
POLITECNICO DI TORINO

MASTER’S DEGREE IN ELECTRONIC ENGINEERING

Master’s Degree Thesis

Analysis of robust neural network
classifiers against gradient-based

attacks

Supervisors: Candidate:

Prof. Enrico MAGLI Federico MICELLI
Prof. Tiziano BIANCHI

Academic Year 2020-2021

Abstract

During the last few years, deep learning has been applied to a huge number of appli-
cations in the field of multimedia, scientific research, and industrial processes. Over
an increasing number of specific visual classification problems, the performance of
these algorithms has reached greater accuracy levels than human capabilities. How-
ever, the ever-growing employment of neural networks in our society raises serious
warnings in the matter of security, as they can be targeted by malevolent adver-
saries. Many barriers affect the use of deep neural networks in applications where
security is of key importance, such as medical diagnostics and autonomous driving.
One of the most severe flaws of deep learning is represented by adversarial attacks, a
collection of methods that are designed to interfere with neural networks input data
to produce undesired outputs or, in general, to cause algorithm malfunctions and
classification accuracy reduction. This happens in the face of perturbations that are
very difficult to detect. Indeed, the adversarial examples generated by these attacks
are often undetectable by human eyes.
This thesis aims at investigating the adversarial robustness of the Gaussian Class
Conditional Simplex (GCCS) method, a novel defense against adversarial exam-
ples designed at Politecnico di Torino. In particular, after providing insights into
the fields of neural networks, deep learning, and adversarial attacks, this thesis re-
ports a thorough experimental evaluation that illustrates the greater robustness of
the GCCS method against a multitude of attacks with respect to competing state-
of-the-art techniques. First, I carried out experiments with Adversarial Training
(AT), a common approach based on providing adversarial examples at training time.
I show how robustness is greatly improved thanks to AT. Further, I have obtained
the most robust model by combining GCCS and other state-of-the-art techniques.
Such a model has then been employed in a series of tests devoted to demonstrat-
ing that in most cases GCCS classification method outperforms other techniques
independently on the considered attack. These results have also been confirmed by
plotting features distributions in the latent space: in the case of GCCS, these are
well-separable so that high inter-class separation is ensured. I also show how other
state-of-the-art techniques tend to mix features belonging to different classes with
the subsequent misclassification.

To my family and friends.
A special feeling of gratitude to my parents

for their love, endless support and encouragement.

Acknowledgments

This thesis is part of a research work carried out by the Electronics and Telecom-
munications Department at Politecnico di Torino in collaboration with Sony R&D
Center Europe.
I am grateful to Prof. Enrico Magli and Prof. Tiziano Bianchi for giving me the
opportunity of working on such an interesting and relevant field, deepening both
neural networks and robustness against adversarial examples fields.
I also thank Research Assistant Andrea Migliorati for assisting and supporting me
during this work period.

Table of contents

1 Introduction 1
1.1 Computer vision and security concerns 1
1.2 A relevant flaw of neural networks: adversarial examples 2

1.2.1 Adversarial examples in the real world 3
1.3 Thesis map . 5

2 Background on Neural Networks 6
2.1 Functionality of an artificial neuron 7

2.1.1 Sigmoid function . 8
2.1.2 Hyperbolic tangent function 9
2.1.3 Rectified linear unit function 10

2.2 Layers and architecture of the network 12
2.3 Training of the network . 16

2.3.1 Backpropagation and Stochastic Gradient Descent (SGD) . . . 16
2.3.2 Mean squared error loss function 21
2.3.3 Cross-entropy loss function . 21

2.4 Introduction to common datasets . 24

3 Gaussian class conditional simplex method 27
3.1 Feature extractor . 27
3.2 Loss function . 30
3.3 Decision rule . 31

4 Evaluating adversarial robustness 32
4.1 Non targeted attacks . 33

4.1.1 Fast Gradient Sign Method (FGSM) 33
4.1.2 Projected Gradient Descent (PGD) 33
4.1.3 DeepFool . 34

4.2 Targeted attacks . 39
4.2.1 Targeted Gradient Sign Method (TGSM) 39
4.2.2 Jacobian Saliency Map Attack (JSMA) 40

4.3 State of the art of the defense methods 41
4.3.1 Gradient masking . 41
4.3.2 Adversarial Training . 42

4.4 Defenses Evaluation Framework . 43
4.4.1 State a threat model . 43

I

4.4.2 Principles for rigorous evaluation 44

5 Experiments on GCCS networks 45
5.1 Adversarially trained models results 45
5.2 Deepen PGD adversarial training . 50

5.2.1 Different confgurations comparison 51
5.3 Latent space analysis when applying PGD and TGSM 57
5.4 Additional experiments . 62

5.4.1 Insights into iterative attacks 62
5.4.2 Target class assignment . 65
5.4.3 Target distribution parameters 68

6 Conclusions and future works 72

Bibliography 74

II

List of tables

5.1 Tested models to verify benefits of adversarial training versus stan-
dard training. 46

5.2 Tested models configurations on CIFAR10 dataset. 52
5.3 Tested models configurations on SVHN dataset. 52
5.4 DeepFool attack results, expressed by ρadv parameter, for the tested

configurations on CIFAR10 and SVHN. 56
5.5 DeepFool attack results, expressed by ρadv parameter, for reference

models on CIFAR10 and SVHN. 57
5.6 Target class assignments according to expression 5.1. 66
5.7 DeepFool attack results, expressed by ρadv parameter, for different

mean values on CIFAR10 and SVHN. 71

III

List of figures

1.1 Adversarial example generated and applied to misclassify network
output prediction. The original input feature is classified as ”panda”
with a confidence level of 57.7%. After the imperceptible adversarial
perturbation is added to the input, the network classifies the input
as ”gibbon” with very high confidence, despite the perturbed image
being indistinguishable from the original one to the naked eye. [1] . . 3

1.2 Adversarial example belonging to the physical world. A - image taken
from the dataset; B - clean image printed with correct classification;
C - small perturbation applied to the printed image and degradation
of the accuracy; D - strong perturbation applied to the printed image
and misclassification.[2] . 4

2.1 Biological neuron represented on the left: dendrites and axon of the
cell are indicated. The schematic of the corresponding artificial ver-
sion is drawn on the right. In particular, inputs, weights, bias, and
activation function are highlighted. 7

2.2 Sigmoid activation function. 8

2.3 Hyperbolic tangent activation function. 9

2.4 Rectified linear unit activation function. 10

2.5 Leaky ReLU activation function. 11

2.6 Architecture of a neural network considering input, hidden and output
layers. 12

2.7 Dense layer: all neurons of the layer are connected to each node of
the next one. 13

2.8 Convolution operation between the original pixel values and a 3x3
kernel. The partial products are summed up together to get the
output. 14

2.9 Max pooling operation: data are undersampled so that dimensions
will reduce. In the scheme, the input has sizes 4 x 4 and the output
2 x 2. 15

2.10 Two layer neural network considered in the following example. 17

2.11 SGD algorithm: left: P1 with randomly initialized parameters; cen-
ter: P2 reached after an iteration of SGD algorithm with consequent
loss reduction; right: P3, the minimum of the loss function is reached. 18

2.12 Dropout method consists of disabling randomly chosen neurons to
avoid overfitting: in the image neurons disabled are represented in
grey color with a red cross. 20

IV

2.13 Examples of MNIST input features. [Taken from Tensorflow Resources]. 24

2.14 Examples of SVHN input features. [3] 25

2.15 Examples of CIFAR10 input features. [4] 26

3.1 Gaussian distributions with different mean and variance values. The
blue curve has µ = 3 and Σ = σ2 = 1; the red line has µ = 12 and
Σ = σ2 = 4. 28

3.2 Simplex based class distribution adopted in GCCS method: data
belonging to different classes are centered on the vertices of a simplex,
obtaining high inter-class separation and low intra-class dispersion. . 29

3.3 Example of Voronoi space division with all regions highlighted. [Taken
from Wikipedia]. 31

4.1 Hyperplane for binary classifier, distance between x0 and hyperplane
and purturbation r̂ are highlighted. 35

4.2 Hyperplanes for a multiclass classifier, distances between x0 and all
hyperplanes and perturbations r̂i are highlighted. 37

5.1 Classification accuracy on the test set under the FGSM attack, as a
function of the perturbation budget ε for MNIST (left) and CIFAR10
(right). 47

5.2 Classification accuracy on the test set under the PGD 5-steps attack,
as a function of the perturbation budget ε for MNIST (left) and
CIFAR10 (right). 47

5.3 Classification accuracy on the test set under the TGSM 5-steps at-
tack, as a function of the perturbation budget ε for MNIST (left) and
CIFAR10 (right). 48

5.4 Classification accuracy on the test set under the JSMA 200-steps 1-
pixel attack, as a function of the perturbation budget ε for MNIST
(left) and CIFAR10 (right). 48

5.5 Classification accuracy on the test set for different configurations un-
der the FGSM attack, as a function of the perturbation budget ε for
CIFAR10 (left) and SVHN (right). 53

5.6 Classification accuracy on the test set for different configurations un-
der the PGD 5-steps attack, as a function of the perturbation budget
ε for CIFAR10 (left) and SVHN (right). 53

5.7 Classification accuracy on the test set for different configurations un-
der the TGSM 5-steps attack, as a function of the perturbation budget
ε for CIFAR10 (left) and SVHN (right). 54

5.8 Classification accuracy on the test set for different configurations un-
der the JSMA 200 steps 1-pixel attack, as a function of the pertur-
bation budget ε for CIFAR10 (left) and SVHN (right). 54

V

https://www.tensorflow.org/datasets/catalog/mnist
https://upload.wikimedia.org/wikipedia/commons/thumb/5/54/Euclidean_Voronoi_diagram.svg/1200px-Euclidean_Voronoi_diagram.svg.png

5.9 Feature distributions in the latent space with no attack for Model 3
(GCCS + GCCS AT) (left) and cross-entropy adversarially trained
(right). 58

5.10 Feature distributions in the latent space with PGD and TGSM at-
tacks having ε = 0.005 for Model 3 (GCCS + GCCS AT) (left) and
cross-entropy adversarially trained (right). 59

5.11 Feature distributions in the latent space with PGD and TGSM having
ε = 0.01 for Model 3 (GCCS + GCCS AT) (left) and cross-entropy
adversarially trained (right). 60

5.12 Feature distributions in the latent space with PGD and TGSM at-
tacks having ε = 0.02 for Model 3 (GCCS + GCCS AT) (left) and
cross-entropy adversarially trained (right). 61

5.13 Classification accuracy on the test set under the PGD attack (ε =
0.01), as a function of the number of algorithm iterations for CIFAR10
(left) and SVHN (right). The figure reports models obtained with
different trainings (standard training, AT-FGSM, and AT-PGD). . . . 62

5.14 Classification accuracy on the test set under the TGSM attack (ε =
0.01), as a function of the number of algorithm iterations for CIFAR10
(left) and SVHN (right). The figure reports models obtained with
different trainings (standard training, AT-FGSM, and AT-PGD). . . . 63

5.15 Classification accuracy on the test set for different configurations un-
der the PGD attack (ε = 0.01), as a function of the number of algo-
rithm iterations for CIFAR10 (left) and SVHN (right). The focus is
on the four previously tested configurations. 64

5.16 Classification accuracy on the test set for different configurations un-
der the TGSM attack (ε = 0.01), as a function of the number of
algorithm iterations for CIFAR10 (left) and SVHN (right). The
focus is on the four previously tested configurations. 64

5.17 Classification accuracy on the test set with various target class as-
signments under the TGSM 5-steps attack, as a function of the per-
turbation budget ε for CIFAR10 (left) and SVHN (right). 67

5.18 Classification accuracy on the test set with various target class as-
signments under the JSMA 200-steps 1-pixel attack, as a function of
the perturbation budget ε for CIFAR10 (left) and SVHN (right). . . 68

5.19 Classification accuracy on the test set with mean values under the
FGSM attack, as a function of the perturbation budget ε for CIFAR10
(left) and SVHN (right). 69

5.20 Classification accuracy on the test set with mean values under the
PGD 5-steps attack, as a function of the perturbation budget ε for
CIFAR10 (left) and SVHN (right). 69

VI

5.21 Classification accuracy on the test set with mean values under the
TGSM 5-steps attack, as a function of the perturbation budget ε for
CIFAR10 (left) and SVHN (right). 70

VII

Chapter 1

Introduction

1.1 Computer vision and security concerns

During the last years, computers have become more and more important in our lives.

They are used to perform several complex tasks that humans would complete in a

long time. However, in addition to that, computers have also been placed in the

foreground of innovation for particular fields, in order to develop algorithms that

could tackle an even wider spectrum of problems. One of the most challenging topics

over the years has been Computer Vision (CV), which investigates the capacity of

deriving meaningful information from digital images or videos and taking actions

based on that information [5].

Computer vision runs analyses of data over and over until it discerns distinctions

and ultimately recognizes images. For example, to train a computer to recognize

automobiles, it needs to be fed with vast quantities of car images and car-related

items to learn the differences and recognize such a vehicle.

An essential technology is used to accomplish this: Convolutional Neural Net-

works (CNN). In particular, CNNs characterized by many layers, named deep

neural networks, are used.

Machine learning uses algorithmic models that enable a computer to teach itself

about the context of visualized data. If enough data is fed through the model, the

computer will look at the data and teach itself to tell what an image represents.

These algorithms enable the machine to learn by itself, rather than someone pro-

gramming it to recognize the content of an image.

A CNN, instead, helps a machine learning or deep learning model look by breaking

images down into pixels that are given tags or labels. It uses the labels to perform

mathematical operations and makes predictions about what it is seeing. The neural

1

1 – Introduction

network runs these operations and checks the accuracy of its predictions in a series

of iterations until the predictions start to come true. It is then recognizing or seeing

images similarly to humans.

The problems related to computer vision are often classification problems. They

consist of classifying data into a given set of possible classes, assigning a label to

each data entry with certain confidence or probability. Common applications for this

approach are algorithms able to distinguish and recognize objects into images or to

guarantee security during the authentication phase of a service. As anticipated, neu-

ral networks may be employed for many applications: for instance, another kind of

problem is named regression. This one is used to estimate numerical values or trends

and it has several applications, such as estimation of house prices, stock values, or

weather forecasting. However, this thesis will cover only classification problems.

Machine learning is massively used due to the key feature of these algorithms: in-

deed, after completing training on a given dataset, they can generalize well over

previously unseen data. In addition to that, neural networks have reached accuracy

levels well over human possibilities over very specific tasks such as cancer diagnostics

or video surveillance.

1.2 A relevant flaw of neural networks: adversar-

ial examples

Neural networks could potentially be manipulated and forced to produce an un-

wanted output, i.e. misclassify a provided input feature. For this reason, the exces-

sive employment of these networks pones some security warnings, especially in fields

that involve people’s safety and security like medical uses or digital security ones.

For instance, in this last case, one can think of an adversary as a malevolent actor

who interferes with the neural network of a firewall system to misclassify possible

hazards and malware.

2

1 – Introduction

In particular, it has been proven that by applying an infinitesimal non-random

perturbation to an input, it is possible to arbitrarily change the network output

prediction. The perturbed inputs are known as adversarial examples [6]. Notice

that these modified versions of the input features are so difficult to intercept that

they might even be indistinguishable by the human eye. An example and its effect

on the network is shown in Figure 1.1.

Figure 1.1: Adversarial example generated and applied to misclassify network output
prediction. The original input feature is classified as ”panda” with a confidence level
of 57.7%. After the imperceptible adversarial perturbation is added to the input,
the network classifies the input as ”gibbon” with very high confidence, despite the
perturbed image being indistinguishable from the original one to the naked eye. [1]

1.2.1 Adversarial examples in the real world

Usually, one can think of these perturbed inputs as features that are directly fed

into the machine learning classifier digitally. However, this is not always the case

for systems that operate in the physical world, like the ones that receive inputs from

cameras or other kinds of sensors.

In this context, adversarial examples are not digital data anymore, but they can be

printed images or sounds. For instance, an adversarial example for the voice com-

mand domain would consist of a recording that seems to be innocuous to a human

observer, such as a song, but contains voice commands recognized by a machine

learning algorithm. Furthermore, even an unintelligible sound that a human per-

ceives just as the noise could cause an intentional misclassification.

3

1 – Introduction

Moreover, in the field of secure authentication, face recognition systems based on

photos are vulnerable to these attacks, i.e. a previously captured photo of an autho-

rized user’s face is presented to the camera instead of an actual face to get access.

Even more, an adversarial example for this domain might consist of imperceptible

markings applied to a person’s face, so that a human would recognize their identity

correctly, but a machine learning system would not give them access as they are

recognized as a different person [2].

As visible in Figure 1.2, a printed image representing a washer is captured by a

camera that embeds a machine learning algorithm for classification. It is correctly

classified when no perturbation is applied. However, increasing the strength of the

attack (perturbation) leads to a degradation of the confidence with the subsequent

misclassification.

Figure 1.2: Adversarial example belonging to the physical world. A - image taken
from the dataset; B - clean image printed with correct classification; C - small
perturbation applied to the printed image and degradation of the accuracy; D - strong
perturbation applied to the printed image and misclassification.[2]

4

1 – Introduction

1.3 Thesis map

This thesis aims at evaluating adversarial robustness on ResNet, an n-dimensional

classifier designed at DET Polito in collaboration with Sony R&D Center Europe.

This classifier is based on Gaussian Class Conditional Simplex (GCCS) method,

a novel defense approach that pushes classification accuracy well beyond other state-

of-the-art competing methods, especially under attacks.

In chapter 2 I provide technical background on neural networks, introducing them

from the elementary node to entire layers. Also, several mathematical functions and

operations used in such a context will be explained.

Chapter 3 aims at presenting the GCCS method mentioned before. Insights into the

employed encoder, designed loss function, and the criterion to be used as a decision

rule will be provided.

In chapter 4 I will focus on many implemented attacks, classifying them and de-

scribing technical instructions to develop different attacks. After that, I report

several useful suggestions to perform correct defense evaluation, also explaining the

importance of stating a threat model.

Chapter 5 is intended to group all the launched experiments, providing a brief

description of the test context and commenting on the obtained results. These ex-

periments have the purpose of testing GCCS and other state-of-the-art methods

robustness against gradient-based attacks under different conditions.

5

Chapter 2

Background on Neural Networks

Finding correspondences between image regions (also known as patches) is a key

factor in many computer vision applications: due to this fact, various descriptors

for patch matching have been proposed to improve accuracy and robustness against

variations in perspective and illumination conditions of the input image. Nowadays,

the most studied technology when it comes to object classification is the so-called

deep learning, which is based on a family of layered, non-linear functions called

Artificial Neural Networks (ANNs). ANNs fall in the realm of machine learning and

they present several layers and learnable parameters that can hugely vary depending

on the specific application. The goal of this new machine learning paradigm, which

is inspired by the biological brain, is to learn hierarchical sets of features directly

from data and therefore without relying on any previous knowledge on the input

data distribution. As said, ANNs architecture is divided into an arbitrary amount

of layers. Each layer is formed by many elementary blocks, called artificial neurons.

In this chapter, I introduce ANNs from elementary nodes to the structure of entire

layers.

6

2 – Background on Neural Networks

2.1 Functionality of an artificial neuron

An artificial neuron is a logical unit able to perform basic mathematical operations,

such as additions and multiplications. As visible in Figure 2.1, its scheme recalls

the biological neuron. The artificial neuron receives several inputs on the dendrites

and produces just one output on the axon.

Figure 2.1: Biological neuron represented on the left: dendrites and axon of the cell
are indicated. The schematic of the corresponding artificial version is drawn on the
right. In particular, inputs, weights, bias, and activation function are highlighted.

Inputs xi, coming from different dendrites may have different importance so they

are weighted with corresponding parameters wi, where i refers to the ith dendrite.

Moreover, another important parameter, called bias (in the figure: b), characterizes

the neuron [7]. The weighted signals from all dendrites are summed up together

with the bias of the neuron to form the intermediate variable z, which is passed as

input to the activation function.

z =
N−1∑
i=0

wi · xi + b (2.1)

The output of the activation function is propagated on the axon as general output

produced by the neuron.

o = f(z) (2.2)

7

2 – Background on Neural Networks

Activation functions are used to determine the output of the neural network.

There are a lot of different functions that can be employed but they all have to be

differentiable and monotonic. The most common ones are listed below.

� Sigmoid

� Hyperbolic tangent (tanh)

� Rectified linear unit (ReLU)

2.1.1 Sigmoid function

The sigmoid activation function is a logistic curve that has the following expression:

σ(z) =
1

1 + e-z

The function behaves as in the following.

Figure 2.2: Sigmoid activation function.

As it can be noticed by the plot, this function is defined in all R but only exists

in the range (0, 1) and asymptotically reaches the edges of such interval. The rea-

son why it is commonly used is that it models quite well probability distributions

since also probability distributions are defined over the same range. Generally, the

sigmoid activation is chosen for binary classification problems.

8

2 – Background on Neural Networks

The sigmoid function expresses just one probability distribution. The softmax func-

tion extends the concept, as it is more generalistic. It is chosen whenever a multiclass

classification is required. In particular, it is expressed as:

σ(z)i =
ezi

K∑
j=1

ezj

where K is the number of output classes so, for each class of the set, it returns the

probability associated with it.

2.1.2 Hyperbolic tangent function

Just like the sigmoid function, also the hyperbolic tangent is a commonly employed

S-shaped logistic function. However, it enlarges the output range to (-1, 1), so

negative outputs are also available.

Figure 2.3: Hyperbolic tangent activation function.

9

2 – Background on Neural Networks

As visible in Figure 2.3, the hyperbolic tangent function is 0 centered. For this

reason, negative inputs are mapped as strongly negative while infinitesimal inputs

are mapped as nearly null. This is a step forward if compared to the sigmoid function

that, instead, is 0.5 centered, so negative inputs are mapped close to the 0 region.

2.1.3 Rectified linear unit function

The main limitation of the previously mentioned activation functions is that they

saturate. Indeed, for all of them, both large positive and negative inputs tend to an

asymptote, causing the so-called vanishing gradient issue [8], in which the network

gets stuck at a local minimum and does not train efficiently. Rectified Linear Unit

(ReLU) solves this problem. This activation function is one of the most used in

machine learning. It is described by the following expression:

f(z) = max(0,z)

As visible in Figure 2.4, two main regions can be distinguished: the rectified one,

related to negative inputs, and the linear one, associated with inputs greater or

equal to 0. In particular, all negative inputs are mapped as 0, while positive ones

are mapped with their value; this makes this function produce output values in the

range [0, +∞).

Figure 2.4: Rectified linear unit activation function.

10

2 – Background on Neural Networks

The only problem is that negative values immediately become null, which de-

creases the ability of the model to fit or train properly. This means that any negative

input, given to the ReLU activation function, produces a zero output immediately

in the graph, which in turn affects the resulting graph by not mapping the negative

values appropriately.

For this reason, leaky ReLU has been introduced. This last function is quite similar

to the previous one, but leakage is introduced for negative inputs. It is described by

the expression reported below, where a is the leakage factor. The behavior of the

leaky ReLU is shown in Figure 2.5.

f(z) =

{
z if z ≥ 0

az if z < 0

Figure 2.5: Leaky ReLU activation function.

11

2 – Background on Neural Networks

2.2 Layers and architecture of the network

Neural networks are groups of artificial neurons, each one based on the block dia-

gram presented before, combined in specific ways. In particular, they are divided

into layers, as shown in Figure 2.6.

The layers at the boundaries are called input layer and output layer respectively.

The former is in charge of receiving data as inputs while the latter is used to pro-

duce output results of the network. For this reason, they both are also known as

interfacing layers. Intermediate layers are called hidden layers: we commonly refer

to deep learning when dealing with a large number of hidden layers.

Figure 2.6: Architecture of a neural network considering input, hidden and output
layers.

12

2 – Background on Neural Networks

Different layers may have different functions according to how neurons are orga-

nized and how they process incoming data. The most important layers are listed in

the following.

� Dense layer

� Convolutional layer

� Pooling layer

The first category is characterized by a high density of connections between neurons:

indeed, every node is bound to each neuron of the previous layer and each one of

the next layer. Just like in a biological brain, this allows creating a lot of synapses,

so that every single node contributes to the computation of the final output. The

scheme of this architecture is reported in Figure 2.7.

Figure 2.7: Dense layer: all neurons of the layer are connected to each node of the
next one.

13

2 – Background on Neural Networks

Convolutional layers, instead, are mostly employed in problems that need to pro-

cess complex data such as images, in which spatial information is of key importance

as it carries semantic meaning. The operation involves a convolution between a

part of the image, called the receptive field, and a filter (or kernel) with a chosen

dimension [9]. The convolution operation consists of multiplying each pixel of the

receptive field with the kernel value at the corresponding position of the filter. After

that, all partial products are summed up together to get the final result, which will

amount to the pixel values of the new convoluted image. The principle behind this

mathematical operation is shown in Figure 2.8 below.

Figure 2.8: Convolution operation between the original pixel values and a 3x3 kernel.
The partial products are summed up together to get the output.

The convolution operation becomes more challenging when dealing with color

images. Indeed, differently from grey-scale ones, colors are obtained combining

three distinct channels: red, green, and blue, leading to RGB images. In this case,

it is requested to perform a convolution operation for each channel before evaluating

the final result.

14

2 – Background on Neural Networks

Finally, pooling layers are inserted into the network to reduce the dimensions

of the feature maps (outputs of the discussed operation applied to the previous

layers) [9], allowing a reduction of the parameters to be learned and, consequently,

decreasing the requested computational cost. It is a way to undersample data.

With the purpose explained above, these layers apply a certain pooling operation to

a specific area of the image. The most common operations are the max-pooling and

the average-pooling. In the former, the entire area of the image under analysis is

replaced by a single pixel having a value equal to the largest of the considered ones;

the latter consists of averaging values of the original zone to get a mean value. As

said, pooling is an undersampling operation since both cases reduce an entire area of

the image to a single pixel with a computed value. An example of the max-pooling

operation is shown in Figure 2.9.

Figure 2.9: Max pooling operation: data are undersampled so that dimensions will
reduce. In the scheme, the input has sizes 4 x 4 and the output 2 x 2.

15

2 – Background on Neural Networks

2.3 Training of the network

To correctly set and tune the weights and the bias of each node of the neural net-

work, a training phase has to be performed so that the network can learn all its

parameters. The training relies on a dataset, a collection of inputs associated with

the correct output label. In other words, during the training, the network learns

how to map input-output pairs according to the examples provided in the dataset.

Generally, the learning procedure consists of iteratively feeding the network with

inputs taken from a chosen dataset and comparing the produced output to the cor-

rect label embedded in the dataset entry. After the comparison, the error between

them is computed according to a chosen loss function. Neural networks aim at min-

imizing the loss function to improve classification accuracy. The network can then

fine-tune its parameters to improve performances during the next iteration, thanks

to the backpropagation method that is explained in the following.

There are different ways of performing the training of the network: unsupervised

learning and supervised learning. In the former, the network is able to self-assign

bonus or malus points according to the produced output. This encourages correct

learning while errors are strongly discouraged. The latter, instead, is the most com-

mon approach: it consists of evaluating the error between the produced output and

the true output label according to a chosen loss function, which has to be differen-

tiable. The most common loss functions will be analyzed in the following.

After that, the sensitivities of the computed error versus every parameter are evalu-

ated and used to fine-tune all the variables of the model. This thesis work will rely

only on supervised learning, as the employed datasets embed a lot of input-output

pairs.

2.3.1 Backpropagation and Stochastic Gradient Descent (SGD)

Section 2.1 explains how neurons, the elementary part of each layer of neural net-

works work. Their functionality is based on several parameters described before,

such as weights and biases.

16

2 – Background on Neural Networks

However, it has not been said yet how these parameters can be tuned to improve

the performances of the network. For the sake of simplicity, let’s consider a two-

individual layer neural network, represented in Figure 2.10.

Figure 2.10: Two layer neural network considered in the following example.

The output of each node can be computed by means of the formula:

oj = f(xj · wj + bj) (2.3)

where f is a generic activation function and pedix j refers to the jth layer of the

network. Neurons parameters wj and bj are commonly initialized with random

values.

The output produced by the entire network, ŷ, is computed as:

ŷ = f(f(x1 · w1 + b1) · w2 + b2) (2.4)

It is now possible to determine the error, or the cost, between the true output and

the predicted one, according to a chosen loss function L. In expression 2.5, every

parameter is known except for the weights and biases of each neuron, which are the

independent variables.

L(y,ŷ) = L(y,f(f(x1 · w1 + b1) · w2 + b2)) (2.5)

The error can be backpropagated [10] to every variable by evaluating the gradient of

the network, i.e. the derivative of the loss function with respect to each independent

parameter.
∂L

∂wj

∂L

∂bj
(2.6)

17

2 – Background on Neural Networks

Before providing the next entry of the dataset, parameters may be updated and

tuned in an iterative way considering the committed error.

wj new = wj −
∂L

∂wj
bj new = bj −

∂L

∂bj
(2.7)

This iterative algorithm is known as Stochastic Gradient Descent (SGD)[11]. In

particular, it aims at minimizing the loss function, leading to a maximization of the

classification accuracy over previously unseen data.

Referring to Figure 2.11 below, representing the loss as a function of the weight

w1 in a generic way, it is possible to consider P1 as a starting point, which is ob-

tained by randomly initializing weights and biases of the nodes.

After the first iteration and the first update, the working point of the network be-

comes P2, which is characterized by the updated value of the network parameter,

leading to a reduction of the loss.

Figure 2.11: SGD algorithm: left: P1 with randomly initialized parameters; cen-
ter: P2 reached after an iteration of SGD algorithm with consequent loss reduction;
right: P3, the minimum of the loss function is reached.

The process is repeated iteratively until the condition in the expression 2.8 is

reached, meaning that the derivatives of the loss function with respect to the weights

and biases are equal to 0, or the gradient of the network is null. For this reason,

updates are not needed anymore. In other words, it means that a minimum of the

loss function has been found, giving high accuracy. Generally, the best achievable

accuracy is obtained only whenever a global minimum of the loss function is reached.

18

2 – Background on Neural Networks

Indeed, if the reached critical point was a local minimum, performances could

be further improved.
∂L

∂wj
= 0

∂L

∂bj
= 0 (2.8)

Actually, updating parameters by computing all the derivatives in the expression

2.6 would have a very high computational cost, thus much time-consuming.

In reality, dataset entries are grouped in sets, called batches, so that the loss is

computed and averaged over multiple input-output label pairs. This allows reduc-

ing the number of needed backpropagation iterations.

For instance, considering a dataset having 50000 entries, the improvement intro-

duced thanks to the organization in batches is shown in the following, when a batch

size of 32 is considered.

No batches (batch size = 1) :
50000 entries

batch size
=

50000 entries

1
= 50000 iterations

Batches of 32 elements :
50000 entries

batch size
=

50000 entries

32
= 1563 iterations

Moreover, the duration of the training is determined by the concept of epochs, which

has to be defined. A training epoch is defined as the number of passes of the entire

training dataset the machine learning algorithm has completed.

In addition to that, a condition named overfitting has to be avoided. Overfitting

refers to a model that models the training data too well while lower classification

accuracies are obtained on the test data. Overfitting happens when a model learns

the details and noise in the training data: this impacts the performance of the model

on previously unseen data. Two common approaches to reduce the risk of overfitting

are:

� Data augmentation: operation in which train input images are artificially

modified by means of graphical operations, such as translations, rotations, or

zooms. This allows extending the dataset, increasing the number of available

examples.

19

2 – Background on Neural Networks

� Dropout: an option that consists of disabling several artificial neurons in

different layers of the network for certain input features. In this way, network

nodes are randomly turned on and off for different iterations, avoiding a stall

condition in the learning phase of the parameters. The dropped-out neurons

do not contribute to forward pass and do not participate in backpropagation

[12]. Dropout improves the generalization skills of the model because, in this

way, neurons do not depend on each other anymore.

Figure 2.12: Dropout method consists of disabling randomly chosen neurons to avoid
overfitting: in the image neurons disabled are represented in grey color with a red
cross.

In the following part of the section, loss functions used for different purposes will

be analyzed: in particular, mean squared error is employed whenever the problem

involves regression, while cross-entropy is mostly used for classification.

Finally, a focus on the employed datasets will be proposed. The chosen datasets are

often used to train a variety of different models as they embed a huge amount of

input-output pairs.

20

2 – Background on Neural Networks

2.3.2 Mean squared error loss function

The most common loss function for regression is the mean squared error. It repre-

sents the mean overseen squared differences between true and predicted values and

it’s evaluated using the formula:

L(y,ŷ) =
1

N

N∑
i=0

(y − ŷi)2 (2.9)

where y is the true output, ŷ is the output produced by the network, and N is

the input data batch size, the number of input features considered for an iteration.

Notice that if no organization in batches is employed, then N = 1 so the backprop-

agation takes place after each sample. Mean squared error is very sensitive towards

outliers: indeed, given several examples with the same input feature values, the

optimal prediction will be their mean target value. Thus, it works well when input

data are normally distributed around a mean value and when it is important to

penalize outliers.

2.3.3 Cross-entropy loss function

Cross-entropy is the most used loss function for classification problems [13]. It is

a measure of the difference between two probability distributions, such as the pro-

duced output and the correct label, for a given random variable or set of events.

To better understand how it works, it is useful to recall several information the-

ory concepts, in particular how information quantifies the number of bits required

to encode and transmit an event. Lower probability events have more information

while higher probability events contain less information. Information h(x) can be

calculated for an event x, given the probability of occurrence of the event P (x) as

follows:

h(x) = −log(P (x)) (2.10)

Entropy is the number of bits required to transmit a randomly selected event from a

probability distribution. A skewed distribution has low entropy, whereas a distribu-

tion where events have equal probability has a larger entropy. A skewed probability

21

2 – Background on Neural Networks

distribution is characterized by a low entropy because likely events commonly hap-

pen. On the other hand, balanced distribution turn to have higher entropy because

events are equally likely. Entropy H(x) can be calculated for a discrete random

variable x with a set of states and their probability P (x) as follows:

H(X) = −
∑
x∈X

P (x) · log(P (x)) (2.11)

The cross-entropy loss function builds upon the idea of entropy from information

theory and calculates the number of bits required to represent or transmit an aver-

age event from one distribution compared to another distribution.

Consider a target probability distribution P and an approximation of the target

distribution Q, then the cross-entropy of between Q and P is the number of addi-

tional bits to represent an event using Q instead of P. The cross-entropy between

two probability distributions, such as Q and P, can be stated formally as H(P,Q),

where H() is the cross-entropy function, P may be the target distribution, i.e. the

true output, and Q represents the approximation of the target distribution, i.e. the

predicted output.

Cross-entropy can be calculated using the probabilities of the events from P and Q,

as follows:

H(P,Q) = −
∑
x∈X

P (x) · log2(Q(x)) (2.12)

Where P (x) and Q(x) are the probability distributions of the event x and log2 is

the base-2 logarithm, meaning that the results are in bits.

Having computed the entropy for discrete probability distributions, we can now

move to continuous ones. In such a case, cross-entropy is computed using the inte-

gral across the events instead of the sum. Therefore, equations 2.11 and 2.12 change

as follows:

H(X) = −
∫
X

P (x) · log(P (x)) dx (2.13)

H(P,Q) = −
∫
X

P (x) · log(Q(x)) dx (2.14)

22

2 – Background on Neural Networks

In the case of machine learning, the cross-entropy loss function is expressed as:

L(y,ŷ) = −
N∑
i=0

y · log(ŷi) (2.15)

where y is the true output, ŷ is the evaluated output probability and N is the output

size or the number of classes.

23

2 – Background on Neural Networks

2.4 Introduction to common datasets

In this thesis work, I have considered three image datasets: MNIST, SVHN, and

CIFAR10. Each dataset is composed of two parts: train data and test data. The

former is the actual group of input-output pairs used to train the model, so the

model sees and learns from this data. The latter, instead, is the sample of data used

to provide an unbiased evaluation of the final model fit on the training dataset [14].

Figure 2.13: Examples of MNIST input features. [Taken from Tensorflow Re-
sources].

The first considered dataset, the Modified National Institute of Standards

and Technology(MNIST) database, is a collection of 70000 grey-scale images rep-

resenting handwritten numbers, as shown in Figure 2.13. In particular, they are

divided into 60000 training images and 10000 test ones. Each image has sizes 28x28

pixels, leading to a number of input pixels that equals 784. The dataset has ten

possible output classes as the represented handwritten numbers go from 0 to 9.

24

https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist

2 – Background on Neural Networks

The Street View House Numbers (SVHN) dataset is a more challenging dataset

than MNIST. Just as before, images represent numbers. However, this time images

are colored, so information is contained on three different channels (Red, Green,

and Blue), and collected from the Street View feature embedded in Google Maps

application: for this reason, a variable amount of digits can be included in the input

feature. Some examples of this dataset entries are shown below in Figure 2.14. This

dataset has ten possible output classes, one for each digit. It embeds 73257 entries

for training and 26032 entries for testing, each one having sizes 32x32x3.

Figure 2.14: Examples of SVHN input features. [3]

The last dataset is also the most challenging one. The Canadian Institute

For Advanced Research 10 (CIFAR10) dataset, is a collection of 60000 colored

images, divided into 50000 train images and 10000 test ones. Each feature has

dimensions 32x32x3 since they are squared-colored images. The images represent

a subject of the ten possible output classes, which are: airplane, automobile, bird,

cat, deer, dog, frog, horse, ship, truck. Examples of CIFAR10 input features are

shown in Figure 2.15.

25

2 – Background on Neural Networks

Figure 2.15: Examples of CIFAR10 input features. [4]

26

Chapter 3

Gaussian class conditional simplex

method

The Gaussian Class Conditional Simplex (GCCS) [15] method is designed to

be employed in a generic classifier with an arbitrary number of classes.

In particular, the network employs the GCCS loss function preceded by a specific

encoder, based on an arbitrary amount of residual layers [16]. This last one is

a feature extractor that maps input data onto a latent space that has as many

dimensions as the number of possible output classes, i.e. the output size. To each

dimension corresponds a class conditional statistical distribution.

3.1 Feature extractor

To correctly map data, the feature extractor requires two important parameters:

µ and Σ. The former defines the mean value of the statistical distribution, while

the latter represents the variance. As visible in Figure 3.1, Gaussian distributions

are characterized by these parameters. The higher the mean value, µ, the farther

the distribution will be from the origin of the axes; the higher the variance, Σ, the

lower and larger the distribution will be, meaning that data will not be very close

to the mean value and outliers may be present, as represented by the red line. On

the other hand, considering a lower Σ means that data are close to each other and

to the mean value, as shown with the blue curve.

It is more common to use σ, a parameter called standard deviation, instead of Σ.

There is a quadratic relation between them, so Σ = σ2.

27

3 – Gaussian class conditional simplex method

Figure 3.1: Gaussian distributions with different mean and variance values. The
blue curve has µ = 3 and Σ = σ2 = 1; the red line has µ = 12 and Σ = σ2 = 4.

Since the feature extractor maps data into a D-dimensional latent space, where D

is, as said, the number of available classes, the generated statistical distributions will

be centered on the vertices of a simplex having D−1 dimensions. Assuming the sim-

plex to be regular, all classes are expected to be equidistant between each other [15].

By properly setting the previously described parameters, this method allows reach-

ing a high inter-class separation and a low intra-class dispersion. For this reason,

data belonging to the same class will be grouped as the classifier recognizes them

as very similar, while data of different classes are well separated, so improving the

robustness of the network. A requirement is to set parameters such that:

µT
σT

>
√

2D (3.1)

28

3 – Gaussian class conditional simplex method

For the sake of clarity, a visual representation of the simplex-based class separa-

tion is reported in Figure 3.2.

Figure 3.2: Simplex based class distribution adopted in GCCS method: data be-
longing to different classes are centered on the vertices of a simplex, obtaining high
inter-class separation and low intra-class dispersion.

The GCCS framework has also another important benefit. Since distributions

are gaussian, the optimal decision boundaries are simple hyperplanes. This property

is in contrast to the typical behavior of neural networks, which learn very complex

decision boundaries. This design also leads to better accuracy and greater robustness

than other state-of-the-art methods.

29

3 – Gaussian class conditional simplex method

3.2 Loss function

In order to tune the network parameters and minimize the distance between pre-

dicted output distributions and target ones, a particular loss function is employed.

The method estimates, for each class, first and second order statistics of the pre-

dicted output distributions, µO and ΣO. To evaluate how distant they are from

target ones, the Kullback-Leibler divergence is used. This last one can be calculated

with respect to gaussian target distributions as reported in the expression 3.2, where

pedix i refers to the ith class, O to the predicted output class, and T to the target

class.

Li = log
|ΣT |
|ΣOi|

−D + tr(ΣT
-1ΣOi) + (µTi − µOi)

TΣT
-1(µTi − µOi) (3.2)

So, extending the concept, the cumulative total loss that considers all classes is

computed as follows.

L =
D∑
i=1

Li (3.3)

In particular, L reaches its minimum value when the predicted statistics of the D

distributions exactly match the target ones. Since, as previously said, data are

divided into batches, if the batch size is too small it becomes difficult to control

the tails of the gaussian distributions. To solve this issue, Kurtosis, defined in

the expression 3.4, is also employed. In particular, the notation represents the jth

component of the ith target distribution.

K i,j =

(
zi,j − µO i,j

σO i,j

)4

(3.4)

So the total loss function becomes:

LGCCS =
D∑
i=1

[Li + λ(Ki − 3)] (3.5)

where λ is a parameter that balances the effect of Kurtosis compared to the Kullback-

Leibler divergence and 3 is the found target Kurtosis for each class.

30

3 – Gaussian class conditional simplex method

3.3 Decision rule

If the GCCS method converges properly, it is possible to define the optimal decision

boundaries in the learned latent space.

In particular, for the chosen target distributions, optimal boundaries are defined by

partitioning the D-dimensional latent space, in which the simplex is located, into

Voronoi regions.

Considering a set of points S, a Voronoi space splitting is a mathematical concept

that associates a region V (p) ∀p ∈ S such that all points belonging to V (p) are

closer to p than any other point in S. An example of Voronoi regions is reported in

Figure 3.3 [17].

In this way, all the points are closer to their region centroid, i.e. the mean of their

distribution, than any other in the D − 1 simplex.

For this reason, the resulting decision rule requires the computation of the distance

between output feature points and all centers of the regions, and consequently clas-

sify the sample as belonging to the class at the minimum distance.

Figure 3.3: Example of Voronoi space division with all regions highlighted. [Taken
from Wikipedia].

31

https://upload.wikimedia.org/wikipedia/commons/thumb/5/54/Euclidean_Voronoi_diagram.svg/1200px-Euclidean_Voronoi_diagram.svg.png

Chapter 4

Evaluating adversarial robustness

The ever-growing demand for machine learning algorithms across various applica-

tions in our daily lives pones some security warnings. In particular, many barriers

affect the use of deep neural networks in applications where security is of key impor-

tance, such as medical diagnostics and autonomous driving. One of the most severe

flaws of deep learning is represented by adversarial examples, a collection of methods

that are designed to interfere with neural networks input data to produce undesired

outputs or cause algorithm malfunctions and classification accuracy reduction. This

happens in the face of modifications that are very difficult to detect. Indeed, these

adversarial examples are often undetectable by human eyes. Whenever the model

is fed with them, so that network is under attack, the reached security level can be

measured through proper metrics, like the classification accuracy. More specifically,

classification accuracy is evaluated as a function of a tunable parameter ε that in-

dicates how strong is the applied attack, such that ||n||∞||x||∞ ≤ ε, where n is the added

noise vector, and x is the input signal.

Attacks are divided into two main categories: untargeted attacks and targeted

attacks. The goal of the former ones is to cause a general misclassification in label-

ing the input, such that the predicted class does not correspond to the true output

label. The latter ones, instead, are generated to be misclassified to the desired out-

put class, which is the target of the attack.

Attacks are also classified considering the adversary’s knowledge of the model. In

particular, all the implemented attacks belong to the white-box category, thus the

attacker is supposed to have access to the network gradients. That means that

the attacker has a copy of the model’s weights. This threat model gives the at-

tackers much more power than black-box attacks as they can specifically craft their

examples to fool the model without having to rely on attacks that often result in

human-visible perturbations.

32

4 – Evaluating adversarial robustness

In the following part of the chapter, I introduce the implemented and considered

attacks. After that, more details on how a correct defense evaluation should be

carried out will be provided.

4.1 Non targeted attacks

4.1.1 Fast Gradient Sign Method (FGSM)

The first implemented attack is called the Fast Gradient Sign Method (FGSM)[6].

It is a single-step attack that consists of summing up a non-random perturbation

to the original input data. Usually, the generated adversarial examples are quite

similar to the original features, such that human eyes cannot detect any variation

but an error is induced when classifying with machine learning algorithms. In par-

ticular, the added perturbation is smaller than the precision of the input data.

According to the FGSM technique, adversarial examples are crafted as [1] :

xadv = x+ ε · sign(∇xL(θ,x,y)) (4.1)

where ε is the noise power (i.e. the magnitude of the added perturbation), L is

the chosen loss function, θ represents the model parameters, x and y are the input

features and output label respectively.

4.1.2 Projected Gradient Descent (PGD)

The Projected Gradient Descent (PGD) is an iterative version of the previ-

ously mentioned FGSM attack [15]. With this method, noise is added over multiple

iterations, resulting in the strongest adversarial attack that exploits first-order in-

formation about the trained model.

In particular, PGD tries to find the perturbation that maximizes the loss of a model

on a specific input while keeping the size of the perturbation smaller than a specified

amount ε.

33

4 – Evaluating adversarial robustness

The PGD attack can be summarized with the instructions below, even though

the attacker is free to apply further optimization improvements [18].

1. Start from a random perturbation

2. Take a gradient step in the direction of the greatest loss

3. Project computed perturbation on the input feature

4. Repeat points 2 and 3 until the desired number of iterations is reached

The algorithm can be described with the following pseudo-code.

Algorithm 1 Projected Gradient Descent
1: xadv ← x

2: i← 0

3: while i < K do

4: noise← sign(∇xL(θ,x,y))

5: ε% ← ε
100

6: xadv ← xadv + ε% · noise

Where Xadv is the generated adversarial example, ε is the noise power and K

is the chosen amount of iterations, which plays an important role in defining the

strength of the attack and the time requested to generate the corresponding adver-

sarial examples. The greater K the stronger the attack with the subsequent longer

time needed.

4.1.3 DeepFool

DeepFool is an iterative untargeted attack that can optimally show the flaws of a

neural network. In particular, it aims at minimizing the euclidean distance between

perturbed samples and original ones. Decision boundaries between classes are esti-

mated and, according to them, perturbations are added iteratively.

In the following, the algorithm to generate adversarial examples according to this

method will be presented for both binary and multiclass classifiers [19].

34

4 – Evaluating adversarial robustness

In Figure 4.1 below, it can be noticed that the robustness of the binary classifier

f for an input x0 is simply the distance between x0 and the hyperplane, which is

used as a decision rule to label outputs. Minimal perturbation to fool the classifier’s

decision, r̂, corresponds to the orthogonal projection of x0 onto the hyperparameter

plane, given by:

− f(x0)

||∇f(x0)||22
· ∇f(x0) (4.2)

Figure 4.1: Hyperplane for binary classifier, distance between x0 and hyperplane and
purturbation r̂ are highlighted.

35

4 – Evaluating adversarial robustness

The DeepFool algorithm for binary classifiers is reported below.

Algorithm 2 DeepFool for binary classifiers
1: x0 ← x

2: i← 0

3: while sign(f(xi)) = sign(f(x0)) do

4: ri ← − f(xi)

||∇f(xi)||22
· ∇f(xi)

5: xi+1 ← xi + ri

6: i← i+ 1

7: return r̂ =
∑
i

ri

In particular, the procedure takes as inputs the classifier f and the input x0

and returns as output the minimal perturbation r̂ to fool the model into misclas-

sifying the input. The method consists of iterating the following steps until the

misclassification is obtained:

1. Calculate the projection of the input onto the closest hyperplane

2. Add that perturbation to the input and re-test

Considering a multiclass classifier and assuming the input to be x, a hyperplane

is used as a decision rule for each class. Looking at the place in the space where

x lies, it is classified into a certain output class. The algorithm finds the closest

hyperplane, projects x onto that hyperplane, and pushes it a bit beyond, thus mis-

classifying it with the minimal perturbation possible. A visual representation of the

space containing all hyperplanes is shown in Figure 4.2, while in the following the

generalized algorithm is reported [19].

36

4 – Evaluating adversarial robustness

Figure 4.2: Hyperplanes for a multiclass classifier, distances between x0 and all
hyperplanes and perturbations r̂i are highlighted.

Algorithm 3 DeepFool for multiclass classifiers
1: x0 ← x

2: i← 0

3: while k̂(xi) = k̂(x0) do

4: for k 6= k̂(x0) do

5: w
′

k ← ∇fk(xi)−∇fk̂(x0)
(xi)

6: f
′

k ← fk(xi)− fk̂(x0)
(xi)

7: l̂← arg mink 6=k̂(x0)

|f ′k|
||w′

k||2

8: ri ← −
|f ′

l̂
|

||w′
l̂
||22
·w′

l̂

9: xi+1 ← xi + ri

10: i← i+ 1

11: return r̂ =
∑
i

ri

37

4 – Evaluating adversarial robustness

Just as in the binary case, the method takes as inputs the multiclass classifier

f and the input x and gives the minimal required perturbation r̂ as output. The

following sequence of instructions is repeated until a misclassification is reached,

meaning that the original label and the perturbed label are not equal. In particular,

for each iteration, the minimum difference between the original gradients and the

gradients of each of the n classes, wk, and the difference in the labels, fk, are stored.

1. The inner loop stores the minimum wk and fk. Using them it is possible to

calculate the closest hyperplane for the input x by means of the expression 4.3

2. The minimal vector that projects x onto the closest hyperplane is evaluated

thanks to the formula 4.2

3. The minimal perturbation is added to the image and the misclassification is

tested

As mentioned, the closest hyperplane is computed using the expression 4.3 reported

below.

l̂(x0) = arg min
k 6=k̂(x0)

fk(x0)− fk̂(x0)
(x0)

||wk −wk̂(x0)
||2

(4.3)

Where variables starting with f are the class labels, variables starting with w are

the gradients, variables with k as subscript represent the classes with the most

probability after the true class, and variables with subscript k̂(x0) are for the true

class.

Expression 4.3 leads to a minimal perturbation to be added to the input features

computed as:

r∗(x0) =
fl̂(x0)

(x0)− fk̂(x0)
(x0)

||wl̂(x0)
−wk̂(x0)

||22
(wl̂(x0)

−wk̂(x0)
) (4.4)

As explained, this algorithm iteratively tries to find the minimum perturbation to be

applied to input such that misclassification is obtained. Therefore, the robustness

of the tested models cannot be plotted like the reached accuracy as a function of

noise power, since this approach returns the minimum ε instead.

38

4 – Evaluating adversarial robustness

As described [19], robustness is now evaluated through the ρadv parameter, de-

fined as:

ρadv =
1

|batch|
·
∑

x∈batch

||r̂(x)||2
||x||2

(4.5)

where |batch| represents the batch size, x is the input feature and r̂ is the projection

of the input feature onto the closest hyperplane, thus the minimum perturbation

to be applied. In other words, ρadv averages on the whole batch the minimum

perturbation to be applied, normalized to the input data. Notice that, as reported

in the expression 4.5, this metric is based on norm 2. The higher the parameter

ρadv the greater the robustness ensured by the considered model since the requested

perturbation to get a misclassification has a larger norm. On the other hand, a small

ρadv means that a small perturbation is sufficient to misclassify the input image onto

the closest hyperplane used as a decision rule.

4.2 Targeted attacks

4.2.1 Targeted Gradient Sign Method (TGSM)

The Targeted Gradient Sign Method (TGSM) is a simple modification of the

FGSM attack. Indeed, this approach is quite similar to the corresponding untargeted

version, where a perturbation ε was summed up to the original input feature. In this

case, instead, adversarial examples are obtained by subtracting the same amount of

noise, ε, according to the following formula:

xadv = x− ε · sign(∇xL(θ,x,y)) (4.6)

Notice that noise is evaluated as already presented when describing untargeted at-

tacks. The only difference with respect to the FGSM method is the addition that

has become a subtraction.

The reason for such variation is because in the untargeted approach the purpose

is to inject noise, thus projecting the gradient towards the direction characterized

by a greater loss associated with the true label, resulting in a simpler prediction

of a wrong class with the consequent misclassification. In the targeted attack case,

39

4 – Evaluating adversarial robustness

instead, the goal is to reduce noise related to the target class. It is done by project-

ing the gradient of the network towards a direction that minimizes the loss when

labeling the target class.

Notice that the attack under analysis can be implemented either with a single step or

with an iterative approach. The iterative approach results in a stronger attack with

higher computational cost, thus more time-consuming. In particular, the greater

the number of wanted iterations K the stronger the attack.

The K-steps iterative algorithm used to craft these samples is similar to the one

presented for the PGD attack and it is reported below.

Algorithm 4 Targeted Gradient Sign Method
1: xadv ← x

2: i← 0

3: while i < K do

4: noise← sign(∇xL(θ,x,y))

5: ε% ← ε
100

6: xadv ← xadv − ε% · noise

4.2.2 Jacobian Saliency Map Attack (JSMA)

Jacobian-based Saliency Map Attack (JSMA) is the last considered targeted

attack. It consists of iteratively computing the jacobian matrix of the loss function

with each class label with respect to every component of the input, i.e. the jacobian

matrix to extract the sensitivity direction. This process aims at forming a saliency

map, which is a map that shows the sensitivities of an image to get labeled into a

certain target class to some pixels. In other words, the map shows the pixels that

mostly influence the network to predict a certain output class [15] [20].

Indeed, this saliency map is used at every iteration to choose which pixels should

be tampered, so that the likelihood of changing the output class towards the target

one is increased.

40

4 – Evaluating adversarial robustness

It is important to notice that the major difference between JSMA and FGSM

is that JSMA reduces the number of needed perturbations, making the adversarial

examples far less detectable. The drawback of this attack is that it comes at an

expense of a higher computational cost.

4.3 State of the art of the defense methods

It is fundamental to discover how to resist these adversarial examples because the

more machine learning systems get built into our daily lives the more adversarial

attacks could become a problem.

To prevent the classifier under analysis to misclassify input features when fed with

adversarial examples, several methods have been proposed in scientific literature.

A brief introduction to these methods is given in the following. However, only the

adversarial training technique will be used for this thesis.

� Defense against a specific attack

� Gradient masking

� Adversarial training

The first approach has to be considered as a starting point as it is very basic.

As suggested, indeed, it consists of making the classifier robust against a specific

considered attack. However, if the adversary iterates the attack or tries different

ones, several security concerns may appear.

4.3.1 Gradient masking

Gradient masking is a technique, sometimes used unintentionally, that consists of

modifying the network weights to project the gradient of the network towards a

decided direction, which is not the most vulnerable.

In this case, it is possible to have a false sense of security in defenses against adver-

sarial examples [21], while the network is not robust as it seems. In particular, when

following the gradient direction does not optimize the loss, iterative-based attacks

cannot succeed.

41

4 – Evaluating adversarial robustness

Three different situations can be recognized:

� Shattered gradient: the situation in which the network is not differentiable.

For this reason, a numeric instability condition may occur or the gradient

might be incorrect

� Stochastic gradient: the gradient of the network is computed considering

random factors associated either to the defensive network or to the input

feature

� Exploding gradient: the network is extremely deep with a large number of

hidden layers. For this reason, the gradient may explode when evaluated

Gradient masking can be easily detected if particular conditions are verified. It can

be circumvented using specific algorithms to break the defense and let the attacks

succeed.

4.3.2 Adversarial Training

The last method is the one that will be employed in this thesis work. Adversar-

ial Training (AT) consists of crafting adversarial examples according to a selected

attack, i.e. a sequence of carefully selected instructions, and providing them to the

defensive neural network during the training phase.

Adversarial Training (AT) is a technique that extends the data augmentation method,

with the goal of ensuring greater robustness of a model against various attacks. This

is possible since the model learns how to behave when fed with adversarial examples

that aim at causing a misclassification of the true label. In particular, the consid-

ered dataset is enlarged by crafting new entries, which are the generated adversarial

examples. These new inputs are created according to a specifically chosen attack

that can be either targeted or untargeted. Actually, targeted examples are unlikely

to be employed during adversarial training because of their intrinsic characteristic.

A model trained with targeted adversarial examples would be very robust against

the tested target class but it could be easily fooled whenever a different target is

chosen by the adversary. For this reason, adversarial training is always preferred

to be implemented with untargeted attacks. In this way, the network learns how

42

4 – Evaluating adversarial robustness

to resist general misclassification with any of the possible classes, thus having each

class robust like all other ones.

Adversarial training is different from classical data augmentation, which usually

embeds operations such as rotations, translations, and zooms. Indeed, data aug-

mentation allows the network learning transformations that are supposed and ex-

pected to happen in a real case scenario; during adversarial training, instead, data

are augmented to form examples that are unlikely to occur in a classical scenario,

but that can expose flaws of the network.

4.4 Defenses Evaluation Framework

While attack research has flourished during the last years, progress on defense re-

search has been comparatively slow. Indeed, most proposed defenses quickly show to

have been evaluated incorrectly or incompletely, thus giving a false sense of security.

For this reason, estimating the robustness of a model against adversarial examples

is a very complex task that should rely on a specific list of operations.

In the following, a set of principles for performing defense evaluations will be re-

ported [22].

4.4.1 State a threat model

First of all, to perform a correct evaluation of the defense, it is necessary to consider

a threat model. In fact, without this one, defense proposals are often either not

falsifiable or trivially falsifiable. The threat model includes a set of assumptions

such as the adversary’s goals, knowledge, and capabilities.

The goal of the adversary is for sure to cause a misclassification but, as explained in

the previous part of the chapter, it can be a general misclassification (i.e. untargeted

attack) or a misclassification with the desired output (i.e. targeted attack).

It is also important to restrict the adversary’s capabilities. Most defenses typically

limit the adversary to making small changes to inputs, so that these examples can-

not be detected by humans. Moreover, a common assumption is that the adversary

has direct access to the model’s input features, however, this is not always true, for

43

4 – Evaluating adversarial robustness

this reason, different hypotheses on the capabilities of the adversary may impact

significantly the evaluation of defense effectiveness.

As said, the threat model is expected to express how an adversary knows the net-

work to attack. As anticipated when discussing different attack algorithms, typical

supposition involves either a complete knowledge of the model and its parameters,

calling it a white-box attack, or no knowledge of the model at all, referring to it

as a black-box attack [22].

4.4.2 Principles for rigorous evaluation

It is crucial to actively attempt to defeat the defense being proposed. In particu-

lar, this should be done by including a range of sufficiently different attacks with

carefully tuned hyperparameters. In all these scenarios, one should assume the ex-

istence of an adversary who will spend whatever time is required to develop the

optimal attack to get a misclassification. This means that it is important to focus

on the strongest attack for the threat model and on the defense that are taken into

account. Often, the strongest attack corresponds to an iterative attack with a con-

siderable perturbation budget. Indeed, one should verify that, in general, iterative

attacks perform better than single-step ones. In particular, for the former ones, it

is important to ensure that increasing the number of iteration does not decrease the

classification accuracy of the model.

It’s worth testing both targeted and untargeted attacks. In theory, an untargeted

attack is strictly easier than a targeted one. However, in practice, there can be

cases where targeting any of the N − 1 classes will be stronger than performing

one untargeted attack. Moreover, it is fundamental to verify that increasing the

perturbation budget strictly impacts the classification accuracy. Attacks that allow

more distortion are strictly stronger than attacks that allow less distortion, leading

to more probable errors in the defense.

Finally, obtained results should be expressed using proper metrics. A possible met-

ric is the classification accuracy of the model as a function of the noise power. For

iterative attacks, another useful curve is the one representing classification accuracy

versus the number of attack iterations.

44

Chapter 5

Experiments on GCCS networks

5.1 Adversarially trained models results

In this section, I will investigate how AT improves the robustness of a model. I will

compare standardly trained models with adversarially trained ones.

Several experiments have been performed to test different models against the at-

tacks mentioned in Sections 4.1 and 4.2. To obtain these results, the two datasets

MNIST and CIFAR10 have been used. ResNet-18, a network that employs an en-

coder characterized by 18 residual layers has been chosen. The network has been

trained with different loss functions and different trainings so that various models

can be compared.

These experiments aim at showing the benefits of adversarial training versus stan-

dard training. Adversarial training has been adopted in two distinct versions: the

former generates adversarially perturbated inputs by using the FGSM attack (AT-

FGSM), thus noise is injected in a single step. The other one, instead, is a more

sophisticated approach that adds noise during multiple steps, according to PGD at-

tack (AT-PGD). In particular, the chosen number of steps equals 5. Training with

the three different settings has been carried out for both cross-entropy, presented in

Section 2.3.3, and GCCS, explained in Chapter 3 [15], loss functions. Two different

results are expected: first of all, considering already obtained experimental results,

GCCS outperforms cross-entropy; in addition to that, adversarial training, espe-

cially the PGD version, is expected to guarantee stronger robustness to the trained

network.

Each model has been trained with a batch size of 200 entries for a total of 100

epochs on both MNIST and CIFAR10 datasets. As described, the GCCS approach

also requires choosing the mean and variance of the statistical distributions: these

45

5 – Experiments on GCCS networks

parameters have been set to µ = 70 and σ2 = 1. Moreover, the effect of Kurtosis is

balanced by the factor λ that has been fixed to λ = 0.2.

A table that summarizes the considered models with the set hyperparameters is

reported below.

Model Adversarial training/Standard training Loss function

1 AT: PGD GCCS (µ = 70;σ2 = 1)

2 AT: FGSM GCCS (µ = 70;σ2 = 1)

3 STD training GCCS (µ = 70;σ2 = 1)

4 AT: PGD cross-entropy

5 AT: FGSM cross-entropy

6 STD training cross-entropy

Table 5.1: Tested models to verify benefits of adversarial training versus standard
training.

The results are reported in the following. Notice that, in every graph, a solid

line with highlighted points means that the model has been trained with GCCS loss

function. On the other hand, a dashed line represents a cross-entropy-based model.

The tests have been performed with a maximum noise power ε that equals 0.1 for the

MNIST dataset, while on CIFAR10 the maximum power budget has been reduced

to 0.02. Due to the high computational cost and the consequent time requested, the

JSMA attack on CIFAR10 has been analyzed considering a maximum noise power

equal to ε = 0.006 [15].

46

5 – Experiments on GCCS networks

Figure 5.1: Classification accuracy on the test set under the FGSM attack, as a
function of the perturbation budget ε for MNIST (left) and CIFAR10 (right).

Figure 5.2: Classification accuracy on the test set under the PGD 5-steps attack, as
a function of the perturbation budget ε for MNIST (left) and CIFAR10 (right).

47

5 – Experiments on GCCS networks

Figure 5.3: Classification accuracy on the test set under the TGSM 5-steps attack,
as a function of the perturbation budget ε for MNIST (left) and CIFAR10 (right).

Figure 5.4: Classification accuracy on the test set under the JSMA 200-steps 1-pixel
attack, as a function of the perturbation budget ε for MNIST (left) and CIFAR10
(right).

As shown in Figures 5.1 and 5.2 reporting results related to untargeted attacks,

the GCCS loss function always leads to better performances with respect to cross-

entropy. In these cases, also standard training combined with GCCS guarantees

greater robustness than any model based on the cross-entropy loss function. As ex-

pected, if adversarial training is combined with the GCCS method the model is more

robust than the other methods against the implemented attacks, if compared to the

48

5 – Experiments on GCCS networks

other configurations. No great difference is visible between the model trained with

FGSM adversarial training and the PGD one, especially on the CIFAR10 dataset.

In particular, referring to the more challenging dataset, the GCCS approach reaches

83% accuracy in the case of no attack. The benefit of adversarial training becomes

clear when analyzing a high noise power budget, in particular in Figure 5.1 with

the case of the FGSM attack: in this scenario, adversarially trained models degrade

to 78% classification accuracy while standardly trained model worsens to 59% ac-

curacy. This difference is much larger in the case of the PGD attack, where the

standard training only leads to 34% accuracy.

Cross-entropy loss function, instead, is more vulnerable even when a simple FGSM

attack is issued. Indeed, it starts from an accuracy of 78% when examples are not

perturbed and the metric gets worse when noise power increases. The trend is par-

ticularly visible when issuing an iterative PGD attack: in this case, all models that

rely on cross-entropy drop their classification accuracy by just ε = 0.004. Although

standard training always performs worse, cross-entropy shows an interesting behav-

ior when trained with adversarial examples: in Figure 5.1 the FGSM-trained model

seems to be more robust but the scenario is overturned in Figure 5.2, where PGD

results are reported.

Similar conclusions can be made for tests done on the MNIST dataset: also in these

scenarios, GCCS performs better than cross-entropy, especially when combined with

adversarial training. In these experiments, AT-PGD always seems to be slightly bet-

ter than AT-FGSM for both GCCS and cross-entropy loss functions.

Analyzing now targeted attacks reported in Figures 5.3 and 5.4, similar conclusions

can be made. Also in this test, the benefits of training with adversarial examples

are clearly visible as both GCCS and cross-entropy perform better if compared to

standardly trained models. Just as in the PGD attack, GCCS seems to be more

robust than cross-entropy, especially when it comes to considering a larger power

budget ε. Also in this context, AT-FGSM and AT-PGD lead to quite similar results

when GCCS loss is employed, while the latter is preferable when the cross-entropy

loss is chosen since it slightly improves the robustness.

49

5 – Experiments on GCCS networks

Referring to the MNIST dataset, the advantages of GCCS over cross-entropy are

emblematic when looking at the TGSM attack in Figure 5.3. Indeed, with ε = 0.03

the former ensures 85% accuracy while the latter drops to nearly 10%.

Different conclusions can be drawn for the JSMA attack on CIFAR10: Figure 5.4

shows that any of the adversarially trained models is more accurate than models

obtained with standard training. Indeed, both cross-entropy models trained with

adversarial examples perform better than the standard GCCS model. However, just

as in the other cases, when the GCCS method is combined with AT, especially

considering the AT-PGD, higher performances are ensured. Instead, considering

cross-entropy loss function, AT-FGSM has to be preferred until ε = 0.004: above

this noise power budget, AT-PGD performs better.

A different scenario can be noticed when dealing with the MNIST dataset: in this

case, standard GCCS equals PGD adversarial training on cross-entropy. As ex-

pected, combining GCCS loss function with PGD adversarial training guarantees

the highest performances with 70% accuracy in the case of ε = 0.1. On the other

hand, the standardly trained cross-entropy model seems to be the less robust among

the tested ones.

5.2 Deepen PGD adversarial training

As presented in Section 5.1, PGD is often an optimal method to craft adversarial

examples during training. Indeed, it leads to comparable or even higher robustness

of the model if compared to AT-FGSM. For this reason, AT-PGD has been chosen as

default adversarial training during the next experiments: this means that all GCCS

and cross-entropy models that will be presented in the following are obtained with

AT-PGD.

In particular, the next task consists of finding the most robust model, investigating

various combinations between cross-entropy or GCCS loss functions, and standard

or adversarial training. There are four relevant configurations, which are listed below

since either cross-entropy or GCCS can be used as starting models. Fine tunings

could be applied to further improve the performances.

50

5 – Experiments on GCCS networks

� Model 1: GCCS adversarially trained

� Model 2: Cross-entropy adversarially trained + GCCS adversarially trained

� Model 3: GCCS standardly trained + GCCS adversarially trained

� Model 4: Cross-entropy standardly trained + GCCS standardly trained +

GCCS adversarially trained

The focus is on GCCS models since they perform better than cross-entropy: it

could be used as starting model or even applied to an already trained model, tuning

the network parameters. However, it would be convenient if Model 2 and Model 4

ensured good results since advanced cross-entropy ready-to-use models are available

on the internet and they could be easily fine-tuned with GCCS. Despite that, Model

1 and Model 3, which are based on the GCCS method, are expected to ensure

stronger robustness.

5.2.1 Different confgurations comparison

The considered configurations are summarized in the following tables. They have

been tested on CIFAR10 and SVHN datasets with the attacks presented in Sections

4.1 and 4.2. Whenever relying on GCCS loss, the selectable parameters have been

set to: mean µ = 70, variance σ2 = 1, and Kurtosis balancing factor λ = 0.2.

51

5 – Experiments on GCCS networks

Model Base model 1st fine tuning 2nd fine tuning

1
GCCS AT

- -
(400 epochs)

2
Cross-entropy AT GCCS AT

-
(400 epochs) (60 epochs)

3
GCCS GCCS AT

-
(400 epochs) (60 epochs)

4
Cross-entropy GCCS GCCS AT

(400 epochs) (60 epochs) (60 epochs)

Table 5.2: Tested models configurations on CIFAR10 dataset.

Model Base model 1st fine tuning 2nd fine tuning

1
GCCS AT

- -
(300 epochs)

2
Cross-entropy AT GCCS AT

-
(300 epochs) (40 epochs)

3
GCCS GCCS AT

-
(300 epochs) (40 epochs)

4
Cross-entropy GCCS GCCS AT

(300 epochs) (40 epochs) (40 epochs)

Table 5.3: Tested models configurations on SVHN dataset.

Results obtained deploying ResNet with 18 residual layers are shown in the

following figures, where also reference lines are plotted. These last ones are GCCS

standardly trained used as the base model for Model 3, cross-entropy standardly

trained employed as the base model for Model 4, and cross-entropy adversarially

trained used as starting point for Model 2. As before, solid lines represent GCCS-

based models while dashed lines stand for cross-entropy-based models. For both

52

5 – Experiments on GCCS networks

CIFAR10 and SVHN datasets, the white box attacks have been launched considering

a noise power budget between ε = 0 and ε = 0.02. Due to the high computational

cost, a restricted range has been decided for the JSMA attack, setting the maximum

noise power to ε = 0.006.

Figure 5.5: Classification accuracy on the test set for different configurations under
the FGSM attack, as a function of the perturbation budget ε for CIFAR10 (left) and
SVHN (right).

Figure 5.6: Classification accuracy on the test set for different configurations under
the PGD 5-steps attack, as a function of the perturbation budget ε for CIFAR10
(left) and SVHN (right).

53

5 – Experiments on GCCS networks

Figure 5.7: Classification accuracy on the test set for different configurations under
the TGSM 5-steps attack, as a function of the perturbation budget ε for CIFAR10
(left) and SVHN (right).

Figure 5.8: Classification accuracy on the test set for different configurations under
the JSMA 200 steps 1-pixel attack, as a function of the perturbation budget ε for
CIFAR10 (left) and SVHN (right).

As expected, all tested configurations perform better than the previously men-

tioned reference lines, as they guarantee higher robustness. They all behave similarly

since the curves can often be superimposed on each other. For this reason, it is dif-

ficult to state which is the most robust model.

Considering the FGSM attack in Figure 5.5, all configurations show comparable be-

haviors. Referring to CIFAR10 results, they all guarantee similar accuracies, always

54

5 – Experiments on GCCS networks

higher than 80% for every considered ε; on SVHN they begin to deviate from each

other with large ε, having Model 3 as the best model and Model 1 as the worst

one. When attacking the networks with PGD attack, instead, Model 3 appears to

perform slightly worse when compared to the other configurations, reducing the ac-

curacy by 5% in the case of ε = 0.02 on both datasets. In this case Model 1 and

Model 2 perform quite well.

Considering now targeted attacks, TGSM in Figure 5.7 leads to the conclusion

that Model 3 outperforms all other tested configurations. On CIFAR10 Model 3

is comparable to Model 1 and they both show higher robustness if compared to

cross-entropy-based models. On SVHN, instead, Model 3 is the only configuration

well above the others. Finally, the JSMA attack leads to quite similar results for

both datasets: in these cases, curves related to all configurations are superimposed,

thus comparable classification accuracies are ensured. Also in these cases, Model 3

is slightly higher than other curves when looking at the maximum tested ε.

Generally, by observing the experimental results, one can suppose that Model 3

(GCCS + GCCS AT) is often the optimal choice. Indeed, as described, Model 3

behaves in an optimal way showing higher classification accuracy than the other

configurations in all performed attacks on both datasets, except for the PGD at-

tack. In addition to that, one can notice that looking at ε = 0 points, i.e. when

no attack is employed, Model 3 always reaches the highest working point for both

datasets, ensuring a great accuracy in normal conditions.

However, we observed certain situations where Model 2 and Model 4 are not the

least robust methods: in particular, they both ensure great robustness for FGSM

and PGD attacks on the SVHN dataset, shown in Figures 5.5 and 5.6.

For this reason, I further investigate the behavior of models trained with the differ-

ent configurations by also employing the DeepFool attack. Recalling Section 4.1.3,

results obtained by the DeepFool attack are evaluated using the ρadv metric ex-

pressed in formula 4.5. For this reason, the robustness of the tested models cannot

be plotted like the reached accuracy as a function of noise power anymore, since this

approach returns a numerical value instead.

55

5 – Experiments on GCCS networks

The DeepFool attack has been launched and the following results have been ob-

tained.

Model Description CIFAR10 SVHN

1
GCCS AT

2.1922 3.2764

2
Cross-entropy AT +

2.0799 2.8011
GCCS AT

3
GCCS +

2.3735 3.1166
GCCS AT

4

Cross-entropy +

2.1523 2.6179GCCS +

GCCS AT

Table 5.4: DeepFool attack results, expressed by ρadv parameter, for the tested con-
figurations on CIFAR10 and SVHN.

Data reported in Table 5.4 confirm the previously described results. As initially

supposed, models based on GCCS, i.e. Model 1 and Model 3, perform better than

models based on the cross-entropy loss function. In particular, dataset Model 3

seems to be the most robust configuration on the CIFAR10 while Model 1 is slightly

better on the SVHN dataset.

For the sake of completeness, the DeepFool attack has been also issued on the

previously reported reference models. Results are shown in Table 5.7.

56

5 – Experiments on GCCS networks

Description CIFAR10 SVHN

GCCS 2.5669 2.9177

Cross-entropy 1.3869 1.4735

Cross-entropy AT 0.2027 0.4632

Table 5.5: DeepFool attack results, expressed by ρadv parameter, for reference models
on CIFAR10 and SVHN.

Also these data show that GCCS always ensures greater robustness than cross-

entropy. In addition to that, one can notice that standardly trained models look

stronger than the corresponding adversarially trained ones when the DeepFool attack

is issued. In particular, on CIFAR10, standard GCCS reaches ρadv = 2.5669 while

the most robust adversarially trained configuration (Model 3 with: GCCS + GCCS

AT) only equals ρadv = 2.3735. The same behavior can be noticed considering cross-

entropy: in this case, the adversarially trained model is almost 7 times weaker than

the standardly trained model.

5.3 Latent space analysis when applying PGD and

TGSM

As said when describing the implemented attacks, TGSM is a variation of the PGD

attack with the fundamental difference of targeting a specific class instead of caus-

ing a general misclassification. In principle, an untargeted attack should be easier

than a targeted one as it is necessary to take a gradient step in the direction of any

hyperplane used as a decision rule; for targeted attacks, instead, this step should

have a direction that points the target class. Despite that, figures 5.6 and 5.7 show

an interesting behavior: while cross-entropy-based models confirm this hypothesis,

GCCS ones seem to behave oppositely. Indeed, it can be noticed how GCCS better

resists PGD rather than TGSM attack. With the purpose of better understanding

the mentioned graphs, the learned distributions in the latent space have been studied

in the case of both loss functions for the mentioned attacks on the CIFAR10 dataset.

57

5 – Experiments on GCCS networks

More specifically, Model 3 (GCCS + GCCS AT) and reference cross-entropy adver-

sarially trained models have been compared. The distributions have been plotted

first in the case of no issued attack, thus ε = 0.

Figure 5.9: Feature distributions in the latent space with no attack for Model 3
(GCCS + GCCS AT) (left) and cross-entropy adversarially trained (right).

Then the visual representation has been analyzed considering different strengths

of the attacks, various noise powers such as ε = 0.005, ε = 0.01, and ε = 0.02 have

been selected.

58

5 – Experiments on GCCS networks

Figure 5.10: Feature distributions in the latent space with PGD and TGSM attacks
having ε = 0.005 for Model 3 (GCCS + GCCS AT) (left) and cross-entropy adver-
sarially trained (right).

59

5 – Experiments on GCCS networks

Figure 5.11: Feature distributions in the latent space with PGD and TGSM having
ε = 0.01 for Model 3 (GCCS + GCCS AT) (left) and cross-entropy adversarially
trained (right).

60

5 – Experiments on GCCS networks

Figure 5.12: Feature distributions in the latent space with PGD and TGSM attacks
having ε = 0.02 for Model 3 (GCCS + GCCS AT) (left) and cross-entropy adver-
sarially trained (right).

Figures 5.10, 5.11, and 5.12 show that, in the case of the PGD attack, when

GCCS is employed classes are always well-separable, even considering large noise

powers. When applying TGSM, instead, classes tend to mix near the origin of the

axes. This trend is much more clear when increasing the noise power ε, as shown

in Figure 5.12. In the case of the cross-entropy loss function, features belonging to

different classes are separable just in the case of no applied attack. Indeed, either

with PGD or TGSM attack they mix even when small noise powers ε are considered.

This condition leads to very low classification accuracy as the learned distributions

are not well-separable anymore.

61

5 – Experiments on GCCS networks

5.4 Additional experiments

5.4.1 Insights into iterative attacks

In this section, the previously considered PGD and TGSM iterative attacks have

been furtherly studied. In particular, the experiments described in previous sections

aimed at evaluating the classification accuracy of the model versus the attack noise

power for a chosen number of iterations. Now the tests have the purpose of obtaining

data related to the classification accuracy as a function of the iterations considered

in the employed attack for a fixed ε. In other words, previous experiments used

to increase the power budget while now we are increasing the number of algorithm

steps keeping constant the noise power.

As done in the previous experiments, the models already presented in Section 5.1

have been considered to investigate the benefits related to adversarial training when

it comes to facing an increasing number of attacks iterations. The experiment has

been carried out considering ε = 0.01 and the maximum number of attack iteration

K = 30. PGD and TGSM have been launched on all the mentioned models and the

following results have been obtained.

Figure 5.13: Classification accuracy on the test set under the PGD attack (ε =
0.01), as a function of the number of algorithm iterations for CIFAR10 (left) and
SVHN (right). The figure reports models obtained with different trainings (standard
training, AT-FGSM, and AT-PGD).

62

5 – Experiments on GCCS networks

Figure 5.14: Classification accuracy on the test set under the TGSM attack (ε =
0.01), as a function of the number of algorithm iterations for CIFAR10 (left) and
SVHN (right). The figure reports models obtained with different trainings (standard
training, AT-FGSM, and AT-PGD).

First, one can notice that GCCS always outperforms cross-entropy. After that,

in the case of the PGD attack, all models based on GCCS seem to be comparable

as the curves can be superimposed on each other on both datasets. Cross-entropy-

based models, instead, lead to the conclusion that adversarial training improves the

robustness of the model and, to further improve classification accuracy, one should

apply AT-PGD instead of AT-FGSM.

Considering now TGSM attack, instead, both GCCS and cross-entropy present the

same pattern with GCCS performing better than cross-entropy: AT-PGD has to be

the preferred choice as it always leads to the best classification accuracy. Follows

AT-FGSM and finally standardly trained model is the weakest choice among the

tested ones.

In addition to the previous results, PGD and TGSM attacks have been issued to

test all the previously presented configurations and reference lines with a fixed noise

power ε = 0.01. Iterations have been cycled from 0 to a maximum value of 30. The

obtained results are reported in Figures 5.15 and 5.16.

63

5 – Experiments on GCCS networks

Figure 5.15: Classification accuracy on the test set for different configurations under
the PGD attack (ε = 0.01), as a function of the number of algorithm iterations for
CIFAR10 (left) and SVHN (right). The focus is on the four previously tested
configurations.

Figure 5.16: Classification accuracy on the test set for different configurations under
the TGSM attack (ε = 0.01), as a function of the number of algorithm iterations
for CIFAR10 (left) and SVHN (right). The focus is on the four previously tested
configurations.

As shown in the reported plots, also in these experiments one can clearly notice

the benefits brought by the GCCS method. Indeed, looking at CIFAR10 results,

curves related to GCCS combined with AT-PGD are well above the others. In par-

ticular, looking at Figure 5.15 where the PGD attack is under analysis, all GCCS

64

5 – Experiments on GCCS networks

models, including also the standardly trained one, do not suffer the increment of

algorithm iterations, as they remain constant to their initial value. Referring to

cross-entropy models, instead, a significant performance improvement is ensured

when training the network with adversarial examples. The same conclusions can be

made for the SVHN dataset as the obtained characteristics are very similar to the

previous cases. Finally, one can state that Model 3 leads to the best classification

accuracies also in these cases.

Considering now TGSM attack on CIFAR10 reported in Figure 5.16, all AT-PGD

GCCS models are more robust than reference curves, especially for high iteration

values. In particular, also in these tests Model 3 seems to be the less weak model,

laying above the other curves. However, GCCS standardly trained shows worse per-

formances than adversarially trained cross-entropy for a number of iterations lower

than 15. Above this value, the two curves swap with the GCCS model leading to

greater classification accuracy. Again, the same conclusion can be stated for the

SVHN dataset.

5.4.2 Target class assignment

Focusing on targeted adversarial attacks, one can further investigate the method

employed to assign the target class. Indeed, if just a single approach is chosen,

possible biases may impact the results. For this purpose, multiple algorithms have

been tested aiming at deepening this behavior. Attacks issued until this section used

to assign the target class according to the following expression:

target = (true+ 1) mod C (5.1)

where C represents the output size, i.e. the number of possible output labels. For in-

stance, considering MNIST, SVHN, or CIFAR10, the presented expression becomes:

target = (true+ 1) mod 10 (5.2)

as they all present ten possible output classes.

65

5 – Experiments on GCCS networks

Since class labels are expressed by means of integer numbers from 0 to 9, the

mentioned formula simply assigns an adversarial label that follows in sequence the

true label. Assignments are performed according to the following Table 5.6.

True label Assigned target label

0 1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8 9

9 0

Table 5.6: Target class assignments according to expression 5.1.

To exclude the possibility of having biases related to the target class, a random

target class assignment over the batch has been employed. The algorithm simply

reads the true class and iteratively tries to assign a different target, always in the

range between 0 and 9, for each iteration of the tested attack. The pseudo-code of

this assignment is reported in the following.

Algorithm 5 Randomly assigned target class

1: while i < batch size do

2: target← random(0; 9)

3: while target == true do

4: target← random(0; 9)

5: i← i+ 1

66

5 – Experiments on GCCS networks

Both the implemented versions have been issued for TGSM and JSMA attacks

on CIFAR10 and SVHN datasets. This experiment has been performed on the

most robust configuration (GCCS + GCCS AT) and all the reference lines, i.e.

GCCS, cross-entropy, and cross-entropy adversarially trained models. As previously

discussed, I have considered the TGSM attack for a noise power ε ∈ [0 0.02] while,

due to the high computational cost, JSMA has been launched on a restricted range

with a maximum ε that equals 0.006. The obtained results are shown in the following

Figures 5.17 and 5.18.

Figure 5.17: Classification accuracy on the test set with various target class assign-
ments under the TGSM 5-steps attack, as a function of the perturbation budget ε
for CIFAR10 (left) and SVHN (right).

67

5 – Experiments on GCCS networks

Figure 5.18: Classification accuracy on the test set with various target class assign-
ments under the JSMA 200-steps 1-pixel attack, as a function of the perturbation
budget ε for CIFAR10 (left) and SVHN (right).

As shown in Figures 5.17 and 5.18, the accuracy on the test set while under the

two considered targeted attacks does not correlate to the target label assignment.

Indeed, curves with different assignments related to TGSM and JSMA on both

considered datasets are comparable and superimposed. This behavior is shown for

all tested models even with different trainings.

5.4.3 Target distribution parameters

Finally, I investigate the role of the chosen mean value for features distributions

in the GCCS approach. The previously found most robust configuration, Model 3

(GCCS + GCCS AT), has been trained multiple times setting different values for

the mean parameter µ required by the GCCS method. In particular, three values

have been chosen: µ = 40, µ = 70, µ = 100; the other requested parameters have

been fixed to the previous values: variance σ2 = 1 and Kurtosis balancing factor

λ = 0.2. FGSM, PGD, and TGSM attacks have been issued on CIFAR10 and

SVHN, providing the results reported in the following figures.

68

5 – Experiments on GCCS networks

Figure 5.19: Classification accuracy on the test set with mean values under the
FGSM attack, as a function of the perturbation budget ε for CIFAR10 (left) and
SVHN (right).

Figure 5.20: Classification accuracy on the test set with mean values under the PGD
5-steps attack, as a function of the perturbation budget ε for CIFAR10 (left) and
SVHN (right).

69

5 – Experiments on GCCS networks

Figure 5.21: Classification accuracy on the test set with mean values under the
TGSM 5-steps attack, as a function of the perturbation budget ε for CIFAR10 (left)
and SVHN (right).

As shown in the reported figures, models characterized by different mean values

generally reach similar classification accuracies. This behavior is particularly en-

hanced in the FGSM attack shown in Figure 5.19, where curves related to various µ

are superimposed on each other on both datasets, especially for large noise powers.

Referring to the PGD attack and trading off the results, the lowest mean considered,

equal to µ = 40, seems to be the preferred choice. Finally, looking at the TGSM

attack, the model trained with the highest mean value is the weakest among the

considered ones. One can expect that the greater the mean value the more robust

the model. However, considering very large µ values beyond a certain bound, the

model may not converge properly. Such a result is related to the functionality of

the employed encoder. Indeed, large mean values may make the training unstable,

with the subsequent reduction of the classification accuracy. The ratio between µ

and σ parameters of the target distributions has to be carefully fixed considering

the number of the latent space dimensions. In the particular scenario that I studied,

where the presented classification problems have a total of 10 output classes, the

µ = 40 seems to be the optimal choice. As said, such a parameter may be set to dif-

ferent target values depending on the considered context. Finally, the performances

associated with the three tested configurations are comparable when analyzing the

TGSM attack on the SVHN dataset.

70

5 – Experiments on GCCS networks

In addition to that, the same experiment has also been performed considering the

DeepFool attack. The obtained ρadv are reported in the following table.

Mean value CIFAR10 SVHN

µ = 40 1.4742 1.9171

µ = 70 2.3735 3.1166

µ = 100 2.7953 3.9131

Table 5.7: DeepFool attack results, expressed by ρadv parameter, for different mean
values on CIFAR10 and SVHN.

The results highlight an expected trend: the higher the mean value of the feature

distributions the more robust the model. Indeed, the higher the mean value the

farther the distributions will be between each other, allowing a larger inter-class

separation. Therefore, the average required perturbation to get a misclassification

onto the closest hyperplane becomes greater. Notice that this result seems to be

in contrast with the previously reported plots. However, as already explained, they

cannot be compared since the classification accuracy is based on norm ∞ while

ρadv is obtained computing norm 2. Moreover, ρadv averages the required energy to

misclassify an input image while the previously reported plots are worst-case results:

they show the minimum classification accuracy for a given perturbation budget ε.

71

Chapter 6

Conclusions and future works

The experiments I carried out show the improvement of performance brought by

GCCS when compared with other competing methods. In particular, models trained

with the GCCS method are more robust to adversarial examples, i.e. they ensure

greater classification accuracy than competing methods when attacks with the same

noise power are employed. Such a condition can be reached thanks to the basic

principle of the GCCS method, which enables the learning of feature distributions

placed on the vertices of a simplex laying in a multi-dimensional latent space. In this

way, features belonging to the same class are grouped close to each other and placed

at a great distance with respect to the other classes, thus ensuring high inter-class

separation and low intra-class dispersion.

In addition to that, the experiments also show that combining GCCS with ad-

versarial training guarantees higher robustness than other state-of-the-art methods.

During the training phase, different approaches have been tested to craft adversar-

ial examples: AT-FGSM and AT-PGD. Although on GCCS models they performed

similarly, generally, the latter has to be chosen since it leads to slightly better re-

sults. This condition is particularly enhanced when considering other state-of-the-

art methods, such as cross-entropy models.

Different models have been subjected to various attacks. The most robust config-

uration among the tested ones, listed in Table 5.2 is obtained performing a first

standard training with GCCS loss function and fine-tuning the obtained model with

AT-PGD always with GCCS method. The resulting model (GCCS + GCCS AT)

shows excellent classification accuracy in the nominal case and high robustness when

attacked.

72

6 – Conclusions and future works

In contrast to other approaches, GCCS also shows great performances when increas-

ing the number of steps of an iterative attack. In particular, GCCS-based models

show great classification accuracy even with a very large number of iterations of a

PGD attack. Considering cross-entropy models such behavior cannot be observed,

as classification accuracy decreases with just 10 iterations.

To further compare the proposed GCCS framework with other defenses, the evalu-

ation may be extended considering other attacks. The focus of this thesis has been

placed on the evaluation of the GCCS method versus gradient-based generation

techniques for adversarial examples. Future experiments may include also gradient-

free or hard-label attacks. The former ones are effective even when gradient-based

attacks fail, meaning that the gradient of the network is somehow masked and the

defense can be easily bypassed. An example of an implementable gradient-free attack

is SPSA [23]. The latter ones, instead, only require access to the most confident

output label. They are much slower than other methods as they make many more

queries, but defenses can do less to accidentally prevent from these attacks. The

Boundary Attack is an example of a hard-label attack [24].

73

Bibliography

[1] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[2] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples in

the physical world, 2016.

[3] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and

Andrew Y Ng. Reading digits in natural images with unsupervised feature

learning. 2011.

[4] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. 2009.

[5] Ilija Mihajlovic. Everything you ever wanted to know about computer

vision. https://towardsdatascience.com/everything-you-ever-wanted-

to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-

e8a58dfb641e. Updated: 2019-04-25.

[6] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-

works. arXiv preprint arXiv:1312.6199, 2013.

[7] Andrej Krenker, Janez Bešter, and Andrej Kos. Introduction to the artifi-

cial neural networks. Artificial Neural Networks: Methodological Advances and

Biomedical Applications. InTech, pages 1–18, 2011.

[8] Zheng Hu, Jiaojiao Zhang, and Yun Ge. Handling vanishing gradient problem

using artificial derivative. IEEE Access, 9:22371–22377, 2021.

[9] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural net-

works. arXiv preprint arXiv:1511.08458, 2015.

[10] Convolutional neural networks for visual recognition course (backpropagation,

intuitions) - stanford university. https://cs231n.github.io/optimization-

2/. Updated: 2021-03-15.

[11] Convolutional neural networks for visual recognition course (optimization:

Stochastic gradient descent) - stanford university. https://cs231n.github.

io/optimization-1/. Updated: 2021-03-15.

74

https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://cs231n.github.io/optimization-2/
https://cs231n.github.io/optimization-2/
https://cs231n.github.io/optimization-1/
https://cs231n.github.io/optimization-1/

Bibliography

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural information

processing systems, 25:1097–1105, 2012.

[13] Kiprono Elijah Koech. Cross-entropy loss function. https://

towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e.

Published: 2020-10-02.

[14] Training and test sets: Splitting data. https://developers.google.com/

machine-learning/crash-course/training-and-test-sets/splitting-

data. Updated: 2020-02-10.

[15] Arslan Ali, Andrea Migliorati, Tiziano Bianchi, and Enrico Magli. Beyond

cross-entropy: learning highly separable feature distributions for robust and ac-

curate classification. In 2020 25th International Conference on Pattern Recog-

nition (ICPR), pages 9711–9718. IEEE, 2021.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[17] Voronoi diagram. https://en.wikipedia.org/wiki/Voronoi_diagram. Up-

dated: 2021-09-17.

[18] Oscar Knagg. Know your enemy. how you can create and defend against

adversarial attacks. https://github.com/oscarknagg/adversarial/

blob/master/notebooks/Creating_And_Defending_From_Adversarial_

Examples.ipynb/. Published: 2019-01-06.

[19] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-

fool: a simple and accurate method to fool deep neural networks. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

2574–2582, 2016.

[20] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay

Celik, and Ananthram Swami. The limitations of deep learning in adversarial

settings. In 2016 IEEE European symposium on security and privacy (Eu-

roS&P), pages 372–387. IEEE, 2016.

[21] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give

a false sense of security: Circumventing defenses to adversarial examples. In

International conference on machine learning, pages 274–283. PMLR, 2018.

75

https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e
https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data
https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data
https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data
https://en.wikipedia.org/wiki/Voronoi_diagram
https://github.com/oscarknagg/adversarial/blob/master/notebooks/Creating_And_Defending_From_Adversarial_Examples.ipynb/
https://github.com/oscarknagg/adversarial/blob/master/notebooks/Creating_And_Defending_From_Adversarial_Examples.ipynb/
https://github.com/oscarknagg/adversarial/blob/master/notebooks/Creating_And_Defending_From_Adversarial_Examples.ipynb/

Bibliography

[22] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas

Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Ku-

rakin. On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705,

2019.

[23] Jonathan Uesato, Brendan O’donoghue, Pushmeet Kohli, and Aaron Oord.

Adversarial risk and the dangers of evaluating against weak attacks. In Inter-

national Conference on Machine Learning, pages 5025–5034. PMLR, 2018.

[24] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based ad-

versarial attacks: Reliable attacks against black-box machine learning models.

arXiv preprint arXiv:1712.04248, 2017.

76

	Introduction
	Computer vision and security concerns
	A relevant flaw of neural networks: adversarial examples
	Adversarial examples in the real world

	Thesis map

	Background on Neural Networks
	Functionality of an artificial neuron
	Sigmoid function
	Hyperbolic tangent function
	Rectified linear unit function

	Layers and architecture of the network
	Training of the network
	Backpropagation and Stochastic Gradient Descent (SGD)
	Mean squared error loss function
	Cross-entropy loss function

	Introduction to common datasets

	Gaussian class conditional simplex method
	Feature extractor
	Loss function
	Decision rule

	Evaluating adversarial robustness
	Non targeted attacks
	Fast Gradient Sign Method (FGSM)
	Projected Gradient Descent (PGD)
	DeepFool

	Targeted attacks
	Targeted Gradient Sign Method (TGSM)
	Jacobian Saliency Map Attack (JSMA)

	State of the art of the defense methods
	Gradient masking
	Adversarial Training

	Defenses Evaluation Framework
	State a threat model
	Principles for rigorous evaluation

	Experiments on GCCS networks
	Adversarially trained models results
	Deepen PGD adversarial training
	Different confgurations comparison

	Latent space analysis when applying PGD and TGSM
	Additional experiments
	Insights into iterative attacks
	Target class assignment
	Target distribution parameters

	Conclusions and future works
	Bibliography

