
POLITECNICO DI TORINO

Dipartimento di Elettronica e Telecomunicazioni

Corso di Laurea Magistrale in Communications and Computer Networks

Engineering

Tesi di Laurea Magistrale

Next Generation Honeypot for IoT

Supervisors:

Prof. Marco MELLIA

Prof. Danilo GIORDANO

Candidate:

Eustachio CANCELLIERE

S278031

December 2021

Contents

List of Tables vi

List of Figures vii

1 Introduction 3

1.1 Research questions . 5

1.2 Methodology . 6

1.3 Organization of the thesis . 7

2 State of the art 8

2.1 Honeypot taxonomy . 8

2.2 IoT honeypot state of the art . 10

2.2.1 IoTCandyJar . 10

2.2.2 ThingPot . 11

2.2.3 U-PoT . 13

3 Methodology description 14

3.1 Laboratory testbed description . 14

3.1.1 Mon(IoT)r Testbed environment 15

3.2 Network scanning . 17

3.2.1 IoT device scanning . 18

iii

3.2.2 Nmap scanning . 19

3.3 Tcpdump capture methodology applied 20

3.4 Automatic packet parsing with Scapy 24

3.4.1 Metadata collected . 25

3.5 Dictionary creation using MongoDB 25

4 Analysis IoT devices and captured traffic 28

4.1 IoT devices footprinting . 28

4.2 Devices active scanning . 29

4.3 Mitmproxy against IoT devices . 32

4.4 Network traffic analysis . 32

4.4.1 Global traffic statistics per device 33

4.4.2 Analysis of the ports used 36

4.4.3 Second level domains contacted per device 39

4.4.4 Analysis of TLS usage . 40

4.5 Wansview camera feature extraction 43

4.6 Outcomes . 45

5 HuePot in the wild 46

5.1 Honeypots implementation . 46

5.1.1 HuePot . 47

5.1.2 Tanner . 47

5.1.3 CameraObscura . 48

5.2 Analysis of the requests received by HuePot 48

5.3 Analysis of global activities . 51

5.4 Analysis of the remote hosts in common 54

5.5 Path amplification factor computation 56

5.5.1 Analysis of the variation trend of the paths 58

iv

5.6 Outcomes . 62

6 Conclusion and future works 63

6.1 Conclusions . 63

6.2 Future works . 65

v

List of Tables

3.1 Set of actions performed for each device 23

4.1 IoT device features fetched from Internet 30

4.2 Nmap port scanning results . 31

4.3 Second level domain resolved per device 40

4.4 TLS version advertised and established per device 41

4.5 Wansview API . 44

5.1 CVE found in requests received by HuePot and compared against

Tanner and CameraObscura . 50

vi

List of Figures

1.1 Steps performed . 7

2.1 Honeypot taxonomy scheme described in [9] 10

2.2 IoTCandyJar honeypot scheme described in [13] 11

2.3 ThingPot honeypot scheme represented in [12] 12

2.4 U-PoT honeypot scheme represented in [14] 13

3.1 Mon(IoT)r testbed . 16

3.2 Pcap capture folder tree . 22

3.3 Example of Mongodb document . 26

3.4 Example MongoDB query using Compass 27

4.1 Number of bytes transmitted locally and remotely per device 33

4.2 Example of plain text API exchanged between devices and their

companion app . 35

4.3 UDP TCP bytes transmitted by each device 36

4.4 UDP TCP bytes received from each device 36

4.5 HTTP bytes exchanged . 37

4.6 TLS bytes exchanged . 37

4.7 Number of remote ports contacted per device 39

4.8 Number of ports used in reception by each device 39

vii

4.9 Netatmo camera TLS Bad Certificate 42

4.10 Wansview request and response with tokens and access key 44

5.1 Scanners activity against HuePot 50

5.2 Different remote hosts that contacted the honeypots per day 51

5.3 Overall number of requests received per day 52

5.4 Number of unique requests received per day 53

5.5 CDF of the number of paths received from each remote host 54

5.6 Jaccard Similarity Index of the remote hosts that contacted the

honeypots per day . 54

5.7 Percentage of traffic generated by IPs in common HuePot vs Tanner

per day . 56

5.8 Percentage of traffic generated by IPs in common HuePot vs Cam-

eraObscura per day . 56

5.9 Percentage of traffic generated by IPs in common Tanner vs Cam-

eraObscura per day . 56

5.10 CDF of the percentages of traffic generated by IPs in common . . . 56

5.11 Path Amplification Factor between HuePot and CameraObscura vs

Tanner (baseline) . 57

5.12 CDF of the path global variation between HuePot and CameraObscura 58

5.13 Path percentage variation of the paths received by HuePot 60

5.14 Path percentage variation of the paths received by CameraObscura 61

viii

Abstract

The exponential growth of the number of IoT devices in the last years will increase

the number of attacks perpetrated against them, since more IoT devices will be

used to carry out illegal activities on the Internet. An example may be Mirai, a

botnet composed of 200.000 and 300.000 infected device with peaks of 600.000

infected devices, mainly routers and cameras. In 2016 it was able to launch

DDoS attacks against Krebs on Security and Deutsche Telekom leaving 900.000

Germans offline. This poses a great threat for all the systems and infrastructures

connected to Internet since they may be of vital importance for human daily

activities. Nowadays many solutions have been developed to identify threaths from

the Internet such as Firewalls, Honeypots, Intrustion Detection Systems. On the

other hand, given the limited number of Honeypot solutions for IoT devices, we

present a methodology to build a digital twin of an IoT device obtained through

the interaction with the physical device and then use it as honeypot. A digital twin

gives a logical representation of a physical device and is able to emulate its internal

state. We developed a software to automatically parse the packets captured during

the interaction between a user and an IoT device, extract statistics and store the

packet fields in a database. This database represents the dictionary of requests

and responses used to build the digital twin of a given device. We applied this

methodology on a testbed environment composed of an heterogeneous set of popular

IoT home network devices connected through the Internet via a router instrumented

1

Abstract

with our tool. We also tried to perform man in the middle in order to increase the

amount of plain text traffic exchanged from each device using mitmproxy with no

success, since no app trusted the mitmproxy self signed certificate. We performed

some analysis on the captured traffic for all the devices and we found out that all

of them exchanged traffic mainly with respect to remote hosts than directly with

their companion app although they were in the same LAN network. Moreover they

contacted a handful of remote ports for both TCP and UDP protocols. The analysis

of the TLS version used showed that although it is considered a recommendation to

not support prior version than TLSv1.2, the vast majority of devices were still using

TLSv1.0 during the Client Hello handshake, whereas the servers presented most of

the times at least a TLSv1.2 version in Server Hello handshake. A few of them

supported also TLSv1.0 and TLSv1.3. In order to have a proof of the effectiveness

of this methodology we have built a first digital twin based on a Philips Hue Bridge

that we have used as honeypot. We exposed this honeypot on the Internet and

we collected traffic from August to mid November. Moreover it was recognized

as an IoT device by Shodan. We then compared the traffic received from this

honeypot with respect to other two honeypots that are Tanner and CameraObcura

running in the same months. Tanner is a generic honeynet that emulates basic

web sites running on port 80 whereas CameraObscura is impersonating a D-Link

camera. The analysis of the CVEs discovered in the requests sent from remote

hosts revealed that our honeypot was able to detect more exploits directed against

IoT devices such as cameras or home routers. Moreover the amplification path of

the common requests between is grater than 1 on average with respect to Tanner.

None of the requests performed against HuePot were APIs belonging to a Philps

Hue bridge. We speculated that remote hosts could be more interested to HuePot

and CameraObscura than Tanner because their percentage of growth of the paths

is much evident than Tanner.

2

Chapter 1

Introduction

The Internet of Things defines a network of connected devices with low capability

in storage and computing, like sensors, actuators and more in general, embed-

ded devices. Because of this lack of resources it is not possible to adopt high

level security mechanisms, hence they are more vulnerable and more likely to

be successfully exploited by adversaries. On the other hand this type of devices

are everywhere in our everyday lives, from home network devices like routers,

connected cameras, smart speakers, smart cars, to infrastructures and industrial

environment. According to Cisco Annual Internet Report [1] in 2018 the amount

of devices connected to Internet was 18.4 billion and the amount of IoT devices

accounted for 33%, 6.1 billion. By 2023 instead the amount of IoT devices will be

around 14.7 billion, 50% of the overall amount of networked devices which will be

around 30 billion. This poses a great threat if we consider that already in 2018

SonicWall [2] was able to record 32.7 million IoT malware attacks globally. In

the first semester of 2019 Kaspersky [3] detected more than 100 millions attacks

against their honeypots, whereas in the first half of 2018 they detected around 12

millions threats. In the first half of 2021 Kaspersky [4] detected 1.5 billion attacks

against IoT devices, 58% of them was carried out through Telnet protocol. The

3

Introduction

attacks conducted against IoT tried to take control of the devices through the

automatic exploitation of known and yet not fixed vulnerabilities that could be one

listed on some kind of database like National Vulnerability Database1 or a zero-day

vulnerability. Another important threat is represented by botnets, a set of devices

that have been infected by a malware and can be controlled by a command and

control in a centralized way or through a P2P decentralized model. A botnet can be

used for many purposes, like DDoS attacks, mining, or can also be bought by other

cybercriminals. A well known botnet is Mirai, which appeared for the first time in

late 2016 and according to Antonakakis et al. [5] it was able to reach a steady state

population in the range between 200.000 and 300.000 infections with a peak of

600.000 infected devices, mainly routers and cameras, by bruteforcing Telnet and

SSH login before of collapsing at 100.000 infections by the end of February 2017.

With this amount of devices it was able to launch DDoS attacks against Krebs on

Security [6] with an astonishing 600 Gbps volume of traffic and Deutsche Telekom

[7] among the others. During the years, after the release of Mirai source code [8]

many botnet are born from it, like Gafgyt, Hajime and the number of Mirai like

botnets is still growing. In order to keep up with respect to this quickly evolving

environment it is necessary to always be up to date with respect to the newest

threats that may compromise a network. On the other hand, if a network is under

attack, we would like that such attack would be deflected against some physical or

virtual device that can be compromised without harming the devices that we would

like to protect. Both goals can be accomplished through the implementation and

deployment of a Honeypot. In this thesis we present a methodology based on the

creation of a database of requests and responses exchanged by a set of IoT devices

in order to build a digital twin for each of them. In this way it is possible to reflect

with a given level of accuracy the state of a physical device. As a consequence of

1https://nvd.nist.gov/

4

https://nvd.nist.gov/

Introduction

this, it is possible to build a honeypot based on the digital twin of a real device

in such a way that we avoid to expose directly a physical device on Internet with

the risk of being compromised. Moreover we avoid to contact IoT devices publicly

available on the Internet to get the responses for a request that is not present in

the database.

1.1 Research questions

In the thesis we want to understand what type of features can we extract from the

traffic generated by IoT devices, and whether by exposing a honeypot built upon

the digital twin of a real IoT device we are able to achieve better performances in

terms of volume of traffic received and interest from remote hosts than a generic

honeypot. More in detail we try to answer to the following questions:

• What type of features are we able to extract from the analysis of the traffic

generated toward a wide group of IoT devices?

• What type of differences are present in the traffic collected by a digital twin

honeypot with respect to generic honeypots or IoT ones built differently?

• Are we able to detect whether a remote scanner was interested in our honeypot

by analyzing the requests received?

We show that there are some common features in the traffic exchanged by IoT

devices that could be useful in the detection phase of such devices connected to a

network. Moreover we show that the honeypot built with this method is able to

achieve globally better performances in terms of volume of traffic received from

remote scanners with respect to Tanner and CameraObscura. An initial analysis

on the paths received from HuePot showed that it received more requests related

to IoT devices than the other two honeypots. In the end the from analysis of

5

Introduction

the percentage of growth of each path received by HuePot and CameraObscura

computed on a daily basis showed that the paths received only by HuePot had an

higher growth than those received only from CameraObscura, probably because

HuePot was recognized as an IoT devices by an higher number of scanners than

CameraObscura and Tanner.

1.2 Methodology

The adopted methodology is composed of different steps reported in figure 1.1.

1. Firstly we develop a software to perform packet parsing and dictionary (or

database, from now on we will use both therms interchangeably) creation

automatically. In this way we can use a traffic sniffer tool and the pcap fields

can be automatically inserted in a database of packets captured per device.

2. The second step was to study the IoT devices present in the lab collecting

as much informations as possible about the features they implement through

researches on Internet and active scanning. Then we applied the aforemen-

tioned methodology and we performed some further analysis about the traffic

collected.

3. In the third step we select a set of the packets stored in the database related

to a Philips Hue and we use them to set up a first honeypot named HuePot.

4. In the last step we compare the traffic collected from the previous honeypot

with respect to the traffic collected from another generic honeypot called

Tanner2 and CameraObscura3 that simulates the behaviour of a D-Link DCS-

2530L camera.

2https://github.com/mushorg/tanner
3https://github.com/CMSecurity/CameraObscura

6

https://github.com/mushorg/tanner
https://github.com/CMSecurity/CameraObscura

Introduction

Figure 1.1: Steps performed

1.3 Organization of the thesis

The next chapters are organised as follows: in Chapter 2 we present the honeypot

taxonomy and the state of the art honeypots. In Chapter 3 we describe the

laboratory testbed and the tools used to capture traffic, perform packet parsing

and generate the dictionary of collected packets. In Chapter 4 we present the

outcomes of the analysis performed on the traffic collected from the devices present

in the laboratory. In Chapter 5 we present HuePot, a honeypot built using the

methodology described in Chapter 3 and we compare the traffic gathered by HuePot

with respect to the traffic collected by Tanner and CameraObscura. Finally in

Chapter 6 we present the conclusions and the future works.

7

Chapter 2

State of the art

In this chapter we present a honeypot definition and the taxonomy associated to

this concept. Then we describe some IoT honeypot features and we present some

state of the art honeypots.

2.1 Honeypot taxonomy

A honeypot is a security tool composed of a computer system that is intended to

attract cyberattacks, like a decoy. It mimics a target for hackers, and uses their

intrusion attempts to gain information about cybercriminals and the way they are

operating, or to distract them from other real targets. There exist many honeypots

of different types, implementations and goals. Also, a set of honeypot can form

a honeynet. This type of security mechanism has some benefits with respect to

traditional Intrusion Detection Systems: in IDS systems the false negative frequency

can be high and administrator may ignore the alarms generated by the system, in

honeypot the frequency of false positives alarms triggered by unimportant events

mistaken as attacks is by definition very low because they are deployed in darknets,

and any interaction with them is only due to malicious traffic. On the other hand

8

State of the art

the frequency of false negatives is also low for the same reason.

As reported by Javier Franco et al.[9] existing honeypots can be classified with

respect to the set of parameters showed in 2.1. Among the other parameters, low

interaction honeypots only emulate a set of protocols, without giving access to the

operating system. This kind of honeypot is easy to be set up, less costly, with low

risk of being compromised, hence less maintenance. On the other hand they can

be easily detected by attackers because of those limitations. An example of low

interaction honeypot is Honeyd [10], which is able to create a set virtual hosts on

a network running different type of services like Telnet, Pop, Rpc, Snmp, with

different types of operating systems. This last feature is based on the transport layer

packet crafting. It works mainly as distraction to slow down potential attacks. High

interaction honeypots can be obtained using real devices or virtual environment

that emulates a device. On the other hand this comes at an higher cost in terms of

resources because the risk of being compromised is higher and once compromised

there is the need to rebuilt the system, hence this type of honeypot needs higher

maintenance costs. An example of high interaction honeypot is Siphon [11], which

is composed of a set of physical IoT devices like IP cameras, NVR, IP printer

that are connected to the internet through a set of tunnels, in such a way that

on the internet are present 85 real IoT devices in different geographical regions,

hence reaching high scalability. Medium interaction honeypots provide a level of

interaction in between a low interaction and high interaction honeypot emulating

more services than a low interaction at an higher risk of being compromised, but

making them more difficult to be detected. An example of medium interaction

honeypot is ThingPot [12].

Another important parameter is the purpose of a honeypot: research honeypots

are used to gather and analyze information about attacks in order to discover new

attacks and to develop better protection against them. Production honeypots are

9

State of the art

usually implemented to divert an attack from a valuable asset to a decoy, hence

preventing the access to the actual system of the organization that implements it.

The honeypot based on the methodology implemented in next chapters can be

considered a medium high interaction honeypot since it emulates the status of a real

device with low risk of being compromised because it does not expose a real device

or a virtual environment, hence requiring less maintenance. The methodology

applied guarantees an high level of scalability since it is possible to expose a number

of digital twins proportional to the number of physical devices from which it is

possible to extract traffic.

Figure 2.1: Honeypot taxonomy scheme described in [9]

2.2 IoT honeypot state of the art

2.2.1 IoTCandyJar

T.Luo et al. proposed IoTCandyJar [13], an intelligent interaction honeypot that is

able to simulate an IoT device without the risk of the honeypot being compromised.

Indeed the honeypot gathers the responses for the requests captured by sending

those requests to IoT devices publicly available on Internet through a module

called “IoT scanner”. From the responses gathered they can build the behaviour

of different devices. In this way there is no need to purchase IoT devices or to

10

State of the art

Figure 2.2: IoTCandyJar honeypot scheme described in [13]

virtualize them in order to build a high interaction honeypot. They also use a

module called “IoT learner” to train a ML model based on Reinforcement Learning

to learn which is the response that an attacker expect with highest probability in

order to maximise the interaction with it, hence having a more realistic response.

The drawback of this method is related to the usage of probes sent to real IoT

devices in Internet that must not harm the devices, so it is necessary to take a

proper filtering action before sending those probes.

2.2.2 ThingPot

Meng Wang et al. proposed ThingPot [12], a medium interaction honeypot able

to simulate an entire IoT platform implemented with XMPP and a REST API to

mimic the behaviour of a Philips Hue smart lighting system. The attacker could

connect to the honeypot instances directly through the REST APIs or as XMPP

client as well. Most of the captured requests were REST HTTP requests with

respect to the XMPP part. From the logs it was possible to note that attackers

were looking for devices like Philips Hue, Belkin Wemo, TPlink. Once they had

found one, they would attack it to take control of the device through fuzzing or

brute force. They also noted that often the attackers were using TOR network to

11

State of the art

hide their identities. Also a set of scanning tools were used to gather informations

and left their fingerprints in the logs like Nikto1, masscan2 and others.

Figure 2.3: ThingPot honeypot scheme represented in [12]

1https://cirt.net/Nikto2
2https://github.com/robertdavidgraham/masscan

12

https://cirt.net/Nikto2
https://github.com/robertdavidgraham/masscan

State of the art

2.2.3 U-PoT

Muhammad A. Hakim et al. proposed U-PoT [14], a honeypot framework specific

for IoT devices that uses UPnP protocol. This framework allows to automatically

create a honeypot representation from the UPnP device description documents

extracted from IoT devices, hence reaching high scalability. Its ability of emulating

real devices has been tested considering four emulated devices, all of them were

seen as real devices by OpenHAB3.

Figure 2.4: U-PoT honeypot scheme represented in [14]

3https://www.openhab.org/

13

https://www.openhab.org/

Chapter 3

Methodology description

This chapter describes the methodology applied to capture, parse and store packets

in order to build a dictionary where each entry corresponds to a packet captured

that could be used to interact with an attacker. We describe and show the network

setup used to connect the devices and we describe Nmap, the tool used to perform

active scanning on the devices. Then we describe Tcpdump packet sniffer and

the methodology applied to perform traffic capture. After that we describe the

packet parser tool built using Scapy Python library. In the end we will discuss the

database MongoDB choice and how entries have been stored in the dictionary.

3.1 Laboratory testbed description

All the sessions of packet capture have been performed using the IoT laboratory of

Smartdata research group at Politecnico di Torino. The laboratory environment is

based on the Mon(IoT)r Testbed1 realized and deployed by Imperial College and

used in the work presented by Ren et al. [15] about information exposure related

1https://moniotrlab.ccis.neu.edu/tools/

14

https://moniotrlab.ccis.neu.edu/tools/

Methodology description

to IoT devices. This setup allows eventually the labs where this testbed is deployed

to connect to each other through VPN to perform experiments using each other

lab.

3.1.1 Mon(IoT)r Testbed environment

Mon(IoT)r testbed is a software that allows to create a controlled environment with

either wired and wireless network connectivity provided to IoT devices, allowing to

perform automatic collection of traffic related to devices connected to it. This traffic

is then tagged automatically by MAC address or IP address. Moreover the testbed

allows to define different virtual network interfaces used to run multiple experiments

independently from each other in a controlled or uncontrolled environment. In the

controlled network it is possible to run experiments with respect to a single device

because it will be part of an isolated environment, whereas in an uncontrolled

network environment the devices can see each other and can communicate. It is

also possible to perform man-in-the-middle of HTTP and TLS connections. The

testbed requires a set of software components that are Mitmproxy, Tcpdump in

order to perform packet capture, ISC DHCP to automatically assign IP addresses

and iptables to redirect traffic for MITMT purposes. There are also a set of software

components developed by [15] that allow to control the testbed. For our tests

we performed packet capture and MITM manually, whereas we used the network

interfaces of the Mon(IoT)r testbed.

In the following lists is represented the set of network interfaces present in the

tesbed, whereas in figure 3.1 is reported the testbed implementation:

• eth0: used to intercept all the traffic exchanged from/to Internet

• eth-switch: interface that hosts switch-vlan10, switch-vlan11, switch-

vlan12 virtual interfaces. The first is used for uncontrolled experiments,

whereas the others are used for controlled experiments

15

Methodology description

Figure 3.1: Mon(IoT)r testbed

• eth-mirror: interface used to perform port mirroring of the traffic running

on the eth-switch switch interface. It hosts virtual interfaces mirror-

vlan10, mirror-vlan11, mirror-vlan12, used to perform mirroring of

vlan10,vlan11,vlan12.

• wlan0: Wi-Fi adapter on 2.4GHz network that hosts the virtual interfaces

wlan0.1, wlan0.2, wlan0.3, used for unctontrolled experiments

• wlan1: Wi-Fi adapter on 5GHz network that hosts the virtual interfaces

wlan1.1, wlan1.2, wlan1.3, used for controlled experiments

• wlan2: Wi-Fi adapter on 5GHz network that hosts the virtual interfaces

wlan2.1, wlan2.2, wlan2.3, used for controlled experiments

16

Methodology description

Those interfaces are then bridged together in the following configuration:

• br9: used to bridge eth-switch, wlan0, wlan1, wlan2 interfaces

• br10: used to bridge uncontrolled network traffic interfaces switch-vlan10,

wlan0.1, wlan1.1, wlan2.1

• br11: used to bridge controlled network traffic interfaces switch-vlan11,

wlan0.2, wlan1.2, wlan2.2

• br12: used to bridge controlled network traffic interfaces switch-vlan12,

wlan0.3, wlan1.3, wlan2.3

3.2 Network scanning

Network scanning defines a set of techniques used to extract fingerprints from

a network such as the number of hosts present in a network, whether they are

reachable, what devices are present, the services they are running and possibly

the presence of known vulnerabilities, in order to perform further analysis on the

system based on the information extracted. Network scanning can be divided in

two main categories that are active scanning and passive scanning.

Active scanning works by sending automatically crafted probes to a target host

in order to extract the informations previously cited. In this way it is possible to

interact with all the hosts present in a network crafting generic or targeted probes.

In this category we can find network scanning, port scanning and vulnerability

scanning. The drawbacks of this set of techniques is that they can become very

intrusive and as a consequence there is the need to allocate bandwidth to this type

of scanning procedures, hence they could damage the behaviour of the hosts present

in a network. Another drawback is represented by the presence in a network of

firewalls and IDS that could log the traffic generated by scanners as harmful and

17

Methodology description

as a consequence it would be dropped, hence the scanning would be ineffective.

Passive scanning instead allows to extract information related to an host by sniffing

the traffic that it generates without any type of interaction with the endpoints.

Indeed there is no need of crafting probes and as a consequence of this, it is not

intrusive. If there is a firewall in the system, it is more likely that a passive scanning

would be successful than an active scanning. Moreover because it does not require

bandwidth it can be deployed for long term analysis. On the other hand a drawback

of this technique is that if a host in a network is silent and does not generate traffic,

it will not be fingerprinted.

3.2.1 IoT device scanning

Also IoT devices can be fingerprinted using active or passive scanning with the

goal of building some sort of classifier. This can be accomplished also because IoT

devices performs very limited tasks and as a consequence of this their behaviour

could be very predictable with respect to the behaviour of non IoT devices in terms

of generated traffic. On the other hand it is important to choose the right features

that must be extracted and that could be used to build a classifier. Sivanathan

et al. [16] proposed a method to recognise an IoT device in a network by actively

scanning its open ports using TCP probes with the aim of building a hierarchical

classifier of TCP ports to scan in order to recognise the IoT devices running in a

given network. Shahid et a.l [17] proposed a method to perform device recognition

based on passive scanning of the network traffic and selecting as features the sizes of

the first N packets received and sent, plus the first N-1 inter-arrival times between

the first N packets received and sent. They were able to reach an accuracy of 99.9%

related to what device has generated the traffic using a Random Forest Classifier.

18

Methodology description

3.2.2 Nmap scanning

Nmap (Network Mapper) is an open source, cross platform active scanning tool

that has been used to detect the port status of the set of devices presented in table

4.1. It is used among the others, to perform host discovery, port scanning, service

version and OS detection. It works using specially crafted packets, like the one

described in [18]. Based on the type of response received and if it has been received

one, it is possible to define the status of a port the service running on it and the

OS. As reported on the Nmap manual2, the status of a port can be:

• Open: there is a service listening on that port

• Closed: no service is listening on that port

• Filtered: a firewall blocks Nmap such that it cannot state if a port is open

or close

• Unfiltered: there is no firewall blocking the port but Nmap cannot state if

it is open or close

There are also other port status that are open|filtered or closed|filtered, which

state that Nmap cannot distinguish whether a port is open or filtered or if it is

closed or filtered respectively. There exist many port scanning techniques that

Nmap implements that rely on UDP and TCP transport layer protocol. Some of

them are the following:

• TCP syn scan: it is based on Nmap sending a SYN packet to the host under

scanning. If it receives back a packet with RST flag the port is closed, if it

receives back a packet with SYN/ACK flag the port is open whereas if it does

not receive anything, the port is marked as filtered. It is very fast as it does

2https://nmap.org/book/man.html

19

https://nmap.org/book/man.html

Methodology description

not perform an entire TCP connection set up but on the other it requires root

privileges on the attacking machine.

• TCP connect scan: it is based on setting up an entire TCP connection set

up and as a consequence of this, it is slower than TCP SYN scan and it can

be easily logged on receiver’s machine. It can be used when a user does not

have root privileges because it uses the connect system call that is also used

by other processes.

• UDP scans: it sends UDP packets without payload to generic ports, whereas

for well known ports running UDP it sends a specific payload. The UDP

scanning is generaly slower than TCP scanning because open and filtered

ports do not send back any response and Nmap must retransmit the packet

before considering a port as open|filtered.

• TCP NULL, FIN, and Xmas scans: it is based on sending TCP packets

setting the flag NULL, FIN or all the flags active.

3.3 Tcpdump capture methodology applied

The packet capture has been performed using Tcpdump, a command line packet

sniffing tool that can be used to analyze the behaviour of the hosts present in a

network and the traffic generated by their application. It is a powerful tool that

allows to capture traffic based on many protocols selecting a network interface.

It also allows to perform packet filtering, as shown in 3.1. This traffic can be

stored with pcap file extension for further analysis using other tools like Wireshark,

since both are based on libpcap3 library. The traffic captured was generated by

a smartphone Android using the apps provided by each vendor. This choice is

3https://github.com/the-tcpdump-group/libpcap

20

https://github.com/the-tcpdump-group/libpcap

Methodology description

sustained by the works proposed by Mauro Junior et al.[19] and [20] about the

security flows found in the source code of the companion apps of IoT devices.

Indeed they were able to find that Android app Kasa for Mobile companion for

TP-Link smart plug used a custom encryption function Caesar cipher and an

hardcoded seed to encrypt the communications in local network. They also were

able to decrypt the traffic exchanged between a custom app build based on the

vulnerabilities found in Kasa app and the smart plug. The capture operations have

been performed using the options reported in code snippet 3.1. Each capture has

been stored in a pcap file with a filename divided in device name, action performed

and date. Each file then was saved in a tree of different folders as reported in

figure 3.2. In this way it was possible to implement a wrapper in the packet parser

program that has facilitated the pcap file parsing.

Listing 3.1: Example of capture performed with Tcpdump
1 sudo tcpdump host 192 . 168 . 10 . 109 −s0 −i eth−mirror −w

philips_hue_turn_on_$ (date +"%d_%m_%Y_%H_%M_%S") . pcap

21

Methodology description

Figure 3.2: Pcap capture folder tree

22

Methodology description

Dev name Action captured
Amazon Echo Spot Turn on

Press mute button
Vocal commands
Local interactions

Amazon Echo Dot Turn on
Press mute button
Vocal commands

Press action button
Google Home Mini Turn on

Vocal commands
Factory reset

Philips Hue Bridge 2.0 Turn on
Phone pairing
User lights

Wansview Q5 Factory reset
Camera rotate
Disable video

Enable microphone
Enable video
Record video

Turn on
Yi Home Camera Turn on

Record video
Enable video

Enable microphone
Disable video

Netatmo NSC01-EU 2.0 Turn on
Enable video
Disable video
Phone pairing

Xiaomi Domo Camera Turn on
Record video
Enable video

Enable microphone
Disable video
Camera rotate

TP-Link HS110 Turn on
Switch on
Switch off

Table 3.1: Set of actions performed for each device

23

Methodology description

3.4 Automatic packet parsing with Scapy

The packet parsing operations have been performed using a program for packet

manipulation and forging called Scapy4, which is able to work with many protocols.

It is also based on libpcap library, hence it can be used to read Tcpdump or

Wireshark packets capture sessions as well. It can be used as shell or as a library

to be included in other projects, in our case we used the latter solution in order

to make the process of reading a pcap file, extracting the fields of each protocol

layer and storing them in a database, as much automatic as possible. Other than

Scapy the program uses other libraries like NFStream5, Pymongo6, Chardet7. The

program is composed of the following elements:

• set of classes, one for each protocol, developed in order to store all the fields

that we consider useful for a given protocol. The list of protocols extracted

contains: Ethernet, IP, ICMP, ESP, TCP, UDP, HTTP, TLS.

• methods that are called in order to parse and extract the fields of a packet,

generate metadata and try to detect the encoding of the payload using the

aforementioned library Chardet. If Chardet is not able to decode a payload, it

will be stored as a bytes object. Moreover during the packet extraction phase

it will update the statistics related to each protocol stack layer.

• methods used to create an entry of the packet extracted in the dictionary

using Pymongo library. In this way the fields extracted in previous phase are

put together in a dictionary data structure that is passed to the database.

4https://scapy.net/
5https://www.nfstream.org/
6https://pypi.org/project/pymongo/
7https://pypi.org/project/chardet/

24

https://scapy.net/
https://www.nfstream.org/
https://pypi.org/project/pymongo/
https://pypi.org/project/chardet/

Methodology description

• methods used to compute and update statistics for each protocol layer such as

the frequency of each protocol, overall number of packets exchanged, the ports

used in transmission and reception for TCP and UDP. This set of statistics

aggregated per device has been stored in a csv file for further analysis. Due

to issues related to the statistics computed with this method, they have been

recomputed using Tshark instead.

• methods used to compute and update statistics per flow using NFStream and

ndpiReader, both are based on nDPI library. It has been used to extract for

each flow the application name, application category and the requested server

name. This set of statistics aggregated per device action has been stored in a

csv file for further analysis.

3.4.1 Metadata collected

The set of metadata collected comprises information related to the device name,

device action, number assigned to a packet belonging to a given flow, the encoding

for a given payload retrieved by chardet, flow direction (whether a flow is received

from a device or sent to), flow number associated to each flow per device action.

All those parameters have been included in each entry of the dictionary in order to

ease the answer process to a particular request sending the sorted packets belonging

to a given flow.

3.5 Dictionary creation using MongoDB

After the packet parsing phase it was necessary to collect and store all the data as

entries of a database of responses used against possible requests that the honeypots

received. The choice of the DBMS to use was between a relational database such

as MySQL and a non relational database such as MongoDB. The first database is

25

Methodology description

Figure 3.3: Example of Mongodb document

composed of a set of tables where a new entry is stored as a row. The new entry

must match all the fields of that table in a fixed way. In order to retrieve some

data from SQL like database it is necessary to perform a SQL query joining many

tables in order to have a complete view of the required data. On the other hand,

because this type of database has a fixed and static structure, it looses in terms

of flexibility with respect to MongoDB. Indeed MongoDB is a NoSQL database,

meaning that it does not use SQL in order to create and operate on a database. It

26

Methodology description

is composed of a set of collections where each entry (the corresponding of a row in

a MySQL database) is a JSON or BSON document. The flexibility of this model

lies behind the possibility to store heterogeneous documents with different type of

fields and structure of the information in the same collection, allowing to easily

handle high volume of data with a complex structure in faster way than a MySQL

database could, as shown by Győrödi et al. [21] and by Boicea et. al [22]. Moreover

in MongoDB a query can be performed among the others through REST API, CLI

if we are using the MongoDB shell or a specific set queries depending on the type

of GUI or programming language we are dealing with, as reported in the MongoDB

documentation8.

Because of the heterogeneity and the high volume of the data collected, it was

chosen MongoDB as database. The database obtained is composed of one collection

that contains all the documents that have been generated by the packet parser

program. Each document contains all the fields extracted from every packet plus

the metadata described in section 3.2.1. The graphical representation of an entry

is shown in figure 3.3 where it is possible to observe how in a document are stored

many data type at the same time. Moreover the Transport and the Application

layers can be different from packet to packet, increasing the heterogeneity in the

data collected. An example of a query using MongoDB Compass is shown in figure

3.4, which query will select all the documents matching the device name, device

action and the destination IP fields. An example of document is shown in figure

3.3.

Figure 3.4: Example MongoDB query using Compass

8https://docs.mongodb.com/manual/tutorial/query-documents/

27

https://docs.mongodb.com/manual/tutorial/query-documents/

Chapter 4

Analysis IoT devices and

captured traffic

In this chapter describe the IoT devices on which the metodology described in the

previous chapter was applied. We describe what data we were able to find looking

for public available material on the Internet regarding each of them. Then we show

the features extracted using Nmap and man in the middle tools like Mitmproxy.

In the end we presented the statistics extracted from the traffic exchanged between

devices and their companion app using the automatic packet parser described in

the previous chapter, Tshark and Tstat, making comparisons with respect to other

works on IoT network traffic analysis.

4.1 IoT devices footprinting

In our experiments are involved devices belonging to a wide set of different home

network IoT categories, like smart speaker, IP camera, smart lighting, smart plug.

For each category we selected the devices that an average consumer would buy,

following the same methodology of [15]. In table 4.1 is presented the list of devices

28

Analysis IoT devices and captured traffic

used and the category they belong to. In order to obtain as much information

as possible we performed extensive research for each device looking for features

that could be useful in further analysis and traffic captures, like the presence of

APIs, whether a device allows local or cloud communications, the presence of

known vulnerabilities that could be that could be exploited remotely. As it is

possible to observe in table, all the devices use cloud communication and can be

locally and remotely controlled through their companion app. For what concern

the APIs available for each device, some of them are released by the vendor like

Philips Hue, others are unofficials, like Google Home Mini. All of them have an

authentication mechanism such as a token that can be obtained by connecting the

user developer account to the API authorization url and that must be retrieved

before of using the APIs, like Netatmo camera Oauth2 mechanism. Philips Hue

instead implements a mechanism that allows to retrieve a token after having pressed

the button present on the device. For what concern Wansview camera, the vendor

did not release a documentation about the available APIs and also in this case

the only APIs available are unofficial. All the IP cameras present in that list can

also store video content locally on a micro SD, whereas Xiaomi Domo Camera

allows to store recordings on the cloud. Regarding the known vulnerabilities found

on the National Vulnerability Database, they account for vulnerabilities that can

be remotely exploited without considering those that could lead to DDoS attacks.

The vulnerabilities present in that column are related to information disclosure like

those of Google Home Mini and Philips Hue, or command injection, like the one

related to the Netatmo Camera. The CVE found were already fixed.

4.2 Devices active scanning

During the port scanning phase for each device we retrieved the port status, the OS

running on each device and the service version of the process running on a given

29

Analysis IoT devices and captured traffic

Dev name Dev type LAN comm. Cloud comm. API avail. Known CVE

Amazon Echo Spot Smart speaker NO YES Off. API No CVE found
Amazon Echo Dot Smart speaker NO YES Off. API No CVE found
Google Home Mini Smart speaker NO YES Unoff. API CVE-2018-12716

Philips Hue Bridge 2.0 Bridge YES YES Off. API No CVE found
Wansview Q5 IP camera YES YES Unoff. API CVE-2012-3002

Yi Home Camera IP camera NO YES No API No CVE found
Netatmo NSC01-EU 2.0 IP camera YES YES Off API CVE-2019-17101
Xiaomi Domo Camera IP camera YES YES No API No CVE found

TP-Link HS110 Smart plug YES YES Unoff. API No CVE found

Table 4.1: IoT device features fetched from Internet

port. The final report is shown in table 4.2, where we have reported not only the

open ports, but also the closed and the open|filtered ports for completeness reasons.

What comes up is the very high number of open ports for the Google Home Mini

that may be an issue if that device is not frequently updated because for each

open port is present a service that could be affected by a given vulnerability. As

a consequence of this it may provide many pathways for attackers to exploit the

device starting from the services running on those open ports. Another issue is

related to UDP ports: if one of those devices that have UDP open ports is exposed

on the Internet it may act as a reflector for DDoS attacks, as reported in [23].

Indeed many IoT devices use protocols like SSDP, CoAP and SNMP that use UDP

at transport layer. An example of them is Philips Hue Bridge that is using port

1900/UDP to run UPnP which has been detected as open|filtered by Nmap.

30

Analysis IoT devices and captured traffic

Device name OS version detected Port Status Service Version service

Amazon Echo Spot Linux 2.2.x-3.x 5000/udp open|filtered upnp
5353/udp open|filtered zeroconf
55442/tcp open nagios-nsca
55443/tcp open ssl/unknown

Amazon Echo Dot Linux 2.2.x-3.x 1080/tcp open socks5
8888/tcp open sun-answerbook
55442/tcp open nagios-nsca
55443/tcp open ssl/unknown

Google Home Mini Linux 3.1-3.10 8008/tcp open http
8009/tcp open ajp13
8012/tcp open unknown
8443/tcp open https-alt OpenSSL 1.1.1j-dev 2.0.7 static
9000/tcp open cslistener

100001/tcp open scp-config
10005/tcp open stel
10101/tcp open ezmeeting-2
5353/udp open zeroconf
68/udp open|filtered dhcpc

33434/tcp closed traceroute
Philips Hue Bridge 2.0 Linux 2.2.x-3.x 80/tcp open http nginx 1.x

443/tcp open https OpenSSL 1.1.1j-dev 2.0.7 static
8080/tcp open http-proxy
5353/tcp open zeroconf
1900/udp open|filtered upnp UPnP/1.0

Wansview Q5 Linux 3.1-3.10 80/tcp open http lighttpd/1.4.52
554/tcp open rtsp AJSS/1.0.4

65000/tcp open unknown
68/tcp closed sptx
68/udp closed dhcpc

40404/tcp closed dhcpc
39402/tcp closed htpdate htpdate/1.1.30
9999/tcp open abyss
5353/udp open|filtered zeroconf

Yi Home Camera Linux 2.2.x-3.x 5353/udp open|filtered zeroconf
4131/tcp closed stars

Netatmo NSC01-EU 2.0 Linux 3.1-3.10 22/tcp filtered ssh
80/tcp open http lighttpd/1.4.58

5555/tcp filtered freeciv
5353/tcp open|filtered zeroconf
61374/tcp open unknown
5001/tcp open commplex-link

Xiaomi Domo Camera Not detected 5353/udp open|filtered zeroconf
68/udp closed dhcpc

32770/udp closed sometimes-rpc4
TP-Link HS110 Linux 2.2.x-3.x (barebone) 9999/tcp open abyss

68/udp open|filtered dhcpc
1490/udp open|filtered insitu-conf

Table 4.2: Nmap port scanning results

31

Analysis IoT devices and captured traffic

4.3 Mitmproxy against IoT devices

After the initial scan performed using Nmap we tried to intercept and replay HTTP

and HTTPS messages exchanged between companion app and the IoT devices. We

used a tool called "mitmproxy" [24] to perform this task. Unfortunately all the

traffic exchanged between smartphone and devices were encrypted except for few

messages. As a consequence of this we installed the mitmproxy certificate authority

on the client Android smartphone but none of the IoT apps under test trusted

the mitmproxy CA. This is in accordance with [15], where it is reported to not

have performed MITM of TLS connections because it failed most of the time in

their preliminary work and when successful it could affected devices behaviour.

Indeed we should have performed one of the operations reported in [25] in order

to correctly install a CA on client and IoT device, but those operations do not

scale well with respect to the amount of devices we used because they needed some

extra work depending on where the CA file had to be installed, hence they were

considered out of the scope of this thesis.

4.4 Network traffic analysis

In this section we describe the statistics of the traffic captured aggregated per device.

Firstly we present a set of global statistics, like the amount of bytes exchanged

with UDP and TCP. Then we analyze the amount of remote hosts contacted and

port numbers used to exchange traffic. In the end we describe some features related

to the TLS protocol mechanisms implemented by the devices and the second level

domain of the remote hosts contacted. This analysis can give an overview of the

traffic generated by devices that can be used to build a mechanism of fingerprinting

and classification of IoT devices based on their traffic peculiarities. Some devices

send also API in clear text used for example to identify themselves, like Philips Hue,

32

Analysis IoT devices and captured traffic

Netatmo camera, Wansview Camera and the Amazon Echo Spot. Other devices

uses different ports, like Google Home mini that exchanges traffic on the 443/UDP.

A peculiarity of Xiaomi camera is that it connects to the highest number of remote

ports for UDP traffic. A difference between Amazon Echo Dot and Echo Spot is in

the number of different ports that both devices use to communicate with remote

hosts due to a different number of flows generated. For what concern TLS usage,

the SSLv3 can be considered a peculiarity of a Wansview Camera with respect to

the other devices, whereas the usage of TLSv1.3 can be considered a peculiarity of

a Google Home Mini.

4.4.1 Global traffic statistics per device

Figure 4.1: Number of bytes transmitted locally and remotely per device

In figure 4.1 we show that all the devices exchanged traffic through the Internet in

order to communicate with the smartphone. TP-Link and Yi camera have the lower

number of bytes exchanged probably because the duration of the experiment was

too short. Netatmo camera, Philips Hue and Wansview camera instead exchange

33

Analysis IoT devices and captured traffic

a portion of traffic directly with the smartphone apps. Analysing the captured

packets, we were able to extract a set of features related to the local traffic:

• Netatmo camera exchange locally only TCP and HTTP traffic in plain text. No

encryption mechanisms were found in the local communications. An example

of HTTP stream is reported in figure 4.2. This API has been exchanged

during the connection procedure between IoT device and its companion app

and it is sent periodically from the smartphone. After the set up of the

communication, all the other api exchanged locally that have been captured

have the same string f9f507e945c526717588d346ccef374a. The HTTP requests

captured include files with .ts extension to the smartphone which requested

them via GET method.

• Philips Hue Bridge exchanges traffic locally using SSDP, HTTP and TLS

protocol. Indeed this device implements UPnP protocol based on SSDP

to interact with other devices in the network. As a consequence of this it

periodically sends broadcast discovery messages in order to declare its presence

in the network, as reported in the documentation [26]. HTTP protocol instead

is mainly used during connection phase between device and app, when the

device sends data in json format about the device itself, as reported in figure 4.2.

After that, all the successive communications between device and companion

app are encrypted.

• Wansview camera transmits locally only UDP traffic related to real time

communications toward its companion app. There is only one HTTP API

sent in clear text captured during the connection phase between camera and

app that has been reported in figure 4.10.

In figure 4.3 and 4.4 are reported the overall amount of UDP and TCP bytes

in transmission and reception per device. The devices use TCP protocol mainly

34

Analysis IoT devices and captured traffic

(a) Philips Hue Bridge API

(b) Netatmo Camera API

(c) Amazon Echo Spot API

Figure 4.2: Example of plain text API exchanged between devices and their
companion app

for HTTP and TLS traffic, whereas UDP traffic is mainly used for NTP and DNS

data essential for the correct functioning of the devices. Netatmo camera uses ESP

protocol based on UDP to communicate with remote hosts. From the figure we

observe that the number of bytes exchanged using TCP protocol is higher than

UDP for all the devices, except for Google Home, Wansview and Xiaomi camera,

that instead use UDP packets also to communicate with remote hosts or directly

35

Analysis IoT devices and captured traffic

with the smartphone.

Figure 4.3: UDP TCP bytes trans-
mitted by each device

Figure 4.4: UDP TCP bytes re-
ceived from each device

In figure 4.5 and 4.6 are represented the amount of bytes exchanged using

HTTP and TLS protocols. It is evident that TLS traffic is way higher than HTTP

exchanged traffic. Nevertheless there are a few plain text messages exchanged

between devices and smartphone app or remotely for all the devices except for

TP-Link smart plug and Yi camera for which no HTTP messages have been

captured. Another example shown in figure 4.2 is related to Amazon Echo Spot,

which periodically contacts a remote host using the api in figure to retrieve a Kindle

Reachability Probe Page.

4.4.2 Analysis of the ports used

In figure 4.7 we show the number of distinct UDP and TCP remote ports that

each device contacted. Those values are much smaller than the number of distinct

TCP and UDP ports that each IoT device used to transmit and receive traffic

36

Analysis IoT devices and captured traffic

Figure 4.5: HTTP bytes exchanged Figure 4.6: TLS bytes exchanged

except for TP-Link, Xiaomi Camera and Yi camera, as reported in figure 4.8. The

traffic exchanged on UDP ports is mainly related to NTP and DNS protocols, since

the devices connect most of the times to port 53/udp and 123/udp. Each device

then differs from one to another with respect to other ports it uses: for example

a peculiarity of Google Home Mini device is that it connects to port 443 UDP

of remote hosts because it uses QUIC protocol. The remaining UDP ports are

specific for each device and are used to exchange data. Xiaomi camera contacts

the highest number of different UDP remote ports because it exchanges UDP data

traffic not related to NTP or DNS protocols contacting different remote ports on

different hosts. The TCP ports instead are used to exchange encrypted traffic on

port 443/tcp or, in a much lower part, plain text traffic directed to port 80/tcp of

remote hosts. The same behaviour has been found in the work of Mainuddin et al.

Network Traffic Characteristics of IoT Devices in Smart Homes [27], in which they

compared the number of remote ports and the number of different second level

domains contacted by IoT devices and non-IoT devices. A similar work has been

37

Analysis IoT devices and captured traffic

carried out by Sivanathan et al. [28]. In both cases and in our tests IoT devices

used to connect to a handful of remote ports for both TCP and UDP services and

those numbers are smaller than the number of different remote ports contacted by

non IoT devices.

On the other hand the number of different ports used from each IoT device is much

higher than the number of open ports that the Nmap classified as open ports for

both UDP and TCP protocols, as reported in figure 4.8. This behaviour can be

explained with the fact that those devices may have a set of predefined rules for

which they must block all the incoming traffic on a given port but they open a

port only if they need to communicate. On the other hand Amazon Echo Spot and

Amazon Echo Dot opened a different number of ports communicate with remote

hosts although they share the same vendor: from the pcap files captured Echo

Spot uses an higher number of TCP ports in transmission because it generates an

higher number of flows than Echo Dot according to Tshark: the number of TCP

flows for Echo Spot is 195, whereas the amount of TCP flows for Echo Dot is 103.

38

Analysis IoT devices and captured traffic

Figure 4.7: Number of remote ports
contacted per device

Figure 4.8: Number of ports used
in reception by each device

4.4.3 Second level domains contacted per device

In table 4.3 are reported the second level DNS accessed by IoT devices obtained

using Tstat1. As it is possible to observe, devices built by the same vendor share a

similar set of domains, like Amazon Echo Spot and Amazon Echo Dot. It is also

present the domain name meethue.com, which has been contacted by Echo Dot

probably because of some interactions between Echo Dot and Philips Hue. Amazon

Echo Dot contacted the domain mediaset.net when we required the news as a vocal

command. In general the number of different remote domains contacted per device

is limited to a handful of domains. This is in line with [28]: they found out that

IoT devices tend to contact a smaller number of domains compared to non IoT

devices.

1http://tstat.polito.it

39

http://tstat.polito.it

Analysis IoT devices and captured traffic

Device Name Domains
Amazon Echo Spot amazon.com

amazonvideo.com
aiv-delivery.net
googleapis.com
amazonaws.com
cloudfront.net
amazoncrl.com
amazon.co.uk

amazonalexa.com
amazon.it

amcs-tachyon.com
Amazon Echo Dot amazon.com

cloudfront.net
meethue.com
mediaset.net

fireoscaptiveportal.com
theplatform.eu

Google Home Mini googleapis.com
google.com
gstatic.com

googleusercontent.com
capital.it

googlevideo.com
Philips Hue Bridge 2.0 Not found

Wansview Q5 ajcloud.net
Yi Home Camera xiaoyi.com

Netatmo NSC01-EU 2.0 netatmo.net
Xiaomi Domo Camera mi.com

TP-Link HS110 tplinkra.com
tplinkcloud.com

Table 4.3: Second level domain resolved per device

4.4.4 Analysis of TLS usage

In table 4.4 are reported for each device the TLS version advertised with the Client

Hello message and established through Server Hello message as part of the TLS

Handshake phase. The version established will be the highest version supported

40

Analysis IoT devices and captured traffic

Device Name Version advertised Version established
Amazon Echo Spot TLSv1.0 TLSv1.2

TLSv1.0
Amazon Echo Dot TLSv1.0 TLSv1.2
Google Home Mini TLSv1.0 TLSv1.3

Philips Hue Bridge 2.0 TLSv1.0 TLSv1.0
TLSv1.2
TLSv1.3

Wansview Q5 TLSv1.2 TLSv1.2
SSLv3

Yi Home Camera TLSv1.2 TLSv1.2
Netatmo NSC01-EU 2.0 TLSv1.0 TLSv1.2

TLSv1.0
Xiaomi Domo Camera TLSv1.0 TLSv1.2

TP-Link HS110 TLSv1.2 TLSv1.2

Table 4.4: TLS version advertised and established per device

between client and server. As a consequence of this, the vast majority of the devices

will set up connections using TLSv1.2, which is a non deprecated version. Nowadays

SSLv3.0, TLSv1.0 and TLSv1.1 are considered deprecated whereas TLSv1.2 is

the recommended version, as reported in [29], and [30]. Moreover IETF suggests

to remove the support to versions older than TLSv1.2 in order to reduce the

attack surface. The table in figure 4.4 instead reports that Client Hello messages

uses TLSv1.0 most of the times and in the case of the Wansview Camera, also

SSLv3. Moreover it is the only device to advertise two different TLS versions. This

behaviour has been shown and analyzed also in the work IoTLS: Understanding

TLS Usage in Consumer IoT Devices proposed by Paracha et al. [31]. According

to that work, an IoT device may contain different TLS instances that different

software can use independently from each other. For what concerns the established

version, most of the devices uses at least TLSv1.2 version, for example Google

Home Mini sets up connections using only TLSv1.3. There are some devices like the

Amazon Echo Spot, Philips Hue Bridge 2.0, Netatmo NSC01-EU 2.0 that establish

41

Analysis IoT devices and captured traffic

Figure 4.9: Netatmo camera TLS Bad Certificate

also connections using TLSv1.0 for different purposes.

• Philips Hue Bridge 2.0 establishes connections with a remote host which

contacts the device when it was turned on and during the connection between

device and companion app.

• Amazon Echo Spot establishes a connection with a remote host to which it

sends a Client Hello with TLS version TLSv1.0. On the other side the remote

host sends back a Server Hello with TLS version TLSv1.0 as well. For that

remote host the maximum TLS version is TLSv1.0.

• Netatmo NSC01-EU 2.0 establishes connections with different remote hosts

to which it sends a Client Hello with TLS version TLSv1.0 the remote hosts

send back a Server Hello with TLS version TLSv1.0. This means that also

for this remote host the highest TLS version supported is TLSv1.0. Another

peculiarity of the traffic extracted is related to the handshake performed

between the device and a remote host for which it is issued a Bad Certificate

TLS alert message. After that message both endpoints try to perform the

handshake one more time, but now the remote host present a TLSv1.0 version

in Server Hello, whereas the camera uses a different port number. Once the

connection has been teared down the camera uses TLSv1.0 version whereas

the Server uses TLSv1.2 for further handshakes. In figure 4.9 is reported the

entire set of handshake steps.

42

Analysis IoT devices and captured traffic

4.5 Wansview camera feature extraction

After the analysis of the global traffic we selected an Wansview Q5 camera to

perform further analysis that could be useful to build the digital twin of an

IoT device. The choice fell on this device because it had both port 80/tcp for

HTTP protocol, 554/tcp for RTPS protocol open and also it was known the

service version running on port 80/tcp. Moreover the vendor provides App for

iOS, Android and Windows Phone, PC software for Windows and Mac, plus

it is possible to control the camera through IE, Chrome and Firefox browsers.

This camera is shipped with hardcoded default username and password that are

admin and 123456 respectively. From the mobile app it was possible to extract

the structure of the API related to the RTSP protocol communications, that

is rtsp://[username]:[password]@[ip-address]:554/live/ch0. On the other

hand the vendor does not provide any APIs, but because this camera can work

with third party software like iSpy, Blueiris, IP Cam Viewer, we were able to find

a set of API for many Wansview models, included ours. As a consequence of this

we tried all of them, including also those APIs related to other cameras of the

same vendor, but the vast majority of them didn’t work except for the first two

rows in table 4.5, that return a snapshot of the camera and that are specific of

another model of camera which is Wansview Camera W6. Moreover they did not

require any username and password to be used unlike the RTSP uri. Because of

this we tried to run Nikto vulnerability scanner against it but with no success.

No recent vulnerabilities have been found on NVD and on Exploit-db2 databases

related to this device. On Metasploit there were no exploits related to this camera,

nor to this lighttpd version. The search for vulnerabilities on lighttpd/1.4.52 led

to CVE-2019-11072, which has already been patched. The other exploits related

2https://www.exploit-db.com/

43

https://www.exploit-db.com/

Analysis IoT devices and captured traffic

to lighttpd accounted for other versions. The last option was to sniff the traffic

generated between the smartphone Wansview app and the camera. It was possible

to extract another API using Tcpdump, which is sent in clear text and that carries

a body in json format that includes an access token and an access key, as reported

in figure 4.10. In red is represented the request sent with header and payload from

the smartphone, whereas in blue is represented the response header and payload

of the camera. All the other communications were UDP packets hence it was not

possible to extract any other API.

Method API
GET /api/v1/snap.cgi?chn=0
GET /api/v1/snap.cgi?chn=1
POST /api/v1/lan-probe

Table 4.5: Wansview API

Figure 4.10: Wansview request and response with tokens and access key

44

Analysis IoT devices and captured traffic

4.6 Outcomes

The port scanning phase shows that some devices like Google Home Mini have

many open ports, which may be a problem if the device is exposed on the Internet

because those ports may represent a threat if the service version running on those

ports is no up do date. Moreover perform man in the middle against IoT devices

requires to adopt different strategies that may change from device to device and

could also invalidate the correct behaviour of the devices. The analysis of the traffic

exchanged between devices and their companion apps shows that TCP traffic is

used to exchange HTTP and TLS packets, whereas UDP traffic is used to exchange

traffic related to NTP and DNS. Apart from that, some devices, like Google Home,

Wansview Camera and Xiaomi Camera use UDP also to exchange data and Philips

Hue uses UPnP on port 1900/UDP. There is a trend in IoT devices for which they

contact a lower number of remote ports and remote second level domains than a

non-IoT device. This can be explained by the limited complexity of this type of

devices because they only perform a few number of limited tasks. On the other

hand the number of ports used to transmit traffic is much higher even though

Nmap did not detect them. Moreover the TLS version advertised by IoT devices is

lower than TLS version established by remote hosts probably because of lack of

maintenance of the software installed on the devices. On the other hand remote

hosts tend to use more updated TLS versions. The most important result that

comes out from the analysis of the Wansview camera is that this type of devices

are shipped with hardcoded username and password. If the credentials are not

modified and the device is exposed on the Internet a remote host may take control

of them. This is the answer to the first question of paragraph 1.1

45

Chapter 5

HuePot in the wild

In this Chapter we present HuePot, a first digital twin honeypot based on a Philips

Hue Bridge. We presented also other two honeypots called Tanner and CameraOb-

scura that we used as baseline to prove the effectiveness of the methodology applied.

Firstly we made some comparisons of the global activities between the honeypots

with respect to the volume of traffic captured, then we investigate the similarity

between the set of remote hosts that contacted each honeypot and the frequency

with which each path appeared in each system and the percentage of variation of

each path over time. Thanks to the outcomes we answer to the last two questions

of paragraph 1.1.

5.1 Honeypots implementation

In this section we describe the implementation details of each honeypot and the

informations extracted from an initial analysis of the traffic collected by HuePot.

46

HuePot in the wild

5.1.1 HuePot

HuePot was built starting from a subset of HTTP responses that we were able

to intercept in clear text using Tcpdump. We have chosen to emulate this device

because although the number of APIs intercepted is not big enough to have a

complete description of it, many APIs are available on the Internet. Indeed we used

them to increase the number of APIs that a remote host could request. After that

we have set up a virtual machine running Ubuntu 20.04.2 LTS. Starting from the

informations gathered through Nmap, we opened port 80/tcp and 8080/tcp and

we run nginx/1.18.0 web server on the first port, whereas no services were installed

on the latter. We did not open udp ports such as 1900/udp because of security

reasons related to amplification DDoS attacks. On port 80/tcp we run the APIs

and the banner grabbed on the Internet related to the device. HuePot collected

traffic from 11th August to 10th November. The IP assigned was 130.192.167.247.

5.1.2 Tanner

Tanner is a honeynet composed of 16 IP addresses divided in two groups: a first

octet of IPs has many open ports but not all of them run a service. A second octet

of IPs instead has only port 80/tcp opened running a Nginx Web application server.

Tanner is composed of two different components that are Tanner itself and Snare.

Tanner1 performs data analysis, classification and evaluation of the HTTP requests

received. It also decides how Snare should answer to an attacker. Snare2 on the

other hand is able to convert generic web pages to attack surfaces that serves to

the attacker. It was used as baseline with respect to HuePot and CameraObscura

to compare them against a generic honeypot that uses as response a generic web

1https://github.com/mushorg/tanner
2https://github.com/mushorg/snare

47

https://github.com/mushorg/tanner
https://github.com/mushorg/snare

HuePot in the wild

page. Because of the presence of 16 different IPs, the comparisons between HuePot

or CameraObscura and Tanner have always been performed considering only one

IP from Tanner or averaging the data fetched from the two octects. When HuePot

was set up, this honeynet was already running. The traffic collected by Tanner is

referred to a period from August to the first days of October. Unfortunately it did

not work continuously all the days of those months due to some issues present.

5.1.3 CameraObscura

CameraObscura3 is a honeypot able to fake an IP Camera implementing features

such as login attempts or firmware upload. We decided to fake a D-Link DCS-2530L

IP camera because from HuePot logs we observed a request that was trying to

exploit a vulnerability in that camera related to an unauthenticated endpoint

that allows to get remote authentication and password disclosure. The request

is /config/getuser?index=0. The goal is to compare the traffic collected by

HuePot and another honeypot that is emulating an IoT device which does not

expose the real web pages of the device in question. CameraObscura had only

port 80 opened and collected traffic from 1st October to 10th November. The IP

assigned was 130.192.167.246.

5.2 Analysis of the requests received by HuePot

In this paragraph we describe some peculiarities of the requests received by HuePot.

This analysis could give us a first understanding about how remote hosts performed

scans against HuePot. From the paths and the user agent of the requests received

by HuePots it was possible to extract different scanning tools and organizations

3https://github.com/CMSecurity/CameraObscura

48

https://github.com/CMSecurity/CameraObscura

HuePot in the wild

that sent traffic toward this honeypot The scanning tools observed are the fol-

lowing: Masscan4, works like Nmap but is able to perform massive port scanning

possibly over the entire Internet. Nuclei5 is a vulnerability scanner which scans

the hosts sending them requests forged starting from a template filled to exploit

a given vulnerability. Colly6 is a scraper. On the other hand the organizations

found are reported in figure 5.1. Censys and Shodan are search engines that scan

the Internet to return reports of the devices found. NetSystemResearch7 is an

independent organization that scans the Internet focusing on security topics such

as IoT proliferation. LeakIX8 is a platform that like Shodan indexes services and

misconfigurations of devices found all over the Internet. Project Resonance9 scans

the Internet to study the security state of the Internet.

For what concerns the requests received by HuePot we have found many vulnera-

bilities that the remote hosts were trying to exploit. Some of them are reported in

figure 5.1, where it is represented the number of times a requests has been received

by the three honeypots and the percentage with respect to the total amount traffic

received. Those vulnerabilities are related to embedded devices, mainly home

routers and IP cameras. Remote code execution of an endpoint is the preponderant

vulnerability they try to exploit. Many vendors have been found, such as D-Link

and Netgear. From the table we can observe that some of those requests were

not observed in Tanner and CameraObscura. From this analysis we can make an

initial hypothesis that because HuePot was recognized as an IoT device, it may

have received more different requests crafted to exploit IoT devices than the other

4https://github.com/robertdavidgraham/masscan
5https://github.com/projectdiscovery/nuclei
6https://github.com/gocolly/colly
7https://www.netsystemsresearch.com/
8https://www.leakix.net/
9https://github.com/redhuntlabs/Project-Resonance

49

https://github.com/robertdavidgraham/masscan
https://github.com/projectdiscovery/nuclei
https://github.com/gocolly/colly
https://www.netsystemsresearch.com/
https://www.leakix.net/
https://github.com/redhuntlabs/Project-Resonance

HuePot in the wild

two honeypots.

Figure 5.1: Scanners activity against HuePot

CVE_ID HuePot Percentage
HuePot CamObscura Percentage

CameraObscura Tanner Percentage
Tanner

Device
Type

CVE-2021-20090 11 0.065 0 0.0 0 0.0 Home Router
/boaform/admin/formLogin 634 3.754 204 4.327 77 2.829 Home Router
CVE-2018-10561 85 0.503 11 0.233 0 0.0 Home Router
CVE-2020-10987 4 0.024 0 0.0 0 0.0 Home Router
CVE-2021-29294 50 0.296 27 0.573 0 0.0 Home Router
CVE-2018-20057 4 0.024 0 0.0 0 0.0 Home Router
/setup.cgi?next_file=netgear.cfg
&todo=syscmd&cmd= 98 0.58 14 0.297 0 0.0 Home Router

CVE-2021-33544 3 0.018 0 0.0 0 0.0 IP Camera
CVE-2020-25078 461 2.729 148 3.139 73 2.682 IP Camera
CVE-2019-8387 2 0.012 0 0.0 0 0.0 IP Camera
/cgi-bin/hi3510/getidentify.cgi 20 0.118 12 0.255 5 0.184 IP Camera
CVE-2019-12725 73 0.432 25 0.53 0 0.0 Zeroshell OS
/board.cgi?cmd=cd 45 0.266 0 0.0 0 0.0 NVR
CVE-2017-17106 1 0.006 0 0.0 0 0.0 Webcam

CVE-2016-5639 3 0.00018 0 0.0 0 0.0
Wireless
Presentation
System

Table 5.1: CVE found in requests received by HuePot and compared against
Tanner and CameraObscura

50

HuePot in the wild

5.3 Analysis of global activities

In this paragraph we study the traffic that the honeypots received per day in

terms of different remote IPs, number of hits and number of visits. In the end we

compute the CDF of the overall amount of paths sent from each remote host. The

analysis have been performed considering the same days in which the two couples

HuePot-Tanner and HuePot-CameraObscura received at least one path. Tanner

has been split in two groups, one represents the set of IPs with more than one open

port, a second group instead represents a set of IPs with only port 80/tcp open.

The statistics related to Tanner have been averaged with respect to the number of

IPs present in each group. HuePot volume of traffic observed is related to port 80

and 8080.

(a) HuePot vs Tanner (b) HuePot vs CameraObscura

Figure 5.2: Different remote hosts that contacted the honeypots per day

In figures 5.2 we report the number of different IPs that contacted the honeypots

per day. In figure a we compared HuePot with respect to the two Tanner dataset.

We observed that HuePot was scanned by an higher number of different IPs per

day than Tanner. Both groups of Tanner after some time show a decrease in the

51

HuePot in the wild

number of different IP received, probably because the remote scanners were no

more interested in its activity. In figure b we observed that HuePot number of

different IPs received on port 80 daily is lower than CameraObscura, whereas

globally HuePot received an higher number of different IPs.

(a) HuePot vs Tanner (b) HuePot vs CameraObscura

Figure 5.3: Overall number of requests received per day

In figure 5.3 we show the overall volume of traffic generated by remote hosts per

day. In figure a we observe a considerable difference between the volume of traffic

hitting HuePot and the two groups of Tanner. In figure b instead we observe that

HuePot a lowera amount of requests on port 80 with respect to CameraObscura and

the total amount of traffic hitting HuePot is higher than CameraObscura for some

periods. We conclude that the similar shape in figure b could be due to the share

of a group of remote scanners in common between HuePot and CameraObscura.

Some of the peaks in both figures are due to the periodic scanning and bruteforce

activity performed by some remote hosts that hit both HuePot and CameraObscura

whereas they did not target Tanner in the period of observation. All the requests

performed ended with index.php?lang=en.

52

HuePot in the wild

(a) HuePot vs Tanner (b) HuePot vs CameraObscura

Figure 5.4: Number of unique requests received per day

In figure 5.4 we compare the amount of unique requests received per day by the

three honeypots. In figure a we observe that HuePot received an higher variety

of different paths per day than Tanner. In figure b instead we note that HuePot

assumes values close to CameraObscura although it has two open ports. Like in

the previous analysis, the peaks occurring in some days are due to the activity of

scanners that performed many different brute force requests related to SQL and

PHP vulnerabilities, all ending with index.php?lang=en.

In figure 5.5 we show the cumulative distribution function of the overall amount

of requests sent from each remote host. In figure a, we note that the 90% of IPs

that contacted HuePot generated a very small number of requests. On the other

hand the number of IPs that contacted Tanner generating a few requests is lower

than HuePot. This difference could be due to Tanner exposing more complex web

pages on the Internet. As a consequence of this, when a remote scanner requested

a page, it indirectly downloaded also the set of paths that compose that page. In

figure b we note that the IPs produce the same amount of requests between HuePot

and CameraObscura since the CDFs are overlapping.

53

HuePot in the wild

(a) HuePot vs Tanner (b) HuePot vs CameraObscura

Figure 5.5: CDF of the number of paths received from each remote host

5.4 Analysis of the remote hosts in common

Figure 5.6: Jaccard Similarity Index of the remote hosts that contacted the
honeypots per day

After an initial analysis of the global activity we investigate the amount of remote

hosts in common between the three honeypots. To perform this computation we

considered only the days in which a couple of honeypots received at least one

path and we computed the similarity index between the sets using the Jaccard

Index as follows J(HuePot_Tanner) = |HueP ot_rh∩T anner_rh|
|HueP ot_rh∪T anner_rh| . From figure 5.6 it is

possible to observe how in general the Jaccard Index assumes low values due to high

54

HuePot in the wild

levels of random traffic that was logged during the days. Moreover the similarity

Index between CameraObscura and Tanner is very low because during the days in

common Tanner received very low amount of traffic. Considering instead the pairs

HuePot vs Tanner and HuePot vs CameraObscura, it comes out that the similarity

index in this second comparison is higher than the first one, such that HuePot and

CameraObscura had more remote scanners in common than HuePot and Tanner.

This behaviour could be explained with two different hypothesis: HuePot and

CameraObscura shared an higher number of remote scanners because they had

consecutive IPs. As a consequence of this, when a remote host scanned one of them,

also scanned the other, hence performing a side scanning. This behaviour has been

shown by Soro et al. in Enlightening the Darknets: Augmenting DarknetVisibility

with Active Probes (under review). Another explanation could be that they may

have been seen by remote scanners as IoT devices, hence they shared some remote

hosts.

Moreover we investigate the percentage of traffic generated by IPs in common

between the couple of honeypots on a daily basis. The results are shown in figure

5.7, 5.8, 5.9. In both figures 5.7 and 5.8 we observe that the percentage of traffic

generated by the percentage of IPs in common for each day is always lower in

HuePot than Tanner and CameraObscura. This is in line with figure 5.2, where

the amount of remote hosts found in HuePot during the days is always higher than

the amount of remote hosts found in the other two honeypots.

In the end in 5.7 and 5.10 Tanner reaches some peaks at 100% because in those

days the hosts in common generated the overall amount of requests received by

Tanner. In the end 5.10 summarizes the previously obtained figures.

55

HuePot in the wild

Figure 5.7: Percentage of traffic gen-
erated by IPs in common HuePot vs
Tanner per day

Figure 5.8: Percentage of traffic gen-
erated by IPs in common HuePot vs
CameraObscura per day

Figure 5.9: Percentage of traffic gen-
erated by IPs in common Tanner vs
CameraObscura per day

Figure 5.10: CDF of the percent-
ages of traffic generated by IPs in
common

5.5 Path amplification factor computation

In this paragraph we described more in detail the paths that HuePot, CameraOb-

scura and Tanner received, using Tanner as baseline to make comparisons. We

selected the paths in common received in the same period of time by HuePot and

Tanner or CameraObscura and Tanner respectively, and we computed the ratio

56

HuePot in the wild

(a) HuePot vs Tanner (b) CameraObscura vs Tanner

Figure 5.11: Path Amplification Factor between HuePot and CameraObscura vs
Tanner (baseline)

between the number of times a path was received by HuePot (or CameraObscura)

divided by the number of times in which the same path was received in Tanner.

Tanner on the other hand was divided in two groups, one group accounting for the

8 IPs with all the ports open and another group accounting for the other 8 IPs

with only port 80/tcp open. We computed two different amplification factor for

each comparison, averaging the Tanner groups with respect to the number of IPs

present in each group to have a fair one to one comparison between HuePot Tanner

couple and CameraObscura Tanner couple. The results have been shown in figure

5.11, where the red line represents the median value of the amplification factor

computed for each of the four scenarios. In all the cases the median value was

greater than one, such that there is an amplification factor between the number of

times a path has been received in HuePot (or CameraObscura) and Tanner. On the

other hand CameraObscura and Tanner had a smaller number of paths in common

that were received mainly by CameraObscura and as a consequence of this, the

distribution is narrower.

57

HuePot in the wild

5.5.1 Analysis of the variation trend of the paths

In this section we investigate the trend of variation of the paths received by HuePot

and CameraObscura being both emulations of IoT devices. The percentage of

variation has been computed considering for every day of observation of that path

the number of times it was observed in a given day divided by the number of

times that path was observed the first day. We consider the maximum value of

variation among all the days because we would detect how much a path could grow

or decrease before it changes its variation trend. On the other hand, percentages

below the 100% values have a decrease in the frequency, being the numerator lower

than the denominator. In figure 5.12 is reported the CDF of the percentage of

variation for all the requests (both common and not in common) received by HuePot

and CameraObscura in the same time period. We observe that both honeypots have

a trend of growth that on average is lower or equal to 200%. Tanner percentage of

variation on average is equal to the baseline, which means that the paths did not

increase day by day.

Figure 5.12: CDF of the path global variation between HuePot and CameraOb-
scura

58

HuePot in the wild

After the previous initial analysis we select the top 30 most received paths

observed in HuePot and CameraObscura in order to focus on the tail of the

distribution and compare the trend of growth with respect to the initial frequency.

The results are reported in figure 5.13 and 5.14. The blue lines represents the

percentage of variation of a path, whereas the orange lines represents the frequency

of the first day it was observed. The red lines represent the 100% baseline: a

percentage below that threshold means a decrease in the trend. In this way we

showed the starting point and the trend of variation with respect to the starting

point. The dots on both lines represent those paths that have been observed only

in HuePot or CameraObscura. From those plots we observe that none of the paths

with the highest growth are APIs of a Philips Hue or a D-Link camera. In both

plots is present /config/getuser?index=0 which can be used to exploit that type

of camera, but the growth are very similar in both honeypots we cannot conclude

that it was sent against CameraObscura with the goal of exploit it. Moreover

all the paths in the two honeypots start from a low initial frequency except for

the path ’/’. Indeed that path starts in HuePot with an initial frequency greater

than CameraObscura and its percentage of growth is also much higher than the

camera honeypot (between 350% and 400% in HuePot against around 100% in

CameraObscura).

59

HuePot in the wild

Figure 5.13: Path percentage variation of the paths received by HuePot

60

HuePot in the wild

Figure 5.14: Path percentage variation of the paths received by CameraObscura
61

HuePot in the wild

5.6 Outcomes

From the obtained results we observe that HuePot, considering traffic on both

ports, collected more traffic than Tanner and CameraObscura in terms of number of

requests received and number of different IPs observed. HuePot and CameraObscura

requests in common with Tanner are amplified by a quantity greater than 1 with

respect to the baseline Tanner and the similarity index between the remote hosts

that contacted the honeypots is greater between HuePot and CameraObscura

than HuePot and Tanner or CameraObscura and Tanner. On the other hand the

percentage of traffic generated by the percentage of IPs in common for every day

is lower in HuePot in both comparisons, meaning that HuePot received a greater

fraction of traffic that was not observed by the other two honeypots, which may be

due to the traffic on port 8080. In the end from the analysis of the vulnerabilities

of IoT devices we observe that some of them were not found in CameraObscura or

Tanner. This is the answer to the second question of paragraph 1.1.

From the analysis percentage of growth of the paths we observe that CameraObscura

and HuePot had a trend of growth greater than Tanner. We can speculate that

HuePot and CameraObscura have a bigger trend of growth because they send back

responses that attract other traffic. A hint to this behaviour is given by the fact that

Shodan tagged HuePot as an IoT device, whereas for CameraObscura it exposes

a set of vulnerabilities that could be present on the device based on the device

information Shodan extracts from the banner. On the other hand HuePot did not

receive any API targeting it probably because there are no known vulnerabilities

that can be exploited automatically by a scanner, hence we can assume that this

type of device is not interesting from a scanner point of view, even though it was

able to attract more traffic than Tanner. This is the answer to the third question

of 1.1.

62

Chapter 6

Conclusion and future

works

6.1 Conclusions

In this thesis we presented a new methodology to build a IoT honeypot based on

the digital twin of a real IoT device. Firstly we presented the methodology applied

to interact with the devices and extract the packets related to a set of actions

performed by each of them. Most importantly we presented an automatic packet

parsing program based on Scapy and MongoDB, which parsed the packets captured

from a set of pcap files and stored them in a MongoDB database.

Then we tried to extend our knowledges about the devices through active scanning

tools such as Nmap and Mitmproxy. From the passive scanning we observed that

the vast majority of the packets were exchanged using TLS instead of HTTP.

Each device contacted a small number of remote TCP and UDP ports, whereas

they used many more different TCP and UDP ports to transmit data. Also the

number of remote second level domain contacted is low. For what concern the

63

Conclusion and future works

TLS version advertised during TLS ClientHello, all the devices used TLSv1.0 or

TLSv1.2, whereas the version established during the TLS ServerHello was mainly

TLSv1.2, sometimes TLSv1.0 and just one device used TLSv1.3.

After that we built a first digital twin honeypot based on the APIs of a Philips Hue

Bridge, that we called HuePot. It was compared with other two honeypots that

were Tanner which answered with generic web pages and CameraObscura, which

was emulating a D-Link DCS-2530L camera. HuePot was contacted by an higher

number of different IPs and received more requests with respect to Tanner and

CameraObscura because it received traffic on port 80 and port 8080. On the other

hand HuePot and CameraObscura shared an higher number of remote scanners

in common because a remote host may have performed side scanning since their

addresses are close or because some remote hosts recognized both of them as IoT

devices. HuePot was also able to detect more requests related to IoT devices than

Tanner and CameraObscura.

In the end we have performed an in depth analysis of the path received by HuePot

CameraObscura and Tanner. It is important to underline that we do not have

an accurate method based on a set of features to detect whether a remote host is

interested to a given device or not and the work carried out in previous chapter must

be considered as a first step toward the resolution of this problem. We analyzed the

percentage of variation in the requests received by the three honeypots. We observed

that on average the growth in HuePot is equal to the growth in CameraObscura,

whereas Tanner percentages are on average on the baseline value. We can speculate

that HuePot and CameraObscura have a bigger trend of growth because they send

back responses that attract other traffic. A hint to this behaviour is given by the

fact that Shodan tagged HuePot as an IoT device, whereas for CameraObscura it

exposes a set of vulnerabilities that could be present on the device based on the

device information Shodan extracts from the banner. None of the paths received

64

Conclusion and future works

by HuePot or CameraObscura was specific of those devices.

6.2 Future works

In the future, we plan to use a methodology similar to the one described in [32] to

extract features that could be useful to understand whether a scanner is interested

to our honeypot. We plan to perform the digital twin of a more complex device

that has more complex pages, exposes more ports (such as port 23/tcp and port

80/tcp) and exposes known vulnerabilities that can be exploited remotely. We can

use the same methodology applied in this thesis to build the digital twin of such

device having the goal in mind to expose more pages and more attack surfaces on

the Internet. Some devices that can be used are routers and IP cameras. We can

define the following categories of remote scanners:

• Revisitor: those scanners that send always the same requests over time.

• Curious: those scanners that sends different requests considering both ports

over time in order to increase the knowledge of the system they are scanning

without exploiting the honeypot.

• Attackers: those scanners that have found a vulnerability exposed on one of

those two ports and actively try to exploit it.

We can extract the interarrival time between the first and the last scan performed

by each scanner that was previously included in one of the three aforementioned

categories. We can try to speculate whether there are differences in the interarrival

time of a revisitor a curious or an attacker and whether a remote host that scanned

a given port also tries to scan the other port.

65

Bibliography

[1] P. Grossetete. «IoT and the Network: What is the future?» In: (June 2020).

url: https://blogs.cisco.com/networking/iot-and-the-network-

what-is-the-future.

[2] G. Blaine. «SonicWall: Encrypted Attacks, IoT Malware Surge as Global

Malware Volume Dips». In: (Oct. 2019). url: https://blog.sonicwall.

com/en- us/2019/10/sonicwall- encrypted- attacks- iot- malware-

surge-as-global-malware-volume-dips/.

[3] «IoT under fire: Kaspersky detects more than 100 million attacks on smart

devices in H1 2019». In: (Oct. 2019). url: https://www.kaspersky.com/

about/press- releases/2019_iot- under- fire- kaspersky- detects-

more-than-100-million-attacks-on-smart-devices-in-h1-2019.

[4] C. Cyrus. «IoT Cyberattacks Escalate in 2021, According to Kaspersky». In:

(Sept. 2021). url: https://www.iotworldtoday.com/2021/09/17/iot-

cyberattacks-escalate-in-2021-according-to-kaspersky/.

[5] Antonakakis April Bailey et al. «Understanding the Mirai Botnet». In: (Aug.

2017). url: https://www.usenix.org/system/files/conference/usenix

security17/sec17-antonakakis.pdf.

66

https://blogs.cisco.com/networking/iot-and-the-network-what-is-the-future
https://blogs.cisco.com/networking/iot-and-the-network-what-is-the-future
https://blog.sonicwall.com/en-us/2019/10/sonicwall-encrypted-attacks-iot-malware-surge-as-global-malware-volume-dips/
https://blog.sonicwall.com/en-us/2019/10/sonicwall-encrypted-attacks-iot-malware-surge-as-global-malware-volume-dips/
https://blog.sonicwall.com/en-us/2019/10/sonicwall-encrypted-attacks-iot-malware-surge-as-global-malware-volume-dips/
https://www.kaspersky.com/about/press-releases/2019_iot-under-fire-kaspersky-detects-more-than-100-million-attacks-on-smart-devices-in-h1-2019
https://www.kaspersky.com/about/press-releases/2019_iot-under-fire-kaspersky-detects-more-than-100-million-attacks-on-smart-devices-in-h1-2019
https://www.kaspersky.com/about/press-releases/2019_iot-under-fire-kaspersky-detects-more-than-100-million-attacks-on-smart-devices-in-h1-2019
https://www.iotworldtoday.com/2021/09/17/iot-cyberattacks-escalate-in-2021-according-to-kaspersky/
https://www.iotworldtoday.com/2021/09/17/iot-cyberattacks-escalate-in-2021-according-to-kaspersky/
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf

BIBLIOGRAPHY

[6] B. Krebs. «KrebsOnSecurity Hit With Record DDoS». In: (2016). url:

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-

record-ddos/.

[7] B. Krebs. «New Mirai Worm Knocks 900K Germans Offline». In: (Nov. 2016).

url: https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-

900k-germans-offline/.

[8] B. Krebs. «Who is Anna-Senpai, the Mirai Worm Author?» In: (Jan. 2017).

url: https://krebsonsecurity.com/2017/01/who-is-anna-senpai-

the-mirai-worm-author/.

[9] J. Franco A. Aris B. Canberk A. Selcuk Uluagac. «A Survey of Honeypots

and Honeynets for Internet of Things, Industrial Internet of Things, and

Cyber-Physical Systems». In: (Aug. 2021), pp. 3–5. url: https://arxiv.

org/pdf/2108.02287.pdf.

[10] N. Provos. «Honeyd». In: (Dec. 2007). url: https://github.com/DataSoft/

Honeyd.

[11] J. Guarnizo A. Tambe S. Bhunia M. Ochoa N. Tippenhauer A. Shabtail and

Y. Elovici. «Siphon: Towards scalable high-interaction physical honeypots».

In: (Jan. 2017). url: https://arxiv.org/pdf/1701.02446.pdf.

[12] Wang Santillan Kuipers. «ThingPot: an interactive Internet-of-Things honey-

pot». In: (July 2018). url: https://arxiv.org/pdf/1807.04114.pdf.

[13] Tongbo Luo Zhaoyan Xu Xing Jin Yanhui Jia Xin Ouyang. «IoTCandyJar:

Towards an Intelligent-Interaction Honeypot for IoT Devices». In: (July 2017).

url: https://www.blackhat.com/docs/us-17/thursday/us-17-Luo-

Iotcandyjar- Towards- An- Intelligent- Interaction- Honeypot- For-

IoT-Devices-wp.pdf.

67

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://arxiv.org/pdf/2108.02287.pdf
https://arxiv.org/pdf/2108.02287.pdf
https://github.com/DataSoft/Honeyd
https://github.com/DataSoft/Honeyd
https://arxiv.org/pdf/1701.02446.pdf
https://arxiv.org/pdf/1807.04114.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Luo-Iotcandyjar-Towards-An-Intelligent-Interaction-Honeypot-For-IoT-Devices-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Luo-Iotcandyjar-Towards-An-Intelligent-Interaction-Honeypot-For-IoT-Devices-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Luo-Iotcandyjar-Towards-An-Intelligent-Interaction-Honeypot-For-IoT-Devices-wp.pdf

BIBLIOGRAPHY

[14] Muhammad A. Hakim Hidayet Aksu A. Selcuk Uluagac Kemal Akkaya. «U-

PoT: A Honeypot Framework for UPnP-BasedIoT Devices». In: (Dec. 2018).

url: https://arxiv.org/pdf/1812.05558.pdf.

[15] Jingjing Ren et al. «Information Exposure for Consumer IoT Devices: A

Multidimensional, Network-Informed Measurement Approach». In: Proc. of

the Internet Measurement Conference (IMC). 2019.

[16] Arunan Sivanathan, Hassan Habibi Gharakheili, and Vijay Sivaraman. «Can

We Classify an IoT Device using TCP Port Scan?» In: 2018 IEEE Interna-

tional Conference on Information and Automation for Sustainability (ICIAfS).

2018, pp. 1–4. doi: 10.1109/ICIAFS.2018.8913346.

[17] Mustafizur R. Shahid et al. «IoT Devices Recognition Through Network

Traffic Analysis». In: 2018 IEEE International Conference on Big Data (Big

Data). 2018, pp. 5187–5192. doi: 10.1109/BigData.2018.8622243.

[18] Marco de Vivo et al. «A Review of Port Scanning Techniques». In: SIGCOMM

Comput. Commun. Rev. 29.2 (Apr. 1999), pp. 41–48. issn: 0146-4833. doi: 10.

1145/505733.505737. url: https://doi.org/10.1145/505733.505737.

[19] Davino Mauro Junior et al. «A Study of Vulnerability Analysis of Popular

Smart Devices Through Their Companion Apps». In: 2019 IEEE Security

and Privacy Workshops (SPW). 2019, pp. 181–186. doi: 10.1109/SPW.2019.

00042.

[20] Davino Mauro Junior et al. Beware of the App! On the Vulnerability Surface

of Smart Devices through their Companion Apps. 2019. arXiv: 1901.10062

[cs.CR].

[21] Cornelia Győrödi et al. «A comparative study: MongoDB vs. MySQL». In:

2015 13th International Conference on Engineering of Modern Electric Sys-

tems (EMES). 2015, pp. 1–6. doi: 10.1109/EMES.2015.7158433.

68

https://arxiv.org/pdf/1812.05558.pdf
https://doi.org/10.1109/ICIAFS.2018.8913346
https://doi.org/10.1109/BigData.2018.8622243
https://doi.org/10.1145/505733.505737
https://doi.org/10.1145/505733.505737
https://doi.org/10.1145/505733.505737
https://doi.org/10.1109/SPW.2019.00042
https://doi.org/10.1109/SPW.2019.00042
https://arxiv.org/abs/1901.10062
https://arxiv.org/abs/1901.10062
https://doi.org/10.1109/EMES.2015.7158433

BIBLIOGRAPHY

[22] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. «MongoDB

vs Oracle – Database Comparison». In: 2012 Third International Conference

on Emerging Intelligent Data and Web Technologies. 2012, pp. 330–335. doi:

10.1109/EIDWT.2012.32.

[23] Alan Tamer Vasques and João J. C. Gondim. «Amplified Reflection DDoS

Attacks over IoT Mirrors: A Saturation Analysis». In: 2019 Workshop on

Communication Networks and Power Systems (WCNPS). 2019, pp. 1–6. doi:

10.1109/WCNPS.2019.8896290.

[24] Aldo Cortesi et al. mitmproxy: A free and open source interactive HTTPS

proxy. [Version 7.0]. 2010–. url: https://mitmproxy.org/.

[25] Kaizheng Liu et al. On Manually Reverse Engineering Communication Pro-

tocols of Linux Based IoT Systems. 2020. arXiv: 2007.11981 [cs.CR].

[26] UPnP Device Architecture 2.0. https : / / openconnectivity . org / upnp

- specs / UPnP - arch - DeviceArchitecture - v2 . 0 - 20200417 . pdf. Open

Connectivity Foundation.

[27] Md Mainuddin, Zhenhai Duan, and Yingfei Dong. «Network Traffic Charac-

teristics of IoT Devices in Smart Homes». In: 2021 International Conference

on Computer Communications and Networks (ICCCN) (July 2021). doi:

10.1109/icccn52240.2021.9522168. url: http://dx.doi.org/10.1109/

ICCCN52240.2021.9522168.

[28] Arunan Sivanathan et al. «Classifying IoT Devices in Smart Environments

Using Network Traffic Characteristics». In: IEEE Transactions on Mobile

Computing 18.8 (2019), pp. 1745–1759. doi: 10.1109/TMC.2018.2866249.

[29] Deprecating Secure Sockets Layer Version 3.0. https://datatracker.ietf.

org/doc/html/rfc7568. Internet Engineering Task Force.

69

https://doi.org/10.1109/EIDWT.2012.32
https://doi.org/10.1109/WCNPS.2019.8896290
https://mitmproxy.org/
https://arxiv.org/abs/2007.11981
https://openconnectivity.org/upnp-specs/UPnP-arch-DeviceArchitecture-v2.0-20200417.pdf
https://openconnectivity.org/upnp-specs/UPnP-arch-DeviceArchitecture-v2.0-20200417.pdf
https://doi.org/10.1109/icccn52240.2021.9522168
http://dx.doi.org/10.1109/ICCCN52240.2021.9522168
http://dx.doi.org/10.1109/ICCCN52240.2021.9522168
https://doi.org/10.1109/TMC.2018.2866249
https://datatracker.ietf.org/doc/html/rfc7568
https://datatracker.ietf.org/doc/html/rfc7568

BIBLIOGRAPHY

[30] Deprecating TLS 1.0 and TLS 1.1. https://datatracker.ietf.org/doc/

rfc8996/. Internet Engineering Task Force.

[31] Paracha, Muhammad Talha, Dubois, Daniel J, Vallina-Rodriguez, Narseo,

Choffnes, David. «IoTLS: Understanding TLS Usage in Consumer IoT De-

vices». In: (Nov. 2021).

[32] Johan Mazel, Romain Fontugne, and Kensuke Fukuda. «Profiling internet

scanners: Spatiotemporal structures and measurement ethics». In: 2017 Net-

work Traffic Measurement and Analysis Conference (TMA). 2017, pp. 1–9.

doi: 10.23919/TMA.2017.8002909.

70

https://datatracker.ietf.org/doc/rfc8996/
https://datatracker.ietf.org/doc/rfc8996/
https://doi.org/10.23919/TMA.2017.8002909

	List of Tables
	List of Figures
	Introduction
	Research questions
	Methodology
	Organization of the thesis

	State of the art
	Honeypot taxonomy
	IoT honeypot state of the art
	IoTCandyJar
	ThingPot
	U-PoT

	Methodology description
	Laboratory testbed description
	Mon(IoT)r Testbed environment

	Network scanning
	IoT device scanning
	Nmap scanning

	Tcpdump capture methodology applied
	Automatic packet parsing with Scapy
	Metadata collected

	Dictionary creation using MongoDB

	Analysis IoT devices and captured traffic
	IoT devices footprinting
	Devices active scanning
	Mitmproxy against IoT devices
	Network traffic analysis
	Global traffic statistics per device
	Analysis of the ports used
	Second level domains contacted per device
	Analysis of TLS usage

	Wansview camera feature extraction
	Outcomes

	HuePot in the wild
	Honeypots implementation
	HuePot
	Tanner
	CameraObscura

	Analysis of the requests received by HuePot
	Analysis of global activities
	Analysis of the remote hosts in common
	Path amplification factor computation
	Analysis of the variation trend of the paths

	Outcomes

	Conclusion and future works
	Conclusions
	Future works

