POLITECNICO DI TORINO

Master’s Degree in Computer Science Engineering

) T T L

..mll ::lllnu A miIl::: |||" :’
\\‘\ 1859 d;’
‘\e“!&#

Master’s Degree Thesis

AUTONOMOUS LUNAR LANDER
Deep Reinforcement Learning
for Control Application

Supervisors Candidate
Prof.ssa Elena BARALIS
Matteo STOISA
Dott. Luca ROMANELLI
Dott. Mattia VARILE

Dott. Lorenzo FERUGLIO

December 2021

Abstract

The thesis aims to analyze the application of a Deep Reinforcement Learning
algorithm to a case study in the field of control. The algorithm chosen is Prozximal
Policy Optimization, which in recent years has reached the state of the art in various
fields of application; the control problem taken into consideration is the powered
descent phase of a lander and the subsequent landing in a predetermined area, the
Apollo 11 mission was taken as a guideline for some aspects in the creation of the
model. The Unity framework was used for the modeling and simulation part, the
ML-Agents library for the management of the DRL part. The implementation of
the fidelity of the model was taken with an incremental approach, which allowed
to gradually understand and deal with the critical issues given that as the physical
complexity of the problem increases, the difficulty in achieving the desired result
increases considerably. The main problems faced and analyzed deal with the
interaction between the physical model, the reward function through which the
agent learns and the numerous parameters that manage the PPO algorithm. The
main features implemented in the first three realized scenarios are the realistic
and random initial conditions, the realistic landing constraints, the limited fuel
and the loss of mass caused by its consumption. In these three scenarios the
main simplification is the constraint of movement in only three degrees of freedom;
the agents obtained are capable of reaching the predetermined landing with a
percentage greater than 90%. In the fourth and final scenario, the lander has the
possibility to move in six degrees of freedom, here the best result is about 75%
accuracy, but further analyzes carried out on the failure cases have shown that
they can still be considered positive. In addition to the analysis of the factors
that have made it possible to reach these goals or not, three training strategies
have been theorized and implemented, i.e. manipulations that deviate from the
normal training mechanism in order to reduce the consumption of resources; they
have proved effective in some cases, but not in the most complex scenario. Overall,
the results achieved are considered satisfactory, they can represent a guideline
to implement this methodology in other similar applications, or to continue the
development of this case study.

11

Abstract

La tesi si prefigge di analizzare 'applicazione di un algoritmo di Deep Reinforcement
Learning ad un caso studio nel campo del controllo. L’algoritmo scelto e’ il
Proximal Policy Optimization, che negli ultimi anni ha raggiunto lo stato dell’arte
in svariati campi di applicazione; il problema di controllo preso in esame e’ la
fase di discesa con propulsione di un lander e il successivo atterraggio in una
zona prefissata, la missione Apollo 11 e’ stata assunta come linea guida per alcuni
aspetti nella creazione del modello. E’ stato utilizzato il framework Unity per la
parte di modellizzazione e simulazione, la libreria ML-Agents per la gestione della
parte di DRL. L’implementazione della fedelta’ del modello e’ stata intrapresa
con un approccio incrementale, cio’ ha permesso di comprendere ed affrontare
gradualmente le criticita’ dato che al crescere della complessita’ fisica del problema
cresce notevolmente la difficolta’ nel raggiungere il risultato desiderato. I problemi
principali affrontati ed analizzati trattano l'interazione tra il modello fisico, la
reward function mediante cui I’agente impara ed i numerosi parametri che gestiscono
I’algoritmo PPO. Le principali caratteristiche implementate nei primi tre scenari
realizzati sono le condizioni iniziali realistiche e randomiche, i vincoli di atterraggio
realistici, il carburante limitato e la perdita di massa causata dal suo consumo.
In questi tre scenari e’ presente come principale semplificazione il vincolo del
movimento in soli tre gradi di liberta’; sono stati ottenuti agenti in grado di
raggiungere 'atterraggio prefissato con una percentuale maggiore del 90%. Nel
quarto ed ultimo scenario realizzato il lander ha la possibilita’ di muoversi in sei
gradi di liberta’, qui il risultato migliore si attesta a circa il 75% di accuratezza,
ma ulteriori analisi svolte sulle casistiche fallimentari hanno dimostrato che esse
si possono comunque ritenere positivi. In aggiunta all’analisi dei fattori che
hanno o meno permesso di raggiungere questi traguardi, sono state teorizzate
ed implementate tre strategie di training, i.e. manipolazioni che deviano dal
normale meccanismo di training al fine di ridurne il consumo di risorse; esse hanno
dimostrato efficacia in alcuni casi, ma non nello scenario di maggior complessita’ Nel
complesso, i risultati raggiunti sono considerati soddisfacenti, possono rappresentare
una linea guida per implementare questa metologia in altre applicazioni analoghe,
o per continuare lo sviluppo di questo caso studio.

II1

Ringraziamenti

Raggiunto questo traguardo della mia Vita, non posso non cogliere l'occasione di
esprimere la mia piu sentita gratitudine nei confronti di coloro i quali, giorno dopo
giorno, hanno contribuito a definire la Persona che sono.

Desidero ringraziare in primo luogo i miei genitori, Rosa e Luigi, i quali mi
hanno insegnato i valori dell’'impegno e della dedizione, e che costantemente mi
accompagnano e sostengono affinché persegua i miei obiettivi, i miei sogni. Insieme
a loro, ringrazio Sara ed Emanuele, sorella e fratello maggiori, saldo punto di
riferimento su cui posso far sempre affidamento.

Desidero inoltre esprimere la mia gratitudine nei confronti di tutte le persone che
hanno fatto o fanno parte della mia vita, ciascuna in misura e maniera peculiare,
speciale, ed in particolare nei confronti dei miei Amici, che siano essi di lunga data
o novizi, affettuosi o spigolosi, omogenei o irregolari, sporadici o assidui; con loro
tutti ho condiviso in questi anni infiniti momenti di spensieratezza e gioia, difficolta
e tristezza, e soddisfazione, frustrazione, ilarita e disperazione, ed odio, Amore, ed
infiniti ancora ne condivideremo.

Infine, un sentito ringraziamento va alla mia relatrice e a tutti i formidabili
professionisti del team di AIKO, che mi hanno offerto 'opportunita di coronare
questo percorso con il connubio delle passioni per 'intelligenza artificiale e per lo
spazio.

v

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction
1.1 Reinforcement Learning for Control

1.2 Objectives of the Thesis

1.3 Structure of the Thesis

The Reinforcement Learning approach
2.1 Trial-Error Example Scenarios
2.2 Key Elements of Reinforcement Learning
2.2.1 Exploration vs Exploitation . . .
2.2.2 Foresight
2.3 The Agent-Environment Interaction Loop
2.4 Goals and Rewards
2.5 Returns and Discounting
2.6 The Markov Property
2.7 Markov Decision Processes
2.8 Value Functions
2.8.1 Optimal Value Functions
2.9 RL Algorithms Main Distinctions
2.9.1 Model-Free Algorithms

Deep Reinforcement Learning

3.1 Introduction to Deep Learning
3.2 Proximal Policy Optimization Algorithm
3.3 The PPO Hyperparameters

Framework, Library and Implementation

4.1 The Unity Framework
4.2 The ML-Agents Library
4.2.1 Classes, Methods and Fields
4.3 Physical Models Main Features
4.3.1 Environment Model Characteristics
4.3.2 Lunar Lander Model Characteristics
4.3.3 Episode Characteristics

Autonomous Lunar Lander: 3-DOF scenario Version 1

5.1 Physical Model
5.2 Reinforcement Learning Application.
5.2.1 « - Limit unbounded states
5.2.2 [- Decision period in training and inference
5.2.3 7 - Maintain training duration
5.3 Scenario Solutiono

Autonomous Lunar Lander: 3-DOF scenario Version 2

6.1 Physical Model oo
6.2 Reinforcement Learning Application
6.2.1 ¢ - Counterproductive high control frequency
6.2.2 € - Between strict and sparse reward functions
6.2.3 (- Avoid laziness L.
6.2.4 17 - Non-flat suggestions
6.2.5 6 - Achieve it first, then optimize
6.3 Scenario Solutiono

Autonomous Lunar Lander: 3-DOF scenario Version 3

7.1 Physical Model
7.1.1 - Adapt RL to problems, not vice versa
7.2 Reinforcement Learning Application
7.2.1 The DUT Training Strategy
7.2.2 k- Near-and-safe resets
7.2.3 X - Hard constraints as optimization problems
7.2.4 p - Conscious or superficial behaviors
7.3 Scenario Solutiono

Training Benchmarks Analysis

8.1 Learning Rate, Epsilon and Beta
8.2 Batch and Buffer Size.
8.3 Decision Period and Stacked Vectors
8.4 Neural Network Configuration

34
34
38
41
46
46
47
48

49
49
51
52
53
54
57

59
59
60
62
63
64
65
67
68

8.5 Environment Parallelism

9 Autonomous Lunar Lander: 6-DOF scenario
9.1 Physical Model
9.2 Reinforcement Learning Application.
9.2.1 The FSO Training Strategy
9.2.2 v - Provide focused state-rewards
9.2.3 The RIP Training Strategy
9.2.4 £ - Temporary complexity reduction
9.2.5 First Training Procedure
9.2.6 o0 - Successive incremental trainings
9.2.7 Second Training Procedure
9.2.8 7 - Need for reward regardless
9.2.9 Third Training Procedure
9.2.10 p - Harder training, safer result
9.2.11 o - Policy fine-tuning
9.3 Scenario Solutiono oL
9.4 Failure Analysis
9.5 Policy Resilience oo

10 Conclusions
10.1 Final Considerations
10.1.1 Future Works

A Summary Tables
A.1 3-DOF scenario Version 1
A.2 3-DOF scenario Version 2
A.3 3-DOF scenario Version 3
A4 6-DOF scenario
A.4.1 First Training Procedure
A.4.2 Second Training Procedure,
A.4.3 Third Training Procedure

B External References

Bibliography

VIII

100
100
104
104
105
106
107
109
111
112
113
114
114
115
115
116
118

127
127
128

129
129
132
135
138
140
141
142

143

144

List of Tables

9.1 RCS thrusters configuration 102
A.1 3-DOF scenario Version 1: Physical Model 129
A.2 3-DOF scenario Version 1: RL Parameters 130
A.3 3-DOF scenario Version 1: PPO Hyperparameters 130
A.4 3-DOF scenario Version 1: Reward Function 131
A.5 3-DOF scenario Version 2: Physical Model 132
A.6 3-DOF scenario Version 2: RL Parameters 133
A.7 3-DOF scenario Version 2: PPO Hyperparameters 133
A.8 3-DOF scenario Version 2: Reward Function 134
A.9 3-DOF scenario Version 3: Physical Model 135
A.10 3-DOF scenario Version 3: RL Parameters 136
A.11 3-DOF scenario Version 3: PPO Hyperparameters 136
A.12 3-DOF scenario Version 3: Reward Function 137
A.13 6-DOF scenario: Physical Model 138
A.14 6-DOF scenario: RL Parameters 139
A.15 6-DOF scenario: PPO Hyperparameters 139
A.16 6-DOF scenario: Reward Function - Training 1. 140
A.17 6-DOF scenario: Reward Function - Training 2. 141
A.18 6-DOF scenario: Reward Function - Training 3. 142

IX

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3

4.1
4.2

5.1
5.2

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6

Environment-Agent interaction loop 10
Aborting state loop 12
Backup diagrams for v, and ¢, 16
Optimization backup diagrams for v, and ¢, 19
Non-exhaustive taxonomy of algorithms in modern RL. 20
Internal representation of a MLP 24
Sigmoid and ReLu activation function. 25
LEEIP objective function 29
Parallelized scenario: Prefabs and object hierarchy 37
Component diagram of ML-Agents 39
Screenshot of the lunar lander model in a 3-DOF scenario 50
Scenario Version 1 training statistics 58
IM and 2M training comparison 62
Scenario Version 2 training statistics 69
Suicide training grapho 74
DUT training strategy log visualization 85
Scenario Version 3 training statistics 86
Scenario Version 3 training statistics, reward zoomed 87
Terminal conditions counter and avoided 88
Residual fuel mass during training episodes 89
Learning rate benchmark 91
Epsilon benchmark 00000000 92
Beta benchmark oL 93
Batch and Buffer size benchmark 94
Decision period benchmark 00000 94
Stacked vectors benchmark 95

8.8 Neural Network configuration benchmark 96

8.9 Environment parallelism benchmark, 1M training 98
8.10 Environment parallelism benchmark 98
8.11 Parallelism impact on reward and duration 99
9.1 Screenshot of the lunar lander model in the 6-DOF scenario 101
9.2 6-DOF scenario flight area L. 108
9.3 Touchdown phase screenshot 116
9.4 6-DOF scenario training statistics 117
9.5 Trajectories leading to a touchdown 120
9.6 6-DOF scenario inference failures statistics 121
9.7 Distance from target at the instant of failure 121
9.8 Velocity at the instant of failure 122
9.9 Rotation at the instant of failure 123
9.10 Angular velocity at the instant of failure 124
9.11 Fuel mass left at the instant of failure 125
9.12 Statistics with non-catastrophic failures distinction 125
9.13 Statistics for altered-model tests 126
9.14 Statistics for noisy-observations tests 126

XI

Acronyms

A2C Advantage Actor Critic
A3C Asynchronous Advantage Actor Critic

AT Artificial Intelligence
CNN Convolutional Neural Network

DDPG Deep Deterministic Policy Gradients
DOF Degrees of freedom

DL Deep Learning

DQN Deep Q Networks

DRL Deep Reinforcement Learning

DUT Deny Unsuccessful Terminations

FPS Frame Per Second
FSO Forced Successful Observation

GAE Generalized Advantage Estimation

MDP Markov Decision Process
ML Machine Learning

MLP Multi-Layer Perceptron
NN Neural Network

PPO Proximal Policy Optimization

XII

RCS Reaction Control System
RIP Reverse Incremental Progression

RL Reinforcement Learning

SAC Soft Actor-Critic
SDG Stochastic Gradient Descent

SI International System of Units
TRPO Thrust Region Policy Optimization

UTI User Interface

XIII

Chapter 1
Introduction

This thesis was entirely carried out in collaboration with the company AIKO -
Autonomous Space Missions, both are a marriage of a passion for deep learning
and aerospace.

1.1 Reinforcement Learning for Control

The trial-error approach is the mechanism through which we all have learned to act
and pursue our goals within the world around us. Limiting the focus only to the
field of the physical world, for example, starting as newborns we learned to control
our body and moves understanding their functioning through direct integration
with what surrounds us. The artificial intelligence technique called Reinforcement
Learning exploits exactly this mechanism as a learning method, these algorithms
are able to train entities capable of pursuing objectives starting from the interaction
with the environment. The real world is one of the most intuitive and immediate
types of environments where one of this agent could live, and indeed it is where
many recent studies have attempted to apply the approach. The modeling of the
physic, indeed, is a problem that has already extensively studied and implemented,
therefore the simulation model used to train the algorithm could be very accurate,
enough to potentially deploy the agent in the real world.

In particular, the Reinforcement Learning approach fits perfectly the challenging
task of guidance and control of autonomous vehicles. Here the agent choose actions
that could control vehicle devices such as engines or wheels on the basis of observa-
tions that could be measurements coming from sensors or even frames acquired
through cameras. In the aerospace field, a typical example of goal to be pursued
is the control of a lander in the landing phase. This is the case study chosen to
implement a DRL for control proof-of-concept. Besides being a well known and

1

Introduction

established space control problem, on which it is therefore possible to find specific
documentation, this choice was inspired by [1].

The landings made so far on the moon had windows of accuracy in the order of
magnitude of kilometers, but the pinpoint touchdown achievement will have crucial
importance for space applications in the near future. In future missions on Mars,
for example, a greater landing accuracy will allow to decide in advance the site that
presents the best characteristics thus the risk of running into adverse surfaces will
be reduced, moreover landing directly near settlements or sites of specific interest
would avoid the journey to reach them, a potential source of complications.

Regarding the methodologies that are currently used to actually solve the land-
ing control problem, [1] explains that the majority of proposed powered decent
phase guidance and control systems use two separate and independently optimized
systems. Through sensor measurements, the navigation system estimates the space-
craft’s state and passes this estimate to the guidance system. This calculates a
trajectory that in general specifies the lander’s target state as a function of time.
The trajectory is then passed to the control system that tracks the trajectory by
determining how to control the thrusters. This important study addresses the
problem of pinpoint touchdown, and the optimization of the fuel used, exploiting
DRL to control the lander so that it follows the trajectory and precalculated
characteristics that an optimal landing should have, that is, using reinforcement
learning instead of the traditional control system.

In this thesis instead, the learning approach will be exploited leaving the
algorithm full freedom of how to find the solution to achieve the goal. In addition
to the touchdown achievement, it is possible to pursue the crucial problem of
optimizing the use of time and resources. Unlike traditional guidance-control
methods, exploiting a DRL agent offers the benefit that once trained the deep
neural network provides control at the cost of its access time only, without the
need of real-time calculus, so that the action update frequency could potentially be
increased. Furthermore, the stochastic approach used by deep learning is preferable
than deterministic methods, it has already proved to be more robust to anomalies
or noises that are always possible.

1.2 Objectives of the Thesis

The overall goal of this thesis is to analyze the application of a specific Deep
Reinforcement Learning algorithm to a specific control problem. The technologies
used as starting point are the generic reinforcement learning approach [2], the DRL

2

Introduction

state-of-the-art Prozimal Policy Optimization algorithm [3] implemented in the
ML-Agents library [4] and the Unity framework [5], in which the physical model
was created from scratch. The chosen control problem is the powered descent
phase and the following pinpoint touchdown of a lunar lander, whose characteristics
are inspired by the Apollo 11 moon landing [6]. The ultimate goal is to obtain
an Artificial Intelligence capable of controlling the vehicle in a fully autonomous
manner, capable of completing the landing with a reasonable high percentage of
success, in a physical simulation of reasonable fidelity that in particular is in six
degrees of freedom.

The correct setting of the hyperparameters that determine the proper algorithm
learning and the modality in which the RL algorithm operates represent the greatest
challenge in dealing with this type of problem. It could be very difficult to deal
with them due to the multitude of aspects to be set, a grid search is practically
impossible and only the experience in the field can lead to success. For this
reason the incremental development and resolution approach was of fundamental
importance and it is strongly recommended when facing similar cases. Based on
these considerations, given the experimental nature of the application, all the
observations that gradually emerged both on the methodology used and on the
application of the approach itself could result extremely valuable, and can be
obviously considered as part of the objective.

1.3 Structure of the Thesis

The thesis is structured as follows:

e 1. Introduction: which is this, a generic introduction is set out as well as
the main objectives of the work.

e 2. The reinforcement learning approach: in this chapter the reinforce-
ment learning framework is explained as a generic Al application, first at a
high level and then in a formally rigorous way; finally a summary classification
of different types of RL algorithms is exposed.

e 3. Deep Reinforcement Learning: in the first part of this chapter the
general operation of deep neural networks is described, then it is explained
in detail the functioning of the PPO algorithm and of the parameters that
control it, as widely used throughout the entire work.

e 4. Framework, Library and Implementation: in this chapter the two
technologies that have been mainly exploited are described: the framework
Unity and the library ML-Agents; subsequently the common characteristics
that constitute the base of the implemented physical models will be outlined.

3

Introduction

5. Autonomous Lunar Lander: 3-DOF scenario Version 1: this is the
first scenario with extremely simplified characteristics (simple collision with
the target). The four chapters describing the implementation and resolution
of a scenario present first of all the formal description of the problem and of
the physical model, then the methodology and the reasoning that emerged
applying the RL approach, and finally the solution reached and its analysis.

6. Autonomous Lunar Lander: 3-DOF scenario Version 2: in the
second scenario more realistic initial conditions and landing constraints have
been implemented. Numerous non-trivial observations emerged already here,
these are reported throughout the thesis in appropriate subsections boxed and
identified by Greek letters.

7. Autonomous Lunar Lander: 3-DOF scenario Version 3: it is the
last scenario in three degrees of freedom, here a system of fuel consumption and
relative non-constant mass has been implemented. It was also theorized and
tested the first so-called "training strategy', i.e. an unconventional approach
that aims to improve performance during the training phase.

8. Training Benchmarks Analysis: here are described and analyzed
numerous procedures of training carried out as benchmark purpose, they have
the finality to study performances to varying of numerous parameters, in an
isolated form that is better analyzable than in the other chapters.

9. Autonomous Lunar Lander: 6-DOF scenario: this is the last scenario
implemented, in six degrees of freedom. After the definition of the problem
and the description of the approach that led to the resolution, more detailed
analysis are carried out for both statistics of success and failure, and also on
the robustness of the deep neural network. Several useful observations and
strategies emerge in this chapter as well.

10. Conclusions: in the end some final considerations will be presented,
together the possible inspirations that could be used as starting points for
future works.

A. Summary Tables: here are the summary tables of the characteristics
of each of the four scenarios implemented and solved, grouped by physical
model, RL prarameters, PPO hyperparameters and reward function.

B. External References: here are some links to external resources.

Chapter 2

The Reinforcement
Learning approach

Together with Supervised and Unsupervised Learning, Reinforcement Learning is
an Artificial Intelligence learning technique that has the peculiarity of exploiting
direct interaction with the environment. In this chapter its fundamental concepts
will be presented, as well as the typology of problems to which this approach is
applicable. Tt is made extensive reference to [2] as an established theoretical basis
of the argument.

The term 'Reinforcement Learning" represents the process of solving a task by
progressively improving the choice of decisions that lead to it. Let’s imagine a
generic entity that lives in a generic environment and receives input from it, this
entity has the capability and possibility to make choices that determine changes of
the surrounding environment and of itself, it also has the intrinsic will to pursue
non-trivial objectives or solve more or less complex tasks. The most natural and
intuitive method of understanding which is the best action to achieve these goals
is to make repeated attempts and modify the behavior on the basis of the effects
they have, the actions that have unsuccessful consequences will be progressively
avoided while the actions that lead to benefits will be selected more frequently. At
the end of a successful learning process the entity will have consolidated a behavior
capable of bringing it to its goals.

2.1 Trial-Error Example Scenarios

The generic scenario briefly summarized above can represent countless situations,
here are some significant examples:

The Reinforcement Learning approach

a newborn gradually learns to relieve the feeling of hunger by eating, or that it
is preferable to avoid touching an open flame otherwise he feels pain. Hunger
and pain are intrinsic sensations that he can not modify or avoid, but he can
modify his own behavior to alleviate or avoid them.

 a professional chess player decides how to move his pieces in order to take the
lead on the chessboard. He tries to do it both in the short term by trying
to capture opposing pieces, and in the long term by following a strategy and
predicting possible opponent moves, pursuing the ultimate goal of checkmate.

» a broker buys or sells stocks by predicting the future stock market trend in
order to maximize monetary profit, to do this he has to take many factors
into consideration.

o an Olympic athlete trains to optimize muscle movements in order to lift as
much weight as possible, at the beginning of his career he lifts little weight
but gradually improves.

o an adult has learned to suppress the urge to perform acts that would satisfy
him in the short term but that would be negative in the long term, such as
stealing.

The examples cited above, although very different from each other, share some key
characteristics and mechanisms that are the basis of reinforcement learning, they
are described below.

2.2 Key Elements of Reinforcement Learning

The following components are the basic actors in a generic reinforcement learning
application scenario, as already said they are abstract and applicable to disparate
fields, the scenario of the chess player is carried forward as main example:

o The agent is the protagonist entity, it takes vision of the state of the environ-
ment, on the basis of it decides which action to take and performs it. In our
case it is the chess player himself.

e The environment is the place where the agent acts, it can be physical
or abstract. It is governed by defined rules that determine its evolution
spontaneous or consequent to the actions of the agent, the rules of the game
of chess in this case.

e In a reinforcement learning scenario we usually speak of an episode as the
time enclosed between the start of the scenario and the achievement of a

6

The Reinforcement Learning approach

termination condition which can be the goal or other irreversible states. even
if less frequent and only mentioned below, Even if less frequent and only
mentioned below, it is also possible to have scenarios without termination
conditions in which the agent acts to the bitter end.

Time is usually quantized in steps, not necessarily equidistant, at each step
the learning loop explained below is carried out.

The state is the input of any kind that the agent gets from the environment,
it can also be called observation. In our example it is made up the positions
of the pieces on the board, but also the time remaining on the clock of both
players, and why not also by additional information such as the body language
of the opponent and his elo.

An action is the output performed by the agent that influence the environment,
it can be chosen from a limited or continuous set of possibilities. In the case
of a chess game, they are the moves that our player can make, or even ask for
a draw.

The policy defines the agent’s behavior, it can be simplistically thought of as
a function that associates an action to be performed to a given state. The
objective of the learning process through reinforcement learning is to arrive at
defining a policy capable of achieving its objective. In the case of the chess
player, the policy is his brain, trained to make choices from all the games
previously played and the games studied and observed.

The reward is a signal received by the agent based on the state of the
environment and the latest decision made, it reflects the positivity or negativity
of the latter. The agent can not change the process that assign him the reward,
he can just change behaviour. Indeed he uses the reward to understand if he is
acting in the right way, during the learning process he modifies his behaviour
in order to maximize the cumulative reward obtained during the episode. The
reward function is the mechanism that decides which reward to assign, it is
invisible to the agent, its structure is essential for him to learn correctly. In
the case of the chess game, obviously the reward given by the final result of
the game is fundamental, the periodic reward could be calculated taking into
account factors such as the number of pieces captured and the portion of the
board controlled.

The value function instead represents the forecast of the rewards that will be
accumulated in the future starting from the current state. It is in fact essential
that the maximization of the reward is pursued not only in the immediate
but also in the long term, as choices that are not excellent in the immediate

7

The Reinforcement Learning approach

future could lead to better situations in the future. For example the chess
player could sacrifice a piece following a strategy that will lead him to victory.

Having introduced the methodology approach and the types of problems that
can be faced, let’s now see two fascinating concepts that are fundamental for
learning in general and therefore also for RL. Generally speaking, when you are
faced with a choice, you usually want to choose the best of the possibilities to
bring yourself into an ever better future situation and so on, choice after choice.
Similarly to the real world, in terms of RL previously set out: the agent has the
objective of choosing the best action in order to maximize the reward obtained.
We must ask ourselves what is meant by best choice.

2.2.1 Exploration vs Exploitation

The evaluation of how much an action is positive or not compared to another
is made on the basis of an estimate, this estimate derives from the experiences
that have been previously lived. However, there is the risk that if we always pick
the path that we consider the best, other better conditions than those already
known could never be known. Consider that the absolute certainty that a choice
is excellent can never exist, i.e. we can not know each outcome deriving from
each possible choice (by definition of the stochastic and non-deterministic prob-
lem). But obviously this problem is more marked if past experience is limited. In
other words, given the fact that we can not know everything, if we always choose
what we consider the best we risk foreclosing even better possibilities. This dual
concept translates into the need for a trade-off between exploration and exploitation:

o exploration consists in deliberately choosing an action that is currently not
considered optimal, based on current experience or because it is not known
at all. The action taken may be sub-optimal to some extent or even totally
random. This behavior has the objective of evaluating his goodness and the
hope of finding better conditions than those currently known. This approach
is essential especially when the experience is little, that is at the beginning
of the learning phase; on the other hand in critical phases it is obviously
preferred to avoid random actions because they are much more risky.

» exploitation, in the opposite sense, consists in selecting only and only the
choices that are considered excellent, fully trusting the own experience; we
can call this action greedy. This behavior has to be preceded by a learning
phase in which a fairly large experience has been accumulated, in this way
the risk is minimized.

The Reinforcement Learning approach

At the algorithmic level, in the training phase exploration is induced in a
decreasing way: at the beginning a lot of exploration is carried out in order to
test behaviors in large regions of action, the degree of exploration is gradually
decreased since the agent stabilizes behaviors with better defined directions, up
to the end of the training in which the exploration is canceled and the agent fully
exploits the best behavior discovered. The simplest way to control the degree
of exploration is through a coefficient that indicates the probability of making a
random choice, this parameter is often indicated as e (in this case we speak of
e-greedy policy, note that the epsilon hyperparameter described in Chapter 3 has
a different meaning), usually with size between 0.15 and 0.3 that decays linearly.
Obviously in the inference phase, which can correspond to the deployment of the
agent in the real environment, only exploitation is used.

2.2.2 Foresight

Speaking of optimal solution in a problem with a certain duration, it is necessary
to specify whether it is more important to maximize the gain in the long term or
in the short term. In fact, the choice of a certain action could prove to be very
advantageous in the immediate future but lead to future negative situations, or
on the contrary a not optimal choice in the immediate could lead to much more
advantageous situations later on. In general, this duality has to be managed on the
basis of the problem that is being faced, i.e. on the basis of the implications that
may derive from any specific applications. In the case of an episodic problems with
a specific final goal, it makes sense to want to maximize the long-term reward if
the final objective is more important than the behavior that leads to it, but there
could be the risk of encountering the intermediate unsuccessful states (exactly
as it happens in the case study that will be addressed). In the case of endless
decision-making processes this sizing could be more difficult, but this type of
scenario has not been analyzed here.

Within algorithms this trade-off is usually handled by the v parameter, which
is in charge of weighing the estimations of the rewards that will be obtained in the
future. Its operation will be exposed in Section 2.5.

2.3 The Agent-Environment Interaction Loop

Putting these ingredients together we can now define in a more formal way how
the interaction between agent and environment takes place. The environment and
the agent interact at each discrete time step t = 0, 1, 2, At each time step t,
the agent receives the observation of the environment’s state S; € §, where S is
the set of possible reachable states. The agent selects an action A; € A(S;) where

9

The Reinforcement Learning approach

A(S;) is the set of actions available in state S;. The next time step ¢ + 1 the agent
receives a numerical reward R;;; € R C R, it is based on the state that was also
affected by the previous action. Then he observes the new state S;;; and takes a
new decision A;;; and so on, as showed in Figure 2.1.

’_| Agent Il
state reward action

Sr Rr A,
R (
S.. | Environment]4—

.

<

Figure 2.1: Environment-Agent interaction loop

The mapping from observations to probabilities of selecting each possible action
is the agent’s current policy and is denoted as 7, where m;(als) is the probability
that A; = a if S; = s. It is important to specify that actions are the only way the
agent has the possibility to interact, everything that is external cannot be modified
in other ways. The agent may know nothing of the environment and its functioning
as in the example of the infant, or he may have full knowledge of its behavior and
how reward is assigned as in the example of the chess player. Knowing how the
environment works does not mean knowing how to solve the task, just think of the
famous Rubik’s cube, whose easy-to-understand mechanism is extremely complex
to solve.

RL methods specify how to modify and improve the policy on the basis of
experience, that is on the basis of the rewards obtained. The criterion that is
followed is to maximize the sum of all the rewards obtained during the entire
episode.

2.4 Goals and Rewards

The purpose of the agent is formalized in terms of a special reward passing from
the environment to him: at each time step ¢, the reward is a simple number given,
R; € R. Informally, the agent’s goal is to maximize the total amount of reward
received. This means maximizing not only the immediate reward, but even better

10

The Reinforcement Learning approach

the cumulative reward in the long run. This informal idea can be clearly stated as
the reward hypothesis, as reported by [2]:

“That all of what we mean by goals and purposes can be well thought of as
the maximization of the expected value of the cumulative sum of a received scalar
signal (called reward).

Thus the use of a reward signal to formalize the concept of a goal is another of the
most distinctive characteristics of RL and one of its strengths, indeed translating a
task into periodically assigned reward signals is a flexible system that allows to
adapt the framework to disparate scenarios. As said, the reward is a generic integer
R € R C R, the logic of the reward function is the heart of a successful learning
process: that is to assign a large or small, positive or negative reward based on the
current state.

When deciding on the structure of the reward function it is important to keep
in mind that the reward should suggest to the agent what you want him to achieve,
and not how he should do it. This difference, that it may seem tiny, allows you to
fully exploit the potential of RL, that is to avoid indicating the actions through
the reward function but rather to let the algorithm find the best way to reach the
goal established. It is often not trivial to structure the reward function so that the
agent learns to reach the goal, in fact being able to maximize the rewards obtained
may not coincide with reaching the goal, especially when dealing with complex
tasks. Thinking back to the game of chess, if capturing a piece gave an excessively
positive reward, the algorithm could easily converge to the behavior of capturing
as many pieces as possible while ignoring the main goal of victory.

If for example the agent is a robot who has to learn to walk we could assign him
a positive score every time he moves forward. If our agent is an entity that has to
get out of a labyrinth we could assign him a single large positive reward when he
finds the exit, and also a small negative reward at each step so that he learns to
find it as quickly as possible. The relative size of the rewards must be correctly
sized, indeed larger scores should have a greater impact on the learning process,
incorrect sizing could strongly destabilize the learning process. This fundamental
aspect however depends on the algorithm in charge of updating the policy, which
we will deal with later.

2.5 Returns and Discounting

Let’s now formally define what we have so far called the sum of the rewards
obtained, that is what the algorithm will try to maximize: if the sequence of

11

The Reinforcement Learning approach

rewards received starting from time step t is denoted Ry.1, Ryio, Rii3, ..., then we
define as expected reward G; the sum:
Gt - Rt—l—l + Rt+2 ‘|— Rt+3 + + RT (21)

where T is the last step of the episode. This is true in the case of episodic tasks,
i.e. episodes that end in a special state called the terminal state. We need to
distinguish the set of all non-terminal states denoted with S, from the set of all
states plus the terminal state denoted with ST.

In non-episodic tasks instead, called continuing tasks, there were no terminal
states, T' = oo and consequently easily G; = co. We need to add the additional
concept of discounting, which consisted in weighing each member of the sum. The
expected discounted return is defined as:

o0

Gy = Riy1 +YRi2 + VP Rz + . = Y Y Resgn (2.2)
k=0

where 7 is a parameter called discount rate, with 0 < v < 1. Consequently a
reward received k time steps in the future is worth only 4*~! times what it would
be worth in the present. If v < 1, the infinite sum converges to a finite value, the
more - is close to 1 the more the agent is "farsighted", i.e. it tries to maximize the
reward even at a great distance in the future. On the contrary the more ~ is close
to 0 the more the agent is "myopic", that is, it gives much more importance to the
gain in the immediate rather than in the long term; at the limit case of v =0, it
aims to optimize only R, ;.

R =+1 R,=+1 R,=+1 R,=0
. () (D] R5:0

Figure 2.2: Aborting state loop

From here on we will consider the episodic task problem only, since it is mostly
used and because it is the application of the case study analyzed. Equation 2.2
can be used in the case of episodic tasks assuming that when the terminal state is
reached, a special absorbing state is entered where only zero rewards are awarded
in it, as showed in Figure 2.2. We can then rewrite equation 2.2 as:

T—t—1

Gy = Z ’Yth+k+1 (2.3)

k=0
12

The Reinforcement Learning approach

including the possibility that 7' = oo or v = 1 (but not both).

2.6 The Markov Property

Now let’s talk more deeply about the state, let’s formally define a particular prop-
erty of the environments and their state signals, called the Markov property. By
“the state” we mean whatever information is provided to the agent. Since it is
given by a processing system that is assumed to be part of the environment, we
do not care how it is obtained or computed. The state can be made up of any
type of data that can be encoded in a signal, it could include immediate sensations
such as sensory measurements or more highly processed versions of original sensa-
tions, or even complex structures built up over time from the sequence of sensations.

Ideally, the best type of state signal we can have is a state that summarizes past
sensations compactly, so that all relevant past information is summarized within
it. This normally requires more than the immediate sensations, but never more
than the complete history of all past sensations. An observation of this type is
more onerous than the single observation of the present, but less onerous than the
sum of all past observations. A state signal that succeeds in retaining all relevant
information is said to have the Markov property, or be Markov. Returning to the
example of the chessboard: the only current knowledge of the pieces would serve
as a Markov state because it summarizes everything important about the complete
sequence of changes that led to it. Much of the information about the sequence is
not reported and cannot be reconstructed, but all that matters for the continuation
of the episode is still present. Seen from another point of view, the principle can
be formulated as “independence of path”, because all that matters is in the current
state signal; its meaning is independent of the history or "path" that have led up to it.

Consider how an environment may evolves at time ¢ + 1 as result of the action
taken at time ¢, in the most general and causal case this response might depend on
everything that has happened earlier. In this case the dynamics can be defined
only by specifying the complete probability distribution:

PT{Rt+1 =T, StJrl = S/‘S07 A07 Rb ceey Stflv Atfla Rt7 St7 At} (24)

for all r, s" and all the possible values of the past events: Sy, Ag, Ri, ..., Si_1, Ai_1,
R;, S;, A;. On the other hand, if the state signal has the Markov property, then
the environment’s evolution at the step ¢t + 1 depends only on the observation and
action at ¢, in this case the environment’s dynamics can be defined by specifying
only as:

p(s',rls,a) = Pr{Ry1 = r,Sir 1 = 5| S, A} (2.5)

13

The Reinforcement Learning approach

for every r, ', Sy, A;. Hence the environment and task as a whole own the Markov
property if and only if occurs that Equation 2.4 is equal to Equation 2.5. If the
environment has the Markov property we can predict the next state and expected
next reward based on the only observation in the present, furthermore we can
iterate this prediction to all future states and expected rewards.

If the environment does not have the Markov property, we can still approximate
it to it, assuming that we can predict the next reward and the action to be selected
on the basis of the current state. RL algorithms could be successfully applied even
with this approximation, however the considerations made below are assumed to
be valid for environments that possess the Markov property, as well as the case
study addressed specifically.

2.7 Markov Decision Processes

We call Markov decision process, or MDP, a reinforcement learning task that has
the Markov property, if the action and state spaces are finite then it is called finite
Markov decision processes. A finite MDP is defined by his state and action spaces
and by the dynamics of the environment. Given a state s and an action a, the
probability of each possible pair of next state s’ and reward r is:

p(s',rls,a) = Pr{Si1 =, Riy; = 1Sy = s, A; = a} (2.6)

Starting from the dynamics specified by Equation 2.6, we can compute anything
else about the environment:

o the expected rewards for the state—action pairs:

r(s,a) = E[RtH’St =s,A = a] => r> p(s rls a) (2.7)

reR s'eS
 the state-transition probabilities:
p(8]s,a) = Pr{Si1 =§'|Si = s, Ay = a} = Z p(s,rls, a) (2.8)
reR

« and the expected rewards for the triples state-action—next-state triples:

Z rp(s’, T|87 Cl)
7,1(‘97 a, S,) -]E|:Rt+1‘5t =S, At = a, St+1 = 8/:| = T.G’Rp(s,|s7 CL) (29>

14

The Reinforcement Learning approach

2.8 Value Functions

Almost every RL algorithm involves estimating value functions: functions that
estimate how good it is for the agent to be in a certain state, or how good it is to
choose an action given the state. With “how good” we identify the future rewards
that can be expected, i.e. the expected return. Since rewards depend on actions
that will be taken, value functions are defined with respect to particular policies 7:
where the probability 7 (s, a) is the probability to choose the action a € A(s) being
in state s € S.

We can informally say that the value of a state s under a certain policy 7 is the
expected return when starting in s and following 7 thereafter, denoted with v, (s).
It is formally defined as:

ve(s) =]E[Gt‘St = s} =E, li YRy kin

k=0

S, = s] (2.10)

where the notation E,[-] identifies the expected value of a random variable given
that the agent is following policy 7, regardless of the time step t. From here on we
will call v, the state-value function for the policy .

Similarly, we now define the value of taking an action a in the state s following
a policy 7, denoted ¢,(s,a):

Gr(s,a) = E[Gt’St =s5A; = CL} = Ewli’ykRHkﬂ
k=0

Sy =s8,A; = a] (2.11)

¢- is the action-value function for policy .

A fundamental property of value functions used throughout RL is that they
satisfy particular recursive relationships. For any state s and any policy 7, the
following consistency condition holds between the value of s and the value of its

15

The Reinforcement Learning approach

possible successor states s':
Uﬂ—(8> = E{Gt‘st = S}

=E, [Z Vth+k+1
k=0

St:S]

=E; [Rtﬂ +v> V*Riyira

k=0

S = S] (2.12)

Sip1 = SIH

The final expression is basically a sum over all values of the variables a, s’,r. For
each triple, it computes its probability m(a|s)p(s’, r|s, a), weights the quantity in
brackets by that probability, then sums over all possibilities to get an expected
value. The result of Equation 2.12 expresses the relationship between the value of
a state s and the values of its successor states s, it is called the Bellman equation
for v,. Its solution v, is unique, this equation forms the basis of many ways to
compute, approximate, and learn v,.

o0

- Z m(als) Z: ZP(S', rls,a) lr + VE; [Z V" Rt pto

k=0

=> n(als)> p(s,7|s,a) {T - ’va(s’)}

s'r

A §,d

Figure 2.3: Backup diagrams for v, (left) and ¢, (right)

Think of being in a state s and looking ahead to its possible successor states s,
as showed by the left Figure 2.3. Open circles represent the states and solid circles
represent state—action pairs. Starting from the root node at the top, s, the agent
can choose any action a (three possible actions showed in this tree). From each
of these, the environment will respond with one of several next states s’, and will
accordingly assign a reward r. The Bellman equation 2.12 averages over all the

16

The Reinforcement Learning approach

possibilities, weighting each by its probability of occurring. It states that the value
of the start state must equal the (discounted) value of the expected next state, plus
the reward expected along the way.

Diagrams like those shown in Figure 2.3 are called backup diagrams because
they show the relationships that form the basis of the update, or backup, operations
that are at the heart of RL algorithms. These methods transfer value information
back to a state (or a state—action pair) from its successor states (or state—action
pairs).

2.8.1 Optimal Value Functions

The aim of reinforcement learning is, roughly, to find the policy that manages to
accumulate the greatest possible amount of reward and to solve the task in charge.
In the case of finite MDPs we can precisely define the optimal value function
because value functions offer a partial ordering over policies. The policy m; is
defined to be better than or equal to another policy w9 if its expected return is
greater than or equal to that of 7y, for all the possible states. In other words,
m > my if and only if vy, > v, for all s € S. The optimal policy is the one that is
better than or equal to all other policies, we denote it with with 7,. There may be
more than one, but they share the same state-value function, called the optimal
state-value function, denoted with v,, and defined as:

v:(s) = max vx(s) (2.13)
for all s € S.

Optimal policies also share the same optimal action-value function, denoted g,
and similarly defined as:

q*(S,CL) = IIl;;lX QW(S7CL) (214)

for all s € S and for all a € A(s). For the state-action pair (s,a), this function
represents the expected return for choosing the action a in state s and thereafter
following an optimal policy. Thus, v, can be written in terms of ¢, as follows:

q«(s,a) =]E[Rtﬂ + Y. (Sp1|Se = 5, Ay = a} (2.15)

v, must satisfy the selfconsistency condition expressed by the Bellman equation
for state values (Equation 2.12), because it is the value function for a policy.

17

The Reinforcement Learning approach

Furthermore, because it is the optimal value function, v,’s consistency condition
can be written in a special form without reference to any specific policy. In this
way we obtain the Bellman equation for s,, or the Bellman optimality equation.
Intuitively, it expresses the fact that the value of a state under an optimal policy
must equal the expected return for the best action from that state:

v.(s) = Jnax ¢r. (s, a)

= max E., :Gt‘St, A = a]

el
— k
= max E.. E Y Rivrr
L k=0

St, At = CL‘|

e 2.16
= max Er, |Riy1+7) V' Ryypoio (2.16)
I k=0

St, At = a‘|

= max Er, [Rev1 + 704 (S41)

St, At = CL]

— a / . /
max ;p(s rls,a)[r 4 yuu(s)]
The last two equations are two forms of the Bellman optimality equation for v,.
Similarly, the Bellman optimality equation for g, is:

q(s,a) = E[RtJrl + 7y max @« (St11, a’)‘St, Ay = CL}

= p(s,rls, a) [7"—|—’yrr9xq*(s',a’)} (2.17)

s'r
Figure 2.4 show graphically through backup diagrams the spans of future states
and actions considered in the Bellman optimality equations for both v, and ¢,. The
arcs at the agent’s choice points to represent that the maximum over that choice is
taken rather than the expected value given some policy.

For finite MDPs, the Bellman optimality equation (2.16) has a unique solution
that is independent from the policy. Given N possible states, the Bellman opti-
mality equation is actually a system of NV equations in N unknowns, one for each
state. Furthermore, if the dynamics of the environment are known, i.e. p(s’,7|s,a)
is known for each state s and action a, then one can solve this system of equations
for v,. One can solve a related set of equations for ¢,.

It is relatively easy to determine an optimal policy, once we have v,. For each
state s, there will be one or more actions at which the maximum is obtained in the
Bellman optimality equation. Any policy that assigns nonzero probability only to
these actions is an optimal policy. It can be seen as a one-step search: if you have

18

The Reinforcement Learning approach

max

Figure 2.4: Optimization backup diagrams for v, (left) and g. (right)

the optimal value function v, then the actions that appear best after a one-step
search will be optimal actions. We can formulate the same concept by introducing
the definition of greed: an optimal policy is a policy that is greedy with respect
to the optimal evaluation function v,. The term greedy is used in this context to
describe policies that select actions based only on their short-term consequences.
This means it describes any search or decision procedure that selects alternatives
based only on local or immediate considerations, and without considering the pos-
sibility that such a selection may prevent future access to even better alternatives.
If one uses v, to evaluate the short-term consequences of actions then a greedy
policy is actually optimal also in the long term sense, this is because v, already
takes into account the reward consequences of all possible future behavior. Hence,
a one-step-ahead search yields the long-term optimal actions.

Choosing optimal actions is still easier when we know ¢,: for any state s,
the agent can directly find any action that maximizes ¢.(s,a). The action-value
function effectively caches the results of all one-step-ahead searches. It provides
the optimal expected long-term return as a value that is locally and immediately
available for each state—action pair. Hence, the optimal action-value function allows
optimal actions to be selected without having to know anything about possible
successor states and their values, that is, without having to know anything about
the environment’s dynamics.

We have defined what optimal value functions and optimal policies are, of course
we ideally want our agent to learn an optimal policy. This is very rare, in fact it
is almost always impossible to calculate an optimal policy by simply solving the
Bellman optimality equation. For the tasks we are usually interested in, optimal
policies can be generated only with extreme computational cost. The computational
power available is a major problem, in particular, the amount of computation that

19

The Reinforcement Learning approach

the agent can perform in a single time step. The memory available is also an
important constraint. A large amount of memory is often required to build up
approximations of value functions, policies, and models. For this reason functions
must be approximated, using some sort of more compact parameterized function
representation.

2.9 RL Algorithms Main Distinctions

Now that we have defined the formal approach to MDP problems, let’s see a
non-exhaustive classification of the main characteristics of different RL algorithms
(some of them exploit neural networks, but this topic will be introduced in the next
chapter). The most important distinction in the classification is whether the agent
has access or not to a model of the environment, it could be provided or learned.
By a model we mean a function which predicts rewards and state transitions.

RL Algorithms

!

1 3
Model-Free RL Model-Based RL
1)’ v)’
Policy Optimization Q-Learning Learn the Model Given the Model

‘Policy Gradient‘<—

—></ DQN \ —P{ World Models ‘ M AlphaZero

— —> DDPG } p—— —
‘ A2C / A3C }‘ ‘f \‘ ,‘[c51 —>{ 2A ‘
P — — TD3 N P — P—
‘ PPO ‘4— /‘ —ﬁ QR-DQN —J‘ MBMF ‘
\ J . e < L J § J

‘ TRPO ‘4— ‘) —ﬁ HER —»{ MBVE ‘

Figure 2.5: Non-exhaustive taxonomy of algorithms in modern RL

The main benefit when having the model is that it allows the agent to plan
by thinking ahead, seeing what would happen for a range of possible choices,
and explicitly deciding between its options. Agents can then distill the results
from planning ahead into a learned policy. However, the main downside is that a
ground-truth model of the environment is usually not available, the agent has to
learn it purely from experience. Model-learning is fundamentally hard, the biggest

20

The Reinforcement Learning approach

challenge is that bias in the model can be exploited by the agent. This can lead
to the risk that the agent performs well with respect to the learned model, but
behaves sub-optimally (or even terribly) in the real environment.

The algorithms which use a model are called model-based methods, and those
that don’t are called model-free methods. The latter are notoriously more popular
and have been more extensively developed and tested since they tend to be easier
to implement and tune.

Another fundamental distinction in the types of RL algorithms lies in what is
learned, it can be one of the following:

policies, they can be either stochastic or deterministic

action-value functions (called Q-functions)

value functions

e environment models

The main characteristics of the two main clusters that make up the model-free
category are summarized below, the description of model-based algorithms is
omitted as they are very different from each other and of less interest for this study.

2.9.1 Model-Free Algorithms

For model-free algorithms, the two main branches are:

o Policy Optimization. This family of methods represent explicitly a policy as
mo(als), where 6 is the set of parameters that characterize it. They indirectly
optimize the parameters 6 by maximizing local approximations of L(7g), or
else they optimize it directly by gradient ascent on the performance objective
L(my). This optimization is almost always performed on-policy, which means
only one policy is maintained and improved, and that each update only uses
data collected while acting using the most recent version of it. This methods
also usually involve learning an approximator function v,(s) for the on-policy
value function v™(s), which gets used to understand how to update the policy.

The most significant and successful example of this category of algorithms is
the one called Proximal Policy Optimization [3], abbreviated PPO, it will be
used as the DRL method for the application case examined and described in
detail in the Section 3.2. Another important algorithm is the A2C/A3C [7],
which maximize performance directly performing gradient ascent.

21

The Reinforcement Learning approach

« Q-Learning. Algorithms of this branch learn an approximator Qy(s,a) for
the optimal action-value function, Q*(s,a). They usually use an objective
function based on the Bellman equation. As opposed to Policy Optimization
algorithmshis, in this case the optimization is almost always performed off-
policy, which means that each update can use data collected at any point during
training, regardless of how the agent was choosing to explore the environment
when the data was obtained. The corresponding policy is obtained via the
connection between Q* and 7*: the actions taken by the Q-learning agent are
given by

a(s) = argmax Qy(s, a) (2.18)

Examples of Q-learning algorithms include the DQN algorithm [8], from which
many variations have originated since it is substantially the starting point of
DRL, explained in Chapter 3; and the C51 algorithm [9], a variant that learns
a distribution over return whose expectation is Q)*.

The main strength of policy optimization algorithms is that they directly opti-
mize the thing you want. This tends to make them stable and reliable. On the
other side, Q-learning methods tend to be less stable as they train)y to satisfy a
self-consistency equation, optimizing the agent performance only indirectly. But,
when they do work Q-learning methods gain the advantage of being substantially
more sample efficient, because of reusing data more effectively.

The two approaches are not totally incompatible and there exist a range of
algorithms that live in between the two extremes, they able to carefully trade-
off between the strengths and weaknesses of either side. Examples include the
DDPG algorithm [10], which learns a deterministic policy and a Q-function by
using the former to improve the latter; SAC algorithm [11], a variant which uses
stochastic policies, entropy regularization, and a other tricks to stabilize learning
and score higher than DDPG on standard benchmarks, moreover this is an off-policy
algorithm which means it can learn from experiences collected at any time during
the past.

22

Chapter 3

Deep Reinforcement
Learning

Chapter 2 analyzed the generic structure with which the reinforcement learning
framework allows to face any problem that can be modeled as a Markov Decision
Process, as extensively described in [2] and [12]. However, the heart of an RL
algorithm is the model with which the policy is implemented and how the policy is
improved in order to reach an optimal policy approximation. Starting from the
early 1980s, in conjunction with the advent of Deep Learning (generally more known
for Supervised and Unsupervised Learning) a large number of DRL algorithms
have been developed, i.e.RL algorithms which exploit a deep neural network as
kernel of the agent.

In the first part of this chapter will be exposed a brief description of DL; in the
second part the Proximal Policy Optimization algorithm will be analyzed in detail
since widely used throughout the entire work.

3.1 Introduction to Deep Learning

As resumed in [13], the main concept of Deep Learning relies in exploiting
a non-linear function f : X — Y whose functioning is determined by 6 € R"
parameters, with ny € N:

y=f(z,0) (3.1)

At a very high level we could think of it as a black box that given a vector of
input values = provides a vector of output values y determined on the basis of

23

Deep Reinforcement Learning

its current internal configuration #; the process of updating the internal param-
eters that gradually lead to better performance represents the "learning" phase,
the pure use of an already trained model is the inference phase. Internally, the
structure of a deep neural network is composed by the succession of multiple
processing layers (Figure 3.1), each of these applies a non-linear transformation and
the sequence of these transformations leads to learning different levels of abstraction.

Y

e\
e
O
%‘»‘«‘

AN

output layer

@
@

input layer

hidden layer 1 hidden layer 2

Figure 3.1: Internal representation of a MLP with two hidden layers

Let’s examine the structure of a network only composed by fully connected
layers, it is called Multi-Layer Perceptron (MLP), fundamental starting point
for various other types on NN. The first layer of the network, the input layer, takes
as input the column vector = of size n, € N, the following non-linear parametric
function is applied to it:

here the weight matrix W, and the vector b (called bias) are parameters, in size
respectively ny, - n, and ny,; n,, € N is the size of the first hidden layer hy (the
first layer after the input layer). ¢ is the activation function, i.e. a non-linear
function in charge of filtrating the output value, the most commply used are the
sigmoid and the ReLu function (Figure 3.2). The transformation of Equation 3.2,
also referred to as Perceptron, can be applied [times in [similar hidden layers.
The output layer, the last one, will finally apply:

y = (Wihi_y + by) (3.3)

where similarly W is of size n, - n;_1 and b; is of size n,, i.e the size of the output
vector we want for our specific application.

24

Deep Reinforcement Learning

sigmoid » RelU

R(z) =maz(0, z)

00 -
=10 -5 o 5 10 -10

Figure 3.2: Sigmoid and ReLu activation function

In order for the parameters to be improved, indicated in their entirety with 6,
the aim is to minimize a certain empirical error L(6). The most common method
to do so is based on gradient descent via the backpropagation algorithm:

0« 0 — aVyL(0) (3.4)

where « is the learning rate parameter, that determines the strength of the update.

The ADAM method [14] for stochastic optimization is much more used than the
simple SDG. By keeping a per-parameter learning rate it improves performance on
problems with sparse gradients, moreover per-parameter learning rates are adapted
based on the average of recent magnitudes of the gradients for the weight (e.g. how
quickly it is changing), this results in better performance on noisy problems. Its
formulation is:

)
00— p——— 3.5
Ly (3.5)
with "
A t+1
ST
§ = M1
T 1— Bt (3.6)

M1 = Bimy + (1 — 1) VL(0;)
Vi1 = Pavg + (1 = B2)(VL(6;))*

where €, #; and 3, are hyperparameters (respectively recommended: 1078, 0.9 and
0.999).

In current applications, beyond the simple feedforward networks introduced
above, many different types of neural network layers and techniques have been

25

Deep Reinforcement Learning

developed, each variation can provide specific advantages depending on the appli-
cation. Among these, we mention for their importance the convolutional layers,
that are particularly well suited for sequential data and high-dimensional inputs
(such as images). Here, the layer’s parameters consist of a set of learnable filters
called kernels, which have a small receptive field and which apply a convolution
operation to the input, passing the result to the next layer. As a result, the network
learns filters that activate when it detects some specific features. The pooling
layers reduce the dimensionality of the data carried forward in the network, they
can be mazx pooling (which keep only the maximum values within clusters of values)
or average pooling (which only keep the average calculated on clusters of values).
A series of convolutional and pooling layers followed by a series of fully connected
layers form Convolutional Neural Networks (CNN), powerful and versatile
models nowadays widely used in various fields.

3.2 Proximal Policy Optimization Algorithm

The Prozimal Policy Optimization is a class of algorithms that has been developed
and proposed by OpenAlI in 2017 [3], it has rapidly achieved state-of-the-art results
and found wide use in various fields of application, such as robotic control, Atari
videogames and more complex videogames such as Dota 2 [15]. As we have seen in
Section 2.9, the PPO algorithm is model-free, i.e. it does not aim to create and use
a model that represents the environment. Moreover, it is a policy gradient method
(it directly optimizes the policy) that learns on-line: it does not keep a replay
buffer to store past experiences but it learns directly from them and after being
used the experiences are discarded; it also has a system that allows updates not
to deviate the policy too much from the current region, making it much more stable.

Let’s now describe it in a more formal way all these features, first by analyzing
the two fundamental approaches on which it is based:

o Policy Gradient Method: they work by computing an estimator of the
policy gradient and applying it through a stochastic gradient ascent algorithm,
the policy gradient loss LF%(0) is defined as:

LP9(6) = Ey[log (mo(a]s:)) Ad] (3.7)

Here, the expectation E[] indicates the empirical average over a finite batch
of samples, in an algorithm that alternates between sampling and optimization.
g is our stochastic policy: the neural network that starting from an observation
s; as input decides the action a; to take as output; log (mg(ay|s;)) are the log

26

Deep Reinforcement Learning

probabilities of our policy actions. The A; term, called advantage function, is
in charge to estimate what is the relative value of the selected action in the
current state, it is calculated as:

A =G, — U (8) (3.8)

Where G; is the discounted sum of rewards (weighed sum of all rewards
previously got, seen in Section 2.5, Equation 2.3 in particular); as we will see
in Algorithm 1, A, is calculated after the episode sequence has been collected,
so no guessing is involved since reward are yet obtained. v, (s) is the value
function (that basically estimates the discounted sum of rewards from s;
onward, seen in Section 2.8, Equation 2.10 in particular); it is a neural network
itself, frequently updated as supervised learning problems on the basis of
experiences collected in the environment. So basically the advantage estimate
gives a measure of how much better the action that has just been took was
based on the expectation of what would normally happen in this state. In
other words, it answers the question: "was the took action better of worse
than the expectation?" The term A, is positive when the chosen actions have a
better outcome than the expectation, the gradient is in turn positive and the
policy update makes that this actions will be chosen with more probability,
when these states will be encountered again in the future. On the other hand,
the chosen actions have a worse outcome than the expectation, A, is negative
as well as the gradient, the update makes that this actions will be selected
less likely.

Generalized Advantage Estimation: proposed in [16], this is a family of
policy gradient estimators that significantly reduce variance while maintaining
a tolerable level of bias, basically by computing the advantage estimate in
a more accurate way. As explained in [17]: "the bias error is an error from
erroneous assumptions in the learning algorithm. High bias can cause an
algorithm to miss the relevant relations between features and target outputs
(underfitting)"; while "the variance is an error from sensitivity to small fluc-
tuations in the training set. High variance may result from an algorithm
modeling the random noise in the training data (overfitting)'. Let’s begin
defining 8 = ry +V (si41 — V(s¢)) that is the TD residual of V with discount
v (by definition [2]). Next, consider the sum of k of these § terms, denoted as
P,

Ak
AE) = ’Yl(st‘frl (3.9)
1=0
Then, similarly taking k& — oo, we get:
A =S, (3.10)
1=0

Deep Reinforcement Learning

The generalized advantage estimator is defined as the exponentially-weighted
average of these k-step estimators:

AFAEON =3y, M) (3.11)
1=0

~v and A are both hyperparameters in the range [0, 1]. In the continuation of
the analysis of the PPO algorithm we will use for simplicity the notation A,
to indicate the advantage function, even if the most recent implementation
exploits the method of Equation 3.11 instead of 3.8.

Trust Region Methods: by simply applying the gradient update on every
batch of observations, the change of the network parameters would be per-
formed far outside of the range where this data was collected, so that, for
example A; would be completely wrong and the updates would destroy the
policy. To overcome this problem, the Thrust Region Policy Optimization
approach [18], abbreviated TRPO, suggests to put a limit on how much the
update of the current policy can move away it from how it is at the moment.
To do that, TRPO adds a KL constraint to the optimization objective:

. l ro(ase) At]

maximize [,
4 TOo1a (at|5t)

subject to E[KL[WHOM("&),We('\stm <9é

(3.12)

Note that in this objective function the only change from the vanilla policy
gradient (Equation 3.7) is that the log operator has been replaced with a
division by m,,,, where 0,4 is the vector of policy parameters before the update.
This KL constraint however adds an overhead to the optimization process, the
PPO algorithm includes this extra constraint directly into the optimization
objective. We can indicate with r,(f) the probability ratio ry(f) = —eteds) .

0,14 (atlst)’
so given a sequence of sampled states and actions, r;(f) > 1 if the action is
more likely to be chosen now rather than in the old version of the policy, and
0 < r¢(0) < 1 in the opposite case. TRPO maximizes a “surrogate” objective:

LOU(9) = B, l“(amzxtl = [r(0)A)] (3.13)

TOo1a (at|8t)

Using the exposed notation, we can now define the main optimization objective
function used in the PPO algorithm:

LEMP(0) = By [min(ry(0) Ay, clip(re(6), 1 — €, 1 +) Ay)] (3.14)

The objective function is calculated as an expectation operator also in this case,
this means that it is computed over batches of trajectories. The expectation is

28

Deep Reinforcement Learning

applied to the minimum between two terms: the first is L7 = 7,(6) A; the second
term is a similar version where 7,(f) is possibly truncated by the clip function,
controlled by the hyperparameter € (let’s say € = 0.2). Remember that the operator
clip(z, Tmin, Tmaz) gives x for Tpm < & < Tz, Tomin 0T T < Tpip and T, for
T > Tmaz-

LOLIP A4>0

I

I

I

I

I

I

I

I
+ ; T
0 1 1+e e

Figure 3.3: L¢MP objective function trend as a function of (), for
negative (left) and positive (right) A,

The meaning of the min operator is deeply influenced by the fact that A, can be
either positive or negative, but it also is very noisy, so the clip system is in charge
to ensure that the gradient update does not destroy the network. Figure 3.3 shows
the trend of the objective function LEHF for positive and negative values of the
advantage estimate. On the left graph, with A, > 0 i.e. when selected actions are
better than the expectation, if r gets too high the clip operator flattens it; this
means that even if the action is a lot more likely than the expectation, anyhow the
gradient update will be done in a limited magnitude. On the right graph, when
A, < 0 i.e. when selected actions are worse than the expectation, the objective is
flattened when goes near zero; this means that even if the action is a lot less likely
than the expectation, anyhow the gradient update will not reduce its probability
to zero. Lastly, the inclined part of this graph occurs only in the case in which r
is largely positive but the choice was wrong (/Alt < 0), the objective function will
be negative proportionally to the mistake done; note that this is the only case
in which r,(0)A, < clip(r¢(#),1 — €, 1 + €)A, on which the min operator will be
applied. It can be said that the PPO algorithm bases its strength on the update
limitation concept proposed by the TRPO approach, but that the calculation of
the objective function is greatly simplified. This means that the performances are
excellent compared to other more complex algorithms.

29

Deep Reinforcement Learning

The final loss function used to train an agent is the sum of the LEX" objective
just seen and other two additional terms:
LEMPRVERS (9) =, [LEMP(0) — et L F(0) + caS[mo] (s1)] (3.15)

The L} term is in charge of updating the network that has to predict the value
function (i.e. to predict how good is it to be in a specific state). It is calculated as
squared-error loss (Vy(s;) —V;*"9)2. The policy and the value function are two neural
network, obviously they perform different tasks but substantially the structure of
the input layer and the intermediate layer of both are equal, therefore they are
combined into a single network that is updated with a single loss function. The term
S, called the entropy bonus, is in charge of making sure that the agent performs

enough exploration during the training. Entropy for a gaussian distributions is
defined as:

1
h = 3 log 2mea? (3.16)

where 7 here is pi, 02 is the variance of the gaussian distribution. The S[mg| term
used in the loss function is the mean of the entropy values calculated with the
probability distributions of each possible action under the policy 7y [19]. ¢; and ¢
are hyperparameters which weigh the contribution of these two terms.

Now that we have analyzed the objective function, we can look at the functioning
of the entire algorithm (Algorithm 1); as an actor-critic method, it is made up
of two main components. In the inner loop the current policy interacts with the
environment, here the advantage function is immediately calculated for each step.
Every N episodes, passing in the external loop, all collected experiences are used to
run gradient descent using the LEHT objective function, the old policy is so updated.

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,....N do
Run policy my,,, in environment for T timesteps

Compute advantage estimates Ay, . Ar
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
Ootqg < 0
end for

As explained in [15], the implementation of this training system can be de-
coupled into two separated parts. The interaction with the environment can be

30

Deep Reinforcement Learning

performed in parallel by thousands of rollout workers, each of these agents acts
independently inside a copy of the environment. Periodically, the optimizer node
gets the experiences and performs the network update. The local policy used by
each worker has to be often refreshed in order to be sure that the latest version is
being used.

The neural network used within the algorithm is a MLP, as mentioned it encloses
both the policy and the value function estimator. To define its structure it is only
necessary to decide how many layers it contains and the size of the layers, the size
of the first layer is given by the number of values present in the input vector, that
of the output by the number of actions we need, they can be either continuous or
discrete. This NN is very effective although simple given the nature of the vector of
row observations that we provide as input, which as we will see are values observed
by sensors; if images were used as input, it would probably be necessary to use a

CNN.

3.3 The PPO Hyperparameters

As for any algorithm of this level of complexity, performances are deeply influenced
by the hyperparameters that govern its functioning. As seen in the previous section,
they are not a few, but their understanding and tuning is fundamental for success.
Below is summarized the specific description of the parameters that here can be
tuned, as well as the numerical ranges usually recommended; they are reported
with the nomenclature of the ML-Agents library [4], it has been used used for the
application of the PPO method to the proposed case study, as will be explained in
Chapter 4. Extensive reference is made to its documentation [20)].

o batch_size: the batch size defines the number of experiences (agent state-
action-rewards obtained) used for one iteration of a gradient descent update.
This should always be a fraction of the buffer_size. In a continuous action
space, its value should be large, in the order of 1000s (typical range in
continuous: [512, 5120]); using a discrete action space, its value should be
smaller, in order of 10s (typical range discrete: [32, 512]).

o buffer_size: it indicates how many experiences should be collected before
doing the updating of the model. It should be a multiple of batch_size.
Typically a larger buffer_size can lead to more stable training updates. The
typical value range is [2048, 409600].

e learning_rate: this parameter corresponds to the strength of each gradient
descent update step. This should typically be decreased if training is unstable,

31

Deep Reinforcement Learning

and the reward does not consistently increase. The typical value range is
[107°,1073].

gamma: corresponds to the discount factor for future rewards. This can be
thought of as how far into the future the agent should care about possible
rewards. In situations when the agent should be acting in the present in order
to prepare for rewards in the distant future, this value should be large. In
cases when rewards are more immediate, it can be smaller. The typical value

range is [0.8, 0.995].

epsilon: it regulates the acceptable threshold of divergence between the old
and new policies during gradient descent updating (seen in Equation 3.14).
Keeping it small will result in more stable updates, but will consequentially
slow the training process. The typical value range is [0.1, 0.3].

beta: it corresponds to the strength of the entropy regularization, which is
in charge of making the policy "more random" (seen in Equation 3.15, here
it was called ¢;). Increasing this parameter will ensure more random actions
are taken. This should be adjusted such that the entropy (value measurable
from TensorBoard) slowly decreases alongside increases in reward. If entropy
drops too quickly the agent is probably not exploring enough: increase beta.
If entropy drops too slowly: decrease beta since at the end of the training it
should be weak. The typical value range is [107%,1072].

lambd: this parameter is the lambda parameter used when calculating the
Generalized Advantage Estimate (seen in the previous section). This can be
thought of as how much the agent relies on its current value estimate when
calculating an updated value estimate. High values correspond to relying
more on the actual rewards received in the environment (which can be high
variance), low values correspond to relying more on the current value estimate
(which can be high bias). The parameter provides a trade-off between the two
sides, a higher value can lead to a more stable training process. The typical
value range is [0.9, 0.95].

num_layers: this parameter defines how many hidden layers are present in
the neural network. For simple problems, fewer layers are likely to train faster
and more efficiently. More layers may be necessary for more complex control
problems. The typical value range is [1, 3].

hidden_units: it defines how many units are in each fully connected layer
of the neural network. For simple problems where the correct action is a
straightforward combination of the observation inputs, this should be small.
For problems where the action is a very complex interaction between the

32

Deep Reinforcement Learning

observation variables, this should be larger. The typical value range is [32,
512].

normalize: this boolean value decides to whether normalization is applied
to the vector observation inputs. This normalization is based on the running
average and variance of the vector observation. Normalization can be helpful
in cases with complex continuous control problems, but may be harmful with
simpler discrete control problems.

max_steps: it defines how many decision steps of the simulation are run
during the training process. This value should be increased for more complex
problems. The typical value range is [5 - 10°,107].

num_epoch: the number of epochs represents the number of passes through
the experience buffer during gradient descent. The larger the batch_ size, the
larger it is acceptable to make this. Decreasing this will ensure more stable
updates, at the cost of slower learning. The typical value range is [3, 10].

time_horizon: it corresponds to how many steps of experience to collect
per-agent before adding it to the experience buffer. When this limit is reached
before the end of an episode, a value estimate is used to predict the overall
expected reward from the agent’s current state. As such, this parameter trades
off between a more biased, but less varied estimate (short time horizon) and
less biased, but higher variance estimate (long time horizon). In cases where
there are frequent rewards within an episode, or episodes are prohibitively
large, a smaller number can be more ideal. This number should be large
enough to capture all the important behavior within a sequence of an agent’s
actions. The typical value range is [32, 2048].

33

Chapter 4

Framework, Library and
Implementation

In this chapter the technologies that allowed the realization of this study will
described. The physical simulations were implemented from scratch using the
framework Unity [5] (version 2020.3.3f1), is is a game-engine with C# language
scripting. Together with it, the Unity Machine Learning Agents Toolkit (abbrevi-
ated ML-Agents) [4] was exploited, it is an open-source project written in Python
3, which allows through RL algorithms to train agents living inside Unity scenes;
Package Version 2.1.0-exp.1 (released in June 2021) was used. The entire execu-
tion of ML-Agents takes place on CPUs, 10 virtual processors of an AMD Ryzen
Threadripper 3970x 32-core (3.70 GHz frequency) were available and were used
for all procedures reported below, it has been used Windows 10 operating system.
In the first part of this chapter we will summarize for both technologies the main
features ant the functioning, not in their totality but those that have been mostly
used for this work; after that will be exposed the physical characteristics that have
been shared basis of the implementation of the Lunar Lander simulations.

4.1 The Unity Framework

Each entity within the simulated world is called GameObject, for the sake of brevity
from now on we will sometimes generically call the GameObjects "objects". Each
object owns the base class MonoBehaviour, that must explicitly be derived when
implementing a C# script. They are attributed with components that define
particular properties or behaviors. Each object has the fundamental Transform
component, which defines its position, rotation and scale inside the environment,
it also defines the Parenting (concept that we will analyze better later). Physics

34

Framework, Library and Implementation

modeling is applied to all objects that possess the Rigidbody component. Its most
important features are: the value of the velocity in the three axial components,
the angular velocity on the three axes of rotation, the size of the mass, the local
position of the center of mass, whether or not it is subject to the force of gravity; in
addition to accessing these values, it is possible to interact with the dynamics of the
object through various APIs. The Mesh componend defines the object’s shape. The
collisions, and the relative simulation of their consequence, are detected between
objects that have the Collider, it has its own shape which may be different from
that of the mesh, in fact it is not visible. Other important components such as
Joints, Physics Articulations and Character Controller were not used in
this work so their description is omitted. Within the scripts it is possible to access
the components of the object itself or of other objects through a search (for example
with the method FindGameObjectsWithTag(tag)), since this is computationally
expensive it is advisable to carry it out only once in the declarative phase, and
keep a local reference variable to be accessed when needed.

In Unity two different types of periodic updates are performed: Update and
FixedUpdate:

» the Update is calculated once per frame, we can define the method Update ()
to execute here our code. Its execution is totally independent from the physical
engine, it is important to remember that its execution frequency is subject to
variations linked to variations in framerate, for this reason it is good not to
include physical interactions in this function, but to use it for minor purposes
which can be delayed in case of performance slowdowns. Since only the physical
aspects are important in this work rather than graphics and representations,
it has not been used. By default, Unity runs at 60 FPS.

» the FixedUpdate instead is called with a regular frequency since here physical
calculations are performed, we can add our scripts to be executed here through
the function FixedUpdate (). By default, the FixedUpdate is performed 50
times per second, i.e. every 0.02 s; this value can be changed through the
value Time.fixedDeltaTime (expressed in seconds), however, in this work it
has not been modified.

Regarding the time, it should also be noted that it is possible to vary the execution
speed by changing the value Time.timeScale (values less than 1 to slow down,
greater than 1 to 100 to speed up), this proved to be very useful in the inference
phase to quickly generate large amounts of logs (for example those shown in Section
9.4).

Each object’s Start() function is called when the simulation, starts but only
after that Awake () function of each object has been executed; therefore in the first

35

0N

Framework, Library and Implementation

we have the only certainty that the object itself already exists, while in the second
we can refer to any other object because we are sure that it has already been al-
located. So both can be used in initialization phase keeping this mechanism in mind.

As said, each object preserves the Parenting status in its Transform component,
this concept defines that each object can have a Child, or more than one, and at
most one Parent. In the case of stratified relatives we have a hierarchy, the Parent
of all is called root. In this way it is possible to group clusters of objects into a sin-
gle entity. It is important to keep in mind that the characteristics of the Transform
of any Child are expressed in a manner relative to those of the Parent, the root
only uses coordinates defined in absolute system reference. For the implementation
of the scenarios of this work the Lander, the Surface, the Target, the vacuum (the
flyable space) are Child of the Environment root (an Empty object: non-physical),
in turn engine and thrusters have the lander as Parent. Single objects, as well as
objects composed of hierarchies of objects, can be used as a definition of a Prefab:
that is an object that can be allocated in a replicated manner while maintaining
its own characteristics. This makes it easy to edit multiple identical objects at
once by changing their Prefab definition. For the parallelization in the training
phase, described in Section 8.5, the scenario was replicated starting from the root
exploiting this concept; Figure 4.1 shows the 6-DOF scenario and its constituent
objects parallelized four times, on the left we can see the objects present in the
form of Prefab and their hierarchy.

Among the methods offered by the Rigidbody component it was of particular
importance AddForceAtPosition(Vector3, Vector3) that, obviously, allows to
apply a force in a certain position). It takes as parameters a three-dimensional
vector as force vector and another three-dimensional vector as point of applica-
tion, both expressed in world coordinates. Given an object’s Transform, it may
be useful to use the values transform.up, transform.down, transform.left,
transform.right, transform.forward and transform.backward that provide
the object’s six fundamental directions expressed in the global reference system,
each can be serialized with .normalized to obtain a versor. For the case of the
lander, this function was used to implement all thrusters, for example the ignition
of the main engine is implemented as a constant force applied in the center of the
cube base:

landerRigidbody . AddForceAtPosition (
thrustMagnitude * transform .up.normalized ,
transform.localPosition — (transform.up.normalized * (sideSize /

21))
) ;

36

Framework, Library and Implementation

Figure 4.1: Screenshot of the implementation of the 6-DOF scenario
parallelized four times, on the left the hierarchy tab shows the objects
present in the form of Prefabs and they Parenting.

where landerRigidbody is a reference to the lander’s Rigidbody component,
thrustMagnitude is the magnitude of the force, localPosition the coordinates
of the center of the cube in the Parent reference system (that of the environment
then) and the sideSize is the size of the cube’s faces.

Regarding collisions, detected as mentioned among objects having the Collider
component, of particular importance is its bool parameter isTrigger: if set, when
a collision occurs (or more in general interactions between colliders) instead of the
normal physical effect special functions are immidiately called up. In particular,
this three functions whose parameter is assigned the reference to the other object:

e Collider.OnTriggerEnter(Collider): it happens on the FixedUpdate func-
tion when two GameObjects collide. It was used in case the lander collides
with the ground or the target.

e Collider.OnTriggerExit(Collider): this function is called in the FixedUp-
date when two objects that had their own Colliders previously interpolated
are now separated. This mechanism has been used to identify the lander exit
from the vacuum, that has only the Collider component with isTrigger enabled
but no Rigidbody (since it must not have physical interactions).

o Collider.OnTriggerStay(Collider): it is called every FixedUpdate in
37

Framework, Library and Implementation

which two trigger-objects are interpolated. It was never used for the lan-
der.

Note that this functions to be called both GameObjects must contain a Collider
component and one must have Collider.isTrigger enabled, and contain a Rigid-
body. If both GameObjects have Collider.isTrigger enabled, no physical collision
happens as if both GameObjects do not have a Rigidbody component. In the
absence of the isTrigger parameter active, the three functions OnCollisionEnter,
OnCollisionExit and OnCollisionStay are called similarly in addition to the
normal execution of collision physics. In the implementation of the lander landing
scenario, however, the collisions represent termination cases of the episodes, so
their physics is not relevant but the trigger mechanism is exploited in three cases
above mentioned.

4.2 The ML-Agents Library

As said, ML-Agents allows to use Unity simulations as environments in which we
can train artificial intelligent agents, in particular exploiting the reinforcement
learning mechanism explained in Chapter 2. At a high level, ML-Agents is consti-
tuted by five major components represented in Figure 4.2; as described in official
documentation [21], they are:

e Learning Environment: the Unity simulation scene and all the characters
within it. This is the environment in which agents will observe, act, and learn.

o External Communicator: it is a piece of code that resides in Unity once the
package is installed, it connects the Learning Environment with the Python
Low-Level API.

o Python Low-Level API: which contains a low-level Python interface for in-
teracting and manipulating a learning environment. Note that the Python API
is not part of Unity, but lives outside and communicates with Unity through
the Communicator. This API is contained in a dedicated mlagents_envs
Python package and is used by the Python training process to communicate
with and control the Academy during training.

o« Python Trainers: the machine learning algorithms that allows training
agents. The package exposes a single command-line utility mlagents-learn
that supports all the training methods and options. The Python Trainers
interface solely with the Python Low-Level API through a port (by default
5004).

38

[

Framework, Library and Implementation

« Gym Wrapper: (not represented in the schema) a common way in which
machine learning researchers interact with simulation environments is via
a wrapper provided by OpenAl called gym [22], ML-Agent provides a gym
wrapper in a dedicated gym-unity Python package and instructions for using
it with existing machine learning algorithms which utilize gym.

Learning Environment

Python API

Figure 4.2: High-level component diagram of ML-Agents [21].

Regarding Trainers, currently ML-Agents offers to be used the implementation
of two state-of-the-art DRL algorithms: SAC and PPO, the first was previously
mentioned in Subsection 2.9.1, the second has been deeply described in Chapter 3
since it has been fully utilized in this work, given its excellent performance. Their
implementation is based the OpenAl Baselines [23], using PyTorch. After the deep
neural networks have been trained, i.e. the policies, they are saved and made
available with .onnx format (Open Neural Network Exchange [24]). Note also that
it is possible to build Unity scenes containing agents that use policies in inference
mode, the generated executable can be run directly on various platforms as well as
any Unity project.

This package exposes a command mlagents-learn that is the single entry point
for all training workflows, to start a training procedure the basic command is:

mlagents—learn <trainer—config—file > —run—id=<run—identifier >

39

Framework, Library and Implementation

where <trainer-config-file> is the file in which resides the training configuration
in .yaml format, identified by a unique BehaviorName. <run-identifier> is the
unique name with which the outputs of the procedure will be identified, they will
be placed in the /results/<trainer-config-file> folder within the Unity project, they
are basically the deep neural network (the policy) and log files that can be read in
TensorBoard. Other useful options for the command are:

e -resume: to resume an interrupted training

e —initialize-from=<run-identifier>: in order to begin a procedure of
training beginning from an already existing neural net, this mechanism will
be analyzed in the Section 9.2

o -seed: to specify the basis used to calculate randomness, in order to obtain
meaningful comparisons in this work we always used seed equal to 303

o —force: to force the eventual overwriting of a homonymous training already
present

Regarding the training configuration, we report as an example the default configu-
ration within the yaml file, in order to show how the explanation of the parameters
used above and the summary tables (PPO hyperparameters in Appendix A) are
effectively structured:

N

behaviors:
PPO_default:

trainer__type: ppo

hyperparameters:
batch size: 10
buffer size: 100
learning_ rate: 3.0e—4
beta: 5.0e—4
epsilon: 0.2
lambd: 0.99
num_ epoch: 3
learning_ rate_schedule: linear

network_ settings:
normalize: false
hidden_units: 128
num_ layers: 2

reward_ signals:
extrinsic:

gamma: 0.99
strength: 1.0
max_ steps: 500000
time horizon: 64

40

Framework, Library and Implementation

summary_ freq: 1000

4.2.1 Classes, Methods and Fields

Regarding the C# implementation, let’s now see the classes with which we build and
manage the reinforcement learning framework. The cadence of the RL mechanism is
governed by the singleton class Academy, which is automatically allocated, it has the
fundamental task of performing the step of the environment: that is to make agents
within it take observations, choose actions and make eventual updates (if and only
if their decision period requires it). By default the step is perfromed automatically
with the same frequency as the physical step(since AutomaticSteppingEnabled
is enabled, otherwise we can manually call EnvironmentStep()). Through the
Academy we can also access in reading important values, we mention the most
relevant:

EpisodeCount: the number of the current episode

InferenceSeed: the int value used as basis for randomness in the inference
phase

StepCount: the number of the steps performed within the current episode

TotalStepCount: the number of the steps performed within the entire simu-
lation

Any Unity object can become a RL agent: we have to assign to it a script that
implements the Agent interface class, the following core values reside in it:

e MaxStep: the maximum number of decision steps that the agent experiences,
it has to be set, if this value is reached the episode is automatically reset

» StepCount: the current (decision) step counter within the episode
e CompletedEpisodes: the number of episodes that the agent has completed

The following methods control the assignment of the reward and the progress of
the episode, they can be recalled at will inside the code but it is good practice to
use them inside the FixedUpdate():

o AddReward(Single): it assigns a reward to the agent, it can be a positive or
negative float value

41

Framework, Library and Implementation

e GetCumulativeReward(): it returns the current cumulative value of the re-
ward accumulated by the agent, that is the sum of all the rewards that have
been assigned during the current episode, obviously it can be positive or
negative

o SetReward(Single): it overrides the current step reward replacing it with
the specified value

o EndEpisode(): this method causes the instantaneous termination of the
current episode

Furthermore in this script we have to provide our overriding implementation of the
following methods:

e OnEpisodeBegin(): this method is called before each episode begins, similarly
to the Start() method in general, here we can define all the initializations we
need, such as reset of both physical and parametric scenario parameters. In
the case of the lander scenario, we define here the random initial conditions
with which the flight phase begins, below is the piece of code of the lander
angular velocity initialization as an example:

landerRigidbody . angularVelocity = new Vector3(
UnityEngine .Random. Range (
—1f % randomAngularVelocityPerAxis,
| randomAngularVelocityPerAxis
’))
6 UnityEngine .Random. Range (
7 —1f % randomAngularVelocityPerAxis ,
8 randomAngularVelocityPerAxis
9))
10 UnityEngine . Random . Range (
11 —1f % randomAngularVelocityPerAxis,
12 randomAngularVelocityPerAxis

w N

)

where UnityEngine.Random.Range(float, float) randomly provides a numit

ber in the given range with uniform distribution, and randomAngularVelocityPerAxis|
is the maximum angular velocity in absolute value that the lander can have

at the beginning of the episode on each axis of rotation. In addition the logs
obtained in the previous episode are finalized here and the logs of the new
episode are initialized.

e CollectObservations(VectorSensor): through this function we provide to
the agent the observation state of the environment, that it will use as input

42

Framework, Library and Implementation

N}

N

for the step. The following piece of code shows the passing of rotation values
as an example:

sensor . AddObservation (landerRigidbody . angularVelocity [0]) ;
sensor . AddObservation (landerRigidbody . angularVelocity [1]) ;
sensor . AddObservation (landerRigidbody . angularVelocity [2]) ;

VectorSensor is an array of generic values, used when exploiting raw-data ob-
servations such as in our case; ML-Agents would also allow to use CameraSensor
for visual observations and RayPerceptionSensor for raycast observations.
Note that any preprocessing calculations can be performed before data is
passed, such as normalizations or scaling or filters e.g. for the reasons set out
in Subsection 5.2.1.

OnActionReceived (ActionBuffers): it is the function with which we obtain
the actions that the policy has chosen, or better the output that represents
its decisions, and it is our task to translate them into real actions within
the simulation. ActionBuffers is a struct which basically contains two
structures we can access as vectors:

o DiscreteActions: in which the discrete decisions reside, has variable
length according to the number of decisions desired; each value is an int
between 0 and N — 1, where N is the number of discrete values that
can be assumed by the choice, this can be variable and specified for each
choice.

o ContinuousActions: in which the continuous decisions reside, has vari-
able length according to the number of decisions desired; each value is a
float between -1 and 1, this can be scaled to any value range in order to
obtain any continuous value decision, to do this the function is provided
ScaleAction(Single, Single, Single) (takes as input the value and
the extremes of the output range).

As will be explained later, in the case of the implementation of the lander
scenario only discrete decisions were used; an example of the access to the
actions vector is reported below:

switch (actions.DiscreteActions|[1])

case (0):
turnOffResThrustersRoll () ;
break;

case (1):

43

Framework, Library and Implementation

7 turnOnRcsThrusterRollPositive () ;

8 break;

9 case (2):

10 turnOnRcsThrusterRollNegative () ;

11 break;

12 default :

13 throw new Exception("indefinite action');

11}

Here we are talking specifically about the decision that controls the thrusters of
the roll rotation, the switch statement calls different functions based on the de-
cision made (turn off or turn on and which thrusters, implemented respectively
as previously mentioned). Note that the correspondence between the digit
representing the decision and the concrete action is completely arbitrary since
the agent sees only pure numbers (e.g. here actions.DiscreteActions[1]
equal to 0 corresponds to roll-thrusters turned off), the important thing is
that this correspondence remains the same throughout the entire training and
inference phases.

o Heuristic(ActionBuffers): this method allows direct mapping of decisions
provided to the agent with input of peripheral devices such as mouse and
keyboard. In this way, choosing the Behaviour Type Heuristic we will have
personally the ability to command the agent, that will ignore the policy. This
mode is very useful in the implementation phase to verify that the functions
that translate decisions into concrete actions are working correctly. In the
following example, pressing the spacebar is mapped to a binary decision (which
will be translated into the main engine control):

if (Input.GetKey(KeyCode. Space))
actions.DiscreteActions [0] = 1;
else
actions.DiscreteActions [0] = 0;

N =

- W

The BehaviorParameters component has to be assigned to the agent to specify
the characteristics of the behavior that will control it. It possesses the following
fields:

e BehaviorName: the unique name of the policy in use, it should not be modified
at runtime except with the appropriate Agent method SetModel(String,
NNModel, InferenceDevice)

» BehaviorType: it can be Inference (only if a model is currently specified) or
Heuristic

44

Framework, Library and Implementation

e Model: the neural network model used as policy, it should not be modified
at runtime too except with the appropriate Agent method SetModel (String,
NNModel, InferenceDevice)

e BrainParameters: it specifies the characteristics of the neural network, it in
turn contains substructures with the following fields:

o VectorObservationSize: the size of the observation vector, used as input
of the neural network

o NumStackedVectorObservations: the number of consecutive observation
vectors serialized (mechanism better described in the Section 5.2)

o NumContinuousActions: the number of continuous actions provided as
output by the policy

o NumDiscreteActions: the number of discrete actions provided as output
by the policy

o BranchSizes: vector of size NumDiscreteActions that contains the maxi-
mum discrete values that each discrete action can assume

Note that in the version of ML-Agents used it is possible to use continuous and
discrete actions simultaneously as desired.

An agent furthermore needs the DecisionRequester component, it causes the
agent to trigger the decision making process with a certain cadence compared to
the Academy step. The DecisionPeriod field sets this cadence; for instance if it is
set to b, every decision will be taken every 5 Acedemy steps. The bool parameter
TakeActionsBetweenDecisions specifies if actions are to be performed during the
Academy steps that are not decision steps, in this work it has always been kept
enabled.

Before continuing, it is considered useful to finally summarize the four types of
time steps encountered to avoid misunderstandings:

o step (basic concept of Unity): corresponding to the framerate, accessible
through the Update() method, by default performed 60 times per second but
not fixed

 physical step (basic concept of Unity): corresponding to the calculation and
updating of simulation physics, accessible through the FixedUpdate() method,
by default performed 50 times per second

o Academy step (introduced by ML-Agents): the RL mechanism step performed
within the environment, it is executed simultaneously with the physical step
(50 times per second), therefore it will be assimilated to it for brevity

45

Framework, Library and Implementation

o decision step (introduced by ML-Agents): a step in which the agent carries out
the observation-action process (and updating in the training phase), with the
minimum value 1 it coincides with the Academy step (50 times per second)

From here on the concepts of decision step and physical step (sometimes called
step with misuse of language) will be mainly used.

4.3 Physical Models Main Features

Let’s now see the main physical characteristics implemented in the Unity simu-
lations, these are shared between the various versions of the scenarios that, as
anticipated, have been developed in incremental way in accuracy and complexity.
In coordinates (X, Y, Z) used from here on out, Y axis represents the vertical axis
with positive sign upwards, as Unity is used to do. Positive rotations are intended
using right-hand rule. Units of measurement are expressed using the SI, they are
often omitted with abuse of notation.

4.3.1 Environment Model Characteristics

Regarding the environment, these are the characteristics held constant in all the
different implementations of the scenario:

o There is a constant gravitational acceleration of (0, -1.62, 0) m/s?, equal
to the lunar one. The vertical direction is distributed uniformly throughout
the space, it ignores the curvature of the surface, a legitimate simplification
given the order of magnitude of the distances involved.

e There are no atmospheric frictions or turbulences. This characteristic
agrees with the lack of atmosphere on the moon, but a more accurate model
would be needed in the case of adaptation of the case study to other satellites
or planets.

e The lunar surface is implemented as a smooth plane with, ideally, infinite
size. The presence of any depressions or protuberances in the ground would
be irrelevant, but making the assumption that the reliefs do not constitute a
risk of impact during low-altitude flight.

e The landing target is a smooth circle, with height not different from the sur-
face, its center is the point of reference (0, 0, 0) with respect to the environment.
Its dimensions vary in the scenarios and will be specified.

46

Framework, Library and Implementation

4.3.2 Lunar Lander Model Characteristics

The following features about the lander are kept constant in all the scenario
modelings implemented:

o The lander model is made up of a single rigid body of cubic shape. Although
the dimensions are realistic in almost any scenario, this simplification could
be too simplistic when the lander touches the ground, in fact the flat surface
of the cube would react differently than the feet on which a real lander rests.

o Its density is homogeneous, the center of mass is located in the center of
the cube and its position does not change. The center of mass position is
used hereinafter as reference point of coordinates (0, 0, 0) relative to the lander.

Certainly to implement a more accurate physical model the center of mass
would not be fixed, but influenced by factors such as the fuel consumption
and the fuel position in the tanks and from its movement. The center of mass
position in this case should be periodically located and taken into account for
the control and the consequent application of forces. This could be a good
point of improvement for future and more accurate implementations.

o All the engines are modeled as constant forces, both the main one and the
secondary ones in the cases of 3-DOF scenarios and those of the RCS in the
case of the 6-DOF scenario. When the control commands a thruster to be
switched on it immediately gives one hundred percent of its strength and
keep applying it constantly as long as it’s on, when the control commands a
thruster to be switched off it switches off immediately. Therefore there are
no intermediate transition values of forces applied, nor delays. Furthermore,
both the point of application and the direction are fixed for all forces. Force
magnitude, point of application an directions are specified below for all types
of thruster and lander model.

Real thrusters are obviously much more complex, they do not have immediate
activation and shutdown times but times to reach full capacity, they cannot
be turned off and on at will but must be kept within certain power ranges.
Moreover the thrust is not applied constantrly in ane is in itself a very difficult
task, surely this can be a large margin improvement.

o The frequency of the lander control system is 50 H z, which means that every
0.02 s the control system imposes new commands on all available thrusters.
This is the maximum frequency available, as we will see later, using a lower
refresh rate is often preferable as it involves more stable behaviors.

47

Framework, Library and Implementation

4.3.3 Episode Characteristics

The definition of a scenario, in addition to the physical characteristics of the
environment and the lander, includes the definition of three other important
components:

o The definition of the initial conditions in which the lander is at the beginning
of each episode. They are made up by the position and the velocity in
environments reference system, the rotation and the angular velocity in the
6-DOF case. The ranges and the type of randomization must also be specified,
which initiates each episode differently. Since they have been changed in the
gradual implementation of the scenarios they will be specified later.

e The physical constraints that the lander must respect during the entire flight
phase. The lander must not touch the lunar surface during the flight phase,
this would lead to failure, or to a crash in the real world. With the exception
of scenario Version 1, the lander must not even touch the target since the
success condition is obtained by flying over it, but this will be specified in the
Section 6.1. There is also a constraint on the angular velocity in the case of
the 6-DOF scenario, it will be specified in the Section 9.1.

There are no constraints to the distance nor to the speed that can be reached,
nor to the possible rotations that can be assumed during an episode. But
keeping in mind that each episode has a limited duration in terms of time
steps, it is therefore presumably impossible for an episode to end successfully
after disproportionately large distances or speeds have been reached by the
lander. Some of these constraints have been added within the simulation
environment in order to avoid computational waste and decrease the training
time, they will be specified later.

o The final success conditions of the scenario, i.e. the conditions in which the
lander must be in order for the touchdown to take place. In other words, they
are the conditions that the agent aspires to achieve. They will be specified
later too since they are specific to each scenario.

Starting from the common guidelines set out above, four different scenarios have
been implemented, they will be respectively exposed and analyzed in Chapters 5,
6, 7 and 9; at the beginning of each of them a specific section will describe the
characteristics of the physical model and the control problem regardless of the
application of reinforcement learning, tables in Appendix A also summarize them.

48

Chapter 5

Autonomous Lunar Lander:
3-DOF scenario Version 1

In the following three chapters will be exposed the mechanisms that led to the
"'resolution” of the lunar lander control problem, in these the three degrees of
freedom constraint is present. As already mentioned, with "solve' we mean in this
specific study case the obtaining of a neural network capable of landing successfully,
with a certain accuracy and success rate, it is not fixed since specific considerations
are made for each case. In all cases the PPO algorithm, deeply described in
Chapter 3, was used through the framework consisting of Unity and ML-Agents,
described in Chapter 4. The first section of this and the next three chapters the
physical modeling of the problem is exposed, it is important to remember that it is
formalized regardless of the algorithmic application.

5.1 Physical Model

As said, the major physical simplification adopted in the first three scenarios is the
3-degrees-of-freedom limitation. It offers a notable reduction in the complexity of
the control since actions taken independently on the three axes do not influence
each other.

The lander has a mass of 1500 kg, the cube that models it has faces of 1 m
side, it has five thrusters. The main engine has a positive vertical direction,
it applies its force to the center of the base of the cube, it is present in all the
scenarios implemented. The other four thrusters are positioned two per axis with
the application point in the center of the cube faces, they are anagonists two by
two. In this case all five thrusters can impose the same force of 15 kN.

49

Autonomous Lunar Lander: 3-DOF scenario Version 1

The control system imposes three commands simultaneously, they can ideally
be grouped one for each axis:

« Y axis (vertical): the main engine can be switched on or off

o X axis: the thruster that imposes the force in the positive direction can be
turned on, or the thruster that imposes the force in the negative direction can
be turned on, or both thrusters can be kept off

o 7 axis: similarly to the X axis, the thruster that imposes the force in the
positive direction can be turned on, or the thruster that imposes the force in
the negative direction can be turned on, or both thrusters can be kept off

Figure 5.1: Screenshot of the lunar lander model in a 3-DOF scenario,
implemented in Unity. The red cylinders have no physical function since they
are for display purpose, each cylinder is displayed when the corresponding
thruster is turned on.

The mobility in only three degrees of freedom is ensured by the fact that all
the forces are applied to the center of the cube faces, i.e. in correspondence only
to the center of mass, therefore rotations have no way of occurring. It should
also be noted that antagonistic thrusters on the same axis cannot be turned on
at the same time, this would result in a resultant of zero forces and therefore
a waste of resources. The ignition of a thruster has no other implication apart
from the constant application of force, there are no limits on time of use or ignitions.

50

Autonomous Lunar Lander: 3-DOF scenario Version 1

The position of the lander with respect to the target at the beginning of each
episode is placed randomly with uniform distribution in the following ranges: be-
tween 20 and 30 meters along the Y axis, between 95 and 105 meters on the X
axis and between -5 and 5 meters along the Z axis. For simplicity in this scenario
the initial velocity of the lander is not random, it is set as (2, —2,0) m/s.

The target is a circle with a diameter of 10 m. The condition of success-
ful end of episode in this scenario consists simply in touching the target, the
successful end-of-episode condition in this scenario consists simply of touching
the target, avoiding touching the surrounding ground but without other constraints.

The characteristics described above formally describe Version 1 of the scenario in
3-DOF, they are summarized in Table A.1. This model is obviously very simplifying
and far from the characteristics of Apollo 11, however fundamental for many initial
arguments exposed below.

5.2 Reinforcement Learning Application

The first fundamental aspect to be defined for the application of a reinforcement
learning algorithm is the composition of the state observed. In this first case the
state is simply constituted by the position and the velocity. Both are calculated
with respect to the center of the target and the center of the cube, both are divided
into the three axial components. Remember that the values passed as observations
are pure numbers, the algorithm has no knowledge of what they represent but
simply learns about them through experience during the training. Therefore the
state vector in this case is represented by a vector of 6 floating point values. They
are then scaled directly by the pre-processing process carried out by the algorithm
implemented in ML-Agents, this normalization is done on the basis of the running
average and variance of the state vector.

Each state vector obtained at the time ¢ can be passed to the agent chained
with other n — 1 state vectors obtained in the previous stepst—1,t—2,....t —n+1.
The constant n is called stacked vectors in the ML-Agents framework [4], this
strategy makes the agent have a vision of the previous states as well. Here, this
parameter can assume an integer value in the interval [1,20]. In this scenario, a
stacked vectors of value 20 was used.

51

Autonomous Lunar Lander: 3-DOF scenario Version 1

5.2.1 Limit unbounded states

Although the physical formalization of the control problem does not impose
explicit limitations on the maximum reachable distance and on the maximum
reachable velocity, it is advisable to impose boundaries in the training phase.
Indeed, in the specific case of the lander landing, it is easy to imagine that if
the lander moves far away from the target or reaches great speeds, the episode
will most likely have a negative outcome. Although the agent is left with the
possibility of affirming an arbitrary behavior, it is in fact easy to understand
that many of the behaviors it tests are completely unsuccessful, especially in
the initial phase of training. In the training phase it is essential to limit as
much as possible the waste of resources in fruitless episodes, resources intended
with computational use and above all training time in terms of decision steps.
The time limitation of each episode bounds these potential wastes, but adding
other reasonable limits allows you to further save resources.

There is another important aspect for which it is advisable to limit the size
of the observations passed to the agent: the scaler system applied to the state
vector is calculated on the basis of the maximum values ever recorded for each
component of the vector. Therefore, if even just one episode records much
greater quantities than those usually recorded, the approximation in the next
scaling could result in small quantities being equal.

For this reasons, in this specific scenario, the size of the region above the ground
in which the lander can fly has been limited to a parallelepiped of dimensions
(400, 200, 400) m, leaving this parallelepiped involves the termination of the episode
with relative reward. The maximum speed value that can be provided is limited to
25 m/s.

The actions available that the algorithm can impose as output correspond
exactly to those made available by the control problem. The output is represented
by a vector of three integer values, the first value can assume the values 0 or 1 that
will respectively force the main thruster to be turned off or on; the second and
third values can be -1 or 0 or 1, respectively to turn the thruster on in the negative

direction, turn it off or turn it on in the positive direction, for both horizontal axes
X and Z.

Other fundamental parameters needed to define the agent’s training are: the
agent’s decision period, set in this case to 10 which it responds to one decision
step every 10 physic update steps, i.e. one decision every 0.2 s; and the number of
maximum steps per episode, set to 1000 decision steps for this scenario. When

52

Autonomous Lunar Lander: 3-DOF scenario Version 1

we talk about the maximum number of steps for an episode we are talking about
physics update steps, as mentioned they are performed every 0.02 s, a maximum
time of 1000 steps therefore corresponds to a maximum total of 20 s. The decision
period is a parameter of fundamental importance in control applications, the rela-
tionship between its sizing and the training of an RL algorithm is taken up several
times in this work, and a special benchmark is exposed in the Section 8.3, here we
want to focus on the following reasoning:

8

5.2.2 Decision period in training and inference

In the case of control algorithms that interact with the physical world in
general, the higher the update frequency, the better. In fact, high control
frequency corresponds to greater accuracy in movements and greater reliability
in response to external perturbations.

Let’s hypothesize to train an agent that operates at a decision frequency f’
with " < fiaz, Where fi,q4. is the maximum usable update frequency, and to
obtain a policy 7’ capable of achieving the pre-established objective. When
we use 7' in inference mode we might be tempted to set the update frequency
t0 finae, thinking we will benefit from having the highest possible frequency.
However, in most cases, doing this is seriously wrong as 7’ used to make
decisions that were valid for a time d' = 1/f'. If instead they are maintained
for a time dyup = 1/ fiae < d' the actions will have a different effect than
expected, consequently the agent’s overall behavior will be very different from
what he had in the final training phase, with possible disastrous consequences
as inference could work in the real world.

Therefore even if the decision period can be changed at will by passing from
training to inference, it is recommended not to do so; for the state and action
vectors the problem does not arise as they must remain the same. Although
this reasoning could seem trivial, this error was initially made working on this
scenario and therefore is reported.

The training duration for this agent is one million of decision steps, this size
has to be be dimensioned on the base of the complexity of the scenario, even if
initially it is not easy to understand how much complex it is, the only way is to try
and do some reasoning, we will see that later on this size will be increased.

53

Autonomous Lunar Lander: 3-DOF scenario Version 1

v

5.2.3 Maintain training duration

During a training process, whether it seems successful or unsuccessful, it may
come naturally to think of lengthening the process in order to obtain a better
result, or to reduce it to save resources. It should not be forgotten that the
behavior that the agent will have in the inference phase is visible only in the
final part of the training. As explained in Chapter 3, this happens because
various values that control the PPO algorithm are not constant but decay
during the entire duration of the process. We are talking in particular of beta,
epsilon and the learning rate values. Changing the total duration of the training
in progress causes an anomalous variation of them, which results in a difficult
interpretation of the results. Instead, it is preferable to terminate the current
process normally and possibly use the neural network obtained as a starting
point for another training process, as described in Subsection 9.2.6.

With regard to the hyperparameters of the PPO algorithm used to solve this
scenario, they are similar to the standard configuration provided by the ML-Agents
library [20], their meaning has been explained in Section 3.3 and they are en-
tirely shown in Table A.3. Given the simplicity of the scenario, no particular
tuning were necessary and no particularly significant observations emerged. In
Chapter 8 benchmarks and general considerations regarding them will be presented.

Let’s now analyze the reward function used in the most successful training,
which allowed the resolution of this scenario. The reward function is the set of
possible rewards that can be assigned to the agent according to the conditions
in which he finds himself. The assignment of rewards is divided into periodic
rewards and in terminal type rewards. The first are assigned at each time step
of the framework update, i.e. in the flight phase for the case of the lunar lander;
remember that it can occur with a greater frequency than the control update time,
in Unity it occurs 50 times per second. The latter are assigned at the end of an
episode, whether it is successful or unsuccessful.

The possible periodic rewards R; and the method with which they were calculated
are the following:

« Fixed approach success: at every time step ¢ the current distance D, from
the center of the target and the base of the lander (i.e. the center of the base
face of the cube) is calculated. A step of minimal approach is achieved if and
only if:

Dt < thl (51)

o4

Autonomous Lunar Lander: 3-DOF scenario Version 1

A fixed approach is achieved if and only if:
Dy < Dy — Gmin (52)

where a,,;, i1s a consant distance to be dimensioned.

The reward attributed in case of achievement of this condition is a positive
floating point value R; € [0, a obtained with the following calculation:

Rt:Oé<1— Dt) Dt

Dmar -« 1_ 2

\/<LE7;)X) + (Lenvy)® + (Lﬂ;v,z>
(5.3)

where « is a positive value not necessarily constant and D,,,, represents the
maximum distance reachable by the lander within the simulation environment.
In fact even if the ground plane and the space above it are ideally infinite they
are implemented with limits, the reasons for this choice is similar to the one
described in Subsection 5.2.1. In this case the space in which it is possible
to fly is modeled by a parallelepiped of dimensions (Deny, x, Denvy's Denv.z)
where the center of the base coincides with the center of the target. Therefore
it is not difficult to understand that the reward R; is a value between 0 and «
mapped in an inversely proportional way with respect to the distance between
lander and target.

2

We can summarize this generic strategy of reward calculation as:

D
Vi, Dt<Dt_1—amm:>Rt:a<1—Dt) (5.4)

Let us explain the two limit examples to completely clarify the functioning of
this calculation: if the lander is very close to the target and as a time step
elapses its distance from it decreases by a measure greater than a,,;, then
it will receive a reward R; close to «; if, on the other hand, the lander is at
a great distance from the target and as a time step passes it decreases its
distance from it by a measure greater than a,,;, then it will receive a reward
R; close to 0 (positive). We could say that the function applies an inverse
linear mapping of the distance into a positive reward range.

In the specific case of resolution of this scenario, it have been used a,,;, =
0.1 constant, « = 1 constant and D,,,, =~ 346 since the environment has

59

Autonomous Lunar Lander: 3-DOF scenario Version 1

dimensions (400, 200,400). Therefore Equation 5.4 becomes:

D
Vi, Dt<Dt,1—0.1:>Rte[O,+1]|Rt:1—37t7 (5.5)

Note that D,,,, rounded up ensures that R; is never negative.

Fixed approach fail: similarly but on the contrary, a case of approach fail

occurs if:
D, > D, (5.6)

And a fixed approach fail occurs when:

Dt 2 Dt—l — Qmin (57)

In this scenario, in the case of fixed approach fail a constant reward of value
-1 has been attributed, obviously keeping the same a,,;,, we can write it as:

Vt, Dt Z Dt—l - 01 = Rt = —]. (58)

Note that the internal value Dy is recalculated at each time step t regardless
of whether an approach has occurred in it or not.

The cases that determine the termination of the episode are listed below, in
correspondence with them a terminal reward Ry;, is assigned:

Target hit: this case represents the success within this scenario as a rudi-
mentary form of touchdown, it does not require the fulfillment of any other
condition regarding velocity. In this case a reward Ry;, = 1000 is assigned.

Ground crash: understood as touching the ground outside the target in any
way, it corresponds to the assignment of a reward Ry;, = 0.

Maximum distance exceeded: the maximum distance that can be reached
with respect to the target is not calculated as a radial distance from it but
is intended as a limited space in which to fly, as said in this scenario it
is a parallelepiped of size (400,200,400) m, this choice is motivated in the
Subsection 5.2.1. The method by which this condition is checked is explained
in Section 4.1, it is analogous to the method by which collisions are detected.
Leaving this space causes the assignment of a reward R, = 0.

Maximum step exceeded: the maximum number of steps for this scenario
is set as ty;, = 1000, upon reaching it a reward Ry, = 0 is assigned. As they
are physic update steps performed once every 0.02 s, ty;, correspond to 20 s.

The fixed approach reward assignment has proved effective but implies a strong
influence on the agent on how to act, in Section 6.2 and Subsection 6.2.2 it will be
analyzed more in detail and overcome.

56

Autonomous Lunar Lander: 3-DOF scenario Version 1

5.3 Scenario Solution

All the details that were necessary to define the training procedure that produced
an agent able to achieve its purpose were outlined, graphs in Figure 5.2 were
produced during it. From here on, the graphs of successful training will be similar
to this, so let’s analyze it here in detail. The abscissa axis is shared by all three
graphs and reports the number of steps performed, remember that the length of a
training is expressed in total number of decision steps.

o The first graph at the top shows the trend of the reward obtained by the
agent, it can be positive or negative depending on the reward function, it is
the goal of the algorithm to maximize this gain over time thus a successful
training has a globally increasing trend.

o The central graph shows the duration that the episodes had during the training,
here it is expressed in seconds to facilitate the intuitive understanding of the
dimension, obviously it can only assume positive values. For these two graphs
the raw values recorded are shown in gray color, they are usually very jagged;
red and green curves are obtained by applying the exponential smoothing
filter [25], with smoothing factor o = 0.9.

e The third graph shows the same two smoothed curves scaled in the interval
[0, 1], now we have a pure unit of measure at ordinate axis and this makes
easier to observe the strong correlation between the variations in the length of
the episodes and the reward obtained.

The training process in these conditions let obtain an agent able to successfully
reach the touchdown in the 95.5% of episodes, test carried out on 1000 episodes in
inference mode; in the remaining 0.5% cases the lander hits the ground instead
of the target. In addition it is only specified that in 62.1% of cases the lander
touches the target in the inner circle of circumference 5 m. Given the simplicity of
the scenario, no further analysis of the results was seemed necessary and it was
preferred to proceed with the next implementation.

57

Autonomous Lunar Lander: 3-DOF scenario Version 1

reward

1500

1000

500

=500

=-1000

episode length
S R ® 3 3 3

o]

[=2]

1.0

0.8

0.6

normalized scaled

0.0 02 04 06 08 10
training step 1e6

Figure 5.2: Scenario Version 1 training statistics

58

Chapter 6

Autonomous Lunar Lander:
3-DOF scenario Version 2

The two main features introduced in this scenario are the implementation of more
realistic initial conditions, i.e. the conditions in which each episode begins that
should resemble those assumed by a lander in the last phase of flight, and final
constraints, which are the physical conditions that must be met in order for the
desired touchdown to occur. The Apollo 11 mission was chosen as a reference as a

source of detailed descriptive material, in particular the official NASA reports [6]
and [26].

6.1 Physical Model

Both the position and the velocity with which the lander begins the episode are
similar to those assumed by the Apollo 11 lunar lander during its landing phase.
Both values are randomized within certain values in order to generalize the situation.
The analysis of performances under greater randomness ranges is fundamental
in this type of applications as it reflects the variability of realistic scenarios and
tests the adaptability of deep neural networks. The stochastic approach of neural
networks, in fact, is a well established strength rather than approaches based on
the pre-calculation of causal situations.

For the initial constraints: the starting position is set as (=700, 150,0) m to
which a randomness with uniform distribution of 10% is applied, which leads to
the following ranges: [—630, —770] m on the X axis, [135,165] m on the Y axis
and [—15,15] m on the Z axis. The starting velocity is set as (18.3,—5,0) m to
which a randomness with uniform distribution of 10% is applied, which leads to

59

Autonomous Lunar Lander: 3-DOF scenario Version 2

the following ranges: [16.47,20.13] m/s on the X axis, [—5.5, —4.5] m on the Y
axis and [—0.5,0.5] m on the Z axis.

Regarding the final constraints, which were obviously necessary to be intro-
duced since Scenario 1 did not treat a real landing, for the landing to be successful
the lander must meet the following conditions at the same time:

o The center of mass of the lander must be over the target, i.e. the distance
calculated on the only X and Z axes must be minor than 5 m in magnitude.

e The lander base must be at a height less than 1 m.

o The horizontal velocity, that is the velocity calculated on the only X and Z
axes must be minor than 1 m/s in magnitude.

o The vertical velocity, that is the velocity calculated on the only Y axis must
be minor than 1 m/s in magnitude.

The condition on the lander height is very relevant since if the lander does not
have to touch the ground it can continue to fly over the target until the conditions
are not all satisfied at the same time. This helps the RL algorithm to achieve its
goal, as it will be described below. Touching the target without the maximum
speed conditions being met leads to a new unsuccessful termination condition,
called target hit. Obviously the other unsuccessful terminal cases remain the same.

The mass of the lander has been increased to 3000 kg, but it is still not realistic
sunce the substantial improvements about it will be made in Version 3. The other
parameters are the same as the previous scenario, all the features of this model are
specified in the summary Table A.5.

6.2 Reinforcement Learning Application

The input vector of the observations was kept the same as the previous scenario:
it is composed by the position expressed in the three axes and by the velocity
expressed in the three axis; the output vector of the actions is the same too, made
of three values that represents three decisions: two trivalent for the two horizontal
thrusters and one bivalent for the vertical thruster.

The value of the stacked vectors parameter was reduced to 1. This decision
was taken as a result of a benchmark that showed that, for the same result, the
minimum value of stacked vectors involves less consumption of computational

60

Autonomous Lunar Lander: 3-DOF scenario Version 2

resources, but this aspect will be better analyzed later in Section 8.3.

It was necessary to increase the maximum duration of each episode given the
greater distance that must be covered, it is set to 90 s corresponding to 4500 steps
of physics update. The optimization of the time spent can represent one of the
factors of interest in the performance of an agent. In this scenario there are no
physical factors that impose time limits, this will happen in the Version 3 with
the introduction of the limited fuel available, therefore it is essential to insert a
factor that ensures the agent is encouraged not to waste too much time, this aspect
is managed by the reward function as explained below (in Subsection 6.2.3 in
particular).

The training duration has been increased to two millions of decision steps. A
previous training procedure with one million steps had led to a similarly positive
result, but doubling the duration of the training increased the success statistics;
Figure 6.1 shows the graphs obtained during them, clearly show that a million
learn the correct behaviour but not enough to fully establish it, in particular more
time allows to optimize success as explained in Subsection 6.2.5. In particular,
this allowed to increase the accuracy in landing from 81.8% to 97.7% (statistics
obtained out of a total of respectively 1000 and 2000 test episodes).

The decision period used is 15 which responds to one decision step every 15
physic update steps, i.e. one decision every 0.3 s; it has been increased with respect
to the previous scenario as a comparison benchmark led to the following results.

61

Autonomous Lunar Lander: 3-DOF scenario Version 2

1500
1000
500 ﬂ

| |
.M ﬁfﬁw F;-wll‘ " VIM\lv\ " “\/A\fu /I i\/\Mﬁll

. 'l'|“'1JV \ N u I

reward

-500 /\ J'[,IA\ lil ! 'ﬁq:liJJ

oo TRV \FN W

I

=2000 ‘

-1500

h
3 & 8

NN LA
|r] ﬁhﬂ 'V‘ /rv \/'l,f Uh'u 04

[=2]
o

Lt MI \ﬂlﬁ*‘vl’)&'\ ﬂ,‘\‘ /l\i,r ,A
th l/LJJ \J \/

x A

R

| X/

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
training step 1e6

episode lengt
8 8 &8 8

Figure 6.1: Comparison between trainings with 1 million and 2 million
decision steps duration, carried out as the same conditions

6.2.1 Counterproductive high control frequency

Generally speaking about the control update frequency, we refer to the number
of decision taken in a fixed time, as already mentioned in the Subsection
5.2.2, we would like it to be as high as possible for our real world deployment.
Therefore if our model allows us to operate with a maximum frequency fqz
we are tempted to fully exploit it to obtain the best agent possible; technically
this is true, i.e. a fully trailed agent acting at a frequency f,,q.. is better
than all those acting at any f < fnae. The problem is that the higher the
frequency, the more expensive the training is, just think that the total du-
ration of the training is expressed in number of decision steps: if we double
the decision frequency the agent will have half of the episodes available to
learn. It is also not taken for gran’cedg hat by increasing the duration of the
training the same final behavior is obfained. On the other hand, obviously,
an excessively low frequency would be unable to result in satisfactory behaviors.

Autonomous Lunar Lander: 3-DOF scenario Version 2

Think of the specific case of the lander controls, during the early stages
of training the highly random exploration with a high frequency of change
would cause antagonistic thrusters to ignite repeatedly with a substantially
zero result, the agent would waste time just to learn how to keep the choice
of a direction to observe a shift. And probably at the end of the training
the control frequency would not be exploited anyway since in order to have
significant resulting forces the decisions would have to be maintained for a
prolonged time.

For this reason it is strongly advised not to use the maximum available
control frequency, but rather to choose it in a way that is commensurate with
the specific application.

For this scenario, the learning rate has been brought from 3-107* to 3.5- 1074,
epsilon from 0.2 to 0.25 and lambda from 0.925 to 0.95 based on benchmarks,
however they are not reported as more general and significant comparisons will be
presented in Chapter 8.

Regarding the reward function, with the increase of the initial distance and the
consequent increase in the duration of each episode it was necessary to radically
modify its structure, and notable observations were made. In the first phase
of each episode we would like the lander to move in the vicinity of the target,
in Version 1 we defined the fixed approach and attributed a positive reward to
it, the distance parameter a,,;, was in charge to determine the goodness of the
approach. However, the fact that it was constant imposes a major influence on
the behavior that the agent had to have, as it was totally inflexible. It basically
defines how fast it is thought that the lander should go during the whole episode,
furthermore it has been dimensioned on the basis of the distance set to the lan-
der at each episode begin (with very small random ranges in the Version 1 scenario).

6.2.2 Between strict and sparse reward functions

As the reinforcement learning mantra dictates, it is good practice to structure
the reward function with rules as general as possible, this leaves the agent free-
dom to generate its own behavior, key strength of the approach. Also consider
that in the presence of wide ranges of randomness or wide observation spaces,
genericity is more effective in general. So, the assignment of rewards under
strict conditions which implicitly impose to the agent to learn a non-arbitrary

63

Autonomous Lunar Lander: 3-DOF scenario Version 2

behavior are to be avoided.

On the other hand, however, a reward function that is too generic or not
very significant rises to what is called sparse reward environment, here the
agent struggles to learn because it is not stimulated properly. The problem of
sparse reward is also very significant in applications where it is difficult to find
meaningful observation states or feedback related to the actions, due to the
inherent structure of the environment.

This important principle is carried out throughout the development of the
reward function in the whole project, it is a trade off between the genericity
that makes it possible to fully exploit the potential of reinforcement learning,
and the imposition of behaviors that allow the agent to learn how to reach the
goal.

Therefore, since the periodic reward assignment for fixed approach intrinsically
imposes a too strong influence on the agent on how to act (it tells him how fast
to go), it is no longer used. However, the minimal approach reward is necessary,
the landing task to be learned is quite complex among all the possible state space,
without this signal the lander would only learn to fly avoiding terrain and boundaries
but it would hardly come close to the final conditions, even with a training of
enormous duration. So the minimal approach condition represents a "suggestions",
in this scenario it turned out to be sufficient but in the next scenario a compromise
had to be found between the generic nature of the minimal approach and the
excessive rigidity of the fixed approach.

6.2.3 Avoid laziness

Since no aspect of the model imposes reasons for being "in a hurry’, there is
a risk that the behavior of the agent will establish in approaching as slow as
possible in order to accumulate small positive rewards at each time step. This
type of behavior is called laziness, it is a clear example of how, although it may
seem that the reward function is well structured, the agent can find a way to
exploit it for his own gain while not doing what we would like. Obviously this
is a behavior that we want to avoid immediately as it is unacceptable in a real
application. The simplest method to stem laziness is to periodically assign a
small negative reward, in this way the agent is encouraged to quickly cross the
condition in which he finds himself to arrive at a positive condition, wasting as

64

Autonomous Lunar Lander: 3-DOF scenario Version 2

little time as possible; all the negative reward accumulated will decrease the
final positive reward.

On the basis of this considerations, the periodic rewards assigned in this scenario
are:

o Minimal approch success: similarly to how explained in Section 5.2, the
reward R, is given by an inverse linear mapping of the distance from the target,
but this time it is mapped on an interval of negative values. R; is given by:

Dy

= —
Dma) L 2 L 2
\/(env,X) + (Lenv,Y)2 + (em;,Z)

2 2

where it is decided that a > 0 in order to explicit the negative sign in the

equation, Dy is the lander base distance from target and D,,,, is the maximum
distance reachable similarly to Equation 5.2. We can summarize this generic
strategy of reward calculation as:

(6.1)

D
Vi, Dt<Dt1:>Rt:—o<(Dt) (6.2)
For explanatory example: if the lander is very close to the target and
approaches it it will get a negative reward close to zero, if it is at a great
distance from the target but decreases its distance it will get reward close to
—a. For the solution of the scenario a@ = 0.5 was selected, here D,,,, >~ 1171
m.

o Minimal approach fail: it is the complementary case to the previous one,
a in this case a reward of value -1 is assigned, that is:

\V/ t, Dt Z Dt—l = Rt == —1 (63)

In the light of what is stated in Subsection 6.2.2, wanting to keep the simplicity of
the reward function as a guideline, even the assignment for the minimal approach
of a reward that is a function of the distance could seem excessive, however, it
proved to be fundamental.

6.2.4 Non-flat suggestions

The fact that the same behavior leads to a better reward in one condition than
in another, is a typical example of a mechanism by which we can provide a

65

Autonomous Lunar Lander: 3-DOF scenario Version 2

'suggestion' to the agent. In the case of approaching the target the condition we
are talking about is the position, but this reasoning can be generalized to any
state. We could in words interpret it as "we would like the agent to approach
that point, moreover doing it by being in proximity to it is preferable than
doing it in the distance'. Thanks to this foresight, during a training procedure,
the lander slows down considerably in the vicinity of the target to enjoy the
reward and in this way it "concentrates" on learning here, i.e. being slow it
spends more time here so it does more exploration so it has the chance to find
the touchdown. The method of providing rewards that are a function of cer-
tain conditions represents a valid method to direct the agent’s focus in a more
descriptive way than a flat indication, but in any case in a non-constricting way:.

On the other hand indeed, if the agent has no vision of the difference in the
area it is in, it will fly indiscriminately at no low speed, continuing to approach
but not being able to find the landing conditions. This was verified through a
specific simulation, using this same reward function but with a flat reward (equal
to -0.5) for the minimal approach: initially the agent approaches the target but
at great speed, always crashes, for avoiding it begins to approach by keeping its
altitude higher and to exit distance boundaries, it is unable to perform even one
touchdown so it establishes this unsuccessful behavior. The graph of the reward
obtained during the training is omitted as it is almost constant from the first 200
thousand steps to the final 2 million.

As for the terminal rewards, the prize for the landing is a function of how much
positive the conditions reached are, failures correspond to negative rewards:

e Touchdown: the reward R; is a positive valued between 500 and 2000. It is
composed of a flat part of 500 to which two scores are added, these two values
represent the goodness of how much respectively the position and the velocity
reached are optimal. The first score sy is calculated as:

inn + inn
sq=1 (1 _Vlux* 4] ’Z) (6.4)

Ttar get

where 74,ge¢ 18 the radius of the target (5 m) and the numerator of the fraction
is the distance of the lander calculated on the X and Z axes; (3 is a positive
value set to 900 for this scenario. The second score s, is:

Vfin, X Vfin,y Vfin,z
s =1 [3— <vm’ZZ;Z + L g mfﬂ (6.5)
2 Umaz,Y 2

66

Autonomous Lunar Lander: 3-DOF scenario Version 2

where vy;, are the final velocity of the lander in each axis, Vpes xz is the
maximum horizontal velocity for the touchdown to be achieved (1 m/s), and
Umaz,y the vertical (1 m/s); «v is a positive value set to 200 for this scenario.

7

6.2.5 Achieve it first, then optimize

The conditions that determine the success of an objective are usually formalized
as sufficient conditions, but often the achievement of them can be improved
with the ambition of learning to always reach an optimal condition as well as
sufficient. In the specific case of the lander, we would like it to always land
exactly in the center of the target rather than near its edges, and that the
final velocities are as close to zero as possible. This would give more security
to keep away from failure states, an aspect of fundamental importance in the
inference phase. If hypothetically the agent learned to land without distinction
between the center and the edge of the target, this would be left to chance, but
landing close to the edge would mean running a much greater risk of failing,
without him knowing.

Therefore, after it has learned to reach the minimum satisfaction conditions,
we are faced with an optimization problem, it is necessary to introduce a
mechanism that allows the agent to improve its capabilities. The positive
reward for the touchdown introduced in this scenario has exactly this purpose.
The flat part of the reward ensures the positive response even if success is
achieved with the minimum indispensable conditions; the additional part is
the bonus which has the optimum condition as its maximum, obviously the
agent wants to maximize it. The optimization process takes place within the
training procedure itself, in the first part of the training the agent learns to
reach the goal with sufficient conditions, in the second part it will continue
to reach it gradually learning to do it in an optimal way. If we don’t use this
strategy and made, for example, the conditions of success more strict and close
to the optimal, we would risk that the agent will have too much difficulty in
finding them.

o Target hit: the reward assigned is -250, it is smaller than the other two
failure cases since less serious, or rather an admissible error in the learning
phase and therefore not excessively sanctioned

e Ground crash: the reward assigned is -500. It was thought to assign a
reward that is function of the distance from the target, the more negative
the more the collision occurs far from it (similarly to what was done for the

67

Autonomous Lunar Lander: 3-DOF scenario Version 2

minimal approach and discussed in Section 5.2); however, this turned out to
be superfluous so it was removed in favor of simplicity.

o Maximum distance exceeded: the reward assigned is -500. Remember that
in this scenario the dimensions of the flight space are limited to (1600, 300, 1600)
m.

« Maximum step exceeded: no reward is assigned.

6.3 Scenario Solution

The reasoning and conditions explained above led the resolution of this scenario,
Figure 6.2 shows the statistics of the training procedure, they are particularly
linear and without strange trends. It can be noted that already when 500,000 steps
are reached, the landing is achieved (as positive reward is earned), and from here
the optimization procedure described in Subsection 6.2.5 acts, in particular from
1.5 to 2 million steps, in which the reward is practically always positive but still
constantly increased on average.

The test, of 2000 episodes in total, carried out with the agent in inference mode
revealed the following results:

e Touchdown: 97.7%
Target hit: 2.2%

Ground crash: 0.1%

Maximum step exceeded: 0.0%

e Maximum distance exceeded: 0.0%

The results are excellent and the implementation has been continued.

68

Autonomous Lunar Lander: 3-DOF scenario Version 2

reward

1500

1000

500

-500

=-1000

-1500

episode length

8 8 8§ 8 8

normalized scaled

3 8 8

Y
[=]

o
™)

0.6

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
training step 1e6

Figure 6.2: Scenario Version 2 training statistics

69

Chapter 7

Autonomous Lunar Lander:
3-DOF scenario Version 3

After implementing and solving satisfactory initial and final conditions in the
Version 2 scenario, it was decided to introduce a fuel consumption system and the
relative non-constancy of the mass, since it is one of the most impactful physical
aspects in the real operation of a spacecraft. It is an interesting step forward as it
represents an optimization problem, the same widely addressed in [1], furthermore
non-infinite fuel determines an intrinsic time limit for each episode.

7.1 Physical Model

The mass of the lander will now be formed by two different parts: the dry operating
mass, that is constantly equal to 7000 kg, and by the mass of fuel on board. At
the beginning of each episode the lander has a total mass of fuel of 8000 kg at its
disposal; the ignition of each certain thruster involves the consumption of a certain
quantity of fuel and this determines the loss of a certain quantity of mass. The
ignition of the main engine results in a fuel consumption of 100 kg/s, the ignition
of one of the lateral thrusters results in a fuel consumption of 50 kg/s.

The thrusts provided by the thrusters have been diversified, the main engine
now produces a force of 25 kN, each of the lateral thrusters a force of 12.5 kN, the
different fuel consumption is correlated and obviously proportional to the thrust.
This represents slightly better the preponderance of vertical thrust than the oth-
ers, but due to the constraint to 3-DOF the modeling remains very far from realistic.

Note that the quantity of fuel consumption is expressed in mass per second but
the decision to turn on or not a thruster is maintained for the entire duration of

70

Autonomous Lunar Lander: 3-DOF scenario Version 3

each decision step. Therefore in the case of the main engine for example with a
decision period equal to 10, if the decision is made to fire it, the following quantity
will be subtracted from the mass of fuel:

5m,decision - Am,second (

decision__period (7.1)
physic_updates_per__second ’
where A, second 1S the quantity expressed in mass of fuel per second and 0y, gecision 1S
the equivalent spent in the duration of a single decision period. With the parameters
used we will have:

kg 10
6m,decision =100 ? (50]{2) =20 kg (72)

As for previous implementations, the mass is uniformly distributed over the
entire volume of the lander, even if not constant. In the real world the fuel is stored
in tanks, usually placed under or around the passenger compartment, this cause
the loss of mass to be localized and therefore there would be the displacement
of the center of gravity, an extremely influential factor. Moreover, a generic and
simplified fuel is used, while in reality it consists of a fuel and a oxidizing with
different physical properties. The other aspects of the physical model have been
maintained, they are summarized in Table A.9.

7.1.1 Adapt RL to problems, not vice versa

After implementing the model, since this scenario was far more complex than
the previous two, looking for the solution of the scenario the question often
arose as to whether or not the actions available could have been able to achieve
the intended objective given the current physical model. In fact, although
the controls and the model are dimensioned on the basis of realistic data,
it is not always trivial to be sure about it. Controls are testable with an
heuristic method, but with increasing complexity of the problem it is not easy
to understand it.

When the solution is hard to be found, driven by uncertainty, there is the
temptation to modify the physical model in order to get closer to it. Modifying
the model so that the configuration of the current algorithm allows to reach
the goal is however conceptually a serious mistake. In fact, it should not be for-
gotten that our goal is not to build a physical model and set the RL algorithm
in order to achieve a desired behavior, but to start from a well-defined and
formalized control problem and then apply an algorithm capable of managing it.

71

Autonomous Lunar Lander: 3-DOF scenario Version 3

This rule can be extended to any field to which the reinforcement learning
approach is applied: it is always important to remember that we are using a
methodology to deal with a problem, and therefore we do not have to change
the problem to ensure that it can be solved by this methodology.

In facing the resolution of this scenario this error was made, failing and thinking
that with the simple on-off control of thrusters the landing could not be achieved,
a more sophisticated and smoothed thruster system with continuous intermediate
values was implemented. However, this radically changed the nature of the problem
and realizing this fact, this implementation has been consequently removed. The
control problem is independent of the reinforcement learning application as how
here it is exposed, this guideline has been maintained in this and the next scenario
addressed.

7.2 Reinforcement Learning Application

Starting from the configurations exposed that had worked in the previous scenario,
many initial attempts to solve this new implementation did not lead to good results
for several reasons. First of all, a serious problem consists in the fact that only
negative rewards are assigned, with the exception of the success condition but this
is never reached for most of the initial part of the training; this proved necessary in
order to avoid laziness, as explained in Subsection 6.2.3. In the initial part of the
training the episode often goes by in the following way: the agent learns to fly and
learns to do it in the direction of the target under the suggestion of the reward
function (from the minimal approach part in particular); then, not being able to
land yet, it ends the episode mostly by crashing. So at the end of the episode
the overall reward is given by the sum of the negative periodic rewards (however
optimized) and the final negative reward. If instead it happens that the lander
crashes very quickly, which is not rare in the exploration phase, the agent will
receive the terminal negative reward but since the episode lasted a short time he will
receive little periodic reward. The final balance of the episode will be better than
the first case, essentially in the absence of touchdown it is overall more advanta-
geous an episode in which the lander crashes immediately rather than one in which
it flies for a certain period and then crashes; we can informally call this trend suicide.

Wanting to generalize this fact to any environment, we could say that in the
case of positive rewards that are difficult to be earned easily, the training procedure
can stabilize on behaviors that end the episode in a failed manner in the shortest
possible time. This does not happen constantly, as it is probably caused by the
randomness of the first phase of the training procedures, an estimate made on the

72

Autonomous Lunar Lander: 3-DOF scenario Version 3

numerous training procedures attempted shows a frequency of 30%/40%, obviously
when this happens the entire training is thwarted. Figure 7.1 shows the graphs ob-
tained in one of these cases: note how in the first phase of about 50 thousand steps
the agent explores while flying, here the episodes have a duration of 50/70 seconds
and the reward obtained is very low; after that the behavior stabilizes for a very low
duration with a higher reward, as it ends the episode by crashing as soon as possible.

Another serious problem is intrinsic to the duration of the training and the
difficulty of the task. In many training simulations the agent fully learned to fly
and approach the target into about half of the training steps (initially set to 2
million, as for the scenario Version 1), but when it had to learn to land it still used
to spend a lot of time in the first phase states region just because the episode was
reset very often. Furthermore at this point of the training both learning rate and
epsilon were already low, so much that the exploration and consequent learning
are too faint. So the lander could not learn to achieve even a single touchdown
because it spent too little time in states "near" the target, and because it was able
to explore so little here that it never even tasted one success reward.

The most trivial solution for this problem could be to increase the training time
but this is as immediate as inefficient, primarily because facing any increase in
difficulty in this way will probably become unsustainable. For this reason, several
training strategies has been studied, in order to lighten the computational load and
lead to the desired final behaviour of the agent. Training strategy means manipu-
lations and rules applied in the training phase, they alter the normal mechanism
that the training simulation would have, it can therefore assume trends that do
not reflect reality. Their purpose is to make the RL algorithm converge faster to
the wanted solution, so the aim remains to achieve an agent able to act in the real
world conditions. In other words, the trained agent must be able to act successfully
by exploiting the inference without being able to distinguish whether his training
took place under realistic or manipulated conditions.

In particular, the tested strategies are three:

e Deny-Unsuccessful-Terminations, abbreviated DUT, it consists in remov-
ing all the termination conditions of the episode except the success one and
the time limit, it is described in Subsection 7.2.1

o Forced-Successful-Observation, or FSO, it consists of periodically provid-
ing the agent with observations of successful states, it has been tested in the
6-DOF scenario and described in Subsection 9.2.1

» Reverse-Incremental-Progression, or RIP, it consists in starting the train-
ing with simplified initial conditions to gradually reach the desired difficulty

73

Autonomous Lunar Lander: 3-DOF scenario Version 3

episode length
3 8 &

8 8 8 8 3

—
o

o
o

0.6

normalized scaled

o

100000 200000 300000 400000 500000
training step

Figure 7.1: Graphs obtained during a training procedure that stabilized on
a suicide behaviour, note how the two curves are practically mirrored.

at the end of it, it has been applied in the 6-DOF scenario and exposed in
Subsection 9.2.3

This type of approach was inspired by the work exposed in [27], in which
74

Autonomous Lunar Lander: 3-DOF scenario Version 3

autonomous drones are trained to fly across a circuit. Here the problem is that
the initial part of the path is covered many more times than the others. So a
Distributed Initialization Strategy was applied: during a first phase of the simula-
tion the starting position is placed randomly along the way in order to explore
it uniformly, in particular in points where difficulty (velocity to be managed in
this case) is assumed to be low, therefore: "we retain the benefit of initializing
across the whole track while avoiding the negative impact of starting from a hover
position in areas of the track that are associated with high speeds."

7.2.1 The DUT Training Strategy

The main idea underlying this strategy is to no longer interrupt and reset the
episode when the agent runs into some states that in the real world would terminate
it. When any collision occur the agent is brought to a near and safe state and a
negative reward is assigned to it, thereafter the episode continues normally. Since
the state it is brought into is "near", later the agent will continue to explore and
make decisions as it was doing just before it went wrong, as if it was not wrong.
But the new state also have to be "safe', i.e. the subsequent choices that the agent
will take must allow him to not incur again in the same or other only negative
terminations, otherwise it would find himself trapped into a loop of failures. The
reward assigned to the occurrence of these situations must be reasonably negative so
that at the end of the training they must necessarily be avoided, since in inference
phase they still would lead to actually negative situations, as in real world they are.

To analyze the example case of this scenario makes it easier to understand: when
the lander meets the conditions of target hit or ground crash its position is instantly
placed 5 m higher of where it is; when it exceeds the maximum distance reachable
its position is instantly placed 50 m far from the air limits touched, thereafter the
episode continues normally. In both cases a large negative reward is assigned as spec-
ified by the reward function in Section 6.2, the distance of reset is a parameter that
has to be tuned too. The distances used (5 m and 50 m in this case) and in general
the reset conditions obviously have to be properly chosen depending on the scenario.

So now the only two cases that cause the termination of the episode are the
exceeding of the time limit of it and the success in landing. Until the success is
not achieved, the agent will spend the entire duration of every training episode
exploring state-action-rewards, and each collision is handled as described above.
At the beginning of the training it explores equally in every region and phase
of the scenario, but as it improves its behaviour on the easier initial phase (the
target approach), the exploration focuses on the second phase (the landing) and few

75

Autonomous Lunar Lander: 3-DOF scenario Version 3

resources are still used in the first. It is necessary to introduce the concept of Dirty
Touchdown: this term will indicate those touchdowns reached in an episode in which
failed states had occurred previously, which were restored using the DUT strategy.
Obviously a dirty touchdown can only occur in training procedures because, as said,
the inference phase remains exactly unchanged: unsuccessful situations remain
failures.

For now we have not yet talked about fuel consumption, and in particular
the critical condition in which it runs out, this represents an additional negative
termination condition introduced in this scenario. Other than the crashes, it was
chosen to be avoided as well during the training. So during the simulation, when
the fuel runs out, the lander can continue to use the thrusters as if nothing had
happened and their use does not cause a further loss of mass, but the theoretically
used amount of fuel is tracked. The lander will learn to land having used more fuel
than is actually available, thus reaching dirty touchdowns, but the final reward
will push it to optimize consumption, until it is able to land with excess fuel. We
could summarize this approach as a transformation of an hard constraint, i.e. the
limited amount of resources, into an optimization problem that has the minimum
objective to be able to advance a positive amount of resources. A sort of union
between the DUT strategy and optimization approach, theorized in Subsection 6.2.5.

The use of nonexistent fuel as well as instantaneous position changes are obviously
unrealistic events, they are manipulations inserted in the simulation environment
but there must be certainty that when using the inference these situations do not
occur anymore, i.e. that the agent avoids run into it. Basically we realize it if
at the end of the training there are only realistic touchdowns and no more dirty
touchdowns. In order to achieve that, in the case of collision the negative reward
to be attributed and its size are fundamental, in fact if during the training the
punitive reward is not big enough, the agent could accept to suffer it because the
change that derives is still advantageous. As regards the use of fuel beyond the
limit, various analyzes have revealed that by attributing a negative reward to the
achievement of the maximum use of fuel, the agent reacted by deciding not to use
it and consequently stabilizing unsatisfactory behaviors, for which it was decided
to exploit the negative fuel mechanism. By transforming fuel consumption into an
optimization problem, we obtain the desired result without the need for further
periodic rewards. To summarize: the negative reward assigned in DUT cases must
be large enough for the agent to learn that that situations must be avoided in any
case, and not exploited, but in the case of transformation of a hard constraints into
an optimization problem the reward can be omitted.

Notate that in this scenario the near and safe state is just assumed as a position

76

Autonomous Lunar Lander: 3-DOF scenario Version 3

far enough from the spatial limit reached, but the strategy is generic and can
be applied to other state values, such as the fuel for the scenario Version 3. No
manipulation is applied on the velocity because the lander has the possibility of not
incurring the collision again in the following steps using the appropriate thruster,
possibly after some other collisions. It was thought to reduce the velocity in the
direction of the collision, but this adds the problem that the lander could assume
the behavior of colliding and accept the negative reward in order to decrease its
speed. As a source of additional complexity rather than advantage, this aspect has
been removed.

Let’s lastly summarize the two main guideline methodologies that this strategy
offers, which in this scenario were applied respectively for the constraints on posi-
tions and fuel consumption:

7.2.2 Near-and-safe resets

In scenarios in which the conditions that determine the termination of the
episode are multiple and are very frequent compared to success, the exploration
of states far from the initial one may prove to be highly unbalanced due to
frequent resets. During the training phase it is possible to avoid ending the
episode in these situations but to bring the agent into a near-and-safe state
(understood in a generic sense, not necessarily in terms of position), obviously
in an unrealistic way. The reset in a near condition allows to continue the
exploration in the region where the fatal error occurred, the safe condition
ensures to avoid failing loops. In this way the agent can have a better chance
of knowing the success condition. These resets must be categorically avoided
and not exploited at the end of the training, since in the inference phase they
would result in the original case of failure, it is therefore advisable to assign a
negative reward of significant magnitude in their correspondence.

A

7.2.3 Hard constraints as optimization problems

The presence of hard constraints that determine the termination of the episode
can cause the limited exploration of the state space, and the consequent difficulty
in knowing the success condition. It is possible during the training phase to
eliminate these limitations, by implementing unrealistic mechanisms, so that
the episode is not terminated and that the agent can learn regardless of them.

7

Autonomous Lunar Lander: 3-DOF scenario Version 3

Obviously these constraints must be respected in the inference phase, it is
possible to translate them into optimization problems, for example by inserting
a score (a variable positive reward) in the condition of positive termination.
The achievement of optimization down to a minimum threshold ensures that
at the end of the training the restrictions will not be violated.

Let’s now see the other parameters that led to the solution of this scenario: the
value of the residual fuel mass has been added to the vector of the observations,
or rather the quantity of fuel equivalent to the use of the engines carried out so
far. Therefore for the correct functioning of the consumption optimization, it is
essential to pass the negative value when the mass of fuel reaches zero, this will be
clarified in the description of the reward function. The negative value of fuel used
is limited to -8000 kg, for the reason described in Subsection 5.2.1.

The decision period has been decreased to 0.2 s, i.e. one decision step every
10 physical update steps. This allows more accuracy in the landing phase, at the
expense of a longer training time, it has been increased to 10 million decision
steps; this is a considerable increase but necessary to allow the optimization phase
to complete asymptotically. The number of maximum steps per episode has
been increased to 5000, corresponding to 100 s, a small increase to allow the DUT
strategy to be fully exploited.

The value of stacked vectors is mantained 1, value greater than 1 could con-
ceptually seem erroneous if used together with the DUT strategy as the agent
would have the memory of an unrealistic event within several state vectors in
which a failure condition has occurred. However, this should not lead to a concrete
problem assuming that at the end of the training the agent will not run into such
situations. The choice of this parameter has been simply chosen as result of better
computational performances with the same training result, it will be specified in
the next Chapter.

Regarding the hyperparameters that govern the PPO algorithm, compared to
the previous scenario beta has been doubled from 5-10_4 to 10_3 and epsilon
has been decreased from 0.25 to 0.2. It is reiterated that benchmarks for the choice
of these parameters will be set out in Chapter 8.

Let’s now analyze the reward function structure, in general compared to the
Version 2 scenario, the size of the rewards has been decreased by a factor of 10,
this simply determines a greater readability of the results, given that numbers
obtained during an episode are more easily commensurable. Let’s analyze the
periodic rewards:

78

Autonomous Lunar Lander: 3-DOF scenario Version 3

o Adaptive approach: it represents the overcoming of the generic nature of
the minimal approach and the rigidity of the fized approach, it differs from the
latter due to the fact that the a,,;, distance that determines the success of
the approach is not constant, denoted with @, . It is calculated as follows:

A D,y
" max (fnae — 1000 — ¢, 1000)

Basically this value represents, at any instant ¢, the minimum advance that
the lander must make in order to reach the target within a time limit, if it
moved at a constant velocity from now on. The time %,,,, — 1000 is the time
in which it is thought the lander should reach the target, 4000 time steps
in this scenario equivalent to 80 s; it has been dimensioned on the basis of
the fact that the fuel limitation already imposes a limit. So t,,,, — 1000 — ¢
is the amount of steps that remain before this time limit; the max operator
introduces a limitation that masks values that are too low, this is done because
if the time left is too little, a velocity that is too large would be required,
but these are to be avoided so it is preferable not to request it at the cost of
fail the episode. Rewriting Equation 5.2 with the new @, +, we obtain the
condition for the achievement of an adaptive approach:

(7.3)

1
D <Dy 41— 7.4

bt (max (£,q, — 1000 — ¢, 1000)) (7-4)
In the case that this condition is met, the reward R; assigned is a negative
value in the interval [—0.01, 0] linearly inverse to D; € [0, Dynaz], as exposed
in Section 5.2 using a a = 0.01 factor.

o Adaptive approach fail: in the case that the previous condition is not met,
a flat reward of -0.1 is assigned

Numerous simulations were carried out in which negative rewards were assigned
in case of use of thrusters, as a method of optimizing fuel consumption. This
approach has always proved very disadvantageous as the agent quickly stabilized
on behaviors that avoided using them at all.

1

7.2.4 Conscious or superficial behaviors

It is crucial to remember that the stratification of a complex reward function is
invisible to the agent. The agent only perceives the resulting sum of all rewards
and does not understand how much and what contribution each part of the
observation gives to it, or rather, it deduces them during the training procedure

79

Autonomous Lunar Lander: 3-DOF scenario Version 3

by observing millions of state-action-reward instances. If we built a complex
reward function in which numerous rewards are assigned, calculated on the
basis of numerous different factors of the observation state, it is very likely
that the agent first "understands" the simpler parts of it. Consequentially, it
optimizes the rewards that can be easily correlated with the actions taken, this
can determinate the affirmation of behaviors with actions that can be easily op-
timized, but which totally ignore the rewards calculated in a more complex way.

This effect was observed by simultaneously assigning a negative reward for
the ignition of the thrusters and for the adaptive approach. The first condition is
easily correlated with the chosen actions, given that if the thrusters are always
kept off the fuel is kept and the reward is optimized. The second condition is
based on a more complex formulation linked to observations and actions, that
is non-trivial, it requires much more exploration and time to be understood
and optimized. Also note that the first condition is not even correlated with
the observation of the state vector, so exaggeratedly trivial.

The size of the rewards plays an important role: basically, if the more trivial
achievements have a smaller prize, they will be optimized later. But again,
as said in Subsection 6.2.2, the better solution would be to keep the reward
function as simple as possible. In case the complexity of the environment, and
consequentially of the reward function, is excessive it is necessary to increase
the training time so that the exploration is more extensive, as we will see in the
next chapter. It should also be noted that in this scenario, the fuel optimization
has been successfully moved within the landing reward, an excellent solution
in the case of environments with a single objective and multiple optimization
aspects.

In light of this, let’s now analyze the other cases, since the DUT strategy is used
in this scenario, now some cases are not terminal but non-periodic, remember that
in these cases the episode does not end but the lander is brought to a near and
safe condition which is specified here:

o Target hit: the reward assigned is -2.5, the lander is placed at a height of 5
m (calculated with respect to its base) keeping the same X and Z coordinates.

e Ground crash: the reward assigned is -5, as for the previous case, the lander
is placed at a height of 5 m (calculated with respect to its base) keeping the
same X and Z coordinates.

o« Maximum distance exceeded: the reward assigned is -10, the lander is
placed at a distance of 50 m from the point where it collided with the flight
space limit.

80

Autonomous Lunar Lander: 3-DOF scenario Version 3

The only conditions for the termination of each episode are the success and the
end of the maximum time (which does not involve the assignment of any reward as
well as running out of fuel, as previously said):

o Touchdown: the reward assigned in case of successful touchdown is a positive
value R; € [0,300] composed of three contributions:

o the score s4 € [0,90] calculated on the basis of the distance from the exact
center of the target using g = 90, as formulated in Section 6.2

o the score s4 € [0,60] obtained on the basis of velocities on each axis using
~v = 20, its formulation is close to the previous one.

o the score sy, it is calculated starting from the mass of fuel m; left at the
end of the episode (positive or negative) as follow:

) _ max (|m |, 2000)
5p =g |1t signmy 2000

where 6 = 150 has been used. This is basically a mapping similar to
the previous two but with the possibility of a negative starting value, it
linearly associates values from the interval [—2000,2000] to the interval
[0, 150]. The upper and lower 2000 kg limits are introduced in order to
avoid excessively large rewardswhich would destabilize learning.

(7.5)

7.3 Scenario Solution

We have outlined all the features that were necessary for the training simulation
that allowed the resolution of this scenario, let’s now

o Figure 7.2 shows three-dimensional graphs obtained by viewing logs taken
during progressive throughout the entire training procedure. Six significant
episodes are shown, here we can observe the process of change that occurs in
the agent’s behavior as well as what actually happens with the application
of the DUT strategy. As the legends specify, the dimension of the scatters
represents the mass of the fuel on board (it is 8000 kg each episode start),
remember that in the training phase when it reaches 0 kg it remains constant
and the lander is still able to use the thrusters; the color represents the velocity
of the lander, on a scale between 0 m/s and 15 m/s. The three spatial axes,
of actual size (1600,300,1600) m, are zoomed in on the trajectory for greater
readability.

o Figure 7.3, similar to those analyzed in the previous two chapters, represents
the trend of the reward obtained and the length of the episodes along the

81

Autonomous Lunar Lander: 3-DOF scenario Version 3

training as well as the two normalized curves. The graph in Figure 7.4 is a
zoomed version of the first (where the large negative rewards are omitted).

e The two graphs in Figure 7.5, moreover, respectively represent the cumulative
count of the three different types of termination of the episode (touchdown,
dirty touchdown and maximum time exceeded), and the average count of
terminal conditions avoided using the DUT mechanism (target hit, ground
crash and maximum distance exceeded).

» Lastly, Figure 7.6 shows the trend in fuel consumption, on the abscissa axis
we have the time within an episode (expressed in seconds, capped to 100), on
the ordinate axis the mass of fuel used in kilograms. The color change of the
curves indicates the increase of the episodes tracked, red lines represent the
last episodes; one episode every 30 actually occurred is represented here. The
value can fall below zero (highlighted by the horizontal black line) according
to the application of the DUT strategy, this occurs largely in the first episodes
of the training.

Note that the temporal quantities utilized on the abscissa axis of different type
of graphs are not exactly the same: with training step we mean the total number
of decision steps that make up a training procedure (in the order of millions), with
episode we indicate the single incremental episodes of variable duration (with a
maximum of 100 seconds and a minimum reached asymptotically by the convergence
of the algorithm, around 45 s). The time unit in seconds has a completely different
meaning since it indicates the duration of a single episode and not the entire training.

Let’s now analyze the training procedure trend in detail, we will use the six
main episodes represented in Figure 7.2 as starting point:

« ~0.5% of episodes (Figure 7.2.a): at the beginning of the training the lander
can not fly, it collides numerous times both on the ground and on the space
boundaries (up to 200 and 100 times, out-of-scale values relative graph), it
seems to move "bouncing". The velocity is always very high and the fuel runs
out quickly, reaching values of -3000 kg (corresponding to 11000 kg used out
of 8000 kg available). After each of these collisions the lander is repositioned
and the relative negative reward is assigned, indeed in this phase the total
rewards are very low (down to less than -1000) but in this way he will soon
learn to avoid them. All episodes end when the time limit is reached.

« ~1% of episodes (Figure 7.2.b): the lander still advances colliding on the
ground many times, but in proximity to the target it slows down and flies
over it. It already avoids colliding with the limits of the flyable space, the first
good achievement. Since no dirty touchdowns are reached yet, and obviously
neither touchdowns, the fuel is still used without restraint.

82

Autonomous Lunar Lander: 3-DOF scenario Version 3

o ~3% of episodes (Figure 7.2.c): the lander clearly slows down in proximity
of the target, but it continues to collide with the ground, it moves away from
it and then comes back. The decrease in velocity represents a fundamental
trend of behavior. Approximately at this phase the first dirty touchdowns
are achieved, the episode length starts decreasing and the reward increases.
The number of ground crashes remains high and the number of target hits
increases as well, this is a clear consequence of the fact that to "find" the
landing conditions the lander collides many times near the target, fundamental
concept of the DUT strategy.

o ~30% of episodes (Figure 7.2.d): we are near to halfway through the overall
duration of the training, the behavior now follows a curved trajectory that
ends on the target. The ground is still touched sometime (once or less per
episode on average) and more rarely the target too. The length of each episode
is halved than the time limit, dirty touchdowns and touchdowns are reached
almost equally. The fuel optimization phase has begun and will go on until
the end, it is obtained by optimizing the reward function in both cases, this is
the other main concept of the DUT strategy.

o ~85% of episodes (Figure 7.2.e): the trajectory previously observed is
more elevated, probably as a consequence of fuel optimization and in order
to reduce the risk of collision. Both the reward obtained and the duration
of the episodes approach their respective asymptote, the total number of
dirty touchdowns reached remains practically constant since now almost only
successful touchdowns are performed successfully. The fuel left at the end of
each episode is already abundantly greater than zero kilograms.

« ~100% of episodes (Figure 7.2.f): the training reaches the end, the final
trajectory maintains a curvature near the target but it is much less accentuated
than before. It is interesting to note that the velocity is still largely decreased
in the last seconds of the episode. Both the reward and the duration have
reached their asymptotes, no more collisions occur, the amount of residual
fuel is by far positive at the end of each episode. Given all these factors, the
result of most of the episodes is successful touchdown.

Let’s now analyze the statistics obtained by deploying the trained agent in
inference mode, over 300 test episodes:

e Touchdown: 91.7%
o Target hit: 0.3%

e Ground crash: 8.0%
&3

Autonomous Lunar Lander: 3-DOF scenario Version 3

e Maximum step exceeded: 0.0%
e Maximum distance exceeded: 0.0%

A success rate higher than 90% is largely satisfactory, in this scenario the fuel
termination is not present as an episode end case as it is not explicitly requested
by the physical model, this failure situation results in a ground crash in most
cases since without fuel the lander simply falls. In the fourth and final scenario,
however, the opposite reasoning will be applied as more specific analysis of the
results will be conducted. In the scenario Version 2 the ground crash frequency
was practically zero compared to the target hit, in this scenario it is definitely
the opposite and from this we can deduce that most of the ground crashes in
this scenario are caused by incorrect fuel management. More in-depth analysis
of the conditions in the episode endings will be made for the fourth and final scenario.

To sum up, the DUT approach is not applicable a priori, it requires ad hoc
considerations and sizing of the reward function, moreover we must be sure that at
the end of the training the agent does not exploit unrealistic behaviors. As widely
exposed below, in this scenario the DUT strategy has proved effective in achieve
a satisfactory result and decreasing the resources necessary to train the agent in
achieving success.

84

Autonomous Lunar Lander: 3-DOF scenario Version 3

fuel mass
.0

@ 800
@ 1500
@ 00

3200 T

velocity

-700

600
=500 _400
X

300 -60
200 Ly

(a) Episode 150 (b) Episode 300

(c) Episode 1000 (d) Episode 10000

o 1

0 -3 -20 -10
50 -40
60 —50 .

(e) Episode 30000 (f) Episode 34630, last

Figure 7.2: Log visualization of significant episodes that show the evolution
of behaviour during a training procedure that exploits the DUT strategy

85

Autonomous Lunar Lander: 3-DOF scenario Version 3

reward

=500

=-1000

-1500

100 ——

episode length
3

|
| ‘) ‘
i ‘ l|||'|' ih “H 'l"} | .r M

A

|| Lyt kbl LR | 4

il |\

r 'Hul._ U

normalized scaled

0.0 02 04 06 08 10
training step 1e7

Figure 7.3: Scenario Version 3 training statistics

86

Autonomous Lunar Lander: 3-DOF scenario Version 3

300

200

100

reward
o

-100

-200

-300
0.2 03 0.4 05 0.6 0.7 0.8 0.9 1.0

training step 1e7

Figure 7.4: Scenario Version 3 statistics of the reward obtained during the
training procedure, zoomed in order to remove the great low scores obtained
in the initial part of the training.

87

Autonomous Lunar Lander: 3-DOF scenario Version 3

17500
15000
12500
10000

7500

results counter

5000
2500

terminal conditions avoided

—— touchdown
dirty touchdown
maximum step exceeded

—— target hit
ground crash
maximum distance exceeded

0 500

1000

1500
episode

2000

Figure 7.5: Cumulative counter of terminal conditions (above) and counter
of the terminal conditions avoided using DUT approach (below).

88

Autonomous Lunar Lander: 3-DOF scenario Version 3

8000

6000

4000

2000

fuel mass spent

0

-2000

——
—— 6000

—— 30000

0

episode

12000
18000
24000

20 40 60 80 100
time

Figure 7.6: Trend of residual fuel mass during an episode, for incremental

episodes during the training procedure.

89

Chapter 8

Training Benchmarks
Analysis

The achievement of the solution for the scenario Version 3 was taken as a consoli-
dated result to carry out comparative benchmarks of many aspects. As previously
mentioned, in fact, the main problem in this work was the setup and understanding
of the numerous variables that can be changed (grouped into the categories RL
parameters, PPO hyperparameters and reward function), in this multitude it is
difficult to understand what is properly working and what should be changed,
consequentially it is not easy to isolate and understand behaviors and trends
given their strong interaction. It is believed that keeping a functioning configura-
tion as a reference point and carrying out specific studies can be a good way to
draw additional observations. This scenario was chosen because the complexity
of the reward function is reasonably low and specially because the training time
is short, compared to the 6-DOF scenario that will be addressed in the next chapter.

The training that is used as base for the benchmark comparisons is similar to the
one previously described as solution for the 3-DOF scenario Version 3 (unless some
minor further specifications, gradually made), it will be displayed in all subsequent
graphs in red color. It exploits the DUT training strategy too (but not the other
two training strategies exposed in the next chapter). For the comparison between
training procedures, the reward trend and the final reward value reached are almost
always used, they are based on a reward function very similar to that of Chapter
7; remember that in this chapter this score is taken as a measure of goodness of
learning regardless of whether the touchdown is reached or not and with what
accuracy.

90

Training Benchmarks Analysis

8.1 Learning Rate, Epsilon and Beta

Let’s first analyze the fundamental hyperparameters of the PPO algorithm: their
meaning was previously exposed is Section 3.3. The learning rate, in charge of
weight the updates of the network, has to be sized with a trade-ff between fast but
unstable updates and slow but constant updates. Figure 8.1 shows the benchmark
for increasing learning rate values, it is evident that the lower one (0.00001) leads to
a stable learning but it converges too slowly, on the contrary 0.0005 is too high and
its trend is very fluctuating. With an even greater value (0.001) the in training is
totally unsuccessful and settles asymptotically on a score in the order of —1.25-10%.
Values 0.0002 and 0.00035 are the good trade-off, the second in particular is chosen
as base for the benchmarks.

400
fl"“
AV e o
Ww f% i
0
=
]
= -200 learning
) J . \ f rate:
(|| 1e-5
-400 |
/ V 2e-4
600 (35e-4
| (’J 5e-4
|J i
0.0 05 1.0 15 20 25 30
training step 1e6
Figure 8.1: Benchmark of different values of the learning rate.

The epsilon parameter determines the rigidity of the algorithm in keeping the
policy close to the previous one in the update process. In Figure 8.2 it is evident
how a too small value (0.1) significantly slows down the learning to the point that
a positive result is not achieved, even if the trend is quite stable. With a larger
value (0.3) learning is highly unstable, precisely because the policy makes larger
'oscillations". The selected value is the one intermediate.

The correct amount of exploration of states-actions-rewards is fundamental
in the training phase, specially at the beginning, but if excessive there is a risk
of delaying the convergence and the solution will not be found. This aspect is

91

Training Benchmarks Analysis

400 epsilon:
0.1
200 02
— 03
e
g 0
2
-200
-400
0.0 05 1.0 15 20 25 30
training step 1e6
Figure 8.2: Benchmark of different epsilon parameter values.

controlled by the beta parameter, which weighs the contribution of entropy within
the loss function. Figure 8.3 shows the comparison for three different values, the
graph above shows the reward trend as usual, the graph below shows the value of
the entropy which measures the degree of randomness used, remember that it is
good that it decays during training neither too quickly nor too slowly. It is evident
that the lower value (0.001) results in a premature decay of entropy and a low
score, this is because not enough exploration is performed; on the other hand with
higher beta parameter (0.1) the entropy value remains elevated for the duration of
the training. The intermediate value is considered the best.

8.2 Batch and Buffer Size

Figure 8.4 contains the graphs of several training obtained by varying together the
batch size and the buffer size, remember that the first hyperparameter fixes the
number of experiences involved during each gradient descent update, the second
should be a multiple of it and defines how many experiences have to be accumulated
before performing it. As recommended in Section 3.3, since discrete actions are
used in this case, non-large values are effective. Any further analysis in the case of
using continuous outputs should be carried out.

92

Training Benchmarks Analysis

400

200

reward

-200

-400

0.0 05 1.0 1.5 20 25 3.0
training step 1e6

Figure 8.3: Benchmark of different beta parameter values: reward obtained
(above) and entropy trend (below).

8.3 Decision Period and Stacked Vectors

Figure 8.5 shows the benchmark for the decision period, remember that the values 1,
5, 10 and 20 correspond respectively to a control frequency of 50, 10, 5 and 2.5 H z,
or even 0.02, 0.1, 0.2 and 0.4 s between one action and another. It is immediately
evident that the lower frequency, 2.5 Hz, is not sufficient, in fact the performance
is strongly more unstable. The other cases are almost equal, a decision period equal
to 10 gets a slightly higher score and good stability, despite having lower update rate.

The benchmark of the value of stacked vectors, i.e. the number of most recent
serialized state vectors passed as input to the PPO algorithm, is shown in figure
8.6. The higher value is extremely counterproductive and leads to a negative result.
Scores obtained for the other three lower values are similar, 25 stacked vectors

93

Training Benchmarks Analysis

400
batch-buffer
200 sizes:
— 128-8192
0 128-2048
- —— 64-102400
§_200 —— 256-204800
] —— 512-409600
=400
-B00 //—,’_‘\ﬁ/——v/_‘
0.0 05 1.0 15 20 25 30

training step 166

Figure 8.4: Benchmark for different values of the batch size and the buffer
size.

400
decision
200 period:
1
0 5
- = 4l
2 200 20
o
-400
-600
0.0 05 1.0 15 20 25 30

training step 1e6

Figure 8.5: Benchmark of different values of the decision period

reach a slightly higher score but with a strongly belated convergence.

The time needed to complete the training increases considerably as this hyperpa-
rameter increases, Figure 8.7 shows the relation between relative duration (on the
abscissa axis, calculated as the number of hours required to perform one million of

94

Training Benchmarks Analysis

400
stacked
200 vectors:

1

g 10
5 B
2 200 e
o
-400
-600
0.0 05 10 15 20 25 30

training step 166

Figure 8.6: Benchmark of different values of the input stacked vectors

decision steps in the training phase), final average reward (on the ordinate axis,
mean calculated on the last 25% of rewards obtained) and number of stacked vectors
(size and color of the scatters). It should be noted that for the three values below
25, the asymptotic score is almost the same but with a single stacked vector the
training time is appreciably reduced, which is why it was chosen for the benchmark
base.

300 ®
) L
200
&
E stacked
- 100 vectors:
©
e 10

5
= @ @ 100
3 @ o
= 50.0
-100 :
-200

045 0.50 0.55 0.60 0.65 0.70 0.75 0.80
relative duration

Figure 8.7

95

Training Benchmarks Analysis

8.4 Neural Network Configuration

As exposed in Chapter 3, the neural network used by the PPO algorithm is a
MLP, so to define its structure we have to set the number of hidden layers and
the number of hidden unit for each of them. The input and output sizes are de-
fined by the application, they are automatically managed by ML-Agents in our case.

Figure 8.8 shows the benchmark for training procedures obtained using one,two
or three hidden layers and 64 or 512 hidden units, considered respectively small and
large numbers for each layer. It is evident that the performance is lower for networks
that use only 64 hidden units, the use of a single large layer (1-512) is totally
unsuccessful. The larger network (3-512) demonstrates higher speed in convergence
and higher final score. In solving the scenarios in 3-DOF a network with two layers
was used; as recommended by the documentation, given the increased complexity
for the 6-DOF scenario, we moved to a network of 3 layers and 512 units, the same
was assumed as a basis for the benchmarks.

400
hidden '
200 layers-units:
1-64
0 1-512
o — 264
S 00 2-512
D 364
3-512
-400
-600 | 4
0.0 05 1.0 15 20 25 30

training step 16

Figure 8.8: Benchmark of the Neural Network configuration, tuning the
number of hidden layers and the number of hidden units per layer

As for the duration of the training, with the same number of hidden layers the
use of 512 hidden units involves an increase in time required of ~ 26% compared
to the use of only 64; while with the same number of hidden units the use of two
layers resulted in an increase of ~ 6% compared to using one, the use of three
layers an increase of ~ 42% compared to using two (the 1-512 configuration has

96

Training Benchmarks Analysis

been ignored).

8.5 Environment Parallelism

As previously said, the PPO algorithm allows to exploit more than one agent at
the same time to experience state-action-rewards and updating a single shared
policy (Section 3.2), ML-Agents can work on replicated prefabs of the Unity
environment to take advantage of this. Since the training size is defined as the
number of decision steps to be performed, increasing the parallelism decreases the
training time. However, it is important to note that with the same decision steps,
performances obtained with a parallelized training compared to a single one will
not be equivalent, this because the parallelized learning takes place with conditions
obtained with the same policy. In other words, having parallel agents increase the
number of state-action-rewards experienced simultaneously with the same current
policy, but for the behavior to properly evolve enough updates must be made with
a yet-evolved behaviour. There is potentially no limit to the degree of parallelism
that can be used, but in addition remember that parallel execution time has as
bottleneck the strength of the available hardware, which is why (regardless of
the final behavior obtained) as the degree of parallelism increases, the training
time decrease but not linearly. For this reason it is essential to find the right
degree of parallelism in order to obtain the desired behavior in the shortest possi-
ble training time, this is of extreme importance especially in the development phase.

Figures 8.9 and 8.10 shows statistics taken from training with incremental
degree of parallelism, for trainings of one million and three million decision steps
respectively. Figure 8.11 relates the degree of parallelism with the relative du-
ration of the training and with the reward obtained at the end of the training
(values obtained and represented similarly to as seen in Figure 8.6), also here sep-
arated by total duration of one or three million of decision steps in different columns.

It is evident from the size of the rewards obtained that the training of one
million steps is too short, here the asymptotic objective is not reached or is reached
too late. With a training of three million the desired reward is achieved, we observe
that in the absence of parallelism the training time is much greater (~ 10 hours to
perform one million of training decision steps), with parallelism it is considerably
reduced (~ 1 with 144-parallelism and ~ 2 with 64-parallelism). Between these
two, the 64-parallelism has been chosen as base for all benchmarks of this section
because it converges much faster and much more stably, 144-parallelism would
probably need a longer training. Remember that the parallelism was used only to
create the benchmarks, not for the resolution of the four scenarios.

97

Training Benchmarks Analysis

500
environment
0 parallelism:

-500

-1000

reward

-1500
-2000
-2500

=-3000 :
00 02 04 0.6 0.8 1.0

training step 16

Figure 8.9: Benchmark of the number of parallel environments learning at
the same time, within a one million steps training

400
environment
200 parallelism:

0 16

o — 64
g -200 Lz
o

-400

-600

0.0 05 . 1.0 15 20 25 30
training step 1e6

Figure 8.10: Benchmark of the number of parallel environments learning at
the same time

98

Training Benchmarks Analysis

training steps = 1.0e6 training steps = 3.0e6
250 O a, .
0

s 250 @ :
) environment
_E -500 parallelism:
@ o 1
E -750 ® 16
T -1000 ® &
= 144

-1250

-1500 =

0 2 4 6 8 0 2 4 6 8
relative duration relative duration

Figure 8.11: Representation of the final reward mean (calculated on the
rewards obtained in the last 25% of the training) and of the relative duration
of the training (expressed in hours per one million of training steps) as a
function of the parallelism of the environment, separated by training length

99

Chapter 9

Autonomous Lunar Lander:
6-DOF scenario

In this fourth and last implemented scenario, the six degrees of freedom movement
is introduced, as the problem addressed in [1], this has greatly increased the
complexity of the movement control during the flight phase. Also in this chapter,
the purely physical formalization of the problem will be exposed first, then the
RL approach will be applied and the related solution found will be analyzed. The
failure cases in particular will be analyzed as they are of significant interest, finally
considerations on some tests conducted in order to test the robustness of the
obtained policy will be carried out.

9.1 Physical Model

In general, the removal of the constraint to the 3-DOF introduces the need of the
control of rotation and angular velocity, this results in the implementation of a
propulsion system capable of manage both, it replaces the side engines present
in previous scenarios, which were strongly not likely. The movement system of
most spacecraft consists of a main propulsion system and an RCS. This set of low
thrust thrusters is called Reaction Control System, abbreviatedRCS. Compared to
the slightly more complex configuration with which this thrusters were positioned
in the Apollo 11 lander, the simplest and most intuitive configuration possible
was chosen. Being the final implementation and point of arrival of the thesis, the
characteristics already present in the previous scenarios are not taken for granted
but are described in their entirety, Table A.13 summarizes this model.

The lunar surface is represented by a smooth plane with ideally infinite in sizes,
the landing target is a 10 m radius circle, its center is a point of reference (0,0, 0)

100

Autonomous Lunar Lander: 6-DOF scenario

with respect to the environment. There is a constant and uniform gravitational
acceleration of (0, —1.62,0) m/s?, there is no atmosphere and not even atmospheric
interferences of any kind.

Figure 9.1: Screenshot of the lunar lander model in the 6-DOF scenario,
implemented in Unity. The large cylinder on the base represents the ignition
of the main engine, the 12 cylinders on the side faces (6 visible here)
represent the thrusters of the RCS. Remember that during the flight they
can only be switched on at the same time in one way for each axis of rotation.
The reduced size of the surface identifies the dimension of the flight space,
limited to a parallelepiped of dimensions (900, 200, 200) m, with the target
in position (350, 0, 100) m relative to its center (visible in the distance).

The lander model is made up of a single rigid body of cubic shape, the side of
each of its faces measures 5 m in length, the density is homogeneous, the center of
mass is located in the center of the cube and its position does not change. The
center of mass position is used hereinafter as reference point of coordinates (0,0, 0)
relative to the lander. The dry operating mass of the lander is 7000 kg and the
total mass of the fuel is 8000 kg, the model has a single typology of fuel. The fuel
and consequently its mass does not have a particular location in the lander but
is distributed over the entire volume of its rigid body. The lander has one main
engine and a set of secondary thrusters that make up the reaction control system,
the use of the main engine decreases the quantity of fuel available and consequently
its mass with a trend explained afterwards, instead the use of secondary thrusters
does not cause fuel consumption.

101

Autonomous Lunar Lander: 6-DOF scenario

The ignition of the single main engine applies in position (0, —2.5,0) a single
constant force (0, 55000, 0): i.e. 55 kN force with positive vertical direction only
with respect to the lander’s reference system, applied in the center of its base. The
direction of the thrust is fixed vertically to the lander and cannot be angled. The
RCS is made up secondary thrusters: two pairs of antagonist thrusters for each
axis of rotation, so twelve in totale. Each one applies a constant force of 500 N
when turned on, forces are imparted in the center of the side faces of the lander,
the arm of the forces is therefore 2.5 m. The Table 9.1 resumes the of each of them
in the lander’s reference system, Figure 9.1 shows the stylized implementation of
them. The loss of mass caused by the consumption of fuel (for the use of the
main engine only) amounts to 300 kg/s, i.e. 6 kg at each ignition command which
can be imposed up to 50 times per second. At every control update, the main
engine can be turned on if and only if at least 6 kg of fuel are still present. As said,
the use of RCS thrusters does not cause fuel consumption and not even loss of mass.

(Rofal‘t]ir;ft\(fjrse) Point of Application | Direction | Magnitude
Roll + (0, 0, -2.5) (0, 1, 0) 500 N
Roll + (0, 0, 2.5) (0, -1, 0) 500 N
Roll - (0, 0, -2.5) (0, -1, 0) 500 N
Roll - (0, 0, 2.5) (0, 1, 0) 500 N
Yaw + (-2.5, 0, 0) (0,0,1) 500 N
Yaw + (2.5, 0, 0) (0, 0, -1) 500 N
Yaw - (-2.5, 0, 0) (0,0, -1) 500 N
Yaw - (2.5, 0, 0) (0, 0, 1) 500 N
Pitch + (-2.5, 0, 0) (0, 1, 0) 500 N
Pitch + (2.5, 0, 0) (0, -1, 0) 500 N
Pitch - (-2.5,0,0) (0, -1, 0) 500 N
Pitch - (2.5,0,0) (0, 1, 0) 500 N

Table 9.1: RCS thrusters configuration.

The control update frequency is 50 H z, at each control update the main engine
can be turned off or turned on, at each control update every group of secondary
thrusters can be turned off or turned on in positive or else negative direction of
rotation (that is, at most two thrusters per group). Each thruster can provide
exclusively 100% of its possible thrust (or 0% in case it is off), it is not possible
to provide intermediate thrusts, the transitions from switching off to on and vice
versa are instantaneous.

102

Autonomous Lunar Lander: 6-DOF scenario

At the beginning of each simulation episode the initial conditions are deter-
mined with uniform distribution randomness within the following ranges:

« values in range [-630, -770] m for the position on the X axis, in range [135,
165] m on the Y axis and in range [-15, 15] m on the Z axis

o values in range [16.47, 20.13] m/s for the velocity on X axis, in range [-4.5,
-5.5] m/s on the Y axis and in range [-0.5, 0.5] m/s on Z axis

™

e values in range [-{, 15| 7ad for the rotation separately on the X and Y axes
3 s

and in range [75, 15] rad on Z axis

o values in range [- = rad/s for the angular velocity separately each axis

16 16)
The mass of fuel available at the beginning of the episode has no random initializa-
tion, it is fixed at 8000 kg.

During the flight phase, the lander must not touch the lunar surface and not
even the target (since landing successfully does not involve touching it), this would
result in a crash. Furthermore, the magnitude of the total angular velocity vector
must not exceed 7 rad/s.

Regarding the touchdown constraints, for the lander to successfully land all
the conditions set out below must be respected at the same time:

o the sum of distances on X and Z axes between lander’s center of mass and
target center must be less than 10 m (the lander’s center of mass must be
above the target)

o the distance on Y axis between lander’s center of mass and target center must
be less than 3.5 m (in the absence of inclination on the X and Y axes, the
base of the lander must be less than 1 m high from the target)

o the sum of velocities on the X and Z axes must be less than 1 m/s in
magnitude, velocity on Y axis must be less than 1 m/s in magnitude

« the rotation must be in the range less than J; rad in magnitude on each axis

s

i rad/s in magnitude on

the angular velocity must be in the range less than
each axis

If and only if all this conditions are met at the same time the landing is considered
completed: the control is deactivated and all the thrusters are automatically
switched off, at this point gravity will make the lander rest on the target.

103

Autonomous Lunar Lander: 6-DOF scenario

9.2 Reinforcement Learning Application

The resolution of this scenario turned out to be far more complex than the previous
three, in particular the addition of the rotation and angular velocity components to
be controlled both in the flight phase and to achieve the touchdown. This inevitably
involves a higher stratification of the reward function, which consequentially is
more hardly "understood" by the agent. During the work, the following two training
strategies were designed and implemented.

9.2.1 The FSO Training Strategy

Within an episodic scenario with a single successful case, the fact that the agent
has difficulty in achieving it even once could be given by this complication: it must
learn both what to do and how to do it, and it must learn both at the same time.
In other words, the interaction mechanism with the environment and the knowledge
of the reward function allows the agent to progressively understand which actions
are best in certain situations, however, the agent does not have a global vision of
what the ultimate goal is within the episode. Also consider that in the previous
scenarios it was noted that the first landings achieved during the training and the
relative discovery of the positive reward pushed the agent to carry out a great
exploration to find it again. But in the case of a more complex scenario like this, in
which the 6-DOF makes even the initial flight phase difficult, the problem is that
landing is never reached; the DUT strategy (Subsection 7.2.1) tries to solve the
same problem, it proved sufficient to solve the scenario Version 3 but not this last.
It would make sense and it would be equally successful if the agent could know
what is the objective to be pursued, and only had to find out the way to achieve it.

FSO stands for Forced Successful Observation, let’s see why. Starting from the
idea exposed above, the implementation of this strategy plans to "show" to the
agent successful conditions, not as a consequence of the choices made but as if it
were imposed from the top. Practically, every Frgo normal training episodes, an
FSO-episode takes place: instead of in the normal initial conditions of the episode,
the agent is placed directly in a successful conditions state; where the hyperparame-
ter Frgo is an integer greater or equal to 1 to be tuned. This episode substantially
lasts only one step since the constraints for the touchdown are obviously verified,
the related reward is assigned and the episode ends; after that other F' normal
episodes are carried out, and so on. The idea is that in this way the agent observes
the desired state and tastes the associated reward (that is very positive), so that
after having known about it, it will be encouraged to search for it again during
normal training episodes. The success conditions imposed in the FSO-episode are
not constant, they are decided randomly for each one, so that the vision of the

104

Autonomous Lunar Lander: 6-DOF scenario

states of interest is covered in its entirety; here too, uniform distribution has been
chosen for all ranges that define the successful constraints.

Obviously this differs from the normal development of the training episodes, as
happens by definition for the proposed training strategies, this is the least invasive
strategy as it occurs in separate and very short episodes, technically the agent is
not provided with evidence of unreal events. However, it should be noted that the
use of stacked vectors greater than 1 could cause problems as if the episode ends in
a number of steps lower than the number of sequenced state vectors, a fill of zeros
would be performed: an impossible condition in realistic episodes. In this scenario,
a stacked vectors value of 1 has always been used, so the question should eventually
be investigated further. It should also be noted that the reading of the reward and
episode length logs taken during the training is very staggered: indeed very high
rewards are periodically assigned from the beginning and an episode each Frgo
lasts only one step. An accurate manipulation of the log pipeline could eliminate
this noise and bring the visualization back to normal, but this implementation has
not been carried out because it is not considered essential. Let’s summarize how
this strategy works:

v

9.2.2 Provide focused state-rewards

In scenarios where the positive termination condition is very specific and it
is difficult to be explored, the agent may never know it and settle for failed
behaviors. It could be useful to forcibly show to the agent the desired states
and their related rewards, regardless of the action that the agent takes. This
can be done, for example, periodically with a certain cadence alternating with
normal episodes. The hope is that in this way the agent will be pushed to find
these favorable conditions using the means at his disposal.

This strategy was exploited to achieve the first effective policy in resolving
the 6-DOF scenario. However, it is necessary to point out that several trainings
carried out in this and the previous 3-DOF benchmark scenario have presented
an extremely anomalous trend. In particular in this cases the learning process
converges much less quickly than in the normal case, obtaining the opposite of the
desired result, but not in all cases. This probably happens because the introduction
of extremely short episodes has greater implications on the functioning of the
PPO algorithm than expected, this should be investigated further but we report
anyway the theorization of the approach as a possible basis for future analysis or
implementations.

105

Autonomous Lunar Lander: 6-DOF scenario

9.2.3 The RIP Training Strategy

If success is not achieved due to its high complexity, one would intuitively think of
initially decreasing the degree of complexity to begin reaching the goal and then
gradually re-introducing it back until the desired configuration is restored. The idea
behind this strategy is precisely this: to start the training with simplified conditions
and as the learning improves, increase the complexity, until success is achieved in
the final-normal configuration. The manipulation of complexity during the training
will be controlled by two factors, Cy grrp and Cs grp, both are hyperparameters
between 0 and 1 by definition. The first has the function of weighing the degree of
complexity that is used within an episode, degree 1 represents the total complexity,
values close to zero represent highly simplified conditions. This parameter must be
set at the beginning of the training, during the training it increases until it reaches
the value 1, when it is reached the complexity of the scenario corresponds with the
normal complexity; the growth was chosen linear but could be implemented with
other trends. The C5 rrp parameter is fixed and represents the point within the
training in which C) grp reaches the value 1, with C5 grp = 1 we will have that
C4 grrp grows during the entire duration of the training until it reaches the normal
complexity at its end, with C prp = 0.5 we will have that the complexity grows up
to half of the training and for the whole second half of the training it will be normal.

In particular in this scenario, the strategy was applied to manipulate the episode
phase that comes before the fulfillment of the final conditions, the flight phase in
this case study, since the landing itself has already been successfully manipulated
by the the approach set out in the Subsection 6.2.5 for example. In any case, this
approach can be applied in a general sense to any aspect identifiable as a carrier of
complexity. But let’s see what is meant by complexity reduction in this specific
case. The introduction of the movement in six degrees-of-freedom brings with it an
intrinsic complexity that can not be reduced, however we can act on the conditions
that we arbitrarily impose to the agent at the beginning of each episode. These
have been sized in the model definition to be plausible in reflecting a flight phase,
but in all their range now already represent a first considerable obstacle as it is
required the lander to fly from distance in a controlled manner up to near the target.

So in this scenario we implement the RIP training strategy by applying the
Cy rrp weight factor to the initial conditions of position, velocity, rotation and
angular velocity, in order to simplify the control of the lander flight phase. The
amount of available fuel is reduced too by the factor because it is assumed that
the lander could only be in these conditions having already consumed part of
it. Let’s assume to use C} grp = 0.1 and C} grp = 0.5: at the beginning of the
training the episode will take place with initial conditions multiplied by 0.1, that

106

Autonomous Lunar Lander: 6-DOF scenario

is, the initial position will be very close to the target, the velocity will be very
low, rotations and angular speeds will be almost nil; given the simpler conditions
the agent should be more likely able to explore and potentially taste the success.
As the training continues, C} grp increases linearly and with it the complexity of
the scenario approaches the normal one. Exactly in the middle of the training
(since Co grp = 0.5) Cy grp reaches 1 and from here on it will remain constant, the
training will continue normally until the end. Pay attention that for low Ci grp
values there may occur serious problems, for example by obtaining a position
of very small value the lander could be positioned already in contact with the
ground or the target; furthermore too low values of Cy grp are considered ineffective.

§

9.2.4 Temporary complexity reduction

In scenarios where there is a phase with a numerically quantifiable complexity,
a mechanism can be defined whereby this phase is presented with reduced
complexity at the beginning of the training procedure. In this way the agent
should be able more easily to find the right behavior; as the training continues
the complexity must be introduced gradually until it reaches its full amount at
the end of the training or, better, at a certain distance from the end. In this
way the agent should be able to arrive to face the problem in its full difficulty.
This mechanism of increase of complexity can be governed by two parameters,
the first determines the weight of the initial complexity reduction and gradually
grows, the second indicates the point in the training in which the growth of the
complexity reduction ends; the decay can occur linearly or with other trends.

This strategy has proven its worth and it has been used for the first training of the
6-DOF scenario final solution, even if, again, it sometimes leads to great instability.
In some training procedure during the attempts, the lander can actually reach some
touchdowns in the initial phase of the training thanks to the reduced complexity
conditions, but as it increases the performance worsens enormously until the final
result is unsatisfactory. This is probably due to the fact that the simple linear
increase of the values that constitute the physical conditions of the lander within
an episode do not reflect faithfully enough the conditions that will actually be
encountered at maximum complexity. In other words, if for instance the lander
at some point in the training has a certain C grp = 0.5, it would actually have
conditions that are simplified, but there are different from those that would be
encountered in the realistic scenario at this point. Various values for the two
hyperparameters were tested: Cj grp = 0.1,0.15,0.2 and of Cs grp = 0.5,0.75,1
but an absolute stable trend has not been found; again, the theorization of the

107

Autonomous Lunar Lander: 6-DOF scenario

strategy is reported as a possible starting point for future improvements.

We now come to the approach with which the problem was faced, the three
values of the rotation and the three values of the angular velocity, expressed for
each axis of rotation, were added to the observation vector. As for the actions,
the one that controls the main engine remains unchanged, the lateral thrusters
have been replaced by three groups of RCS thrusters that to be controlled need 3
discrete actions each (off, on in positive direction, on in negative direction). It was
decided to also reduce the size of the flight space, since such large trajectories could
not lead to success mainly due to the reduced availability of fuel, the boundaries
are increased to (900, 200, 200) m with the target position relative to the center
of this parallelepiped: (350, 0, 100) m. Moreover, it was initially immediately
clear that the frequency of update of the control had to be necessarily increased
to achieve a stable flight phase, attempts made with decision step around 10 were
unsuccessful, it was decreased to 3, equivalent to an update of the control with
period 0.06 s. In addition, the size of the neural network was increased to three
hidden layers of 512 hidden units each.

Figure 9.2: Screenshot of the lunar lander model in the 6-DOF scenario
implemented in Unity, here it can be seen the configuration of the available
flight zone limits. Suspended in the center of the random initialization zone

we can glimpse the lander, in the distance we can barely see the target.

108

Autonomous Lunar Lander: 6-DOF scenario

9.2.5 First Training Procedure

As mentioned, the introduction of the six degrees of freedom brought a greater
number of variables to control and a relative stratification of the rewards assigned
to the agent on the basis of them. With "stratification of the reward function" we
mean the simultaneous assignment of different reward signals based on different
state-variables, but of which the agent sees only the sum so it is less and less trivial
for it to understand the cause-effect link. This obstacle has been overcome basically
exploiting two mechanisms: the first is the use of successive training procedures
performed on the same policy with different specific conditions, the second, more
trivial and less elegant, is the considerable increase of the training time. Applying
the first methodology, it has been sought primarily to make the policy learn the
first productive behavior of flying in a controlled way, being able to maneuver RCS
thrusters and the main engine in order to avoid the boundaries of the space and
simply maintain a stable flight configuration; once that was done, the part that
pushes the lander closer to the target was added to the reward function, in order to
reach the touchdown. That was the idea, but using training durations of less than
10 million, the first phase of pure controlled flight was learned very well, but adding
the second task, however, was too complex and touchdown was not achieved stably.

At this point, it was decided to try increasing the training time considerably,
performing a 40 million step procedure that lasted just under 5 days. This has led
to a good result: the agent has learned to fly in a controlled manner and to move in
proximity of the target, bumping into it practically every episode, moreover the fuel
consumption is far excessive than the availability (also here the possibility to use
more than the maximum threshold has been provided). The hyperparameters of the
PPO algorithm have been kept constant with respect to the previous configuration
of the scenario already valid, so let’s analyze the structure of the reward function
that led to this first result, first of all the DUT training strategy has been used
in a hybrid way, i.e. not for all terminal cases (later we will specify which ones),
the FSO strategy with period Frso = 2 has been used and the RIP strategy with
hyperparameters C grp = 0.1, C grp = 0.5. Periodic rewards are:

« Adaptive approach: the reward is [0,1] calculated linearly from the inverse
of the target distance, as exposed in Section 7.2, but here the denominator for
the calculation of @, is max (3500 — ¢,1000) since in this scenario t,,q, is
considerably high.

o Adaptive approach fail: a flat reward of -1 is assigned.

« Stable angular velocity: this reward has been added with the objective of
teaching the agent to avoid reaching angular velocities that are too high, as
failure is practically certain in this type of condition. A limit angular velocity

109

Autonomous Lunar Lander: 6-DOF scenario

value wgiape has been defined, below which the lander is considered stable: it
is one third of the maximum angular velocity reachable by definition of the
physical problem, i.e. wgqpe = £7/12, calculated as the resulting magnitude
of the three axes of rotation.

Stable angular velocity fail: this occurs if the angular velocity magnitude
is in the range /12, /4], it is assigned a reward in the range [-1, 0] calculated
in linear inverse way.

Fly over the target: this flat reward equal to 0.5 is awarded if the lander
is found to be flying above the target, this is to encourage the behavior of
maintaining a stable position in this space with the hope that touchdown
conditions will be found. Specifically, this flight space is a parallelepiped of
size (4, 11, 4) m, the position calculation is done relative to the center of the
lander’s base.

Regarding the non-periodic rewards:

Target hit: this is the only case where the DUT training strategy is applied,
in addition to the -50 flat reward, the position is reset to a height of 7.5 m,
the velocity is reduced by a factor of 0.5, the rotation is reset to 0 rad on each
axis and finally the angular velocity is reduced by a factor of 0.5. Related
considerations will be made later.

Ground crash: a flat reward equal -100 is assigned, the episode is then
termined.

Maximum distance exceeded: a flat reward equal -200 is assigned, the
episode is then termined. The boundaries of the flight space have been reduced
to (900, 200, 200) m as described above.

Maximum rotation exceeded: this condition is not imposed by the physical
modeling of the problem, however it is believed that assuming large inclinations
represents a point of no return in the piloting of the lander and that successful
behaviors do not involve such movements. Therefore, a 0, = £7/4 rad limit
angle calculated on each rotation axis has been chosen, in this reward function
the exceeding of this value implies the termination of the episode and the
assignment of a negative reward equal to -100.

Maximum angular velocity exceeded: when the limit value is exceeded
(£7/4 rad/s), a negative reward of -100 is assigned, the episode is not termi-
nated according to the DUT strategy but the angular velocity is decreased by
a factor of 0.5.

110

Autonomous Lunar Lander: 6-DOF scenario

o Touchdown: similar to that of the previous scenario, the reward assigned
in case of successful touchdown is a positive value R; € [0,230] composed of
three contributions:

o the score s4 € [0,90] calculated on the basis of the distance from the exact
center of the target using 5 = 90.

o the score s, € [0,60] obtained on the basis of velocities on each axis using

v = 20.
o the score sy € [0, 80] calculated exactly as in the previous scenario (here
with § = 80).

Consider first of all the massive use of the DUT training strategy only in the case
of the target hit, which offers to the agent an easy way to stabilize its conditions
in exchange for a relatively low negative reward, not by chance in fact the be-
havior of the lander is stabilized on arriving to collide on the target. It will be
the task of subsequent training to refine this behavior. Starting from previous
training attempts, it has been observed that the periodic reward assigned in order
to keep low the angular velocity is fundamental, specially during the training of a
blanc network, in fact this represents the first real behavior that must be learned.
Moreover, it is not trivial to find that the suicidal behavior is not undertaken
(despite the many possible cases of negative termination), this could be a success
to be attributed to the FSO and RIP strategies, but there is no certainty. Given
the length of the training and the potential amount of data generated, no logs or
statistics were generated as in the previous scenarios that would allow an in-depth
analysis of the evolution of the behavior, this is a potential aspect to be improved
in the project pipeline. Note that the reward in case of touchdown and dirty
touchdown does not even take into account the conditions of rotation and angular
velocity introduced in this scenario, precisely because we knew that this would
not be the final configuration; in fact as anticipated, this policy is a good starting
point for further learning, even if unsuccessful per se. Before going any further,
let’s summarize this approach here, which, as we’ll see, turned out to be appropriate:

o

9.2.6 Successive incremental trainings

In cases where the training objective is particularly complex, it is common
for the reward function to be significantly stratified, in the sense that it
opaquely encompasses many signals calculated on the basis of many different
variables. This obfuscates the cause-and-effect mechanism observed by the
agent, contributing to the failure to achieve success. If it is possible to fragment

111

Autonomous Lunar Lander: 6-DOF scenario

the problem into subproblems the training can be split into multiple successive
trainings, in which updates with different conditions are applied to the same
policy in order to arrive at the desired objective. It is advisable to start with the
subtasks that are initially encountered in the scenario and are that fundamental
to setting the right behavior, and then move on to more complex aspects. A
policy can prove to be an excellent starting point for subsequent training even
if it is a failure. Naturally, the techniques and strategies outlined above can be
applied to each of the training procedures according to appropriate reasoning.

9.2.7 Second Training Procedure

A second training procedure was therefore applied to the previously obtained
policy (some intermediate unsuccessful attempts are omitted). The general RL
configuration (generically enclosed in this work into the RL parameters) and the
algorithm hyperparameters have been kept unchanged, remember that also for this
scenario all the configurations are summarized in specific tables in Appendix A.4.
The first training procedure succeeded in teaching the agent to fly in a controlled
manner and to approach the target, the objective of the second training is to learn
how to achieve the conditions that allow the touchdown. First note that all training
strategies were disabled, since they were effective in the phases learned during the
first training in order to let the agent know the right direction, understood in the
broad sense of behavior. Regarding the reward assigned for the touchdown, it has
been resized and contributions given by the conditions of rotation and angular
velocity have been added, let’s see its composition in full for completeness (for the
calculation of the values refer to the previous chapters):

the score sq4 € [0,50] calculated on the basis of the distance from the exact
center of the target using 5 = 50.

o the score s, € [0,90] obtained on the basis of velocities on each axis using

v = 30.
o the score sy € [0,30] obtained on the basis of rotations on each axis with the
calculus: /) ;
i lg_ (r pnix| P+ f|>] 0.1)

where 04, are the inclinations on each axis at the time of landing, € = 10 the
weight hyperparameter.

o the score s, € [0,30] calculated exactly as in the previous:

5o = [3 _ <|wfm,X| + |wpiny | + |wfm,Z|>1 9.2)

wmax

112

Autonomous Lunar Lander: 6-DOF scenario

where wy;, are the angular velocities on each axis at the time of landing,
¢ = 10 is the weight hyperparameter.

« the score sy € [0,60] calculated as the previous with 6 = 60, but this time
using a maximum perceived fuel range of [-4000, 4000] kg.

The DUT approach has been removed by the occurrence of the target hit,
now in this situation the episode ends and the agent is assigned a reward cal-
culated exactly as the reward of the touchdown but decreased by a 10 factor.
This is the actual method by which the behavior obtained in the first training
(that collided with impunity on the target benefiting from the DUT conditions),
is turned into a behavior in which the agent begins to taste the reward of the
touchdown even if in a reduced way. By maximizing and optimizing this reward the
agent will arrive at the touchdown itself, as also theorized in Subsection 6.2.5. The
magnitude of all the others non-periodic rewards has been increased by a factor of 5.

The periodic positive or negative reward assigned in case of adaptive approach
was maintained, but to it has been the following condition: the positive reward for
adaptive approach is assigned if and only if the currently available fuel is greater
than zero, otherwise the negative reward of adaptive approach fail is assigned
regardless. In order to streamline the reward function, the periodic reward for
stable angular velocity has been removed, since it is assumed that the lander
is now able to fly, as well as the reward for the flight over the target. In some
other training attempts carried out starting from the previous policy, all peri-
odic rewards were disabled, thinking that since the agent had already learned
to arrive near the target, it would continue to do so without signals during the
flight phase and optimize it at will. Probably because of the randomness in the
initial phase of training, however, in these simulations the agent completely un-
learned the previously achieved behavior; let’s point out this non-trivial observation:

™

9.2.8 Need for reward regardless

Using the strategy of successive incremental training procedures, working on a
policy with already stabilized behavior, it has been observed that the complete
cancellation of the periodic reward involves a decay of performance and a
degeneration of the previous behavior, probably due to randomness in the
first phase of the new training. Although we would like to leave completely
to the agent the constitution of the behavior, it seems necessary to maintain

113

Autonomous Lunar Lander: 6-DOF scenario

a periodic reward that keeps the policy stable, it should be always as little
invasive as possible.

The total duration for this second training procedure was 20 million of decision
steps. It successfully modified the previous policy by making it learn to achieve
the desired touchdown with an accuracy of 74.09%, score obtained with more than
15000 test episodes in inference mode. However, this result could be improved
because a serious bug was found in the implementation of touchdown constraints
and on the related reward function calculus): contrary to what was previously
reported, the rotation contraint that must be respected to achieve the landing
(angle less than 7/16 in magnitude) was applied also to the vertical rotation axis,
moreover the calculation of the score sy for the accuracy of the assumed rotation
at the final instant was also applied to the Y rotation axis (for the touchdown and
for the target hit in the second training as well). In substance to land the lander
had to respect a rotation constraint along the vertical axis obviously unreasonable,
therefore a third training with the due corrections has been carried out.

9.2.9 Third Training Procedure

A duration of 20 million decision steps was also chosen for this last training. In order
to increase the accuracy of the final position reached in the landing, a target radius
decrease factor of value 74,5, = 0.75 was applied. In practice during the training
phase the size of the target is reduced by 25% so that the lander is accustomed to
be more accurate, in doing inference landings "at the edge" will still be considered
victorious. Note that this scaling has to be also applied to the range by which
the touchdown score based on positional accuracy is calculated. Let’s define this
technique more generically:

P

9.2.10 Harder training, safer result

Within the simulation in which we train our agents it may be convenient to
define the constraints that define success in the real world in a more stringent
rather than exact way. By doing so the policy will become accustomed to
reaching its goal in an optimal way, and in the case that in the real world it
should slightly exceed the constraints for which it was trained, it would still be
successful. On the other hand, obviously, if the constraints are defined in an
exaggeratedly strict way, the training will be too difficult.

In case of target collision the episode is now terminated with a score of -100,

114

Autonomous Lunar Lander: 6-DOF scenario

this is because by now the agent has learned to land and the drastic approach is
preferred to the incremental one in order to improve accuracy. The other parts of
the reward function have been maintained equal in how much considered effective,
some changes have been made in the weights of the scores that compose the reward
for the touchdown, they are summarized in the Table A.4.3.

To succeed in this last effort of optimization applied to a network already trained,
hyperparameters of the PPO algorithm have been properly changed. We can in
fact speak in this context of fine-tuning of the policy, the general behavior is in
fact already learned, we only want to refine it and increase the accuracy; to do
this we must avoid that the updates of the network are coarse but conservative,
moreover it can be advantageous to reduce the exploration that to a large extent is
now superfluous. In particular the learning rate has been decreased from 3.5 - 1074
to 2.5-107* and epsilon has been halved to 0.1 in order to have more stable and
slower updates, beta was decreased by a 10 factor to reduce exploration (0.0001).
Let’s summarize this remarkable concept:

g

9.2.11 Policy fine-tuning

Exploiting the strategy of successive incremental training procedures, once the
goal is roughly reached we can define a final training in order to better optimize
the accuracy and the optimization tasks within the scenario. In this type of
procedure it is fundamental not to degrade the behaviour previously reached,
it is therefore advised to use low values for hyperparameters such as learning
rate and epsilon in order to ensure not destructive updates of the network. It
is also recommended to decrease the degree of exploration since the desired
overall behavior has already been found, this corresponds to a low beta value
in the case of the PPO algorithm.

9.3 Scenario Solution

The Figure 9.4 shows the trend of the three successive trainings that led to the
obtaining of the resolving policy of this scenario. It should be noted that the value
of perceived reward is considerably discontinuous between one training and another
because changes have been made in the rewards assigned, also at the beginning of
each training a certain randomness is present so it is normal that the performance
is slightly lower, this is clearly visible in the trend of the length of the episodes. In
the case of subsequent training, however, this type of graph is not considered very
significant since, as already mentioned, the change in reward function reduces the

115

Autonomous Lunar Lander: 6-DOF scenario

Figure 9.3: Screenshot of the lunar lander model in the 6-DOF scenario
while performing the touchdown phase.

validity of the comparison of the rewards obtained.

The final success rate in landing is equal to 89.34%, obtained on a total of 7000
test episodes in inference mode. The third training procedure, fine-tuning, therefore
achieved an excellent improvement by increasing the achievement of success by ~15
percentage points. Figure 9.5 shows several visualization graphs (similar to those
seen in Chapter 7) of the trajectory assumed by the lander in different successful
episodes, we can observe that despite the randomized starting point of each episode
the trajectories are similar, they indeed present a recurrent curvature also in this
scenario.

9.4 Failure Analysis

It is extremely useful to take a closer look at only those cases of failure. In the real
world, in fact, they are not all the same, but they can occur in the form of condi-
tions slightly different from those desired or in the form of irreparable catastrophes.
Indeed, especially in the case of very expensive and delicate applications such as
space applications, it’s important to understand how badly the found solution
works in these cases. In Figure 9.6 we can see the percentage of the types of failure
on a sample of 500 episodes run in inference mode, note that some failure cases

116

Autonomous Lunar Lander: 6-DOF scenario

3000
2500
2000
g 1500
=
2 1000
500

=500
100

episode length

0 1 2 3 4 5 6 7 8
training step 1e7

Figure 9.4: 6-DOF scenario training statistics

present during the training phases are not possible here (maximum time, maximum
distance or maximum rotation exceeded). Consider that in the physical model
the fuel termination was not a specific constraint, in the real world this would
correspond to falling to the ground and crashing, but in order to better understand
the type of failure it was considered reasonable to distinguish actual crashes with
fuel terminations. Failed episodes ending in a target collision are the 20%, this is
the least worst condition as it means that at least the predetermined position was
reached despite some of the other constraints not being met; ground crashed are
almost the 50% of cases, this does not look promising, but let’s analyze more deeply
the final conditions that occurred. The Figures 9.7, 9.8, 9.9, 9.10 and 9.11 represent
the statistics reported in the last physical step logged before the fatal condition
occurred, representing respectively distance to target, velocity, rotation on X
and Z axes, angular velocity (all calculated as magnitude sum of the axial values)
and fuel mass. The colors identifying the type of failure are the same as in Figure 9.6.

117

Autonomous Lunar Lander: 6-DOF scenario

Regarding collisions with the target (the blue scatters), the variable that seems
to be the cause of failure is the angular velocity, which in any case is not very high.
Regarding the episodes in which the lander runs out of fuel (the green scatters), we
see that they are all concentrated at a very short distance from the target and with
conditions close to those of landing, we can therefore deduce that the fuel runs out
practically always while trying to land. These two conditions together occurred the
36.6% of negative cases, it would seem fair to say that in a real-world scenario they
represent a non-catastrophic failure, this is a quite good result. Regarding collisions
with the ground (the orange scatters), a distinction must be made between two
types of failure: one less serious and one much more. The cases that occur at short
distance from the target with low velocity, low rotations and low angular velocity
are assimilated to target hit cases that occur outside the boundaries of the target;
they are not catastrophic if we assume that the pinpoint touchdown can be made
in a larger area to some extent. On the other hand, collisions with terrain that
occur at great distances from the target and especially with other values far in
excess of those expected at landing are to be considered catastrophic. The rough
count of the size of these two clusters is about half and half. Finally, with regard to
the cases where the angular velocity limit is exceeded, they are always catastrophic
as they occur in the flight phase, especially together with a high velocity.

Based on this analysis, we can state that about 60% of the failure cases are not
disastrous (about 20% of target hits, 17% of fuel ending and the half of 48% of
ground crashes), they occur due to the simultaneous non-match of all touchdown
constraints but during the controlled landing phase, not during the flight phase.
So, if there were less stringent constraints, the success statistic could be greatly
enlarged; note also that it could be a good strategy to define tighter constraints
than in the real world, as mentioned in Subsection 9.2.10. As for the remaining
40% of cases (about 16% of angular velocity exceeded and the worst half of ground
crashes) they are to be considered extremely unsuccessful. Figure 9.12 shows the
success and failure statistics separated into catastrophic and non-catastrophic cases.

9.5 Policy Resilience

Theoretically, one of the strengths of using deep neural networks is their ability
to react optimally in unforeseen cases, given the nature of the stochastic rather
than deterministic approach. Using the optimally trained policy described in this
chapter, tests have been performed in inference mode with physical characteristics
different from those used in all training phases; in particular, changes in the mass
of the lander, the force applied by the thrusters and the main engine. The graph

118

Autonomous Lunar Lander: 6-DOF scenario

in Figure 9.13 shows the accuracy recorded in these scenarios, the percentages
of the tests with manipulated physics are obtained on a sample of 1000 episodes
each. Note how an increase in mass and a decrease in force of the thrusters
corresponds to a loss of performance; the decrease in mass instead corresponds
to a greater number of successes, probably because in this case the fuel is in surplus.

Another significant analysis that can be conducted is on the resilience of the
observations noise. In fact within the implementation framework observation values
are exact, but in the real world they derive from estimates or calculations made on
the basis of sensors that are affected by uncertainty and potential measurement
errors. In a realistic scenario, it is therefore fundamental that the decision making
process takes into account these issues and is resilient to them. The tests conducted
consist of providing the agent "dirty" observations for the position and the velocity,
per each axis. The true values are randomized with a Gaussian distribution that
has as mean the value itself and as standard deviation the value multiplied by a
weight factor (calculated exploiting an approximation formula). The fact that the
standard deviation is not constant but related to the size of the observation is
considered necessary as well as realistic because for distances and velocities of high
values there is a greater error, while for smaller values, during the landing phase
in this case, there is more precision. Note how the application of noise degrades
the performance in a more than linear way; coincidentally with a factor of 0.05 the
performance increases, probably caused by the fact that the tests with noise are
made on a sample of only 1000 episodes while the vanilla one with 7000, so more
accurate.

119

Autonomous Lunar Lander: 6-DOF scenario

-250 —~100

Fsoo

Fs00

F2s0

_=nn

Figure 9.5: Representation of the trajectories recorded in six different
episodes leading up to the touchdown, the size and color of the scatters is
equivalent to the graphs shown in Figure 7.2

120

Autonomous Lunar Lander: 6-DOF scenario

percentage
8 8

8

-
(=}

e 158

target hit ground crash out of fuel angular velocity exc.
result

Figure 9.6: Counter representation of the types of failures occurred in the
6-DOF scenario, over 500 episodes in inference mode.

600 -
500 ki
400 -
c
8 300 st :
0 »
O
200 e 5
& :1- il N
100 Tt Hat
+ Ky + " e wopll b
0 U s L N T
10 20 30 40 50 60 70 80
time

Figure 9.7: Statistics of the distance from target at the instant of failure
(color legend equivalent to Figure 9.6).

121

Autonomous Lunar Lander: 6-DOF scenario

velocity

30
20
10
0 e i A g
10 20 30 40 50 60 70 80

time

Figure 9.8: Statistics of the velocity magnitude at the instant of failure
(color legend equivalent to Figure 9.6).

122

Autonomous Lunar Lander: 6-DOF scenario

150
5 100
I
E +
50 S
+$‘
0

*
+

i "

% ': e g %M“
g g wogk g,

. "". !ﬁfﬁ,‘;‘mg’ﬁiﬁ?«x :’!M‘

60 70 80

Figure 9.9: Statistics of the rotation magnitude on the X and Z axes, at
the instant of failure (color legend equivalent to Figure 9.6).

Autonomous Lunar Lander: 6-DOF scenario

0.8

angular velocity
o o
= o

o
i)

0.0

+ & 8 -4 W N R + + +

10

+ +H HH HE

time

Figure 9.10: Statistics of the angular velocity at the instant of failure

(color legend equivalent to Figure 9.6).

124

Autonomous Lunar Lander: 6-DOF scenario

* 4
o+
+ 4y .
+*
6000
+ “x
Al A
2
T 4000 -
E n oy
Q +'lx_|‘!‘ Rac,
2 R g
*
+ 4
2000 VI
+ Tx
L
0

10 20 30 40 50 60 70 80
time

Figure 9.11: Statistics of the fuel mass left at the instant of failure (color
legend equivalent to Figure 9.6).

80
o 60
o
a
5
2 40
g
20
L e & * 17
touchdown target hit out of fuel ground crash ground crash angular velocity
(near target) (near target) exc.
result

Figure 9.12: Result statistics taking into account separately
non-catastrophic failures (in orange) and totally catastrophic cases (in red).

125

Autonomous Lunar Lander: 6-DOF scenario

91.8
89.34 0.6 8934 895 .o o 89.34 0.7 59.5
80 55
® 70.5
=)
& .
§ 60 magnitude
s 0%
o 5%
(2]
2 40 mm -10%
S 5%
@ s +10%
20
0
main engine thrust RCS thrust lander mass
alteration

Figure 9.13: Statistics of success percentage for tests performed with
alterations of the lander’s physical model, with different magnitude of
alteration.

3

success percentage

89.34 90.7
82.5
80
B63.7
39.7
) .

0

0 0.06 0.1 0.156 0.2

noise factor

Figure 9.14: Statistics of success percentage for tests performed with
Gaussian-noisy-observations, with different magnitude of noise.

126

Chapter 10
Conclusions

Reached the end of the work carried out, based on the objectives that initially had
been set, it’s safe to say that the results met expectations. Some final considerations
will now be made before defining some possible guidelines for the continuation of
the project.

10.1 Final Considerations

First of all, we report that the control scenario was well posed and non-trivial,
the fact that it represents a problem of considerable interest for future real-world
applications constitutes a fact of considerable importance. The results achieved by
artificial intelligences trained in this project are remarkable, but even more so the
reasoning that emerged from the experimental approach applied represent the real
resource; indeed it is believed that this is the actual result that increases the value
of experimental research in this field of innovative applications. In addition, the
validity of the application of a state-of-the-art DRL algorithm to a control problem
is confirmed, at least within simulations, for now.

Obviously, the approach is far from being applied in the real world, the physical
model in fact has gross approximations that can not be ignored. The crudest
simplification that was left out throughout the discussion is the modeling of the
thrusters, they were modeled as instantaneously on or off forces. A real thruster
is a very complicated system, in which one must take into account regimes of
action, reaction times, and variations in the application of forces. Discrete output
control is inadequate to describe and control them. We also report as physical
inaccuracies exploited the cubic shape, the homogeneous density, the fixed center
of mass, the single type of fuel, the absence of delays in control, the exactness of
all the observation values (only summarily analyzed in the last chapter).

127

Conclusions

10.1.1 Future Works

All of the physical features listed above are potential implementations that can be
pursued, with the goal of arriving at a model that is realistic enough to potentially
release the agent into the real world. Moreover, although the pre-established result
has been evidently achieved, an accurate comparison with other types approaches
would be necessary. Many other DRL algorithms are already available, with pe-
culiar features and potentially very effective, and many are being developed as
the research in this area is extremely current. But even with more priority, the
classical analytical methods of calculation should be compared, this is the only way
to actually quantify the goodness of the results achieved.

Much work remains to be done, but surely Deep Reinforcement Learning research
and application will find more and more space in our future.

128

Appendix A

Summary Tables

A.1 3-DOF scenario Version 1

Environment (parallelepiped)
Gravitational Acceleration | (0, -1.62, 0) m/s’
Target (circle)
Diameter ‘ 10 m
Lunar Lander (cube)
Dimensions (1,1,1) m
Mass 1500 kg
Engine Y Force 15000 N
Engine X+ Force 15000 N
Engine X- Force 15000 N
Engine Z+ Force 15000 N
Engine Z- Force 15000 N
Initial Conditions
Position X Range [-95, -105] m
Position Y Range 20, 30] m
Position Z Range [-5, 5] m
Velocity (2,-2,0) m/s
Final Constraints
Target hit

Table A.1: Physical Model

129

Summary Tables

State Vector

Position

(X,Y, 72)

Velocity (X, Y, Z)
bounded to 25 per axis

Stacked Vectors

20 vectors

Action Vector

Engines X (3 discrete)

Engine Y

(2 discrete)

Engines Z

(3 discrete)

Decision Period

0.2 s (1 decision step

every 10 update steps)

Maximum Step

20 s (1000 update steps)

Training Duration

1 M (decision steps)

Table A.2: RL Parameters

Algorithm
batch size 128
buffer size 2048
learning rate 0.0003
beta 0.0005
epsilon 0.2
lambda 0.925
epoch number 3
learning rate schedule | linear
Neural Network
normalize true
hidden units 256
number layers 2

Table A.3: PPO Hyperparameters

130

Summary Tables

Periodic Reward

Fixed approach [0, 1] linearly inveis]ft }tloa‘ijjngei gjitance [0, Dppae] m
Fixed approach fail {-1}
Terminal-Success Reward
Target Hit (Touchdown) {1000}
Ground Crash {0}
Maximum distance exceeded with boundaries{(()ioo, 200, 400) m

Table A.4: Reward Function

131

Summary Tables

A.2 3-DOF scenario Version 2

Environment (parallelepiped)
Gravitational Acceleration | (0, -1.62, 0) m/s’
Target (circle)
Diameter ‘ 10 m
Lunar Lander (cube)
Dimensions (1, 1, 1) m
Mass 3000 kg
Engine Y Force 15000 N
Engine X+ Force 15000 N
Engine X- Force 15000 N
Engine Z+ Force 15000 N
Engine Z- Force 15000 N
Initial Conditions
Position X Range [-630, -770] m
Position Y Range [135, 165] m
Position Z Range [-15, 15| m
Velocity X Range [16.47, 20.13] m/s
Velocity Y Range [-5.5, -4.5] m/s
Velocity Z Range [-0.5, 0.5] m/s
Final Constraints
Target Distance X Z <+5m
Target Distance Y <Etlm
Velocity X Z <+ 1m/s
Velocity Y <+ 1m/s

Table A.5: Physical Model

132

Summary Tables

State Vector Position (X, Y, Z)

Velocity (X, Y, Z)
bounded to 25 per axis

Stacked Vectors 1 vector
Engines X (3 discrete)
Action Vector Engine Y (2 discrete)

Engines Z (3 discrete)

Decision Period | 0.3 s (1 decision step every 15 update steps)

Maximum Step 90 s (4500 update steps)

Training Duration 2 M (decision steps)

Table A.6: RL Parameters

Algorithm
batch size 128
buffer size 2048
learning rate 0.00035
beta 0.0005
epsilon 0.25
lambda 0.95
epoch number 3

learning rate schedule | linear
Neural Network

normalize true
hidden units 256
number layers 2

Table A.7: PPO Hyperparameters

133

Summary Tables

Periodic Reward

Minimal approach [-0.5, 0] linearly inverse to target distance [0, D4 m
Minimal approach fail {-1}
Terminal-Success Reward
[500, 2000] :
Touchdown {500}

+ [0, 900] linearly inverse to target horizontal distance [0, 5] m
+ [0, 200] lineraly inverse to velocity [0, 1] m/s per axis

Target Hit {-250}
Ground Crash {-500}
{-500}

Maximum distance exceeded with boundaries (1600, 300, 1600) m

Table A.8: Reward Function

134

Summary Tables

A.3 3-DOF scenario Version 3

Environment (parallelepiped)
Gravitational Acceleration [(0, -1.62, 0) m/s”
Target (circle)
Diameter ‘ 10 m
Lunar Lander (cube)
Dimensions (2,2,2) m
Dry Operating Mass 7000 kg
Initial Fuel Mass 8000 kg
Engine Y Force 25 kN
Engine Y Fuel Consumption 100 kg/s
Engine X+ Force 12.5 kN
Engine X+ Fuel Consumption 50 kg/s
Engine X- Force 12.5 kN
Engine X- Fuel Consumption 50 kg/s
Engine Z+ Force 12.5 kN
Engine Z+ Fuel Consumption 50 kg/s
Engine Z- Force 12.5 kN
Engine Z- Fuel Consumption 50 kg/s
Initial Conditions
Position X Range -630, -770] m
Position Y Range [135, 165] m
Position Z Range [-15, 15| m
Velocity X Range [16.47, 20.13] m/s
Velocity Y Range [-5.5, -4.5] m/s
Velocity Z Range [-0.5, 0.5] m/s
Final Constraints
Target Distance X Z <+5m
Target Distance Y <£xlm
Velocity X Z <£1m/s
Velocity Y <+ 1m/s

Table A.9: Physical Model

135

Summary Tables

State Vector

Position (X, Y, Z)

Velocity (X, Y, Z)
bounded to 25 per axis

Fuel Mass
bounded to -8000

Stacked Vectors

1 vector

Action Vector

Engines X (3 discrete)

Engine Y (2 discrete)

Engines Z (3 discrete)

Decision Period

0.2 s (1 decision step every 10 update steps)

Maximum Step

100 s (5000 update steps)

Training Duration

10 M (decision steps)

Table A.10: 3-DOF scenario Version 3: RL Parameters

Algorithm
batch size 128
buffer size 2048
learning rate 0.00035
beta 0.001
epsilon 0.2
lambda 0.95
epoch number 3
learning rate schedule | linear
Neural Network
normalize true
hidden units 256
number layers 2

Table A.11: 3-DOF scenario Version 3: PPO Hyperparameters

136

Summary Tables

Training Strategy

DUT Strategy

‘ Enabled

Periodic Reward

Adaptive approach

[-0.01, 0] linearly inverse to target distance [0, Djnqz] m
Dy
T (Trmas — 1000—E,1000)

with Qmin,t =

Adaptive approach fail

{01}

Non-periodic Reward

. {-2.5}
Target Hit Rpyr reset position: 5 m
{-5}
Ground Crash Rpyr reset position: 5 m
{10}

Maximum distance exceeded

with boundaries (1600, 300, 1600) m
Rpyr reset position: 50 m

Te

rminal-Success Reward

Touchdown

[0, 300] :
{ [0, 90] linearly inverse to target horizontal distance [0, 5] m
+ [0, 20] lineraly inverse to velocity [0, 1] m/s per axis
+ [0, 150] linear to fuel mass left [-2000, 2000] kg }

Table A.12: Reward Function

137

Summary Tables

A.4 6-DOF scenario

Environment (parallelepiped)

Gravitational Acceleration \

(0, -1.62, 0) m/s?

Target (circle)

Diameter ‘ 20 m
Lunar Lander (cube)
Dimensions (5,5,5) m
Dry Operating Mass 7000 kg
Initial Fuel Mass 8000 kg
Engine Y Force 55 kN
Engine Y Fuel Consumption 300 kg/s
RCS Thruster Force (two each verse) 500 N
RCS Thruster Lever Arm 25 m
Initial Conditions
Position X Range 630, -770] m
Position Y Range [135, 165] m
Position Z Range [-15, 15| m
Velocity X Range [16.47, 20.13] m/s
Velocity Y Range [-5.5, -4.5] m/s
Velocity Z Range -0.5, 0.5] m/s

Roration X Range

[-m/16, 7/16] rad

Roration Y Range

[-7/16, 7/16] rad

Roration Z Range

[37/16, 57/16] rad

Angular Velocity Range (per axis)

[-7/16, 7/16] rad/s

Flight Phase Constraints

Angular Velocity (total) \

< £ /4 rad/s

Final Constraints

Target Distance X Z <+ 10 m
Target Distance Y <Et1lm
Velocity X Z <+ 1m/s
Velocity Y <+ 1m/s
Rotation (per axis) < 4 7/16 rad

Angular Velocity (per axis)

< £ /16 rad/s

Table A.13: 6-DOF scenario: Physical Model

138

Summary Tables

State Vector

Position (X, Y, Z)

Velocity (X, Y, Z)
bounded to 25 per axis

Rotation (X, Y, Z)

Angular Velocity (X, Y, Z)

Fuel Mass
bounded to -8000

Stacked Vectors

1 vector

Action Vector

Main Engine (2 discrete)

RCS Thrusters Roll (3 discrete)

RCS Thrusters Yaw (3 discrete)

RCS Thrusters Pitch (3 discrete)

Decision Period

0.06 s (1 decision step every 3 update steps)

Maximum Step

150 s (7500 update steps)

Training Duration

40 M Training 1 (decision steps)

20 M Training 2 (decision steps)

20 M Training 3 (decision steps)

Table A.14: 6-DOF scenario: RL Parameters

Algorithm

batch size 128

buffer size 2048

learning rate

0.00035 Training 1,2
0.00025 Training 3

0.001 Training 1,2

beta 0.0001 Training 3
epsilon 0.2 Training 1,2
0.1 Training 3
lambda 0.95
epoch number 3
learning rate schedule linear
Neural Network
normalize true
hidden units 512
number layers 3

Table A.15: 6-DOF scenario: PPO Hyperparameters

139

Summary Tables

A.4.1 First Training Procedure

Training Strategy

DUT Strategy Hybrid
FSO Strategy Froo =2
RIP Strate Ci,rrp = 0.1

& Cy,r1p = 0.5

Periodic Reward

Adaptive approach

[0,1] linearly inverse to target distance [0, Dyyqq] m
Dy 1

with amint = (3500—¢%,1000)

Adaptive approach fail

{-1}

Stable angular velocity

{0.01}
with wstapie = £7/12 rad/s

Stable angular velocity fail

[-1, 0] linearly inverse to angular velocity
[Wstable, /4] rad/s

Fly over the target

{0.5}
with boundaries (4, 11, 4) m

n-periodic Reward

Target Hit

{-50}

Rpyr reset position: 7.5 m
Rpuyr factor velocity : 0.5
Rpyr reset rotation : (0, 0, 0) rad
Rpyr factor angular velocity : 0.5

Ground Crash {-100}
. . {-200}
Maximum distance exceeded with boundaries (900, 200, 200) m
. . {-100}
Maximum rotation exceeded with By = £7/4 rad per axis
Maximum angular velocity {-100}

exceeded Rpyr factor angular velocity: 0.5
Terminal-Success Reward
[0, 230] -
{ [0, 90] linearly inverse to target
Touchdown horizontal distance [0, 10] m

+ [0, 20] lineraly inverse to velocity [0, 1] m/s per axis
+ [0, 80] linear to fuel mass left [-2000, 2000] kg }

Table A.16: 6-DOF

scenario: Reward Function - Training 1

140

Summary Tables

A.4.2 Second Training Procedure

Periodic Reward

[0,1] linearly inverse to target distance [0, Dypqq] m
Dy

max (3501:0—1t,1000)

having fuel left > 0

Adaptive approach

with available fuel with Gmin,, =

Adaptive approach fail {-1}

Non-periodic Reward

[0, 26] :
{ [0, 5] linearly inverse to target horizontal distance
[0, 10[m
+ [0, 3] lineraly inverse to velocity [0, 1] m/s
per axis
+ [0, 1] lineraly inverse to rotation
[0, £7/16] rad per axis
+ [0, 1] lineraly inverse to angular velocity
[0, £7/16] rad/s per axis
+ [0, 6] linear to fuel mass left [-4000, 4000] kg }

Target Hit

Ground Crash {-500}

{-1000}

Maximum distance exceeded with boundaries (900, 200, 200) m

{-500}

Maximum rotation exceeded with i = /4 rad per axis

Maximum angular velocity

exceeded {-500}

Terminal-Success Reward

[0, 260] -
{ [0, 50] linearly inverse to target
horizontal distance [0, 10] m
+ [0, 30] lineraly inverse to velocity [0, 1] m/s per axis
Touchdown + [0, 15] lineraly inverse to rotation
[0, £7/16] rad per X Z axis
+ [0, 10] lineraly inverse to angular velocity
[0, £7/16] rad/s per axis
+ [0, 60] linear to fuel mass left [-4000, 4000] kg }

Table A.17: 6-DOF scenario: Reward Function - Training 2

141

Summary Tables

A.4.3 Third Training Procedure

Training Strategy

DUT Strategy

‘ Hybrid

Periodic Reward

Adaptive approach
with available fuel

[0,1] linearly inverse to target distance [0, Dypqz] m
Dy

T (3500~ F,1000)

having fuel left > 0

with Amin,t =

Adaptive approach fail

{-1}

Maximum rotation exceeded

Non-periodic Reward
Target Hit {-100}
Ground Crash {-500}
. . {-1000}
Maximum distance exceeded with boundaries (900, 200, 200) m
{-500}

with 0y, = £m/4 rad per axis

Maximum angular velocity

exceeded {-500}
Terminal-Success Reward
[0, 600] :
{ 100
+ [0, 60] linearly inverse to target
horizontal distance [0, 7.5] m
Touchdown + [0, 30] lineraly inverse to velocity [0, 1] m/s per axis

+ [0, 30] lineraly inverse to rotation
[0, £7/16] rad per X Z axis
+ [0, 30] lineraly inverse to angular velocity
[0, £7/16] rad/s per axis
+ [0, 200] linear to fuel mass left [-4000, 4000] kg }

Table A.18: 6-DOF scenario: Reward Function - Training 3

142

Appendix B

External References

At the link https://www.youtube.com/watch?v=g2a_b1DM224 is available the
video of a complete episode where you can see the control of the lander in flight
and landing, published on the official AIKO YouTube channel. It is realized with
more sophisticated graphics and explanatory UI, the policy used is the one trailed
in Chapter 9.

Moreover, at the link https://github.com/MatteoStoisa/AutonomousLunarLandert

DeepReinforcementLearningForControlApplication it is available a GitHub reposi-
tory showcasing the project.

143

Bibliography

Brian Gaudet, Richard Linares, et al. «Deep Reinforcement Learning for
Six Degree-of-Freedom Planetary Powered Descent and Landing». In: (2018)
(cit. on pp. 2, 70, 100).

Richard S. Sutton and Andrew G. Barto. «Reinforcement Learning: An
Introductiony. In: (2015) (cit. on pp. 2, 5, 11, 23, 27).

John Schulman, Filip Wolski, et al. «Proximal Policy Optimization Algo-
rithms». In: (2017) (cit. on pp. 3, 21, 26).

Unity-Technologies. ML-Agents. 2021. URL: https://github.com/Unity-
Technologies/ml-agents/blob/main/docs/ML-Agents-0verview.md
(cit. on pp. 3, 31, 34, 51).

Unity Technologies. Unity. 2021. URL: https://unity.com/ (cit. on pp. 3,
34).

Nasa. « APOLLO 11 MISSION REPORT». In: (1969) (cit. on pp. 3, 59).

Volodymyr Mnih, Adria Puigdoménech Badia, and others. « Asynchronous
Methods for Deep Reinforcement Learning». In: (2016) (cit. on p. 21).

Volodymyr Mnih, Koray Kavukcuoglu, et al. «Playing Atari with Deep Rein-
forcement Learningy. In: (2013) (cit. on p. 22).

Marc G. Bellemare, Will Dabney, et al. « A Distributional Perspective on
Reinforcement Learning». In: (2013) (cit. on p. 22).

Volodymyr Mnih, Adria Puigdoménech Badia, and others. « Timothy P. Lilli-
crap and Jonathan J. Hunt and others». In: (2019) (cit. on p. 22).

Tuomas Haarnoja, Aurick Zhou, and others. «Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actory.
In: (2018) (cit. on p. 22).

Adam White and Marta White. Reinforcement Learning Specialization. 2021.
URL: https://www. coursera.org/specializations/reinforcement -
learning (cit. on p. 23).

144

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/ML-Agents-Overview.md
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/ML-Agents-Overview.md
https://unity.com/
https://www.coursera.org/specializations/reinforcement-learning
https://www.coursera.org/specializations/reinforcement-learning

BIBLIOGRAPHY

[13]
[14]
[15]

[16]

Vincent Francois-Lavet, Peter Henderson, et al. « An Introduction to Deep
Reinforcement Learning». In: (2018) (cit. on p. 23).

Diederik P. Kingma and Jimmy Lei Ba. t ADAM: A METHOD FOR STOCHAS}
TIC OPTIMIZATION». In: (2017) (cit. on p. 25).

OpenAl. OpenAl Five. 2018. URL: https://openai . com/blog/openai-
five/ (cit. on pp. 26, 30).
John Schulman, Philipp Moritz, et al. <t HIGH-DIMENSIONAL CONTINU-

OUS CONTROL USING GENERALIZED ADVANTAGE ESTIMATION».
In: (2018) (cit. on p. 27).

Wikipedia. Bias—variance tradeoff. 2021. URL: https://en.wikipedia.org/
wiki/Bias5ChE2%5C%80%5C%k93variance_tradeoff (cit. on p. 27).

John Schulman, Sergey Levine, et al. «Trust Region Policy Optimization».
In: (2017) (cit. on p. 28).

Daniel Ratke. PPO - a Note on Policy Entropy in Continuous Action Spaces.
2021. URL: https://blog.xa0.de/post/PP0%20---%20a-Note-on-Policy-
Entropy-in-Continuous-Action-Spaces/ (cit. on p. 30).

Unity-Technologies. Training with Proximal Policy Optimization. 2018. URL:
https://github.com/gzrjzcx/ML-agents/blob/master/docs/Training-
PPO.md (cit. on pp. 31, 54).

OpenAl. OpenAI Gym. 2021. URL: https://github.com/openai/gym (cit.
on pp. 38, 39).

Unity-Technologies. ML-Agents Toolkit Overview. 2021. URL: https://gith
ub.com/Unity-Technologies/ml-agents (cit. on p. 39).

OpenAl. Baselines. 2019. URL: https://github.com/openai/baselines
(cit. on p. 39).

The Linux Foundation. Open Neural Network Ezchange. 2019. URL: https:
//onnx.ai/ (cit. on p. 39).

Wikipedia. Ezponential smoothing. 2021. URL: https://en.wikipedia.org/
wiki/Exponential_smoothing (cit. on p. 57).

Floyd V. Bennett. «xAPOLLO EXPERIENCE REPORT - MISSION PLAN-
NING FOR LUNAR MODULE DESCENT AND ASCENT». In: (1972) (cit.
on p. 59).

Yunlong Song, Mats Steinweg, et al. « Autonomous Drone Racing with Deep
Reinforcement Learning». In: (2021) (cit. on p. 74).

145

https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://en.wikipedia.org/wiki/Bias%5C%E2%5C%80%5C%93variance_tradeoff
https://en.wikipedia.org/wiki/Bias%5C%E2%5C%80%5C%93variance_tradeoff
https://blog.xa0.de/post/PPO%20---%20a-Note-on-Policy-Entropy-in-Continuous-Action-Spaces/
https://blog.xa0.de/post/PPO%20---%20a-Note-on-Policy-Entropy-in-Continuous-Action-Spaces/
https://github.com/gzrjzcx/ML-agents/blob/master/docs/Training-PPO.md
https://github.com/gzrjzcx/ML-agents/blob/master/docs/Training-PPO.md
https://github.com/openai/gym
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/openai/baselines
https://onnx.ai/
https://onnx.ai/
https://en.wikipedia.org/wiki/Exponential_smoothing
https://en.wikipedia.org/wiki/Exponential_smoothing

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Reinforcement Learning for Control
	Objectives of the Thesis
	Structure of the Thesis

	The Reinforcement Learning approach
	Trial-Error Example Scenarios
	Key Elements of Reinforcement Learning
	Exploration vs Exploitation
	Foresight

	The Agent-Environment Interaction Loop
	Goals and Rewards
	Returns and Discounting
	The Markov Property
	Markov Decision Processes
	Value Functions
	Optimal Value Functions

	RL Algorithms Main Distinctions
	Model-Free Algorithms

	Deep Reinforcement Learning
	Introduction to Deep Learning
	Proximal Policy Optimization Algorithm
	The PPO Hyperparameters

	Framework, Library and Implementation
	The Unity Framework
	The ML-Agents Library
	Classes, Methods and Fields

	Physical Models Main Features
	Environment Model Characteristics
	Lunar Lander Model Characteristics
	Episode Characteristics

	Autonomous Lunar Lander: 3-DOF scenario Version 1
	Physical Model
	Reinforcement Learning Application
	 - Limit unbounded states
	 - Decision period in training and inference
	 - Maintain training duration

	Scenario Solution

	Autonomous Lunar Lander: 3-DOF scenario Version 2
	Physical Model
	Reinforcement Learning Application
	 - Counterproductive high control frequency
	 - Between strict and sparse reward functions
	 - Avoid laziness
	 - Non-flat suggestions
	 - Achieve it first, then optimize

	Scenario Solution

	Autonomous Lunar Lander: 3-DOF scenario Version 3
	Physical Model
	 - Adapt RL to problems, not vice versa

	Reinforcement Learning Application
	The DUT Training Strategy
	 - Near-and-safe resets
	 - Hard constraints as optimization problems
	 - Conscious or superficial behaviors

	Scenario Solution

	Training Benchmarks Analysis
	Learning Rate, Epsilon and Beta
	Batch and Buffer Size
	Decision Period and Stacked Vectors
	Neural Network Configuration
	Environment Parallelism

	Autonomous Lunar Lander: 6-DOF scenario
	Physical Model
	Reinforcement Learning Application
	The FSO Training Strategy
	 - Provide focused state-rewards
	The RIP Training Strategy
	 - Temporary complexity reduction
	First Training Procedure
	o - Successive incremental trainings
	Second Training Procedure
	 - Need for reward regardless
	Third Training Procedure
	 - Harder training, safer result
	 - Policy fine-tuning

	Scenario Solution
	Failure Analysis
	Policy Resilience

	Conclusions
	Final Considerations
	Future Works

	Summary Tables
	3-DOF scenario Version 1
	3-DOF scenario Version 2
	3-DOF scenario Version 3
	6-DOF scenario
	First Training Procedure
	Second Training Procedure
	Third Training Procedure

	External References
	Bibliography

