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Summary

Recently introduced 3D Time-of-Flight (ToF) cameras have shown a huge potential for
mobile robotic applications, proposing a smart and fast technology that outputs 3D point
clouds, lacking however in measurement precision and robustness. One advantage of their
usage is the complete removal of the typical stereo vision pipeline, but they are subject
to noise depending on the density and reflectivity of the materials hit by their illumina-
tors. With the development of this low-cost sensing hardware, 3D perception gathers more
and more importance in robotics as well as in many other fields, and object registration
arouses everyday more attention. Registration is a transformation estimation problem be-
tween two input point clouds, seeking the transformation that best aligns the source to
the target. This thesis work aims at providing a comprehensive survey on ToF cameras’
calibration and denoising techniques, mostly based on deep learning, and on point cloud
registration approaches. After having studied and compared the state-of-the-art frame-
works according to several important metrics, the goal is to design a NN-based solution
able to robustly detect known objects observed by a ToF (PMD Camboard PicoFlexx)
camera within a short range, estimating their 6 DoF position. This is focused on demon-
strating the capability to detect a part of a satellite (i.e., a gripping interface) to support
in-orbit servicing missions. Experiments reveal that deep learning techniques can obtain
higher accuracy and robustness than classical methods, handling significant amount of
noise while still keeping real-time performance and low complexity of the models them-
selves. The developed AI-based approach offers an interesting new range of possibilities,
that mated with the increasing precision and output richness of ToF cameras could enable
efficient and light-embedded solutions for robot sensing.
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Chapter 1

Introduction

This thesis work represents the last chapter of my school career, and it couldn’t have done
anything else but connecting my two passions, AI and Space, in a deeply tight way. It
is indeed focused on the development of a NN-based solution to robustly detect known
objects observed through a Time-of-Flight (ToF) camera within a short range, estimating
their 6 DoF position. However, having been developed in Thales Alenia Space - Italy,
everything in this research is done thinking of a real application in a space environment,
thus every choice is made always having in mind the complexity of an embedded domain
such as the avionics. The aim of the designed approach is in fact to demonstrate the
capability to detect a part of a satellite (such as a gripping interface) to support in-orbit
servicing missions.

In the domain of mobile robotics, 3D ToF cameras have recently represented new fun-
damental and vast prospects [65]. They are clever and swift devices, lacking however in
accuracy of measurements and mostly in robustness [64]. One advantage of their usage
is the complete removal of the typical stereo vision pipeline since they output 3D point
clouds. Nonetheless, they are subject to noise depending on the density and reflectivity
of the materials hit by their illuminators. With the development of this low-cost sensing
hardware, 3D perception gathers more and more importance in robotics as well as in many
other fields, and object registration arouses everyday more attention [80]. Registration is
a transformation estimation problem between two input point clouds, seeking the trans-
formation that best aligns the source to the target [48].
This thesis can thus be split in two parts. Firstly, the ToF cameras’ working principles
have been studied and analyzed, along with the state-of-the-art methods for what con-
cerns Multi-Path Interference (MPI) and shot denoising of ToF raw data (Chapter 2) and,
lastly, with the state-of-the-art methods regarding the point cloud registration task (Chap-
ter 3). Secondly, the best approaches are selected on the basis of six metrics among the
over twenty different studied frameworks and implemented adapting them to the input
acquired by a PMD Camboard PicoFlexx sensor (Chapters 4, 5 and 6). The goal of this
second part, as anticipated, is the design of an end-to-end framework capable of robustly
detecting known objects and estimating their 6 DoF pose in real-time.

ToF cameras are VCSEL-based active sensors that output 3D point clouds. Based on the
photon mixer device (PMD) technology [90], these sensors use the principle of modula-
tion interferometry: an illumination module attached to the camera emits a near-infrared
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1 – Introduction

(NIR) light which illuminates the focused 3D scene. The diffusely remitted light trans-
ports the distance information in terms of phase delay with respect to the emitted signal.
The high data rate of these sensors, their low weight, and the very small size make them
very suitable for autonomous robotics tasks [65]. Moreover, their usage could completely
remove the typical stereo vision pipeline. However, these cameras are extremely vulnera-
ble to changing lighting conditions: this inevitably results in inaccurate data and mistaken
raw measurements. These errors are influenced by both the physical properties of the
sensor and the environmental conditions. The latter is of a paramount importance in the
robotics field since the real world is unpredictable, therefore it is obvious that without on-
line environment adaptation algorithms and data pre-processing this kind of sensor is not
appropriate for autonomous mobile robotic tasks. In fact, depending on external interfer-
ing factors, such as sunlight, and scene configurations (i.e., distance, orientation, density,
and reflectivity of the materials), the depth measurements of the same scene can be cap-
tured in very different ways according to different perspectives [64]. The performance of
distance measurements with ToF cameras is thus limited by several errors: (1) systematic
errors, that are predictable and addressable by calibration due to their systematic occur-
rence and (2) non-systematic errors, which are much more difficult to remove and need
more sophisticated techniques.

This research wants to study the state-of-the-art methods both for the systematic errors’
correction via lateral and depth calibration and for the non-systematic errors’ removal via
deep learning techniques. For what concerns the first part, the Pinhole method [89] is thor-
oughly studied for the lateral calibration, while for the depth one several approaches based
on global adjustment and per-pixel distance calibration are introduced [33, 58, 90, 103].
Regarding the denoising of the depth map and the non-systematic errors’ correction, many
deep learning frameworks are presented in Chapter 2, starting from the very first and go-
ing through the literature reaching the last-introduced and nowadays-used methods. After
having studied their characteristics and architectures, all the proposed methods are com-
pared according to six different metrics [86, 46], namely accuracy, size of model, robust-
ness, time cost, latency, and range of application, and two of them are finally selected
to be reproduced (Chapter 5), SHARP-Net [27] and Coarse-Fine CNN [3, 2]. The latter
turned out to be impracticable to work in real-time, which is a major constraint for the
(avionics) robotic applications, thus the former is finally used for the denoising phase in
this research. SHARP-Net [27] (“Spatial Hierarchy Aware Residual Pyramid Network”)
is able to refine the depth measurement by removing MPI (Multi-Path Interference) noise,
a phenomenon for which -due to inter-reflections in the scene- the remitted near-infrared
(NIR) signal is a superposition of NIR light that has travelled different distance, having
the side effect of sanding off hollows and corners [64].

The main goal of the thesis is that of developing a framework capable of recognizing a
known object and estimating its pose with respect to a ground truth value, according to its
rotation and its translation within 6 DoF . As already anticipated, this problem is referred
to as Point Cloud Registration, and indeed the output of the ToF camera is a (noisy) point
cloud that, after being denoised with the previously described methods, must be aligned
with a target one.
Thus, several state-of-the-art architectures are studied (Chapter 3) and compared (Chapter
5) according to the same six indicators already used for the denoising task. After having
given a historical perspective of the registration problem [74], the solutions are cast and

4



1 – Introduction

differentiated, based on a few elements, into three frameworks [48]: (1) optimization-
based models are the ones that iteratively compute the correspondences and the transfor-
mation between the input point sets, (2) feature-learning techniques estimate the features
(either with a deep neural network or with another approach) and only in a second mo-
ment iteratively estimate the correspondences and the transformation, while finally (3)
end-to-end learning-based methods employ an end-to-end deep learning architecture to
calculate the final transformation that best aligns the point clouds. Out of all the proposed
approaches, one algorithm per each type of registration framework is chosen, that is, Fast
Global Registration [106] for the optimization-based models, FPFH-RANSAC [79, 31]
for the feature-learning methods and Feature-Metric Registration [47] for the end-to-end
learning-based ones.

This study aims at demonstrating that learning-based approaches can behave better with
respect to classical methods, even with serious constraints for what concerns the complex-
ity of the models and the real-time performance. After having understood how the PMD
Camboard PicoFlexx sensor [73] (the ToF camera kindly offered by the company) works,
its properties and its intrinsic and extrinsic parameters [71] are thoroughly analyzed by
way of several experiments (Chapter 4). Then, a solution is finally designed (Chapter 5)
to take the depth map acquired by the camera at a certain frame rate, along with the ampli-
tude image, stack them together to feed the SHARP-Net that produces the denoised point
cloud, which is further taken by one of the chosen registration methods to be in real-time
aligned with a ground truth reference.

The last gift the company provides me with, besides the ToF PicoFlexx camera and a
Coral USB accelerator [35], which is an Edge TPU co-processor that could be connected
to the local system in order to achieve high-speed interference for deep neural networks,
is a 3D printing of an MTG-I satellite model [29]. After having sanded it and painted it
white to make it as less reflective as possible (so to not degrade the performance of the
ToF sensor), it is placed in the middle of a semi-empty room, suspended, to be as far
as feasible from any existing background. Extensive experiments demonstrate not only
that, while being a cheap, light and very small sensor, PicoFlexx’s resolution is still good
enough to provide interesting point clouds to be studied. Denoising methods (SHARP-
Net [27] and the proposed variants) are able to effectively remove MPI noise and improve
the depth map estimation, as demonstrated by several metrics. Lastly, and most impor-
tantly, FMR [47] learning-based registration model has proven itself trustworthy, due to
its flawless accuracy in the alignment, regardless of the initial pose, and the extremely fast
performance. The designed framework thus offers an interesting new range of possibil-
ities, that mated with the increasing precision and output richness of ToF cameras could
indeed enable efficient and light embedded solutions for robotic sensing.
These outcomes make this work the first ever proposing a such detailed survey about
state-of-the-art methods both for MPI and shot denoising of ToF cameras and for point
cloud registration, and the first ever applying such approaches using a PicoFlexx camera
in avionics applications, surely opening the road for further research on this topic.
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Chapter 2

ToF Cameras

In the domain of mobile robotic applications, 3D Time-of-Flight (ToF) cameras have re-
cently represented a new fundamental, enormous potential. In order to address the prob-
lem of sensing the spatial properties of the environment in the autonomous robotics field,
according to [65] three main different techniques can be taken into account, each of which
has its pros and cons: CCD- or CMOS-camera based, laser scanner or lately 3D ToF cam-
era based.

CCD or CMOS Camera. For what concerns the first group, the mainly used approaches
for 3D robot vision are based on stereo cameras. They both can’t provide reliable nav-
igation or mapping information in real-time, while also being difficult to control in real
world environments with changing lighting conditions, as all the passive visual sensors
do.

Laser Scanner. 3D laser scanner are another class of techniques quite employed today.
They present several advantages, like the high range, high accuracy and high reliability,
but they find difficulties in detecting environment dynamics in three dimensions. Indeed,
besides the high costs, the huge dimensions and the tremendous power consumption, they
also face the problem of a low performing sampling rate.

ToF Camera. Lastly, a very new and promising operating procedure is the one using
the already introduced 3D cameras based on the Photonic Mixer Device (PMD) technol-
ogy. Nowadays, 3D cameras with a resolution of about 20000 pixels and a frame rate
over 40 frames per second (fps) are at everyone’s disposal. The high data rate and the
small dimensions, together with a very low weight, make them suitable sensors for mo-
bile robotics applications. Similarly to passive visual sensors though, these cameras are
heavily affected by changing lighting conditions: this leads to imprecise data and com-
pletely inaccurate measurements. These errors are caused by the physical properties of
the sensor, but also -and mostly- by environmental conditions. The latter are of paramount
importance in the robotics field since the real world is unpredictable, therefore it is ob-
vious that without real-time environment adaptation algorithms and data pre-processing
schemes this kind of sensor is not appropriate for the robotic tasks taken into account.
In fact, as shown in [64], external interfering factors (such as sunlight) or scene configu-
rations (i.e., distance, orientation, density and reflectivity of the materials) could greatly
change the way in which the same scene is perceived from the camera, thus implying large
variations in the measurements from different point of views.
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2 – ToF Cameras

2.1 Taxonomy of ToF Cameras Errors
As authors of [64] illustrate, the potential of ToF cameras is limited by several errors:

• Systematic Errors: these errors are predictable and manageable by calibration since
they systematically occur. They can be divided into three groups:

1. Distance-related errors: the measurement principle relies on the idea that the
emitted light is sinusoidal, but this is only an approximation of the real world.

2. Amplitude-related errors: they are caused by the pixel’s electronic components’
non-linearities, and they give rise to a not negligible problem, which is the fact
that the measured distance varies according to the object reflectivity.

3. Fixed pattern phase noise: due to the pixels’ connections on the sensor chip,
which happen in series, each of these pixels is triggered depending on its posi-
tion in the chip. This means that the measurement offset will be higher for those
pixels that are situated far enough from the signal generator.

• Non-Systematic Errors: these errors are inherently dependent on the measurement
principle, thus they are much more difficult to correct. There are three significant
non-systematic errors:

1. Bad signal-to-noise ratio: this error causes a distortion in the measurement, and
it is highly arduous to stamp out. One way could be that of thoroughly enlarging
the exposure time in order to amplify the illumination, but also the usage of an
intelligent amplitude filtering could be a solution.

2. MPI (Multiple Path Interference): due to inter-reflections in the observed scene,
the remitted near-infrared (NIR) signal may be a superposition of another one
that has moved along different distances. This interference has the side effect of
making edges and corners smoother, and easily obstructing shapes.

3. Light scattering: this third and last non-systematic error takes place in the ToF
camera’s lenses and it leads to the fact that near bright objects may superpose
the surrounding ones, which for this reason seem to be nearer. It is worth noting
that the latter two effects are unforeseeable since the scene’s configuration is
unspecified a priori.

2.2 Systematic Errors Correction

2.2.1 Photonic Mixer Device (PMD)
As particularly shown in [33], ToF cameras use the principle of modulation interferom-
etry, which is a measurement technique making use of wave’s interference phenomena.
Specifically, the authors of the paper explain that an illumination module connected to
the camera produces and discharges a near-infrared (NIR) light g(t) (indicated in red in
Fig. 2.1), that is a sinusoidal signal modulated with a frequency ω which floodlights the
observed 3D scene:

g(t) = cos(ωt) (2.1)
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Figure 2.1: “The principle of ToF depth camera” (taken from [43]). The phase delay
∆ϕ between the emitted and the reflected near-infrared (NIR) signals is computed in order
to measure the distance from each sensor pixel to the observed objects in the scene.

The diffusely remitted light s(t) (shown in blue in Fig. 2.1) carries the distance informa-
tion in terms of phase delay ∆ϕ with respect to the emitted signal g(t).
Moreover, this remitted signal is also identified with the amplitude of remission a and
with an unmodulated constant component k coming from the back-light:

s(t) = k+acos(ωt +∆ϕ) (2.2)

The phase delay ∆ϕ between the signals g(t) and s(t) can be estimated using the so-
called 4-phase-algorithm, accurately described in [43]. In practice, the phase difference is
calculated starting from the relationship between four different electric charge values, as
depicted in Fig. 2.2. The four phase control signals have phase delays ∆ϕ = π

2 from each
other, and they determine the collection of electrons from the incoming signal. According
to [33], this means that the correlation C(τp) between the emitted and the remitted signals
is computed for the four internal phase delays τp = pπ

2 , where p = 1,2,3,4:

C(τ) = (s∗g)(τ) = h+
a
2

cos(ωτ +∆ϕ) (2.3)

The four resulting electric charge correlation values Qp = C(τp) are thus brought into
being in order to compute the phase delay ∆ϕ as:

∆ϕ = arctan
(︃

Q3−Q4

Q1−Q2

)︃
(2.4)

where Q1, Q2, Q3, Q4 represent the volume of electric charge for the control signals C1,
C2, C3, C4 respectively, as shown in Fig. 2.2.

Let c≃ 3×108m/s be the speed of light and f the frequency of modulation. At this point,
the corresponding distance d for a single pixel can thus be calculated as:

d =
c

2 f
∆ϕ

2π
(2.5)
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Figure 2.2: “Phase Delay” (taken from [43]). The depth measurement is computed by
calculating the phase delay ∆ϕ between the emitted and the reflected NIR signals. Q1 to
Q4 indicate the volume of electric charge for control signals C1 to C4, respectively.

as well as the amplitude a:

a =

√︁
(Q3−Q4)2− (Q1−Q2)2

2
(2.6)

and, as claimed by the authors of [104], also the intensity of the incident infrared light I:

I =
Q1 +Q2 +Q3 +Q4

4
(2.7)

After the measurement of the depth value, using the ToF camera’s intrinsic parameters
it is further possible to obtain the target object’s 3D coordinates based on the following
equations, described in [104]:

z =r · F√︁
F2 +(Xcdx)2 +(Ycdy)2

x = z · Xcdx

F
y = z ·

Ycdy

F

(2.8)

where F is the focal length of the camera, dx and dy represent the actual length of a pixel
in the x and y directions, respectively, while Xc and Yc indicate the normalized coordinates
of the pixels with respect to the optical center.

One point that still has to be made is that, as relatively new sensors, ToF cameras are still
“raw” devices with many aspects which need to be improved. Among these one can surely
find the low resolution of the depth maps and the system errors which, along with other
factors such as spatial depth discontinuity, motion blur and so on, lead to a significant
inaccuracy in the depth data measurements.
For all these reasons a camera calibration is thus more than needed, and in particular for a
PMD camera the full calibration process is fragmented into two separate calibration steps,
as stated in [58]:
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1. Lateral Calibration, coming directly from traditional 2D sensors

2. Depth Calibration of the distance measuring procedure

One can think of a lot of reasons behind the distance measurements’ errors in the PMD
cameras. Perhaps the main cause is a systematic error due to the correlation function’s
demodulation, but a part from that there are several other agents, such as the IR reflectivity
and the orientation of the observed objects. Indeed, the latter introduced aspect may lead
to an insufficient incident light to a specific pixel, thus obtaining a completely incorrect
distance measurement. Furthermore, the authors of [58] also noticed that the demodula-
tion distance is almost analogous inside the solid angles associated to a PMD pixel, but in
the real world one could observe several distances inside a solid angle, thus steering to a
superimposed reflected light. This has of course the side effect of reducing the amplitude
of the signal, as well as introducing a non negligible phase shift.
The accuracy of the distance measure provided by the PMD camera can only be com-
puted by taking into account the amplitude a of the correlation function, which comprises
the saturation, the distance homogeneity and the object reflectivity and orientation (see
Eq. 2.6).
For all these reasons, an accurate calibration model is needed.

2.2.2 Lateral Calibration

In order to understand the concepts behind the lateral camera calibration, it is of paramount
importance to start from the consideration that what one observes through the camera is
a 3D world, that is a collection of objects in space. This 3D world is then mapped into a
2D image, as shown in [89]’s slides.
Depending on the type of camera that one is using and the position of the camera that
is observing the 3D world, the way in which the 3D world is mapped into the image can
obviously change. So in order to elaborate the information that is acquired, that is in order
to get meaningful information about the 3D world that is reproduced in a 2D image, one
has first of all to understand how this mapping between 3D and 2D takes place. Therefore
it is necessary to be able to build a model of the camera, and in a second moment to derive
the parameters that define the behaviour of this model itself. For this purpose, the most
basic model that can be considered (and that will be taken into account in this thesis work)
is the Pinhole model, which is thoroughly explained in [89].

The starting point of this model is the consideration of the central projection of points in
space into a plane, where the centre of projection is the origin of an Euclidean coordinate
system and the plane Z = f is called image plane or focal plane. The image plane, as
shown in Fig. 2.3a, is a representation of the 2D plane that will be used to obtain a 2D
picture of the 3D world that the camera is looking at. The image point X that is under
observation in the 3D world will be reproduced by x in the 2D image plane that is taken
into account. This image plane is placed at a certain distance from the camera centre:
such distance is the focal length f .

A point in space X = (X ,Y,Z)T is thus mapped to the point ( f X/Z, fY/Z, f )T on the
image plane where a line joining the point X to the centre of projection meets the image
plane itself. The mapping from Euclidean 3D space to Euclidean 2D space, by ignoring
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(a) Mapping of a 3D point into a 2D one. (b) Mapping from Euclidean 3-Space to Euclidean
2-Space (ignoring the third image coordinate).

Figure 2.3: “Mapping from 3D to 2D space” (taken from [89]). Mapping of a point
from a 3D space into a 2D one, considering three (a) and two (b) axes respectively.

the third image coordinate, is defined as:

(X ,Y,Z)T −→ ( f X/Z, fY/Z)T (2.9)

As it is possible to notice, due to the projection of the 3D image onto the focal image
plane, that is at distance f along the z axis, the focal length f can be omitted.

At this point, the mapping previously introduced can also be written using homogeneous
coordinates according to:⎛⎜⎜⎝

X
Y
Z
1

⎞⎟⎟⎠−→
⎛⎝ f X

fY
Z

⎞⎠=

⎡⎣ f 0
f 0

1 0

⎤⎦
⎛⎜⎜⎝

X
Y
Z
1

⎞⎟⎟⎠ (2.10)

Let now (px, py)
T be the coordinates of the image center p in the camera.

Thus, the mapping described in Eq. 2.9 can be expressed as follows:

(X ,Y,Z)T −→ ( f X/Z + px, fY/Z + py)
T (2.11)

In matrix form, it is finally possible to formulate:⎛⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎠−→
⎛⎝ f X +Zpx

fY +Zpy
Z

⎞⎠=

⎡⎣ f px 0
f py 0

1 0

⎤⎦
⎛⎜⎜⎝

X
Y
Z
1

⎞⎟⎟⎠−→ X = K[I|0]Xcam (2.12)

where K is the camera calibration matrix which carries the position of the camera centre
and the focal length of the camera itself. These are information intrinsically related to the
properties of the camera itself: whichever is the position of the camera, the focal length is
not going to change, nor will the position of its centre.
(X ,Y,Z,1)T , denoted as Xcam in Eq. 2.12, emphasizes the assumption earlier drew up,
which is that of considering the camera located at the origin of an Euclidean coordinate
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(a) Camera Coordinate Frame. (b) World to Camera Coordinate Frame.

Figure 2.4: “World Coordinate Frame to Camera Coordinate Frame” (taken from
[89]). Transition from World Coordinate Frame to Camera Coordinate Frame through
rotation and translation.

system, with its principal axis pointing straight down the Z-axis. Thus, the Xcam point
itself is expressed in this coordinate system, that may be called the Camera Coordinate
Frame [Fig. 2.4a].

It is therefore possible to map the points in the real world (belonging to World Coordinate
Frame) to the ones belonging to the Camera Coordinate Frame by applying translation
and rotation, as it is possible to see by looking at Fig. 2.4b.
Hence, it is possible to state that:

X̃cam =

[︃
R −RC̃
0 1

]︃⎛⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎠=

[︃
R −RC̃
0 1

]︃
X̃ (2.13)

where:⎧⎪⎪⎪⎨⎪⎪⎪⎩
X̃ is a 3D vector reporting the coordinates of a point in World Coordinate Frame
X̃cam is the same point in Camera Coordinate Frame
C̃ represents the coordinates of the camera centre in World Coordinate Frame
R is a 3×3 rotation matrix showing the Camera Coordinate Frame’s orientation

.

Putting everything together, it is feasible to obtain an equation that allows the mapping
into the 2D space of an object that is a point in the 3D space, taking into consideration
the rotation and translation of the reference system when passing from the 3D to the 2D
world and the camera properties. This equation is described as follows:

x = KR[I | −C̃]X (2.14)

13



2 – ToF Cameras

This is the model of the camera, named Pinhole Camera Model:

P = KR[I | −C̃]
P =K[R |t] t =−RC̃

(2.15)

K is referred to as the intrinsic (internal) camera parameters: it is a constant matrix that
contains information about the focal length of the camera and the centre of the image
inside the camera itself. For a CCD (Charged-Coupled Device) it holds that:

K =

⎡⎣αx x0
αy y0

1

⎤⎦ (2.16)

where x0 = mx px and y0 = my py, given mx and my the number of pixels along the x and y
axes, respectively. ax is finally defined as f mx, while ay is equal to f my.

R|t is instead called extrinsic (external) camera parameters and considers the position
and the orientation of the camera: the very same camera in a certain application (that is
a certain value of K) will produce different values of R and t depending on where it is
placed and how it is oriented.

Unfortunately, the Pinhole model is ideal, due to the fact that it doesn’t take into account
any distortion. If one is dealing with an ideal camera, she may end up with a situation as
the one depicted in Fig. 2.5a: the starting point is the observation of a certain object (the
red rectangle), whose image is captured from the camera. In the ideal situation, one gets
exactly what it is possible to see in the figure: every straight line is precisely reproduced
as a straight line, without distortions of any kind.
But in the real case, due to the geometry of the camera lens used to take the image, distor-
tions happen, so there are some alterations to the reproduction of the points in the image
that the camera is observing. Fig. 2.5b shows for example, in the upper part, a straight
line that is not reproduced as a straight line, but as a curved one. When this kind of defects
happen, it is possible to talk about a barrel distortion.

(a) Camera with no Radial Distortion. (b) Camera with Barrel and Pincushion Distortion.

Figure 2.5: “Camera Distortions” (taken from [89]). Camera with no Radial Distortion
(a), and with Barrel and Pincushion Distortion (b).
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The lower part of Fig. 2.5b depicts instead another possible effect, where a straight line is
reproduced as a bent one: in cases like this it is possible to refer to this phenomenon as a
pincushion distortion.

Thus, also these defects have to be taken into account in order to properly elaborate the
image. This topic is related to the identification of the so-called radial distortion: once
the parameters k1 and k2 that define the radial distortion are known, it is possible to apply
a further refinement of the mapping, thanks to the following equations:

x̂ = x(1+ k1(x2 + y2)+ k2(x2 + y2)2)

ŷ = y(1+ k1(x2 + y2)+ k2(x2 + y2)2)
(2.17)

The lateral camera calibration therefore consists in calculating the internal and the external
parameters for the camera taken into account, including the distortion parameters (i.e.,
focal length f , real image center (cx,cy) and radial lens distortion).
While several approaches have been investigated through the years for performing a lateral
calibration scheme, like the procedure presented in [58], which sticks to the calibration
module contained in Intel’s OpenCV library [16], in this thesis work none of them are
applied. Indeed, the ToF camera provided for this research is a PMD Camboard PicoFlexx
[73] sensor, which is already globally pre-calibrated, as explained more in detail in the
dedicated Section in Chapter 4.

2.2.3 Depth Calibration
After the lateral calibration, also the distance information needs to be calibrated. The
following subsection describes the depth calibration model thoroughly reported in [58],
together with the data analysis which is at the basis of the calibration model itself.

To counterbalance the distance deviation, the depth calibration can be thought as com-
posed by two separated steps, as shown in Fig. 2.6:

1. Global adjustment for the entire image

2. Local per-pixel (pre-)adaption, used to procure slightly more precise results for the
previous phase of global adjustment, and to counteract the overall remaining devia-
tion.

Global Adjustment. The idea behind the global adjustment procedure is that of using
a high complexity function in order to actually obtain a simpler adjustment for the per-
pixel calibration step in a second moment. The latter uses indeed linear adjustment, being
therefore much more efficient in terms of the storage of the overall number of calibration
parameters. The authors suggest to use uniform, cubic B-splines functions for the cor-
rection, due to the fact that they manifest a good local control. A basis spline (B-spline),
as reported in [94], is a spline function that has the least possible support as regards pre-
defined degree and smoothness. Thus, given a certain degree, any spline function can
be written as a linear combination of B-splines of exactly that degree. Furthermore, the
evaluation of these functions always need a constant number of operations, which is of
paramount importance for real-time calibration tasks.
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Figure 2.6: “Depth Calibration Process” (taken from [58]). The depth calibration pro-
cess, including the global adjustment and the local per-pixel per-adaption.

An iterative least-square fitting for B-spline curves is thus performed to single out the
optimal number of control points. This procedure is described according to:

bglob(d) =
m

∑
l=0

cl ·B3
l (d) (2.18)

The control points m are progressively escalated, until the approximation error lies within
a predefined threshold or m itself goes beyond a maximum value.
The global adjustment of the distance d(x,y,k), achievable through to the fitted B-spline
curve bglob, determined according to the previous Eq. 2.18, is simply defined as:

dglob(x,y,k) = d(x,y,k)−bglob(d(x,y,k)) (2.19)

Per-Pixel Distance Calibration. An additional improvement of the results obtained with
the global adjustment just described could be accomplished by further considering in-
dividual pixel inaccuracies. The calibration process for polar [dp(x,y,k)] and cartesian
[dc(x,y,k)] coordinates differ for what concerns the coordinate transformation and the
distance adjustment. Specifically, in the latter case the process of B-spline fitting could be
made more comprehensible by employing average values with respect to acknowledged
plane distances. Thus, the average mean davg(k) of all per-pixel distances d(x,y,k) could
be applied for B-spline fitting to lower the sample points’ number. Since the B-spline
fitting is associated to an average deviation computed across the actual d(x,y,k) and the
expected dre f (x,y,k) distances, assessing the B-spline at a per-pixel distance may conduct
to errors in the global adjustment:

b(d(x,y,k))≈ davg(k)−dre f (x,y,k) (2.20)

With the aim of reducing this “artificially-introduced” error, a per-pixel pre-adjustment is
then employed: the goal is that of obtaining a pixel’s distance that better harmonizes with
the average distance davg considering the totality of distance images k. This objective can
be achieved by fitting a line lx,y for each (x,y) pixel, through the following minimization:

∑
k
∥d(x,y,k)−davg(d(x,y,k))∥2 (2.21)
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Considering cartesian coordinates, the average deviation dc
avg is directly specified accord-

ing to:

dc
avg =

1
n ∑
(x,y)

dc(x,y,k) (2.22)

where n is the number of pixels (x,y) that are taken into account.
In the case of polar coordinates instead, such an image averaging is not applicable. Thus,
the authors of [58] introduce the following dependence between dp

avg(k) and the B-spline
bglob(d):

dp
avg(k)≈ bglob(d(x,y,k))+dp

re f (x,y,k) (2.23)

where d(x,y,k) is the actual distance and dp
re f (x,y,k) the expected one.

Therefore, the overall distance calibration is given by:

dc(x,y,k) = bglob(d(x,y,k))− lx,y(d(x,y,k)) (2.24)

If some distance deviations endure, a second line fitting, equivalent to the one performed
for the pre-adjustment, can be further implemented. In this case though, as the authors
Lindner and Kolb suggest, the differences between the global corrected distances and the
reference plane must be taken into account.

2.2.4 An improved calibration approach
The traditional calibration methods are everything but straightforward and efficient, since
there exist multiple error sources. This is the reason why [90] proposes a newer and ad-
vanced calibration method based on the electrical analog delay.
Fig. 2.7 depicts the comprehensive calibration model, in which grayscale and depth im-
ages are calibrated in conjunction.
In the following some details are provided for each of the different phases of the process.

Figure 2.7: “Self-adaptive Grayscale Correlation-based Depth Calibration Method”
(taken from [90]). The comprehensive improved calibration model process, in which
grayscale and depth images are jointly calibrated.
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Lens Distortion Correction. The internal and the external parameters of the camera are
attained following Zhang’s calibration procedure described in [105].

Grayscale Image Calibration. Generally speaking, the grayscale image is susceptible
to DSNU (Dark Signal Non-Uniformity) and PRNU (Photo Response Non-Uniformity).
The former indicates the dissimilarities of gray values between pixels took over dark con-
ditions while the latter stands for the divergences of gray values between pixels acquired
at ordinary condition.
The grayscale image calibration approach is therefore described as follows:

1. Put the integration time to 0 µs in order to replicate a dark condition environment.
Accumulate N = 100 frames of grayscale images and compute the mean value.

2. Change the integration time to imitate different ambient light conditions. Gather
N = 100 frames of grayscale images with amplitudes of 10%,30%,50% and 80%,
and finally calculate the average values.

3. Under different ambient circumstances compute the spatial variance, which is a mea-
sure of the spatial non-uniformity useful to estimate DSNU and PRNU.

4. Compute the rectifying values of DSNU and PRNU.

5. Finally compute grayscale compensation of pixel (x,y).

Depth Image Calibration. The PMD sensor is able to jointly acquire grayscale and
depth images due to its particular configuration. Thus, Wang et al. propose in their paper
a self-adaptive grayscale correlation-based depth calibration method (SA-GCDCM). In
the newly introduced procedure, the parameters of the depth calibration are estimated
employing the grayscale image. Specifically, three main aspects have to be taken into
account when performing depth calibration:

1. Ambient Light Compensation: the key point is that of attenuating the ambient light’s
influence in the sampling stage through the introduction of an ambient light correc-
tion factor KAL, that can be precisely managed by operating on the integration time.

2. Demodulation Error Correction: the modulated (emitted) and the demodulated (re-
ceived) continuous wave signals are generally considered as sinusoidal waves.
Nonetheless, the actual received signal is closer to a rectangular wave due to the
constraints of the generator bandwidth. This behaviour inevitably leads to an extra
error, which is corrected following the approach described in [103].

3. DRNU (Distance Response Non-Uniformity) Error and Temperature Compensation:
starting from the camera specifics, linear interpolation and ad-hoc parameters com-
putation are performed to nullify the DRNU error and the temperature, respectively.

With the aim of improving the range accuracy of the PMD cameras and obtaining uniform
and steady grayscale image, thus getting rid of the impact of DSNU and PRNU, the cited
paper [90] proposes to integrate SA-GCDCM with demodulation error correction. In this
way, it is possible to compensate also the DRNU and the temperature errors, achieving
an overall multi-scene adaptive calibration model which works based on multiple factors.
A sequence of several experiments performed by the authors verify the effectiveness, the
accuracy and the flexibility of the method.
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2.3 Non-Systematic Errors Correction
As already mentioned, ToF cameras are also subjected to a number of non-systematic er-
rors that cannot be corrected through normal (lateral and depth) calibration techniques.
Specifically, as accurately described in [85], ToF cameras capture depth measurements
by illuminating a scene with a periodic amplitude-modulated signal, which is reflected
back to the camera following direct and indirect light paths. The phase shift between in-
cident and illumination signals is then estimated. To calculate depth from these raw phase
estimations though, several challenging reconstruction problems must be addressed first.
When a single reflector is present in the observed scene, the phase estimates are able to
uniquely code depth up till an integer phase wrapping. This is tackled by phase unwrap-
ping methods, as shown in [43]. If instead the scene is globally illuminated, multiple light
paths stand in the way of direct and indirect paths, providing a route to a phenomenon
called Multiple Path Interference (MPI), that provokes the depth maps’ distortion. Lastly,
raw ToF measurements are heavily influenced by the noise caused by the low absorp-
tion depth of the IR modulation, along with yet undeveloped sensor technology ([53]) if
compared to RGB CMOS image sensors.

Historically, the three reconstruction problems just presented, namely phase unwrapping,
MPI reduction and denoising, are tackled in a pipeline architecture where each step dis-
entangles an individual sub-problem alone. This design surely makes divide-and-conquer
algorithms smoother, but at the same time it disregards the coupling between individual
sub-modules. In this way it infuses cumulative error and information loss in the recon-
struction pipeline. By way of illustration, [85]’s authors highlight that traditional multi-
frequency unwrapping methods are extremely inaccurate when MPI or noise are present,
presenting notable unwrapping errors and consequently inaccurate shape recovery.

This is the reason why, recently, instead of building a reconstruction pipeline or depending
on auxiliary hardware, new data-driven approaches were introduced. These models, using
the unrivaled strength of neural networks, are able to generate a depth map directly from
the raw modulated exposures of the ToF camera (see Fig. 2.8). From now on, a list of the
state-of-the-art methods is presented, describing their architectures along with their pros
and cons. From all these approaches, at the end two of them, e.g. the ones that provide
a good compromise in terms of complexity, real-time performance and accuracy (along
with several other metrics) are selected in order to be reproduced and analyzed in detail.

(a) Traditional pipeline approach. (b) NN (Neural Network)-based approach.

Figure 2.8: “Comparison between traditional and NN-based approaches for non-
systematic errors correction” (taken from [85]). Traditional pipelines apply a sequence
of techniques for depth map generation, i.e., denoising (DN), phase unwrapping (PU) and
multipath correction (MP). Deep CNN approaches predict instead the scene depth directly
from ToF camera’s raw measurements.
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2.3.1 Deep End-to-End Time-of-Flight Imaging

As far as I know, [85] is one of the first in introducing a deep learning attempt to correct
ToF cameras’ non-systematic errors. Diverging from the conventional pipeline model,
the authors propose a deep neural network which redeems scene depth from raw dual-
frequency ToF measurements. They design ToFNet, an encoder-decoder network archi-
tecture with skip connections [78] and ResNet [45] bottleneck layers, as shown in Fig. 2.9.
In particular, the network they present takes as input two modulated exposures [Bωi,ψ j ],
with i, j = [1,2], in order to output a phase-unwrapped, MPI-compensated depth image,
which is then further converted to a depth map using calibrated camera intrinsic parame-
ters.

The encoder (F1_1 to D2 in Fig. 2.9 below) of the generator G squeezes the input up
to 1/4 of its original resolution, and it creates feature maps with an increasing receptive
field. The ResNet blocks at the tailback, while maintaining the same number of features,
makes the network able to reestablish a finer depth after upsampling.
As it is possible to notice by looking again at the same figure, the authors of [85] propose
symmetrical skip connections between F1_2-U2 and F2-U1 by element-wise addition.
The PatchGAN discriminator network D [50] is instead composed of three down con-
volutional layers with Leaky ReLU as activation function. Its goal is that of classifying
whether each patch in a G’s prediction is real or not. This discriminator is convolutionally
run across the image itself, averaging all responses to provide the ultimate output of D.

Moreover, Shuochen et al. suggest to apply pixel-wise normalization to the depth inputs,
along with their corresponding amplitudes, instead of taking for granted the network ca-
pability to learn amplitude-invariant features. By doing this, they manage to enhance the
model’s robustness to illumination power and scene albedo, that is, its brightness, while
reducing at the same time the training time.
One downside of the proposed normalization procedure is the fact that the input may in-
corporate outstandingly amplified noise in regions where reflectivity is low or distances
are too large. This is mainly the reason why the authors present also an edge-aware
smoothness term to control the unused amplitude information, by giving the amplitude
maps as input to the total variation (TV) regularization layer.

Figure 2.9: “The ToFNet Architecture” (taken from [85]). It consists of a symmetrically
skip-connected encoder-decoder generator network G and a patchGAN discriminator net-
work D.

Due to the huge difference in image statistics between RGB and depth image data, con-
ventional ℓ1/ℓ2-norm pixel losses that behave well in RGB generation tasks do not per-
form equally well in depth reconstruction. Consequently, the authors of [85] propose a
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domain-specific loss function tailored to distance image statistics, that is described as:

Ltotal = LL1 +λsLsmooth +λaLadv (2.25)

where:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 Loss is the mean absolute error (MAE) between the gene-
rator’s output d and the ground truth distance d̃.

Lsmooth Depth Gradient Loss is a total variation loss weighted by image gradients
in an edge-aware fashion.

Ladv Adversarial Loss is a patch-level conditional adversarial loss [108] mi-
nimizing the gap between output and target depths.

.

During the training phase, G and D are optimized alternatively, so that G progressively
refines the generated depth trying to persuade D to take the result as correct (label 1),
while on the other side D constantly improves at discerning correct and incorrect depth
maps. More details in training and implementation can be found in the paper.
Due to the fact that large raw ToF datasets with ground truth depth are not available (at
least, when the paper was published), the authors simulate synthetic measurements with
known ground truth. In this way they were able to train the model, by synthesizing a
sequence of transient images and then correlating the pixels with the frequency-dependent
correlation matrix.

To validate the results, real data from a number of scenes are collected under both con-
trolled and in-the-wild conditions. Experiments’ outcomes show an improvement with
respect to the previous conventional pipeline in terms of accuracy, even if the model is to-
tally faulty when the measurement includes saturation, imperfect modeled materials, low
reflectivity or finer geometric structures.
Despite the fact that the network is able to reach better and more stable performance than
tradition techniques, it still lacks in robustness and it is not completely capable of working
in real-time applications.

2.3.2 DeepToF: Off-the-Shelf Real-Time Correction of Multipath In-
terference in Time-of-Flight Imaging

The authors of [63] have a novel idea: since Multi-Path Inference (MPI) can be modelled
as a spatially-varying convolution, it is thus possible to express the MPI compensation as
a sequence of convolutions and deconvolutions in depth space, that is, MPI errors could be
straightened out through the design of an accurate convolutional neural network (CNN).
Concretely, since correct and incorrect depth maps are slightly different one another but
yet structurally similar, a convolutional autoencoder (CAE) could be used to tackle this
problem, because of its capability to use the same input and output to learn hidden rep-
resentations of lower-dimensional feature vectors through unsupervised learning. These
lower-dimensional vectors allow to retain the input’s relevant structural information and
to remove errors, successfully returning the reestablished depth image.

Nonetheless, due to the fact that a labeled dataset of the correct size is not available for
the training step, a straightforward CAE cannot be employed for this purpose. Thus, even

21



2 – ToF Cameras

Figure 2.10: “DeepToF Architecture in two-stage training process” (taken from
[63]). In the first, unsupervised training stage a convolutional autoencoder learns lower-
dimensional depth representations, while in the second, supervised training stage both
depths with and without MPI are taken as input to update the weights of a reconstruction
decoder. The final DeepToF model is made by both the original encoder and the updated
decoder, working as a regression network.

if real world ToF depth images are extensively accessible and ready to be used, measuring
their ground truth value is definitely a non-trivial problem that has to be solved. Con-
versely, rendering images from synthetic scenes is tremendously time-consuming, with-
out considering the fact that the obtained results would only cover a small-scale chunk of
real world scene alterations.

This is the reason why the authors of [63] propose DeepToF, a two-step training scheme
to infer the CNN from both unlabeled real depth images and labeled synthetic depth ones
(both with and without MPI). Fig. 2.10 depicts an overview of the neural network ap-
proach they introduce, while the next paragraphs explain more in detail the novelties of
their approach.

First Stage. As it is possible to notice by looking at the figure above, Marco et al. firstly
train a convolutional autoencoder in an unsupervised fashion using a real dataset, which
contains real depth images with unknown errors. A synthetic (smaller) dataset with MPI
is instead used as validation set.
With this first stage the network is initialized and the encoder is made capable of produc-
ing lower-dimensional feature vectors of correct and incorrect depth maps.

Second Stage. Once the training of the encoder’s parameters is terminated, its convolu-
tional layers are kept frozen and the decoder is trained through supervised learning using
the synthetic dataset. The incorrect depth maps with MPI are used as input, whereas the
ground truth reference depths without MPI are introduced as output. Since the encoder
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performs down-sampling operations to perceive features at multiple scale levels, symmet-
ric skip connections are added so that detailed features of the encoding convolutions are
blended together.
Lastly, being the difference between the input depth with MPI and reference depth out-
put without MPI of about 12% on average, MPI is handled as a residue by implementing
element-wise summations between the up-sampled features and the skipped ones.

More details on the implementation of the network and the training procedure can be re-
trieved in the cited paper [63].
One aspect that has to be highlighted is that the newly introduced model only takes depth
maps as input, without the need for any other ToF data, i.e., phase images or pixel am-
plitudes information. This brings to a high robustness of the model itself, since the latter
properties are exceedingly influenced by the peculiar ToF characteristics, thus they are
highly volatile.

Results of the conducted experiments show that this network perform well in real-time,
reaching visible improvements with respect to previous traditional approaches for MPI
correction. Nonetheless, wiggling error caused by approximated sinusoidal waves is not
examined and studied in the training dataset, and this leads to poor performance in several
scenarios. Moreover, the authors take diffuse (or nearly diffuse) reflectance for granted.
Thus, while behaving fine in some real world scenarios with more general reflectances,
DeepToF presents some problems if very glossy materials are present and it is most likely
to fail, as well as in the presence of objects that are very close to the camera (again due to
the lack of relevant depth information for close distances in the training dataset). A better
design of the datasets could therefore improve, in principle, the architecture’s capabilities.

2.3.3 Tackling 3D ToF Artifacts Through Learning and the FLAT
Dataset

With the aim of jointly addressing all the problems characterising the ToF camera sensing,
i.e. dynamic scenes, MPI and shot noise, the authors of [39] propose a novel learning-
based approach developed on a two-stage architecture. The model they introduce straight-
forwardly works with raw ToF measurements and outputs improved depth maps estimates.
The first stage is composed by an encoder-decoder architecture (inspired by [30]) that
weakens motion artifacts. Its goal is that of enlarging the amount of pixels whose depth
can be accurately estimated, for the most part in the proximity of moving objects’ bound-
aries. The second stage is instead based on a kernel predicting network [67] that enervates
MPI and shot noise.

Specifically, the authors introduce a two-modules Deep Neural Network (DNN), whose
architecture is shown in Fig. 2.11. The first module is called MOM (MOtion Module)
whereas the second one is denoted as MRM (Multi-Reflection Module). The goal of the
MOM, that is an encoder-decoder network highly influenced by FlowNet [30], is that of
producing as output a map that aligns the raw channels measured by the ToF camera.
This module is capable of taking in input nine misaligned channels and giving as output
eight optical flows simultaneously. This is the biggest difference with respect the FlowNet
model just cited.
MRM, the second module, is instead composed by a kernel-predicting network (KPN)
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Figure 2.11: “MOM + MRM Deep Neural Network Architecture” (taken from [39]).
The traditional ToF processing pipeline (green) and the framework proposed in this
paper[39] (red). The lower left side of the image depicts artifacts generated by MPI and
motion (green), which are highly decreased by the newly introduced architecture (red).
On the right panel of the figure one can instead have a look at the proposed framework,
with the motion (top) and the multi-reflection (bottom) modules.

that works on the compensation of shot noise, as greatly explained in the previous work
of [67]. This module brings as output nine spatially varying kernels for each pixel. Every
one of these kernels is locally convolved with the input raw measurements in order to
finally output a raw estimate without shot and MPI noise on every channel.

Experiments illustrated by the authors have indeed shown that MOM helps in slightly in-
creasing the depth accuracy, but its biggest advantage is the reduction of the undependable
pixels. The introduction of this module can lessen the holes’ existence in the reconstructed
scene, to a large extent in the object neighborhoods. The presence of the MRM module
additionally enlarges the density, while also lowering the bias in the depth error due to
MPI.

Due to the fact that a complete large dataset for training and validating ToF denoising
frameworks did not exist, and at the same ground truth depth maps for real world scenes
are difficult to retrieve, Guo et al. also introduce in this paper a synthetic dataset named
FLAT (Flexible, Large, Augmentable, ToF) for training and evaluation. FLAT allows to
precisely reproduce different ToF cameras’ raw estimates in the presence of shot noise
and MPI artifacts, and to expose at the same time raw correlation measurements. This
dataset also provides the chance to perform data augmentation over these estimations by
introducing shot noise, as well as vignetting and texture.

However, FLAT dataset only contains scenes reporting object with diffuse material: the
MRM module cannot thus perform well in the presence of highly specular reflections.
Another limitation of the proposed model is the fact that the receptive field of MRM it-
self is too small to perceive global information from the scene, and therefore to rectify
large-range MPI. Moreover, the loss function itself is built to highlight short-range MPI
correction too, since the signal is significantly more powerful for shorter distances.
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Furthermore, the MOM module is only partially capable of removing the motion arti-
facts for large scene. Finally, their proposal takes constant ambient light for granted, i.e.,
typical indoor conditions, without considering blur within a single raw measurement.

Thus, while being able to effectively remove motion, MPI and shot noise in some con-
ditions, all these drawbacks limit the performance of this model in several real world
scenarios, damping down its robustness in accurately reconstructing the depth of ToF im-
ages.

2.3.4 Denoising 3D Time-Of-Flight Data

[40] proposes a novel method for removing noise caused by MPI in ToF camera sensing.
They suggest the usage of a two-parts Convolutional Neural Network (CNN), trained on
the FLAT synthetic dataset described in the previous Subsection and introduced in [39].
The first CNN is used to learn the fundamental scene properties, e.g. the specularity of
the existent objects, the ambient light density and the camera position. The second CNN
takes instead the trained parameters coming from the first network, together with a noisy
depth map, and it outputs the true depth map.
The proposed method is based on the idea that MPI noise is expressly influenced by
the essential properties of the scene, therefore learning these features could provide a
huge assistance in reconstructing a highly-accurate depth map. This is a key point that
marks a fundamental contribution in the ToF MPI denoising literature: this approach of
considering a double CNN model will in fact be often re-used in several situations.

Figure 2.12: “2-parts CNN Architecture” (taken from [40]). The first part takes the
inaccurate depth map as input and provides as output the position of the camera and the
specular value of the objects present in the scene. The second part received instead as
input both the inaccurate depth map and the trained hyper-parameters of the first model,
and supplies the accurate (correct) depth map as final output.

More in detail, as shown in Fig. 2.12, Gupta et al. present a two-parts CNN model to
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attenuate MPI noise from images obtained through the usage of a ToF camera, demon-
strating its robust performance on FLAT synthetic data. The aim of the first CNN is that
of trying to predict correct parameters from a noisy depth map given as input, whereas
the ground truth parameters are available in the synthetic dataset used for training. These
correct parameters are taken as input, together again with the noisy depth map, from the
second CNN, consisting of just three convolutional layers followed by a linear one. This
final linear layer provides the vector outputs, that is, the undistorted depth map.
The layers of this second model have same hyper-parameters as the first CNN. Using a
two-part model like the one presented allows to achieve a better guidance over training,
thus supplying the network with essential information to reconstruct accurate and concrete
depth maps.

Experiments performed by the authors of the paper show that the novel approach behaves
better with respect to DeepToF [63] and static MRM [39]. Besides its simplicity and real-
time performance, the model presents some cons too. It has been trained on a synthetic
dataset, therefore the performance on real dataset is not as satisfactory as proven in test-
ing, because of the clear difference existing in noise statistics between real and simulated
data.
Moreover, the framework is built upon data containing noise coming from a Kinect cam-
era, thus using another ToF sensor leads to inaccurate undistorted depth maps.

Lastly, the authors of [40] state that they haven’t comprised enough scenes with great
specularity in the dataset they used for training, hence the proposed network architecture is
not capable of working well with all those objects present in a scene with high reflectance,
i.e. mirrors and metal surfaces.
Therefore, besides some brilliant intuitions, there is a lot of room for improvement.

2.3.5 Deep Learning for Multi-Path Error Removal in ToF Sensors
In the wake of previous works that apply Convolutional Neural Networks (CNNs) to data
acquired with ToF cameras for denoising and MPI removal, the paper [3] described in this
Subsection surely leaves a distinguishable mark. By exploiting the information acquired
through Multi-Frequency ToF (MF-ToF) sensors, the proposed deep neural network archi-
tecture is able to reconstruct a depth map by precisely removing the MPI corruption. The
authors design an ad-hoc CNN for this task, consisting of two parts, similarly to [40]. The
first part is a coarse CNN capable of acknowledging the global structure of the observed
scene and simultaneously globally locating MPI, whereas the second one is a fine CNN
which takes as input the output of the previous coarse network and aims at completely
removing the MPI while still conserving the finer details.

Furthermore, the authors propose an innovative pre-processing step which integrates the
information about the depth and amplitude acquired at different frequencies. In this way
they are able to build a representation that let the network understand key information to
finally remove the MPI error. The crucial training phase has been addressed with the us-
age of a synthetic dataset that has been built by the authors themselves and that is publicly
available. A ToF simulator has been used to generate the multi-frequency ToF data.
Fig. 2.13 shows the principle at the basis of the newly introduced approach. The workflow
is very simple: after a data pre-processing phase that will briefly explained in the follow-
ing, the just obtained input feeds the coarse and the fine CNNs. The output of the latter
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Figure 2.13: “Coarse-Fine CNN Approach” (taken from [3]). The CNN architecture is
made of two main blocks, a coarse network that estimates the MPI at low resolution and a
fine network that estimates the MPI interference at full resolution. The estimated error is
then directly subtracted from the ToF depth map (at 60MHz), obtaining a final undistorted
depth map.

is the MPI interference estimation and it is subtracted to the input depth map (acquired at
60 MHz) in order to remove the MPI corruption. Lastly, an adaptive bilateral filter is used
to remove also the zero-mean error.

ToF Data Representation. As anticipated, one of the key and novel aspects of this paper
is the determination of those candidates among the input data which are most informative
about the presence of MPI error. The authors settle to build a stack of five elements and
to feed it to the double CNNs. In particular:

• The first input C1 = d60 represents the ToF depth map taken at 60 MHz. Since the
higher is the modulation frequency the more precise is the depth estimation, this
frequency has been chosen as it represents the best geometry that can be estimated
before the MPI deletion step.

• The differences between the depth maps acquired at different modulation frequencies
(C2 = d20−d60 between 20 MHz and 60 MHz, and C3 = d50−d60 between 50 MHz
and 60 MHz) are used as second and third input, respectively, since the presence of
MPI error becomes higher as the modulation frequency gets smaller.

• Finally, since it also holds that the higher is the modulation frequency, the lower is
the deriving amplitude, juxtaposing the amplitudes acquired at different frequencies
allows to clearly understand how vigorous is the presence of MPI in the observed
scene. Thus, the ratio of the amplitudes images taken at different modulation fre-
quencies (C4 = A20/A60 between 20 MHz and 60 MHz, and C5 = A50/A60 between
50 MHz and 60 MHz) are used as fourth and fifth input, respectively. Note that the
“−1” term has been added to center the data around 0 if MPI noise is absent.

Coarse CNN. With the aim of understanding the geometrical scene structure, the coarse
sub-network applies downsampling through the usage pooling layers, as can be seen by
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Figure 2.14: “Coarse-Fine CNN Architecture” (taken from [3]). Architecture of the
Coarse-Fine CNN proposed in this paper [3], used for MPI and shot noise correction in
ToF raw measurements.

looking at the upper half of Fig. 2.14, which exhaustively depicts the architecture of the
model. The downsampling performed by the layers’ sequence leads to an enlargement of
the receptive field as a clear outcome. The coarse CNN takes as input the stack of five data
channels just described (including the depth maps and the amplitude images acquired at
different modulation frequencies) and is composed of five sequential convolutional layers,
each followed by a ReLU activation function, except for the last one. The network permits
to get a final trustworthy estimate of the regions where the MPI presence is stronger,
even if the interference localization is not as accurate as it should be. Thus, through
the straightforwardly subtraction of its output to the input data one would obtain serious
artifacts, mostly in the edges’ boundaries. This is the reason why another CNN, a finer
one, is further introduced by the authors.

Fine CNN. This second sub-network operates at full resolution to finally get a more ac-
curate error localization. The bottom half of Fig. 2.14 clearly shows how also this CNN
presents five convolutional layers with 3×3 convolutions and ReLU activation functions,
with the only exception of the last one as in the previous case. The input of the first layer
is again the stack of the five data channels (described in the previous paragraph) which
was also the input to the previous coarse CNN. Nonetheless, the fourth layer takes as input
the concatenation between the output of the third layer and the up-sampled output of the
coarse sub-network. This is of a great importance since it permits to simultaneously get
the low resolution estimate with a wide receptive field through the usage of the first coarse
sub-network and a more detailed yet local measurement via the second fine sub-network.
In this way the authors are able to come into possession of an MPI error estimation that
apprehends both the global and the finer details of the observed scene.

After having performed data augmentation and K-fold cross validation on the training
dataset to avoid overfitting and at the same time to choose the best hyper-parameters to
obtain the minimum Mean Absolute Error (MAE), Agresti et al. perform in this paper
several experiments to evaluate the performance of their approach. Results indicate that,
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while being extremely fast (it takes only 9.5 ms to evaluate a single frame), the model
achieves good performance with both synthetic and real world datasets. Regarding this
last case, though, there are still many limitations due to the differences between the sim-
ulated training data and real world acquisitions. Furthermore, the model is incapable of
working in real-time, due to the fact that it constantly needs an input made by a stack of
five data channels, as thoroughly described in this Subsection, even in inference mode.

2.3.6 Learning to Remove Multipath Distortions in Time-of-Flight
Range Images for a Robotic Arm Setup

The authors of [84] propose a novel learning-based approach for removing multipath dis-
tortions in ToF raw data, consisting again of a double convolutional neural network model.
They manage to use a robotic arm to mechanically gather a huge amount of ToF images
affected by different MPI errors. These can be categorized in two classes: (1) the range
over-shooting distortions caused by the superposition of the reflected signals coming from
neighbouring structures, and (2) the range over-smoothing distortions arise from the su-
perposition of the reflected signals coming from foreground and background objects.

The presented method is composed of two neural networks, referred to as F (Range-
Recovery NN) and G (Boundary-Detection NN), both shown in Fig. 2.15.
The first neural network gains an understanding of the mapping from the ToF raw esti-
mates to the undistorted depth values, whereas the second sub-network becomes proficient
in detecting object boundaries in order to conduct the geometry content propagation over
a framework based on geodesic filtering, as thoroughly explained in [59].
Ideally speaking, F should be able to reconstruct alone the undistorted depth estimates,
but the authors state that, while it works well in the smooth regions, it finds some trou-
bles in the object boundary ones. Thus, G is employed, together with a geodesic filtering
algorithm, to spread the reestablished range estimations from the smooth to the boundary
regions. In this way, the range measurement accuracy in the latter fields gets remarkably
better.
In the following, each paragraph explains more in detail the relevant blocks of the ap-
proach introduced in this paper.

Calibration. The calibration method delineates a linear model for each pixel position to
couple the observed measurements with the correct ones, using the traditional checker-
board pattern (with 770 separate poses). Through the employment of this scheme it is
possible to remove the intrinsic systematic errors before applying the proposed algorithm,
described in the next paragraphs.

Range-Recovery NN. The Range-Recovery Neural Network is a feed-forward architec-
ture composed by three layers, in which the first contains 40 fully-connected (FC) neu-
rons, while the second and the third layer contain 10 FC units each. Each layer uses ReLU
as activation function, but the particular choice of Son et al. is that of avoiding the usage
of the pooling layers (differently from almost any other existing approach), since they lead
to a high reduction in the output resolution. The goal of the training is that of minimizing
the Euclidean loss: the learned F is used to reconstruct the true depth measurement. More
details on this and the other sub-network, explained in the following paragraph, can be
found in the paper.
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Figure 2.15: “Range-Recovery + Boundary-Detection NNs Architecture” (taken from
[84]). After a calibration model that removes the systematic errors outputting R, the
Range-Recovery NN F is used to estimate the true depth values, while the Boundary-
Detection NN G is employed to detect the object boundaries. Lastly, a geodesic filtering
algorithm is utilized to compute the final depth estimate R̂.

Boundary-Detection NN. The authors of [84] decide to use four separate feed-forward
NNs, one for each edge detectors’ groups. The ground truth boundaries and their direc-
tions are calculated through the usage in the target depth maps of the Canny edge detector
described in [19], that is an algorithm capable of identifying a wide range of images’
edges using multiple stages. The detected edges are thus split into four groups based on a
uniform division of the edge orientation.
Each of the four networks consists of two FC layers with ReLU as activation function: the
first has 40 neurons while the second counts 20 units. The output layers have two neurons,
that stand for the edge and non-edge likelihood scores, respectively, after the employment
of a softmax operation. These four networks are trained through the minimization if the
cross entropy loss.

Geodesic Filtering. For each pixel of the image, the maximum comeback is taken from
the four neural networks for the boundary likelihood score, following the approach ex-
plained in [6]. Finally, non-maximum suppression and hysteresis thresholding are carried
out to calculate the binary edge map for geodesic filtering.

Several experiments show that the proposed architecture achieves good performance for
what concerns the removal of MPI noise, while not being able to work in all real world
scenarios. Indeed, it isn’t capable of addressing the dependence on material properties,
which is known to affect the ToF raw measurements. Moreover, its overall computation
time is relatively high, due to the presence of the geodesic filtering phase that is quite slow.
Thus, for applications working in real-time, as the ones in the embedding and especially
robotic fields, this approach cannot be applied.

2.3.7 Very Power Efficient Neural Time-of-Flight
Conventional methods for MPI and shot noise removal of ToF raw data are usually built
upon groundless hypotheses and conjectures, but these often turn into being unaccept-
able when different scenes and received signals’ intensities -in particular for weak input
signals- are taken into account. It is thus highly strenuous to choose the best parameters
that allow to obtain good results for all real world scenarios. As opposed to this tradi-
tional trend, the authors of [21] propose an end-to-end learning-based approach to correct
the distorted and noisy ToF raw measurements and produce as output high quality depth
maps. Doing so, they are able to abstain from the extremely compound parameters tuning
step, especially that of particularly weak signals.
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Figure 2.16: Power Efficient NN Architecture (taken from [21]). In the shown frame-
work, based on an autoencoder architecture, conv stands for a convolutional layer, while
upsample represents an up-sampling layer.

The solution introduced in this paper consists of an encoder-decoder architecture with the
usage of skip connections to enhance the accuracy of the results. Fig. 2.16 depicts the
described framework. In particular, the decoder is composed by a sequence of four down-
sampling layers (indicated with D1 to D4 in the figure above), whereas four up-sampling
layers (denoted as U1 to U4 in the same image) add up to form the encoder. These layers
combine the strided convolution layers with the up-sample ones.

Differently from conventional RGB camera tomography, in the case of ToF cameras the
depth maps and the raw estimates should be compatible with the geometry and the under-
lying scene structure. Moreover, the latter can be affected by spatial structures, modula-
tion frequency, material properties of the observed objects and a number of other factors.
This is the reason why Chen et al. suggest to use a new loss for the training procedure,
named ToF Loss LToF , that is the sum of two terms, denoted raw loss and depth loss.

Raw Loss. The first is the Raw Loss LRaw, which is defined in this way:
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where rpren
i, j indicates the ToF raw estimates produced by the network, while rgtn

i, j stands for
the ToF raw measurements captured under long exposure settings as ground truth. In both
cases, n is thought to be in the range [0,1,2,3]. The Raw Loss LRaw is used to minimize
the Mean Absolute Error (MAE) between the raw estimates and the corresponding ground
truth frames.

Depth Loss. With the aim of guaranteeing high quality undistorted depth maps, via the
minimization of the Mean Absolute Error between the depth value calculated from ToF
raw measurements and the ground truth one, the Depth Loss LDepth is defined as follows:
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where fLED = 6 MHz and c = 299792458 m/s.

ToF Loss. The introduced ToF Loss is defined as the weighted sum of the two previously
described losses:

LToF = αLDepth +βLRaw (2.29)

The main novelty introduced by this paper, though, is the introduction of a complete ToF
dataset, containing scenes captured under a number of different conditions. The exhaus-
tive experiments performed by the authors demonstrate that the proposed method is able
to actively correct raw ToF noisy data. It is also capable of working at a higher depth
frame rate, due to the fact that the exposure time could be outstandingly brought down.
Moreover, the presented framework reveals a better performance in the depth estimation
of low reflectivity objects with respect to previous works.
Despite its robustness and its power efficiency, the main limitations of the suggested
model are the complexity of the model itself and the low accuracy of the results, if com-
pared with other state-of-the-art architectures.

2.3.8 Deep Learning for Transient Image Reconstruction from ToF
Data

The authors of [18] introduce a deep learning unconventional approach for correcting MPI
noise in ToF raw data by estimating the direct components of the incoming signal. The
strength of this new architecture lies in the capability of the network to roughly calculate
the scene impulse response and to reconstruct an undistorted version of the input depth
map by reducing the amount of MPI error present.

Since deep neural networks can present several troubles when facing high dimensional
data, which is exactly what backscattering vectors are, the framework presented in this
paper is composed by two key blocks, as depicted in Fig. 2.17. The first out of the two
is a predictive model that tries to understand the relationship existing between the errors-
prone ToF measurements and the encoded rendering of the transient data, whereas the
second is a fixed backscattering model which instead moves the encoded version into a
higher dimensional light response, that is, into the corresponding transient vector.

Figure 2.17: “Predictive + Backscattering Model Architecture” (taken from [18]). The
figure depicts the structure of the proposed model. As stated in the paper, the predictive
model represents the deep learning network of the entire pipeline, whereas the princi-
pal task of the backscattering part is that of compressing the high dimensional transient
information into a more straightforward representation.

Backscattering Model. The proposed approach marks the beginning of a completely new
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type of data-driven models aiming at correcting noisy ToF raw data with the reconstruction
of transient images. In fact, the key idea at the basis of the backscattering model is that of
transforming the high dimensional transient data into a more simple version which can be
manageable more effortlessly. Thus, the goal of this module, denoted as Bζ in Fig. 2.17, is
that of mapping a latent variable z into the respective backscattering vector x, as described
in the following equations:

Bζ = RL→ Dx ⊆ RN , z→ x = Bζ (z) (2.30)

where L ≪ N, ζ are some trainable parameters and Dx is the domain of all possible
backscattering vectors. Bζ could be any generative model, e.g. a generative adversar-
ial network (GAN) or a Variational Autoencoder (VAE), which is capable to accurately
map low-dimensional data into high-dimensional transient ones.
Nonetheless, in real world scenarios the first and second order reflections contain most
of the backscattering vector energy, as thoroughly reported in [28]. For this reason, the
authors of this paper, [18], propose to use as backscattering model a simple stochastic
mapping from a 4-dimensional z vector (z ∈ R4, where the four values can be thought at
as the amplitudes and the path lengths of the first two interfering rays) to an approxima-
tion of the backscattering data.
Thus, the backscattering model must transform these four values to the approximated
backscattering vector. Due to what has been previously said regarding the first and sec-
ond order reflections, the newly obtained backscattering vector presents all zeros in every
entry, except for two peaks in correspondence of the first two interfering rays.

Predictive Model. This module represents the deep learning part in the proposed archi-
tecture, which takes as input a matrix containing raw ToF estimations acquired at several
different modulation frequencies. The aim of this network is that of providing for each
measurement the corresponding values in the latent space Z. More in detail, the predictive
model is based on a non-linear function Pθ (·), with parameters θ , which receives as input
the vector v and generates as output the corresponding vector estimation z, referred to as
ẑ in the following.
Having in mind the goal of making the most out of the spatial information for every pixel
prediction, the authors propose the usage of a local neighbourhood around the pixel itself
of size (2P+1)× (2P+1), with P = 1, thus forming a window of 3×3.
Thus, the predictive model is composed by a CNN, whose first layer merges a weight ker-
nel and another small (2P+1)× (2P+1) kernel centered around the pixel itself. While
the former has the objective of recovering the relevant information from every considered
pixel, the latter is instead focused on the acknowledgment of the local information.
Fig. 2.18 shows the structure of this module and the mapping from v to ẑ.

A huge advantage of the proposed approach is that the global information is present in
transient data form and hitherto carries the knowledge concerning the scene structure.
The backscattering vector, simply composed by all zeros a part from two peaks in the
presence of the first and the second interfering rays, might seem a little “wild” and yet
it demonstrates to be very effective for precise depth estimation. Thus, the model results
very straightforward if compared to many other approaches, such as [63], [40] or even [3].
Despite its simplicity, the model is yet very successful in reconstructing the noisy depth
maps, since the neural network of the predictive model just has to estimate two peaks
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Figure 2.18: “Predictive Model Structure” (taken from [18]). This figure depicts the
structure of the proposed predictive model. The first layer of the CNN combines a weight
kernel and a small 3×3 one centered around each pixel: the former retrieves the relevant
information from each pixel while the latter tries to acknowledge local information.

from the input measurements. Extensive experiments prove good performance even in
real world data, with results close to state-of-the-art frameworks, even without complex
architectures or huge amount of training data (the model is supposed to contain only a
few thousand parameters). Nonetheless, more advanced structures have to be studied to
further draw on the spatial context in the backscattering measurement and to reconstruct
transient data, but this is doubtless a huge step towards less computational-demanding
neural network architectures applied for the denoising ToF raw measurements.

2.3.9 Spatial Hierarchy Aware Residual Pyramid Network for Time-
of-Flight Depth Denoising

The Multi-Path Interference (MPI) critically corrupts the depth image acquired by ToF
cameras. [68] and [20] have recently gone in the direction of using the hierarchical repre-
sentations of the scene to depth and 3D shape estimation. Thus, in [27] Dong et al. decide
to enhance the MPI denoising of ToF raw data through the usage of the spatial hierarchi-
cal information. They propose SHARP-Net, a “Spatial Hierarchy Aware Residual Pyramid
Network” for ToF raw measurements denoising. The goal is that of fully making use of
scene structures at different levels: in fact, they state that a multiple-scale feature pyra-
mid based on the spatial hierarchical structure of the scene can supply a suitable receptive
field, eventually leading to an improved MPI and shot noise removal.

Specifically, SHARP-Net is composed of three different modules, namely Residual Re-
gression Module, Residual Fusion Module and Depth Refinement Module. Through the
combined usage of all these blocks the proposed framework is capable of precisely re-
moving noise for ToF depth images.
Fig. 2.19 displays the architecture of the network, depicting in detail each of these mod-
ules that are briefly described in the next paragraphs.
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Figure 2.19: “SHARP-Net Architecture” (taken from [27]). This framework is able to
exhaustively exploit scene structures at different levels through three different modules,
denoted as Residual Regression, Residual Fusion and Depth Refinement Modules. In
this figure, ⊙ represents the dot product operation, © denotes the concatenate operation
while ⊕ introduces the addition operation. “Patch2Vec” stands instead for the reshaping
operation of the pixels’ neighbourhoods to a vector.

Residual Regression Module. Being the backbone of SHARP-Net for multi-scale feature
extraction, the Residual Regression Module is like an encoder that squeezes out a feature
pyramid {Fi}L

i=1 on different levels, starting from an input composed by a stack of the
depth map Din and the amplitude image A. In the definition of the feature pyramid, Fi
designates the feature map extracted at the ith level whereas L is the totality of the pyramid
layers. Going from the bottom to the top, the feature pyramid gradually extract the more
detailed geometric structure data. At each level, the depth residual map coming from the
lower level, after being up-sampled by a factor of 2 via bicubic interpolation and coupled
with the feature map of the layer at hand, is given as input to five sequential convolutional
layers, whose output is the residual map Ri for the current layer. By doing that, the residual
maps at lower resolutions are capable of encoding the depth noise present in larger shapes
whereas the ones at higher resolutions give more attention on the noise existing in smaller
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and more detailed scene structures. At then end the Residual Regression Module outputs
a residual pyramid {Ri}L

i=1 composed by the depth residual maps extracted at each level.

Residual Fusion Module. Even if the highest level of the just described pyramid includes
the information from all the levels below and can thus be interpreted as a depth error es-
timation, after the convolutional operation the details about lower resolution levels may
go away and depart. This is the reason why the Residual Fusion Module is further in-
troduced in this paper work [27] to unambiguously integrate and homogenize the depth
residual maps acquired at all scales. At each level the depth residual map is up-sampled to
its original resolution, again via bicubic interpolation, and all the up-sampled depth resid-
ual maps are then concatenated together. The newly obtained residual volume is lastly
given as input to a 1×1 convolutional layer, whose output is the depth residual map Rout
that is added to the original input depth image in order to reconstruct the final depth image
Dinter.

Depth Refinement Module. The two introduced modules are helpful in removing the
MPI noise, but they do not successfully work with the shot denoising as well. To tackle
this problem, a third block is lastly introduced by the authors, that is the Depth Refinement
Module, based upon a Kernel Prediction Network [11]. This module takes the output
Dinter of the previous Residual Fusion Module as input, and it produces through a U-Net
architecture with skip connection a weight matrix, that is nothing more than a vectorized
filter kernel for each of the depth image pixels. After the “Patch2Vec” operation, that
consists in making a patch matrix by vectoring a neighbourhood for every depth image
pixel, the two obtained matrices are element-wisely multiplied, originating a 3D volume.
By summing over it, the refined depth image Dout is lastly derived.

Extensive experiments conducted by the authors of the paper demonstrate that SHARP-Net
highly outclasses state-of-the-art methods, for what concerns both quantitative and qual-
itative metrics on synthetic and realistic datasets, such as ToF-FlyingThings3D (TFT3D)
[77], FLAT [39] and True Box [2]. Moreover, the ablation studies managed by Dong et al.
reveal that, even removing one of the modules or decreasing the number of the backbone’s
levels, the obtained results are satisfying. Thus, despite its complexity, the model can be
adapted to the needs of a real-time demanding application by partially removing a module
or limiting the number of layers, and this represents a great advantage that can be taken
into account when dealing with the embedded world.

2.3.10 Unsupervised Domain Adaptation for ToF Data Denoising with
Adversarial Learning

Inspired by the previous work of [3], Agresti et al. in [2] propose a revolutionary transfer
learning architecture able to successfully remove the noisy errors in real world data by
putting to use unlabeled real world ToF measurements to adapt the training performed
on synthetic to the real world data. Specifically, the Coarse-Fine CNN drawn on the one
introduced in [3] is jointly trained in a supervised fashion on a synthetic dataset, for which
the ground truth depth is known, and at the same time in an unsupervised way on a real
dataset, for which the depth ground truth is unknown.
For the training on the latter data, the authors manage to use an adversarial loss and
a learning framework based on the Generative Adversarial Network (GAN) model. In
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Figure 2.20: “DA-F Architecture” (taken from [2]). The generator is a coarse-fine CNN
inspired by the previous network architecture described in [3], while the discriminator is
a straightforward CNN with four convolutional layers.

doing so, this approach paves the way for research field concerning the application of the
domain adaption to the denoising of ToF raw depth data.

Fig. 2.20 reveals the architecture of the proposed approach. As it is possible to notice
by looking at the figure above, the generator is based on a Coarse-Fine CNN that is fed
with several features learned from the ToF raw measurements and outputs the error-free
depth map estimation. The discriminator network is instead employed for the adversarial
learning and domain adaptation task.
Following the approach described in [3] and already explained in detail in Subsection
2.3.5, the input data is pre-processed so that it may be feasible to draw out a represen-
tation IG which includes suitable insights about the MPI appearance and robustness. In
particular, five different feature channels are pulled out from the ToF estimates and stacked
together according to:

IG =

(︃
d60; d20−d60; d50−d60;

A20

A60
−1;

A50

A60
−1
)︃

(2.31)

where dx and Ax represent the depth maps and the amplitude images, respectively, ac-
quired at x MHz. Differently from [3], without any further pre-processing of the input
data, IG is given as input to the generator Coarse-Fine convolutional neural network, that
outputs the undistorted depth map.
As previously anticipated, the discriminator CNN block is instead employed to implement
an unsupervised domain adaptation from synthetic to real data, through the usage of an
adversarial learning strategy. This idea represents a key point of clear advancement with
respect to previous works on this topic.
The following paragraphs explain more in detail the structure of the proposed architecture,
whose specifics can be thoroughly read out in the already cited paper.

Generator Network Architecture. As shown in Fig. 2.21a, the proposed generator net-
work G is composed by a Coarse-Fine CNN, as already apprehended. The coarse network,
made of a stack of five convolutional layers with 3× 3 kernels with ReLU as activation
function (except for the last one), is able to acknowledge and perceive at the end a broad
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(a) Architecture of the generator network G.

(b) Architecture of the discriminator network D.

Figure 2.21: “Generator and Discriminator of DA-F” (taken from [2]). Architecture
of the generator network G (a), and of the discriminator network D (b) of the proposed
framework.

receptive field. Its output, denoted as dG,C = GC(IG), is directly a scene geometry estima-
tion at low resolution (and not the MPI alteration, differently from [3]). The fine network
consists again of five convolutional layers with 3× 3 kernels with ReLU as non-linear
activation function (except for the last one), but without max pooling layers in the first
two blocks. The aim of this second sub-network is that of labouring at full resolution in
order to finally get precise insights regarding the observed scene details. The output of the
fine CNN is denoted as dG = G(IG). Worthy of notice is that, similarly to the approach
described in [3], the output of the first coarse sub-network (dG,C) is first up-sampled using
a bilinear interpolation and then fed to the 4th layer of the fine network. This is done so to
make fully use of the global scene information.

Discriminator Network Architecture. Having in mind the idea of carrying out the un-
supervised domain adaptation task, the discriminator convolutional neural network D is
introduced. Its goal is that of apprehending the association existing between the noisy
depth data and the related noise image, so to recognize how to distinguish the ground
truth depth maps from the undistorted ones produced by G . Thus, the discriminator is fed
with the inaccurate depth map dn and the error map E (that could be the difference either
between the noisy and the ground truth depth maps Egt = dn− dgt or between the noisy
and the generator output depth maps EG = dn−dG). The output of D should be 0 if the in-
put is ID;G = (dn;dn−dG) = (dn,EG) or 1 if the input is ID;gt = (dn;dn−dgt) = (dn,Egt).
This means that the discriminator, by focusing on the raw ToF measurements and their
relationship with the estimated error, gets rid of all the data generated by G that are not
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coherent with the ground truth information, thus preventing the output of G to diverge
from its input.
The architecture of the proposed discriminator network is shown in Fig. 2.21b: it is made
of five sequential convolutional layers with 4× 4 kernels, each followed by a batch nor-
malization layer and a ReLU activation function, again except for the last one. The net-
work is trained by minimizing the loss function described as follows:

LD =−E
(︁
log(D(ID;gt))+ log(1−D(ID;G))

)︁
(2.32)

The generator G is trained both on a synthetic dataset in a supervised fashion and on a real
dataset in an unsupervised way, through the minimization of a loss function constituted
by two parts:

LG = Lsup +w ·Ladv (2.33)

where:{︄
Lsup = E[|ds

G−ds
gt |]+E[|ds

G,C−ds
gt |] in which s is the synthetic dataset.

Ladv = E[−log(D(Ir
D;G))|] in which r is the real dataset.

. (2.34)

More details on the training procedure are found in sections 6 and 7 of the paper [2] that
is explained in this part.
The effectiveness of the proposed approach is demonstrated by the evaluation on two
different real world datasets, proving that the framework outperforms all other state-of-
the-arts methods, without adding too much complexity to the overall structure. Moreover,
the introduced approach, firstly thought for ToF denoising, could be theoretically applied
to all data denosing tasks where the learning phase done over a supervised (synthetic)
dataset should be adapted to (completely) different domains. However, the model incurs
on the same limitation that affects the previous work on which this is based on, that is
the impossibility to work in real-time due to the need of an input acquired at different
modulation frequencies.
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Chapter 3

Point Cloud Registration

Point clouds have recently become more and more employed as a way of representing the
3D world, as thoroughly explained in [48]. This is particularly true if one considers the
accelerated growth of high precision sensors, i.e., LiDAR, Kinect and ToF cameras. The
main limitation of these devices is the narrow sight range they could observe the scene at,
and this is the reason why registration schemes come of paramount importance to build
and extract wider 3D real world sections. When talking about point cloud registration
the problem which has to be tackled is that of estimating the transformation matrix be-
tween two point clouds. Employing this transformation matrix, it is feasible to obtain a
full 3D point cloud by incorporating several incomplete scans of the same scene. The im-
portance of point cloud registration can be mostly appreciated by looking at its precious
contribution in several computer vision tasks, briefly described in the following.

3D Reconstruction. Generating a complete 3D scene is a basic and significant technique
for various computer vision tasks, including high-precision 3D map reconstruction in au-
tonomous driving, 3D environment reconstruction in robotics and so on so forth.

3D Localization. Discovering an agent location in a 3D scene is of extremely interest
for robotic fields. Point cloud registration algorithms may be able to take a real-time 3D
scene insight and precisely locate it onto the corresponding 3D environment.

Pose Estimation. Given a point cloud A that represents 3D real-time scene and a second
point cloud B that instead indicates the 3D domain in which the first belongs to, retriev-
ing the right translation and rotation parameters could result in finding the right pose
information about point cloud A with respect to B. This may be eventually employed for
decision-making in robotic tasks. A possible usage could be that of getting the robotics
arm’s pose information to decide where to move to grab an object accurately. This last
application is particularly important for this thesis work, that has the objective of building
a NN-based approach for computing the 6 DoF pose estimation of objects detected with
ToF sensors.

An example of point cloud registration is illustrated in Fig. 3.1, taken from [74]. By look-
ing at the image, it is possible to notice a tree, a lamppost and a bench observed through
a laser from two different poses. The key element is that the points are imperceptible,
thus only the information regarding their position in the scene can be used to align the
two point clouds. Fig. 3.1-Left shows the starting position of the two point clouds, while
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Figure 3.1: “Example of Point Cloud Registration” (taken from [74]). On the left the
initial position of the two point clouds is depicted, on the middle is shown the alignment
error with dark red lines, whereas on the right the final alignment of the two point clouds
is represented.

Fig. 3.1-Middle represents with dark red lines the initial error alignment existing between
the two input scans. The individual points are all alike and indistinguishable one another.
Nonetheless, the information coming from the closeness to other points provides every-
thing that needs to automatically align the two point clouds, as it is possible to see in
Fig. 3.1-Right where the final result is depicted.

As shown in this basic example, the alignment step is a non-trivial task, and it usually
needs enough overlap between the two point clouds so that one could use the overlapping
parts of these views to find the best alignment. In the history and literature of point
cloud registration methods, this alignment procedure is most of the times thought as an
optimization problem relying on the point clouds geometry, as exhaustively illustrated in
[44]. However, many other methods leveraging on features extraction, correspondences
and deep learning have been recently proposed and used to tackle this intricate task.

In the following Sections, the state-of-the-art frameworks for point cloud registration are
described in detail. In particular, according to the comprehensive survey exemplified in
[48], these methods can be divided into three main categories, named optimization-based
methods, feature-learning methods and end-to-end learning-based methods.
Fig. 3.2 briefly shows the main differences of these methods. As it is possible to notice,
given two input point clouds, optimization-based methods iteratively compute the corre-
spondences between the source and the target point clouds, finally creating as output the
transformation T that best aligns them. Feature-learning methods estimate the features
using a deep neural network (or any other different methods), and only in a second mo-
ment they iteratively estimate the correspondences based on these features extracted, until
they reach the final transformation T . Finally, end-to-end learning-based methods use an
end-to-end framework to estimate the optimal transformation T without performing any
iterative approach nor relying on extracted features.
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Figure 3.2: “Point Cloud Registration Methods” (taken from [48]). (a) depicts
an Optimization-Based Framework for Point Cloud Registration, (b) shows a Feature
Learning-Based Framework while (c) represents an End-to-End Learning-Based Frame-
work.
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3.1 Optimization-Based Methods

Optimization-based registration consists of using optimization policies to accurately esti-
mate the transformation matrix. It is usually possible to distinguish two different steps:
searching for the correspondences and estimating the transformation.
Fig. 3.2(a) summarizes the main stages at the very basis of these methods: correspondence
searching refers to the finding of the matched point for every point in another point cloud,
while transformation estimation makes reference of the estimation of the transformation
matrix by using the computed correspondences. These two steps are iteratively conducted
in order to find at the end the optimal transformation.

The main advantage of these methods relies on the fact that they do converge without the
needing of any training data. Moreover, they generalize well to unknown scenes.
Unfortunately though, many sophisticated strategies are required to overcome the varia-
tions of density and noise in the input data, the outliers and the partial overlap, and this
inevitably increases the computational cost of these algorithms.

In the following subsections, the state-of-the-art optimization-based methods are pre-
sented: in particular, subsection 3.1.1 concentrates on the ICP [12] algorithm, subsec-
tions 3.1.3 and 3.1.2 focuses on its variants, namely Go-ICP [99] and LM-ICP [32], while
subsection 3.1.4 finally strengthens the FGR [106] approach, that is the one chosen to be
reproduced in this thesis work, as will be explained more in detail later on.

3.1.1 ICP

In the early 1990s [12] introduces the ICP (Iterative Closest Point) algorithm, that is one
of the most used in the Point Cloud Registration history (alongside its many variants that
have been developed during the years). As stated by the authors, ICP algorithm only
requires a procedure to find on a geometric system the closest point for each given one.
Thus, it is formulated in such a way that it invariably monotonically converges to the
closest local minimum. Experiments and experience show that the rate of convergence is
fast especially during the first few iterations.

After having identified a suitable starting set of transformations (that is, rotation and trans-
lation) for a particular class of objects, it is feasible, through the evaluation of every initial
registration, to minimize in a global manner a metric that takes into account the mean
squared distance over the 6 DoF . Given a theoretical form X , ICP algorithm could be
expressed according to this geometric entity, provided that its inner model and character-
istics are known in advance.
Thus, this algorithm can be equally applied to sets of points, line segments, parametric
and implicit curves, triangles, parametric and implicit surfaces.

In the method’s illustration, a “data” shape P is registered, that means positioned, to be
oriented in the best possible way with respect to a “model” shape X. The “data” shape
must therefore be broken up into a point set, in the case that it is not yet in that form.
The distance metric d between an individual data point #»p and a “model” shape X is
defined by the authors as:

d( #»p ,X) = min
#»x ∈X
∥ #»x − #»p∥ (3.1)
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The closest point in X that gives the minimum distance is denoted as #»y and it is defined
so that:

d( #»p , #»y ) = d( #»p ,X), where #»y ∈ X . (3.2)

Indicating with Y the resulting set of the closest points and with C the closest point oper-
ator, it is possible to write:

Y =C(P,X) (3.3)

Given the resultant corresponding set Y, the least squares registration is calculated as:

( #»q ,d) = Q(P,Y ) (3.4)

and the positions of the “data” shape point set are finally corrected as P = #»q (P).
Overall, ICP algorithm can be reported following Alg. 1 as stated by the authors of [12].

Despite the fact that ICP is supposed to monotonically converge to a local minimum from
any given transformation of the data point set, it could happen that it doesn’t converge
on the desired global minimum. Therefore, the only way to be sure to reach the global
minimum is that of finding the minimum of all the local minima.
Unfortunately though, it is difficult to precisely identify, in general, the partitioning of
the registration state space into local minima regions of attraction, named wells. This is
caused by the fact that the partitioning could be very different for every possible shape
encountered in the point dataset.

ICP algorithm has always represented a benchmark method for all the point cloud regis-
tration approaches presented in the following years, and this is because of its capability of
working in a 6 DoF space without pre-processing the 3D point data, its independence of
shape representation and its robustness to normally-distributed vector noise.
Besides its great advantages, it also presents some important drawbacks: it is suscepti-
ble to evident statistical outliers, the cost of local matching can get quite high for small
admissible occlusions percentage and it could get stuck in local minima if it lacks of a
proper initialization.

Algorithm 1 Iterative Closest Point (ICP) Algorithm [12]
Require: Point set P with Np points { #»p i} from the “data” shape and “model” shape X

Initialize P0 = P, #»q 0 = [1,0,0,0,0,0,0]t and k = 0
while convergence do

1. Compute the closest points: Yk =C(Pk,X) ▷ cost:O(NpNx)

2. Estimate the registration: ( #»q k,dk) = Q(P0,Yk) ▷ cost:O(Np)

3. Apply the registration: Pk+1 =
#»q k(P0) ▷ cost:O(Np)

4. Conclude the loop when the mean squared error value drops down below a preset
threshold τ > 0 specifying the desired registration precision: dk−dk+1 < τ
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3.1.2 LM-ICP

[32]’s main novelty is the rejection of one of the basic principles of ICP [12], that is its
closed-form internal iterations, and the usage as a replacement of a conventional itera-
tive non linear optimizer, the Levenberg–Marquardt (LM) algorithm presented in [75].
Following this approach, the proposed method incurs no significant loss of speed, but
remarkably increases the robustness of ICP itself.

In its easiest version, the ICP algorithm performs two stages iteratively. Starting from
an initial estimate of the registration parameters, a0, the algorithm forms a sequence of
estimates ak, which progressively reduce the error E(a) defined as:

E(a) =
Nd

∑
i=1

wi min
j

ε
2(|m j−T (a;di)|) (3.5)

where {m j}Nm
j=1 and {di}Nd

i=1 are the “model” and the “data” elements respectively, ε2(|x|)
is an error function that measures the alignment (typically it holds that ε2(|x|) = ∥x∥2)
whereas wi are the weights set to 0 for points with no match and to 1 otherwise. T is
finally defined as the optimal transformation which best aligns “model” and “data” points
while a = [θ , tx, ty] is a p-vector that carries T ’s parameters.

The proposed approach directly minimizes the model-data fitting error E(a) via non-linear
minimization. The LM algorithm is an optimization procedure that is specifically tailored
to functions that could be formulated according to a sum of squared residuals, such as the
just described error E. Indeed, this error function E(a) can be easily dashed off as the
sum of Nd residuals as:

E(a) =
Nd

∑
i=1

E2
i (a) (3.6)

where the residual for the ith data point is provided with the following formula:

Ei(a) =
√

wi min
j

ε(|m j−T (a;di)|) (3.7)

Algorithm 2 LM-ICP Algorithm [32]

1 Function a = LMICP ({m j}Nm
j=1,{di}Nd

i=1,a0).
2 Set λ to an initial value.
3 Set a = a0.
4 Loop
5 Compute ek = e(a). ▷ One closest-point computation.
6 Calculate J. ▷ p closest-point computations.
7 Update λ until ak = a− (JT J+λ I)−1JT ek reduces the error ∥e(ak)∥2.

▷ One or more closest-point computations.
8 Set a = ak.
9 until λ is high. ▷ So only a small gradient descent step lowers the error.
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Thus, the error function E(a) can be expressed in terms of residuals vector by writing:

e(a) = {Ei(a)}Nd
i=1 =⇒ E(a) = ∥e(a)∥2 (3.8)

The LM algorithm integrates the gradient descent technique with the Gauss–Newton ap-
proach in order to minimize the objective function. The main objective of each iteration
is that of selecting an update to the current estimate ak -let’s call it x-, so that by im-
posing ak+1 = ak + x the error E(a) could be decreased. Introducing Jacobian matrix J,
Gauss-Newton approximations and a bit of complex math it is possible to reach the final
algorithm, that is explained in [32] and summarized in Alg. 2.

The derivatives of E are computed via finite differencing, paying an extra cost of p func-
tion evaluations for each internal loop. This leads to the assumption that the cost of
each iteration raises by a factor of 1+ p, for the most straightforward LM-ICP version.
Nonetheless, LM typically needs fewer iterations to obtain a pre-determined accuracy,
hence this threshold is an upper bound. Most of the times thus the lightening in the itera-
tions number will greatly surpass the increase of the cost of every single iteration.
The fundamental contribution of Fitzgibbon is that of having established in this paper a
non-linear optimization procedure for point cloud registration tasks, which is not limited
however to a single purpose. Without losing too much in speed, the introduced multipur-
pose framework results in being simpler to program and leads to a more robust estimation,
working overall better with respect to the conventional ICP algorithm.

3.1.3 Go-ICP
Among the number of registration methods proposed in literature, ICP [12] is the most
famous algorithm for accurately performing an alignment between two 2D or 3D point
clouds through a rigid transformation. Given an initial set of rotations and translations,
ICP algorithm repeatedly acts two phases in sequence: it first builds correspondences be-
tween nearest points under the current transformation, then starting from the extracted
correspondences it tries to estimate a new transformation, and this goes on until conver-
gence.

Figure 3.3: “SE(3) space parameterization for BnB” (taken from [99]). (a) shows the
rotation space SO(3) parameterized in a solid ball with radius π , (b) depicts the translation
that is assumed to be within a 3D cube [−ξ ,ξ ]3. The octree structure is used to divide
(branch) the domains: the yellow small boxes inside each diagram indicate a sub-cube.
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Nonetheless, ICP presents a serious drawback, which is its vulnerability to local minima.
Due to its inner iterative nature, it could effortlessly get stuck in a local minimum if
an adequate initialization is not provided. If this is the case the estimation may greatly
diverge from the optimal one, leading to a completely wrong transformation result. More
faultfinding, there is no definitive nor well-grounded way to understand whether it is stuck
in a local minimum or not. To deal with this issue, [99] is the first research to ever
introduce a solution to the Euclidean registration problem that works at a global scale. The
newly presented approach is always capable of formulating the solution that best aligns
the two input point clouds, in an exact and globally-optimal fashion, until a predefined
precision. This model takes the name of Globally-Optimal ICP (Go-ICP).

The Branch and Bound (BnB) algorithm, which provides a strong global solution illus-
trated in [56] to optimize NP-hard problems, is used by the Go-ICP algorithm and applied
to 3D registration.
The overall structure of the proposed method can be summarized in this way:

Use BnB to search the space of SE(3)
Any time a greater solution is retrieved, call ICP starting from this solution
to improve the objective function value. Utilize ICP’s outcome as a correct
upper threshold to carry on with BnB procedure.

Loop until convergence.

As reported in [99], Go-ICP algorithm can be explained in detail by following Algs. 3 and
4. Briefly explicating the behaviour of this model, Yang et al. use a nested BnB search
structure: an outer BnB explores the rotation space of SO(3) and finds a solution for
the bounds and the corresponding optimal transformation through the usage of a second
inner BnB. Please find more information about BnB algorithm by looking at Fig. 3.3 and
reading the relative paper [56].
In the implementation of the inner and the outer BnBs the authors propose to employ a
best-first search strategy, in which each of the BnBs conserves a priority queue. When the
difference between the finest error E* achieved at a certain point and the lower limit E of
the current cube is lower than a predefined threshold ε , the BnB procedure terminates.

Figure 3.4: “Relationship between ICP and BnB” (taken from [99]). BnB and ICP
jointly work to update the upper bounds during the search procedure.

Lines 13-14 of Alg. 3 show that every time the outer BnB retrieves a cube Cr with the
upper limit lesser than the value of the function which is currently the best one obtained,
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it calls the traditional ICP, setting its center of rotation to Cr. Being advised by this global
BnB, ICP algorithm converges to local minima. Specifically, each local minimum it finds
and surpasses has a lower error with respect to the previous ones, being able to reach in
this way the global optimum minimum.

Algorithm 3 Go-ICP Algorithm [99]: BnB search for optimal registration in SE(3)

1 Input: “Data” and “Model” points; threshold ε; initial cubes Cr,Ct .
2 Output: Globally minimal error E* and corresponding r* and t*.
3 Put Cr into priority queue Qr.
4 Set E∗ =+∞.
5 Loop
6 Read out a cube with lowest lower-bound Er from Qr.
7 Quit the loop if E∗−Er < ε .
8 Divide the cube into 8 sub-cubes.
9 For each sub-cube Cr do
10 Compute Er for Cr and corresponding optimal t by calling Alg. 4 with r0,
11 zero uncertainty radii, and E∗.
12 if Er < E∗ then
13 Run ICP with the initialization (r0, t).
14 Update E∗,r∗,and t∗ with the results of ICP.
15 end if
16 Compute Er for Cr by calling Alg. 4 with r0, γr, and E∗.
17 if Er ≥ E∗ then
18 Discard Cr and continue the loop.
19 end if
20 Put Cr into Qr.
21 end for
22 end loop

Fig. 3.4 exemplifies the synergistic relationship associating ICP and BnB. Due to the main
property of ICP, that is its monotonically convergence to the current best error E∗, its local
search trajectory is confined to encourage sub-cubes with little lower limits. By doing that,
the global BnB and local ICP algorithms are combined together in the proposed Go-ICP
approach. The global BnB assists the latter in jumping out of local minima by piloting its
search of the next minimum to reach, whereas the speeds up the former’s convergence by
improving and rectifying the superior limit, thus ameliorating the final efficiency.

Go-ICP algorithm presented by Yang et al. provides overall good results for 3D registra-
tion tasks and it guarantees global optimality without taking into account the initialization.
This method is particularly useful when an exactly optimal solution has to be achieved or
a fine initialization cannot get reliably acquired. However, due to the slowness of the
convergence, it is not suitable for real-time applications, such as the ones in robotics.
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Algorithm 4 BnB search for optimal translation [99]

1 Input: “Data” and “Model” points; threshold ε; initial cube Ct ; rotation r0; rotation
uncertainty radii γr, so-far-the-best error E*.
2 Output: Minimal error E* and corresponding t*.
3 Put Ct into priority queue Qt .
4 Set E∗t = E∗

5 Loop
6 Read out a cube with lowest lower-bound Et from Qt .
7 Quit the loop if E∗t −Et < ε .
8 Divide the cube into 8 sub-cubes.
9 For each sub-cube Ct do
10 Compute Et for Ct as Et = ∑i max(ei(Rr0, t0)− γri,0)

2, with r0, t0 and γr.
11 if Et < E∗t then
12 Update E∗t = Et , t∗ = t0.
13 end if
14 Compute Et for Ct as Et = ∑i max(ei(Rr0, t0)− (γri + γt),0)2, with r0, t0,
15 γr, and γt .
16 if Et ≥ E∗t then
17 Discard Ct and continue the loop.
18 end if
19 Put Ct into Qt .
20 end for
21 end loop
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3.1.4 Fast Global Registration
Observing two point clouds P and Q, the task of finding a rigid transformation T that best
aligns Q to P is carried out by [106] through the optimization of an objective function
based on the correspondences between P and Q. A feature matching algorithm, completed
before the optimization of the objective function, is used to acknowledge these correspon-
dences. The key idea at the basis of this approach is that these extracted correspondences
are not further recalculated during the optimization procedure. Thus, it is of paramount
importance that the optimization is able to deal with very noisy correspondence sets.

Let κ = {(p,q)} be the set of correspondences gathered by pairing up points from P and
Q point sets. To provide this initial correspondence set κ , the authors suggest to use the
Fast Point Feature Histogram (FPFH) feature [79], because it is very fast to be calculated
(a fraction of a millisecond) and it also obtains a fine matching accuracy covering a wide
amount of datasets. Being κI the set that accumulates all these correspondences, Zhou
et al. decide then to use two tests to further enhance the amount of inliers in the corre-
spondence set employed by the Fast Global Registration algorithm, namely reciprocity
and tuple tests. Applying these tests, the final set to be considered is the one that contains
only the correspondences that are compatible one another, and it is referred to as κIII .

The objective of FGR algorithm is the optimization of the transformation T that minimizes
the distances between matching points over the two point clouds, while ideally leaving
apart fake correspondences from the κ set. In mathematical terms, it is possible to express
the objective as follows:

E(T ) = ∑
(p,q)∈κ

ρ(∥p−T q∥) (3.9)

where ρ(·) denotes a robust penalty.

Algorithm 5 Fast Global Registration Algorithm [106]

Input: A pair of surfaces (P,Q).
Output: Transformation T that aligns Q to P.
Compute normals {np} and {nq}.
Compute FPFH features F(P) and F(Q).
Build κI by computing nearest neighbors between F(P) and F(Q).
Apply reciprocity test on κI to get κII .
Apply tuple test on κII to get κIII .
T ← I, µ ← δ 2.
while not converged or µ > δ 2 do

Jr← 0, r← 0.
for (p,q) ∈ κIII do

Compute l(p,q).
Update Jr and r of Objective 3.11.

Update T
Every four iterations, µ ← µ/2.

Verify whether T aligns Q to P.
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In order to obtain inflated computing proficiency, it is mandatory not to sample, corrobo-
rate, cut back or recalculate correspondences during the optimization, but a fair estimator
ρ should automatically carry out validation and pruning steps without forcing supple-
mentary computational costs. Having this in mind, the authors of [106] use a scaled
Geman-McClure estimator, defined as:

ρ(x) =
µx2

µ + x2 (3.10)

Small residuals are disadvantaged according to a least squared metric, whereas the outliers
are counterbalanced through the swift flattening out of the estimator. The domain across
which the residuals show a noteworthy consequence on the objective is managed by the
parameter µ .

The direct minimization of Objective 3.9 is not straightforward. This is the reason why
Zhou et al. decide to making use of the “Black-Rangarajan duality between robust es-
timation and line processes” [15]. Concretely, being L = {lp,q} a line process over the
correspondences, they optimize over T and L the objective that follows:

E(T,L) = ∑
(p,q)∈κ

lp,q∥p−T q∥2 + ∑
(p,q)∈κ

Ψ(lp,q) (3.11)

In the equation above, Ψ(lp,q) is a prior set to:

Ψ(lp,q) = µ(
√︁

lp,q−1)2 (3.12)

Optimizing Objective 3.11 returns a solution T that is also optimal for the original objec-
tive 3.9. The main benefit of the latter objective is that the optimization can be executed
in an extremely efficient way by alternating between optimizing T and L.
In this way, the alternating algorithm is guaranteed to converge. Alg. 5 summarizes the
fast global registration algorithm described in the cited paper.

Many applications require aligning multiple scans to obtain a single model of a large
scene. To solve this multi-way registration problem, existing approaches proceed in two
sequential steps: (1) they firstly calculate pairwise alignments between pairs of scans
and then (2) they try to synchronize these alignments to get a final global registration.
Nonetheless, the pairwise alignment stage is computationally wasteful and could poten-
tially yield a sub-optimal alignment due to local minima. The alternative approach de-
veloped in [106] consists of directly aligning all the input scans on the basis of matching
point correspondences. Doing so, it is feasible to straight optimize a global registration
objective over all surfaces.

The major benefit of FGR approach is the fact that it is significantly faster than prior
approaches and state-of-the-art variants of ICP. The key reason is that it doesn’t need
to recompute correspondences: indeed, the majority of the time is spent on computing
the FPFH features and building the input correspondences, but these operations are per-
formed only once before the optimization, and the correspondences are never updated.
By doing that, it basically accomplishes in a single stage what is commonly done in two.
Thus, the optimization itself is extremely fast. In addition, it validates the algorithm only
once, after the optimization procedure has reached a minimum, without considering the
fact that it is much more robust to noise.
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3.2 Feature-Learning Methods
Differently from the traditional optimization-based registration methods, feature-learning
frameworks exploit deep neural networks (or any other available method) to acknowledge
a strong feature correspondence search. The transformation matrix is lastly concluded
through a one step estimation (e.g. RANSAC) without iteration.
Fig. 3.2(b) summarizes the main steps of these methods.

Their advantages lie in the robustness and the accuracy, achieved by virtue of the usage of
deep learning approaches. Nevertheless, they need large training data and the registration
performance greatly falls in unknown scenes, in the case they are particularly different
from the training data.

In the following subsections, the state-of-the-art feature-learning methods are handed out:
specifically, subsection 3.2.1 focuses on the PPF-FoldNet [25] model, subsection 3.2.2
concentrates on the IDAM [57] approach, subsection 3.2.3 explains the DCP [91] archi-
tecture while subsection 3.2.4 finally strengthens the FRR Global Registration approach,
using FPFH features [79] followed by the (classic) RANSAC [31] method.
This last framework will be reproduced in this thesis work, as explained in Chapter 5.

3.2.1 PPF-FoldNet
Deep learning techniques for the extraction of 3D local features are affected by one or
more out of the following problems:

1. Being supervised and needing a huge amount of labels

2. Being sensitive to 6 DoF rotations

3. Demanding noteworthy hand-crafted preparation of the input data

4. Lacking of good enough performance

The authors of [25] try to jointly address all these issues by presenting PPF-FoldNet, an
unsupervised feature-learning network capable of achieving greatly precise performance
over the 6 degrees of freedom. PPF-FoldNet is straight fed with input point clouds, and
it is designed to be capable of considering the point sparsity and working properly with
density dissimilarities. This deep neural network is proved to be rotational invariant by
virtue of the point pair feature (PPF) [13] which embeds local 3D properties into patches.
PPF lives in a 4D space: hence, it is a not straightforward task to picture it. While simple
solutions such as PCA would work, the authors of the presented paper prefer to rely on a
more geometrically meaningful solution.
Therefore, as opposed to a previous approach, PPFNet (described in [26]), Deng et al.
propose an original variant: the collection of the 4D PPFs is fed to an end-to-end auto-
encoder (AE), trained to autonomously reconstruct the PPFs.

The input point cloud is composed by a point set X = {xi ∈ R6}, in which every point is
enhanced with its normal, i.e., tangent space, n ∈R3 : x = {p,n} ∈R6. From these points
the local patches are computed: they can be considered as a subset of the input Ωxr ⊂ X
center around a reference point xr. These patches are finally fed to the neural network as
input.
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Figure 3.5: “PPF-FoldNet Architecture” (taken from [25]). From the input point cloud
local patches are first of all extracted, and then converted into PPF models. Thus, they are
fed to the encoder part of the network, which squeezes them into codewords, which con-
tains the most crucial and important information. Lastly, starting from these compressed
codewords the decoder part of the neural network searches a way to rebuild the initial
PPFs.

The overall architecture of the network is shown in Fig. 3.5. As mentioned before, PPF-
FoldNet depends on the idea of learning a rotation-invariant representation of the input
point cloud, named PPFs, through the usage of autoencoders. Doing that, the whole
point is that of getting a low dimensional embedding space which shows to be accurately
invariant. Specifically, after the input layer the proposed architecture is composed by a
three-layer Multi-Layer Perceptron (MLP) followed by a max pooling layer, whose aim
is that of combining the individual features into a more global one. The local features are
thus compounded with the just obtained global one through the usage of skip connections,
obtaining in this way a stronger representation. Lastly, a second two-layer MLP takes as
input this just-formed features concatenation in order to obtain the final codeword, which
is the encoding employed as the local descriptor assigned to the point at the center of each
extracted patch.

At this point the part of the network employed as a decoder works in order to rebuild the
initial PPFs representation starting from a single codeword. This procedure constrains on
the other side the codeword itself to refine the most characteristic information from the
input of the network, which is encoded at a higher dimensional space. The folding per-
formed by the decoder is a without any doubt a non-linear operation. Thus, it is performed
by two MLPs one after the other: the first aims at collapsing the codewords to obtain a
warped grid, which is then attached to the codewords themselves, while the second takes
the output of the previous MLP and works in order to rebuild the original PPFs which
served as input to the network. Overall, the folding could be considered as extremely
important not only for simplifying the decoding operation, but also and most importantly
for letting the network itself being more explicable.
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To summarize, PPF-FoldNet is built in such a way that it doesn’t need supervision to
reach the goal it is designed for. Built above its immediate forefathers such as PointNet,
FoldingNet and PPFNet, it takes the best from all of them.
A part from presenting a very useful rotation invariance, extensive experiments conducted
by the authors with several datasets, such as 7-Scenes [82], SUN3D [98] and many others,
prove that this framework outperforms all the state-of-the-art methods, including the ones
learned in a traditional supervised fashion. In this sense, [25] offers a new encouraging
perspective to one of the major issues in the 3D features extraction phase, that is its unsu-
pervised performing.
The complexity of the model (with three MLPs between the encoder and the decoder
working together) and the non real-time performance don’t make it a good candidate for
robotic applications though.

3.2.2 IDAM

[57] proposes Iterative Distance-Aware Similarity Matrix Convolution Network (IDAM),
an original learning-based method for extracting features starting from 3D point clouds
which may in part overlay.
The idea behind the model is that of building an iterative approach that combines both
geometric and distance features extracted from the input point sets, being able in this way
to obtain improved results with respect than using only one of them. Furthermore, the
authors of [57] introduce a module that is capable of calculating the similarity score on
the basis of the totality of the features extracted from the two point clouds. All of this is
implemented through an isolated convolutional block based on a similarity matrix which
is fed with an input represented in feature and classical geometry space.

Mathematically speaking, the aim of 3D features-learning registration methods is that of
finding the ground truth rigid body transformation (R∗, t∗) that (almost) perfectly aligns
an input source point cloud S, composed by NS points, to a target one T , constituted of NT
points.
In order to obtain this result, a matching correspondences’ set between the source and
target point sets has to be retrieved. In the literature of feature-learning approaches, most
of them try to employ the scalar product (or L2 distance) of the features extracted from the
point clouds as a similarity indicator. In doing so, they tend to straight take the ones with
the highest (or lowest for L2) value, but this leads to two major drawbacks. Firstly, one
point of the source point cloud S could in principle have more than one correspondences
in the target point cloud T , thus a single-pass matching process could provoke a mistake,
since due to randomness the selected points may not be the right corresponding ones.
Secondly, a straight calculation of the similarity between the extracted features cannot
properly recognize the similarity between two points since the matching procedure is
identical even for (very) distinct point pairs.
[57] therefore suggests to tackle these problems by using a similarity matrix convolution
module that is capable of retrieving the correspondences between matching points.
Fig. 3.6 shows the overall architecture of the proposed model.

Denoting with pi the ith point of the source point cloud and with q j the jth point of the
target point cloud, and assuming to have already extracted the features uS(i) for pi ∈ S

55



3 – Point Cloud Registration

Figure 3.6: “IDAM Registration Pipeline Architecture” (taken from [57]). It is possi-
ble to notice the presence of the distance-aware similarity matrix convolution, useful for
retrieving point correspondences. Moreover, worthy of notice are the hard point elim-
ination, which autonomously removes individual points which are not expected to be
certainly coupled, and the hybrid point elimination which instead utilizes the information
coming from both the points of the considered pair to calculate weights that will be then
employed in the optimization step.

and uT ( j) for q j ∈ T , both with dimension K, the authors propose to identify a distance-
augmented feature tensor described at iteration n as follows:

T (n)(i, j) =
[︃

uS(i);uT ( j);∥pi−q j∥;
pi−q j

∥pi−q j∥

]︃
(3.13)

where [·; ·] indicates the concatenation operation. The (2K +4)-dimensional vector at the
(i, j) position of the feature vector T (n) is calculated using geometric and Euclidean fea-
tures for the point pair (pi,q j) together. This feature tensor can thus be thought at as a
(2K +4)-channel 2D image.
With the aim of finding a similarity score for each of the considered point pairs, the au-
thors decide to employ a number of 1× 1 2D convolutional layers on T (n), obtaining in
this way as output an image of the same spatial size of the last layer but with a single chan-
nel. This resembles the application of a Multi-Layer Perceptron (MLP) on each location
of feature vector T (n). Lastly, they decide to implement a softmax function on every row
of the output image in order to obtain the similarity matrix, named S(n). Thus, S(n)(i, j)
stands for the similarity score for pi and q j (the higher is its value the more similar are the
points).
Moreover, since each row of S(n) can be considered as a normalized probability distribu-
tion over the whole feature vector T for some p ∈ S, the authors highlight that one could
think about S(n)(i, j) as the probability that q j is pi’s correspondence. Thus, in order to
retrieve the correspondence pairs they decide to compute the maximum value of each row
of the similarity matrix S(n).
By performing these steps, one could be able to obtain a set of correspondence pairs
{(pi, p′i) |∀pi ∈ S}, whose usage may lead to puzzle out the optimization problem de-
scribed here, in order to learn the rigid transformation (R(n), t(n)) that is the final goal of
the 3D registration:

R(n), t(n) = argmin
R,t

∑
i
∥Rpi + t− p′i∥2 (3.14)
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R(n) and t(n) are finally employed to rotate and translate the source point cloud to a new
position, in order to prepare it for the following iteration. The last (R∗, t∗) pair is estimated
through the compound of the intermediate (R(n), t(n)) computed throughout all the loops.

Since it is computationally expensive to put in application a convolution over the NS×
NT × (2K + 4) tensor, because NS and NT counts normally more than a thousand points,
the authors introduce a two-stage point elimination technique to achieve a nice trade-
off between performance and efficiency. The first stage, named hard point elimination,
autonomously removes the greater number of individual points which are not expected
to be coupled with certainty, while the second, called hybrid point elimination, removes
correspondence pairs by assigning lower weights to those pairs that are likely to be false
positives. With the introduction of the elimination weights wi through this two-stage
point elimination technique, it is possible to obtain (R(n), t(n)) with a marginally dissimilar
objective function with respect to Equation 3.14:

R(n), t(n) = argmin
R,t

∑
i

wi∥Rpi + t− p′i∥2 (3.15)

Theoretically, the second stage, hybrid point elimination, should be able to remove the
point pairs which are inaccurate due to noise or imperfection, allowing to achieve in this
way a better accuracy on the estimation of R(n) and t(n).
The two-stage elimination technique yields a visible speed up in the convergence of the
model, which turns out to be remarkably faster than the state-of-the-art learning-based
approach, while still achieving more or less the same accuracy and yet being less com-
putationally demanding. Moreover, as shown in the experiments provided by Li et al.,
the proposed framework is well suited with all the existing feature extraction methods,
including the learning-based, i.e., FPFH [79] features, and the conventional ones, such as
Graph Neural Network (GNN) [60, 92, 96] features.

3.2.3 DCP
Having in mind the objective of tackling the major problems of ICP algorithm, predom-
inantly related to the local minima issue, [91]’s authors introduce an original feature-
learning approach, named Deep Closest Point (DCP), which takes as input two point
clouds and tries to estimate the rigid transformation that best aligns them. The proposed
model is constituted of three different blocks: (1) a DGCNN [92] is used to recognize
correspondences between two input point clouds, that are mapped to a rotation-invariant
representation; then, (2) an attention-based module estimates a shadow matching between
point pairs extracted from the input point clouds; and lastly, (3) a Singular Value Decom-
position (SVD) layer forecasts the final transformation that aligns the source to the target
point cloud.
Fig. 3.7 depicts the DCP architecture, and the following paragraphs explain in detail each
of the related parts.

Initial Features. The goal of the first part of the DCP pipeline is that of mapping the
input point clouds X and Y to a rotation-invariant representation, in order to retrieve cor-
respondences between the point pairs. Due to the fact that the authors expressly want to
transform, through the usage of mapping m, the input into a per-point lower dimensional
space to build the final transformation, they look for a feature per point in the input point
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Figure 3.7: “DCP Registration Pipeline Architecture” (taken from [91]). This figure
shows the DCP architecture, remarking all its important parts, namely DGCNN, Trans-
former + Attention Module and SVD layer.

clouds instead of a feature per cloud. This is the logic behind the employment, by the
authors of [91], of a DGCNN [92], which is capable of learning a representation that in-
cludes both local geometry properties and global shape information. Specifically, given a
set of points X , DGCNN builds a k-NN graph G, starting from which it puts in applica-
tion non linearities in order to derive edge-wise values from boundary points. Lastly, it
implements for every layer an edge-wise aggregation, e.g. either max or ∑.
In formulas, let xl

i be the representation in the lower dimensional space of the ith point
in the lth layer, and hl

θ
be a non-linear function in the lth layer of a shared Multi-Layer

Perceptron (MLP). The forward mechanism of DGCNN is thus described as:

xl
i = f ({hl

θ (x
l−1
i ,xl−1

j )∀ j ∈ Ni}) (3.16)

where Ni indicates the set of neighbors of the ith edge in graph G. Therefore, the fact that
the most interesting features for the final alignment are simultaneously gathered starting
from global and local properties learned motivates the usage of DGCNN in the proposed
pipeline.

Attention and Pointer Generation. Moreover, Wang et al. try to further refine the ex-
tracted features by forcing them to be task-specific, which means trying to map them to the
lower dimensional space on the basis of the joint characteristics of the input point clouds
X and Y , instead of trying to transform the point clouds independently. Having this in
mind, they propose a module able to apprehend self-attention and conditional-attention
information to retain co-contextual details. This block is designed so to determine a func-
tion φ : RN×P×RN×P −→ RN×P, where P is the dimension of the embedding space in
which the input point clouds are mapped:

ΦX = FX +φ(FX ,FY )

ΦY = FY +φ(FY ,FX)
(3.17)

where FX and FY are the embeddings generated through the usage of the DGCNN.
The authors decide φ to be an asymmetric function implemented by means of a Trans-
former [88].
Moreover, a novel idea introduced in this paper to tackle the issue of ICP related to the
matching estimate being totally wrong is that of assigning to each xi ∈ X a probability
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vector over the whole point cloud Y , described as:

m(xi,Y ) = softmax(ΦY Φ
T
xi
) (3.18)

where ΦY ∈ RN×P is the embedding of the point cloud Y learnt though the attention
module, while Φxi indicates the ith row of the matrix ΦX obtained by the latter module
itself. It is possible to visualize m(xi,Y ) as a “soft pointer” from every xi to Y ’s points.

SVD Module. The last block presented in the DCP pipeline draws out the rigid transfor-
mation from the soft matching thoroughly described in the previous paragraph.
The authors propose the employment of the soft pointers to compute an average of the
correspondence point in Y for every point in X , described as follows:

ŷi = Y T m(xi,Y ) ∈ R3 (3.19)

where Y ∈ RN×3 is a matrix including the Y ’s points. Lastly, the rigid transformation,
which comprises the rotation RXY and the translation tXY , is computed by using a singular
value decomposition (SVD) depending on the mapping xi→ ŷi,∀i, expressed as:

RXY =VUT tXY =−RXY x̃+ ỹ (3.20)

where U,V ∈ SO(3), while x̃ and ỹ are the centroids of X and Y defined in this way:

x̃ =
1
N

N

∑
i=1

xi and ỹ =
1
N

N

∑
i=1

yi (3.21)

Loss. Integrating all together the previously described modules, it is possible to obtain a
model that maps the input point clouds X and Y to a rigid transformation [RXY , tXY ] which
aligns them. The first two blocks are based on two neural networks, whose weights should
be learned during the training step.
The loss function used is the following:

L = ∥RT
XY Rg

XY − I∥2 +∥tXY − tg
XY∥

2 +λ∥θ∥2 (3.22)

where g indicates the ground truth. The first two terms describe a distance on SE(3),
while the third one indicates the Tikhonov regularization [95] of the DCP parameters θ ,
which aims at reducing the complexity of the network itself.

Beyond providing a state-of-the-art registration technique, the authors of [91] demonstrate
the efficiency of the model and its performance, which outperforms that of ICP and its ex-
tensions. By combining the usage of a DGCNN and an attention module, DCP is capable
of accurately learning in a single pass the correspondences from which the best alignment
between the source and the target point clouds may be retrieved. This estimated transfor-
mation could be further enhanced by iteration or refined via traditional ICP.
Unfortunately, the complexity of this model represents a clear limit, while the perfor-
mance evaluated by the authors without considering the usage of the attention module,
thus with a “lighter” model, lacks in precision and accuracy. Moreover, the computational
time for dealing with point clouds with a large number of points grows exponentially,
leading to a non-applicability for real-time application.
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3.2.4 FPFH-RANSAC Registration
In this Subsection the FPFH-RANSAC Global Registration (FRR) approach, as indicated
in the procedure available in [107], is going to be explained in detail. It uses FPFH [79]
features and RANSAC [31] algorithm for the registration. Besides its low complexity,
the method obtained by combining them achieves good results, and this is the reason why
it is the algorithm chosen to be implemented in this thesis work, as the representative
sample of the feature-learning methods. Before going on with the description of the pre-
sented framework, one last note that will be also repeated later is that RANSAC is not
guaranteed to converge (unless increasing the number of iterations), thus it may happen
that for some point clouds alignments the performance won’t be in real-time. But for this
thesis work, this approach is taken into account in order to do a fair comparison with the
FGR optimization-based method described in Subsection 3.1.4 and the FMR end-to-end
learning-based one that will be eplainec in Subsection 3.3.6.

FPFH

As introduced in [81], Point Feature Histograms (PFH) reveal the local features that con-
stitute the essential characteristics of a point p. They are calculated starting from the
compound of geometrical associations between all the nearest k neighbors of p. These
features include, in their original version, ⟨x,y,z⟩ 3D point coordinates and estimated sur-
face normals ⟨nx,ny,nz⟩, but this doesn’t mean that they couldn’t contain also information
regarding other properties, e.g. curvature, second order moment invariants, etc.
The calculation of a PFH at a point p can be explained as follows (following the details
provided in [79]):

1. For each point p, all its neighbors within a sphere with a certain given radius r are
chosen (k-neighborhood).

2. For every points pair (pi, p j), with i /= j, in p’s k-neighborhood and their computed
normals (ni,n j), a Darboux [9] uvn frame (u = ni,v = (p j− pi)× u,w = u× v) is
defined, and the angular behaviour of ni and n j is calculated as follows:

α = v ·n j

φ =
u · (p j− pi)

∥p j− pi∥
θ = arctan(w ·n j,u ·n j)

(3.23)

Fig. 3.8a depicts the diagram of the PFH’s region of influence for a query point (pq). In
the figure below, pq is drawn in red and situated in the centre of a circle (a sphere in 3D)
with a given radius r. The totality of its k neighbors, that are the points having a distance
from the center lower with respect to the radius itself, are fully-connected, forming a
mesh.
Given a point cloud P with n points, the computational complexity for computing the
PFH can be evaluated as O(n ·k2), where k denotes the number of closest points for every
p ∈ P. When the number of points is particularly high, the computation of PFHs may
become extremely expensive, thus not allowing real-time or near real-time tasks.
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(a) “The influence region diagram for a Point
Feature Histogram”.

(b) “The influence region diagram for a Fast
Point Feature Histogram”.

Figure 3.8: “PFH”’s (a) and “FPFH”’s (b) influence region diagrams, both taken from
[79].

Thus, [79] introduces a simpler approach, named Fast Point Feature Histograms (FPFH),
which forces the complexity of the features computation to be O(n · k). In this way they
make its usage possible in real-time applications, without losing most of the PFH’s char-
acteristics. In order to disentangle the calculation of the features, the authors decide to
perform the following steps:

1. In a first step, denoted as Simplified Point Feature Histogram (SPFH), the connec-
tions between p’s neighbors and the point itself are calculated for every query point
p, according to Eq. 3.23;

2. Secondly, the k neighbors are computed for every single point, and the previously
calculated SPFH features are then employed by the authors to refine the ultimate
histogram of p, named FPFH, as follows:

FPFH(p) = SPFH(p)+
1
k

k

∑
i=1

1
ωk
·SPFH(pk) (3.24)

where the weight ωk denotes the distance between query point p and one of its neigh-
bors pk in a particular metric space.

Fig. 3.8b shows a diagram of the FPFH’s region of influence. As one can see by looking
at the figure above, every query point, marked in red, is associated just to its immediate
k-neighbors, that lie within the circle colored in gray. Each of these selected points in the
gray sphere is further associated to other nearby points, resulting in a weighted histogram
that forms the FPFH. It is worth noting that some pairs, highlighted with a 2 in the picture
above, are included twice in the FPFH calculation.

Summarizing, the authors of [79] highlight the differences between PFH and FPFH ac-
cording to the following points:
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1. In FPFH not all pq’s neighbors are connected, therefore the resulting histogram
could have insufficient information to learn the whole structure of the point itself.

2. While PFH is very accurate in shaping the model on the area surrounding pq, FPFH
may contain extra point pairs with a distance from the given point higher than the
radius r’s length that shouldn’t be there.

3. Due to the final weighting strategy the FPFH could anyway be capable of learning
some point pairs in the neighborhood of the point by merging SPFH values.

Besides being extremely fast, the Fast Point Feature Histogram (FPFH) features are
known for their rotation invariance and their accurate strength, which both make them
extremely suitable for the search of correspondences between two input point clouds.
Nonetheless, their robustness to very noisy point cloud data coming from predominantly
from ToF cameras still has to be completely proved.

RANSAC
[31] introduces a novel algorithm for learning a model’s parameters on the basis of ex-
perimental data, named Random Sample Consensus (RANSAC). The key idea behind this
method is clearly contrary with respect to the one at the basis of traditional techniques:
instead of being fed with a huge amount of data to achieve a solution which is deprived
in a second moment of all the worthless points, RANSAC tries to start with a very lim-
ited number of data entries in order to expand in a second moment the initial solution
whenever it is feasible.

The RANSAC algorithm is declared by the authors of [31] in an official manner in accor-
dance to what is reported below:

“Given a model that requires a minimum number of n data points to instantiate its
free parameters and a set of data points P such that the number of points in P is
greater than n [#(P)≥ n], randomly select a subset S1 of n data points from P and
instantiate the model”.

“Use the instantiated model M1 to determine the subset S∗1 of points in P that are
within some error tolerance of M1. The set S∗1 is called the consensus set of S1”.

“If #(S∗1) is greater than some threshold t, which is a function of the estimate of the
number of gross errors in P, use S∗1 to compute (possibly using least squares) a new
model M∗1”.

“If #(S∗1) is smaller than t, randomly select a new subset S2 and repeat the above
process. If, after some predetermined number of trials, no consensus set with t or
more members has been found, either solve the model with the largest consensus
set found, or terminate in failure”.

The algorithm just described presents three unstated parameters, that are going to be ex-
plained in detail in the following paragraphs: (1) the error tolerance employed to under-
stand if a point is well-matched for a specific model or not, (2) the number of subsets and
(3) the threshold t, that indicates the amount of suitable points above which one could
certainly state that the selected model is correct.
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Error Tolerance. Given a certain datum, its deviation with respect to a found model can
be represented as a function of the errors associated with both the datum and the model it-
self. Thus, if the found model is a straightforward data points’ function, computing proper
boundaries for the error tolerance in an analytical way might be feasible. Nonetheless, this
manageable procedure is most of the times not feasible: for the cases in which it is not, the
authors of the paper suggest to experimentally evaluate the boundaries on the tolerance.
Furthermore, being the expected deviation of a datum from a given model a function of
the datum itself, the error tolerance should in principle diverge when taking two different
datums. Nevertheless, the variation in error tolerances turns out to be significantly lower
with respect to the total error’s value, therefore considering a unique tolerance threshold
for all the available data is frequently adequate.

Maximum number of subsets. In order to conclude the searching of new subsets of P,
one could base the decision on the expected number of attempts k necessary to include
n good data points in a single subset. If at least one of the random selections has to be
a set of n data points without any error, with a certain probability z, one has to presume
to perform at least k iteration, with n data points for each iteration. Given the probability
w that any chosen data point is under the error tolerance value for a specific model, it is
possible to write:

k =
log(1− z)
log(1−b)

where b = wn (3.25)

This means that to achieve a 90% guarantee of getting at least one selection completely
discharged of errors it must hold that:

k =
log(0.1)

log(15/16)
= 35.7 (3.26)

Consensus Set Threshold. The threshold t is employed to understand whether a suit-
able consensus set has been found. Here, “suitable” means that an adequate number of
points for a specific n-subset of P has been selected, thus allowing the procedure to stop.
Therefore, the criterion at the basis of the choice of t’s value should take into account
two separate issues: (1) firstly, starting from the input data the correct model has to be
retrieved, and (2) secondly an adequate amount of points has to be found in order to allow
the model parameters to refine the computed estimations.
Being y the probability that any input data point lies below the error tolerance’s value of
an incorrect model, to make sure that the ultimate consensus set is not compatible with
this incorrect model it is desirable to have a very low yt−n’s esteem. There isn’t an estab-
lished way to accurately decide the value of y, but it is rational to take for granted the fact
that it has to be lower than w, being w the a priori probability that every data point can be
found under the error tolerance’s threshold of the correct model.

Just summarizing, RANSAC is capable of accurately learning a model’s parameters even
in the case of particularly noisy input data. Unfortunately though, as described in [93],
there is no upper bound on the time it takes to compute these parameters. Thus, when the
number of iterations is restricted or bounded the solution may be sub-optimal or partially
wrong, unable to precisely fit the data. In this sense RANSAC supplies a nice trade-off:
enlarging the number of iterations performed in the procedure leads to a significant grow
also of the probability of finding a proper model.
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3.3 End-to-End Learning-Based Methods
End-to-end learning-based methods try to find a solution for the registration problem with
an end-to-end approach based on the usage of neural networks. The key point at the very
basis of the methods is that of mapping the registration problem into a regression one.
The neural network is fed with two input point clouds, and its aim is their alignment
through the application of a transformation matrix, that is indeed the output of the model.
Therefore, the transformation estimation is actually embedded into the neural network
optimization, and this is the main difference with respect to the previously defined feature-
learning methods, whose focus is point feature learning instead. Fig. 3.2(c) summarizes
the foremost steps of these algorithms.

The main advantages of these frameworks lie in their capability of designing neural net-
work architectures specifically for registration tasks, and most importantly to jointly use
the traditional mathematical principles and the strength of relatively new deep neural net-
works. On the other side, the major drawbacks are that the transformation parameters
estimate happens as a black box and that they do not take into account the local structure
information.

In the following, the state-of-the-art end-to-end learning-based methods are extended:
precisely, Subsections 3.3.1 and 3.3.2 concentrates on the PointNetLK [5] model and
its variant with Awe-Net [51], Subsection 3.3.3 centralizes on the PointVoteNet [42] ap-
proach, Subsection 3.3.4 nourishes the DGR [23] model, Subsection 3.3.5 explains the
3DRegNet [70] architecture while Subsection 3.3.6 finally strengthens the FMR [47] frame-
work, that (together with 3DRegNet) is the one that will be replicated in this thesis work,
as explained in Chapter 5.

3.3.1 PointNetLK

[76] is the first paper to introduce the usage of a DNN fed with point clouds for classifi-
cation and segmentation. The architecture of the network proposed in this paper, named
PointNet, is able to obtain good performance, notwithstanding the ease of its structure.
In this sense, PointNet represents a revolution in the way in which deep learning models
approach point clouds, which are intrinsically unstructured.
The novel idea behind [5] is that of extending the study about PointNet, trying to employ
the alignment scheme initially thought for images also to the domain of point cloud regis-
tration tasks. The newly introduced method, called PointNetLK, uses the traditional Lukas
& Kanade (LK) algorithm [61] to build a recurrent neural network that is merged with the
already-existing PointNet architecture.

It is given the PointNet function φ : R3×N → RK , built in such a way that, starting from
an input point cloud P ∈ R3×N , φ(P) outputs a feature vector of dimensionality K. This
function employs a Multi-Layer Perceptron (MLP) to each point belonging to P, so that
the ultimate output dimension of each point is K. Subsequently, a symmetric (maximum
or average) pooling layer is applied in order to gather as final output the K-dimensional
global feature vector. Fig. 3.9 exhaustively depicts the architecture of the proposed model.

The optimization problem is thus described according to what follows. Given the source
PS and the target PT point clouds, the objective is to find the rigid transformation G ∈
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Figure 3.9: “PointNetLK Architecture” (taken from [5]). The figure depicts the way in
which the source PS and the target PT input point sets are fed to a shared MLP, immediately
followed by a pooling layer that outputs the feature vectors φ(PS) and φ(PT ) for the source
and the template, respectively. The best transformation parameters, learnt through the
learning procedure, are employed to gradually refine the pose of PS. Once these optimal
parameters have been found, at the end of the looping computation the global feature
vector φ(PS) is lastly recomputed.

SE(3) that best aligns PS to the template PT point cloud.
The estimated transformation G can be described in terms of an exponential map as:

G = exp(∑
i

ξiTi) ξ = (ξ1,ξ2, ...,ξ6)
T (3.27)

where Ti create the exponential map with transformation (rotation and translation) pa-
rameters ξ ∈ R6. The 3D point cloud registration task can therefore be expressed as the
problem of finding G so that it holds:

φ(PT ) = φ(G ·PS) (3.28)

where (·) indicates the transformation of PS through the application of G. This equation
is exactly equivalent to the one being considered in the traditional LK algorithm for 2D
images. In that case though, the whole point is that of deforming the source image so that
the dissimilarities between the intensity of the distorted source’s and target’s pixels are
reduced as much as possible.

A further important proposal that the authors of [5] take from the LK procedure is the
concept of Inverse Compositional (IC) [10], that is of paramount importance in order to
reduce the huge computational cost of the LK algorithm itself (that is caused by the fact
that at each iteration the image Jacobian should be re-calculated).
The key point of IC is to swap the role of the source and the target point clouds: by doing
so, the Jacobian is computed for the target rather than for the source. Thus, this computa-
tion is performed just one time before the optimization procedure starts.
Having introduced the IC algorithm, it is now possible to reverse the Objective 3.28 ob-
taining the following equation:

φ(PS) = φ(G−1 ·PT ) = φ(PT )+
∂

∂ξ
[φ(G−1 ·PT )]ξ (3.29)
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where G−1 = exp(−∑i ξiTi). At this point it is conceivable, following LK algorithm, to
define the Jacobian J ∈ RK×6 as:

J =
∂

∂ξ
[φ(G−1 ·PT )] (3.30)

Aoki et al. decide to use a slightly different version of the classical LK algorithm, by
computing J using a stochastic gradient approach. In particular, every column Ji of the
Jacobian matrix can be written according to:

Ji =
φ(exp(−tiTi) ·PT )−φ(PT )

ti
(3.31)

where ti are the infinitesimal perturbations of the transformation parameters ξ .
This original procedure, which forces J to be calculated only once for the template point
cloud while warping the source one during the iterative process, allows to combine the
usage of the IC-LK algorithm with the PointNet features to tackle the point cloud regis-
tration task.
It is now immediately feasible solving Objective 3.29 for ξ as:

ξ = J+[φ(PS)−φ(PT )] (3.32)

where J+ is the Moore-Penrose [49] inverse of J. The optimization algorithm is in practice
based on an iterative calculation of the optimal transformation parameters using Eq. 3.32,
and results in the update of the source point cloud PS as follows:

PS← ∆G ·PS ∆G = exp

(︄
∑

i
ξiTi

)︄
(3.33)

The ultimate estimate Gest is composed by ∆Gi,∀i, computed throughout the entirely loop-
ing process:

Gest = ∆Gn · ... ·∆G1 ·∆G0 (3.34)

The loop stops on the basis of a minimum threshold for ∆G.

Unlike many variants of ICP, the novel proposed approach doesn’t require costly com-
putation of point correspondences. Thus, this leads to several advantages in terms of
accuracy, robustness to initialization and computational efficiency. Indeed, being n the
dimensionality of the point clouds, PointNetLK has a complexity O(n), even if the com-
putation could be considerably sped up with a GPU implementation, since the network is
greatly parallelizable. Besides being also a very generalizable approach, PointNetLK re-
sults not to be able to work in real-time. Nonetheless, as the authors themselves suggest, it
represents a salient and innovative idea for point cloud registration methods as it provides
a constructive technique that is highly differentiable, generalizable and more importantly
applicable to other deep learning frameworks.

3.3.2 PointNetLK + Awe-Net
Based on the previous work of [5], [51]’s authors introduce a new framework with the
aim of learning an accurate rigid transformation in a faster and more generalized way.
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Figure 3.10: “PointNetLK +Awe-Net Architecture” (taken from [51]). The figure de-
picts the workflow of the proposed approach. The source PS and the target PT point sets
are firstly given as input to a shared MLP. A max pooling layer is then used to compute
the feature vectors φ(PS) and φ(PT ), respectively. The Awe-Net block is fed with the point
clouds to output weight scores WS ·WT and point cloud orientations, ϕS and ϕT respec-
tively. The best transformation parameters ξ ′ are finally found and used to incrementally
update PS’s pose, and the global feature vector φ(PS) is lastly recomputed.

The pioneering Alignment Weight Estimation Network (Awe-Net) presented in this paper
is a component that points out the role played by every point cloud in estimating the
final alignment. The basic idea behind its introduction is that trying to forecast the point
clouds’ contribution to the final output, through the computation of weight scores, makes
the network itself converging in a smaller number of iterations.

The approach proposed by El Khazari et al. is depicted in Fig. 3.10. It basically depends
on two modules, the global features extractor and the newly introduced Awe-Net module.
For the first part they take inspiration from [5] (already described in Subsection 3.3.1),
while the architecture of the second original module can be seen in Fig. 3.11.
The architecture of the PointNetLK+Awe-Net is based on five Multi-Layer Perceptrons
(MLPs) of 64, 64, 64, 128 and 1024 units respectively. The MLPs are fed with the input
source PS and target PT point clouds in a Siamese architecture. A max pooling layer,
coming right after, outputs the global feature vectors φ(PS) and φ(PT ) properly extracted
from the source and the target point clouds.
By looking at Fig. 3.10 it is also possible to notice the important role played by the Awe-
Net, which is aimed at gathering the weight scores w and the point clouds’ orientation ϕ

estimates.

The Awe-Net block, as shown in Fig. 3.11, is based on a stack of four MLPs with 64, 128,
256 and 1024 neurons respectively, followed by a max pooling operation which collects
supplementary features, that pass then through a sequence of four fully-connected (FC)
layers. The final FC layer outputs the point cloud orientation ϕ and the weight score w
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Figure 3.11: “Awe-Net Architecture” (taken from [51]). The Awe-Net module is com-
posed by four MLPs of 64, 128, 256 and 1024 neurons respectively, and uses a max
pooling layer to collect additional features. These features, passing through four FC lay-
ers with (almost) reciprocal sizes of 1024, 512, 256 and 128, permit the orientation ϕ and
weight score w computations.

estimations. The former is a 1D rotation angle aiming at keeping a reasonable discerning
power, while the latter is a positive number representing the most notable features, and it
is learnt in different point cloud’s locations due to the iterative learning.

The features extracted through the usage of the PointNet-like and the Awe-Net modules
are concatenated (Fig. 3.10) before serving as input to the FC layers in order to provide
the Awe-Net with all important features so that the network could converge. The weight
scores of the source PS and the template PT point clouds must comparably contribute to the
transform estimation. Thus, with the presence of Awe-Net the Objective. 3.32 introduced
in the previous Subsection for the PointNetLK approach becomes as follows:

ξ
′ =

wT

wS
ξ =

wT

wS
J+[φ(PS)−φ(PT )] (3.35)

where wT and wS are exactly the weight scores of the target and the source point clouds,
respectively. On the other hand, the orientations of the source φS and the target φT point
clouds must be identical: this leads to the fact that at each iteration φS is inclined to
incrementally converge to φT . Based again on [5], the learning algorithm is based on an
iterative computation of the optimized transformation parameters following 3.33, with the
newly computed ξ ′ instead of ξ .

The proposed network, implemented in an iterative fashion, proves to be very robust to
noise and initial misalignment due to the presence of the novel Awe-Net module. It is
capable of achieving precise results, comparable with other state-of-the-art registration
methods, and providing a good generalizability to data unseen during the training proce-
dure. Besides these significant advantages, the are still some drawbacks, such as the iter-
ative way in which the network is implemented and above all its high complexity, which
makes it not suitable for most of the applications operating in the embedding world.

3.3.3 PointVoteNet
The authors of [42] introduce an end-to-end learning-based approach that takes point
clouds as input and estimates their 6 DoF pose. The newly proposed network, named
PointVoteNet, is fed with raw point cloud data in an end-to-end fashion, i.e. it takes
point clouds as input not only in the starting detection of candidate sections of the ob-
served scene but also throughout the whole transformation estimation procedure. As for
the works described in the previous Subsections, also in this case the inspiration comes
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from PointNet [76], that serves as backbone for the network, but the introduced novelties
remarkably improve the overall precision achieved by the 6 DoF pose estimation scheme.

Figure 3.12: “PointVoteNet Pose Estimation Process” (taken from [42]). (A) depicts
the starting point cloud which is sub-sampled into anchor points, shown in (B), through
the application of a voxel grid. A PointNet returns a score (C) which represents how likely
the object (marked in green in the figure) is present. (D) shows the sorting of the scores,
out of which only the highest 16 are selected. A PointNet is then employed to generate
votes (E) for each point, and these votes are lastly applied to retrieve a 6 DoF object’s
pose estimation, as illustrated in (F).

Fig. 3.12 visualizes the pose estimation process. As already anticipated, the aim of the
proposed framework is that of learning the detected object’s 6 DoF pose. To support the
training procedure, a small amount of keypoints, uniformly sampled through the usage
of a voxel grid from the object, is chosen to typify the whole model. The following
paragraphs briefly describes more in detail each of the steps of the pipeline.

Input pre-processing. During the inference stage the input is a never-seen-before scene,
supplied in the form of a raw 3D point cloud comprising XY Z and, whenever possible,
RGB coordinates. The first step of the proposed pipeline is composed by a binary classi-
fier, whose goal is to find candidate points in the observed scene. To greatly reduce the
number of data points, the scene is uniformly down-sampled using a voxel grid, as shown
in the approach reported in [80].

Classification stage. Each of the uniform anchor points obtained after the down-sampling
could in principle be a suitable candidate for being considered as the center of the hunted
object. A binary PointNet classifier is employed with the aim of retrieving favourable
locations. More in detail, the authors decide to sample 2048 (as a nice trade-off between
fastness and precision) scene points in the sphere around a previously detected anchor
point. Each of these sampled points is then fed to a PointNet with a single logistic output
unit.

Segmentation stage. After having trimmed the searching space by applying the classifier
block, that outputs only the top guesses, the goal of this stage is to link each of the detected
2048 points either to the background or to the corresponding point of the searched object.
Considering the object brought down to K essential points, where K = 16, it is necessary
to use a (K +1)-mode segmentation approach, based one more time on a PointNet, to tag
each point by considering it as background or as one of object’s K points.

6 DoF pose estimation. The result of the previous stage is a set of correspondences.
Thus, the pose estimation task has been brought down to a traditional correspondence
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optimization problem, in which the input is the set of 2048 correspondences for each
of the 16 top scoring points detected in previous steps. Hence, the points classified as
belonging to the object are passed to the “rotational subgroup voting algorithm” [17],
which is an effective method for estimating the relative pose between the two noisy input
point clouds. The full 6 DoF object’s pose estimation can therefore be calculated, and the
16 poses (one per each anchor point) are lastly refined using ICP.

Multi-modal localization loss. A multi-modal loss is finally applied to the 16 estimated
poses to establish whether each of these poses is accurately learnt or not. This pose veri-
fication process is performed by firstly mapping the object model into the scene through
the usage of pose estimations: the authors decide to withdraw all the obstructed points in
order to associate the remaining ones with the nearest points in the scene.
A geometric and, whenever feasible, a color losses are thus computed as Root Mean
Square (RMS) errors in the Euclidean and the RGB space according to:

Lgeometric =

√︄
1
n

n

∑
i=1

(pi− pi,NN)2

Lcolor =

√︄
1
n

n

∑
i=1

(ci− ci,NN)2

(3.36)

where n indicates the number of remaining points after the elimination of obstructing
points, NN subscript denotes the closest point in the scene for each of the n object points
in p, while c in the second equation indicates the RGB tuple associated to each point in
colored point clouds.
The geometric and perceptual losses are lastly integrated with the Kernel Density Esti-
mation (KDE) score of the voting algorithm [17] to obtain the ultimate localization loss,
described as follows:

Llocalization =
Lgeometric ·Lcolor

sKDE
(3.37)

This loss is capable of accurately discerning correct from imprecise pose estimates. The
final output of the proposed framework is the one that minimizes the localization loss.

Tests performed by the authors reveal that PointVoteNet is an end-to-end framework for 6
DoF object pose estimation which achieves good results in point cloud registration. More-
over they claim that, by replacing PointNet with other more sophisticated approaches,
such as PointNetLK [5] and PointNetLK-AweNet [51] described in the previous Subsec-
tions, the introduced method could potentially improve, at the expense of complexity and
real-time performance. Indeed, as all the networks inspired by PointNet, also this ap-
proach is unfeasible to use for embedding near-real-time applications due to the difficulty
of the framework’s architecture and its high computational time.

3.3.4 DGR
In [23] Choy et al. propose a novel end-to-end learning-based approach for point clouds
registration, named Deep Global Registration (DGR). They aim at tackling some of the
major disadvantages of end-to-end registration approaches, such as the decreasing of spa-
tial sharpness and precision encountered by PointNetLK [5] that uses global features to
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encode the whole point cloud geometry, or the speculations on points and correspondences
distribution made by DCP [91], that may be invalid for overlapping point clouds.
Thus, the proposed architecture is composed by three blocks, namely (1) a convolutional
neural network that learns the point correspondences geometry in order to estimate their
precision, (2) a Weighted Procrustes technique which outputs a valid outcome for the
SE(3) registration in a finite number of iterations, and lastly (3) a SE(3) optimizer for
refining the estimated alignment through the usage of gradient descent.
The following paragraphs describe in detail the architecture of the proposed DGR.

6-Dimensional CNN. Being xi,y j ∈R3, let X = [x1, . . . ,xNx ]∈R3×Nx and Y = [y1, . . . ,yNy ]

∈R3×Ny be two point clouds with Nx and Ny points respectively. The registration pipeline
begins by extracting point-wise features, which are vectors capable of encapsulating ge-
ometric settings. While being adaptable to several features extractors, the authors de-
cide to integrate the Fully Convolutional Geometric Features (FCGF) [24], that present
the advantages of being rapid and discriminative. Thus, given the learned features Fx =
{ fx1, . . . , fxNx

} and Fy = { fy1, . . . , fyNy
} of the two input point clouds, the authors propose

to span a set of correspondences (or matches) M using the closest neighbors in this just
obtained feature space. The set M is defined as:

M = {i, argmin
j
∥ fxi− fy j∥) | i ∈ [1, . . . ,Nx]} (3.38)

This filtering procedure can be learnt through a convolutional neural network (CNN) with
skip connections, whose architecture is shown in Fig. 3.13. The proposed CNN lies in a
6-dimensional space and it is aimed at estimating a likelihood for each correspondence
point [xT

i ,y
T
j ]

T in 6D space. In practice, the goal of the network is to predict the presence
of an inlier, i.e., the likelihood of a certain correspondence must be true for that to be
considered as an inlier. Remarkable is the fact that the 6D CNN is always capable of
achieving the same outcome, no matter the initial position of the input point clouds.
During the training phase the authors decide to employ a binary cross-entropy loss to
optimize the network parameters, expressed as :

Lbce(M,T ∗) =
1
|M|

(︄
∑

(i, j)∈P
log(p(i, j))+ ∑

(i, j)∈N
log(pC

(i, j))

)︄
(3.39)

where T ∗ is the ground truth transformation, |M| is the cardinality of the set of supposed
correspondences, N = PC∩M the set of outliers and pC = 1− p. As shown by the formula
above, the loss is defined taking into account the likelihood prediction that a correspon-
dence (i, j) is an inlier (p(i, j) ∈ [0,1]) and the ground truth correspondences P.

Weighted Procrustes for SE(3). As shown in the previous paragraph, the 6D CNN out-
puts a weight for each input, that is, each correspondence. The authors propose to opti-
mize, unlike what has been done in the original Procrustes algorithm [37], an objective
function based on a weighted MSE, defined as:

e2 = ∑
(i, j)∈M

w(i, j)∥xi− y j∥2 = ∑
(i, j)∈M

w̃(i, j)(y j− (Rxi + t))2 (3.40)

where w= [w1, . . . ,w|M|] is the weight vector, while w̃= [w̃1, . . . , w̃|M|] := ϕ(w)
∥ϕ(w)∥1

indicates
the normalized weight vector after the application of the non-linear pre-filtering operation
ϕ .
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Figure 3.13: “DGR 6-Dimensional CNN” (taken from [23]). The convolutional neu-
ral network, used for inlier likelihood prediction, relies on a U-net backbone presenting
residual blocks in the middle of strided convolutions.

The modifications introduced by the authors of [23] let the gradients move through the
weights instead of positions. Thus, the Weighted Procrustes module brings into being
the rotation R̂ and translation t̂ parameters, which are influenced by the weight vector w.
These are both straight fed to the robust registration block (described in the following
paragraph) as the starting pose.

Robust Registration. The last introduced module aims at minimizing a robust loss func-
tion in order to refine the transformation estimate.

Algorithm 6 Deep Global Registration Algorithm [23]

Input: X ∈ Rn×3, Y ∈ Rm×3.
Output: R ∈ SO(3), t ∈ R3×1.
Fx← Feature (X).
Fy← Feature (Y ).
Jx→y← Nearest Neighbor (Fx,Fy).
M←{(i,Jx→y,i) | i ∈ [1, . . . ,n]}.
w← Inlier Probability (M).
if Eiϕ(wi)< τs then

return Safe Guard Registration (X ,Y ).
else

R̂, t̂← argmin
R,t

e2(R, t;w,X ,Y ).

a← f−1(R̂), t← t̂.
while not converging do

ℓ← ∑(i, j)∈M ϕ(w(i, j))L (Yj, f (a)Xi + t).

a← Update (a, ∂

∂aℓ(a, t).

t← Update (t, ∂

∂ t ℓ(a, t).

return f (a), t.
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The authors choose a gradient-based technique to refine poses. During the iterative pro-
cedure, the correspondence likelihoods obtained from the 6D CNN, estimated one single
time per initialization, are taken into account.
Moreover, their novel approach is built in such a way that it provides a malfunction detec-
tion mechanism. Practically speaking, the framework is able to detect when the system is
about to be defective before it actually provides an output. In such situations it could de-
cide to switch to a more precise yet more time-consuming method, such as RANSAC [31]
or branch-and-bound [99] techniques.

The authors implement a powerful loss function to refine the final registration, which can
be described according to:

E(R, t) =
n

∑
i=1

ϕ(w(i,Ji))L (yJi,Rxi + t) (3.41)

where:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ(·) is a non-linear pre-filtering function.
w̃i denotes the normalized weight after the non-linear transformation ϕ .
Ji is the correspondence xi⇐⇒ yJi

L (x,y) is the Huber point-wise loss function between x and y.

.

The energy function is parameterized by R and t, which are represented by means of
a1,a2 ∈R3 and t parameters. To have a glance of the complete DGR algorithm, one could
look at Alg. 6 which thoroughly describes the presented framework, as reported in [23].

The authors reveal through a large amount of experiments that DGR is a generalizable
approach, more precise and most importantly faster with respect to both traditional reg-
istration algorithms and end-to-end approaches, including among the others Go-ICP [99]
(described in Subsection 3.1.3), DCP [91] (explained in Subsection 3.2.3) and PointNetLK
[5] (reported in Subsection 3.3.1).
Besides presenting all these salient and high-ranking advantages, the large complexity of
its architecture may still remain a serious issue, especially for embedding applications in
robotics.

3.3.5 3DRegNet
The authors of [70] introduce an original end-to-end deep learning model for point clouds
registration tasks, denoted 3DRegNet. They aim at tackling two major challenges, namely
(1) trying to recognize and label each correspondence as belonging either to inliers or
outliers, and (2) finding the transformation parameters that best align the two input point
clouds. To solve the second issue the authors propose either to use a registration approach
based on a Deep Neural Network (DNN) or to employ the Procrustes algorithm presented
in [37] to estimate the rigid motion parameters through the usage of Singular Value De-
composition (SVD).
Lastly, as it will be described later on in this Subsection, they introduce the employment
of a tiny 3DRegNet to refine the obtained outcomes’ precision.

Fig. 3.14 shows the proposed architecture, with the two blocks for classification and reg-
istration depicted in detail. As it is possible to see by looking at the figure, there are two
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3 – Point Cloud Registration

Figure 3.14: “3DRegNet: the two proposed architectures” (taken from [70]). (a) de-
picts the first of the presented approaches, using both the classification and the registration
blocks based on DNNs, while (b) illustrates the second pipeline, constituted by the same
classification module of the previous one but with another registration block, this time
inspired by the differential Procrustes method. (c) and (d) finally display more in detail
the classification and registration (by means of a DNN) blocks, respectively.

alternatives for the registration module, one using DNNs and the other employing differ-
entiable Procrustes, but the choice of one over the other does not affect in any way the
loss function, that will be presented later on.
The next paragraphs explain more in detail the innovation brought by Dias Pais et al.

Classification. Fig. 3.14(c) clearly shows that the classification module is fed with a
set of point correspondences computed allying the two point clouds and represented by
{(pi,qi)}N

i=1. A fully-connected (FC) layer takes each of the N calculated correspon-
dences in order to provide an output composed by 128 dimensional features per each
correspondence. The final output has thus a dimensionality of N×128, and it is fed to C
ResNets [45] architectures (with C controlled by the complexity of the esteemed transfor-
mation), implemented with the usage of weight-shared FC layers. A last FC layer (with
ReLU and subsequently tanh as activation functions) outputs the final weights wi ∈ [0,1).

Registration using DNNs. The features learnt from the correspondences computed ac-
cording to the classification block cited in the previous paragraph directly serve as in-
put to the registration block leveraging on a deep neural network (DNN), as shown in
Fig. 3.14(a) and more in detail in Fig. 3.14(d). First of all, a max pooling layer is used to
extract significant 128×1 features from each classification block’s layer, and it is imme-
diately followed by a context normalization, implemented to concatenate the C+1 feature
maps and normalize them. In this way the authors claim that it is possible to extract, inde-
pendently from the original N correspondences, the suitable number of features to finally
derive the rigid body transformation, which is the goal of the registration task. After the
context normalization, the features are fed to a last convolutional layer, whose outcome is
finally served as input to two FC layers with 256 filters. Being M the rotation parameters
and ti the translation ones, with i ∈ [1,3], the registration block allows to obtain at the end
an output of M + 3 variables (ν = (v1, . . . ,vM) and t = (t1, t2, t3)), which is exactly the
original goal.
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Registration using the differentiable Procrustes technique. Differently from the ver-
sion making use of a DNN, this approach aims at finding the craved transformation with-
out employing any neural network but only relying directly on the point correspondences,
as it is possible to see in Fig. 3.14(b). First of all, the points classified as outliers are
removed, while the centroid of the ones labelled as inliers is calculated and saved as the
origin: these operations can be interpreted as intermediate layers, thus empowering an
end-to-end approach leveraging on both classification and pose estimation.
Due to the fact that at this point the calculated centroids are at the origin, the unique op-
eration to perform is the computation of the rotation existing between them. This rotation
is determined from the SVD of the matrix M =UΣV T [7], in which M ∈ R3×3 is defined
according to:

M = ∑
i∈I

wi piqT
i (3.42)

where I represents the set of points labelled as inliers through the classification module.
The rotation is thus derived by:

R =U diag(1,1,det(UV T ))V T (3.43)

while the translation parameters are specified by:

t =
1
NI

(︄
∑
i∈I

pi−R∑
i∈I

qi

)︄
(3.44)

where NI denotes the number of inliers and I the set of inliers themselves.

Loss Function. The overall loss function introduced by the authors of [70] is given by the
weighted sum of two separate loss contributions, denoted as classification and registration
losses, coming from each of the two modules of the proposed architecture.
The classification loss is a cross-entropy loss that penalizes wrong correspondences and
it is defined as follows:

L k
c =

1
N

N

∑
i=1

γ
k
i H(yk

i ,σ(ok
i )) (3.45)

where:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L k
c is the classification loss of a specific pair indexed with k correspondences.

ok
i are the outputs of the network before applying ReLU and tanh activation

functions in order to compute the weights.
σ indicates the sigmoid activation function.
H(. . .) denotes the cross-entropy function.
yk

i is the ground truth, telling if the ith point correspondence is an inlier (in this
case it is equal to 1) or not (equal to 0).

γk
i stabilizes the loss by the number of samples for each class in the associated

point pair k.

.

The registration loss inhibits skewed points in the point cloud employing the distance
between the qi and the transformed (by means of rotation and/or translation) pi points of
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Figure 3.15: “3DRegNet Refinement Scheme” (taken from [70]). Two sequential
3DRegNets (a bigger and a smaller one) can be used together in order to find a rigid
body transformation that best aligns two input point clouds (with the first) and to refine
the overall alignment (with the second) so to improve the final precision.

the two point clouds, with i = 1, . . . ,N. It is thus described as:

L k
r =

1
N

N

∑
i=1

ρ(qk
i ,R

k pk
i + tk) (3.46)

where:⎧⎪⎨⎪⎩
Rk and tk are the transformation parameters given by the registration block for a

given scan pair with index k.
ρ(. . .) denotes the distance metric function.

.

Given the totality of the scan pairs in the training set K, it is possible to identify the
following individual loss functions:

Lc =
1
K

K

∑
k=1

L k
c Lr =

1
K

K

∑
k=1

L k
r (3.47)

The final loss employed for the training procedure is therefore defined as the weighted
sum of the classification and the registration loss contributions, and it can be expressed
according to:

L = αLc +βLr (3.48)

where α and β are hyper-parameters manually set for the classification and registration
loss terms.

Refinement 3DRegNet. A technique frequently used for point cloud registration is that
of firstly retrieving a rough transformation measurement, and then applying in a second
moment a fine-tuning scheme. Thus, the authors argue that it is feasible to evaluate the
presence of a supplementary 3DRegNet in this sense: the first tries to obtain a coarse es-
timate, while the second tiny network is used for refining the esteemed transformation.
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Fig. 3.15 shows the refinement framework, in which the first network is employed to es-
timate a rough transformation while the second tries to perform the fine-tuning.
Both the networks are parameterized by the regression values {(Rr, tr)} and the classifi-
cation weights {wr

i}N
i=1, with r = {1,2}. Due to the new scheme, the second network’s

loss must take into account the increasing regression of the two architectures.

The authors show that their approach is able to tackle the registration problem by jointly
estimating the alignment pose of the input point clouds and discarding detected outliers
in point correspondences. A substantial amount of experiments proves that the network
proposed in [70] is extremely efficient, performing as well as state-of-the-art models while
still being significantly faster. For what concerns the usage of a second 3DRegNet for the
fine-tuning procedure, despite a confident gain in the performance, this could reduce too
much the real-time performance and could excessively increase the complexity for an
embedding (robotic) application.

3.3.6 FMR
The authors of [47] propose an end-to-end Feature-Metric Registration (FMR) approach
for 3D registration applications. The main proposal behind the novel framework is the
optimization of the objective function through the minimization of a feature-metric pro-
jection error, which means that no point correspondences are needed. Besides its fastness,
the newly introduced method presents several advantages, such as the robustness to noisy
input point clouds. The idea at the very basis of this model is that the more the point
clouds are aligned one to the other the lower is the feature difference; thus, the model is
trained by the authors both in a semi-supervised and in an unsupervised way, leading to
results that outperform other state-of-the-art approaches.

The main innovation introduced by Huang et al. in this paper is that of combining the
traditional mathematical optimization approaches to the more recent methods influenced
by the usage of deep neural networks in order to straight obtain the motion parameters
without the need of employing correspondences.
Doing so, they are able to generate an approach that tailors the feature learning for the
specific registration task at hand. Thus, it ends up being remarkably different from the
traditional registration pipeline that instead tries to find a solution to the correspondences
and the motion parameters estimation, and goes on by optimizing the objective function
based on the geometric projection error.

The problem formulation and the overview of the proposed framework are described as
follows. Given two point clouds P ∈ RM×3 and Q ∈ RN×3, the final objective of the 3D
registration is that of retrieving the rigid motion parameters g (composed by the rotation
matrix R ∈ SO(3) and the translation vector t ∈R3) that best aligns the source point cloud
Q to the target one P according to:

argmin
R∈SO(3), t∈R3

∥r(F(P),F(RQ+ t))∥2
2 (3.49)

where F(P) ∈ RK is the feature extracted from the point cloud P, K is the feature dimen-
sion, F is a feature extraction function learnt by the encoder block (that will be briefly
explained in a moment) and r(F(P),F(RQ+ t)) = ∥(F(P)−F(RQ+ t)∥2 finally stands
for the feature-metric projection error between the target P and the transformed source Q.
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Figure 3.16: “Feature-Metric Registration Architecture” (taken from [47]). Starting
from the source 3D point cloud Q and the template one P, an encoder unsheathes the
corresponding features. A neural network is capable of solving the registration problem
at hand without correspondences in a semi-supervised manner. In the first task a decoder
apprehends the features and the whole encoder-decoder framework trains the encoder net-
work in a unsupervised fashion. In the second task instead the error is computed directly
taking into account the input features, FQ for the source and FP for the target. This just ob-
tained error is then fed to a highly non-linear optimization algorithm which calculates the
transformation increment (∆θ ), starting from which the motion parameters are updated in
an iterative procedure.

To find a solution the Objective function described above, the authors of [47] propose the
FMR approach, whose architecture can be seen by looking at Fig. 3.16. As it is shown in
this figure, two rotation invariant features are extracted from both the input point clouds
and given as input to a module that performs several tasks.
Specifically, in the first of these assignments (namely Task 1), a decoder is blocked out in
order to train the encoder module in an unsupervised fashion, while the second task (Task
2) consists on the computation of the projection error r as the feature difference between
the two point clouds. The minimization of the latter lastly leads to the transformation that
registers in an optimal way the source to the target point cloud. This motion parameters
estimation is an iterative process in which the transformation increment (∆θ ) of each step
is calculated by running the Inverse Compositional (IC) algorithm described in [10] and
defined according to:

∆θ = (JT J)−1(JT r) (3.50)

where r denotes the feature-metric projection error while J = ∂ r
∂θ

represents the Jacobian
matrix of r computed with respect to the motion parameters θ . In order to calculate in
an effective and efficient manner the Jacobian matrix, instead of computing it using a
stochastic gradient approach the authors follow the technique presented in PointNetLK
[5]:

Ji =
∂FP

∂θξ

=
F(RiP+ ti)−F(P)

ξ
(3.51)
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where ξ = (Ri, ti) represents the infinitesimal perturbations of the motion parameters dur-
ing the loop. In particular, six transformation parameters are used in this paper, three for
the rotation (v1,v2,v3) and three for the translation (t1, t2, t3). After a certain number of
iterations (10 is the value set for the experiments that the authors performed), the model
finally produces as output a transformation matrix gest (comprising both R and t) and the
feature-metric projection error rest .

In the following, the main components of the framework are explained in detail. For an
overall visualization, one can follow Fig 3.16.

Encoder. This module, composed by two MLP layers followed by a max pooling one,
gains an understanding of a feature extraction function F that aims at extracting a peculiar
feature per point cloud. The main characteristic this extracted feature should have is that
of being rotation-attentive so that it could mirror and replicate the rotation changes during
the motion estimation process.

Task 1: Encoder-Decoder Branch. A decoder block is used to decode the features (pre-
viously extracted from the encoder) and map them to the 3D point sets. This framework
composed by the sequence of encoder and decoder can be trained in a completely unsu-
pervised manner: in this way, the encoder is able to understand and recognize exclusive
rotation-attentive features. The decoder module is based on a stack of four sequential
fully-connected (FC) layers with Leaky ReLU as activation function, and it is designed in
such a way that its outcome has the same dimension of the input point set.

Task 2: Feature-Metric Registration Branch. As previously anticipated, the authors
decide to find a solution to the point cloud registration issue by computing the motion
parameters through the employment of the Inverse Compositional (IC) technique. This
algorithm is used for the optimization of the objective function describing a feature-metric
projection error, that is defined according to:

r = ∥F(P)−F(g ·Q)∥2
2 (3.52)

where F(·) ∈ RK is the distinctive comprehensive feature extracted from either the target
point set P or the transformed source one g ·Q, while g is the transformation matrix (com-
prising both R and t).
With the goal of better visualizing the role of the feature network learned throughout the
whole optimization procedure, one could have a glance at Fig. 3.17. This figure illustrates
how the features extracted from the (transformed) source and the target input point sets Q
and P change during the iterative process, with the variations specifically displayed after
the first, the 5th and the final 10th loops.

With the aim of providing a semi-supervised approach, the authors of [47] introduce two
loss functions. To obtain an unsupervised framework, one could simply disregard the
supervised geometric loss, that will be described in the following.
Shadowing the approach presented in [38], the Chamfer distance loss, defined as follows,
is employed to train the encoder-decoder framework in an unsupervised fashion:

Lc f = ∑
p∈A

N

∑
i=1

min
q∈S∗
∥φθi(p;x)−q∥2

2 + ∑
q∈S∗

min
i∈1,...,N

min
p∈A
∥φθi(p;x)−q∥2

2 (3.53)
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Figure 3.17: “Feature-Metric Registration Feature Maps” (taken from [47]). The fig-
ure displays the salient features learned by the two-MLPs-based encoder block and the
feature maps variations throughout the whole iteration procedure. After the first repeti-
tion the difference between the features extracted from P and transformed Q (shown in
the top of the sequence) is quite substantial, thus their alignment (depicted in the bottom)
cannot be considered precise at all. During the iterative procedure the difference between
the two feature maps becomes smaller and smaller, and after the final 10th iteration it is
almost negligible, with the alignment between the template and the transformed source
point clouds being indeed nearly flawless.

where:⎧⎪⎪⎪⎨⎪⎪⎪⎩
p ∈ A denotes a collection of points sampled lies within a unit square [0,1]2

x indicates a feature extracted from a point cloud.
S∗ is the original input point cloud in the 3D space.
φθi represents the ith component of the MLP parameters.

.

The objective of the geometric loss is instead that of optimizing a function based on the
dissimilarity existing between the ground truth (ggt) and the learned transformation matrix
(gest), and it is described as follows:

Lgeom =
1
M

M

∑
i=1
∥ f (gest ·P)− f (ggt ·P)∥2

2 (3.54)

where P denotes a point cloud and M indicates the totality of its points.
Thus, the ultimate loss function used for the training in a semi-supervised manner is de-
fined according to:

L = Lc f +Lgeom (3.55)

while for unsupervised training only the Lc f is employed.

After extensive experiments on traditional 3D registration datasets such as ModelNet40
[97] and 7Scene [82], the authors of [47] declare that their method clearly outperforms
other state-of-the-art optimization-based, features-learning and end-to-end learning-based
approaches, achieving the overall best performance regardless of the initial point clouds
orientation. Moreover, the unsupervised method always achieve better results with respect
to the semi-supervised one, in all the experiments they conducted. Thus, the newly intro-
duce approach can optimally work in a broad range of applications, since the network can
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be trained without the need of any label.
Lastly, the ablation studies proposed in the paper show that the FMR model can handle
point clouds with a high degree of noise or even partially overlapped while still obtaining
robust, very precise and most importantly incredibly fast outcomes.
For all these reason such approach has been chosen to be implemented and tailored to the
needs of this thesis work.
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Part II

Implementation of the Solution
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Chapter 4

Hardware

4.1 PMD Camboard PicoFlexx
The ToF camera used to conduct all the experiments in this thesis work is the CamBoard
PicoFlexx [73], a thin USB device for capturing 3D point clouds with a variety of use
cases, working with a VCSEL-based IR illumination. Developed by Infineon in partner-
ship with pmdtechnologies, this sensor is one of the first ToF cameras designed for the
end users, concretely conceived for mobile devices applications, as thoroughly explained
in [71]. Indeed it doesn’t include any other detectors rather than the single depth one, and
this leads to a very slim floaty device.
To get a visual idea of the sensor, Fig. 4.1 shows the frontal (a) and lateral (b) view of the
ToF camera used in this research.

As synthesized by [62], this camera offers several advantages:

1. ToF Precision. The sensor is capable of capturing depth maps at 16 bit with a
spatial resolution of 224× 171 pixels, with a frame rate that meets (near-)real-time
requirements.

2. Size and Dimensions. The sensor has limited size (68mm×17mm×7.35mm) and
weight (8g), thus it is suitable for an application in robotic context.

(a) Frontal View (b) Lateral View

Figure 4.1: “PMD Camboard PicoFlexx”. Frontal (a) and Lateral (b) views of the PMD
Camboard PicoFlexx sensor. The images are acquired using the .step file that can be
downloaded from the official site [73].
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PMD Camboard PicoFlexx Specifications
Parameters Parameters

Dimensions [mm]
Width 68

Operating System
Windows 7/8/10

Height 17 Linux/ARM, Ubuntu Linux 16.04
Depth 7.35 MacOS, Android/ARM

Weight [g] 9 Depth Resolution [px] 224 × 171

Dimensions [mm] H 62.0 Acquisition Time [ms] 4.8 typ. @ 45 fps
V 45.0 30 typ. @ 5 fps

Range [mm] Min 100 Power Consumption [mW ] USB2.0 compliant, 300 for
Max 4000 IRS chip and illumination

Scan Size [Points] 38’304 Illumination [nm] 850, VCSEL, Laser Class 1

HW. Interface Data USB 2.0/3.0 Software Royale SDK(C/C++ based,
Power USB 2.0/3.0 supports Matlab, OpenCV, ROS)

Baseline [mm] 16 Price[C] 450

Table 4.1: “PMD Camboard PicoFlexx Specifications”. Sensor parameters according
to the vendor, taken from the data-sheet available at the official site [73] integrated with
the ones available at [54].

3. Adaptable Frame Rate. The sensor has different acquisition modes and it could
capture up to 45 images per second (45 fps).

4. Acquisition Range. The sensor provides two possible depth resolutions, the first
spans a range between 0.5m and 4m, while the second works in a range of 0.1m÷
1m.

Table 4.1 summarizes the sensor specifications according to the vendor, by considering
the data-sheet available at the official site [73] and the information reported in [54].
As reported by Eduard Mann, Technical Key Account Manager at PMD, after a brief
dialog, the PMD PicoFlexx camera has a global calibration which “works fine”.
Its parameters concerning the focal length, the image center and the distortion, both radial
and tangential, can be read out in Table 4.2.

Thus, instead of proceeding with the calibration of the sensor itself following all the steps
described in Section 2.2 for the systematic errors correction, regarding both the lateral and
the depth calibration, its parameters and performance are analyzed in the next paragraphs,
shadowing the approach described in the brilliant work of [71]. This is done in order to
better understand the characteristics of the ToF camera at hand, thus learning its behaviour
and adjustment in different situations.
Differently, for what concerns the non-systematic errors such as MPI and shot noise,
several approaches among the ones explained in Section 2.3 are considered and two of
them are chosen to be replicated and adapted to this thesis’ needs according to some
particular metrics that will be exhaustively described in the next Chapter.

Regarding this first part related to the analysis of the performance and the intrinsic and
extrinsic parameters of the sensor, all tests are performed in a restricted space of 3.5m×
4.5m× 3m. Table 4.3 outlines the final outcomes of the conducted experiments about
temperature, amplitude and temporal-related errors, as well as depth distortion, and sev-
eral characteristics of the PicoFlexx sensor are pointed out, remarking its peculiarities
with respect to many other ToF cameras available in the market nowadays. For more
details on these tests please read [71], from which they are entirely taken.
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PMD Camboard PicoFlexx Calibration
Calibration Parameters

Focal Length fx 210.86590576171875
fy 210.86590576171875

Image Center cx 106.12774658203125
cy 87.6448059082031

Radial Distortion
r1 0.471586138010025
r2 -4.898763179779053
r3 8.521048545837402

Tangential Distortion t1 2.790543903740425e-15
t2 9.706180188740181e-16

Table 4.2: “PMD Camboard PicoFlexx Calibration”. Calibration parameters (provided
by the sample code supplied by [73]) of the 224× 171 px PMD Camboard PicoFlexx
camera.

Temperature-Related Errors. To assess the error in the raw ToF measurements that
gradually happens during a predefined period of time, the distance of the sensor from the
target (2m) is kept constant. The camera runs at 30 fps: using the SDK Royale Viewer
provided by [73], a single depth map is registered for a 2-hours period using intervals of
10 seconds each. Then, the frames acquired in each interval of 5 minutes are clustered
together. Thus, for each group the mean and the standard deviation of the inner values are
calculated.
Fig. 4.2(a) depicts the outcomes as a function of time: as it is possible to notice, the av-
erage values are distributed around the nominal value of 2m during the whole acquisition
time, while the standard deviations present a maximum value of 3.37mm. Remarkably,
the PicoFlexx camera does not need any warm-up waiting time before being ready for ac-
quiring new data, and this represents a sensational advantage with respect to many other
ToF sensors.

Depth Measurements Errors. In this collection of tests, the camera is moved in 15
nominal positions Dn, at each of which 30 frames are acquired. As shown by the authors
of [71], the depth values Dm, quantified on a 15× 15 pixels square containing all the
nearest neighbors around the central pixel of each frame, are normally distributed. This
leads to the fundamental consequence that it is possible to evaluate depth measurement
errors by only taking into account the average values and the standard deviations of the
raw measurements Dm, thus substantially simplifying the computation.
Underneath this observation, in the following three errors are considered, namely the
depth distortion, the amplitude-related error and the temporal error.

• Depth Distortion. Given the mean value µm over depths Dm, computed at every
frame’s pixel in the center, and the relative nominal value Dn, the depth distortion is
calculated by taking into account the gap εw existing between the two. The outcomes
of this measurement are shown in Fig. 4.2(b): the values εw are fully extended over a
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(a) Temperature-Related Error. (b) Depth Distortion εw.

(c) Amplitude Image. (d) Color Maps of errors εA.

Figure 4.2: “Temperature and Depth Errors, Amplitude and Color Map” (taken from
[71]). Temperature-Related error (a), Depth Measurements error (b), Amplitude Image
(c) and Color Maps of errors εA (d) for the PMD Camboard PicoFlexx sensor.

range −4.54mm÷1.98mm with nominal distances lower than 3.5m, while the min-
imum value represented by −12.15mm is reached at Dn = 4.5m. As it it possible to
notice, the curve doesn’t exhibits the typical wiggling behavior with a sinusoidal ap-
pearance that can be perceived in several other sensors, and this leads to an important
diminution of the error terms with respect to different other cameras.

• Amplitude-Related Error. Fig. 4.2(c) shows the amplitude image acquired by the
camera at a nominal distance of Dn = 1.7m. This image documents the intensity of
the light mirrored by each pixel’s surface in an 8-bit-gray levels range, which de-
creases as long as the distance from the image center gets larger.
Thus, the image borders and the corners results to be highly unilluminated, indi-
cating the fact that the signal is weak or completely missing at the corresponding
pixels, leading to a depth value which could be either overestimated or completely
not calculated. The error is assessed over 30 frames captured at the distance indi-
cated above, that is Dn = 1.7 m. For each pixel the error εA = µm−Dn is quantified,
where µm represents the mean value of the raw values Dm. Fig. 4.2(d) depicts the
derived εA values computed for each pixel, using a color map rendering. It can be
seen that the amplitude-related error gets larger at the boundaries of the image. The
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PMD Camboard PicoFlexx Errors
Type of Error Results of the experiments
Temperature-Related Errors No warm-up time
Depth Distortion No wiggling

Amplitude-Related Errors 0÷5mm in the central area,
up to 10mm at the borders

Temporal-Related Errors 2.24mm÷13.1mm

Table 4.3: “PMD Camboard PicoFlexx Errors” (extracted from [71]). Details about
the ToF sensor errors related to temperature, depth, amplitude and time. Worthy of note
is the fact that, differently from many other ToF sensors, PicoFlexx camera does not need
any warm-up time and it isn’t affected by the wiggling error.

ToF sensor shows an almost uniform distribution of the computed errors over the
whole frame, with a huge part of the pixels presenting errors in the range between
−5÷0mm, while at the boundaries the fault values decrease up to −10mm. Lastly,
it can be noticed that at the corners no error information is present, remarking the
fact that the incident reflected light signal comes with a very shallow intensity, as
mentioned while explaining and observing Fig. 4.2(c).

• Temporal Error. At nominal distances Dn in a range spanning between 1.7m÷
4.5m the raw amounts Dm are computed for the pixel in the middle of every frame,
again following the authors of [71]. The temporal errors are then assessed, as a
function of depth, by calculating the standard deviation σm over the measured values
Dm. These standard deviations enlarge in the range between 2.24mm÷13.1mm with
a rising µm as long as also the distance Dn grows towards its maximum.
Moreover, temporal errors as a function of pixel location over the frame are estimated
at each Dn value. As one could expect, the σm values gets larger according to the
increasing distance from the center of the maps.

The PicoFlexx sensor is thus developed with the aim of acquiring data within the range
spanning between 0.1m÷ 4m and it is calibrated to operate in an optimal condition in
the middle of this interval, as accurately described in [4]. When working close to the
minimum value of this scale in a limited area, two problems may happen: the IR emitter
is excessively vivid and the effect of the difference between the IR emitter and the imager,
which is insignificant at a greater distance, becomes considerable and cannot be ignored
anymore. Therefore, in order to reduce and possibly remove non-systematic errors, i.e.
MPI and shot noise above all, several frameworks leveraging on deep neural networks and
more or less complex architectures can be used, as thoroughly explained in Section 2.3.

In the following Chapter 5 these methods are compared and a summary table reports the
most significant differences on the basis of six important metrics that aim at evaluating
their accuracy, their real-time behaviour, their robustness and many other aspects.
In that Chapter, the approaches chosen to be followed and tailored to the requirements of
this thesis research are also investigated and illustrated more in details, together with the
corresponding implementation, while the obtained results are available in Chapter 6.
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4.2 Coral TPU Edge Accelerator
Another important device used for performing the experiments is the Coral USB Accel-
erator [35], which carries an Edge TPU coprocessor that can be easily attached through a
simple USB port to the local computer providing lightning machine learning inferencing
on a broad variety of devices. Being available for any local system running an operating
system such as Debian Linux, MacOS or Windows 10, this slim tool has the potential
to carry out 4 trillion operations (tera-operations) per second (TOPS), making use of 0.5
watts for every TOPS (2 TOPS per watt).
Fig. 4.3 shows the frontal and the lateral views of the device obtained from the .step file
available at the official site [35]. In the following, more details about the device and the
Edge TPUs’ architecture are given, according to the specifics provided by [35] and to
some reference previous works ([41, 100]).
Table 4.4 summarizes the overall technical aspects of the Coral TPU.

According to the vendor, one Coral Edge TPU accelerator is disposed to efficiently run
small and memory-optimized trailblazing approaches, i.e., MobileNet v2, at just about
400 frames per second.
This on-device machine learning coprocessor is designed in such a way to enlarge the
data privacy, to work even without the necessity of always being internet connected, and
most importantly to greatly decrease the response delay. As stated by Gupta et Akin in
their work [41], on-device machine learning hardly tries to achieve good performance in
all those systems that present several constraints for what concerns computational and
power resources. The recently exponential growth of on-device machine learning for
the devices with limited resources has thus encouraged the development of energy-saving
neural network architectures, along with tons of dedicated hardware accelerators designed
to dexterously execute the most diffuse modules in neural networks.
These hardware accelerators show differences with reference to the implemented models,
computational powers and capacities and memory structuring.

(a) Frontal View (b) Lateral View

Figure 4.3: “Coral Edge TPU Accelerator”. Frontal (a) and Lateral (b) views of the
Coral Edge TPU accelerator. The images are acquired using the .step file that can be
downloaded from the official site [35].
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Coral Edge TPU Specifics
Specifics Google Edge TPU coprocessor

Dimensions [mm]
Width: 30
Height: 65
Depth: 8

Operating System
Linux Debian 10, or a derivative thereof
MacOS 10.15
Windows 10

Operations [s] 4 trillion per second (TOPS)
Consumption [watt] 2 TOPS per watt

Connections USB 3.0 (USB 3.1 Gen 1) port
Cable (SuperSpeed, 5 Gbps)

Ambient Temperature [◦] Reduced Frequency at 35◦

Maximum Frequency at 25◦

Table 4.4: “Coral Edge TPU Specifics”. Device technical aspects according to the ven-
dor, taken from the data-sheet available at the official site [35].

A very recent and promising research ([100]) agrees on recognizing the greatest strength
of Edge TPUs in being able to bring greatly-hastened potential capabilities to devices
limited by acute or critical physical and power constraints. This is the main reason behind
the fact that since their first appearance Edge TPUs have been employed in several Google
devices, such as Coral accelerators themselves [35] but also Pixel phones [36].

In the following, a brief description of the comprehensive Edge TPUs’ architecture is pro-
vided. Fig. 4.4, taken from [100], visually depicts in details all these concepts.
These devices exploit a representation based on a template that makes fully use of micro-
architectural modules which can be greatly described through parameters. This template
is characterized by a sequence of processing elements, named PEs, that are arranged to
form a 2D array. Each PE is designed in such a way to carry out a collection of arithmetic
calculus in a single-instruction multiple-data (SIMD) fashion.
Furthermore, the architecture also includes an on-chip controller, whose aim is that of
passing the data from off-chip memory to the PEs and understanding and recognizing the
low-level instructions (i.e. convolution, pooling, etc.) that will be further performed on
the PEs themselves.
The principal modules of the PE architecture consist of a single or multiple core(s), each
of which presents several computation pathways that execute operations in a SIMD fash-
ion. In a top-down procedure, each PE exhibits a memory block which is shared between
all the computational cores, indicated as PE memory in Fig. 4.4, and its most important
employment is that of gathering and storing model activations and outputs.
The cores enclosed by each of the PEs give prominence to a core memory which is mostly
employed for storing the parameters of the model. Every one of these cores comprises
several computational pathways, each of which presents versatile multiply-accumulate
(MAC) units.
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Figure 4.4: “Edge TPU Architecture” (taken from [100]). Overall architecture of the
on-device machine learning accelerator, based on the following template. The processing
elements (PE) are lined up to form a 2D array, and each of them embeds one or multiple
cores. Every one of these cores presents several computational pathways with multiple
MAC units working in single-instruction multiple-data (SIMD) manner. Each PE is con-
stituted by a PE memory which is distributed across the several cores, each of which is
also provided with an exclusive and customized memory.

The fundamental principle behind their behaviour is as follows. At every round, the com-
putational pathways receive a collection of activations. The calculations joining the acti-
vations and the parameters of the model are carried out inside the range of every pathway
using the MAC units. Once this calculus terminates, the outcomes could either be kept
and saved in the PE memory for additional algorithmic computations or unloaded back to
the DRAM.

Thus, summarizing, the Coral USB Accelerator is a tool capable of coming up with an
Edge TPU as a coprocessor for the local machine, as officially stated by [35]. With the
aim of allowing whistle-stop performance for neural network architectures constrained by
a limited resources power, the Edge TPU is designed in such a way to handle a fixed pre-
determined collection of operations and network models. In particular, the Edge TPU can
easily accomplish the execution of convolutional neural networks (CNN) and, generally
speaking, of deep architectures.
Rather than creating an entire model and then training it starting from the very begin-
ning, one can think about retraining an already existing model (which of course has to be
well-suited with the Edge TPU) employing the so-called technique referred to as trans-
fer learning. Indeed, training a deep neural network starting from zero could require a
huge amount of computing time and of course of data on which perform the training it-
self, while by employing transfer learning one could simply immediately use an already
trained model and conduct an additional training process, perhaps using a smaller train-
ing dataset, in order to exactly transfer it from the task it was originally thought for to a
relatively new one.
One may be able to do this either by retraining the overall network, fine-tuning and cali-
brating one by one the totality of weights, or by easily freezing all the layers but the last,
that is removed and substituted with a new one trained in order to tackle a specific task.
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Given an adequate amount of training data and just some hyper-parameters customization
and regulation, one could build a very precise model in a single pass by employing this
procedure. Supposing to start with a well-suited model, due to the fact that the model ar-
chitecture is not modified at all during the transfer learning process, it will be completely
compatible with the Edge TPU.

In this thesis work, whenever possible (which means, whenever starting with a compatible
model), the provided Coral Edge TPU accelerator is used to obtain faster results without
compromising the power cost.

93



94



Chapter 5

Proposed Approach

5.1 Methods Comparison

In this Section, the approaches presented in Chapters 2 and 3, regarding the ToF MPI and
shot denoising deep learning algorithms and the Point Cloud Registration methods respec-
tively, are compared according to their performance. Specifically, inspired by [46, 86], the
metrics taken into account are: (1) accuracy, (2) size of model, (3) robustness, (4) time
cost, (5) latency and (6) range of application. According to the information retrieved in
the related papers and briefly summarized in the previous Chapters, the mentioned indi-
cators are compared qualitatively in Table 5.1, where A represents the best performance
and D indicates the worst.

While not all being used in this thesis work due to the lack of available data for some
models in the presented papers, for sake of knowledge in the following is hurriedly pre-
sented PLASTER, introduced in [86], a framework for deep learning performance based
on the evaluation of seven metrics, namely “Programmability, Latency, Accuracy, Size of
model, Throughput, Energy efficiency and Rate of learning”, as shown in Fig. 5.1.
Some of them are indeed taken into account in this research, as reported in the next Sub-
sections and as it is possible to notice in Table 5.1. In the following paragraphs, each of
these metrics is briefly explained according to the official presentation in the previously
cited paper.

Programmability. Programmability influences in a serious way the efficiency of the pro-
grammer and thus the period needed to release the final product to the marketplace. After
a deep neural network is implemented and trained, it is enhanced to run in a particular
inference domain. NVIDIA provides two main tools to tackle training and inference ma-
jor issues, namely CUDA and TensorRT. CUDA is a platform that makes the calculation
highly parallelizable and it is used for implementing a wide range of models on GPUs,
while TensorRT is a high-level inference accelerator used for the inference stage indeed.
The former comes to the aid of making more comprehensible the stages constituting an
algorithm implementation, whereas the latter provides a better optimization of an already
existing and trained model for the distribution at runtime, assessing several floating point
and integer precision measures in order to obtain optimized solution that reaches a nice
trade-off between precision and performance. The authors claim that, even if the imple-
mentation of deep learning algorithms still requires some good technical skills, these tools
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Figure 5.1: “PLASTER Framework” (taken from [86], source: NVIDIA). The PLAS-
TER Framework for deep learning performance measurements on the basis of seven indi-
cators, namely “Programmability, Latency, Accuracy, Size of model, Throughput, Energy
efficiency and Rate of learning”.

assists in better exploiting profitable time.

Latency. Outcomes and responses are of paramount importance in order for both humans
and machines to be able to remain in control of a certain situation and act in a proper way.
Latency is exactly defined as the time passing between the moment in which a certain
thing is asked for and the moment in which the related response is given and collected.
This time interval is usually quantified in milliseconds for many of the human-facing
software frameworks available nowadays. Inference latency has a direct impact on the
user experience (UX) and it is instead estimated in seconds or their fractions. Even if there
are no precise conventions nor rules for response times, the “0.1/1 /10 second limits”
proposed by Jakob Nielsen [69] represents an acceptable heuristic. If the system takes too
much time to give an answer, users no longer find the stream of their activities, and this
may determine a huge impact not only on their amusement, but also on performance, time
and money spent. Image and video management show a clear example of how important
is the necessity of having systems performing with a low latency, thus providing (near-)
real-time inference-based solutions.

Accuracy. One of the main benefits of deep learning approaches is that, while being coded
at low precision, they can be trained at a higher one. The training stage could indeed reach
a very high level of algorithmic accuracy, typically Floating-Point (FP) 32, whereas the
implementation can normally happen with a much more shallow mathematical accuracy,
often FP 16. By doing so, it is feasible to acquire not only an enhanced throughput, but
also a better efficiency and possibly to reduce the latency. Always keeping an elevated
accuracy is of course of paramount importance for users to have the finest user experi-
ences. Besides everything, there exist a lot of different accuracy measures. According to
the PLASTER framework, accuracy leverages on the capability of preserving the precision
achieved from the model during the training phase also during inference. The main idea
behind this behaviour is that of reducing the algebraic precision to let the model be more
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Comparison of the models for ToF Denoising and 3D PCD Registration

Method Accuracy Size of Robustness Time Cost Latency Range of
Model Application

To
F

D
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a
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en
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ng

ToFNet [85] D C C D C C
MOM+MRN DNN [39] B C B C B D

DeepToF [63] C D C B A B
2-parts CNN [40] C A C A A C

Coarse-Fine CNN [3] B A B A A B
Range-Recovery + Boundary-Detection NNs [84] C A C A A C

Power Efficient NN ToF [21] B C B A A C
Predictive + BackScattering [18] B A B C B B

SHARP-Net1[27] A B B B B A
DA-F [2] A B A B B A

Po
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ud
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at
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n

Optimization-Based Methods
ICP [12] D A C A B C

Go-ICP [99] C B B B D B
LM-ICP [32] C B B A A B
FGR [106] B B A A A B

Feature-Learning Methods
PPF-FoldNet [25] B C A B B A

IDAM [57] B C B C A B
DCP [91] C D B B A B

FRR (FPFH [79] + RANSAC [31]) B A B B B A
End-to-End Learning-Based Methods

PointNeLK [5] D B A C A B
PointNetLK + Awe-Net [51] C C A B B A

PointVoteNet [42] B C B C C B
DGR [23] A D B C A B

3DRegNet [70] A B A C A A
FMR [47] A B A B A A

Table 5.1: “Models Comparison”. Comparison of several models both for MPI and
Shot Denoising of ToF Depth Maps and for Point Cloud Registration, according to six
different indicators, namely Accuracy, Size of Model, Robustness, Time Cost, Latency,
Range of Application. The methods marked in bold are the ones that present the overall
best performance according to the specified criteria, thus the ones that will be reproduced
and adapted in this thesis work.

efficient in terms of energy, increasing in this way the overall throughput of the system at
hand for the particular task of interest.

Size of Model. The complexity of the neural network heavily affects the performance of
the model, especially for what concerns the latency and the throughput when considering
the proposed framework with these seven metrics. In a deep neural network the elements
responsible of the growing (or shrinking) of the size of the model itself are: (1) the number
of layers, (2) the amount of units (neurons) per each layer, (3) the calculation complex-
ity of every layer and finally (4) the quantity of connections existing between a neuron
at one layer and the units of its neighbors. It follows that the size of a neural network
is proportional to the number of computational (and physical) resources necessary in the
inference stage. As an example, as suggested by the authors of [86], one could think about
the optimization of a deep neural network with the constraint of remaining within some
predefined accuracy and latency limits. In this context, it is obvious that the provided op-
timization will inevitably decrease the accuracy of the model by making every layer and

1While not being the best approach according to the specified criteria, as explained at the end of Sub-
section 5.1.1 this is the method that is actually used in this thesis work, due to incompatibility of [2] and [3]
with the embedding environment.
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the connections between one another easier. The improvement that deep learning mod-
els have experienced in the last few years in size, complexity and computational needs,
together with the rising of low latency requirements for (near-)real-time tasks, underlines
how important the metric related to the size of the model is. Thus, an eye must always
be kept on the way in which the complexity of the network affects latency and through-
put, and customization on hardware and inference precision at runtime may be taken into
account in order to tackle the issues discussed so far.

Throughput. This metric outlines how many inferences can be carried out given the
size and the complexity of the model at hand. Differently from the latency bound that
guarantees a fine user experience, optimizing the throughput within that boundary is of
paramount importance for maximizing efficiency and income. During the years there has
been a propensity to employ the single throughput as the only performance metric, as gen-
erally the higher it is the better is also the performance over other aspects. Nonetheless,
if the throughput is not adequately balanced with the latency, the outcome will inevitably
be a substandard low-quality user service, missing without any doubt service level agree-
ments (SLAs) with the conceivable risk of delivering a wrong system. A common metric
for measuring the throughput for deep learning inference is the number of images pro-
duced per second for image-based networks, while for speech-based ones the amount of
tokens per second is mostly taken into account. As earlier anticipated, the system must
be able to obtain the desired throughput without exceeding the predefined latency bound,
and this can be managed by scaling the GPUs number. Nevertheless, this scaling can be
applied only if the inclusion of further GPUs doesn’t make the latency of the first GPU
larger.

Energy Efficiency. The performance of a deep learning accelerator is directly propor-
tional to its power consumption: the higher is the former, the more costly is also the latter.
Moreover, a growth of the power consumption could easily enlarge the costs necessary for
providing a particular service. Thus, the need to focus on energy efficiency not only in sys-
tems but also in machines cannot be further ignored. One could think that a possible way
to tackle this issue could be that of maximizing energy efficiency for as many inferences
as possible within a fixed power threshold. Yet, the solution cannot be simply reduced at
recognizing which is the isolated processor that presents the lower power consumption,
since energy efficiency is based not only on the absolute power consumption throughout a
certain period of time, but also on the throughput during the same interval. Thus, energy
efficiency can be considered as another important sample showing how tight PLASTER’s
metrics are interconnected one another and must be examined together to have a full idea
of the inference performance.

Rate of Learning. Not long ago companies have laid the foundations of DevOps, which
aims at closely binding development and operations with the support of more powerful
techniques and higher-level programming tools. It goes without saying that for partic-
ularly complicated deep neural networks it is of paramount importance to keep up with
the DevOps trend in order to catch on in nowadays business. As corporations carry on
with deep learning frameworks implementation, they are greatly improving their technical
skills about finding productive and effective ways to build and train them. One drawback
of deep neural networks is that they have to be systematically retrained since new data
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are always collected and services become larger and larger, possibly changing their orig-
inal vision. Thus, in order to keep the pace companies and developers have to necessary
increase the rate at which they can retrain models when new data are collected. In this
sense, servers composed by multiple GPUs have greatly narrowed training times of neural
networks from weeks and days to hours and minutes. Faster training procedures lead to
the fact that the models could be more frequently retrained in order to improve precision
or keep it high. Programmability also plays an important role in affecting rate of learn-
ing. To reduce programmers workflow, Google and NVIDIA have lately made public an
integration between TensorRT and TensorFlow, as explained in [55]. The former could
be directly called within the latter itself to optimize the architectures to efficiently run on
NVIDIA GPUs. The capacity to combine training and inference effortlessly empowers
DevOps solutions for deep learning. Thus, summarizing, rate of learning is quantified
according to: (1) gain in throughput and model accuracy during the training, (2) gain in
throughput, model accuracy and latency for production and (3) gain in programmability,
size of model and energy efficiency for both training and production.

After having discussed the PLASTER framework and analyzed in detail each of its met-
rics, in the following are now thoroughly explained the criteria chosen in this thesis work,
which as anticipated correspond in part with the ones just presented.
Thus, in Subsections 5.1.1 and 5.1.2 all the approaches studied in the previous Chap-
ters, for MPI and shot denoising (Chapter 2) and for point cloud registration (Chapter 3)
respectively, are described according to the specified indicators reported in Table 5.1.

5.1.1 ToF Raw Data Denoising
All the approaches reported in Section 2.3 regarding the denoising of ToF raw data are
taken into account according to the previously specified criteria. In the following, each
of the metrics is discussed more in detail for all the deep learning frameworks, namely
accuracy, size of model, robustness, time cost, latency and range of application. Since the
objective of this thesis work is that of building a neural network based approach that works
in (near-)real-time in an embedding environment, the most interesting criteria are without
any doubts the size (and thus the complexity) of the model and its latency, therefore its
online performance. Of course, also the accuracy and the robustness of the architectures
are looked and analyzed with special attention, along with all the other indicators.

Accuracy. Accuracy is for sure one of the most important metrics, since it regards the
level of performance that the model is able to achieve. Obviously one wants the model
to be as accurate as possible, meaning that, in this case, capable of removing as much
noise as possible. It is feasible to see a vast heterogeneity among all the studied ap-
proaches, being some of them very accurate and other much less. What is possible to say
is that, throughout the years (the models are mostly ordered in the table by the time of
the publication of the relative paper), the accuracy of the networks increased. This could
be explained observing that many of these models are based on previous works, thus the
authors had the chance to improve what their ancestors were lacking at. Clear example of
that is DeepToF [63], which is based on the same idea (about the usage of an autoencoder
as deep learning neural network) of the earlier work ToFNet [85], but also DA-F GAN [2]
which is an improvement of the Coarse-Fine CNN proposed in [3].
Out of all these cited methods, two are the ones with the highest accuracy (and also the
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ones able to achieve the best performance when taking into account other metrics) chosen
to be replicated in this thesis, namely Coarse-Fine CNN [3] and its enhanced version [2],
as one could see by looking at the bold rows of Table 5.1.

Size of Model. Given that the whole point of the research is that of finding a NN-based
approach that works fine in an embedding system, the complexity of the model itself (and
the real-time performance as already anticipated) plays a crucial role in the final choice.
Thus, many algorithms couldn’t be selected due to the high complexity and/or the massive
delay in the processing of the depth maps. As it happened for the accuracy, also regarding
the size of the model it holds that the more recent is the approach the better it is, generally
speaking. This is probably due to the fact that new studies were done and new approaches
were suggested to exploit all the intrinsic characteristics of the depth images acquired by
the ToF cameras. Moreover, worthy of notice is the fact that accuracy doesn’t strictly tie
with complexity of the model. Indeed, ToFNet [85] is likely the worst approach in terms
of accuracy, yet its architecture is definitely not straightforward, and the same goes also
for DeepToF [63], just to cite one more.
Between the totality of the proposed frameworks, the ones that present the lowest com-
plexity (coupled with the smallest latency and, possibly, with the highest accuracy) are
selected, and these turn out to be the models already cited in the previous paragraph, [3]
and [2], suggested by Agresti et al.

Robustness. Being inspired by the definition given by the authors of [46], robustness
largely indicates the anti-interference performance of the presented frameworks with re-
spect to noise input. Given the fact that all these approaches are based on a deep neural
network, they all take as input a considerable amount of data, thus they suitably examine
the information reported in the input scene presenting a generally high level of robustness.
However, the specific input data are particularly noisy point clouds and the level of noise
in the collected raw data depends on a huge number of factors. It is therefore very diffi-
cult for these approaches to generalize and achieve good performance in every situation,
even after a long period of training. Sometimes it could happen that they aren’t capable
of properly discerning relevant features from environmental noise.
According to the papers, some methods are trained in such a way to be extremely ro-
bust, and these are the ones most taken into account to perform the final choice on which
method has to be selected and reproduced.

Time Cost and Latency. Since the time a method takes to provide a solution dictates
its real-time performance, the two metrics are discussed together in this paragraph. All
learning-based frameworks time performance can be predominantly split according to two
steps: offline training and online measuring. The former is time-consuming because the
model has to be trained using a huge amount of input data, and it thus needs several
recurrent computations, even though the usage of GPUs could remarkably speed up the
overall training procedure. In the latter instead the denoised depth map can be directly
estimated by the trained models, thus the latency is theoretically very small. Nonetheless,
since what truly matters in the specific situation of this thesis work is the real-time (or
near-real-time) performance, not all the presented methods are good enough, since the
online step could be considerably faster with respect to the offline one, but still inadequate.
Thus, the approaches taken into account in this research are the ones able to provide the
result (the depth map with MPI and shot noise greatly reduced) within few milliseconds,
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and letters shown in Table 5.1 for latency metric are given accordingly to this reasoning.

Range of Application. Due to the theory on which they are based, that is the need of
tons of data (and time) to train the network, learning-based approaches are able to handle
several different conditions that may happen at test time. However, since there is an
enormous amount of agents that can affect the quality of the input data (i.e. the reflectivity
of the objects, their density and surface material, the ambient light conditions and so on so
forth), not all models behave correctly with all type of inputs. Some of them may present
a wider range of application, while some others are more limited in this sense, depending
on how they were trained in the first place and how much capable they are of handling the
limits within which any alteration takes place. Thus, for this thesis work the methods with
the broadest range of application are looked with more consideration in order to use the
largest possible input range and adapt the obtained frameworks also to the robotic world,
perhaps in a space application with its own kind of needs and data.

Out of the several methods, as it is possible to see by looking at Table 5.1, two are selected
in order to be reproduced in this thesis work (marked in bold), namely the Coarse-Fine
CNN network proposed in [3] and its improvement, the DA-F GAN defined in [2]. Also
SHARP-Net, as explained in [27] and in Subsection 2.3, allows to reach very accurate
results, but at the beginning of this work the other two approaches were picked in order
to do a comparison between the “raw” version of the first Coarse-Fine CNN (presented
in [3]) and the “final” enhanced version of the network reported in [2], leveraging on
GANs. As will be outlined later on in Section 5.2, these networks end up not being
able to work in real-time, since even for inference they need the acquisition of depth
maps and amplitude images taken at different modulation frequencies. Being the real-
time performance a fundamental requirement for this research, another architecture has
therefore been selected and implemented, which is exactly that of SHARP-Net [27]. More
details will be found in Section 5.2, in which also the code of the models is thoroughly
explained.

5.1.2 Point Cloud Registration Methods

Similarly to what is done for the ToF MPI and shot denoising approaches, also point
cloud registration methods described in Chapter 3 are collected and compared, again ac-
cordingly to the same six metrics previously introduced. Table 5.1 shows the results of
the comparison: for each type of methods, namely optimization-based, feature-learning
and end-to-end learning-based, the best one is selected (and marked in bold). The reason-
ing applied before about the main criteria that have to be met for the robotic environment
holds also here: size of the model and online performance lead the choice of the finest
algorithms which are chosen to be implemented.
In the following, all the cited indicators are described more in detail, specifying the argu-
mentation underneath every single choice performed.

Accuracy. Accuracy is again one of the principal indicators that one can think of when
dealing with a predefined task carried out by a specific framework. This is even much
more true if taking into account the point cloud registration problem, where the main
idea is that of finding the rigid transformation that “accurately” aligns the two input point
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clouds. Looking at table 5.1, it is immediately visible that end-to-end learning-based ap-
proaches generally allow to get much better results (in terms of accuracy) with respect to
feature-learning and, mostly, optimization-based frameworks.
This is because deep learning neural networks take as input a lot of data that grant them
the possibility to estimate the rigid transformation, in terms of R and t, using a more com-
prehensive information. Thus, the results they get are much more precise than the ones
obtained by non learning-based approaches. Moreover, not all the methods belonging to
this third class of point cloud registration frameworks are equally precise. Indeed, the first
(temporally speaking) approaches that were proposed ([5] or even [51]) achieved results
that were even less accurate that the ones reached by optimization-based methods. Then,
as deep learning techniques evolve and more researches are conducted, all focused on
this task, new models are gradually introduced, able to achieve nowadays state-of-the-art
outcomes (as 3DRegNet [70] or FMR [47]).

Size of Model. Complexity of the proposed frameworks is, as already anticipated, one
of the most critical metrics that has been taken into account in this thesis work, due to
the specific space environment it is focused on. Thus, it plays a fundamental role in
the final choice of the approaches that will be used. It is obvious that, out of the three
classes of models, the methods leveraging on deep neural networks are the ones with the
highest complexity. This is due to the intrinsic nature of the models themselves, that
are composed by deep architectures indeed, which aim at gathering as much information
as possible, exploiting many different ways and possibilities. Since most of the latest
feature-learning methods rely on deep neural networks (such as [25, 57, 91]), it follows
that optimization-based frameworks are generally the ones with the simplest structure,
even if also FPFH-RANSAC Global Registration (FRR, [79, 31]), presents a straightfor-
ward solution to tackle the registration problem. It has to be lastly said that normally the
complexity of the architecture is inversely proportional to the real-time performance of
the model itself, as will be discussed in the next paragraphs.

Robustness. Inspired again by the definition in [46], robustness predominantly introduces
the concept of the anti-interference performance demonstrated by the considered models
with respect to noise and environmental changes. Since end-to-end learning-based ap-
proaches use a massive amount of data for the training procedure, their robustness is
considerably higher than the one of other methods, in particular the optimization-based
ones. In fact, since the models leveraging on deep neural networks adequately view and
contemplate the input information of the observed scene, their performance measured un-
der this specific indicator is way better than the other approaches, due to the fact that they
are able to correctly distinguish between object features and environmental noise.
Additionally, being dependent on the same idea of using plenty of data to acquire as
much information as feasible, also feature-learning models based on deep neural networks
are able to achieve an elevated robustness. Nevertheless, even if the optimization-based
frameworks are also capable of efficiently discerning in most of the cases prominent fea-
tures from environment, some wrong and incorrect information may be taken into con-
sideration under some particularly noisy situations, and this may inevitably lead to final
mistakes in the esteemed transformation.

Time Cost and Latency. As stated in the previous Section when dealing with MPI and
shot denoising approaches for ToF raw data, also in this case real-time performance is
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a must for models aiming at operating in embedding environments, especially for space
applications. Thus, out of all the proposed frameworks, some of them are looked with
special attention due to their capability of working with a low latency. In particular, as al-
ready anticipated in the paragraph concerning the accuracy metric, it generally holds that
the more complex is the model the lower is its latency in real-time point cloud registration.
This is true in fact if one takes into account the latency metric column in Table 5.1: one
can easily note that the end-to-end learning-based and the feature-learning approaches can
operate in (near-)real-time measuring the 6 DoF pose directly by the trained model, while
optimization-based frameworks present a much higher latency due to the huge amount of
computations they have to perform.
For what concerns the offline step, that is the time cost of the algorithm, it must also be
said that it is time-consuming for deep neural networks since they need to train a model
that is fed with a massive amount of data. This means that recurrent calculations are nec-
essary, even if as explained for ToF models a GPU could obviously speed up the training
stage. Thus, regarding the time cost, optimization-based frameworks surely behave better,
but vice versa the lack of training data generally compromises their online performance.

Range of Application. Due to their working assumption, optimization-based approaches
are not able to handle the problem of 6 DoF pose estimation of reflective objects, or many
others presenting some peculiar characteristic. Nonetheless, this kind of objects is quite
ordinary to be found in industry: one could easily think about, for examples, metal parts,
but even walls and ceiling. Learning-based approaches leveraging on deep neural net-
works are instead capable of addressing this issue, but they need plenty of time to train
the model, and this may result in being highly contrasting with real-time performance re-
quirements of the system. Thus, feature-learning and end-to-end learning-based 3D point
cloud registration approaches can substantially cover the widest range of application. Out
of these several methods, the ones with the lowest complexity and latency (and haply with
the highest accuracy and robustness) are the ones chosen to be reproduced and fitted to
the purposes of this thesis work.

Specifically, as it is possible to see by looking at the bold rows of Table 5.1, the point
cloud registration frameworks that have been selected according to the specified indicators
are FGR [106] for optimization-based methods, FRR ([79] + [31]) as a representative of
feature-learning methods and finally 3DRegNet [70] and FMR [47] as agents of end-to-end
learning-based methods. Two learning-based models have been chosen, instead of one,
since they present almost the same behaviour in compliance with the selected criteria.
Thus, a better and fair comparison between the two wants to be highlighted, and this is
possible due to the fact that they need the same input and give the same output, which
is the estimated transformation parameters. Therefore, they could be easily overlapped
in the end-to-end framework built for this thesis work, which starts from the ToF data
acquisition and ends with the point cloud registration of the detected point set with respect
to a provided target one. However, during the implementation of 3DRegNet [70] model, a
problem has been discovered, which was that of the impossibility of the network to work
with point clouds of different shapes. More details are given in the following Section,
where the implementation of the proposed approaches is reported in detail. Results of the
point cloud registration task are available in Chapter 6, where all the implemented models
are compared.
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5.2 Code Implementation
This Section contains the explanation of the code implemented for this thesis work.
The whole project is based on Python v3.8.12 [87], TensorFlow v2.6.0 [1] and PyTorch
v1.9.1 [72], and it is built upon a machine MacOS BigSur v11.3.1 with a 2.7 GHz Intel
Core i5 dual-core processor. Please refer to the provided link2 for more details about the
code itself.

The Section is organized in this way: Subsection 5.2.1 focuses on the data acquisition
part using the ToF PMD Camboard PicoFlexx sensor [73], Subsection 5.2.2 strengthens
the ToF MPI and shot denoising task, emphasizing the two implemented deep learning
approaches (namely, Coarse-Fine CNN [3], along with its enhancement [2], and SHARP-
Net [27]), while Subsection 5.2.3 finally defines the point cloud registration problem, car-
rying out four different methods, one for the optimization-based frameworks (FGR [106]),
one for the feature-learning models (FRR [79, 31]) and lastly two for the end-to-end
learning-based ones (3DRegNet [70] and FMR [47]).

5.2.1 Data Acquisition
The first task of this thesis work is that of acquiring and extracting useful information
from the ToF camera provided by the company, a PMD Camboard PicoFlexx. The starting
point is represented by the official Royale SDK software directly available at [73], which
contains some relevant sample scripts to be used to understand the behaviour of the sensor
at hand. After having analyzed and studied them, I tried to understood which were the
relevant data among the ones captured from the sensor itself in order to fulfil the task aim
of this research. These turned out to be the amplitude image caught by the sensor at a
certain modulation frequency, along with the depth map of the same scene, taken at the
same frequency, and the point cloud based on 38304 points accordingly generated.

Thus, after having given the user the possibility to select the desired operating mode
between the ones provided by the camera (5 fps, 10 fps, 15 fps, 25 fps, 35 fps and 45 fps
respectively), the “main” program starts two threads in parallel that overlap. The first out
of the two collects the depth maps and the amplitude images at the selected modulation
frequency and plots them using OpenCV [16], while the second gathers the point clouds
information and draws it (with a bit of transformations to be properly rendered) employing
Open3D [107].

For the evaluation of the experiments conducted in this thesis work, it has been considered
the usage of a 3D printing of the ESA’s Meteosat Third Generation (MTG) [29] satellite
model, kindly offered by the company this thesis is done with. In fact, since the whole
point of this thesis is that of working in an embedding environment, more specifically in
an aerospace robotic embedding environment, all the experiments are managed with the
purpose of labouring with (a model of) a satellite. This is done in order to simulate what
could happen in a real world condition, with an object resembling as much as possible
what a real docking system could face in space, that is, in this case, a satellite indeed.
Fig. 5.2 shows the front and the retro views of the 3D model: after having printed it in a

2Link to the GitHub repository
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(a) Frontal View (b) Retro View

Figure 5.2: “MTG Satellite 3D Model, in TASI Courtesy”. Frontal (a) and Retro (b)
views of the MTG satellite 3D model used in this thesis work.

5 hours process, it has been fully sanded and white re-coloured in order to make it as less
reflective as possible, so not to penalize the performance of the PicoFlexx camera, which
is particularly sensible to this kind of surfaces as all ToF sensors.

Fig. 5.3 reports the amplitude images and the depth maps (depicted through the usage of
OpenCV) and the point clouds (drawn instead with the tools offered by Open3D), acquired
observing the satellite model (that was the only object in the room, hanging on from
the ceiling) at different operating modes at a nominal distance of 1m. Specifically, the
operating modes offered by the camera and available to be selected are briefly explained
in the following, according to the information provided by the official guide in [73]:

• MODE_9_5FPS_2000: Fig. 5.3(a), (b) and (c) refer to this use case, that focuses
on a range between 1m and 4m, with a frame rate of 5 fps and a maximum exposure
time of 2000 µs, and originally thought for indoor room reconstruction.

• MODE_9_10FPS_1000: Fig. 5.3(d), (e) and (f) describe this use case, which is set
on a 1÷ 4m range, with a frame rate of 10 fps and a maximum exposure time of
1000 µs, and it is normally employed for room scanning and indoor navigation.

• MODE_9_15FPS_700: Fig. 5.3(g), (h) and (i) regard this use case, thought for 3D
object reconstruction with a range between 0.5m and 1.5m, a frame rate of 15 fps
and a maximum exposure time of 700 µs.

• MODE_9_25FPS_450: Fig. 5.3(j), (k) and (l) cover this use case, exploited for
medium size object recognition and face reconstruction within a range of 0.3÷2.0m,
with a frame rate of 25 fps and a maximum exposure time of 450 µs.

• MODE_5_35FPS_600: Fig. 5.3(m), (n) and (o) represent this use case, developed
for remote collaboration, step by step instruction and table-top gaming, working in a
range between 0.3m and 2.0m with a frame rate of 35 fps and a maximum exposure
time of 600 µs.

• MODE_5_45FPS_500: Fig. 5.3(p), (q) and (r) lastly have to do with this use case,
applied within a range of 0.1÷ 1m, with a frame rate of 45 fps and a maximum
exposure time of 500 µs, for small object or product recognition and hand tracking.
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(a) Amplitude 5fps 2000. (b) Depth 5fps 2000. (c) Point Cloud 5fps 2000.

(d) Amplitude 10fps 1000. (e) Depth 10fps 1000. (f) Point Cloud 10fps 1000.

(g) Amplitude 15fps 700. (h) Depth 15fps 700. (i) Point Cloud 15fps 700.

(j) Amplitude 25fps 450. (k) Depth 25fps 450. (l) Point Cloud 25fps 450.

(m) Amplitude 35fps 600. (n) Depth 35fps 600. (o) Point Cloud 35fps 600.

(p) Amplitude 45fps 500. (q) Depth 45fps 500. (r) Point Cloud 45fps 500.

Figure 5.3: “Raw Data Acquisition: Satellite Model in TASI Courtesy”. Data acquired
at different operating modes (5 fps, 10 fps, 15 fps, 25 fps, 35 fps and 45 fps).
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In particular, as it is possible to perceive by looking at the figure, higher fps correspond to a
higher level of noise, but at the same time to a faster data acquisition. Indeed, even if with
fps ≥ 25 one could enjoy a fast acquisition, the results are visibly clattering: sometimes
even the only object present in the room (the 3D printing of the satellite model) couldn’t
be seen due to the high level of noise. Thus, it is feasible to state that the 5 fps use case is
optimized for long range scanning at a maximum data quality, in order to locate objects or
people inside large environments, such as buildings, while on the other side a frame rate
of 45 fps could lead to a less data quality for precise detection and recognition, but a huge
processing speed.
In this thesis work only input data with a low frame rate have been considered, that is up
to 25 fps, in order to capture quite clean depth maps.

5.2.2 ToF MPI and Shot Denoising

After having compared all the deep learning approaches for ToF raw data denoising ac-
cording to six different metrics as shown in Table 5.1, two of them have been selected in
order to be reproduced and adapted to the needs of this thesis. Coarse-Fine CNN proposed
in [3] and its enhancement designed in [2] are indeed the two methods that met both the
requirements of being straightforward and presenting a low latency, still achieving state-
of-the-art performance in terms of accuracy and presenting a good robustness and a wide
range of application. The idea was thus to replicate them, adapting them to the PicoFlexx
sensor kindly provided by the company this research is done with.

After a brief conversation with Eng. PhD. Gianluca Agresti, the first and main author of
the two cited papers, it has been decided to implement just one neural network method,
that basically mixes together the two models, introduced in [3] and [2] respectively, taking
the structure of the network from one side and the training approach from the other. In
this way, indeed, it has been possible to implement a method which does not occupy
too much memory neither for the structure itself nor for the training on the augmented
dataset. Besides providing a solution for a robotic environment in fact, which has to be
as much straightforward as possible per se, the whole method had a further constraint,
as well as all the other approaches used and designed in this thesis work. It must have
been as less complex as feasible since it has been implemented and trained in Google
Colaboratory [14], therefore with several limitations for what concerns the RAM and the
time available for the training itself.

After having implemented this method though, a not negligible problem emerged. The
proposed approach, resulting from the integration of the two presented papers, is indeed
very fast in getting the results (that is, in denoising the input depth map), but it always
needs as input a stack of five elements. This sequence is constituted by the depth map ac-
quired at 60MHz, the differences between the depth maps captured at 20MHz and 60MHz
and between the ones captured at 50MHz and 60MHz, and finally the ratios between the
amplitudes at 20MHz and 60MHz, and between the ones at 50MHz and 60MHz, as thor-
oughly explained in [3]. Thus, it cannot work in real-time (or near-real-time, for what
matter) because it consistently requires to pre-process the input data after having acquired
them at three different modulation frequencies, even in inference mode.
Since it is crucial that in the type of embedding applications considered in this thesis
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work the implemented framework is capable of running in (near-)real-time (with a hard-
ware powerful enough to let it happen obviously), thus presenting a very low latency, this
method cannot no more be considered as a valid solution for the kind of task that has been
required.

Therefore, this is the reason why a second approach has been taken into account, that is the
one proposed in [27], denoted SHARP-Net. While not being the best method according
to the selected metrics, as already anticipated and previously summarized in Table 5.1, its
low complexity (or better saying, its capability of obtaining fine results even with a sim-
pler architecture with respect to the one originally thought by the authors) and its online
performance are still good enough to allow its usage in this research.
Thus, in the following two paragraphs, the main characteristics of the proposed architec-
tures are described in detail, both for what concerns (enhanced) Coarse-Fine CNN and
SHARP-Net. Results of the totality of the conducted experiments are finally available in
Chapter 6.

Coarse-Fine CNN. Following the network proposed in [3] and its further improvement
in the form of the generator network of the GAN described in [2], a Coarse-Fine CNN
architecture has been implemented. Specifically, the coarse network, based on a sequence
of five convolutional layers, each followed by a ReLU as activation function with the only
exception of the last one, is fed with the five data channels previously mentioned. This
stack is constituted by the depth map captured at 60MHz, the differences between the
depth maps acquired at 20MHz and 60MHz and between the ones obtained at 50MHz
and 60MHz, and finally the ratios between the amplitudes taken at 20MHz and 60MHz,
and between the ones gained at 50MHz and 60MHz. After each of the first two con-
volutional layers a max pooling layer is present, aiming at applying a down-sampling
operation in order to decrease the resolution by a factor of 2. Each kernel of the convolu-
tional layers implements a 3×3 pixels convolution. Every one of these layers present 32
filters, a part from the last one that employs a single 3×3 convolutional filter. Differently
from [3], after the final upsampling employing a bilinear interpolation the output of the
coarse CNN is not the original esteemed degradation due to the presence of MPI. Follow-
ing instead the approach introduced in [2], this up-sampled output can directly be seen
as a low resolution depth map measurement of the observed scene. This is of paramount
importance since it enables to avoid the employment of further computationally intensive
filtering operations, such as the bilateral filter which is instead used in many frameworks
for ToF raw data denosing. Fig. 5.4(a) shows the overall graph of the implemented coarse
sub-network.
As suggested by the authors, the decision to employ two different sub-networks is highly
dependent on the observation that the reflections causing MPI could theoretically take
place in many different regions of the observed scene, thus a broad field of view is indis-
pensable. Conversely, convolutions and pooling layers employed by the coarse CNN have
the side effect of making edges and small details partially blurred. Therefore, while the
coarse network allows to perceive a wide receptive field, the fine network works instead at
full resolution and permits to get a final more precise representation of edges and details,
thus empowering a better localization of the error.
Fig. 5.4(b) depicts the graph of the whole Coarse-Fine network implemented. It is pos-
sible to see that also this second network presents five convolutional layers with 3× 3
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convolutions and ReLU activation functions, except for the last one, exactly as in the pre-
vious network. Nonetheless, instead of 32 filters per layers it works with 64 filters for
each layer ans no pooling blocks at all. Moreover, the input of the first layer is again the
stack of five data channels as previously described (thus, the same of the Coarse network),
but the fourth layer is fed with both the output of the third layer and the up-sampled coarse
CNN output. This allows to combine the “global” low resolution esteemed depth map of
the previous network with the more detailed but “local” estimation performed by the fine
network. In this way, it is feasible to achieve an MPI-free depth map measurement which
retains both the global scene structure and the finer details.

(a) Graph of Coarse CNN (b) Graph of Coarse-Fine CNN

Figure 5.4: “Graphs of the implemented Coarse-Fine CNN”. Coarse CNN(a) and
Coarse-Fine CNN(b) graphs obtained through the “ad hoc” code implementation, after
having studied and re-implemented from scratch [3] (with the partial integration provided
by [2], on the guide of the enlightening advice offered by Agresti).
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Again contrastingly from [3], the input data is fed without any pre-processing for denois-
ing to the Coarse-Fine CNN architecture.
The neural network has been trained using the synthetic dataset provided in [3]. Despite
the fact that it is one of the most substantial ToF dataset currently available, its size is
still relatively small-scale if put together with the datasets commonly employed for deep
learning neural networks training. Thus, with the aim of handling this non negligible
problem and avoid overfitting during the training procedure, following the suggestions of
the authors also in this thesis work data augmentation techniques have been applied on
the data. More in detail, 10 128× 128 pixels random patches have been extracted from
each of the 40 scenes present in the dataset, and each of these patches has been further
rotated of ±5 degrees, as well horizontally and vertically flipped. Lastly, due to the small
amount of data, K-fold cross-validation with K = 5 has been used on the training dataset
in order to validate the network hyper-parameters. Once the hyper-parameters have been
properly selected though the cross-validation procedure, the CNN has been trained on the
totality of the training data.
For the training itself, following again the approach introduced in [2] instead of the one
presented in [3], a combined loss has been minimized. This loss is made by the sum of
two terms, one computed on the output of the coarse network (after interpolation) and the
other calculated on the outcome of the second fine network. Specifically, it is designed as
the sum of the ℓ1 distances between the outputs of the fine and the coarse networks with
respect to the ground truth depth value, according to:

Lsup = E[|dC−dgt |]+E[|dF −dgt |] (5.1)

During the training, ADAM optimizer [52] was used, together with a batch size of 4 and
an initial set of weight values calculated by using Xavier’s procedure [34].
The learning rate has been set to 5 · 10−6 and a ℓ2 regularization with a weighting factor
of 10−4 has been employed for the norm of the CNN weights.
The overall network has been implemented using TensorFlow [1] and trained using Google
Colaboratory [14].
Fig. 5.5, taken from [3], depicts the 14 scenes of the synthetic dataset kept out for the
evaluation part and furnishes a glance of the dataset at hand.
However, as has already been said, this network cannot work in real-time even in inference
mode, since it always requires to be fed by a sequence of five input data channels acquired
at different modulation frequencies. This is of course unfeasible to be done “online”, thus
another approach has been taken into account, that is SHARP-Net [27], described in the
next paragraph.

Figure 5.5: “Synthetic Test Dataset of Coarse-Fine CNN” (taken from [3]. The 14
scenes (in a colored perspective) of the dataset provided by Agresti et al, used for the
evaluation stage of the Coarse-Fine CNN.
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SHARP-Net. Starting from [8], the network of the relative paper was implemented.
Specifically, three architectures have been built throughout the whole thesis work in order
to make several comparisons, taking as major indicators the complexity of the models and
their online performance, as well as the visual accuracy of the results.
The three approaches taken into account are SHARP-Net in its entirety and its smaller
variants, namely ToF-KPN andSHARP-Net without the Residual Fusion and the Depth
Refinement modules.
As illustrated in [27] and replicated here, SHARP-Net (“Spatial Hierarchy Aware Resid-
ual Pyramid Network”) is built upon three blocks, namely the Residual Regression Mod-
ule, the Residual Fusion Module and the Depth Refinement Module. The implemented
Residual Regression Module is an encoder network that takes as input the combination
of the depth map and the amplitude image acquired at a certain modulation frequency
and returns as output a multi-scale feature pyramid consisting of five layers with 16×16,
32× 32, 64× 64, 128× 128 and 256× 256 filters respectively. Given an input image of
224×171 (that in the resolution of the PMD PicoFlexx sensor), the feature maps at each
level i present a size specified by the following formula:

SFMi =
224
2i−1 ×

171
2i−1 ×Ci (5.2)

where Ci is the number of output channels: 16, 32, 64, 128 and 256 respectively.
At each of these five levels, the module predicts a depth residual map, which is up-sampled
via bi-cubic interpolation by a factor of 2 before being concatenated with the feature map
of the upper level. The output obtained in this way is thus given as input to a sequence
of two convolutional layers, each followed by a max pooling one. The final outcome is
exactly the residual map for each of the pyramid levels. All these obtained residual maps
are first up-sampled again via bi-cubic interpolation by a factor of 2, then concatenated
together and given as input to the second module of SHARP-Net, that is the Residual Fu-
sion Module. This block is based on a 1×1 convolutional layer, whose output is the final
depth residual map. This outcome is then added to the original input depth image in order
to recover the depth image.
Lastly, in order to highly attenuate also shot noise, the final Depth Refinement Module
has been implemented as suggested by the authors of the original paper cited above. This
block is based on a U-Net model with four convolutional layers with 16× 16, 32× 32,
64× 64 and 128× 128 filters respectively, each followed by a max pooling layer. Skip
connections are also employed to improve the performance and the convergence of the
network. Moreover, the weight matrix has been further computed as a vectorized filter
kernel, with a 3× 3 size, for each pixel in the depth image. Thus, using three sequen-
tial convolutional layers, the weight matrix got a size of 224× 171× 9. By vectoring a
neighbourhood of 3×3 for each pixel in the depth image, another 224×171×9 matrix,
denoted by the authors of [27] as “Patch Matrix”, has been calculated. These two obtained
matrices are therefore element-wisely multiplied to obtain the final 3D volume. By finally
summing over this 3D volume the refined depth image deprived of MPI and shot noise is
lastly computed.
Being a supervised neural network, the authors of the paper from which this network ar-
chitecture is inspired propose the usage of three ToF datasets for the training procedure,
namely ToF-FlyingThings3D (TFT3D) [77], FLAT [39] and True Box[2, 3]. All these
datasets obviously contain ground truth depth values.
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Figure 5.6: “Examples from the True Box Dataset” (taken from [2]). Depth maps,
depths ground truth and amplitude images for scenes 0, 1, 2 and 3, taken from the “True
Box” dataset constructed by Agresti et al. The image is taken from the official cite of the
relative paper, available at this link3.

In this thesis work, only the latter has been used, due to the fact that the resolution of the
camera with which the dataset was collected is the closest one to the PicoFlexx sensor.
Indeed, True Box [2, 3] contains the depth, amplitude and intensity maps captured with
an active stereo and a ToF camera jointly calibrated at 10, 20, 30, 40, 50 and 60 MHz on
8 scenes, thus for a total amount of 48 different scenes, each with a 239×320 resolution.
All the data are acquired from the authors in a laboratory without any form of external
illumination, and some examples are shown in Fig. 5.6.
The network is implemented using TensorFlow [1] framework with Keras [22] open-
source neural-network library, and developed using Google Colaboratory [14].
One of the major drawbacks of this model in its original version is the intricacy of its
architecture. Thus, in order to reduce the complexity and make it more feasible to be
implemented in an embedding system without sophisticated hardware, two variants of
SHARP-Net have been considered in this research.
Inspired by the alternative solutions provided by the authors of SHARP-Net and following
[11], the first of the presented variations is based just on a U-Net structure built upon an
autoencoder with four convolutional layers for the encoder part and four transpose con-
volutional layers for the decoder one. The network, which takes the name of ToF-KPN,
is fed with an input depth image and extracts the relevant features, used then as input to a
stack of three convolutional layers for the weight matrix estimation. After having applied
a “Path2Vec” operation to generate a patch matrix by vectoring a neighbourhood for each
pixel in the input depth image, the two obtained matrices are element-wisely multiplied,
thus generating a 3D output volume. By again summing over it the final error-free depth
map is derived.
The second proposed alternative is instead a SHARP-Net without the Residual Fusion
Module and the Depth Refinement one. Practically speaking, this second surrogate is

3Unsupervised Domain Adaptation for ToF Data Denoising with Adversarial Learning
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just based on a four-layers encoder that extracts the features from the input depth map
and amplitude image concatenated together. After an up-sampling operation via bicubic
interpolation, the network returns as output a four-levels features pyramid. Each level
of the just obtained output is then fed to a small decoder which estimates the residual
depth map, and by considering the totality of all the levels the final denoised depth map
is obtained. While simplifying a lot the structure of the model itself, the performed ex-
periments (available in the next Chapter) show that this approach doesn’t lose accuracy
in the final outcomes, thus providing a valid solution that could be adopted in a space
embedding environment.
For what concerns the first alternative instead, the network based only on a U-Net struc-
ture and utilizing a second small CNN to combine features and weights, results illustrate
that this model is not precise in denoising the input depth map. The conducted tests con-
vey that the ToF-KPN network is indeed capable of removing the noise but not in a precise
way, sometimes deleting also “wrong” points belonging to the satellite point cloud.
The outcomes of the experiments carried out in this thesis work are shown and explained
in detail in Chapter 6, where the three alternatives are qualitatively and quantitatively
compared by acquiring input depth images of the satellite model at different frame rates,
i.e., 5 fps, 10 fps, 15 fps and 25 fps.

5.2.3 Point Cloud Registration

This Subsection focuses instead on the implementation of the code for the point cloud
registration task. In particular, out of all the proposed approaches considered in Chapter 3,
only few of them have been selected, one per each typology of methods (or two for the last
case), according to the already cited six metrics, as reported in Table 5.1. These are the
Fast Global Registration [106] (FGR) for the optimization-based methods, the FPFH [79]
feature extraction + RANSAC [31] Global Registration (FRR) for the feature-learning
models and finally 3DRegNet [70] and Feature-Metric Registration [47] (FMR) for the
end-to-end learning-based frameworks.
Even if this thesis work has the purpose of studying a NN-based approach for tackling
the point cloud registration problem, the first two methods were chosen in order to make
a fair comparison between “standard” traditional approaches and new ones based on the
recent evolving AI, to prove that deep learning techniques could be used even in a surely
challenging space environment.

The workflow performed for addressing this task is common to all the selected approaches,
and it is briefly explained in the following. First of all, the CAD 3D model of the satellite
(again kindly provided by the company) has been uploaded and converted into a point
cloud using Open3D library [107]. In order to make several experiments, also taking
into account the time spent by each of the proposed algorithms for the final alignment,
the target point cloud of the satellite has been created by gradually sampling a differ-
ent number of points, i.e., 20000, 30000, 50000 and 100000, according to the Yuksel’s
procedure [101]. This technique basically samples points from a given mesh (that is the
converted CAD model) in order to generate a certain point cloud, in which each of the
sampled points is round about at the same distance to all the points belonging to its neigh-
borhood. This property is denoted as blue noise.
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(a) Satellite point cloud with 20000 points sam-
pled from the 3D CAD model.

(b) Satellite point cloud with 30000 points sam-
pled from the 3D CAD model.

(c) Satellite point cloud with 50000 points sam-
pled from the 3D CAD model.

(d) Satellite point cloud with 100000 points sam-
pled from the 3D CAD model.

Figure 5.7: “Sampling Strategies: Satellite Model in TASI Courtesy”. Several point
clouds obtained by the 3D satellite model through the sampling procedure introduced
by [101], with 20000(a), 30000(b), 50000(c) and 100000(d) points respectively.

Visual outcomes of this sampling procedure are depicted in Fig. 5.7. In particular, Fig. 5.7
(a) shows the point cloud of the 3D CAD satellite model composed of 20000 sampled
points, (b) the one made by 30000 points, (c) the point cloud assembled sampling 50000
points and finally (d) the one formed with 100000 points.
As it is possible to notice by looking at the images, the higher is the number of points the
higher the “resolution” of the point clouds, that are better able to fully describe the shape
of the satellite itself. On the other side, the sampling process of a point cloud with a higher
number of points clearly requires more time with respect to the creation of a smaller point
cloud. Quantitatively speaking, the implemented script took 38.365 seconds (as average)
to generate the last point cloud with 100000 points, while only 6.122 seconds to create
the first point cloud by sampling 20000 points. Table 5.2 reports the time costs required
for the sampling procedure of each of the considered point clouds.

Once the target model is uploaded and sampled, thus “converted” into a point cloud with
the selected amount of points, all the 3D registration frameworks considered in this thesis
work just need the second (source) point cloud to start performing the alignment between
the two. After the denoising phase performed by SHARP-Net and its variants, as discussed
in the previous Subsection 5.2.2, the obtained error-free point cloud is given as input to
the registration algorithms. Before effectively beginning the alignment task, the source
point cloud is further cropped so to remove the background, in order to let the registration
technique implement its strategy by focusing only on the relevant object, which is the

114



5.2 – Code Implementation

Execution Time of the Sampling Strategy [101]
Target Point Cloud Dimension

20000 points 30000 points 50000 points 100000 points
Time Cost 6.122 s 9.557 s 20.320 s 38.365 s

Table 5.2: “Execution Time of the Sampling Procedure”. Time costs for sampling
the 3D CAD satellite model following the technique described in [101], calculated as
the average value of 5 different runs. The considered target point clouds have growing
dimensions: 20000, 30000, 50000 and 100000 points respectively.

satellite in this case. Indeed, while being the satellite model the only object present in
the observed scene, the distance between the target and the neighboring walls lies within
the working range of the PicoFlexx camera, therefore they couldn’t be removed during
the acquisition. Thus, again through a function offered by Open3D library [107], starting
from a custom .json file containing the polygon volume to be cropped, written “ad hoc”
for this situation, the source point cloud is detected and all the background points are cut
off accordingly. At this point, the point cloud embracing all the points belonging to the
satellite printed model is finally ready to be fed to the registration frameworks. Fig. 5.8
shows the satellite model before (a) and after (b) this cropping procedure: as it can be
seen, at the end only the points affiliated to the satellite are retained in the final point set.

Before the final stage, that is the execution of the registration algorithm itself, object
detection has been performed on the source point cloud in order to detect the satellite
model and to enclose it in bounding boxes. In particular, two different bounding boxes
have been created for this object detection task, as can be seen by looking at Fig. 5.9.
First of all, from the coordinate axes a first bounding box that encloses the whole set of
points was created (shown in Fig. 5.9(a) coloured in red). Then, starting from the previous
one, a second oriented bounding box was generated (depicted in green in Fig. 5.9(b)).

(a) Source point cloud before cropping. (b) Source point cloud after cropping.

Figure 5.8: “Cropping of the source input point cloud: Satellite Model in TASI Cour-
tesy”. Source point cloud before the cropping phase (a) and immediately after (b). As it
is possible to notice, after the cutting phase all the points belonging to the background are
removed and only the ones belonging to the satellite printed model are retained.
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(a) Axis-Aligned Bounding
Box (shown in red).

(b) Oriented Bounding Box
(depicted in green).

(c) Axis-Aligned and Ori-
ented Bounding Box.

Figure 5.9: “Object Detection on the Source Point Cloud: Satellite Model in TASI
Courtesy”. Axis-Aligned Bounding Box over the source point cloud drawn in red (a),
Oriented Bounding Box in green (b) and the two Bounding Boxes together (c). The object
detection task has been carried out following [107].

Fig. 5.9(c) illustrates both the axis-aligned and the oriented bounding boxes around the
observed point cloud. This object detection task has been implemented and accomplished,
shadowing [107], in order to properly narrow the Region of Interest (ROI). All of this has
been done before passing the source input point cloud to the registration framework to
carry out the final goal of this thesis work, which is the estimation of the transformation
parameters capable of aligning the input to the target point sets.

At this point, both the source and the target point clouds are finally ready to begin the
registration alignment task. One last note that has to be made before going to the explana-
tion of the implemented code is that out of the two chosen and therefore coded end-to-end
learning-based procedures, namely 3DRegNet [70] and FMR [47], the latter is the one
finally employed for the experiments in this thesis work. This is due to the fact that
3DRegNet presented a severe drawback which was encountered during the implementa-
tion itself, as will be explained in the related paragraph later on. It is indeed designed to
align only two input point clouds with exactly the same number of points. Thus, the 3D
CAD model of the satellite and the source input point cloud captured from the PicoFlexx
sensor should have been equal in terms of size and dimension, and this could have been
forced through down-sampling the target model to always be consistent with the source
one, regardless of the number of points belonging to the latter. But in doing that, the
performance has encountered a significant drop during the conducted experiments, since
the source point cloud was already partially cropped before the execution of the algorithm
(due to the reasons explained before to remove the background). Thus, the total number
of points of the cropped point set wasn’t high enough to lead to a good result in the reg-
istration task, and this is the reason why the other approach has finally been taken into
account.

Fast Global Registration (FGR). The first approach that has been implemented is the
optimization-based chosen candidate, namely Fast Global Registration (FGR) [106], fol-
lowing the script provided by the Open3D library [107].
At the beginning of this method, both the input point clouds have been down-sampled
with a voxel size of 0.05.
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This technique, described in [107], starts from the employment of a structured voxel mesh
in order to generate a uniformly down-sampled point set starting from an input one. The
procedure is based on a stack of two sequential stages: (1) the points are firstly wheeched
into voxels, and secondly (2) each of the obtained voxels spawns just one point by com-
puting the mean value of all the points belonging to the voxel itself. At this point, the nor-
mals for every obtained point are calculated by first retrieving the closest points (within a
searching radius of 0.1, which corresponds to 10 cm, and a maximum nearest neighbors’
number of 30 to cut computational costs). Through the usage of covariance analysis, the
principal axis of these closest points is therefore quantified.
Worthy of note is that the analysis of covariance is a technique that outputs two converse
directions as normal candidates. Both of them could in principle be considered as the
right direction if no information regarding the global geometry structure is supplied. This
is referred to as the “normal orientation issue”: the algorithm brought forth by [107] and
followed in this thesis aims at lining up the obtained normal with the native actual one,
provided that it is already present. If this is not the case instead, the procedure performs a
random prediction.
Fig. 5.10 reports the voxel down-sampling and the normals computation process just de-
scribed: in particular, Fig. 5.10(a), (b) and (c) display the voxel down-sampling tech-
nique applied on the acquired satellite input point cloud, with a voxel size of 0.05, while
Fig. 5.10(d), (e) and (f) convey the normal computation. In both down-sampling and nor-
mal calculation the figures are shown in an increasing enlargement: Fig. 5.10(c) and (f)
illustrate the source point cloud at full zoom, first down-sampled and then with the just
quantified normals.

(a) Source point cloud voxel
down-sampled with mini-
mum zoom.

(b) Source point cloud voxel
down-sampled with medium
zoom.

(c) Source point cloud voxel
down-sampled with maxi-
mum zoom.

(d) Normal Estimation over
down-sampled point cloud
with minimum zoom.

(e) Normal Estimation over
down-sampled point cloud
with medium zoom.

(f) Normal Estimation over
down-sampled point cloud
with maximum zoom.

Figure 5.10: “Voxel Down-Sampling and Normal Computation of Point Clouds:
Satellite Model in TASI Courtesy”. (a), (b) and (c) show the voxel down-sampling
process applied to the source input point cloud. Screenshots are taken at different zoom
levels. (d), (e) and (f) depict the normals computation starting from the down-sampled
point cloud. Screenshots are again taken at different zoom levels.
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Finally FPFH [79] features are computed for every point, using a searching radius of 0.25
and a maximum number of nearest neighbors set to 100. Each FPFH can be thought as a
feature vector with dimensionality 33, capable of fully understanding and thus represent-
ing the local intrinsic characteristics of a single geometric point. The main idea behind its
behaviour is that the closest neighbors in the 33-dimensional space to a specific point are
all characterized by an analogous geometric structure.
Thus, with the computed features and the down-sampled point clouds previously obtained,
the Fast Global Registration [106] algorithm is called using again an Open3D smart im-
plementation [107], obtaining the final alignment. The qualitative and quantitative results
of the driven experiments using FGR algorithm are discussed in Chapter 6.

FPFH + RANSAC Global Registration (FRR). As a deputy of the feature-learning reg-
istration frameworks, FPFH [79] + RANSAC [31] Global Registration (FRR) has been
selected for its low complexity and yet the high accuracy of its results. Again following
the script provided by Open3D library [107], the first part of this algorithm is identical to
the one already explained in the previous paragraph for the FGR approach. Specifically,
after having chosen a voxel size equal to 0.5, both the source and the target point sets are
down-sampled and the normals are calculated for every one of their points.
One could have a look at the just described Fig. 5.10 to visually perceive the outcomes of
this step, that is indeed analogous to the optimization-based one thoroughly introduced in
the previous paragraph.
Starting from the down-sampled point clouds and the normals just obtained, FPFH [79]
features are extracted according to the Open3D implementation of the technique, exactly
as before. At this point the global RANSAC [31] algorithm based on feature matching is
called, with the maximum correspondence points-pair distance set to 0.075, the number
of correspondences to fit RANSAC with set to 4 and the “Point-To-Point” transformation
as the estimation method.
The most dominant hyper-parameter is the convergence criteria, that indicate the maxi-
mum number of iterations and the maximum amount of validation steps that the called
method has to perform before stopping. The higher are these two values, the more precise
will also be the final outcome, but at the same time the larger will be the execution time
employed by the algorithm to converge. In the implemented code they are set to 4000000
and 500 respectively.
At each iteration, 4 random points are gathered from the source point set and, starting
from them, the corresponding points belonging to the template point cloud are retrieved.
This is achieved by looking at all the closest neighbors in the 33-dimensional feature space
that present a similar geometric structure with respect to a given one.
A clipping stage is further performed in order to rapidly discard false pairing prematurely
in the pipeline, through the usage of high speed trimming algorithms.
In particular, following the [107] approach, two pruning algorithms are used in this the-
sis work: (1) “Correspondence Checker Based On Distance” tries to understand whether
aligned point clouds are adjacent (within a predefined threshold, that in this research has
been set to 0.075) or not, and (2) “Correspondence Checker Based On Edge Length”
examines whether the lengths of two arbitrary lines formed by two vertices separately
extracted from source and target matches are alike or not.
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Specifically, the implemented code checks that both the following inequalities hold:

∥edgesource∥> 0.9 · ∥edgetarget∥
∥edgetarget∥> 0.9 · ∥edgesource∥

(5.3)

Thus, only those pairings that are compliant with the pruning rules defined by these algo-
rithms are finally employed to estimate the transformation.
FRR is fed only with (densely) down-sampled point sets, thus the obtained outcome may
be not well matched. This is the reason why, inspired by the Open3D procedure, a final
“Point-to-Point” ICP is additionally employed to refine the esteemed transformation.
Nonetheless, one last note that has to be made is that, as previously anticipated in Sub-
section 3.2.4, there is no a maximum limit on the time this approach employs to con-
verge. Thus, when the number of iterations is finite and bounded, the solution may be
sub-optimal or not particularly accurate. This will be further discussed in next Chapter
where the results of FRR, compared with the ones of other frameworks, are illustrated.

3DRegNet. The first proposed method for the end-to-end learning-based approaches is
3DRegNet, introduced in [70]. Following the method described in the relative paper, the
network is based on two main modules, one for the classification and one for registration.
The classification chunk is fed with a collection of 3D point correspondences between the
two scans. Despite the fact that these correspondences could in principle be calculated
using any technique, in this thesis work the FPFH [79] features have been used. Each of
these computed correlations is then fed to a fully-connected (FC) layer followed by 128
ReLU activation functions. Furthermore, a weight sharing for all the N separate corre-
lations has been implemented, obtaining as output a N× 128 vector, due to the fact that
from every point correspondence 128 dimensional features are extracted. The N× 128
output is then further given as input to 4 ResNets, followed at the end by a final FC layer
with ReLU and tanh activation functions.
The input to the second registration block is constituted by the features just extracted. A
max pooling layer, followed by context normalization, draws out relevant 128×1 features
from each of the classification block’s layers. These features are then concatenated and
fed to a convolutional layer with 8 filters, each presenting a 3× 3 kernel with a stride of
1×2. The derived output is finally given as input to two FC layers with 256 filters each,
with ReLU activation function between the layers. In this way it is possible to obtain the
desirable output, that is composed by the transformation parameters.
In this thesis work the model pre-trained by the authors of the paper [70], publicly avail-
able, has been used and slightly modified in order to make it compatible with the input
acquired using the PicoFlexx sensor. While adapting it though, tailoring to the needs of
this research, a problem emerged: the framework works only when the two input point
clouds have the same dimension in terms of the number of points. Besides representing a
heavy constraint, this has also caused a serious degradation of the performance obtained in
the registration task. Indeed, given that the source point cloud was already cropped before
starting the registration procedure (as previously explained at the beginning of Subsection
5.2.3) and that the resolution of the PicoFlexx camera is already low (224×171), forcing
one of the two point clouds to always be consistent with the dimension of the other has
led to a significant drop of the accuracy. This is the reason why the approach defined in
the following paragraph, besides being more straightforward, is also the final one that has
been actually used to carry out all the experiments in this thesis.
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Feature-Metric Registration (FMR). The last method presented in this section is FMR
[47], the second candidate that has been selected for the end-to-end learning-based ap-
proaches. As described in the corresponding paper, the architecture of the model is based
on a simple autoenconder trained either in a semi-supervised or in an unsupervised man-
ner. Specifically, the encoder is based on a stack of two Multi-Layer Perceptron (MLP)
layers followed by a max pooling one, and its output is composed by the rotation-attentive
extracted features. Starting from these encoded idiosyncratic features, a decoder is em-
ployed to track down the original 3D point sets. This decoder module is based on two
layers, each followed by a batch normalization and using Leaky ReLU as activation func-
tion. A last FC layer is further added, with tanh as activation function. The autoencoder,
counting a total amount of just round about 340000 trainable parameters, is trained by us-
ing the Chamfer distance loss (see more details in [47] or in the previous Subsection 3.3.6
where the framework is thoroughly explained) in an unsupervised fashion.

Figure 5.11: “ModelNet40 Dataset Examples” (taken from [97]). Some instances ex-
trapolated by ModelNet40, representing a sofa (a), a bathtub (b), a toilet (c), a chair (d), a
bed (e), a desk(f), a table (g) and a nightstand (h).
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Shadowing the authors’ specifics, the datasets used for training are ModelNet40 [97] and
7Scene [82]. Specifically, ModelNet40 includes 40 distinct categories of CAD models,
which are divided into two separate fractions: 20 classes are used for training and testing
within the same class, while the remaining 20 are employed for testing across different
categories. In the former tests the dataset is further divided, following [47]’s procedure,
into 8 : 2, where 80% of the data is dedicated to training and the remaining 20% to testing.
Some samples extracted from this dataset can be seen by looking at Fig. 5.11 (taken from
[97]), representing respectively a sofa (a), a bathtub (b), a toilet (c), a chair (d), a bed (e),
a desk (f), a table (g) and a nightstand (h).
7Scene is instead a dataset for indoor environment extensively employed as a benchmark
in registrations tasks. It is composed by seven scenes, namely Chess, Fires, Heads, Office,
Pumpkin, Redkitchen and Stairs, for a total amount of 353 screenings. They are split into
296 for training and 57 for testing. For the training procedure, the depth images are cast
onto point clouds, and depths belonging to multiple frames are merged through truncated
signed distance function (TSDF) fusion [102]. Some scans taken from this dataset are
available at Fig. 5.12, where (a) shows a chess scene, (b) a fire one and finally (c) a pump-
kin scene.

(a) Chess example scene. (b) Fire example scene. (c) Pumpkin example scene.

Figure 5.12: “7Scene Dataset Examples” (taken from [66]). (a), (b) and (c) show
some example scenes extracted from the 7Scene Dataset [82], representing chess, fire
and pumpkin respectively.

The registration problem is then tackled by using the inverse compositional (IC) algorithm
to minimize a feature-metric projection error and predict the final transformation. Experi-
ments conducted by the authors have demonstrated that FMR is usually able to obtain the
best performance within 5 iterations of the IC algorithm, thus this is the number utilized
in this thesis work during the implementation. Following [47], the network is coded in
PyTorch and re-trained using Google Colaboratory’s [14] GPU, a 12GB NVIDIA Tesla
K80 with 4.1 TFLOPS.
The model trained on 7Scene Dataset allowed to achieve the best performance, thus this
is finally used for the assessment phase. Qualitative and quantitative results of the exper-
iments performed in this thesis about FMR are exposed in the next Chapter, where this
framework is compared with all the other proposed approaches.
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Chapter 6

Results

In this final Chapter of the thesis, all the implemented approaches are compared, both from
a qualitative and a quantitative point of view. In particular, Section 6.1 refers to SHARP-
Net and its variants thoroughly described in the previous Chapter (Subsection 5.2.2): the
performance of the proposed networks are evaluated with inputs acquired at 4 different
frame rates (5, 10, 15 and 25 fps respectively). Section 6.2 focuses instead on the point
cloud registration task, by taking into account the three introduced frameworks working
with target point clouds of different size (20000, 30000, 50000 and 100000 points respec-
tively) and with different initial poses for the source one, always acquired at 5 fps.

6.1 MPI and Shot Denoising Results
In this section the performance of the implemented MPI and shot denosing approaches
(SHARP-Net [27] and its variants, namely ToF-KPN and SHARP-Net without Residual
Fusion and Depth Refinement modules) are evaluated both qualitatively and quantitatively
and compared one another.

Qualitative Analysis. Figs. 6.1, 6.2, 6.3 and 6.4 display visual comparison between the
proposed methods with input point clouds acquired at different frame rate, 5, 10, 15 and
25 fps respectively. In particular, these figure show (using OpenCV [16] tools) the depth
maps acquired and denoised through the employment of the implemented approaches. As
it is possible to see, SHARP-Net and its variant without the Residual Fusion and the Depth
Refinement modules generally perform similarly, while ToF-KPN always brings the worst
results. This could be explained given that the latter, built upon a simple U-Net architec-
ture, may be too straightforward to extract relevant features and to understand the inner
structure of the point cloud at hand. In fact, as depicted in all the figures, this method is
still able to correctly process the input data, partially removing the noise present, but it
indiscriminately discards both the inliers and the noisy outliers in the point clouds.
The similarity of the performance between SHARP-Net in its original version and the
alternative without two building blocks (the Residual Fusion module and the Depth Re-
finement one) could be interpreted according to the characteristics of the sensor itself. The
PMD Camboard PicoFlexx camera is indeed very different with respect to the ones used
for building the datasets utilized for the experiments conducted by the authors of [27]: as
outlined in Chapter 4, the former isn’t affected by the wiggling phenomenon that is instead
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(a) Input Depth Image at 5 fps. (b) Predicted Depth with ToF-KPN.

(c) Predicted Depth with SHARP-Net with no Re-
fine Fusion.

(d) Predicted Depth with SHARP-Net.

Figure 6.1: “Results of MPI and Shot Denoising at 5 fps: Satellite Model in TASI
Courtesy”. Depth Map acquired at 5 fps(a) and predicted depth maps with the usage of
ToF-KPN(b), SHARP-Net with no Refine Fusion(c) and SHARP-Net(d).

common in many other ToF sensors, thus is could be considered as particularly resistant
to shot and especially MPI noise. The Depth Refinement module of SHARP-Net could
therefore be removed without losing almost nothing in performance. Moreover it has to
be said that, being the resolution of the PicoFlexx extremely low (224× 171, for a total
amount of 38304 points), this may lead to a coarse depth map estimation (performed by
the SHARP-Net’s Residual Regression module) that is better than the one experimented by
the authors of the paper this method is taken from. Thus, the contribution of the Residual
Fusion block is nearly irrelevant for the final performance of the network.

More in detail, Fig. 6.1 shows the results of the denoising of an input acquired at 5 fps:
(a) depicts the input depth image, (b) the result obtained applying the simple ToF-KPN,
(c) the predicted depth map using SHARP-Net without the Residual Fusion and the Depth
Refinement modules, and finally (d) the outcome achieved with the original SHARP-Net
as described in [27]. As it is possible to see, the starting point cloud is already almost free
of noise. However, SHARP-Net with and without the last two modules is able to correctly
denoise the input data, visibly reducing shot and MPI noise, while ToF-KPN removes
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(a) Input Depth Image at 10 fps. (b) Predicted Depth with ToF-KPN.

(c) Predicted Depth with SHARP-Net with no Re-
fine Fusion.

(d) Predicted Depth with SHARP-Net.

Figure 6.2: “Results of MPI and Shot Denoising at 10 fps: Satellite Model in TASI
Courtesy”. Depth Map acquired at 10 fps(a) and predicted depth maps with the usage of
ToF-KPN(b), SHARP-Net with no Refine Fusion(c) and SHARP-Net(d).

both inliers and outliers compromising also the shape of the satellite itself.

Fig. 6.2 is composed by the same structure of the previous one, with (a) representing the
input data and (b), (c) and (d) referring to the three implemented methods, ToF-KPN,
SHARP-Net without the last two modules and the whole SHARP-Net, respectively. This
time, the input depth image is acquired at 10 fps, and in fact it results slightly noisier
with respect to the one acquired at 5 fps shown in 6.1(a). The outcomes of the denoising
task are consistent with what was previously said about the performance of the three
approaches, with ToF-KPN achieving the worst results out of the three methods. In this
case though, the absence of the two last blocks of SHARP-Net architecture (c) seems to
lead to a slightly better solution than (d).

Fig. 6.3 is again representing the input depth image (a) acquired at a frame rate of 15
fps and the three predicted depths in (b), (c) and (d), following the same order of the
two previous figures. This time the noise in the depth image is more visible, as one
could see by looking at the area around the satellite. ToF-KPN (b) is able to remove the
noise and partially retain the inliers belonging to the satellite structure, but the result is
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(a) Input Depth Image at 15 fps. (b) Predicted Depth with ToF-KPN.

(c) Predicted Depth with SHARP-Net with no Re-
fine Fusion.

(d) Predicted Depth with SHARP-Net.

Figure 6.3: “Results of MPI and Shot Denoising at 15 fps: Satellite Model in TASI
Courtesy”. Depth Map acquired at 15 fps(a) and predicted depth maps with the usage of
ToF-KPN(b), SHARP-Net with no Refine Fusion(c) and SHARP-Net(d).

still unsatisfactory. On the other hand, (c) and (d) are able to successfully remove noisy
points, depicting a cleaner depth map. Specifically, (c) shows a predicted depth map in
which shot and MPI noise is for sure attenuated, but also some points belonging to the
satellite shape are deleted. (d), depicting the original SHARP-Net, is instead very precise
in polishing the point cloud while keeping the detected satellite model almost untouched.

Finally, Fig. 6.4 reports the depth image captured at 25 fps (a) and the predicted depths
by means of ToF-KPN (b), SHARP-Net without the last two modules (c) and SHARP-Net
in its original version (d). As already said, increasing the frame rate at which the input is
acquired leads to a significant increase also of the presence of noise in the depth image
itself. Indeed, (a) shows a very noisy environment in which the satellite in the foreground
is still visible, but the wall in the background and the other (few) objects present in the
room hanging on it contribute in making the final acquisition “dirty”. ToF-KPN approach
(b) is as always the worst one, incapable of recognizing whether a point is an inlier or
an outlier. SHARP-Net with and without the Residual Fusion and the Depth Refinement
blocks perform very similarly. Most likely (c) achieves a slightly better result in terms of
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(a) Input Depth Image at 25 fps. (b) Predicted Depth with ToF-KPN.

(c) Predicted Depth with SHARP-Net with no Re-
fine Fusion.

(d) Predicted Depth with SHARP-Net.

Figure 6.4: “Results of MPI and Shot Denoising at 25 fps: Satellite Model in TASI
Courtesy”. Depth Map acquired at 25 fps(a) and predicted depth maps with the usage of
ToF-KPNN(b), SHARP-Net with no Refine Fusion(c) and SHARP-Net(d).

denoising and outliers removal, but it partially loses some of the satellite’s points, while
(d) is a little less efficient in removing outliers but moderately more precise in keeping the
shape of the satellite untouched.

To conclude this paragraph, Fig. 6.5 illustrates the point clouds (through the usage of
Open3D [107] tools) after the employment of the implemented frameworks. In particular,
(e) to (h) show the point sets obtained by means of ToF-KPN for the considered frame
rates (5, 10, 15 and 25 fps respectively), (i) to (l) illustrate the results achieved with the
“reduced” alternative of SHARP-Net, deprived of its last two blocks, while (m) to (p)
finally depict the outcomes attained through the original version of SHARP-Net. As it
is possible to notice, the results are consistent with what has been seen until now: ToF-
KPN always achieves the worst performance (Fig. 6.5(e), (f), (g), (h)), not being able to
correctly distinguish between points to be denoised and not to, whereas SHARP-Net with
and without the final modules accomplishes good results for every considered frame rate.

Quantitative Analysis. In order to quantitatively measure the performance of the pro-
posed approaches, different metrics have been taken into account. Unfortunately, unlike
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Figure 6.5: “Point Clouds after Denoising Phase: Satellite Model in TASI Courtesy”.
Point clouds acquired at 5 fps (a), 10 fps (b), 15 fps (c) and 25 fps (d). (e) to (p) represent
the denoising point sets obtained through the employment of the implemented approaches:
specifically, (e) to (h) depict the results of ToF-KPN for the considered frame rates, (i) to
(l) show the outcomes of SHARP-Net without the two final modules, while (m) to (p)
lastly illustrate the point clouds derived by means of the original SHARP-Net.

all the experiments conducted in the papers reported in Chapter 2 that were able to com-
pare the output of the denoising algorithm with a ground truth value, in this case there isn’t
any ground truth value to match up the denoised point clouds to, since the only starting
point is the input point cloud directly acquired with the PicoFlexx sensor. Thus, the main
idea behind the performance evaluation conducted in the following is that of computing
the percentage reduction in the number of outliers (which means, the percentage increase
in the number of inliers) of the denoised point cloud with respect to the input one. Inliers
are all the points of the point cloud belonging to the satellite model, while outliers refer
to all the noisy points, either belonging to the background or to every other object but the
satellite.
Therefore, first and foremost the relative percentage of inliers has been computed for the
depth input point clouds and for the denoised ones. In particular, the RI (Relative Inliers)
index is defined as follows:

RI =
NInliers

NInliers +NOutliers
(6.1)

where NInliers refers to the number of inliers points belonging to the volume of the detected
satellite, while NOutliers refers to the noisy outliers.
Vice versa, obviously, it can be defined the RO (Relative Outliers) index as:

RO =
NOutliers

NInliers +NOutliers
(6.2)

with the clear constraint that RI +RO = 1.
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6.1 – MPI and Shot Denoising Results

Moreover, the following metrics have also been considered in this Section:

MRI (Mean RI) =
1
N

N

∑
i=1

RIi

MRO (Mean RO) =
1
N

N

∑
i=1

ROi

(6.3)

where N is the number of acquired input depth maps.
Starting from these metrics, other indicators have further been implemented. Specifically,
the Relative MAE and the Relative RMSE metrics are described as follows:

Relative MAE (RMAE) =
1
N

N

∑
i=1
|ROidenoised −ROiacquired |

Relative RMSE (RRMSE) =

√︄
1
N

N

∑
i=1

(ROidenoised −ROiacquired)
2

(6.4)

where N is again the number of input acquisitions, ROidenoised is the relative number of
outliers in each denoised point cloud while ROiacquired is the relative number of outliers in
the input acquired ones, with i ∈ [1,N]. Being “denoising” methods, it must always hold
that ROidenoised is lower or equal to ROiacquired .
Given that these metrics represent the number of outliers of the denoised depth map with
respect to the number of outliers in the original input, the higher they are the better it is,
since it means that the lower will also be the amount of noisy points present in the pre-
dicted scene. Indeed, the perfect situation will be that of having in the esteemed depth map
all the points belonging to the satellite models (inliers), thus ROdenoised = 0 for each input
acquisition, which exactly leads to have the maximum difference between the computed
ROs, therefore the highest value for the metrics.

Tables 6.1 and 6.2 summarize the performance of the proposed approaches. Specifically,
Table 6.1 concentrates on the execution times of the algorithms while Table 6.2 focuses
on the metrics just described. As reported in Table 6.1, execution times are different for
the three proposed approaches, as one could have expected. In particular, ToF-KPN is
able to achieve the fastest execution, since it is the simplest model out of the three.

Execution Time of Denoising Approaches

Model Frame Rate for Depth Input
5 fps 10 fps 15 fps 25 fps

ToF-KPN 0.375 s 0.380 s 0.374 s 0.369 s
SHARP-Net no Refine Fusion 0.570 s 0.579 s 0.590 s 0.581 s
SHARP-Net 0.915 s 0.918 s 0.922 s 0.919 s

Table 6.1: “Execution Time of Denoising Approaches”. Execution time calculated
for the implementation of the proposed architectures, namely SHARP-Net, SHARP-Net
without Refine and Fusion blocks and ToF-KPN. The value is the computed as the average
out of 5 different input depth images acquired per each frame rate. The values marked in
bold denote the best performance according to each implemented method.
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On the other side, SHARP-Net in its original version is the slowest one, since the presence
of the three modules highly influences the online performance of the network. The alter-
native of SHARP-Net without the last two blocks (Residual Fusion and Depth Refinement)
stands between the two previous frameworks, presenting good results (better than the ones
provided by ToF-KPN and comparable with the SHARP-Net ones) at low execution time
(almost half of the time required by SHARP-Net). The outcomes are computed by taking
the mean value over 5 different input depth images captured per each frame rate, using a
2.7 GHz Intel Core i5 dual-core.

Table 6.2 quantitatively compares the proposed approaches using the indicators previously
described. As it is possible to notice, the results are consistent with what is depicted in
Figs. 6.1, 6.2, 6.3, 6.4 and 6.5. Indeed, SHARP-Net’s outcomes, with and without the last
two modules, present a MRI metric generally higher with respect to the input data (thus, a
lower MRO). Specifically, at 15 fps, SHARP-Net achieves an increase of nearly 12% with
respect to the input noisy data (i.e., the number of inliers in the predicted depth map is
12% greater than the number of inliers in the input), while its variant without the Residual
Fusion and the Depth Refinement blocks is able to get an improvement of almost 14%
with the depth image acquired at 25 fps.

Performance Evaluation of Denoising Approaches

Performance Metrics Frame Rate for Depth Input
5 fps 10 fps 15 fps 25 fps

In
pu

t
D

at
a MRI 0.6951 0.6724 0.5833 0.3409

MRO 0.3049 0.3276 0.4167 0.6591

To
F-

K
PN

MRI 0.2123 0.2242 0.3594 0.2031
MRO 0.7881 0.7761 0.6413 0.7978

RMAE 0.4830 0.4484 0.2253 0.1378
RRMSE 0.4832 0.4485 0.2257 0.1381

SH
A

R
P-

N
et

N
o

R
ef

/F
us MRI 0.7162 0.7012 0.5912 0.3898

MRO 0.2841 0.2993 0.4097 0.6115
RMAE 0.0208 0.0286 0.0066 0.0479

RRMSE 0.0222 0.0299 0.0115 0.0492

SH
A

R
P-

N
et MRI 0.7154 0.7061 0.6492 0.3778

MRO 0.2855 0.2945 0.3511 0.6237
RMAE 0.0199 0.0337 0.0645 0.0360

RRMSE 0.0220 0.0349 0.0657 0.0369

Table 6.2: “Performance Evaluation of Denoising Approaches”. MRI and MRO cal-
culated for the input depth image and for the denoised ones, along with the two newly
introduced metrics (RMAE and RRMSE) computed for the three denoising approaches.
Values are obtained taking N = 5 input depth images. The values marked in bold denote
the best performance according to each frame rate acquisition.
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6.2 Point Cloud Registration Results
This Section finally evaluates the performance of the point cloud registration frameworks
implemented in this thesis work:

1. FGR: For the classic optimization-based methods, the fastest among them is taken
into account, Fast Global Registration [106]

2. FRR: For the feature-learning approaches the simplest yet very effective FPFH +
RANSAC (+ Refinement ICP) is chosen [79, 31, 107]

3. FMR: Lastly, for the end-to-end learning-based frameworks the Feature-Metric Reg-
istration [47] is considered in these experiments.

Specifically, these approaches are compared both qualitatively and quantitatively using 4
different target point cloud’s dimensions (20000, 30000, 50000 and 100000 points respec-
tively), while the input is always captured at 5 fps, since this use case leads to the best and
cleanest acquisitions as previously shown. As one can see by looking at Fig. 6.6, the two
initial point clouds (the denoised and cropped source input and the target CAD model)
are rotated and translated one another. Specifically, (a) depicts the point clouds from a
frontal view, (d) from the posterior view while (b) and (c) from the lateral views, left and
right respectively. The aim of the point cloud registration methods is that of finding the
transformation that best aligns the two input point clouds.

(a) Frontal view. (b) Lateral (left) view.

(c) Lateral (right) view. (d) Retro view.

Figure 6.6: “Initial Alignment of the two point clouds: Satellite Model in TASI Cour-
tesy”. Frontal view of the two point clouds (a), lateral views, left (b) and right (c) respec-
tively, and lastly retro view (d).
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(a) Object Detection. (b) Initial Alignment. (c) Final Alignment.

Figure 6.7: “Point Cloud Registration Workflow: Satellite Model in TASI Courtesy”.
The workflow of the implemented end-to-end point cloud registration framework is as
follows: (a) the object of the source point cloud is detected and enclosed in bounding
boxes, (b) the two input point clouds are initially aligned, and lastly (c) the algorithm
finds the rigid transformation that best aligns the two point sets.

Thus, the workflow that one has to expect from these frameworks is the following, as
show in Fig. 6.7:

1. First, the object in the source input point cloud is detected and enclosed in bounding
boxes (Fig. 6.7(a)).

2. Second, the two point clouds are overlapped and their initial transformation (i.e.,
their original alignment) is estimated (Fig. 6.7(b)).

3. Third, the registration algorithm finds the best transformation able to align the two
point clouds, allowing to obtain a (nearly) perfect match (Fig. 6.7(c).

Qualitative Analysis. Fig. 6.8 visually compares all the proposed approaches, namely
FGR, FRR (with and without ICP refinement) and FMR, with 4 different target point
cloud’s dimensions (with 20000, 30000, 50000 and 100000 points respectively). As it is
possible to see, all the approaches are able to correctly align the two point clouds at the
end of their execution, both for low and high-dimensional target point clouds. In partic-
ular, FGR and FMR always get the best results, being able to nearly perfectly align the
source to target, even though in FGR results some points of the source point clouds remain
not precisely overlapped (as can be seen in Figs. 6.8(a), (e), (i) and (m)). Moreover, when
increasing the size of the target point cloud, FGR makes the convergence harder (present-
ing some points of the source point set which are not perfectly aligned with the template),
while FMR seems to be very robust to these changes (Figs. 6.8(d), (h), (l) and (p)). On
the other hand, FRR without ICP achieves the worst results (Figs. 6.8(b), (f), (j) and (n)),
while still being able to correctly align them. With the usage of ICP as refinement algo-
rithm though (Figs. 6.8(c), (g), (k) and (o)), the outcomes of FRR are almost comparable
with the ones of FGR and FMR, even if its execution time becomes much larger.
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(a) FGR 20000
points.

(b) FRR no ICP
20000 points.

(c) FRR ICP 20000
points.

(d) FMR 20000
points.

(e) FGR 30000
points.

(f) FRR no ICP
30000 points.

(g) FRR ICP 30000
points.

(h) FMR 30000
points.

(i) FGR 50000
points.

(j) FRR no ICP
50000 points.

(k) FRR ICP 50000
points.

(l) FMR 50000
points.

(m) FGR 100000
points.

(n) FRR no ICP
100000 points.

(o) FRR ICP
100000 points.

(p) FMR 100000
points.

Figure 6.8: “Point Cloud Registration Results: Satellite Model in TASI Courtesy”.
Comparison between the final alignment obtained by means of the proposed methods,
with target point clouds of 20000, 30000, 50000 and 100000 points respectively.

In order to finally qualitatively evaluate the robustness of the implemented approaches,
their performance is compared taking into account different starting poses of the source
point cloud. Specifically, Fig. 6.9 shows the behaviour of these methods when both the
initial pose of the source point set and the number of points of the target one vary.
Figs. 6.9 from (a) to (p) depict the case reported above, while Figs. 6.9 from (q) to (F) and
Figs. 6.9 from (G) to (V) introduce two new initial locations. As one could imagine, the
outcomes are consistent with what was previously shown, with generally FMR working
better and FRR (with ICP) achieving the worst results.
In particular, all the proposed frameworks are still able to correctly align the point clouds
one another, but with more difficult starting positions and with a larger size of the target
point cloud FGR and FRR slightly suffer in the estimation of the best rigid transformation.
On the other hand, FMR is always capable of perfectly aligning the two input point sets,
regardless of the initial position of the source and the dimensionality of the target.
Specifically, Figs. 6.9 from (u) to (x) and from (K) to (N) demonstrate the lack of precision
presented by FGR while trying to align the left “wing” of the two input point clouds.
Figs. 6.9 from (y) to (B) report the issues encountered by FRR (coupled with ICP as
final refinement) in aligning the main body of the satellite source and target point sets,
whereas Figs. 6.9 from (O) to (R) illustrate the scarcity of accuracy experienced by the
same method when trying to align the right “wing” of the satellite models. Figs. 6.9 from
(C) to (F) and from (S) to (V) finally proclaim the clear supremacy of the last approach,
FMR, which always achieves the best performance, no matter the initial starting pose.
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Figure 6.9: “Point clouds alignment starting from different source poses and target
sizes: Satellite Model in TASI Courtesy”.
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Quantitative Analysis. As already stated in the previous Section for what concerns ToF
denoising approaches, also in this case the ground truth value of the transformation wasn’t
available, thus the performance of the algorithms couldn’t be assessed through its usage,
as it is done in most of the literature of the topic nowadays present. Hence, being partially
inspired by the indicators used in [107]’s implementation of registration pipelines, from
a quantitative point of view the evaluation is performed by calculating two main metrics,
namely Hit-Rate and Inlier RMSE.
The first, denoted in the following as HR, measures the fraction of source points being cor-
rectly aligned by computing the number of inlier correspondences over the total amount
of points in the source point set. In formulas this corresponds to:

Hit-Rate (HR) =
NSInliers

NS
(6.5)

where NS exactly indicates the cardinality of the source point cloud and NSInliers the num-
ber of its points correctly aligned to the target reference. Of course it holds that the higher
is the HR metric the better it is, since it means that the more points are correctly aligned
to the template point set.
Inlier RMSE quantifies instead the RMSE of all the retrieved inlier correspondences.
Thus, this presupposes that the lower this indicator is the better is the final performance.

Table 6.3 summarizes the results according to these metrics by taking into account FGR,
FRR without ICP, FRR with ICP and FMR. The results reported here are dependent both
on the size of the target point cloud and on the initial alignment between the two: in par-
ticular, the classic 4 different sizes are considered for the target point set, and the three
starting poses depicted in Fig. 6.9 are chosen for the source point cloud’s initial position.
As it is possible to observe, FMR achieves the best outcomes, being therefore consistent
with what is shown in Figs. 6.8 and 6.9. Specifically, for the first case, when the dimen-
sionality of the target point cloud increases, the HR of the FGR slightly decreases, obtain-
ing worst outcomes even with respect to FRR (with ICP as refinement). FMR is instead
perfectly capable of accomplishing state-of-the-art performance, both of what concerns
HR and Inlier RMSE metrics, regardless of the target point set size.
On the other hand, considering the different starting poses of the source point cloud, it ap-
pears evident that FMR is always able to achieve the highest performance, both in terms
of HR and Inlier RMSE, without loosing in accuracy as the initial position becomes more
difficult. This highly proves its capability in understanding rotation-attentive features
from the input point clouds. Nonetheless, the same cannot be said for FGR and FRR: both
encounter some troubles when dealing with more strenuous situations. The former is still
capable of getting very high results, without losing too much in precision with respect to
the first case, while the latter sees its performance significantly decay, especially for what
concerns the second alignment. So, while coming (nearly) always close to FMR’s results,
FGR never fully manages to surpass it, neither in the Hit Rate metric nor in the Inlier
RMSE one, not to mention FRR, with or without ICP.

Lastly, the execution times of all the implemented methods are taken into account to have
another important metric in order to establish the performance of these algorithm from a
360◦ point of view. The only initial position of the source point cloud that has been taken
into account for this “time cost” evaluation is the one displayed at Fig. 6.6, since the time
needed for these algorithms to complete is independent from the starting pose.
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Performance evaluation of pcd registration approaches

Performance Metrics Target Point Cloud Dimension
20000 points 30000 points 50000 points 100000 points

Fi
rs

tA
lig

nm
en

t FG
R HR 0.9621 0.9630 0.9539 0.9534

Inlier RMSE 0.0106 0.0106 0.0106 0.0105

FR
R

N
oI

C
P HR 0.9214 0.9231 0.9220 0.9295

Inlier RMSE 0.0153 0.0168 0.0159 0.0151

FR
R

IC
P HR 0.9531 0.9534 0.9634 0.9644

Inlier RMSE 0.0144 0.0155 0.0151 0.0142

FM
R HR 0.9705 0.9706 0.9708 0.9708

Inlier RMSE 0.0101 0.0100 0.0100 0.0099

Se
co

nd
A

lig
nm

en
t

FG
R HR 0.9244 0.9212 0.9239 0.9221

Inlier RMSE 0.0203 0.0204 0.0204 0.0204

FR
R

N
oI

C
P HR 0.7679 0.7601 0.7690 0.7681

Inlier RMSE 0.0391 0.0390 0.0394 0.0389

FR
R

IC
P HR 0.8111 0.8107 0.8103 0.8109

Inlier RMSE 0.0281 0.0286 0.0283 0.0284

FM
R HR 0.9704 0.9705 0.9705 0.9703

Inlier RMSE 0.0102 0.0101 0.0102 0.0102

T
hi

rd
A

lig
nm

en
t

FG
R HR 0.9312 0.9308 0.9310 0.9311

Inlier RMSE 0.0182 0.0185 0.0184 0.0184

FR
R

N
oI

C
P HR 0.8361 0.8314 0.8344 0.8359

Inlier RMSE 0.0272 0.0281 0.0279 0.0277

FR
R

IC
P HR 0.8801 0.8814 0.8810 0.8799

Inlier RMSE 0.0244 0.0251 0.0239 0.0257

FM
R HR 0.9721 0.9722 0.9722 0.9722

Inlier RMSE 0.0098 0.0098 0.0099 0.0097

Table 6.3: “Performance Evaluation of Point Cloud Registration Approaches”. Hit-
Rate and Inlier RMSE metrics for evaluating the performance of the proposed approaches
calculated as the average value of 5 different runs, considering target point cloud with
growing sizes (20000, 30000, 50000 and 100000 points respectively) and different starting
poses for the source one (as depicted in Fig. 6.9). The values marked in bold denote the
best performance according to each target point cloud dimension and initial alignment.

Table 6.4 outlines the results of the performed experiments, where again several target
point clouds with different dimensions are considered. It is possible to notice that FMR is
not only the method that allows to achieve the best performance, but it is also the fastest,
thus being perfectly consistent with the initial requirements of this thesis work. FGR
also achieves good results with a very low time cost (proving to be even faster than FMR
sometimes), while FRR with or without the usage of the refinement ICP results to be
incredibly slower with respect to the others.

Fig. 6.10 and Fig. 6.11 finally depict the trend of the proposed metrics, HR and Inlier
RMSE respectively, for each of the implemented methods, considering the four different
sizes of the target point cloud taken into account so far. Once more, also in this case
as previously explained for the results collected in Table 6.3, the metrics are computed
by only taking into account the position of the source point cloud illustrated in Fig. 6.6,
since this is the situation in which the results of the three methods are closest one another,
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Execution Time of Point Cloud Registration Approaches

Model Target Point Cloud Dimension
20000 points 30000 points 50000 points 100000 points

FGR 0.431 s 0.748 s 1.997 s 5.441 s
FRR 16.840 s 21.121 s 24.968 s 29.914 s
FRR (with Ref. ICP) 17.012 s 21.511 s 25.098 s 30.115 s
FMR 0.392 s 0.694 s 2.130 s 5.012 s

Table 6.4: “Execution Time of Point Cloud Registration Approaches”. Execution
time of the proposed approaches, calculated as a mean of 5 different runs, considering
target point cloud with growing dimensions, 20000, 30000, 50000 and 100000 points
respectively. The values marked in bold denote the best performance according to each
target point cloud size.

regardless of the target point cloud’s dimensionality.

(a) Target PCD with 20000 points (b) Target PCD with 30000 points.

(c) Target PCD with 50000 points. (d) Target PCD with 100000 points.

Figure 6.10: “Hit Rate metric of the Point Cloud Registration Approaches”. Hit
rate trend of the proposed approaches in function of time spent to converge (in seconds)
and number of points in the target point set. Specifically, (a) considers 20000 points, (b)
30000, (c) 50000 and finally (d) 100000. Results are consistent with what shown in Tables
6.3 and 6.4.
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Therefore, it has been decided not to show their graphs in the following, but to have a
quantitative comparison one can simply have a look at Table 6.3 thoroughly described
before. In particular, Fig. 6.10 clearly shows that FMR method is always capable of
achieving the best results in the lowest amount of time, regardless of the size of the target
point set (or the initial starting pose of the source one, for what matters), thus proving the
outcomes highlighted in Tables 6.3 and 6.4. FGR, while being slightly faster than FMR
in getting a good HR in the case of a target point set with 50000 points (Fig.6.3(c)), gets
worst but yet very satisfactory performance, always better than the one obtained through
the employment of FRR, except for the very last example (with a 100000-points target
point cloud). As already shown in Table 6.4 FRR proves to be extremely slow in getting
satisfactory results, which in any case are nearly always worst than the ones of the other
methods.

Fig. 6.11 illustrates instead the trend of the Inlier RMSE metric as function of the time
needed by the algorithms to converge. Being defined as the RMSE of all the retrieved
inlier correspondences, the lower is its value the better is the performance of the method.

(a) Target PCD with 20000 points (b) Target PCD with 30000 points.

(c) Target PCD with 50000 points. (d) Target PCD with 100000 points.

Figure 6.11: “Inlier RMSE metric of the Point Cloud Registration Approaches”. In-
lier RMSE trend of the proposed approaches in function of time spent to converge (in
seconds) and number of points in the target point set. Specifically, (a) considers 20000
points, (b) 30000, (c) 50000 and finally (d) 100000. Results are consistent with what
shown in Tables 6.3 and 6.4.
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Again, FMR proves to be the most robust framework, presenting the best outcomes in
every conducted experiment, as also outlined in Table 6.3.
FGR also presents good results in an execution time that is nearly comparable to the one
exhibited by FMR. On the other side, FRR (with and without the ICP algorithm as final
refinement) turns out to be much slower with respect to the first two methods, achieving
good results in terms of Inlier RMSE (sometimes even very close to the ones obtained by
means of FMR) only in a too high number of seconds. This unfortunately is definitely
not in line with the real-time requirements which are at the basis of this thesis work, as
previously stated several times.

It is possible to conclude that the implemented end-to-end learning-based method, FMR,
consistently outperforms the classic optimization-based and the feature-learning ones,
both for what concerns qualitative and quantitative results according to the considered
metrics (HR, Inlier RMSE and time cost).
As authors of [47] suggest, this could be explained by considering the strength of the un-
supervised part of the framework that offers a feature extraction network which is truly
capable of embedding peculiar features in order to intrinsically understand the point cloud
geometry. Thus, the FMR approach provides an effective and very efficient way to tackle
the 3D point cloud registration problem, with an overall limited complexity and most im-
portantly capable of working in (near-)real-time, especially when the point clouds have a
limited amount of points (like the ones produced by the PicoFlexx camera).
On the other hand, both FGR and FRR (with and without ICP) suffer from some issues
either related to a lack of accuracy when the starting pose isn’t straightforward or the size
of one point cloud is particularly large (the former), or attributed to the huge amount of
time required by the algorithm to converge to a good enough solution (the latter).
The goal of this thesis work, which was that of presenting a promising NN-based ap-
proach for 6 DoF pose estimation and 3D point cloud registration, has therefore been
highly demonstrated.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

In this thesis work the problem of Object Detection and 6 DoF pose estimation with input
data acquired with a ToF camera has been addressed through the usage of a NN-based
approach.
One of the main contributions of this research is that of having provided a complete and
exhaustive survey of (almost) all the state-of-the-art methods both for what concerns the
denoising of ToF raw data (for systematic and non-systematic errors) and the 3D point
cloud registration issue. Specifically, ten methods for the former task (the ToF denoising
one, Chapter 2) and fourteen for the latter (the 6 DoF pose estimation, Chapter 3) have
been introduced and thoroughly explained, presenting pros and cons for each of these
frameworks, also in relation with the specifics and the requirements of this work. In-
deed, having in mind a space application for the tasks at hand, the complexity and the
(near-)real-time performance of the proposed approaches have always played a key role
in every choice performed throughout the whole research.
Another important contribution is that of having worked with a ToF sensor relatively new,
the PMD Camboard PicoFlexx camera introduced in Chapter 4, fully exploiting its poten-
tial in a large series of different circumstances and calibration procedures and being, to
the best of my knowledge, the very first to ever employ this device to fulfil a point cloud
registration task.
Most importantly this thesis has aimed at building an end-to-end framework which takes
as input the raw noisy data captured from the PicoFlexx camera (in the form of amplitude
images, depth maps and point clouds), denoises them through the usage of SHARP-Net
(along with its variants) implemented and meticulously described in Chapter 5, and finally
returns as output, by applying the learning-based FMR (or one of the alternatives intro-
duced in Chapter 5, namely the optimization-based FGR or the feature-learning FRR) the
rigid esteemed transformation that is able to best align the source denoised point cloud to
a target reference.
Extensive experiments conducted by taking into account different frame rates for the ac-
quisition, different starting poses of the source point cloud and different dimensionalities
of the target one have exhaustively proved that the approach presented in this work is
perfectly capable of tackling the problem at the very basis of this thesis, by providing a
promising solution that meets all the requirements of paramount importance for a robotic
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application (but also valuable in avionics) defined at the beginning. Thus, the original aim
of the project of designing an approach able to demonstrate its capability to detect a part
of a satellite (such as a gripping interface) and estimate its 6 DoF pose to support in-orbit
servicing missions has been achieved, paving the way for important new research in this
area.

7.2 Future Works
Besides the great advantages achieved in this thesis work, there is still a lot of room for
improvement. First and foremost, due to the lack of time some experiments haven’t been
performed, but could potentially have been useful to better assess the performance of the
implemented methods. Specifically, on one hand, covering the satellite model with some
reflective material could have helped in evaluating the robustness of denoising frame-
works.
On the other hand, considering other different starting poses for the source point cloud or
knowing ground truth information about translation and rotation could outstandingly have
led to a more comprehensive analysis of the proposed point cloud registration solutions.
Moreover, a dataset specifically designed for the PicoFlexx camera could be taken into
account to enlarge the performance obtained by the denoising approaches. Indeed, while
SHARP-Net and its variants achieve good results, they are trained on a dataset containing
scenes captured by a device which is very different from the PMD Camboard PicoFlexx
sensor this research is done with. These differences regard both the resolution of the
acquired data and also the intrinsic characteristics of the camera itself, which inevitably
affect the acquisition phase. It goes without saying that a dataset thought “ad hoc” for
this sensor could greatly increase the final results, since the methods shouldn’t have to be
somehow adapted.
Furthermore, due to the inherent structure of ToF PMD sensor leveraging on sinusoidal
signals, one could think about using SIREN activation function, described in [83], that is
introduced to exploit periodic activation functions to represent elaborated natural signals
and, most importantly, their derivatives. This could in some way better delineate the be-
haviour of the input impulse and perhaps help in better understanding its characteristics.
Finally, to achieve a relevant speed-up on representative avionics, it may be possible to
optimize the written code using either C or C++ which are significantly faster than Python
for this kind of applications. In this way, while maintaining the same complexity for the
presented approaches, one could remarkably gain in real-time performance which, as it
has been said several times, is one of the major constraints in robotic (and space above
all) applications.
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