " : 0.250,
// bounds for downstream flow
" lossLowerDown " : 0.013,
" lossUpperDown " : 0.185,
// time - based measures for up and down - stream
" jitterMeanUp ":-318478.049,
" jitterMeanDown ":201400.000,
" jitterStdUp ":35214205.089,
" jitterStdDown ":41430559.985,
" delayUp ":100956119.048,
" delayDown ":110403926.829,
// packets used to compute loss lower bounds
" numPacketsLossUp " : 28,
" numPacketsLossDown " : 27

}]
}]

Listing 6.3: Possible result returned by postprocessing phase

71

System implementation

After having described all the components it is possible to give a complete overview
of the system as depicted in figure 6.6

Figure 6.6: Overall architecture of the system

72

Chapter 7

Test environment

Similarly to previous works, there was not the possibility to deploy the whole
system on a real architecture: this would have required several routers to execute
the probe on them and also a huge number of server to deploy clusters that where
needed (Kafka, HDFS, Spark and the cluster manager). Even though the gap
between a development and standardization environment and a real deployment
one has been closed during all of these works, the system is not mature enough to
justify such an investment that would bring significant revenues in a short time.
For these reasons it has been necessary to create an emulated environment on
which perform tests to extract results that will be exposed in the following chapter.
This part of the thesis will be devoted to describe this environment and provide all
the adjustments that were needed.

7.1 Network emulation
As previously stated, it is necessary to introduce a virtual environment that mirrors
the network topology and allows to perform traffic simulation and apply AMPM
techniques. During previous work [19], a simulation based on Mininet framework
has been proposed. This, however has some limitations and adopts some tricks to
allow to perform packet captures as desired. During this work and the one by [16],
the usage of a more recent library based on previous one has been introduced.

7.1.1 Mininet
Mininet [11] is a framework that has been developed to allow fast and realistic
network simulations on a single machine. It provides a custom command line
interface with sample topologies or it allows to built custom networks through a
dedicated Python API. On top of this simulation, network exchanges and tests can

73

Test environment

be carried out as for a real network.
Python API allows to create network devices on which run custom application (both
on user or kernel space) to emulate different kind of network hardware. Additionally
it is possible to run the OpenFlow [14] protocol on them to built Software Defined
Networks.
Also links are emulated in the API, to allow to customize them, setting up pa-
rameters such as delay, bandwidth and loss that would have been measured on a
corresponding physical link in a real network.

Artifacts and limitations of previous implementation

In previous work [19], the probe used [28] does not allow to capture output traffic
on network interfaces. Although this does not represent a real limitation as for the
current requirements, in this implementation a trick was built in order to emulate
an output capture. Each physical link that has to be inserted between two routers
has to be mapped as depicted in figure 7.1: a router (in the figure R_1_2) has been
introduced in order to capture on its input interfaces the same traffic that flows
out the output ones and switches have to be configured in order to forward packets
as shown.

Figure 7.1: Mapping of physical link, with traffic flowing trough [19]

This artifact is not anymore necessary in this work: traffic that flows out interfaces
has not to be considered. Furthermore, the new version of the probe [28] provides,
although with degraded performance, also output traffic capture.
The principal limitations of the implementation provided with Mininet concern
scalability of the solution:

• addressing plan as it was proposed implies that the number of devices in the
network does not exceed 256

• in order to provide reachability between devices across the network routing
mechanism has been set up: an instance of RIP protocol [15] has been run on
each device (except for the ones that were built for capturing output traffic).

74

7.1 – Network emulation

Distance vector routing protocols have some limitation, among them number
of hops and number of nodes that can manage (in case of the used RIP
implementation a maximum of 15 hops has to be used and no more than 40
routers should be put in the network)

The simulation that has been carried out during this work requires a number of
routers that is around 3 times the one by [19], so a solution was found to overcome
this problem.

7.1.2 IPMininet
IPMininet [12] is a framework that has recently been proposed as extension of
Mininet API that among its features provides:

• simpler device configuration, providing several built-in types, as Host and
Router classes that implements custom common behaviours in real networks

• automatic addresses assignment

• Router class provides natively routing mechanism: among them OSPF [13] is
available

Current work integration

Using IPMininet allows to introduce automatic address assignment, loosing some
control on mapping between hosts and addresses. This has not been considered as
a main issue: hosts are directly reachable by using their name. Additionally, the
native routing functionalities allows to build robust network with full reachability
without having the need of setting up instances of routing protocols.
Links in the network topology have been directly mapped as virtual links (similarly
to what has been done in [16]) on which custom values of loss, delay and jitter
have been configured. Those values will be used to compare with the measures
that will be obtained by the system.
The topology that have been used for the simulation is Geant2012 from the Zoo
dataset [36], which has been extended using the approach described in section 3.3.1,
exploiting the optimal clusterization that has been found in section 4.4.

7.1.3 Naming conventions
In order to assign meaningful names to all routers and interfaces during all the
processing of this work, some naming conventions have been taken.
Routers that were originally in the topologies have been named Ri, where i is
the identifier that was already present in the graphml file. Border routers that

75

Test environment

have been added as exposed in section 3.3.1, have been named as Bi, with i as
incremental integer identifier.
Interfaces, have been named, similarly to what done in previous work [19], by
concatenating the name of router that they belong to and the router that is directly
reachable through that interface. As an example R1_B2 is the interface of router
R1 that is linked to router B2.

7.2 Traffic generation
Traffic marking for a real development environment that satisfies requirement of
AMPM has not been developed yet. [19] has already dealt with this problem:
alternate marking has been carried out through iperf tool [10].

7.2.1 Iperf network measurement tool
iperf is a common network bandwidth measurement tool. It has a client-server
architecture: flows of traffic are generated from the client towards the server.
Flows can be customized in several ways, such as protocol (TCP, UDP), number of
packets per seconds, duration of the test. Among other tools that generate flows of
traffic, iperf also allows to customize the value of Type Of Service (TOS) byte
value in the IP header, which contains marking bits during this work.

7.2.2 Flows emulation
In order to emulate correctly several flows of marked traffic in the network, it is
necessary to take some adjustments. Every client iperf applications should send
marked traffic, taking care to swap the marking label at every period.
A script that handle client applications has been implemented by [19] to emulate
this situation. However, it has to be run by hand on each desired virtual node.
Although period duration has been set to 30 s and delays are admitted at period
change, this may result in imprecise measurements due to time that is needed to
run each flow. To provide a more structured and precise approach, the network
simulation file has been set up to start all the necessary flows sequentially. Surely
in this way, flows start time are closer than running each of them separately by
hand.
In section 6.5.1 the need of bidirectional traffic has been highlighted. Script that
was originally developed does not consider this situation: traffic is only generated
by client instance towards the server one. The first approach that has been
adopted is the usage of -d flag while starting the client application: this allows to
perform the performance test in both direction, thus making the flow approximately
bidirectional (this is not a real client-server interaction, since traffic in the two

76

7.3 – Test hardware setup

direction is independently generated). However traffic that goes from the server
to the client instance, has the value of TOS field that has been set in the server
instance (that is by default 0). This solution would require to set up a new server
instance with corresponding value of TOS: this may require lot of synchronization
and report sent by iperf that can be useful for result comparison may be lost.
The other pursued approach was to built two different unidirectional flows between
hosts: each of them act both as client and server for different communications.
Although traffic in the two direction is not correlated as previous case, it is quite
simple and provide marked traffic in a bidirectional way. For these reasons, it
is the solution that was adopted for result generation that will be exposed in
the next chapter. This expedient however has a drawback: flows are emulated
in a bidirectional way, but UDP ports are not coherent. For this reason in the
postprocessing analysis, flows has been considered only on the basis of their IP
addresses and not on the 5-tuple in the simulations.
Additionally, there is the need of simulating traffic between hosts. Border routers
have been considered as flows’ endpoints: although from a logical point of view
traffic should be generated from host attached to them, adding new hosts would
not bring any benefit in terms of results obtained. Contrary, it would just provide
a greater load on the machine that hosts the simulation.
Flows will be chosen among all the possible combinations of nodes in the network
in a variable number, having the possibility to emulate different levels of load.

7.3 Test hardware setup
During this work, some servers were made available from TIM to build an emulation
environment, as exposed in previous sections. Detailing, 3 servers which hardware
specifics are shown in table 7.1 were shared with the development of [16]. Those
have been organized as shown in figure 7.2:

• Server1, defined Atreides, contains the part related to the IPMininet simu-
lation. All its softwares run inside a virtual machine due to isolation needs:
thesis by [16] was being developed at the same time and network simulation
running in parallel or specific configurations require separate environment

Server # CPUs CPU model RAM (GB)
Atreides 56 Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz 192
Gesserit 48 Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz 384
SrvQuic 32 Intel(R) Xeon(R) CPU E5-2450 0 @ 2.10GHz 64

Table 7.1: Hardware specifics for test servers

77

Test environment

• Server2, defined Gesserit, contains all the high level components of this work:
HDFS, Hive and Spark has been emulated through Docker containers that
have been derived by [1] and [2]

• Server3, defined SrvQuic, runs a Kafka cluster that has been hosted as set
of containers, differently from work done by [16], in order to facilitate the
deployment. Although on the same physical machine, 3 brokers have been
instantiated in order to provide data replication, which does not give any
additive guarantee, but allows to emulate a system that will be closer to a
real deployment

Figure 7.2: Architecture deployed in lab environment to perform tests

78

Chapter 8

Results

In this chapter, practical results that have been obtained during this work will be
reported. It will involve the components that exploits the BigData frameworks,
which represent the main part of this thesis.

8.1 Preprocessing
The analysis of the result of this component will follow two different flows: a first
simple one will evaluate the time performance and the second one will be related to
the analysis of the precision of the data that are generated during the preprocessing
step, whenever it is possible to extract expected values to perform a comparison.

8.1.1 Timing results
Time performance has been measured for the preprocessing component. This
has been necessary to correctly dimension the number of threads that have to be
allocated in the thread pool, so that data will be always processed in time and no
resource are left unused. In order to perform this kind of measures, the execution
time of each thread’s code has been measured and reported. Different loads in the
network have been emulated in order to evaluate the response of the execution
time and the results have been reported in figure 8.1. The simulations have been
carried out by generating different conditions of traffic (varying number of flows)
for 4 consecutive periods and after each execution the system has been restarted.
Specifically, 1 flow and 5 flows produce each of them 40 packets per second, 10
flows is limited to 20 packets per second and 20 flows has only a bitrate of 10
packets. This is due to limitation in amount of data that the probe can process (it
has to be considered that all routers’ traffic is processed by a single computational
unit inside the virtual machine that hosts the network simulation).

79

Results

1 2 3 4
10

12

14

16

18

20

22

24

26
1 flow

5 flows

10 flows

20 flows

Execution time

Period

T
im

e
(s

ec
)

Average time: 14.456 secAverage time: 14.413 sec

Average time: 14.623 sec
Average time: 15.103 sec

Figure 8.1: Execution time for preprocessing component under different load
components.

As can be seen, each first period analysis requires much more time than the other
ones: this is due to the fact that the system needs to connect to the database the
first time, while the connection is cached for the other ones. On average instead,
the time needed for the computation is greatly smaller than the period value (30 s).
Timings do not change significantly when traffic in the network is increased, thus
a pipelined mechanism seems to be unnecessary. However, it will may be useful
whenever the system will be updated and more complicated computation will be
carried out or whenever a smaller period duration will be chosen. The number of
thread that will compose the thread pool is 2, so that the system is able to overcome
some slowing that may occur in some part of the system: all the preprocessing
units run on the same machine, so that transmission time between nodes (database
and workers) are near to zero. This will not be the same in a real environment:
transmission time has to be taken into account and possibly these tests should be
carried out when deploying the system.

8.1.2 Loss related measures
First part of the result analysis will concern loss metrics. It is not trivial to compute
an expected value that should be measured by the system. Traffic in each cluster
may follow different paths and computing the loss that may be encountered in each
of them will require lots of computation. For this reason, a simpler approach has
been followed for this analysis and the following ones: it is possible to give bounds
to this value. Inside a cluster, the minimum and maximum metrics will be the ones
expected respectively on the shortest and on the longest path. For this reason, for
every cluster of interest, the minimum and maximum length of paths inside it have

80

8.1 – Preprocessing

been computed and stored.
As a result, on a path of p links, the loss that will be measured whenever all the
links suffer from a loss l will be equal to:

1− (1− l)p (8.1)

The computation does not include losses that may occur in routers’ queues them-
selves which has not been set up in simulation but may be present in small
percentages, so this value is a little bit underestimated.
Figure 8.2 reports results obtained in the first 6 clusters for number of traffic. The
simulation that has been carried out considers 4 consecutive periods (generically
numbered from 1 to 4, as will be done for all the following simulations) and setting
loss at every link equal to l = 1 %. Flows are generated with a rate of 40 packets
per second for each of them. It can be seen how measures result quite accurate
with respect to expected values.

Cluster2 Cluster5 Cluster6 Cluster7 Cluster10 Cluster13
0

1

2

3

4

5 Period1

Period2

Period3

Period4

Loss per cluster

Lo
ss

 r
at

e
(%

)

min

max

min

max

min

max

min

max

min

max

min

max

Figure 8.2: Measured loss in clusters with more traffic (l = 1 %)

Probability of loss

The precision of probability of loss depends only on the value that has been
calculated in previous point, since it is simply a computation that has involved those
values and packet counters, which are already used at previous point. Providing a
comparison value will be quite complex, not giving any particular benefit. Thus,
to validate results for this metric, a simple verification has been carried out.
Probabilistic counters have been aggregated for each cluster to verify that both
upstream and downstream values sum up to the number of packets lost in the cluster.
Absolute value of the difference between these two values has been computed for
the two approaches and have been reported in table 8.1.

81

Results

Max absolute value Mean value
Upstream 1 0.412

Downstream 1 0.500

Table 8.1: Lost packets per cluster reconstruction precision (l = 1 %)

Values show that some differences exist, but considering that hundreds of packets
flow into clusters and that results are obtained by casting values from float numbers
to integer, some representation error can be encountered, thus providing a quite
good precision of values.

8.1.3 Delay measures
Time based measures are reported at different levels of detail inside the network
during the preprocessing phase: separate analysis will be carried out for each of
them, providing different results’ visualizations.

Cluster level

Similarly to loss evaluation, it is not easy to obtain the mean delay value that
a clusters suffered from and the same approach as for loss has been followed.
Consequently minimum and maximum delay in a cluster will be extracted, and
those correspond to the delay of shortest and longest path. On a given path of p
links with a delay d the resulting measured one will be equal to p · d. Also this
value will be quite understimated, since it does not consider transmission time
inside the routers, but with the order of magnitude of milliseconds that will be
used in the simulations, it may be considered negligible.
A simulation with a delay d = 100 ms on every link has been carried out. Despite
this value is not realistic for a physical link, it is the one that made the assumption
of negligibility of transmission delays valid. It has been noted that using a lower
value gives results with higher variability of delays. This effect has been attributed
to the performance of the probe. It has to be considered that the whole simulation
has been carried out using a single instance of the probe, which is not a realistic
condition. Tests carried out during its development [23] show good performance
of the probe. Considering a situation where a great number of interfaces should
be monitored is not a real situation, so this effect should be only limited to the
test environment that has been set up. However, before a real deployment, it is
appropriate to perform a complete performance analysis on dedicated hardware,
which was not available during these works. Additionally, it has been noted that
this effect depends also from the packet rate of flows that it is used, so the rate for
time related measures analysis has been lowered to 20 packets per second in every

82

8.1 – Preprocessing

flow.
The same measure will be obtained both via aggregated and sampled data: the
former measure, however, results to be biased by losses (mean timestamps will be
computed on different sets of packets), providing values that are also negative or
with incoherent orders of magnitude. The latter strategy to compute delay will not
suffer from this effect, although the number of packets on which the metrics will
be computed will obviously result lower than in case of no loss.
Additionally, it has been noticed that in case of loss in the network, some packets
may suffer of greatly higher delays. This can probably be caused by routing
information that is not consistent during transient periods that can last more in
case of some routing packets are lost and causes non optimal path to be followed.
For these reasons, the simulations to estimate time related measures will be carried
out with no loss on links, so that all packets will with high degree of confidence
follow the same and optimal path and a greater number of packets that can be
exploited for measures will be sampled.

Cluster0 Cluster2 Cluster6 Cluster7 Cluster9 Cluster12
0

100

200

300

400

500 Period1

Period2

Period3

Period4

Delay per cluster - Aggregates

D
el

ay
 (

m
s)

min

max

min

max

min

max

min

max

min

max

min

max

Figure 8.3: Delay per cluster measured through aggregated data (d = 100 ms
and l = 0 %)

Figures 8.3 and 8.4 report results that have been obtained with both techniques
on clusters that encountered more traffic considering the one used to compute
the metrics (figure 8.3 considers all marked packets, while figure 8.4 only number
of sampled ones, thus represented clusters do not perfectly correspond). These
are quite promising: aggregate ones may be considered as more convenient to
apply, since less data have to be collected, however, it is a valid solution only in a
simulated environment with no loss. The ones obtained via sampled data require
more computational resources, but are robust enough to be deployed on a real
network.

83

Results

Cluster0 Cluster2 Cluster6 Cluster7 Cluster9 Cluster10
0

100

200

300

400

500 Period1

Period2

Period3

Period4

Delay per cluster - Sampled measures

D
el

ay
 (

m
s)

min

max

min

max

min

max

min

max

min

max

min

max

Figure 8.4: Delay per cluster measured through sampled data (d = 100 ms and
l = 0 %)

Path and link level

A different approach can be followed when dealing with path and link delay
measures. Although these values represent two different zooming levels, they can
be estimated in the same way as a single value and no more as a range. For a path
or link that involves p links with delay d, the overall average delay will be, as for
previous point, µd = p · d. Thus, it is possible to compute the relative error in the
metric computation as

e% = 100 · µ̂d − µd

µd

(8.2)

where µ̂d is the delay measures estimated during preprocessing phase.

Period 1 Period 2 Period 3 Period 4 All periods
−1

0

1

2

3

4

5

6

7

Delay per path relative error distribution

R
el

at
iv

e
er

ro
r

(%
)

Figure 8.5: Relative error in per path delay computation (d = 100 ms)

84

8.1 – Preprocessing

Period 1 Period 2 Period 3 Period 4 All periods

−1

0

1

2

3

4

5

6

Delay per link relative error distribution
R
el

at
iv

e
er

ro
r

(%
)

Figure 8.6: Relative error in per link delay computation (d = 100 ms)

Figures 8.5 and 8.6 show the relative error distribution computed period by period
in the simulation, reporting the distribution through boxplots, where extreme
whiskers represent minimum and maximum values that have been encountered
in the distribution. Results are quite encouraging: median values (and also the
average ones) are globally around 2 %, and error never exceed 7 %.

8.1.4 Jitter metrics
Simulations have been carried out setting a constant jitter value for every link set
to j = 10 ms. This value, however, follows a different definition: this represents
the standard deviation that will be used when generating the delay for a single
packet. Delay distribution consequently will be a normal distribution with mean
d and standard deviation j1. Jitter on a single link, in the definition of [39] that
has been followed during this implementation, will be the difference among two
independent normal distributions with parameters defined above, thus having 0
mean and standard deviation equal to

√
2j.

Cluster level

Cluster’s mean jitter will have expected values that should be close to 0, since the
resulting jitter will be the sum of normal distributions with 0 average. Figure 8.7
confirms this hypothesis in clusters that encountered the great part of traffic,
providing values that are almost zero, even though some small fluctuations (with

1According to https://www.man7.org/linux/man-pages/man8/tc-netem.8.htm this is the
default distribution that is applied whenever it is not specified and this is done in Mininet call
(https://github.com/mininet/mininet/blob/master/mininet/link.py at line 300 and following)

85

https://www.man7.org/linux/man-pages/man8/tc-netem.8.html
Uhttps://github.com/mininet/mininet/blob/master/mininet/link.pyRL

Results

Period 1 Period 2 Period 3 Period 4 All periods

−0.2

−0.1

0

0.1

Jitter mean per cluster

Ji
tt

er
 (

m
s)

Figure 8.7: Jitter mean values per cluster (d = 100 ms, j = 10 ms)

respect to the order of magnitude of the standard deviation value) exist and they
are due to the randomicity of packet sampling and synthetic jitter generation. It
has been noticed that those fluctuations usually occur when a smaller number of
packets is involved.

Path and link level

The same consideration made for cluster mean jitter can be carried out at path
and link level.
Figures 8.8 and 8.9 show the behaviour of path jitter mean measurements: with
respect to figure 8.7, path values are a little bit greater. This may be attributed

Period 1 Period 2 Period 3 Period 4 All periods

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Jitter mean per path

Ji
tt

er
 (

m
s)

Figure 8.8: Jitter mean per path (d = 100 ms, j = 10 ms)

86

8.1 – Preprocessing

Period 1 Period 2 Period 3 Period 4 All periods
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Jitter mean per link
Ji

tt
er

 (
m

s)

Figure 8.9: Jitter mean per link (d = 100 ms, j = 10 ms)

to the fact that over a single path (which is usually longer than simple links) a
smaller number of packets is observed, thus producing results that may result more
variable.
Different reasoning should be carried out for the standard deviation values. For
every path, the resulting standard deviation will be the sum of the ones on each
link. Given that, on a single link, jitter will have a distribution with zero mean
and standard deviation

√
2j and a path of length p, the overall standard deviation

value will be
√

2j · p.
In this way it is possible to collect and evaluate relative errors that can be obtained
period by period and results can be seen in figures 8.10 and 8.11. It can be seen

Period 1 Period 2 Period 3 Period 4 All periods

−50

0

50

100

150

200

Jitter std per path relative error distribution

R
el

at
iv

e
er

ro
r

(%
)

Figure 8.10: Jitter standard deviation relative error per path (d = 100 ms,
j = 10 ms)

87

Results

Period 1 Period 2 Period 3 Period 4 All periods

−50

0

50

100

150

Jitter std per link relative error distribution

R
el

at
iv

e
er

ro
r

(%
)

Figure 8.11: Jitter standard deviation relative error per link (d = 100 ms,
j = 10 ms)

that the errors reach relatively high peaks, but the overall distribution has the
central quartiles that are bounded in range (−50%, 50%): it has been observed
that those imprecisions are even more evident when the simulation is carried out
with smaller delays and jitter values (using d = 10 ms and j = 1 ms peaks reaches
2000 %). As said before, this effect has been attributed to probe loads, causing
packets to suffer from additional jitter. It has been noticed that considering greater
order of magnitude in the simulation’s timings, the effect decreases a lot, so there
should be a systematic error that is introduced by the probe itself. Simulation with
higher delay and jitter values, will even produce better results, but this may not
be relevant at all since they use link configuration values that are too unrealistic.
The effect of the system on a real environment should be measured to definitely
evaluate the power of jitter standard deviation that has been proposed in this work.

8.2 Post processing
For post processing performance measurement, the metrics obtained for most
relevant flows have been considered to report results. Simulations have been
carried out following the same approaches and network simulation’s configuration
of previous section.

8.2.1 Loss related measures
Losses have been reported in terms of lower and upper bounds and compared to
the expected one (obtained via equation (8.1)) in figure 8.12.
Results report the correct order of magnitude, although the precision is lower with

88

8.2 – Post processing

b6_b26 b26_b6 b20_b70 b70_b20 b14_b80 b80_b14
0

2

4

6

8

10

12

14

16
Period1

Period2

Period3

Period4

Loss per flow
Lo

ss
 r

at
e

(%
)

Expected Expected
Expected Expected

Expected Expected

Figure 8.12: Loss comparison for most important flows (l = 1 %)

respect to the measures that have been obtained at cluster level. It can be seen
that even though the range of values is acceptable, it does not always include the
expected one. Packet sampling, as already analysed, causes this kind of effect that
cannot be easily reduced.

8.2.2 Delay measures
Delay measures that have been obtained in the simulation have been reported in
figure 8.13: a good overall precision can be found with no particular unexpected
behaviour.

b68_b80 b80_b68 b49_b78 b78_b49 b1_b53 b53_b1
0

100

200

300

400

500
Period1

Period2

Period3

Period4

Delay per flow

D
el

ay
 (

m
s)

Expected Expected

Expected Expected

Expected Expected

Figure 8.13: Delay comparison for most important flows (d = 100 ms, j = 10 ms)

89

Results

8.2.3 Jitter metrics

Jitter result has been reported in terms of mean value (figure 8.14) and standard
deviation (figure 8.15) for most important flows: the former is fully as expected
providing values that are close to 0, while the latter produces values that are smaller
than the expected one. This shows the same imprecision that has obtained at link
and path level.

b68_b80 b80_b68 b49_b78 b78_b49 b1_b53 b53_b1

−0.4

−0.2

0

0.2

0.4

0.6
Period1

Period2

Period3

Period4

Mean jitter per flow

Ji
tt

er
 (

m
s)

Figure 8.14: Jitter mean comparison for most important flows (d = 100 ms,
j = 10 ms)

b68_b80 b80_b68 b49_b78 b78_b49 b1_b53 b53_b1
0

10

20

30

40

50

60

70 Period1

Period2

Period3

Period4

Jitter std per flow

Ji
tt

er
 (

m
s)

Expected Expected

Expected Expected

Expected Expected

Figure 8.15: Jitter standard deviation comparison for most important flows
(d = 100 ms, j = 10 ms)

90

8.3 – Overall results considerations

8.3 Overall results considerations
By looking collectively at results that have been generated during this chapter,
it is possible to to demonstrate the validity of the Alternate Marking techniques,
together with the BigData approach and the improvements that have been carried
out on this thesis.
However some values that do not provide a good precision have been found. This
probably are strictly related to the simulation environment that has been used and
should be further investigated by providing more robust environment on which to
carry out this kind of tests. In details:

• online measurement of the standard deviation of jitter values provides an
error that with high degree of confidence is related to a systematic error that
has been introduced by the probe itself. This probably introduces a jitter
that is on the same order of magnitude of the one introduced in the network
simulation

• delay values are not so precise, but the effect is very limited (relative error is
around 2 %). This also may be an effect of the probe, which can delay a little
bit packets when is too overload

• loss values in post processing, even though 2 different estimations were pro-
posed, present a variable imprecision. This has been attributed mainly to the
fact that sampling techniques introduce a level of uncertainty that cannot be
removed. It has to be noticed that however, number of packets that has been
sampled for each period on each interface is quite limited: values greater than
100 cannot be used, since the load of the probe does not allow to process a
greater number. Considering that each flow of traffic generates at least 600
packets on each period, the sampling would not be so representative. When
dealing with a real environment, a greater number of packets can be sampled,
thus allowing to better evaluate the precision of the proposed techniques.

• in conclusion, the standard deviation value for jitter in post processing is
also not so precise. The considerations that have been carried out for this
problem are the same that have been exposed for the same value in the online
measurement

91

92

Chapter 9

Conclusions

The activities that have been carried out during this work were challenging for
several reasons: understanding all the technicalities and difficulties that stand
behind previous thesis, facing new technologies, with all the problem that this
implies and integrating different software products may sometimes require lot of
effort.
Despite all these difficulties, the work done has produced quite good results in every
part of the system. However, criticalities has been found in results, some of them
intrinsic in the AMPM techniques and others related to the simulation environment.
Surely the latter can be deepen in the future to evaluate the framework in a real
environment: efforts have shown that the methodology is quite promising and
requirements that has been posed in the design of the Alternate Marking can be
deployed in a real system.
This experience has been very positive and inspirational: I had the possibility to
apply my knowledge in a real world problem and face out with challenges that has
to be defined step by step during this problem. Despite the whole activity has been
carried out in remote, I had the possibility to continuously discuss problems that
arose with the supervisors and with another thesis student ([16]), trying to find
out possible resolutions.

9.1 Possible future works
Surely this work cannot be considered as the final chapter of the group of thesis
and works that have been carried out during the years. The main aim ot the thesis
is to close the gap between the development environment and the deployment
one. This has been partially done, especially in the components that has to deal
with BigData. However, this opened a series of possibilities that can be further
investigated in possible future thesis:

93

Conclusions

• probe has been already improved during the various work. However, it has
been designed to run for a finite period of time: in a real environment this can
work theoretically forever. The possibility of marking traffic inside a probe
should be given, since tests have been carried out only with traffic simulators
that have been configured ad hoc. To perform a more realistic simulation, real
network traffic should be marked and used to perform this kind of simulation.
Additionally, using JSON format to send data to the broker is a little bit
verbose, it would be possible to investigate some binary format to serialize
data. This will also imply modifying other components, such as preprocessing
and cluster manager, but the implementation that has been given has tried
to provide a modularity to support these kind of improvements over time. In
order to deploy the system in a real network, it is also necessary to provide a
correct synchronization between several probe instances. A possible solution
would be to start probes only at a time that is multiple of the period duration
(this will concern with all time synchronization issues)

• clustering optimization has been explored as possible solution. The imple-
mentation given can be surely improved and even optimized in terms of time
needed to extract a viable solution. Additionally, it would be a more scalable
approach if the agent implemented as neural network would be able to work
using different network topologies. As highlighted in chapter 4, this is a
complex and open topic in neural network field, so lots of studies will be
necessary to provide such a solution

• cluster manager has been designed to be further extended. By updating
properly the probes, it is possible to integrate an automation of measure point
activation and deactivation and to keep an history of all the clusterization that
has occurred in the network. Furthermore, also the clustering optimization may
be integrated in this component. In a possible work, this component may work
continuously to optimize the clusterization and to be able to automatically
react to a probe failure, trying firstly to recover and eventually later on, to
replace the measure point that cannot be activated anymore with other ones
that provide a similar clusterization

• surely the preprocessing part is the one that has required the great part of
this work. It is quite mature, but some problems have not been addressed.
The component has been designed in such a way that it is possible to easily
replicate it in multiple instances, but no tests have been performed in this
direction. Additionally, no mechanism to recover from failures during the
processing of data from a period has been set up. Moreover, data that are
generated can be exploited in several ways: a machine learning algorithm
that is able to predict eventual network failure and a dashboard to represent

94

9.1 – Possible future works

the status of the network may be developed. Furthermore, as far as the
system is implemented, data are persisted forever. It is possible to study and
develop automation to periodically removed old data, keeping a constant disk
occupation

• data generated by the postprocessing component should be relevant for ad-
ditional client applications. The main idea that motivates this design is to
produce custom reports for customers, where to show aggregated network
performance metrics related to their usage. This is just one of the possible
applications that can be developed

Surely TIM will deepen these and other topics in future works in collaboration
with Politecnico di Torino to build a system that is robust and scalable to be
deployed in an internet network at large scale, such as the infrastructure that
provides connectivity to tenth millions of users all over Italian country.

95

96

Appendix A

Practical simulation
instructions

A.1 Reinforcement learning training
Clustering optimization has been run on Server2. A first try to run it exploiting
a GPU has been carried out through Google Colab servers1. Resources that are
made available are time limited and do not allow to perform a complete run of the
algorithm. Even though a recovery mechanism has been setup, GPUs were not
available and so the usage of servers provided by TIM has been preferred. This
however can require up to the double of time in training.
The algorithm has been implemented in a Python notebook2 that provides a way
to train the network with parameters that can be easily customized. Among them
the one that has been considered mostly during this work have been:

• BATCH_SIZE which provides the number of samples to use to perform stochastic
gradient descent to train the network at every step. 32 seems to be a good
trade-off between fast but imprecise training (small value) and slow, but
precise one (higher value)

• TARGET_UPDATE that indicates the number of episodes after which updating
target network with weights of the policy one. A constant value that out-
performs well in all the situation cannot be found. Empirically, it has be
seen that for episodes that require more steps (with complicated networks,

1It is a common platform to run machine learning algorithm, exploiting dedicated GPUs for
free online (https://colab.research.google.com/)

2clustering/clustering_with_reinforcement_single_net.ipynb

97

https://colab.research.google.com/

Practical simulation instructions

such as GeantExtended or higher difficulty greater than 0.7) 15 provides good
performance, while in case of episodes that are made up of a smaller number
of steps 30 is more accurate

• episodes decay (decay) provides the amount of randomicity that has to be used
during the training phase: the greater it is, the huger number of randomicity
will be used. 1000 is the value that has been used in all the runs and provides
good results for every situation

• learning rate (lr), widely used in all deep learning algorithms, indicates how
much the network has to learn at every gradient descent step. 10−4 has been
considered as good value for all the runs that has been carried out

Graphs about uniformity and loss that have been detected during the training
phase can be queried while the software is running thanks to Tensorboard3, which is
a powerful tool that helps to visualize easily performance while developing machine
learning algorithm.
A second part of the notebook provides a way to evaluate performance of every
target network that is saved in a dedicated file, providing also the list of all the
interfaces that the algorithm has selected as useful. Those values have to be
inserted in the probe configuration file (probe/Run/config_filter.json) and in
cluster_manager_service.py file4, so that at bootstrap, the optimal clusteriza-
tion is already provided.

A.2 Probe run
A probe instance must be activated on each machine running the simulation. In
case of IPMininet simulation, a single instance is sufficient, since all the interface
of routers in the simulation will be seen as virtual interface of the host machine.
In order to correclty instantiate a probe the command sudo python run.py
(pay attention that probe code should run with Python at version 2, which is
the default one in the virtual machine that has been setup) should be run in
probe/Software directory. The Kafka brokers’ addresses should be specified inside
probe/Software/app/kafkabrokerIP file.
Configuration file for packet capture programs (config_filter.json) that has to
be used should be customized inside probe/Run. This directory contains also all
the necessary scripts to correctly configure the probe. These should not be directly

3https://www.tensorflow.org/tensorboard/
4It is in cluster_manager/python-flask-server-generated/swagger_server/services

directory

98

https://www.tensorflow.org/tensorboard/

A.3 – Network simulation

run, since this procedure has been automatized inside the network simulation that
will be explained in next section.

A.3 Network simulation
The emulation of traffic in the network has been completely automatized. File
mininet/netSwitch.py contains all the necessary code and can be executed
with sudo python3 netSwitch.py ../topologies/GeantExtended.graphml in
mininet directory (whatever network that has border synthetically generated can
be used).
Lines of code that are shown in listing A.1 allows to define link parameters that
can be customized on demand to simulate different network conditions.

for edge in G.edges ():
iterating over topology edges and extracting involved nodes
edge0_id = edge [0]
edge1_id = edge [1]
creating link in the simultated network
(loss should be indicated with percentage value as integer)
link = self. addLink (self. nodes_mine [edge0_id],\

self. nodes_mine [edge1_id], intfName1 = edge0_id +"_"+edge1_id ,\
intfName2 = edge1_id +"_"+edge0_id , bw =100 , delay="100 ms" ,\
jitter ="10ms", loss =1)

Listing A.1: Simulation configuration of links (mininet/netSwitch.py)

Flows generation can be customized in terms of number of them or adopted policy
to extract them. The snippet of code that is shown in listing A.2 should be modified
in order to do that.

extracting 5 flows by all possible combination of border routers
flows = random . sample (list(combinations (mytopo .borders ,2)), 5)
selecting all nodes involved in the simulation
test_nodes_distinct = list(set(chain (* flows)))
...
starting an iperf server on each node
for node in test_nodes_distinct :

command = f"iperf -s -u -B { extract_ip (net , node)} &"
net[node]. cmd(command)

Listing A.2: Extraction of simulation flows (mininet/netSwitch.py)

Simulation file may require some seconds to be correctly loaded and configured: a
manual synchronization has to be given by typing y or yes to start the effective
traffic generation. As shown in listing A.3, this will run the iperf_test script

99

Practical simulation instructions

(that has been implemented in [19], to which has been added the source address to
use) on each node that has been chosen toward the other end of the flow.

command = input("Run the test?").lower ().strip ()
if command == "yes" or command == "y":

configuring probe progam automatically
subprocess .Popen (["./ start_capture .sh"], cwd="../ probe/Run").

wait ()
starting the traffic for each flow
for flow in flows:

for i in range (2):
generating the right command with actual parameters
(script will be run in detached mode
and will save results into a devoted file)
test_cmd = f"../ probe/Test/ iperf_test .sh 40 {

extract_ip (net ,flow[i])} 4 30 1 2 { extract_ip (net ,flow [1-i])}
> result /{ flow [1-i]}_{flow[i]} &"

net[flow[i -1]]. cmd(test_cmd)

Listing A.3: Simulation start (mininet/netSwitch.py)

A.4 Message broker
Kafka cluster can be started by running docker-compose up in a privileged termi-
nal inside kafka directory5.
It is possible to customize the properties of each broker as exposed in listing 6.2 by
setting environment property as indicated in the images’ documentation6 by using
properties name in upper case and replacing . with _

A.5 Cluster manager
In order to document well this component, that presents several REST endpoints,
Swagger editor7 has been used. This software uses an OpenAPI 3.08 specification
file in yaml or json format that describes REST endpoints and allows to generate

5A guide on functioning of this setup can be found at https://www.baeldung.com/ops/kafka-
docker-setup

6It can be found at https://docs.confluent.io/platform/current/installation/docker/config-
reference.html#confluent-ak-configuration

7It is available for download at https://github.com/swagger-api/swagger-editor
8Format of OpenAPI 3.0 files can be found at https://swagger.io/blog/news/whats-new-in-

openapi-3-0/

100

https://www.baeldung.com/ops/kafka-docker-setup
https://www.baeldung.com/ops/kafka-docker-setup
https://docs.confluent.io/platform/current/installation/docker/config-reference.html#confluent-ak-configuration
https://docs.confluent.io/platform/current/installation/docker/config-reference.html#confluent-ak-configuration
https://github.com/swagger-api/swagger-editor
https://swagger.io/blog/news/whats-new-in-openapi-3-0/
https://swagger.io/blog/news/whats-new-in-openapi-3-0/

A.6 – Big Data clusters

rapidly a server skeleton. cluster_manager/swagger.yaml is the file that has
been used for the development of cluster manager component .
To start this module, command python -m swagger_server should be run in
cluster_manager/python-flask-server-generated directory.
At its startup, by default GeantExtended topology is loaded, considering as measure
points the ones that have been obtained by clustering optimization. This allows to
have a component that is coherent with the whole system without any additional
configuration. Obviously, this is just for demonstration purposes.

A.6 Big Data clusters
Before running big data components, it is necessary to setup the cluster that
contains Spark, Hive and HDFS elements. This has been automatized in a single
group of Docker containers. By running sudo docker-compose up in docker-hive
directory.
At the first execution it is necessary to initialize the database and all the tables
that are needed. An SQL script (bigdata/create_db.sql) has been provided for
this purpose. Although it is possible to run this script inside the hive-metastore
container shell, the solution that has been preferred during this work is to use
directly graphic tools that are already integrated in advanced IDEs9. This integrated
tools also provide a fast access to all the tables.

A.7 Preprocessing
The preprocessing component has to be run in a shell of Spark master container.
The software has been developed with command line parameters to customize
the behaviour, exploiting PicoCLI library10. Default values have been already
provided so that it is not necessary to write all of them every time. However,
a script (bigdata/run.sh) to be run with admin privileges as been declared to
run all necessary code in the attached shell. Parameters’ usage can be queried by
modifying the script and passing --help option to the application.

A.8 Postprocessing
The base architecture of postprocessing part is the same of previous component. A
similar script has been setup also here (postprocessing/run.sh), that provides

9During the development IntelliJ Idea has been used (https://www.jetbrains.com/idea/)
10https://picocli.info/

101

https://www.jetbrains.com/idea/
https://picocli.info/

Practical simulation instructions

command line parameters.
The programs runs it REST API on port 8088, which is remapped on same
port by the spark-master container. The API is accessible as single entrypoint
filter?from=<yyyy-mm-dd_period>&to=<yyyy-mm-dd_period>&sourceIp=
<ip[/mask]>&destIp=<ip[/mask]>.
Configuration of the system can be given by properly modifying the configu-
ration file that is commonly used while developing Spring Boot applications
(application.properties).
The integration of this framework with Hive and Spark has been quite challenging:

• the Spark session has been recreated at each HTTP request (thanks to
@RequestScope annotation). Despite it degrades the performance of each
request, this allows to browse a fresh copy of the database: without this, a
single Hive connection is created at first request and all the modifications to
the database that have been performed after postprocessing start won’t be
seen correctly by the postprocessing application

• the deployment on the cluster gave some problems, due probably to some
incompatibilities of libraries or some of them were missing on worker nodes,
thus the choice of deploying the system only on a single machine exploiting
all available cores with local[*] master indication was necessary. This, in a
simulated environment where all the cluster runs on the same machine, does
not affect the performance at all, but when the system will be deployed on
different nodes, this should be in some way resolved or the usage of Spring
Boot framework should be abandoned

A.9 Results’ comparison
A Python notebook has been set up to reproduce in an easy way results that have
been shown in chapter 8. It has been made available as result.ipynb. It can be
customized to provide query for specific simulations and by setting values that
have been used, such as loss, delay and jitter per link, to provide correct graphs.
Results about the preprocessing phase will be obtained by directly querying
the database and extracting needed information. It is necessary to provide
the information about the clusterization of the system in terms of minimum
and maximum diameter of each cluster. These information can be included in
cluster_dimensions.json, that should be extracted through a dedicated Python
script (extract_cluster_dimensions.py).
Additionally, providing files about the simulation (cluster_dimensions.json and
flows.json that are generated in mininet/result directory) also post processing
results can be shown, by exploiting REST API calls about the flows that contains
the major part of the traffic in the interest period.

102

Bibliography

[1] url: https://github.com/big-data-europe/docker-hive.
[2] url: https://github.com/big-data-europe/docker-spark.
[3] Apache Hive. url: https://hive.apache.org/.
[4] Apache Kafka. url: https://kafka.apache.org/.
[5] Apache Spark - Unified engine for large-scale data analytics. url: https:

//spark.apache.org/.
[6] BCC. url: https://github.com/iovisor/bcc.
[7] eBPF. url: https://ebpf.io.
[8] HDFS architecture guide. url: https://hadoop.apache.org/docs/r1.2.

1/hdfs_design.html.
[9] IO Visor Project. url: https://www.iovisor.org/.
[10] iPerf - The TCP, UDP and SCTP network bandwith measurement tool. url:

https://iperf.fr/.
[11] Mininet. url: http://mininet.org/.
[12] Mininet extension to make experimenting with IP networks easy. url: https:

//github.com/cnp3/ipmininet.
[13] Open Shortest Path First. url: https://en.wikipedia.org/wiki/Open_

Shortest_Path_First.
[14] OpenFlow. url: https://en.wikipedia.org/wiki/OpenFlow.
[15] Router Information Protocol. url: https://en.wikipedia.org/wiki/

Routing_Information_Protocol.
[16] Francesco Palmieri. «Alternate Marking Performance Monitoring: experimen-

tal evaluation of the Big Data approach». MA thesis. Politecnico di Torino,
2021.

[17] Mauro Cociglio. Statistical Tracking of Population Dynamics Over an Area.
Patent. 2020. url: https://patentscope.wipo.int/search/en/detail.
jsf?docId=WO2020127920.

103

https://github.com/big-data-europe/docker-hive
https://github.com/big-data-europe/docker-spark
https://hive.apache.org/
https://kafka.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://github.com/iovisor/bcc
https://ebpf.io
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.iovisor.org/
https://iperf.fr/
http://mininet.org/
https://github.com/cnp3/ipmininet
https://github.com/cnp3/ipmininet
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://en.wikipedia.org/wiki/OpenFlow
https://en.wikipedia.org/wiki/Routing_Information_Protocol
https://en.wikipedia.org/wiki/Routing_Information_Protocol
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020127920
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020127920

BIBLIOGRAPHY

[18] Mauro Cociglio, Calogero Corbo, Giuseppe Fioccola, Massimo Nilo, and
Riccardo Sisto. The Big Data Approach for Multipoint Alternate Marking
method. Internet-Draft draft-c2f-ippm-big-data-alt-mark-01. Work in Progress.
Internet Engineering Task Force, Oct. 2020. 12 pp. url: https://datatrac
ker.ietf.org/doc/html/draft-c2f-ippm-big-data-alt-mark-01.

[19] Calogero Corbo. «Big data post-processing of multipoint measurements with
alternate marking method». MA thesis. Politecnico di Torino, Mar. 2020.

[20] Giuseppe Fioccola, Mauro Cociglio, Amedeo Sapio, and Riccardo Sisto. Mul-
tipoint Alternate-Marking Method for Passive and Hybrid Performance Moni-
toring. RFC 8889. Aug. 2020. doi: 10.17487/RFC8889. url: https://rfc-
editor.org/rfc/rfc8889.txt.

[21] La rete per l’Italia - Netbook 2021. Dec. 2020. url: https://rete.gruppotim.
it/sites/default/files/download/NetbookFY2020_1.pdf#.

[22] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. DeeperGCN:
All You Need to Train Deeper GCNs. 2020. arXiv: 2006.07739 [cs.LG].

[23] Marino Urso. «High performance eBPF probe for Alternate Marking perfor-
mance monitoring». MA thesis. Politecnico di Torino, 2020.

[24] Mauro Cociglio, Giuseppe Fioccola, Guido Marchetto, Amedeo Sapio, and
Riccardo Sisto. «Multipoint Passive Monitoring in Packet Networks». In:
IEEE/ACM Transactions on Networking 27.6 (2019), pp. 2377–2390. doi:
10.1109/TNET.2019.2950157.

[25] Tal Mizrahi, Gidi Navon, Giuseppe Fioccola, Mauro Cociglio, Mach Chen,
and Greg Mirsky. «AM-PM: Efficient Network Telemetry using Alternate
Marking». In: IEEE Network 33.4 (July 2019), pp. 155–161. issn: 1558-156X.
doi: 10.1109/MNET.2019.1800152.

[26] Giuseppe Fioccola, Alessandro Capello, Mauro Cociglio, Luca Castaldelli,
Mach Chen, Lianshu Zheng, Greg Mirsky, and Tal Mizrahi. Alternate-Marking
Method for Passive and Hybrid Performance Monitoring. RFC 8321. Jan. 2018.
doi: 10.17487/RFC8321. url: https://rfc-editor.org/rfc/rfc8321.
txt.

[27] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare,
and Joelle Pineau. «An Introduction to Deep Reinforcement Learning». In:
CoRR abs/1811.12560 (2018). arXiv: 1811.12560. url: http://arxiv.org/
abs/1811.12560.

[28] Fabio Salvini. «Monitoraggio delle prestazioni di reti a pacchetto con IOVisor».
MA thesis. Politecnico di Torino, 2018.

104

https://datatracker.ietf.org/doc/html/draft-c2f-ippm-big-data-alt-mark-01
https://datatracker.ietf.org/doc/html/draft-c2f-ippm-big-data-alt-mark-01
https://doi.org/10.17487/RFC8889
https://rfc-editor.org/rfc/rfc8889.txt
https://rfc-editor.org/rfc/rfc8889.txt
https://rete.gruppotim.it/sites/default/files/download/NetbookFY2020_1.pdf#
https://rete.gruppotim.it/sites/default/files/download/NetbookFY2020_1.pdf#
https://arxiv.org/abs/2006.07739
https://doi.org/10.1109/TNET.2019.2950157
https://doi.org/10.1109/MNET.2019.1800152
https://doi.org/10.17487/RFC8321
https://rfc-editor.org/rfc/rfc8321.txt
https://rfc-editor.org/rfc/rfc8321.txt
https://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1811.12560

BIBLIOGRAPHY

[29] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural Message Passing for Quantum Chemistry. 2017. arXiv:
1704.01212 [cs.LG].

[30] Guy Almes, Sunil Kalidindi, Matthew J. Zekauskas, and Al Morton. A One-
Way Delay Metric for IP Performance Metrics (IPPM). RFC 7679. Jan. 2016.
doi: 10.17487/RFC7679. url: https://rfc-editor.org/rfc/rfc7679.
txt.

[31] Guy Almes, Sunil Kalidindi, Matthew J. Zekauskas, and Al Morton. A One-
Way Loss Metric for IP Performance Metrics (IPPM). RFC 7680. Jan. 2016.
doi: 10.17487/RFC7680. url: https://rfc-editor.org/rfc/rfc7680.
txt.

[32] Al Morton. Active and Passive Metrics and Methods (with Hybrid Types
In-Between). RFC 7799. May 2016. doi: 10.17487/RFC7799. url: https:
//rfc-editor.org/rfc/rfc7799.txt.

[33] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael
Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams.
Convolutional Networks on Graphs for Learning Molecular Fingerprints. 2015.
arXiv: 1509.09292 [cs.LG].

[34] Alessandro Lazaric. Transfer in Reinforcement Learning: a Framework and a
Survey. 2013.

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep
Reinforcement Learning. 2013. arXiv: 1312.5602 [cs.LG].

[36] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. «The
Internet Topology Zoo». In: Selected Areas in Communications, IEEE Journal
on 29.9 (Oct. 2011), pp. 1765–1775. issn: 0733-8716. doi: 10.1109/JSAC.
2011.111002.

[37] Maurizio Molina, Fredric Raspall, Saverio Niccolini, Dr. Nick Duffield, and
Tanja Zseby. Sampling and Filtering Techniques for IP Packet Selection. RFC
5475. Mar. 2009. doi: 10.17487/RFC5475. url: https://rfc-editor.org/
rfc/rfc5475.txt.

[38] Jennifer Rexford, Derek Chiou, Matthias Grossglauser, Benoît Claise, Albert
Greenberg, and Dr. Nick Duffield. A Framework for Packet Selection and
Reporting. RFC 5474. Mar. 2009. doi: 10.17487/RFC5474. url: https:
//rfc-editor.org/rfc/rfc5474.txt.

[39] Carlo M. Demichelis and Philip Chimento. IP Packet Delay Variation Metric
for IP Performance Metrics (IPPM). RFC 3393. Nov. 2002. doi: 10.17487/
RFC3393. url: https://rfc-editor.org/rfc/rfc3393.txt.

105

https://arxiv.org/abs/1704.01212
https://doi.org/10.17487/RFC7679
https://rfc-editor.org/rfc/rfc7679.txt
https://rfc-editor.org/rfc/rfc7679.txt
https://doi.org/10.17487/RFC7680
https://rfc-editor.org/rfc/rfc7680.txt
https://rfc-editor.org/rfc/rfc7680.txt
https://doi.org/10.17487/RFC7799
https://rfc-editor.org/rfc/rfc7799.txt
https://rfc-editor.org/rfc/rfc7799.txt
https://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1312.5602
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.17487/RFC5475
https://rfc-editor.org/rfc/rfc5475.txt
https://rfc-editor.org/rfc/rfc5475.txt
https://doi.org/10.17487/RFC5474
https://rfc-editor.org/rfc/rfc5474.txt
https://rfc-editor.org/rfc/rfc5474.txt
https://doi.org/10.17487/RFC3393
https://doi.org/10.17487/RFC3393
https://rfc-editor.org/rfc/rfc3393.txt

BIBLIOGRAPHY

[40] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168. Sept. 2001. doi:
10.17487/RFC3168. url: https://rfc-editor.org/rfc/rfc3168.txt.

[41] Fred Baker, David L. Black, Kathleen Nichols, and Steven L. Blake. Definition
of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
RFC 2474. Dec. 1998. doi: 10.17487/RFC2474. url: https://rfc-editor.
org/rfc/rfc2474.txt.

[42] Richard Bellman. «A Markovian decision process». In: Journal of mathematics
and mechanics 6.5 (1957), pp. 679–684.

106

https://doi.org/10.17487/RFC3168
https://rfc-editor.org/rfc/rfc3168.txt
https://doi.org/10.17487/RFC2474
https://rfc-editor.org/rfc/rfc2474.txt
https://rfc-editor.org/rfc/rfc2474.txt

	Introduction
	Goal of the thesis
	Chapters description

	Alternate Marking Performance Monitoring
	Metrics under analysis
	Alternate Marking
	Packet loss
	One-way mean delay

	Multipoint Alternate Marking
	Clustering
	Packet loss
	Packet loss probability
	One-way mean delay
	Dynamic hashing

	Network modelling for performance monitoring
	Extended network
	Reduced extended network
	Border interface selection

	Monitored network
	The dataset
	Border routers generation
	Monitored network algorithms comparison

	Clustering
	Clustering algorithm
	Clustering optimization
	Problem desiderata
	Clustering approach
	Clustering evaluation

	Clustering via reinforcement learning
	Reinforcement learning
	Deep Q-learning
	Graph processing through Neural Networks
	Optimization framework implementation

	Optimization results
	Transfer learning application
	Final considerations

	Overall system architecture
	Network probe
	Message queue
	Cluster manager
	Real time preprocessing
	Data synchronization
	Results organization

	Per flow post processing
	Loss computation
	Time based measurements

	System implementation
	Network probe
	eBPF and BCC
	Architecture

	Message queue
	Apache Kafka
	Configuration

	Cluster manager
	REST endpoints
	Message handling

	Real time preprocessing
	Apache Spark
	Hadoop Distributed File System and Hive database
	Architecture and implementation choices

	Per flow post processing
	Queries' and results' format

	Test environment
	Network emulation
	Mininet
	IPMininet
	Naming conventions

	Traffic generation
	Iperf network measurement tool
	Flows emulation

	Test hardware setup

	Results
	Preprocessing
	Timing results
	Loss related measures
	Delay measures
	Jitter metrics

	Post processing
	Loss related measures
	Delay measures
	Jitter metrics

	Overall results considerations

	Conclusions
	Possible future works

	Appendix Practical simulation instructions
	Reinforcement learning training
	Probe run
	Network simulation
	Message broker
	Cluster manager
	Big Data clusters
	Preprocessing
	Postprocessing
	Results' comparison

	Bibliography

