
POLITECNICO DI TORINO
Master degree course in Data Science and Engineering

Master Degree Thesis

Multimodal-source image
generation with deep learning

Supervisors
Prof. Paolo Garza
Dr. Ruben Cartuyvels (KU Leuven)
Dr. Erfan Ghaderey (KU Leuven)

Candidate
Fabrizio Lande

matricola s276334

Academic year 2020-2021

This work is subject to the Creative Commons Licence

Summary

The focus of this work is to present a new way of synthesizing images start-
ing from a descriptive input text and a reference image by using a model
extensively based on deep learning and generative adversarial networks.

3

Acknowledgements

This project would not have been possible without the support of my the-
sis supervisors Dr. Ruben Cartuyvels and Dr. Erfan Ghaderey, two PhD
students at KU Leuven University that guided me through the development
process until the end of my staying abroad as part of my Erasmus EU project.
Many thanks to my Politecnico supervisor, Paolo Garza, who read my nu-
merous revisions and helped produce a mature text.
Thanks to Politecnico di Torino for giving me the opportunity of spending
this last year abroad in Belgium, partially providing me with the financial
means to complete this project. Also thanks to KU Leuven University, that
regardless the harsh times we went through, has offered me support and
the technical tools to actually see my code running by means of their Flem-
ish super computer (VSC). And finally, thanks to my brother and parents,
my girlfriend and numerous friends who endured this long process with me,
always offering support and love.

5

Contents

List of Tables 8

List of Figures 9

1 Introduction 11

2 Related work 13
2.1 Introduction . 13
2.2 The origin of GAN . 14
2.3 Text to image generation, a first example 16
2.4 Two fundamental models . 18

2.4.1 StackGAN . 18
2.4.2 AttnGAN . 20

2.5 Image manipulation through text 21
2.6 Beyond GAN-based architectures 22
2.7 Beyond text-to-image generation 23
2.8 Contribution . 26

3 Reference attention GAN 27
3.1 Attention GAN architecture 27

3.1.1 Text encoder . 28
3.1.2 Conditional augmentation block 30
3.1.3 Generator network . 30
3.1.4 Discriminators . 31
3.1.5 DAMSM . 32
3.1.6 Image encoder . 33
3.1.7 Loss function and training overview 35

3.2 Reference attention GAN architecture 37
3.2.1 Reference images . 37

6

3.2.2 Generator network . 38
3.2.3 Similarity block . 39
3.2.4 Discriminators . 41

4 Experimental procedure 43
4.1 A cumbersome model . 43
4.2 Preliminary steps . 45
4.3 Sanity check . 46
4.4 RaGAN training . 49

4.4.1 DAMSM training . 49
4.4.2 Generator training . 50

4.5 Qualitative results . 60
4.6 Quantitative results . 62

5 Going further 71
5.1 Issues and limitations . 71
5.2 Further work . 73
5.3 Conclusions . 74

Bibliography 77

7

List of Tables

4.1 Inception score comparison between official and experimental
value. 48

4.2 Inception Scores of each model in comparison. 63
4.3 FID Scores of each model in comparison. 65

8

List of Figures

2.1 Basic GAN architecture. Source: public domain. 14
2.2 GAWWN qualitative input and output 17
2.3 GAWWN architecture using bounding boxes. Source: [30] . . 17
2.4 Qualitative results of StackGAN (left) and AttnGAN (right).

Source: [47, 45] . 18
2.5 StackGAN architecture. Source: [47] 19
2.6 ManiGAN qualitatively result. Source: [22] 21
2.7 ManiGAN architecture. Source: [22] 22
2.8 Scene-graph architecture, Source: [15] 23
2.9 SPADE input (left and top) and output (center). Source: [28] 24
2.10 Convolutional layer kernels predicted using weight prediction

network. Source: [24] . 25
2.11 OC-GAN output compared to previous models like SPADE.

Source: [35] . 25
3.1 Attention GAN block architecture as presented in the paper.

Source: [45] . 27
3.2 Recurrent neural network architecture concept. Source: public

domain. 28
3.3 ReLU (left) vs LeakyReLU (right) slope comparison. Source:

public domain. 32
3.4 Multi-source feature mapping to common space. 33
3.5 Inception basic block. Source: public domain. 34
3.6 CUB dataset birds-200-2011. Image taken from official CUB

website. 35
3.7 Reference attention GAN architecture 37
3.8 Some generated reference images 38
3.9 Finding most similar patch in final image 40
3.10 Reference attention GAN discriminators 42
4.1 Accessing Tier-2 Genius cluster from command line. 44

9

4.2 Training samples taken, from top to bottom at epoch 1, 200,
400, 600. Each image shows the output picture next to the
attention maps for each input word. 47

4.3 Basic idea behind inception score calculation. Source: [26] . . 47
4.4 Attention GAN output images from validation set. 48
4.5 DAMSM loss graphs. Total loss (top), word losses (center)

and sentence losses (bottom). 51
4.6 Generator (top) and discriminator (bottom) losses of RaGAN

V0. 52
4.7 Generator loss disassembled into its components: KL loss

(top), Similarity loss (center) and generators only loss (bottom). 53
4.8 RaGAN output images with input sentences. 54
4.9 RaGAN reference image attention maps at epoch 600. Input

reference image (left), output image (second left), average at-
tention map (second right) and random attention map (right). 56

4.10 Generator (top) and discriminator (bottom) losses of RaGAN
V1. 57

4.11 Generator loss disassembled into its components: KL loss
(top), Similarity loss (center) and generators only loss (bottom). 58

4.12 Output image samples next to text attention maps. 59
4.13 Output image samples next to reference images and attention

maps. 59
4.14 Attention GAN bad quality output examples. 60
4.15 RaGAN output without using the conditioned loss term. . . . 67
4.16 RaGAN output using the conditioned loss term. 68
4.17 RaGAN v0 output using a black reference image. 69
4.18 RaGAN v1 output using a black reference image. 70
5.1 Contradicting inputs results. RaGAN v1 top and v2 bottom. . 71
5.2 Non informative reference image results. RaGAN v1 top and

v2 bottom. 72
5.3 Output when using reference images of beaks. RaGAN v1 top

and v2 bottom. 72

10

Chapter 1

Introduction

Computer automated image generation is a fascinating topic though rela-
tively new. Only in recent years the scientific community has managed to
see its ideas implemented in actual algorithms and models capable of return-
ing good quality images with realistic subjects depicted inside. Even though
this field is vast and only partially discovered, a few deep learning techniques
have already proven to be good candidates for facing such task: generative
adversarial networks are now days responsible for some of the most realis-
tic pictures ever created by a computer, finding applications in a variety of
scenarios. It has been attempted to upscale preexisting images for textures
quality improvement in games [40] but also astronomical images [41], gener-
ate novel art [36], but also malicious applications like Deepfake [33], a deep
learning model capable of producing fake and possibly incriminating pho-
tographs and videos.
In this work however, I will present how I generated realistic images of two
hundred species of birds using as input some plain English text, describing
the features of the subject, and some reference images containing small por-
tions of real bird parts, that the model has to use in conjunction with the
textual description to generate that particular parts in terms of shapes, tex-
tures and colors. Everything will be based on the Attention GAN model,
which I have used as backbone and that ultimately I attempted to upgrade
with the introduction of the additional input defined by the reference image.
For this reason this work and the model that I ended up with, RaGAN, has to
be considered a multi-source image generator that uses deep learning. This
idea can have interesting applications in the field of arts and artists support
by means of helping them with initial sketches to build upon in order to cre-
ate novel animals and creatures that satisfy a written description and now an

11

1 – Introduction

additional reference image in order to include a specific element in the final
image. The result can then be taken on its own or used as inspiration for
drawing something more refined. Another field of application can be iden-
tikit enhancement. Given a written deposition of the suspect and a picture
of a specific characteristic of their face, like their eyes or something that a
camera has captured, it could be possible to generate the sketch with more
realism because it would also contain the portion of his or her face depicted
in the reference image. These claims can be considered quite advanced for
what the model is actually able to achieve at this stage, but I do believe that
the direction this work is aiming at will eventually turn into a mature model
capable of delivering either or both applications.
In the following chapters I will first go through some related works, papers
and architectures developed in past years, that I studied during my prelim-
inary approach with the whole topic. I tired to follow a chronological order
that carries the reader from the invention of GAN architectures all the way
to Attention GAN and other similar models and finishing with other tech-
niques that use different inputs for synthesizing images.
In the third chapter I will formalize my model as a natural extension of the
Attention GAN architecture, showing issues and adopted implementation so-
lutions I found in my journey.
In the fourth chapter I will dive deeper into what concerns the training
phase, the supercomputer I had to use and all the low level details related
to this crucial step of the model. Finally in the last chapter I will show my
conclusions explaining pros and cons of the proposed implementation and
discussing some possible further work, what it could have been done with
more resources and time and where to improve in order to go further.
The vast majority of this work has been carried on during my stay abroad
at KU Leuven University in Belgium, as part of my Erasmus project. At
the beginning, this thesis as a whole was focused on a completely different
task based on Lewis et al. work [21]. However, after a couple of months
of individual study, my initial supervisor and I figured out that what we
were trying to achieve was mathematically impossible. Therefore we moved
towards a slightly different iteration of the initial idea, which however once
again ended as soon as we reached a theoretical dead end, that made further
work impossible. Nevertheless, I carried on and as soon as we discussed and
planned the last version of my work, that ultimately became what I present
here, I started working and studying for it and I kept on doing so until I
completed everything I planned to do, or when there were no more available
resources to run any other experiment.

12

Chapter 2

Related work

2.1 Introduction
Text to image generation and in general image generation is undoubtedly
a very interesting task where deep learning can really shine and show true
potential. In fact, such a complicated assignment cannot be solved using
traditional methods that we might take from computer vision for example or
from linguistics, if we narrow the job down to input text only. For once, these
other techniques lack in generalization which is key if we really want to face
the problem of generating something new, pictures of new animal species for
instance.
Throughout my preliminary research I have discovered a certain polarization
towards the use of the GAN architecture of solving this kind of assignment
but in a later section I will show how also other techniques do exist and have
been used. Though, a lot of work has been published regarding the topic
of image generation throughout the (few) years since the invention of the
GAN architecture. In particular, I will go through all the works that I have
come in contact with in the first months of familiarization with the subject
presenting them in a chronological order, hoping to carry the reader from
the origin of the architecture all the way to more recent applications and
implementations.
What I present here is by no means the completed research scenario of all
possible published papers and works that the scientific community has gen-
erated in later years. While I am reading these lines new studies have been
for sure released and many more will be presented in the future. For these
reasons what I will show here has to be considered as a good small portion of
what has been done in the context of image generation and what I came in

13

2 – Related work

contact with during my initial gathering of information related to this topic
before jumping into my own implementation.

2.2 The origin of GAN
Throughout my studies and personal research I have discovered that a big
leap forward in the topic of image generation has been given by the genera-
tive adversarial network architecture (GAN) since its public release in 2014
[10].
This very interesting approach in generating new, synthetic instances of data
that can pass for real data, has since then played a big role in image gen-
eration, video generation and voice generation. The base concept is the
following: the model is actually composed of two models, a generator G
and a discriminator D. They are trained in a competing (adversarial) fash-
ion meaning that each has to prevail in doing its task over the other. The
generator has to generate a “credible” output and the discriminator has to
discriminate fake outputs from real data. In the context of image generation,
the generator takes as input what can be considered as an initial canvas some
random noise and tries to modify it with the help of convolutional layers into
an image that has to be as close as possible to real data or, to put it more
formally, to the target distribution. On the other hand, the discriminator
has to be able to decide, given a real image and one generated by the model,
which is which. Whenever the discriminator fails at this task (it is fooled by
the generator) an associated loss increases (discriminator loss). If the dis-
criminator instead successfully classifies the fake as fake the generator loss
will increase, punishing its poor result.

Figure 2.1. Basic GAN architecture. Source: public domain.

14

2.2 – The origin of GAN

Mathematically speaking, following the description presented in the paper,
D and G play a two-player min-max game with value function V(D, G):

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]
(2.1)

The classic back propagation through chain rule is then used to update
the two models. A big advantage of this architecture is that the generator
does not directly see real data and the only “contact” it has with them is
through back propagation. This means that components from the input are
not copied by the generator. However, this advantage is also a big disadvan-
tage of the structure. The two models must be synchronized during training,
avoiding in particular that the generator is updated more often than the
discriminator or else it would cause the Helvetica scenario or mode collapse:
G will put too much probability density in a small area of the data space
This in practice can be translated as: if the generator learns that one image
(or small group of images) is good enough to fool the discriminator (that
has not been updated enough) it will try to use that image (or small group
of images) more often if not always, therefore forcing the discriminator to
use less features to define if an image is fake or not worsening its ability to
“understand” what it has to classify.
Due to this intrinsic back and forth behaviour, the training period is typically
long for such models and requires many passes through the training set be-
fore the generator is good enough to produce high quality images. Theory [8]
suggests that this juggling should end once we reach a state of convergence,
defined as the state where the discriminator has a 50% accuracy. I must add
to this definition that in the context of image generation the quality of the
output images is itself a good way to see if the model is mature or not. I will
show in later chapters how I decided to stop training my model, following
the number of epochs and the training technique described in the Attention
GAN paper but also the visual results.
Taking a more practical approach to this theoretical introduction, I can say
that from what I have seen, studied and used, a generator is nothing more
than a series of upsample blocks that accept an initial random-based input
vector and enlarge it to the desired output dimensions injecting meaning to
the new dimensions with the help of convolutional blocks that span the inter-
mediate features and extract new ones. On the other hand, discriminators
are quite the opposite because they receive as input these higher dimen-
sional vectors with rich and meaningful features and have to reduce them

15

2 – Related work

in steps in order to obtain an output vector that is then passed to a fully
connected classifier. We can indeed see the discriminators like classic CNN
networks used for classifications as the ones commonly presented in courses
like Alexnet [17]. So the real key feature of GAN based models is the way
they get trained, and not so much the building components, that are quite
similar to previous architectures seen in other deep learning scenarios.

2.3 Text to image generation, a first example
In subsequent works that started with the GAN architecture, not only the
generator and discriminator internal structure has been improved but also
certain aspects of the model itself, like the generator input, have been revised.
In the work of Reed et al. [30] in 2016 we can see for example the introduction
of a textual input concatenated to the canonical random noise. This work
is actually a big change in direction from previous attempts that generated
images from a textual description but used variational auto-encoders [16, 18,
11]. Not only the resulting quality was lower but the whole architecture was
more complicated than the adopted GAN.
The main goal of this work is to draw specific objects, described through input
text, in specific positions and/or regions of the image by giving bounding
boxes or punctual positions as side inputs1.

For the sake of simplicity I will briefly present the structure of the model
that uses bounding boxes but the one that uses point coordinates is quite
similar. As it is visually presented in Figure 2.3, a first feature matrix is
generated using the input text that is embedded into feature vectors and
then expanded to match the normalized bounding box size. This creates
a matrix where only the area covered by the bounding box receives values
coming from the embedded text while the rest stays at zero. This mask-
ing matrix is brought back to a smaller feature space by passing through
convolutional and pooling layers and then it is concatenated with the input
vector noise. This new feature vector undergoes two different paths where
a series of deconvolution layers upsample the vector enough times to make
it reach the wanted final dimensions. The only difference is that the local
features matrix is additionally masked with a new matrix that sets to zero
all the regions outside the input bounding box. The resulting matrices are

1Two models have been developed, one using bounding boxes and the other two dimen-
sional points.

16

2.3 – Text to image generation, a first example

Figure 2.2. GAWWN qualitative input and output

then concatenated and a final deconvolutional block is used to upsample the
vector and return the final image. The discriminator operates in the oppo-
site way and from the image it generates local and global feature matrices.
The local one is enriched by the input text embedding that is first spatially
replicated to match its dimensions and then masked using the same masking
matrix presented before. A convolutional block reduces the dimensions of
both local and global matrices making them become vectors that are added
together and a final fully connected layer produces the binary output.

Figure 2.3. GAWWN architecture using bounding boxes. Source: [30]

From this work we can extract a valuable lesson that we will see common
in other papers: input text, once embedded into feature vectors is simply

17

2 – Related work

concatenated to the input random noise. This concept is key because I
decided to do the same when introducing the additional input reference image
features to the model.It also highlights the presence of punctual information
contained in the CUB dataset, which is what they used here and what I have
used to extract reference images with as I will show in chapter three.

2.4 Two fundamental models
In 2017 two new models based on GAN architecture improve even more
the quality of the results, managing to obtain more crisp and detailed pic-
tures starting from text. In this section I will briefly discuss them, namely
StackGAN and AttnGAN, highlighting similarities and differences in imple-
mentation and philosophy.

Figure 2.4. Qualitative results of StackGAN (left) and AttnGAN
(right). Source: [47, 45]

2.4.1 StackGAN
Zhang et al. [47], starting from the idea of stacking two generators and dis-
criminators one after the other, create what’s known in literature as Stack-
GAN. The structure can be ideally extended to additional stages but this
paper shows a two steps process. The first generator takes the input text
in embedded format concatenated with random noise and generates a first,

18

2.4 – Two fundamental models

low quality image. This process is done in almost the exact same way that
I will present for AttnGAN in chapter three and consists of a series of up-
sampling blocks that take the input sentence feature vector and scale it up
to match the dimensions of the first low quality output image. The second
generator takes the features of output image extracted by a first discrimina-
tor and by downsampling, mainly using convolutional and pooling layers, it
converts it to a matrix that contains all the semantic information that is then
concatenated to another matrix obtained from downsampling the output im-
age directly. This big matrix goes through a residual block that enriches its
information content and a last upsampling block for generating the final re-
sult. The idea of splitting the process into two steps is important in order to
make the generation task easier. The first step generator produces an idea of
shapes and colors, with less consideration over ed and polished features. The
second generator works over this first attempt, refining shapes and textures
and also up-scaling the image to the final dimensions. Figure 2.5 shows this
architecture more in detail.

Figure 2.5. StackGAN architecture. Source: [47]

Qualitatively, the image results of this model are very much comparable
to Attention GAN, another model that I will present later. However in terms
of pure scores, they are a bit lower and for this reason and also because my
thesis supervisors had more experience with the aforementioned Attention
GAN I ultimately decided not to work on this architecture.

19

2 – Related work

2.4.2 AttnGAN
Xu et al. [45] tackle the problem with another cut. Once again the input is a
sentence describing how the subject of the image has to be2. The key concept
of this work is a novel attention driven fine-grained image generation. The
model learns to give the right attention at the right portion of the image for
each input word. The concept of attention in the context of deep learning can
be summed up as a weight vector that defines how important certain features
are. Here, it is a two dimensional matrix that defines how important every
pixel is according to each word. This model accepts input sentences of at
most eighteen words, therefore it also generates, and we are able to visualize,
up to eighteen different attention maps. Not only does this method allow
for better quality images, more related to the input text, but in addition it
offers an intrinsic way to study how the model works because we can take a
look at these maps in order to check if the model “has learned” the meaning
of those words or not and where in the picture each word is more used.
Conceptually this model is composed of three components: a multi-stage
generator, a set of discriminators, thus resembling a GAN architecture, and
a deep attentional multimodal similarity model (from now on DAMSM). The
generator actually consists of three generators chained one after the other,
each one producing a different quality output image. The paper suggests
that potentially even more generators can be concatenated but for stability
and use of resources they decided to stick with just three. Each output
image is fed to a discriminator, therefore there are three of them. Each
discriminator is trained separately and it checks for the quality of the image
conditioned and unconditioned to the input sentence. This ensures that the
generated output is not only credible but also related to the input sentence.
Finally the last model piece, the DAMSM, compares features extracted from
the highest quality image with those extracted at word level from the input
image and generates an additional loss, that enforces even more semantic
connection between the input and the output. This novel block is actually
trained before the rest of the model, and it is done so that it learns a common
semantic space where word features and image features have to be mapped
to be compared.
As I will show in chapter three, my supervisors and I have decided to use this
model and paper as a starting point to begin our research towards an ever

2The target distribution was either a few hundred races of birds contained in CUB
dataset, or images from COCO dataset.

20

2.5 – Image manipulation through text

more advanced setup due to the brilliant concept brought by the DAMSM
block and general architecture. For this reason I have decided not to go
into too much detain in this section about lower level implementation stuff
and how every component works, leaving the reader with hopefully a first
impression of the model.

2.5 Image manipulation through text
IN 2020, a few years later AttnGAN and StackGAN publications, Li et al.
[22] create a release their ManiGAN model. Here, instead of focusing on
generating photo-realistic images they decided to concentrate their efforts
in creating a model able to manipulate specific visual attributes of given
images using natural descriptors. In practice, an input image and text are
given. The image has to be modified according to the text. This means
change in colors, texture and background.

Figure 2.6. ManiGAN qualitatively result. Source: [22]

Even though it is not properly a text to image generation task it is inter-
esting to see how they managed to modify some features of the image, which
is what I attempted to do with an input reference image in my work. In ad-
dition, an interesting thing to notice about this work is the introduction of a
new evaluation metric that defines the goodness of the result, that compares
at pixel level the input and output image with respect to the similarity value
between the final image and the input text through image and text encoders
in a way that is similar to what DAMSM model does in AttnGAN. Indeed,

21

2 – Related work

multiple times in the paper we can find references about Attention GAN, not
only for the implementation of this correlation block inspired by DAMSM
but also for the concept of a pretrained text encoder for embedding the input
text.
The structure of the model itself is quite similar in many aspects to the one
proposed by Xu et al. and ultimately similar to my own architecture. Figure
2.7 shows it in detail.

Figure 2.7. ManiGAN architecture. Source: [22]

As we can see, three generators are concatenated one after the other and
each output is passed to a specific discriminator that also takes as input the
embedded text, in order to check for correlation. The main difference is the
input image that has to be modified, which is fed in multiple stages of the
model.

2.6 Beyond GAN-based architectures
It must be said that text to image generation can also be done with different
architectures than GAN based ones. In the paper Image generation from
scene graphs [15], published in 2018, they show how it is possible to first
generate a scene graph, a structure that encodes relations among words and
objects, and then pass it to the model as input. This graph is used to predict
bounding boxes and organize the objects in the scene (scene layout). This
layout is then fed to a refinement network that starting from a noise canvas
and using these bounding boxes as guidelines generates the final image. In
practice the layout map is downsampled and concatenated to the noise vector
first, and to the final feature matrix obtained by convoluting and upsampling
the initial features. This work claims to be better than previous attempts

22

2.7 – Beyond text-to-image generation

at generating complex scenes that usually end up to be messy and blurred.
However, I did not consider this implementation too much since I preferred
to work with input sentences instead of scene graphs, which require an extra
step than actually just using plain text.

Figure 2.8. Scene-graph architecture, Source: [15]

2.7 Beyond text-to-image generation
As a conclusion to this chapter I would like to talk about an interesting work
published in 2020 that has a somewhat opposite task to the one I have tried to
solve in this thesis. Multimodal transformer for multimodal machine trans-
lation [46] aims to introduce information from different sources to improve
natural language translation. A regular translation model takes as input a
sentence in source language and returns the sentence in target language. This
model instead takes a reference image in parallel with the input sentence. It
learns a combined representation of information merging sentence and im-
age features. This ensures that useless information inside the image is not
considered since only what can be linked to the input sentence is actually
extracted from the visual features and sent to the model. On the other hand
text embedding is enriched by the visual embedding accounting for a more
sophisticated description of the meaning. Unfortunately, the way this link
between words and features of the reference image is created, is deeply based
on the transformer architecture, that ultimately is the backbone of the entire
translator system. It is therefore needless to say that I did not pursue this
line for introducing an additional input to my model.
Another big portion of the image generation field is covered by what is known
as image generation from semantic layout. A semantic layout, or segmen-
tation map, is nothing more than an image containing shapes, usually of

23

2 – Related work

different colors, each defining a different object in that specific portion of
the canvas. These segmentation maps can be generated by hand, by coloring
shapes using the predefined color scheme on a simple drawing program like
MS Paint, or even starting from real images fed to convolutional models like
U-Net [31] in order to extrapolate shapes.
Semantic maps can then be used in different ways. In SPADE [28] they use
them to define the structure of the scene. Colors and textures are instead
taken from a reference style image, a realistic image the model uses to extract
the general style from.

Figure 2.9. SPADE input (left and top) and output (center). Source: [28]

The generation of the final image is obtained thanks to multiple residual
network blocks that, starting from random noise, modulate it all the way to
the end receiving at intermediary steps the segmentation map. The style is
instead passed through batch norm blocks.
On a later paper published in 2020 [24] Liu et al. argue that the semantic
map has to be used to modulate the convolutional kernels of the generator of
a GAN based architecture, so that the intermediate feature maps are more
enhanced by the semantic features and ultimately should return a better
quality image with particular improvement on the details. In practice the
semantic map is passed to a weight prediction network that directly controls
the convolutional blocks of the actual generator as showed in Figure 2.10.

Later on the same year, another work based on input semantic layout was
published. Object-centric image generation from layout (OC-GAN) [35] tries

24

2.7 – Beyond text-to-image generation

Figure 2.10. Convolutional layer kernels predicted using weight pre-
diction network. Source: [24]

to solve the problem of generating multiple instances of the same object that
appear in a close space. Previous image generation techniques have shown
difficulties in reproducing non overlapping and crisp images of multiple items
very close to one another. For this reason this work overcomes prior models
like SPADE in generating complex scenes that now look more sharp in this
particular setting.

Figure 2.11. OC-GAN output compared to previous models
like SPADE. Source: [35]

To make this model work they make use of hollow bounding boxes (they

25

2 – Related work

can be overlapped with others). With those they generate a scene graph
which is used as input. The quality of the result is kept in check with a loss
function that compares global and local features extracted from the input
scene graph and output image.

2.8 Contribution
What my work tries to do is to extend the well founded GAN architecture, as
it proves to be a solid infrastructure for image generation. In particular I try
to expand the one developed in the AttnGAN paper, in order to support an
additional input represented by a reference image that graphically expresses
a random anatomical piece of a bird, whether it is a beak, a wing or anything
else concerning the structure of the animal. Such an image will be used by
the model in conjunction with the input text in order to reproduce the related
portion of the output image in terms of texture and/or shape.
Not only does this idea require a prior knowledge of the presented works but
it also requires an aware observation of the implemented techniques in order
to find inspiration in making such extension of the model. The principal
difficulties that the project has to face are how to insert this new input, how
to make sure that the model actually uses it and how to do so in the context
of attention so that we can also have a method to evaluate how the input
image is exploited. Finally, since the task is arguably more difficult than text
to image generation, another issue is to define a novel evaluation metric to
express the effective goodness of the results.
All of this must be done with the idea in mind of not worsening the image
quality: the final pictures have to be the visual representation of the input
text and have to be as sharp as the ones returned by the original attention
GAN model but they must also contain features that resemble the input
reference picture.
I would like to point out that this idea, as far as my supervisors and I know,
has never been officially tried, making this thesis work a novelty in this
research field.

26

Chapter 3

Reference attention GAN

In this chapter I will discuss the architecture and the implementation of
what I have called Reference attention GAN or RefAttnGAN for short. I
will take a closer look at the backbone structure, that is, the Attention GAN
architecture, and I will move from there to the model I created as a natural
extension of it.

3.1 Attention GAN architecture

Figure 3.1. Attention GAN block architecture as presented in
the paper. Source: [45]

Moving from left to right in Figure 3.1 I am going to discuss all the used
components, briefly considering what they do internally and what they take

27

3 – Reference attention GAN

as input and return as output.

3.1.1 Text encoder

The input of the whole model is a plain English text descriptive of the picture
we want to obtain. This work makes use of CUB dataset [42] and Coco
dataset [23]. The first one contains pictures and descriptive sentences of each
one (at most ten per picture) related to American birds of 200 species. Coco
is instead a miscellaneous collection of “common objects in context” meaning
that it contains pictures of everyday items, animals, means of transport and
more. The latter is objectively more complicated to work with since its data
distribution is wider and more sophisticated. For this reason in my work
I limited the number of datasets used only to CUB. Therefore I will use
examples from its data only from now on.
The input text is fed to a text encoder that embeds it into a sentence feature
vector and a word feature matrix where each column is actually a vector
containing the embedding of each word. This encoder is actually a long-
short term memory recurrent neural network, or LSTM for short . Without
going into too much detail, and using my personal knowledge on this type
of neural networks obtained by following the course of “Natural language
processing” [20] while I was attending lectures at KU Leuven, I will try to
describe it. A regular RNN is a network often used for dealing with textual
input, usually converted into numbers, and returns an embedding of each
input word while simultaneously tracking its internal state, updating it each
time a new input is received.

Figure 3.2. Recurrent neural network architecture concept.
Source: public domain.

28

3.1 – Attention GAN architecture

In practice, each word of a given text (an ordered sequence of words) is
first transformed into numbers with the help of a look up table and becomes
what in Figure 3.2 is Xi. Each encoded word is fed to the model one by
one, respecting the original order. The network combines them with its
state (at the beginning of each sentence embedding phase its internal state is
reinitialized) returning an output embedding and an updated internal state.
This state, which is nothing more than a weight matrix, should contain
the semantic information given by all the words the model has seen before.
However it has been proven that RNNs have an intrinsic problem related to
this which is overcome by the introduction of an RNN variant called LSTM
[27]. Even though the RNN model updates the very same weight matrix, its
updates occur for each word the it receives as input. For this reason, back
propagation is said to update the model through time, because it is like it
traces back all the state updates. If the sentences are too long this might
cause vanishing or exploding gradients. The example given by the above
cited "TowardsDataScience" page gives a good example of this. Let’s assume
that the weight matrix of the model is just a scalar with value in one case 0.9
and in the other 1.1 and let’s assume that the input sentence that has just
passed is one hundred words long. If we use back-propagation multiplying
these values one hundred times we would get a gradient that is either around
zero (vanishing gradient) or very big (in the thousands order), exploding
gradient. LSTM tries to solve this problem by actively “forgetting” certain
words that are less relevant to be remembered in the internal state that
won’t be recorded. The internal structure contains some gates controlled by
activation functions that decide whether or not to open or close them in order
to let the word go to the state (being recorded), not go (being forgotten) or
stay in a candidate state that will eventually become part of the state with
the right weighting factor.
This encoder is used at training time after being pretrained in conjunction
with the image encoder on the right hand side of Figure 3.1 as it is discussed
in more detail in the section related to DAMSM.
The use of this pretrained LSTM text encoder is what makes AttnGAN step
away from prior models: both local and global features of the sentence are
used, meaning that information of the single word and of the whole sentence
are considered and actually used in different ways.

29

3 – Reference attention GAN

3.1.2 Conditional augmentation block

The block labeled Fca in Figure 3.1 receives the sentence feature vector and
creates what is the actual input of the generator, the ccode, the conditioning
vector. To put what this model actually does in a simple form I will cite what
stated by my supervisor Dr. Ruben Cartuyvels: Fca randomly samples the
input vector from a normal distribution whose mean and co-variance matrix
depend on the sentence level feature vector itself. This process has many
advantages like adding randomness to the input data, adding concreteness
to its content, which is just an arbitrary embedding of the input words that
intrinsically contain arbitrary information, producing more image-text pairs
as a single input sentence is sampled differently each time, so each epoch
pass that uses the same sentences actually uses slightly different versions
each time, therefore making the generator network more robust since it sees
more examples.
The ccode is concatenated with a noise vector of fixed size, zcode, sampled
from a normal distribution N(0, 1) just like it has been done in other models
as presented in chapter two. This resulting vector (ccode + zcode) is what
actually is fed to the generator network.

3.1.3 Generator network

Within this big network, that contains smaller concatenated blocks, all the
magic happens that transforms the vector returned by Fca into hidden states
hi later converted into RGB images. As I briefly discussed in chapter two,
AttnGAN generator network is composed of a modular structure that can
be repeated in multiple stages. This structure contains blocks labelled Fi,
Fattni+1 and Gi and returns respectively an hidden state vector hi eventually
converted into RGB image, by Gi, at a certain resolution based on the stage
i and an attention vector Attni. Fi block is used to upscale the input hidden
state vector (either the ccode + zcode or the hidden state returned by a previous
step) to a higher dimensional vector hi+1. This is done in the case of F0 with
a first concatenation of the input vectors by means of a fully connected
layer followed by a batch normalization. After this phase there is a series
of up-scaling blocks: an upsample layer using “nearest” mode followed by
a convolutional layer. The result is the hidden state vector hi, containing
latent information upscaled from the input. This vector is directly fed to the
next Fi block. It is also passed to generator Gi, a convolutional layer followed
by a tanh activation function that returns a three dimensional matrix, which

30

3.1 – Attention GAN architecture

will become a real image (of size channels x height x width), but also to
the Fattni+1 block. This attention block is actually the core component of
the whole model as it introduces the attention mechanism to the second and
third Fi block based on word features. In practice it takes the current hidden
state and word feature matrix e and computes the following functions:

sj,i = hT
j ei (3.1)

βj,i = exp(sj,i)qT −1
k=0 exp(sj,k)

(3.2)

cj =
T −1Ø
i=0

βj,iei (3.3)

sj,i is the dot product between hidden state j and features of word i and
defines the weight the model gives to region j when considering word i. These
weights are normalized and become the βj,i coefficients used in the third
equation for weighting each word feature vector i. We end up with Cj, a
word-context vector that defines for each region j of the hidden state the
cumulative attention associated with each word of the input sentence. This
attention vector is then concatenated to the hidden state and the residual is
computed and upsampled.

3.1.4 Discriminators
Real and fake images are embedded into vectors by the discriminators and
later classified. In addition, input text global features are checked versus the
generated images in order to account for the counterpart of what generators
do.

For each generator and therefore for each output image resolution, a dis-
criminator is set up and trained independently from the others in order to
determine whether the generated images are realistic enough, classified as
real even though fake or not. In practice, each discriminator is just a se-
quence of convolutional blocks followed by batch normalization layers and
activation functions, in this case LeakyReLU that convert the input image
into a feature vector. It is important to briefly discuss the used activation
function. It is based on the more known rectifier linear unit (ReLU) but
differs from it as it has a small slope for negative values instead of being flat
at zero [44] and it is commonly used for training adversarial networks. It can
be shown that this activation function solves intrinsic problems coming from

31

3 – Reference attention GAN

Figure 3.3. ReLU (left) vs LeakyReLU (right) slope comparison.
Source: public domain.

ReLU and speeds up the training process [25], which is very important since
the model consists of three discriminators.

3.1.5 DAMSM
DAMSM block represents what Attention GAN really brings to the table of
image generation from input text. This portion of the model can, and has
to be considered something separated from the rest but very important for
the whole model to function properly. It’s purpose is to define the match-
ing score between the input text and the output image (only the highest
quality image is considered). Word features coming out of the text encoder
and region features extracted from the output image from an image encoder
(an InceptionV3) are mapped into a common space, which makes it easier
to semantically match them later. This forced mapping allows for semantic
connections and proportional distancing in this common space of features
coming from different sources. As I have studied in the course “Information
retrieval and Search engines” [19] attended at KU Leuven, pouring informa-
tion from multiple sources is a good option for later encode input queries
(in this case the input text) and documents (in this case output images)
and retrieve the most meaningful matches, in practice the closest in terms of
euclidean distance.

This training of this bloc does not require the rest of the model at all

32

3.1 – Attention GAN architecture

Figure 3.4. Multi-source feature mapping to common space.

since it just needs text-image pairs directly from the training data. Indeed,
DAMSM is trained from scratch before the generator itself. Pretrained LSTM
and InceptionV3 models are taken from the Pytorch library and fine tuned
in order to minimize the so called word and sentence loss terms conditioned
to the image features and vice-versa. Without going into too much detail,
word, sentence, region and image features are extracted from both models
and compared using dot product and later normalized. By taking vectors in
pairs from these four feature types we end up with four loss terms that define
cross modal losses:

LDAMSM = Lw
1 + Lw

2 + Ls
1 + Ls

2 (3.4)

3.1.6 Image encoder
The image encoder used is a pretrained InceptionV3 model [29] downloaded
from the official Pytorch models repository [2] and fine tuned for the map-
ping of extracted features in this common space. This model is an improved
version of more known convolutional neural networks like AlexNet [17] or
ResNet [12] commonly presented in deep learning courses, and takes the im-
age embedding to the next level. As the name implies, this is actually the
third version of this architecture, though not the last, as Inception v4 does

33

3 – Reference attention GAN

exist. The idea behind this new convolutional network is to solve a few prob-
lems concerning older CNETs. Input images have a huge variation in the
location of information and size, that is, where the main object is in the pic-
ture and how much surface it covers. Therefore, it’s hard to define a correct
kernel size for each convolutional block. It has to be big enough to extract
global features but also still small enough to capture details. This is partially
dealt with by stacking multiple convolutional kernels with different sizes but
this causes very deep networks, prone to overfitting and with gradient re-
lated issues. In addition, stacking up kernels cannot be the solution as they
are traditionally the source of computationally heavy operations which cause
clunky and long training sessions. Inception models try to solve all these
issues going “wider” instead of “deeper” by using multiple convolutional ker-
nels at the same level. The output of each block is then concatenated and sent
to the next layer. 1x1 blocks are also used before bigger kernels to collapse
the input channels down to one in order to limit the number of operations
needed.

Figure 3.5. Inception basic block. Source: public domain.

Further versions present improvements by using a different factorization
of bigger kernels into smaller ones to reduce computational costs but the
concept remains the same. Inception V3 keeps all these ideas and changes
the optimizer and the loss function for its training phase.

34

3.1 – Attention GAN architecture

3.1.7 Loss function and training overview
As always, for training a deep learning model we need a target function to
minimize, a loss function that should determine how badly the model is per-
forming, therefore requiring it to go as low as possible during the training
phase. The entire training process, whether it is for DAMSM or the gen-
erator itself, is computed on the train set of the chosen CUB dataset [42].
This collection of data contains 11788 images of 200 subcategories of birds.
Roughly half are part of the training set and the rest is test set. Each image
has in addition up to 15 part locations, coordinate positions of bird parts
(very useful for my work), one bounding box containing the bird only and
ten single-sentence descriptions. The official website states that it also con-
tains other things but for this work purposes, only the ones listed above are
what has been used.

Figure 3.6. CUB dataset birds-200-2011. Image taken from official CUB website.

Just like with any other generative adversarial network, the training pro-
cess consists in alternating the training of the generators with the one of the
discriminators. For the first group, the loss function that we try to minimize
is the following:

GtotLoss =
m−1Ø
i=0

LGi + λLDAMSM (+KLloss) (3.5)

The first term is the sum of all three losses of the three generators, each

35

3 – Reference attention GAN

consisting in the contribute of conditional and unconditional adversarial loss
with respect to the input text ē:

LGi = −1
2Ex̂i∼pGi[log(Di(x̂i))]−

1
2Ex̂i∼pGi[log(Di(x̂i, ē))] (3.6)

Basically the first term computes the loss function depending on the re-
spective discriminator Di without considering the input sentence, while the
latter term does consider the input sentence features. Each term has the
same weight so the generator is pushed to produce a realistic image as much
as it has to make it closely related to the input sentence.
The second term of 3.5 is the loss computed by the DAMSM block, that
compares word features and region features of the highest quality image and
returns a value that defines how correlated they are as briefly presented in
Equation 3.4.
There is actually a third term to the total generator loss expressed in 3.5,
that is not clearly specified in the paper but that I did find in the code and is
defined as Kullback-Leibler divergence, or KL loss. In mathematical statis-
tics, this divergence, DKL (also called relative entropy), is a measure of how
one probability distribution is different from a second, reference probability
distribution [43]. It comes from the sampling of the sentence feature vector
computed in the conditional augmentation block. As the definition states, it
compares the input distribution with the sampled one. Unlike other losses,
the correct behaviour for this one is slowly increasing since the sampled dis-
tribution has to be more and more different from the input one, though it
does not have to explode or diverge.
Discriminators are trained separately from one another with a more compli-
cated loss function that once again considers a conditioned and unconditioned
term with respect to the input sentence, in order to check for image realism
but also image relation with input text. Since discriminators are actually
convolutional layers that output image features later converted into logits,
each defining the probability of the image to be real (logit close to 1) or
fake (logit close to 0), the loss function is actually a combination of multiple
cross-entropy losses.

LDi = −1
2Ex̂i∼pdatai

[log(Di(x̂i))]−
1
2Ex̂i∼pGi[log(1−Di(x̂i))]+

−1
2Ex̂i∼pdatai

[log(Di(x̂i, ē))]−
1
2Ex̂i∼pGi[log(1−Di(x̂i, ē))]

36

3.2 – Reference attention GAN architecture

3.2 Reference attention GAN architecture
Now that the reader has a clear understanding of the base AttentionGAN
model, I will present what my integration is to this work and I will show
how each new block and concept has been harmonically added into it. The
final model structure is presented in figure 3.7, where the new blocks are
presented in orange while the old ones are in blue, and will be used as a map
for presenting it just like I did for AttnGAN.

Figure 3.7. Reference attention GAN architecture

3.2.1 Reference images
The input reference image is a 50x50 pixel RGB picture cropped from real
images of the train set using the part locations already present in the dataset
as center position for each square crop. In case of locations that do not allow
for a perfect square image, I added some black padding in order to ensure the
same input size. Once all the possible reference images are created (I end up
with roughly 100 thousands of them), the dataset script automatically assigns
them to a pre existing text-image pair via random sampling. In practice, the
dataset, instead of returning image and text, it returns the triplet (text,
reference image, image) for the model to use.

37

3 – Reference attention GAN

Figure 3.8. Some generated reference images

As we can see in Figure 3.8, some of them are arguably hard to identify
even for us humans. It is not always clear what portion of the bird they
represent and where to use them each time, a problem that has some conse-
quences in the results.
Following the arrow coming out of the reference image in Figure 3.7 we find
an image encoder. It is a pretrained inceptionV3 (actually the very same
used for the final image embedding) and it extracts features from the refer-
ence image. Global features, expressed in one single vector are then passed to
the generator as input while local features, extracted from multiple regions
of the image, are stored in a local feature matrix and used later.

3.2.2 Generator network
Just like it is done for concatenating sentence features and noise, I decided to
insert in the same way the global reference image features. For this reason,
the first fully connected layer of F0 has been adequately modified in order to
do just this, while keeping the rest of its internal layers the same. It must
be said that this has been done for simplicity purposes. As I will discuss in
chapter five, much more could have been done in this work if I had more
time and resources, and one thing was certainly to engineer better the rest
of the layers of this and other blocks so as to account for the increase of the
input dimensions and complexity.
F0, just like before, upsamples and convolutes the input and generates a hid-
den stat h0. This state is passed to the next block and to Fattn1 as always
but in addition it is also passed to Fref1 block, a personal invention that
covers the same role of its counterpart Fattn1 but with respect to the local
features of the input reference image. In a very similar way to how Fattn block
generates an attention map based on the word features, this block does the
same using region features of the image. Therefore, this technique mimics
what the original model does, supporting the concept of attention, which can

38

3.2 – Reference attention GAN architecture

be exploited later for visualization purposes. Indeed, Equation 3.3 can be
utilized in this context too simply by changing the vector ē with r̄, that is
the reference image local feature matrix. With this, later blocks can have
a perception of the input reference image that conditions them to produce
a final output that should resemble some features extracted from it. In ad-
dition, the input is not simply forwarded at the beginning only. Instead, it
walks with the hidden state enriching it, making it more “aware” of addi-
tional input features every time a Fref block injects attention vectors based
on it. Just like in the original model, this block and this process of attention
is repeated between F1 and F2, which have been correctly modified in order
to accept this additional attention vector.

3.2.3 Similarity block
The use of local features is not relinquished to the attention mechanism
just presented. Actually its main purpose is to check for coherence in the
final image. For this reason I also created what I have called “similarity
block” which is the DAMSM counterpart. Before, with the DAMSM block
we were comparing information from different sources but with the same
content. Defining a bird with words or using a picture arguably gives the
same information and for this reason the idea of mapping them to the same
space made sense. In the case of a reference image, that has to express
information for just a portion of the total information contained in the image,
we cannot do this. This is why for example I have not retrained the DAMSM
model so that the text encoder and the two image encoders mapped in the
same space, because it was not the correct thing to do. Instead, I had to find
a way to check for similarity between the reference and final image but in a
posterior fashion. In practice what I do is to exploit the already extracted
local features of the final image and compare them with those of the reference
image. The problem is that the reference image has to be compared only to a
portion of the final output, and in addition the right portion. To make myself
more clear I try to give an example: if the input reference image represents a
beak, we want to compare how similar it is to the portion of the final image
where the beak of the bird is contained, and nothing more.

One option that I thought of consisted in pre training an object locator
capable of identifying the exact position of the specific bird part defined in the
reference image onto the final image, cropping out of it and creating a 50x50
patch, extract local features using the same inception model and comparing

39

3 – Reference attention GAN

Figure 3.9. Finding most similar patch in final image

the feature vectors with cosine similarity for example. If in theory this idea
works and makes the comparison meaningful, in practice it means to train
another model, without the insurance of it to work properly. It is definitely
something to try but as my supervisors suggested to me, this path was too
hard and long to pursue and so I opted for something else. Another option
was to embed the final image into a feature vector or even using the one
that the inception model naturally returns and toss it to a series of fully
connected layers that had to be trained to return the coordinates of all the
15 possible bird parts. This idea came to mind after reading a few works
conducted by my professor supervisors Mrs. Moens at KU Leuven [7, 6].
The advantage of this idea is that in future, the model could have accepted
multiple reference images and could have compared them to the final image
because each possible bird part was being located into the final image. Once
again, the solution required an external model to be trained, and the limited
resources did not allow it. Another option to be discarded.
What I actually ended up doing was to create what I defined in Figure 3.7 as
"similarity block" that in reality simply computes a similarity function and
is not a trainable part of the model.

40

3.2 – Reference attention GAN architecture

maxSimi = maxj(cosSim(ri, fij)) (3.7)

sim = 1
L

L−1Ø
i=0

maxSimi (3.8)

Simloss = 1− sim (3.9)
The function takes as input ri and fij, local features of the reference and

final image respectively. They are compared in pairs and for each patch i
of the reference image I save the highest similarity score, maxSimi. I have
L patches so I end up with L similarity scores defining for each region i of
the reference image the most similar patch in the final image. They get
collapsed into one value by taking the average, sim. This average similarity
score is converted into a loss in Equation 3.9 by subtracting it from one. This
loss is added to the generator loss so that now the they have to account for
producing a realistic image that is representative of the input text and that
has a region similar to the input reference image.

GtotLoss =
m−1Ø
i=0

LGi + λ1LDAMSM (+KLloss) + λ2Simloss (3.10)

λ2 is a hyper-parameter I added in order to weight more or less this last
loss term.
The concept behind this formulation is simple: we are comparing patches
extracted from the reference and final image and we want to consider the
most similar pair of patches. For this reason every time I take the maximum
similarity value.
The advantage of this loss comes from the fact that it makes it easy to identify
a similar region and hopefully a region that is actually associated with the
relevant portion of the image expressed in the reference image itself. On the
other hand we cannot control the precision of this match which is arguably
quite low at the beginning, when the generated images are not realistic at
all and therefore it’s quite hard to find similarities even for us humans. In
any case, this added loss term should enforce the concept of usage of the
reference image in the final synthetic one.

3.2.4 Discriminators
It is important to notice that the global features of the input image r̄ are also
used by the discriminators for computing an additional term of conditioned
loss that gets added to the previous ones:

41

3 – Reference attention GAN

Figure 3.10. Reference attention GAN discriminators

LDi = −1
2Ex̂i∼pdatai

[log(Di(x̂i))]−
1
2Ex̂i∼pGi[log(1−Di(x̂i))]+

−1
2Ex̂i∼pdatai

[log(Di(x̂i, ē))]−
1
2Ex̂i∼pGi[log(1−Di(x̂i, ē))]+

−1
2Ex̂i∼pdatai

[log(Di(x̂i, r̄))]−
1
2Ex̂i∼pGi[log(1−Di(x̂i, r̄))]

Following the ideas behind the original terms conditioned by the sentence
features, I decided to also create terms that should depend on the reference
image. In this way the discriminators now check for three things: realistic
image, or better, an image in the target distribution, an image conditioned
to the sentence, what is described in words has to be present in the picture
and finally an image that contains features of the reference image.
I must point out that as I explain in chapter four, some experiments have been
carried using the original discriminators configuration, that does not consider
the loss terms conditioned to the reference image. For the sake of complete-
ness I decided to present the architecture with this variation nonetheless.

42

Chapter 4

Experimental procedure

In this section I will show more in depth some technical implementation
details, training setup, framework and conducted experiments on RaGAN.
In addition I will show some qualitative results in order to better appreciate
the output images the model is able to generate. In the final section I will
discuss some quantitative metrics for evaluating and comparing the models
even with respect to AttentionGAN.

4.1 A cumbersome model
Aside from the huge leap forward that GAN architectures have brought to the
table of deep learning, a big technical disadvantage of models based on this
structure is the fact that they are usually quite resource intensive, requiring
a particular setup not easily obtainable for an amateur programmer or a
student. Whenever we launch our training script we are asking in this case
Python interpreter to load in memory a big generator, usually composed of
multiple blocks, multiple discriminators and additional side components that
support the entire structure like the various encoders presented in chapter
three. In addition, to make computations faster and in some cases even
feasible at all, the required device and memory is actually a GPU, as it
proves to be better and faster than a CPU especially when dealing with big
deep learning models and matrix calculations [38].
Since the very beginning, when I first downloaded the official Attention GAN
code from the Git page specified in their paper [37], I faced the problem
that my personal machine, that I thought was powerful enough for the task,
was simply not able to even pass the loading stage of a pretrained version
of the model, available to download on the same repository. My Nvidia

43

4 – Experimental procedure

GTX 1660Ti with 6Gb of dedicated RAM kept on returning the same error:
“CUDA out of memory”. The original model requires 14 GB of memory to be
loaded and some more to run depending on the batch size. Therefore running
the model, or even worse, running the even bigger RaGAN locally, quickly
became out of discussion. Fortunately though, my thesis supervisors at KU
Leuven suggested me to request an account at VSC, Vlaams Supercomputer
Centrum [3]. Thanks to my KU Leuven student account, I managed to get
access at a Tier-2 cluster called Genius after creating and exchanging a pair
of SSH keys. Once the account was created I was able to submit jobs through
the command line and upload and download code via WinSCP [4].

Figure 4.1. Accessing Tier-2 Genius cluster from command line.

With this setup, I was able to run very long training sessions without
any issue. Unfortunately, as I will discuss more in depth in chapter five, the
provided account came with a limited amount of credits1, a VSC currency
that gets consumed at each job submission proportional with the specified
amount of time requested. This alone limited the number of training and
planned experiments quite a lot.

1As student I only had access to 2000 credits. Each model training costed me around
500 to 600 credits.

44

4.2 – Preliminary steps

4.2 Preliminary steps

Once the job runs on the cluster, the only way to inspect what is happening
is through two files automatically generated on my remote account, contain-
ing standard output and standard error. If this manual inspection was ok
at the beginning, it quickly became obvious that I needed something else to
control the training session even without always being forced to connect to
the supercomputer. In order to solve this issue, I decided to use Neptune.ai
[1], an online tool for keeping track of various deep learning experiments with
a simple interface. The only thing required is to add a few lines of codes that
log onto my account whatever I want, from strings, to numerical data to
images. I decided to send used configuration, losses and stream outputs in
order to check for what parameter I was using, how the losses were behaving
and at what epoch did the training arrive.
Even though the real runs of the code have been executed on the VSC su-
percomputer, this server based setup made the debugging phase clunky at
best and definitely time consuming, without considering user credits deple-
tion. For this reason I decided define some configuration files that, if passed
as parameter to the main script, are used to overwrite the default values of
specific model values such as embedding vector dimensions, batch size and
so on. In this way whenever I was working on my computer I specified a
configuration file that made the model smaller, reducing input and output
vector dimensions for example, or reducing the number of epochs, so that I
could run it locally. In this way I could always make sure that the code was
at least reasonable before sending it to the supercomputer where it was run
with the full dimensions. This has been particularly important at the very
beginning: the code I have downloaded from the official Attention GAN Git
repository is written in Python 2.7 in conjunction with a series of required
libraries that function with that version of Python. At first I tried to use the
same setup, therefore I created an Anaconda environment with the specified
libraries and versions. However I quickly came to the conclusion that this ar-
rangement could not work anymore. Due to new versions of required libraries
being released, and old ones being discontinued and no longer supported, I
was not able to use them or even install them at all in some cases. Therefore
I decided to move to Python 3.7 and the latest supported versions of the
needed libraries, Numpy, Pythorch, TorchVision and Pillow just to name the
main ones.
Updating the code to the next Python version has not been that compli-
cated, at most time consuming. From what I experienced, it has been a

45

4 – Experimental procedure

matter of finding newer functions for those that are no longer supported, ad-
equately adapting the parameters to the different function signatures and in
some cases rewriting in a more modern and elegant fashion some code pieces.
However, I would like to underline the fact that I simply revamped the code
but I have not changed the logic behind with the idea to make AttentionGAN
run.

4.3 Sanity check
Once the Attention GAN code was free of bugs or running errors my super-
visors and I decided to train it fully on the VSC supercomputer in order to
see that everything worked properly. To make sure of that the idea was to
generate some images using the validation set and compute a score to be
compared with the one presented in the paper. This sanity check was in our
opinion mandatory for ensuring that the code I was using was actually le-
git. As I discovered in a project for the course “Machine Learning and Deep
Learning” followed at Politecnico di Torino [9], it is not uncommon to find
the official code being underwhelming with respect to what is claimed in the
published paper.
To limit the usage of VSC credits, I decided to use the pretrained DAMSM
block they offered, and I trained only the generator for 600 epochs, as spec-
ified. It is important to let the reader know that the training time, even if I
was using VSC, is enormous. For this and other training sessions I am pre-
senting, I spent roughly 24 hours per 100 epochs, meaning that each training,
from start to finish, takes almost a week. Part of the training time is taken
by side operations such as model checkpoint saving and more importantly
training examples like the ones that I show in Figure 4.2.

At the very beginning the model simply has no idea of what to do: the
image is just a bunch of RGB colors that do not represent anything. However,
in just 200 epochs we can see a realistic output. I must say that even though
the example I have chosen here is quite good, at this early stage of training
the model makes a lot of mistakes and many output images are unrealistic.
From that stage to epoch 600 the model refines itself, ensuring higher quality
for a the vast majority of cases.
Once trained, I put the model in evaluation mode to generate some images
from the validation set and I used those to compute the inception score,
a quantitative metric used in the original paper to automatically evaluate
image quality. It measures two things simultaneously: image variety (in this

46

4.3 – Sanity check

Figure 4.2. Training samples taken, from top to bottom at epoch 1,
200, 400, 600. Each image shows the output picture next to the attention
maps for each input word.

context the various races of birds) and image distinction, meaning that it
evaluates for each image if it represents something (each image is clearly
a bird or not). If both things are true then the score will be high. The
lowest possible value for this metric is 0 but it does not have upper bound as
mathematically the highest possible score is infinity. The name comes from
an inception model used for classification [32]. The idea behind this work
and this score is that when it classifies similar objects the confidence sum
gives a focused distribution while if we classify images containing different
objects the resulting distribution will be more uniform.

Figure 4.3. Basic idea behind inception score calculation. Source: [26]

In practice for each image we compute the label distribution and marginal

47

4 – Experimental procedure

distribution and we see how far away they are from the ideal ones. It is
clear to the reader that this metric has its limitations that mainly end up in
the classifier network used and the training data it was trained on. These
two elements define what features the classifier will consider and how. The
one used for this evaluation is the official one that uses StackGAN inception
model.
Luckily, generating images from the validation set and computing the in-
ception score are two operations I was able to achieve locally. Therefore I
did it multiple times so that I could compute not only the score but also its
variance over three trials. Over 2920 images, 256x256 pixels RGB I obtained
the following score:

Inception score
Official 4.36± 0.03

Experimental 4.27± 0.20

Table 4.1. Inception score comparison between official and experimental value.

As we can observe, the obtained value is a bit lower than the presented
one. However I do not think this result has to do with some mistake I made
in the conversion of the code to a later Python version because other users
that have used this implementation from the Git repository have experienced
the same range of values [37]. In addition, other papers citing AttnGAN like
in the work of Tian et al. [39], present a similar score at 4.23± 0.03.
Regardless of this quantitative score, when dealing with image generation it
is also important to evaluate image results from a qualitative point of view.
Figure 4.4 shows some examples.

Figure 4.4. Attention GAN output images from validation set.

Aside from some non realistic examples, most of the produced images are

48

4.4 – RaGAN training

quite believable and of good quality, stating that the true power of the model
is actually here, meaning that the slightly lower than specified inception score
is not that important.

4.4 RaGAN training
With the original code up and running, I went ahead implementing the blocks
I discussed in chapter three. Without going into too much detail of every sin-
gle implementation step, I will say that I tried to keep the original structure
as much as possible, and I started building new blocks taking inspiration
from their counterpart already present in the original code. In particular,
Fref blocks are quite similar to Fattn. What I did have to change was the
input size of F1 and F2 in order to accept the additional attention vector
generated by my blocks. In practice I concatenated the hidden feature vec-
tor with text and image attention, creating a bigger array: hi + fattni + frefi.
The same is true for the loss functions that now have to account for the
additional conditioned term. Another thing that I did was to extend the
initial script responsible for dealing with the dataset that now has to gener-
ate reference images and link them to the original text-image pair. I must
point out that, in order to make the project more realistic I decided to allow
for the association of reference images of different classes. This makes the
whole task harder because there might be clashes between what the input
text states in terms of colors and dimensions and what the reference image
depicts, something that will prove to be a big disadvantage for the whole
project, as I will present later in this chapter.

4.4.1 DAMSM training
For the training itself, I first trained the DAMSM block. As stated in chapter
three, this block has not been changed at all, therefore I simply made sure
the original code responsible for its training was good to run and then I
trained it for 200 epochs, as specified in the in the original work. Even
at this early stage I logged the loss terms associated with its training on
Neptune.ai. Figure 4.5 shows them.
As we can expect from a tuned model like the original one, the loss functions
are monotonic decreasing both on single terms (word and sentence loss) and
overall. Word and sentence losses are computed by means of cross entropy
loss that take as input either words and local features or sentence and global

49

4 – Experimental procedure

features and compare them with image features as explained in chapter two.
Indeed we have two pairs of losses for each type (sentence and word) because
these vectors are compared in two different ways with image features, using
either posterior probability or not.

4.4.2 Generator training
Once the DAMSM section was trained, I moved both text and image encoders
to the correct folder of the main script containing the rest of the model, and
I submitted the job for training the generator network. I have to say that
due to a coding bug that I introduced, the first run failed: the generator
loss diverged and I was not able to control the training process until I found
and solved the issue that caused this behaviour. However, in order to avoid
failures like that one and save some credits, since that divergence happened
after some epochs I preferred to go extra careful with the other runs, and
instead of training for 600 epochs straight, as specified for AttnGAN, I di-
vided it into training sessions of 200 epochs. Every three epochs the model
gets automatically saved into a checkpoint "pth" file. This allows for restart-
ing training process from whichever checkpoint I want. To give the reader a
better picture of the 600 epochs at once, I concatenated the various graphs
locally using Pyplot library taking the data I logged to Neptune.ai.

Figure 4.6 shows the global trend of the whole generator and discrimi-
nator losses. I will refer to this first training trial as RaGAN V0 because
here I did not implement the conditioned loss computed with respect to the
reference image since as a first experiment I simply wanted to make sure
that everything worked correctly before moving further. In any case, we can
already see two important things from these two graphs. First and foremost,
the generator loss is increasing while the discriminator one is decreasing. In
addition the level of magnitudes at which they respectively rise or fall are
quite different: the generator stays in the order of tens while the discrimina-
tor has a loss that is way lower, starting from roughly one and going closer
and closer to zero. This difference in magnitude can be explained by the fact
that discriminating images, aka classifying them is a much simpler task than
actually producing them. For this reason the discriminators do not take more
than a few epochs to learn how not to be fooled while the generators really
have to struggle to let a fake image pass as real. In addition, the more the
discriminators improve, and we have to underline the fact that at each itera-
tion the discriminators are trained before the generators so are always a step
ahead, the more it gets hard for the generators to keep up. The second thing

50

4.4 – RaGAN training

Figure 4.5. DAMSM loss graphs. Total loss (top), word losses (center)
and sentence losses (bottom).

that is quite visible is the disturbance that the model has to face at every
training re-initialization. Asking the supercomputer to reserve three shorter
sessions costs less than requiring a long one. However this technique has

51

4 – Experimental procedure

Figure 4.6. Generator (top) and discriminator (bottom) losses of RaGAN V0.

the disadvantage that the model has to spend a few epochs for re-obtaining
balance and continuing its actual training. Indeed, around epoch 200 and
400 we can see these spikes of loss. In theory this should not happen, as
the model is saved in its entirety and so it should be loaded back up exactly
as it was left off. The reason why in practice this does not happen is given
by an implementation detail that is not specified in the Attention GAN pa-
per. Each encoder once loaded back up sees its weights being re initialized
in a small range at random. This concept makes sense at the beginning,
because it always ensures a new initial random state but definitely not when
we restart the training from a checkpoint. Unfortunately, finding this reason
took way longer than expected and in practice, I only managed to find it
after both RaGAN v0 and v1 have been trained. At the time I was told that
2000 more credits would have been added to my account so I could have run
these two experiments correcting this issue and running some more. However
due to the expiration of my student account at KU Leuven I could not do

52

4.4 – RaGAN training

any of that.
It is interesting to take a closer look at the generators loss components and see
if this increasing trend that we saw in Figure 4.6 is caused by the similarity
loss or what else.

Figure 4.7. Generator loss disassembled into its components: KL loss (top),
Similarity loss (center) and generators only loss (bottom).

The KL loss in Figure 4.7 is actually a measure of the distance of two

53

4 – Experimental procedure

distributions, the input sentence distribution and the output sampled dis-
tribution. For the reasons explained in chapter three, this loss does have
to slowly increase because it means that the sampling is offering more and
more variance to the generator network. The similarity loss ideally has to
decrease because it would mean that the generators are getting better and
better at using the reference image in their synthetic pictures. However, even
if it is technically decreasing, the level at which it does so is underwhelming.
As we can see from the best fit, the decrease is so subtle that it is almost
not noticeable. In any case these two pieces of the total generator loss are
nothing in comparison with the loss produced by the generators themselves
in terms of magnitude. Therefore, this increasing trend and its magnitude
is mainly given by the generators, while the similarity loss has little to none
guilt at this.
During training, I made sure to save training data results just like it was
done for AttentionGAN. The images presented in Figure 4.8 and 4.9 use the
following input sentences:

• The bird has a white belly with blue wings and head.

• This bird has a brown bill and crown and a white breast and belly.

• This small bird is brown and has a small brown beak.

Figure 4.8. RaGAN output images with input sentences.

These are are a few examples of the output results the model achieves at
the last training epochs (597-600). The final images are crisp, and realistic,
keeping a strong correlation with the input text as we can see from the visual

54

4.4 – RaGAN training

results but also from the attention maps for each input word. In addition to
this, now that the model has also all the blocks related to the reference image,
I implemented a function that returned the generated image at training time
next to the attention maps. Actually the attention map presented here is an
average attention of all the maps produced by the model. This is caused by
the architecture of the inception model: we consider 289 regions (17x17) and
we are comparing them with as many regions extracted from the reference
image so, instead of presenting them all I decided to take the average and
show it next to the output image. I also showed one map at random to
present how one attention map looks like.

The key note to take from Figure 4.9 is that at least in these three ex-
amples, the model takes particular attention on the bird shape as it is high-
lighted by the fact that the average attention maps are brighter in the area
covered by the birds. In particular, in all three examples, extra attention
(even brighter area) is given to the head of each bird, more specifically where
the model has to represents their eye which is quite similar to the one given
in the reference image. Generating an eye starting from a reference image
of an eye is something the model is particularly good at and this trend will
follow us in other sections of this chapter.
In order to push even further the concept of attention with respect to the
reference image, I also modified the generator loss by adding the conditioned
term as explained in chapter three. By doing this, the training behaviour
changes a bit:

Even from the global perspective of Figure 4.10 we can already see a big
difference in behaviour with respect to the previous version. If in the first case
the generator loss had a first period in which it actually decreased, namely
for the first 90 epochs, in this second case the total generator loss increases
since the very beginning. The average loss value is also higher but this can
be expected: we are adding additional terms to generators loss functions.
Therefore it is normal that the total loss will have on average higher values.
The graph of the discriminator loss is surprisingly quite similar to the one
presented in Figure 4.6. This may be explained by the fact that this varia-
tion of the loss function only causes the generator to struggle more because
it adds an additional constraint but the discriminators do not seem to see
any worsening or improvement in quality.
Just like before, it is interesting to notice the various components that con-
stitute the generator loss.

In this second scenario, what is important to notice is the fact that the
similarity loss does suffer from this training in steps. At epoch 200 and

55

4 – Experimental procedure

Figure 4.9. RaGAN reference image attention maps at epoch 600. Input
reference image (left), output image (second left), average attention map
(second right) and random attention map (right).

400 we can see the aforementioned spike in conjunction with the restart of
the training that causes the loss to drop a bit in an unnatural way. This
behaviour is definitely detrimental in the learning process, as it destabilizes
the model.
Just like before it is important to show some attention maps associated with
this second iteration of the model. In figure 4.12 and 4.13 we can appreciate
some output images at training time next to attention maps related to input

56

4.4 – RaGAN training

Figure 4.10. Generator (top) and discriminator (bottom) losses of RaGAN V1.

words and reference images respectively. For these examples the input texts
were the following:

• A small yellow bird with a white rump and tail feather.

• A white chested bird with a blue head and a head proportional to the
body.

• Small with small yellow. It is olive brown on its back. Its crown is black
with cream color.

It is definitely worth noting the average attention maps generated with
respect to the reference image. In the first case, it depicts an eye and indeed
the most illuminated portion of the attention map is around the face of the
bird. In the second case, a more generic reference image is given and for
this reason the attention is quite generic, though mostly concentrated within
the bird silhouette meaning that it still depicts something that should be

57

4 – Experimental procedure

Figure 4.11. Generator loss disassembled into its components: KL loss (top),
Similarity loss (center) and generators only loss (bottom).

used for the bird. The same goes for the third image where probably the
only thing captured by the model is the fact that there is a strong edge
that divides the background, probably some grass to the bird itself. Indeed
the average attention map is highlighted specifically where we have an edge
between wings and body and beak and background.

58

4.4 – RaGAN training

Figure 4.12. Output image samples next to text attention maps.

Figure 4.13. Output image samples next to reference images and attention maps.

59

4 – Experimental procedure

4.5 Qualitative results

Regardless how the model behaves at training time, it is important to see
what is able to produce once it has obtained knowledge.
As we saw before, Attention GAN returns good quality images in line with
those presented on paper. It is however important to show some examples
that do not clearly represent a bird. These examples are missing from the
publication of Xu et al. but they are indeed a true part of the output results
and need to be shown. As we can see in Figure 4.14, some animals are simply
unreal, with body parts positioned in the wrong regions. Others are instead
generated too close to the image frame, hiding some portions of the bird from
the view.

Figure 4.14. Attention GAN bad quality output examples.

With respect to the two trained RaGAN models the results are quite
similar. First of all, it is important to state that for some reason, that
my supervisors and I have rooted down to a possible implementation bug,
the setting on which we obtain the most realistic images is train mode, with
gradient computation set to off of all model weights that can have a gradient.
This means that layers like batch normalization and drop out are still working
in training mode. However, what works is what actually gets used so even if it
is not the canonical way of making run a trained deep learning model, I went
ahead with this setting. Figure 4.15 and 4.16 at the end of this chapter show
some output examples of the model trained without and with the additional
conditioned loss term, presented in a customized fashion together with input
sentence and reference image.

The image quality is overall qualitatively lower than the pictures obtained
with the original model. Borders and in general the whole silhouette of each

60

4.5 – Qualitative results

bird is less crisp and actually almost blended with the background. In addi-
tion, it is quite hard to check whether or not the reference image has been
used at all with the naked eye. Clearly though, there is a big difference in
output results between what the model produces at training time and what
happens at evaluation time. I tried to dive a bit deeper on the reason why
this gap in quality happens, however I cannot seem to find a real motiva-
tion aside from an overfitting that the generator does at training time. It is
possible that the model has discovered how to produce a small set of higher
quality images (maybe one for each bird race) and that uses those for fooling
the discriminator. Indeed, improved versions of GAN (like WGAN, that I
will discuss briefly in chapter five) do train the discriminator more than the
generator in order to make sure that this type of overfitting does not occur.
Another possible and definitely more probable reason is the "short" training
sessions I make the model go through. This task is more complicated than
text to image generation so I should have given more training time in order
to let the model better figure out how to deal with multiple input sources.
In addition, as we saw, some epochs are not used for actually training the
model but simply for returning to the training level right before the stop, in
conjunction with epoch 200 and 400. So in practice I am not actually using
all 600 epochs but a bit less.
Comparing the two RaGAN versions to one another, it is interesting to ob-
serve a variation in quality between the two. Even thought this cannot be
really appreciated in the presented examples, which have specifically been
chosen as better quality examples, the second version of the model generates
lower quality images, often quite hard to understand, with colors that are
simply off. The added conditioned loss term probably makes the problem
even harder because it adds an additional constraint for the generator to
endure.
Another way to compare the two models that I think is interesting, is to give
as input a black reference image, that is, an image that does not contain
information, and see how they behave. This not only allows for a sort of
ablation study of each version but it also shows where and if the reference
image is actually used. In order to do this, I created a 3x50x50 matrix with
all values set to 0 that I passed as reference image. With that done I went
ahead and run the model just like before. In this case, because we are in-
terested in seeing how and where the reference image is used to produce the
final output, I decided to also present the average attention map next to
the output in order to better appreciate the most attended regions. Figure
4.17 and 4.18 show the results in this scenario for both RaGAN v0 and v1

61

4 – Experimental procedure

respectively. It is interesting to notice something that I will go more in depth
in the last chapter that holds true for the second version of the model: based
on the attention maps we can see that the reference image is particularly
used in the regions containing beaks and eyes. So even though the content
of the input image is none, the model still tries to use it for generating these
portions of the final images. This result is particularly interesting because it
enforces the theory of having the model perform better on generating specific
and clearly discriminated bird body parts.
Regarding RaGAN v0, the average attention maps have less of a focus than
previously explained. This behaviour can be appreciated not only the ones
presented in 4.17 but in many other examples that I managed to obtain from
the validation set. Even though they look brighter in some regions more so
than others but they are not that specific and in general look a bit more
messy than in the second version of the model. This could be an indicator
that the conditioned loss term I added is actually important to concentrate
the information coming from the reference image to important and focused
regions of the final image.

4.6 Quantitative results
The way Xu et al. evaluate the output quality is by means of inception score.
However, this score does not consider how much of the reference image has
been used for instance, how closely related input and output images are. In
addition, I think that the inception value alone cannot really state whether
or not the image quality of RaGAN is comparable to the one of the original
model. Multi-modal image generation is arguably a harder task than text to
image generation because, as we saw, the model also has to deal with the fact
that the input is given in two different forms, hence, it has to first figure out
what information to take from each source and then how to use it properly.
With that being said, it is reasonable to consider good lower inception scores,
in order to cope with the intrinsic difficulty RaGAN has to deal with.
By using the same model for computing the inception score when evaluating
AttnGAN I produced the results visible in Table 4.3. As we can see, the
results show a lower score for RaGAN if compared to AttnGAN due to the
fact that the image quality is overall worse for my model and this probably
affects the image diversity as different species of birds tend to look quite sim-
ilar to one another due to the less prominent details. It is however surprising
how version 0 is better then version 1 score wise. As we saw, the qualitative

62

4.6 – Quantitative results

results are indeed quite similar though slightly better on the second case
which would suggest an opposite trend of scores. This inversion could be
explained by the fact that maybe RaGAN V1 creates more defined images
but that are overall more similar. It could be possible that the second model
has learned slightly better how to create details, maybe due to the fact that
has to take more consideration over reference image input, thus presenting
better quality results from a qualitative point of view but when processed
by the classifier adopted for computing the metric, the extracted features do
not consider as much this difference in details over the general appearance
therefore resulting as more similar.

Inception score
AttnGAN 4.27± 0.20

RaGAN V0 3.51± 0.11
RaGAN V1 3.20± 0.10

Table 4.2. Inception Scores of each model in comparison.

I would like to let the reader notice that the presented values have a vari-
ance. This is because in this case I managed to run the evaluation locally,
even if they took up to one hour to complete each time, and so I obtained
more values that I could compare in a more scientific way, which is something
that I simply could not do when training my model. Though, as I will discuss
in chapter five, even if I had more resources to do so I would have prioritized
other experiments.
As I was explaining, inception score cannot say anything about the relation-
ship between input reference image and output. It also cannot say anything
about the correlation that there is with respect to the input text. In the
AttnGAN paper they try to measure the latter case using R-precision, a
metric commonly used in the context of information retrieval. The idea is to
check the percentage of relevant documents r in the top R ranked ones. The
R-precision is then computed for each query as:

Rprecision = r

R
(4.1)

In our particular case the query is the output image, encoded into a vec-
tor that contains the global features using the DAMSM image encoder. The
documents to retrieve are the sentence feature vectors of a list of one hundred
text sentences, where one is the ground truth and the other 99 are randomly

63

4 – Experimental procedure

selected mismatched descriptions. By means of cosine similarity they mea-
sure the similarity between the query vector, the image, and the document
vectors, the texts. Each text is then ranked so that the most similar ones are
positioned at the top and then the position of the ground truth in this clas-
sification is noted. Ideally for each query the associated text should always
be ranked first giving a total R-precision of 1. However in real scenarios the
ground truth document is not the first, meaning that the R-precision of that
particular query will be lower than 1 and so will the total R-precision. With
this concept of metric in mind it could be possible to evaluate the relation-
ship between reference and output image. However, as I mentioned when
describing the reason why I have not trained the reference image encoder
in conjunction with the others, the global feature vectors that I can extract
from both type of images would not retain the same information. In one case
the reference image features describe regions of an image that defines a region
of what will become the final picture while in the other we are embedding
the whole picture itself. Therefore doing this type of information retrieval
experiment would be like asking to retrieve all the possible reference images
associated with the output, as one output ideally could contain similarities
with more than one reference image. I try to give an example to better ex-
plain this. Suppose that we have a perfect output, with a crisp and sharp
picture of a bird. When we extract the global features from this picture we
can expect the feature vector to retain information of each region of the im-
age, hence, all the visible bird parts. Still in an ideal case this would mean
that we could find strong similarities with multiple reference images because
they can represent all the possible body parts. Therefore we would have
multiple very high similarity scores that would cause an artificially lower R-
precision score simply because of the false similarities that have been found.
All of this taking for granted that it is possible to compare feature vectors
of these two different types of images because again, one is a global image,
the output, while the other is local, the reference. One way to solve this is
to ensure that the reference images used as documents are representations
of the same body part, so if the ground truth image is a beak then all the
other mismatched images have to contain a beak. Nevertheless, the problem
of comparing these two semantically different global feature vectors would
still remain.
Finally I try here to discuss about a more modern and arguably better eval-
uation metric that does not appear in the work of Xu et al. simply because
it was published in the very same year [13]. Heusel et al. propose Fréchet

64

4.6 – Quantitative results

inception distance, or FID score, a novel way to define the goodness of syn-
thetic images generated with GAN models that consists of comparing the
synthetic and real data distributions. This metric claims to capture the sim-
ilarity of generated images to real ones better than the Inception Score and it
has the advantage of comparing the output data with statistics of real data,
which is something that is missing from the inception score. Still citing from
this math intense paper the metric is computed as a Wasserstein-2 distance
between two Gaussian distributions, namely the one of the synthetic data
and the one of the real data. In practice a pretrained inception v3 model is
used to encode real data and synthetic data and we extract mean vector and
co-variance matrix of the last layers of this encoder for each group of data
obtaining N (µ,E) and N (µr,Er), with foot note r to state the real data
distribution. These Gaussian distributions are compared as follows:

FID = ||µ− µr||22 + tr(E + Er − 2(EEr)
1
2)2 (4.2)

In order to actually compute this score, I used an implemented version
available to download [34] that takes two folders containing two different
image datasets, one containing real validation data and the other containing
the output of whichever model, and returns the score. After resizing the real
images to a standard value and fixing a few bugs that did not allow the script
to run properly I computed the following FID scores:

FID score
AttnGAN 27.13± 0.45

RaGAN V0 29.69± 0.16
RaGAN V1 35.38± 0.23

Table 4.3. FID Scores of each model in comparison.

Once again these scores do not define the relationship between input and
output but they arguably better define the image quality that each model is
able to produce. In order to interpret these results we have to keep in mind
that FID scores define a distance, therefore the lower the value is the better
quality of images it represents. As we can see AttnGAN manages to obtain a
better score that matches the image quality that is capable of synthesize. In
addition, even with this metric we can observe the same behaviour between

2tr: trace linear algebra operation.

65

4 – Experimental procedure

RaGAN V0 and V1: the first version achieves a better score which is arguably
the opposite of what we could expect since the addition of the conditioned loss
term should in theory improve the image results. However, for both metrics,
we have to keep in mind that the training process was actually performed
only once for each model, thus these results should be interpreted with care,
since most deep learning models are subject to significant stochasticity due to
random initialization, random batches and so on. GAN models especially are
known to be unstable which translates to high variance on results. A more
solid discussion could be made if the training session would have been carried
multiple times with different random seeds and average over the results. It
is very well possible that the presented scores would be quite different if I
did more runs for each of the settings.

66

4.6 – Quantitative results

Figure 4.15. RaGAN output without using the conditioned loss term.
67

4 – Experimental procedure

Figure 4.16. RaGAN output using the conditioned loss term.
68

4.6 – Quantitative results

Figure 4.17. RaGAN v0 output using a black reference image.

69

4 – Experimental procedure

Figure 4.18. RaGAN v1 output using a black reference image.

70

Chapter 5

Going further

5.1 Issues and limitations
It is definitely worth noting that the model really struggles when the input
text and reference image contradict each other. The example in Figure 5.1,
taken from both versions, tries to highlight this issue. Whenever the input
reference image colors do not match the ones we are asking the model to
generate in the text, we get bad pictures not only in terms of shapes but also
in terms of pigments used.

Figure 5.1. Contradicting inputs results. RaGAN v1 top and v2 bottom.

Another thing to highlight is that the image quality really drops if the
input reference image has an unclear content. If for example the visual
input contains background cropped from the original image, feathers without
a clear definition of which part of the body we are referring to or similar
situations where what is given is actually not informative, then the result
will be poor.

On the other hand, if the reference image is not ambiguous, it seems that

71

5 – Going further

Figure 5.2. Non informative reference image results. RaGAN v1
top and v2 bottom.

the model is more capable of making good use off of it. In particular, I found
out that reference images of beaks and eyes are associated with better quality
images that actually resemble features from this input.

Figure 5.3. Output when using reference images of beaks. RaGAN
v1 top and v2 bottom.

The problem, and indeed the biggest limitation of the model is that
through the reference image channel too much information is passed. The
models sees coming from here very different images, whether it is some water
or a beak or feathers or branches and tries to makes sense out of it, clearly
not managing to do so. Probably, if I had to go back in time and redo this
project I would limit myself to use only a subset of bird parts and then maybe
adding more and more.

72

5.2 – Further work

5.2 Further work

I do not consider this work a model that is not able to evolve in the future.
Indeed there are many sections of it that, given more time and more impor-
tantly more computational resources I would have liked to improve myself.
There are quite a few experiments that I simply could not try due to the lack
of credits in the VSC supercomputer. Among those there is of course the
entire section related to parameter tuning. As mentioned in chapter three, I
originally decided to incorporate my custom similarity loss using a weighting
term λ2 in 3.10 that should balance it with the rest of the terms and should
also, whenever and if needed, give more or less importance to this portion
of the function responsible for defining how much the reference image to
consider and where. Technically, the only value I tried for this parameter
is 1 but I would have liked to try values like 2, 5 and 10, in order to see if
increasing this portion of the loss would have caused some changes in the
quality of the output and in the usage of the reference image itself. In prac-
tice, I would have tried the model for 600 epochs from scratch and checked
the results and the total loss graph. Speaking of number of epochs to use,
as I presented in this work I decided to stick with 600 just like they do in
Attention GAN. However, multi-source image generation is arguably a more
complicated task than text to image generation. Therefore a longer training
session would have possibly enhanced the quality of the synthetic images as
the model would have had more time to learn and "fit" this more complex
scenario. Due to the aforementioned limitations I preferred to limit myself
to at least 600 epochs in order to ensure a level of training in line with the
original model.
In chapter three I discussed how I added my custom blocks to what was al-
ready present and how I tried to do it in a smooth, harmonic way. This line
of work was pushed by the fact that GAN architectures are pretty famous
for being quite hard to train, often facing problems with divergence [14]. In
reality I started implementing a slightly different version of the architecture
called WGAN following a tutorial shared with my by my thesis supervisors
[5]. WGAN is a variant of the canonical GAN architecture that claims to
be more stable and less prone to divergence. It uses a few tricks to get the
job done like a linear activation function instead of sigmoid, different labels,
different loss and so on. However, if simple to implement on paper, I found
it quite difficult to update my code in order to have it function properly. For
this reason, and because there was no insurance of this technique to work as
advertised, I preferred to stop its implementation in favor of not changing

73

5 – Going further

too much the architecture itself unless necessary for fitting the new input
and attention vectors.
In many papers there is often a section related to the so called "ablation
studies". These studies consists of removing a portion of the model and see
how it reacts to it, in terms of quantitative and qualitative results. In com-
plex models that behave like a black box, and deep learning models are quite
good at this, it is often hard to determine what is used for what and why
everything works or not. By doing this we can study better the behaviour of
each component. In my case I wanted to remove the Fref blocks and train
the model without adding the attention mechanism, leaving RaGAN working
only with the reference image and nothing more (aside from the input text
and everything related to it). The way I wrote the code actually already
allows for this experiment: by simply toggling the value of a flag variable it
is possible to deactivate these blocks all together. Unfortunately the lack of
credits shut the experiment down.
Another thing that could be studied would be how the model behaves if
multiple reference images were given at once. Feeding 5 images as input for
example could be a matter of encoding those with the reference image en-
coder, returning for each local and global features. Then summing up the
global features and passing that single vector as input and using the region
features in the reference blocks each returning multiple attention vectors that
could be summed up and normalized. Optionally it could be possible to leave
all these vectors separated, creating multiple reference blocks each respon-
sible of one specific part of the birds body. This could be a solution for
overcoming the aforementioned limitation of having one single "path" of the
reference image features regardless the type of body part given as input.
Finally, it would be interesting to investigate if this model could work with
a different text encoder trained on Italian input sentences. In theory, a pre-
trained bidirectional LSTM model that has only seen Italian sentences could
be simply swapped with the current one, trained in conjunction with the final
image encoder during the DAMSM training and in theory could still allow
for a working RaGAN model capable of receiving Italian text as input.

5.3 Conclusions
The study behind the implementation of RaGAN has been a journey that I
carried in a time span of almost one year. Throughout this period I discovered
many works related to synthetic image generation and the GAN architecture,

74

5.3 – Conclusions

learning about the difficulties and achievements that this field of research has
brought to the table of deep learning models. Even if I have ultimately took
the implementation decisions behind the work I presented, I have to admit
that some issues and limitations have clearly showed up. In addition, the
limited resources left me with a fervent desire of implementing and testing
many things that unfortunately never saw light. Nonetheless, I hope to have
left the reader with some new ideas, suggestions and things to reflect on.
With this work I tried to add another perspective to the problem of image
generation and possibly another hint on a new direction this field could go
to. I do believe that multi-source image generation using deep learning is
possible but that requires a lot of computational power to be fully studied.
Further experiments, parameter tuning, and a longer training phase are in
my opinion what could really push this work further, and I hope someone in
the future will decide to take this work from where I left off, enhancing it.

75

76

Bibliography

[1] Neptune.ai official site. https://neptune.ai/. Accessed: 2021-10-21.
[2] Pycharm inceptionv3 repository. https://download.pytorch.org/

models/inception_v3_google-1a9a5a14.pth.
[3] Vsc - flamish super computer centrum. https://www.vscentrum.be/.

Accessed: 2021-10-21.
[4] Winscp official download site. https://winscp.net/eng/download.

php. Accessed: 2021-10-21.
[5] Jason Brownlee. How to develop a wasser-

stein generative adversarial network (wgan) from
scratch. https://machinelearningmastery.com/
how-to-code-a-wasserstein-generative-adversarial-network-wgan-from-scratch/.
Accessed: 2021-10-25.

[6] Guillem Collell, Luc Van Gool, and Marie-Francine Moens. Acquir-
ing common sense spatial knowledge through implicit spatial templates,
2020.

[7] Guillem Collell and Marie-Francine Moens. Learning representations
specialized in spatial knowledge: Leveraging language and vision. Trans-
actions of the Association for Computational Linguistics, 6, 2018.

[8] Google developers page. Training gan networks. https://developers.
google.com/machine-learning/gan/training. Accessed: 2021-10-05.

[9] Politecnico di Torino. Machine learning and deep learning informa-
tion page. https://didattica.polito.it/pls/portal30/gap.pkg_
guide.viewGap?p_cod_ins=01TXFSM&p_a_acc=2021&p_header=S&p_
lang=EN. Accessed: 2021-10-14.

[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks, 2014.

[11] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and
Daan Wierstra. Draw: A recurrent neural network for image generation,

77

https://neptune.ai/
https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth
https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth
https://www.vscentrum.be/
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://machinelearningmastery.com/how-to-code-a-wasserstein-generative-adversarial-network-wgan-from-scratch/
https://machinelearningmastery.com/how-to-code-a-wasserstein-generative-adversarial-network-wgan-from-scratch/
https://developers.google.com/machine-learning/gan/training
https://developers.google.com/machine-learning/gan/training
https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01TXFSM&p_a_acc=2021&p_header=S&p_lang=EN
https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01TXFSM&p_a_acc=2021&p_header=S&p_lang=EN
https://didattica.polito.it/pls/portal30/gap.pkg_guide.viewGap?p_cod_ins=01TXFSM&p_a_acc=2021&p_header=S&p_lang=EN

Bibliography

2015.
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-

ual learning for image recognition, 2015.
[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard

Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update
rule converge to a local nash equilibrium, 2018.

[14] Jonathan Hui. Gan — why it is so hard to train genera-
tive adversarial networks! https://jonathan-hui.medium.com/
gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b.
Accessed: 2021-10-25.

[15] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from
scene graphs, 2018.

[16] Diederik P Kingma and Max Welling. Auto-encoding variational bayes,
2014.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. 2017.

[18] Tejas D. Kulkarni, Will Whitney, Pushmeet Kohli, and Joshua B. Tenen-
baum. Deep convolutional inverse graphics network, 2015.

[19] KU Leuven. Information retrieval and search engines information
page. https://onderwijsaanbod.kuleuven.be/syllabi/e/H02C8AE.
htm#activetab=doelstellingen_idp1981296. Accessed: 2021-10-14.

[20] KU Leuven. Natural language processing course at ku leu-
ven. https://onderwijsaanbod.kuleuven.be/syllabi/e/H02B1AE.
htm#activetab=doelstellingen_idp73184. Accessed: 2021-10-14.

[21] Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan,
Sida Wang, and Luke Zettlemoyer. Pre-training via paraphrasing, 2020.

[22] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip H. S. Torr.
Manigan: Text-guided image manipulation, 2020.

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross
Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zit-
nick, and Piotr Dollár. Microsoft coco: Common objects in context,
2015.

[24] Xihui Liu, Guojun Yin, Jing Shao, Xiaogang Wang, and Hongsheng Li.
Learning to predict layout-to-image conditional convolutions for seman-
tic image synthesis, 2020.

[25] Danquing Lui. A practical guide to relu. https://medium.com/
@danqing/a-practical-guide-to-relu-b83ca804f1f7. Accessed:
2021-10-14.

78

https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://onderwijsaanbod.kuleuven.be/syllabi/e/H02C8AE.htm#activetab=doelstellingen_idp1981296
https://onderwijsaanbod.kuleuven.be/syllabi/e/H02C8AE.htm#activetab=doelstellingen_idp1981296
https://onderwijsaanbod.kuleuven.be/syllabi/e/H02B1AE.htm#activetab=doelstellingen_idp73184
https://onderwijsaanbod.kuleuven.be/syllabi/e/H02B1AE.htm#activetab=doelstellingen_idp73184
https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

Bibliography

[26] David Mack. A simple explanation of the in-
ception score. https://medium.com/octavian-ai/
a-simple-explanation-of-the-inception-score-372dff6a8c7a.
Accessed: 2021-10-29.

[27] Tiago Miguel. How the lstm improves
the rnn. https://towardsdatascience.com/
how-the-lstm-improves-the-rnn-1ef156b75121. Accessed: 2021-10-
14.

[28] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Se-
mantic image synthesis with spatially-adaptive normalization, 2019.

[29] Bharath Raj. A simple guide to the versions of the
inception network. https://towardsdatascience.com/
a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202.
Accessed: 2021-10-14.

[30] Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt
Schiele, and Honglak Lee. Learning what and where to draw, 2016.

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation, 2015.

[32] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training gans, 2016.

[33] Ian Sample. What are deepfakes – and how can you spot
them? https://www.theguardian.com/technology/2020/jan/13/
what-are-deepfakes-and-how-can-you-spot-them. Accessed: 2021-
10-07.

[34] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://
github.com/mseitzer/pytorch-fid, August 2020. Version 0.2.1.

[35] Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R Devon Hjelm, and
Shikhar Sharma. Object-centric image generation from layouts, 2020.

[36] Bryan Tan. Generate novel artistic artworks with
deep learning. https://towardsdatascience.com/
generate-novel-artistic-artworks-with-deep-learning-f2f61da69e6e.
Accessed: 2021-10-07.

[37] Qiuyuan Huang Han Zhang Zhe Gan Xiaolei Huang Xiaodong He
Tao Xu, Pengchuan Zhang. Attention gan official git repository. https:
//github.com/taoxugit/AttnGAN. Accessed: 2021-10-21.

[38] THINKML TEAM. Cpu vs gpu in machine learning al-
gorithms: Which is better? https://thinkml.ai/
cpu-vs-gpu-in-machine-learning-algorithms-which-is-better/.
Accessed: 2021-10-21.

79

https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a
https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a
https://towardsdatascience.com/how-the-lstm-improves-the-rnn-1ef156b75121
https://towardsdatascience.com/how-the-lstm-improves-the-rnn-1ef156b75121
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://www.theguardian.com/technology/2020/jan/13/what-are-deepfakes-and-how-can-you-spot-them
https://www.theguardian.com/technology/2020/jan/13/what-are-deepfakes-and-how-can-you-spot-them
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://towardsdatascience.com/generate-novel-artistic-artworks-with-deep-learning-f2f61da69e6e
https://towardsdatascience.com/generate-novel-artistic-artworks-with-deep-learning-f2f61da69e6e
https://github.com/taoxugit/AttnGAN
https://github.com/taoxugit/AttnGAN
https://thinkml.ai/cpu-vs-gpu-in-machine-learning-algorithms-which-is-better/
https://thinkml.ai/cpu-vs-gpu-in-machine-learning-algorithms-which-is-better/

Bibliography

[39] Anjie Tian and Lu Lu. Attentional generative adversarial networks with
representativeness and diversity for generating text to realistic image.
IEEE Access, PP:1–1, 01 2020.

[40] James Vincent. Artificial intelligence is helping old video games
look like new. https://www.theverge.com/2019/4/18/18311287/
ai-upscaling-algorithms-video-games-mods-modding-esrgan-gigapixel.
Accessed: 2021-10-07.

[41] Antonia Vojtekova, Maggie Lieu, Ivan Valtchanov, Bruno Altieri, Lynd-
say Old, Qifeng Chen, and Filip Hroch. Learning to denoise astronomical
images with u-nets. Monthly Notices of the Royal Astronomical Society,
503(3):3204–3215, Nov 2020.

[42] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and
P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-
001, California Institute of Technology, 2010.

[43] Wikipedia contributors. Kullback–leibler divergence — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/wiki/Kullback%E2%
80%93Leibler_divergence. Accessed: 2021-10-14.

[44] Papers with code. Leakyrelu. https://paperswithcode.com/method/
leaky-relu. Accessed: 2021-10-14.

[45] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xi-
aolei Huang, and Xiaodong He. Attngan: Fine-grained text to image
generation with attentional generative adversarial networks, 2017.

[46] Shaowei Yao and Xiaojun Wan. Multimodal transformer for multimodal
machine translation. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 4346–4350, Online,
July 2020. Association for Computational Linguistics.

[47] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang,
Xiaolei Huang, and Dimitris Metaxas. Stackgan: Text to photo-realistic
image synthesis with stacked generative adversarial networks, 2017.

80

https://www.theverge.com/2019/4/18/18311287/ai-upscaling-algorithms-video-games-mods-modding-esrgan-gigapixel
https://www.theverge.com/2019/4/18/18311287/ai-upscaling-algorithms-video-games-mods-modding-esrgan-gigapixel
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://paperswithcode.com/method/leaky-relu
https://paperswithcode.com/method/leaky-relu

	List of Tables
	List of Figures
	Introduction
	Related work
	Introduction
	The origin of GAN
	Text to image generation, a first example
	Two fundamental models
	StackGAN
	AttnGAN

	Image manipulation through text
	Beyond GAN-based architectures
	Beyond text-to-image generation
	Contribution

	Reference attention GAN
	Attention GAN architecture
	Text encoder
	Conditional augmentation block
	Generator network
	Discriminators
	DAMSM
	Image encoder
	Loss function and training overview

	Reference attention GAN architecture
	Reference images
	Generator network
	Similarity block
	Discriminators

	Experimental procedure
	A cumbersome model
	Preliminary steps
	Sanity check
	RaGAN training
	DAMSM training
	Generator training

	Qualitative results
	Quantitative results

	Going further
	Issues and limitations
	Further work
	Conclusions

	Bibliography

