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Summary

Low-power edge devices and IoT sensors are employed in many different tasks
that benefit from machine learning techniques. However, the high resource
requirements in terms of computing power, memory footprint and energy
consumption make the deployment of Deep Learning models at the edge very
challenging. In particular, an emerging class of deep learning models, the
Transformers, has obtained state-of-the-art results in fields such as natural
language processing (NLP) and computer vision (CV). On the other hand,
typical Transformer models contain millions or billions of parameters, and
perform billions of operations, which is unsuitable for execution on edge
devices. The effectiveness of smaller-scale Transformers, instead, is largely
unstudied.

This thesis focuses on applying transformers to hand movement
classification based on surface electromyographic (sEMG) signals, a
latency-sensitive application that cannot rely on cloud inference, and
therefore must be executed on low-power edge devices. It is shown that
Transformers can attain nearly the same accuracy of previous
state-of-the-art architectures, with a complexity reduction of up to 5x in
terms of memory footprint and number of multiply-accumulate operations.
In particular, the number of parameters of the proposed models is in the
range of 100k to 500k, which is several orders of magnitude lower than most
state-of-the-art Transformers for other applications.

The thesis also explores another common practice in Transformers’
literature, the use of pre-training, showing that fine-tuning a pre-trained
model can improve accuracy even in the highly-compressed network
architectures presented in this work. Accuracy improvements of 1-3% are
observed on average.

As a last step towards optimizing Transformers for edge deployment, a
Neural Architecture Search (NAS) is applied to substitute some of the self-
attention layers in the network with simpler convolutions, without impairing
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the final accuracy.
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Chapter 1

Introduction

Machine Learning consists of a set of techniques aimed at solving a given
task in an automated way by learning from past experience and data: during
a so-called training phase, a learning algorithm learns how to perform a task
by acquiring knowledge on past data; in the inference phase, the algorithm
performs the previously learnt task on new unseen data.

Deep Learning [1], which is a branch of Machine Learning, has been gaining
traction in the last few years thanks to its unmatched ability of solving
complex tasks in different fields, such as Computer Vision [2, 3|, Natural
Language Processing [4, 5] and Time Series Analysis [6]. Traditionally, before
applying any generic learning algorithm, source data were heavily transformed
in a manually designed fashion in order to extract the most useful information
in the most appropriate way for the given task [7]. This process, usually
referred to as Feature Engineering, is task dependent and its effectiveness is
limited by the domain knowledge and experiences of the humans involved in
the design process. Deep Learning instead introduces the concept of learning
also to this procedure by proposing a set of techniques that can learn from
data which is close to its raw form: the two steps involving the extraction
of a meaningful representation of data and the learning process over input
data are merged into one single phase, which consists in the training of a
Deep Neural Network (DNN). Prominent examples of DNNs vary according
to the nature of the given task: Convolutional Neural Networks (CNNs)
were developed to perform image classification and object recognition [2];
Recurrent Neural Networks (RNNs) and Transformers instead were designed
to deal with sequential data, such as text, recorded speech and time series

4, 8].



1 — Introduction

Deep Learning has been made feasible for complex tasks not only thanks to
several innovations in network design (such as Batch Normalization and non
saturating ReLLU activation), but also thanks to the availability of increasing
large amounts of training data, to an easier access to parallel computing,
and to the availability of application programming interfaces (APIs) that
allow general-purpose computing on graphic processing units (GPUs) or
other similar high-performance computing units, such as Tensor Processing
Units (TPUs). In fact, the high degree of parallelism can shrink the time
required for training a DNN by several orders of magnitude with respect to
performing the same task on currently available CPUs [9, 10, 11].

Low-power embedded devices and IoT sensors are employed in many
different tasks that would benefit from Machine Learning techniques;
however the high resource requirements in terms of computing power,
memory footprint and energy consumption make the usage of Deep
Learning in edge devices very challenging.

A way to avoid these issues consists in adopting solutions based on cloud
computing, which leverage the widespread availability of internet connectivity
for sending the raw data to always-online clusters of computers that perform
the required computations. However, due to the high and unpredictable
latency of network connectivity, this solution can be employed only for non
latency-sensitive applications. Additionally, the high bandwidth requirement
for data intensive applications and large scale deployments further limit the
suitability of this solution.

The opposite approach is based on edge computing, where inference is
instead performed directly on embedded devices while training continues
to be carried out in a centralized environment with high performing GPUs
[12, 13]. In order to bring deep learning to edge inference, two solutions
can be followed: on one hand the hardware can be optimized by employing
hardware accelerators or application specific integrated circuits (ASICs)
designed to deal with the given task in a more efficient way [14]; on the
other hand, the task can be adapted by reducing its complexity in order
to run on already existing constrained hardware. While the former can
be suitable for certain applications, the latter is the most widely employed
solution due to a number of reasons: from an economic standpoint, leveraging
already-available general purpose microcontroller units presents a lower entry
cost than designing and producing custom hardware, and this cost reduction
is particularly appropriate for prototypes or for small and medium scale
projects; furthermore a number of optimization techniques have proved to
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1 — Introduction

yield high complexity reductions to deep learning models with minor accuracy
drops [15, 16, 17, 18, 19, 20].

Complexity reductions are based on the fact that currently available
DNN architectures present a high level of information redundancy: for this
reason, a number of methods borrowed from approximate computing can be
applied with very promising results [21]. Instances of such techniques with
proven effectiveness can be distinguished into different categories: precision
reduction [18, 19], such as quantization, where floating point operations
are turned into fixed point operations; cardinality reduction [15, 17, 16],
such as pruning, where redundant parameters of a DNN architecture are
discarded iteratively or ahead-of-time; architecture simplifications, such as
the introduction of simpler operators in the network topology in place of
more complex operations, as in the replacement of standard convolution with
depthwise separable convolutions in CNNs [20]. The tuning and combination
of these approximation techniques can also be carried out automatically using
a neural architecture search (NAS), where the best performing architecture
in terms of one or more target metrics is found within a constrained search
space.

This work focuses on the application of Transformers to low power edge
devices in the context of temporal series analysis, specifically regarding
Surface Electromyography (sEMG) signals, which are bioelectrical signals
related to muscle activity and whose analysis is of high interest in the
field of human-machine interaction. In this work, it is empirically shown
that Transformers can attain nearly the same accuracy on hand movement
classification with respect to previously experimented network architectures
with a substantial reduction of complexity in terms of memory footprint
and number of multiply-accumulate operations (MACs). Overall the main
contributions of this work include:

(a) The design and implementation of a Transformer-based deep neural
network that employs 4.9x less parameters and 4.8 x less MACs than
previous state-of-the-art architectures for sEMG-based hand gesture
recognition, with comparable accuracy;

(b) The implementation of a two-stage training protocol comprising a pre-
training step and a finetuning step, which is shown to be beneficial for
the highly compressed network architectures that are described in this
work as accuracies gains in the range of 1-3% are obtained on average
on the different architectures;
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(c¢) The study of a Neural Architecture Search (NAS) over a number of
inductive biases in the network design towards a hybrid convolutional
and attention-based network.

The rest of this thesis follows this structure: Chapter 2 presents a brief
summary of a number of DL techniques concerning supervised learning, along
with a description of the aforementioned task and the dataset used in this
work; Chapter 3 outlines the previous attempts at tackling sEMG-based hand
gesture recognition and at bringing Transformers to edge devices; Chapters
4 and 5 describe the main contributions of this thesis, i.e., a new family
of ultra-small transformers, and a further optimization knob to reduce the
complexity of edge-transformers. Finally, Chapter 6 presents the results that
have been achieved by the proposed methods as well as their comparison
with state-of-the-art techniques.



Chapter 2

Background

2.1 Supervised Learning

Machine Learning has been successfully applied to many different fields thanks
to its ability to automatically learn complex rules by extracting meaningful
patterns from past experience. As a result, many different tasks, ranging
from face detection in digital images to trajectory planning in autonomous
vehicles, which once used to be solved via predefined rules, are now instead
tackled with Machine Learning. Many datasets that are used to encode "past
experience", from which an ML algorithm can learn, are labelled, meaning
that for every sample in the dataset (such as a signal representing a song or
an image), a so-called label that encodes the correct answer for the given task
is also present. For example, ImageNet [22] can be used for learning image
classification since every sample of this dataset, an image, is labelled with a
noun that describes what the image contains. This form of learning is called
'Supervised Learning" because the learning algorithm does not autonomously
learn to correctly perform the given task but it is instead fed with a ground
truth.

A more formal way to frame Supervised Learning is to introduce the
concepts related to Probably Approximate Correct (PAC) Learnability theory
[23]. First of all, samples are supposed to belong to a domain set X and
to have labels that belong to a set Y; a dataset contains instances that
have been independently and identically sampled from a distribution D over
X x Y. Supervised learning consists in finding a hypothesis from a finite set
of hypotheses, h € H, that is able to explain the relation between X and Y,
i.e. a function f : X — Y. The fitness of any hypothesis h is measured via a
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loss function £ : Y x Y — R that evaluates by how much the predicted label
is wrong with respect to the ground truth: the simplest example of a loss is
the 0-1 loss, which is 1 if the predicted label § = h(z) is different from the
true label y, or 0 if § = y. Therefore it is introduced the concept of true error

of a hypothesis h, which is defined as err(h) = E(,,)~pf(h(7),y). Under the

realizability assumption that states that Jh € H s.t. GTT(iL) = 0, a problem
is PAC learnable if, for every ¢, > 0, running a learning algorithm on a
dataset consisting of at least m(d, €) samples that have been i.i.d sampled
from D and labelled by f, the learning algorithm returns an hypothesis h
such that err(iz) < e with probability greater or equal to 1 — .

PAC learning is a solid framework since it states that it is possible to learn
a task with a true error € that is as low as possible and with a probability of
failing ¢ that is non-zero but that can be reduced as wanted by increasing
the sample complexity m, i.e. the number of training samples. However, in
reality, the true error cannot be computed since only a subset of samples
(x,y) are available and the distribution D is unknown: hence the expected
value over all possible samples cannot be computed, and therefore learning is
performed by minimizing the sample error erry(h) = = ¥, ¢(h(z;), y;). The
procedure of finding the best hypothesis h that has a minimal "empirical"
error with respect to all the other hypotheses H is called Empirical Risk
Minimization (ERM).

An important remark to do is that ERM cannot be performed on all
possible learning algorithms: in fact, it is only proven that all finite hypothesis
classes H are PAC-learnable. This means that a number of restrictions about
the algorithms to use for learning a specific task must be made, and these
restrictions are usually referred to as inductive biases.

Furthermore, it has been proven that a universal learner that works for
any problem does not exist. Specifically, for any learner A that outputs an
hypothesis A(S), there exists a distribution D and a function f : X — Y
such that, with probability of at least § > 0 over the generalization of the
training set S of size m, the learner outputs an hypothesis A(S) with a true
error err(A(S)) > e. If € is fixed to be 3, basically this theorem states that
any learner cannot be better than a random guess for certain problems, or
in other words, that it will fail to learn certain classes of problems.

All of the above motivates the experimentations that have been carried
out in this work: since it is impossible to have a universal learner and since
a learner for a given task cannot be searched among all possible hypotheses,
it is important to always research a suitable class of learners for the studied

6



2.2 — Introduction to DNNs

task and to improve the existing learners, which corresponds to refining the
aforementioned H set.

Deep Learning has made this process easier since it is more immediate to
design a network topology of a DNN that is able to process training data in
its raw form. The main turning point of DL is that it allows "Representation
Learning", which means that the learning algorithm not only learns a suitable
labelling function for the training data points, but also finds an optimal
way of turning the raw input data into data points (also referred to as
embeddings). The structure of a DNN is modular and in fact, it is often
modelled as an oriented graph: every block of a DNN performs a specific
parametrized mathematical operation, and the learning process, i.e. training,
results in finding the most suitable parameters of all blocks of a DNN for
the given dataset.

This approach is the opposite of classical Machine Learning, where instead
a hand-crafted step of feature engineering is involved in order to turn the raw
training data into data points with a meaningful representation and on which
a learning algorithm with a well-defined set of hypotheses set H is applied.
In the context of DL instead, these two steps are merged together; however,
it is often unclear what are the inductive biases that make a DL architecture
successful at a given task: that is why, after a DL architecture is empirically
proven to be competitive at tackling a given task, very often many attempts
of applying that very same architecture on other tasks are performed after
applying the appropriate set of modifications and adaptations.

2.2 Introduction to DNNs

2.2.1 Multi Layer perceptron

The basic unit of a DNN is the neuron, which is a mathematical operation
that is loosely inspired by how neurons in the human brain are thought to
be working. An artificial neuron consists of n inputs x; and one output v,
and the value of the output is given by the weighted sum of all the inputs;
then a non-linear function is applied to this weighted sum, which is usually
referred to as activation function. The explicit formula of a neuron is:

y=fQ_xi-wi+b) (2.1)

7
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where f is the activation function and b is the bias term. Each input
contributes to the overall "activation" of a neuron, which is the value of the
output; the training process consists in learning the optimal weights w; and
b, which are the parameters of the neuron.

Many neurons that have all same inputs but in general different learnt
parameters are logically grouped together in what is called a layer, specifically
a fully connected layer. A fully connected layer takes a number of inputs
and produces a number of outputs, where each output value is given by the
activation value of a different neuron, which depends on all inputs. A fully
connected layer is called input layer if its inputs correspond to the features
of the input data points or output layer if its output value is used to perform
the given task. An important note is that the neurons in the output layer
may lack the activation function. A hidden layer is instead any intermediate
layer between an input layer and an output layer, and it is called this way
because its output values are not inspected by any outside observer but
instead, they are fed to another hidden layer or to the output layer. A Multi
Layer Perceptron (MLP) consists of one input layer, one output layer and at
least one hidden layer.

It is important for the activation function to be non-linear, otherwise
stacking multiple fully connected layers without any non-linearity is equivalent
to having one single layer. Common activation functions are represented in
figure 2.1 and are:

o The Sigmoid, which is an s-shaped function and has an output that
ranges in the (0, 1) interval.
637
T) = 2.2
flo) = =2 22
This activation function is particularly useful when used in an output
layer where it is desired to estimate the probability of a certain event to
be true.

e The Hyperbolic Tangent Function, which is again an s-shaped function
but its output values range the (—1,+1) interval.
e?r — 1
tanh(z) = T (2.3)
One main difference with respect to the sigmoid is that tanh has a higher
slope for the values around 0, which is an important property that is
useful during training of a DNN.

8
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Figure 2.1: Activation functions

o The Rectified Linear Unit (ReLU), which is given by the following
function:
f(z) = max(0, x) (2.4)

First of all, this is a non-saturating function, which means that large
input values will not present a gradient tending to 0. However this
function is not zero centred, and since it is equal to 0 for negative inputs,
it may produce "dead" neurons, which are neurons whose output values
are always 0. As a workaround, the Leaky ReLLU has been introduced,
which is a variant that is non-zero even for negative numbers and can
be implemented, for example, as:

fa={ 6y 120 2.5

where C' € R is constant, and it is commonly set to a low value, such as
0.01.

Activation functions typically do not involve learnable parameters;

however, in some cases, they might do, such as in parametric ReLU, where

9
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the slope of the line in the negative quadrant is not fixed ahead of time but
is learned during training.

2.2.2 Training a DNN

Training a DNN such as an MLP is carried out by performing empirical risk
minimization over training data. Therefore two main elements are needed:

e a minimization method for finding the optimal parameters of the layers
of the considered DNN that minimize the empirical risk (or sample
error);

e a loss function ¢ that is plugged in the formula that computes the
empirical risk.

It can be noted that ERM is actually performed on a limited set of hypotheses:
the architecture of the neural network is fixed; furthermore, the values of
the parameters are not infinite but are discretized in floating-point numbers.
Therefore training is consistent with the PAC Learnability framework, thus a
solution with manageable error is guaranteed to be found with a reasonable
probability.

However, ERM does not necessarily lead to the optimal solution in the
sense of true risk minimization: the hypotheses set H may contain a so-called
bad hypothesis / such that errors(h) < errory(h) where h is an alternative
hypothesis and error, is the sample error, but error(h) > error(h) where
error is the true error. This is because the sample error underestimates
the true error due to the limited size of the training set. This situation is
commonly referred to as overfitting because the learner has overfitted on the
limited training data and has failed somehow to generalize over all cases. The
ways to avoid overfitting include gathering more training data (i.e. increasing
the sample complexity thus reducing the underestimation of the true error)
and limiting the size of the considered neural network (i.e. limiting the set
H and the possibility of encountering a bad hypothesis). However also the
opposite has to be avoided, which is underfitting: in this case, the learner
fails to accurately learn the task because the considered hypotheses set is
too constrained. Usually, in DL this happens when the considered DNN has
a too low number of layers or the training procedure has not been properly
performed.

10
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Loss function

In classification tasks, usually, the last layer of a DNN consists of N, output
neurons where N, is the total number of classes which the classifier is able to
divide every sample into. The last step of the classification process consists
of assigning the class with the highest estimated probability. In this case,
output neurons lack the activation function, so in order to turn their unscaled
values into a probability mass function, the softmax operation is employed:

eri

> evi

where softmax(x;) is the probability of each different individual output
class. One of the most used losses in classification tasks is the Categorical
Cross-Entropy Loss, which computes the cross-entropy between the expected
probability distribution and the predicted one, and it is given by:

softmax(x;) = (2.6)

€5.9) = — 3" yelos(e) 2.)

where ¢ is the estimated probability mass function and ). is the predicted
probability for class ¢. The true probability mass function y is always set to
1 for the correct class and 0 to all the others in order to condition the model
to predict the correct label with probability of 1, and to highly penalise it if
all predicted probabilities are very close to each other or if the wrong class
is predicted with a high probability.

Loss minimization

In supervised learning, training is performed by finding the values of weights
w of the considered deep neural network DN N that minimize the loss over
all N training samples (z;,v;), i.e.

argmz'n]i[ > ¢(DNN(z;w), i) (2.8)

The main issue is that this problem cannot be solved in a closed-form. So
instead a heuristic is performed: the weights are initialized to some random
values, then iteratively the average loss is computed, the direction towards
its minimum is calculated and then the weights of the network are updated
by a proportional entity assuming a linear approximation of the loss curve

11
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in the near region. This is why all methods employed in DL training involve
a learning rate v, which is the size of the step on this linear plane that
approximates the loss curve. Updating the network weights is based on the
chain rule of derivatives and on the fact that every module in a DNN is
characterized by a relatively simple formula, hence it is easy to compute
its outputs and the gradient with respect to its inputs. Therefore, during
the so-called forward pass, the computations are run through the network
graph from start to end by computing the outputs of each module; then in
the backward pass, the network graph is traversed backward from end to
start, and at each module, gradients are computed and weights are updated.
There are different policies for updating network weights: the simplest one
is Stochastic Gradient Descent (SGD), which consists in updating weights at
every forward pass of each sample according to the current gradient, i.e.

Wnew = Wold — va(wold) (29)

Usually, in DL, Minibatch Gradient Descent is preferred, which simply
consists in performing B forward passes, where B is referred to as minibatch
size, and then averaging the loss value and performing one single error
backpropagation. Further improvements over vanilla SGD have been
proposed in order to increase the speed of convergence: many are based on
the concept of momentum that takes into consideration the values of the
weight update of the previous iteration, such as the Adaptive Moment
Estimation (Adam) optimizer [24].

Finally, it is important to note that this minimization problem is in general
non-convex, thus the convergence to the absolute minimum is not guaranteed
in general.

For more details on DNN structure, training, loss, and optimizers, refer
to the book of Ian Goodfellow and Yoshua Bengio [25].

2.3 Transformer

The Transformer is a Deep Learning architecture introduced for the first time
in [8] and is primarily based on the attention mechanism. This architecture
has been designed to deal with sequences or in general data that can be
divided into tokens whose order is meaningful. As such, transformers have
been initially applied in the field of natural language processing before
extending their use to other contexts, such as computer vision.

12
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Figure 2.2: The Transformer model architecture [§]

The complete structure of a Transformer architecture shown in figure
2.2 is a consequence of the fact that its first application was in the field of
Machine Translation: it is composed of two main parts, an encoder and a
decoder. While the former tries to find a latent representation of a source
sentence, the latter tries to reconstruct a new equivalent sentence from these
embeddings, hence automatic translating from a language to another is
performed. However, it is to be noted that, given the great ability of this
architecture to extract a powerful representation from its input, in several
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works [26, 27] only the Encoder element is employed, which is treated as a
feature extractor; then the given task, usually classification, is performed
with a MLP head that processes the extracted features. This approach will
be also followed in this work.

Transformers are seeing high consideration thanks to the many advantages

brought by the attention mechanism:

« Higher parallelization of computations compared to RNNs. One
of the main bottlenecks of RNNs is their internal stateful representation
that is reached in a number of sequential operations: in a basic recurrent
layer, tokens are usually processed one after the other, meaning that the
n-th token cannot be processed until all the n — 1 previous tokens have
been sequentially processed. In other words, given an input sequence of
n tokens, the number of required sequential operations is O(n). Instead,
computing attention for each token can be performed independently
from the others: this does not mean that the result of the attention
computed for a given token is not related to any other input token,
as indeed it is. However, the result of the attention does not directly
depend on any state variable nor any previous result computed from the
other tokens: therefore there is no ordering constraint for performing
computations, which means that their parallelization is possible.

Longer range dependencies. The limited receptive field of CNNs
and vanishing gradient issues of standard RNNs hinder the ability to
model long-range dependencies. While these problems are at least
partially mitigated by some other innovations, such as skip connections
of LSTM cells in RNNs and a higher dilation value in convolutional
layers, it has been found [8] that attention can model dependencies with
unprecedented effectiveness in even longer sequences.

Transfer Learning. So far, recurrent layers have not been very
successful in the context of transfer learning, meaning that performing
finetuning of a pre-trained RNN has always been difficult and has not
ever yielded significantly better results than training from scratch.
Attention modules and Transformers, in general, have been empirically
shown to be easier to finetune, which can be beneficial for more
effectively learning many tasks [28].

More interpretable models. Since computing a linear combination
of all tokens is at the core of the attention mechanism (as it will be more
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deeply detailed later), it is easier to inspect and interpret partial results,
as it has been shown in [8] where the results of attention appear to be
related to the syntactic and semantic structure of the input sentences.

2.3.1 Encoder

The encoder of a Transformer consists of a variable number of L stacked
layers, where the output encodings of each layer are fed as input to the next
layer. Every layer consists of two main elements:

o a Multihead Self-Attention module (MSA) that produces a new set
of encodings by applying the self-attention mechanism on each input
encoding;

o an MLP head, which is a feed-forward neural network that further
embeds each encoding.

In order to improve the convergence and performance of the overall
architecture, skip connections and Layer Normalization (LN) are employed.
The overall layer equations are:

X1 = MSA(LN(X))) + X

. i (2.10)
X141 = MLP(LN(X151)) + X141

One of the limits of standard MSA is its permutation equivariance: MSA
does not take into account the positional information of its input encodings,
which is an obvious limit for structured data and sequences where the order
of its tokens carries meaningful information. To overcome this drawback,
every input token is enriched with positional information before being fed to
the Transformer Encoder.

Furthermore, an additional learnable class token can be prepended to
the input sequence: it is treated as any other token of the sequence by the
Encoder, and its final encoded value depends on all other tokens thanks to
the MSA mechanism that is applied in every layer of the Encoder. However,
the class token is particularly useful when the Encoder is used as a feature
extractor to perform categorical classification of input sequences since only
the last layer encoding corresponding to the class token is fed to the final
classification head that is placed after the Encoder. The classification head
usually consists of a multilayer perceptron and its input can be the class
token as described above, or alternatively the mean of all output encodings.
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2.3.2 Decoder

The structure of the decoder is similar to the one of the Encoder since each
block consists of a self-attention layer, an MLP head, and an extra attention
layer that processes the encodings coming from the Encoder in order to
perform meaningful sequence transduction from input encodings to output
encodings.

In the architecture proposed in (8], an additional final block which consists
of a fully connected layer and a softmax layer is added in order to produce
the probability distribution over the vocabulary for every output token.

2.3.3 Positional Embeddings

As described above, input tokens need to be enriched with positional
information since no other module of the Transformer would be able to
directly extract this information. Positional embeddings usually consist in
mapping each position of the input sequence to a different vector that in
turn gets summed to the vector that represents the respective input token.
There are different ways for computing positional information, including
sinusoidal positional encoding and learnable positional embeddings.

In [8], fixed non-trainable sinusoidal positional encodings are considered.
Instead of concatenating positional features to the features of the token,
positional information is actually summed: in this way, the embedding
dimension of each token is retained to its initial dimension C'. The values
for each position are computed as follows:

PEpps9i = sin(pos/10000%/¢)

‘ 2.11
PEposit1 = cos(pos/l()()()()?Z/C) (2.11)

where C'is the input dimension of each token, ¢ is the index of considered
C-th embedding dimension of the token and pos is the position of the token
in the input sequence. This positional encoding is represented in figure 2.3,
where it is shown the case of a sequence of 30 tokens whose embedding
dimension is C' = 64.

On the other hand, [26, 27] employ a learnable positional embedding that
consists of (C' x N) trainable parameters that are summed to the input
tokens. This solution does not seem to really provide an edge over the other
solution, and the accuracy gain may be negligible as stated in [8]. One
main drawback is the fact that the input sequence at inference time must be
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Figure 2.3: Illustration of the positional encodings: on the x-axis, the
positional encoding values for tokens of embedding dimension C' = 64; along
the y-axis, each token in a sequence N = 30 long is shown. Hence, in the
top row, the value that will be added to the first token is shown; while in
the bottom row, the value to be added to the last token is shown. Note how
these positional values resemble a sort of "binary notation" of 1s and -1s,
but of course it is made of continuous values; also note that only the least
significant part (the values on the right) varies while the most significant
part is always the same, since the length of the sequence is lower than the
embedding dimension of each token, i.e. N < C

at most N-long. Variable-length sequences may be a key characteristic in
certain fields, such as NLP, but it is not in several other applications, such as
image recognition, where input images are all of a predefined size, thus the
input sequence length is supposed to be fixed. Therefore using this trainable
positional embedding may provide a slight accuracy gain with respect to the
sinusoidal positional embedding.

2.3.4 Multihead Self Attention (MSA)

The Attention mechanism is a technique inspired by cognitive attention
and it has been first introduced in [29] to enhance state-of-the-art neural
networks applied to NLP. Generally speaking, the aim of attention is to learn
what are the most important parts of the input data for the given target
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task: by weighting each part of the input according to their learned relative
importance, the network is supposed to “pay attention” to smaller but more
important parts of the input, thus the performances achieved on the target
task should be enhanced.

At its core, Attention consists in computing a linear combination of values
c =Y ; a;x; for each input value, where }°; a; = 1 and z; are embedded input
values. In the first formulation, each weight of this linear combination, which
is also usually referred to as attention score, is calculated by combining the
value of a RNN state variable and the encoded input token.

Self-attention (SA) has been introduced in [30] and it removes any
recurrency of previously introduced attention mechanism by computing the
attention scores as the result of a similarity measure between the embedded
input tokens themselves.

The input sequence can be defined as a matrix X € RV*¢: N is the
number of tokens of the input sequence and each token is represented as a
vector of embedding dimension C. The aim of self-attention is to produce a
new set of encoded tokens Z € RV*? in a way such that each token embeds
its interactions with itself and the other tokens of the sequences. While the
embedding size D of every encoded token can be different from its initial size
C, it is often set to the same value. To produce this new set of encoded tokens,
three separate learnable projection matrices are taken into consideration, and
each of those produces a different projection of the input: queries Q, keys K
and values V, which can be expressed as Q = XWy; K = XW},; V = XW,.
Then, the attention matrix is computed, which is given by the scaled dot
product of @ and K, where the scaling factor is v/D. This matrix represents
the attention scores for any given token with respect to all the tokens of
the sequence. A scaling factor is present in order to stabilize the gradient
flow during the backward pass. Furthermore, in order to turn these scores
into a discrete probability distribution, the softmax operation is applied.
Finally, self-attention is obtained by computing the weighted sum over V/
for every token and using the previously computed scores as weights. Hence,
self-attention is given by

SAX)=Z ft (QKT> V (2.12)

= / = softmax :
VD

This means that every new encoded token Z;, where i € [1,..., N], is a linear

combination of the projected tokens of the sequence, represented by V.
Multihead self-attention consists in applying self-attention multiple times
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with different learned projection matrices. Every instance of self-attention is
also called attention head and each attention head is supposed to learn
different kinds of relationships and dependencies between input tokens.
Therefore, every output encoding results from the concatenation of the
corresponding encodings of the different attention heads. Given that each
output encoding would have an embedding dimension H - D, where H is the
number of heads, a further projection matrix W, € R P)*C is applied in
order to restore each token to their original embedding size C"

MSA(X) = [SA/(X), ..., SAz (X)W (2.13)

2.3.5 MLP module

As its name suggests, the MLP module is a feed-forward module that consists
of two fully connected layers with a non-linear activation function between
the two and optional dropout at the output of each fully connected layer.

0 e
1.5 1
1.0 A
0.5 A
0.04 ~=-een- =
B T S

Figure 2.4: GELU activation function compared to ReLU function

The activation function in many applications of Transformers is the
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Gaussian Error Linear Unit (GELU) function, whose shape is roughly similar
to the ReLLU function with the notable differences of being differentiable in 0
and having a non-zero value for a small range of negative inputs as shown in
Figure 2.4. The formal definition of GELU is:

GELU(z) = 2 - ®(x) = ;x (1 +erf (\%)) (2.14)
where ®(x) is the Cumulative Distribution Function for the gaussian
distribution and erf = 2= [§ et dt

The two fully connected layers can be represented as two projection
matrices W; € RE*H and Wy € RE*C where C is the token input size and
H is the hidden embedding size, which is usually set to a multiple of the
input size, such as 1x, 2x or 4x.

2.3.6 Patch Embedding in ViT

In [26], a pure Transformer architecture called ViT is applied to image
recognition. The main obstacle is that, at first glance, an image is a single
entity, while instead self-attention in transformers deals with sequences of
tokens. To overcome this issue, the authors propose to divide the input
2D image into a 1D sequence of non-overlapping patches. Specifically, the
input image r € RT>*WXK ([ is the image height, W is the image width
and K is the number of channels, which is 3 for an image in the RGB colour
space) is reshaped to = € RNX(PQ'K), where N is the number of patches,
given by N = HW/P?, and P is the height and width of each patch. In
this formulation, patches are square and the image height and width are
supposed to be a multiple of the patch size, but it is of course possible to
generalize to the case of non-square patches or to input 1D signals. Finally,
a linear embedding can be applied to each input flattened patch, optionally
with the intent of projecting each patch to a lower-dimensional space. Hence
the resulting input of the Transformer can be described as x € RVN*¢ where
C is the size of each linearly embedded token, which is set to P2 - K in the
original ViT.

2.3.7 Positional self-attention

Self-attention does not explicitly take into account positional information
during the computation of self-attention scores; this is why, one of the
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initial layers of the transformer encoder is responsible for adding positional
information to each token. However, this information might be lost as the
transformer grows in depth.

To overcome this issue, positional self-attention has been introduced in
[31], which consists in computing self-attention considering also the relative
position of each patch:

PSA(X) = softmax (QKT + vgosn-j) % (2.15)

where v,,s € RPres is a learnable embedding and rij € RPros ig a relative
positional encodings that encodes relative distances between token 7 and
token j.

As proved in [32], if the relative positional encoding r;; is a vector with
size Dpos > 2 and is in the form r;; = [§2,6,0,...,0], where ¢ is the relative
distance between tokens 7 and j, then an attention layer with H heads can
express a pure convolutional filter if the following conditions hold:

oh e =—a[1,-2A"0,...,0]
W, =W, =0 (2.16)
W, =1

In fact, A" € R is the center of the attention for head h, and represents
the position at which the attention-head A pays most attention to. Note
that, since W, and W), are set to 0, the QKT term in 2.15 disappears; also,
since W, = I is the identity matrix, the pure linear combination of attention
scores is considered; furthermore, if « is very high, the result of the softmax
will be in the form [0,...,1,0,...,0], where the position of the 1 is expressed
by the center of attention of the head A”. This means that, if for example
a given multi-head PSA layer is characterized by 3 heads, and the learned
centers of attention are A' = —1, Al = 0, A! = 1, then the concatenation
of encoded token in the multi-head self attention for position i of the input
sequence will be actually equal to the tokens at relative position -1, 0 (i.e.
the token itself) and +1:

MSA(X) = concat(SAg (X)) Wour = [X_1, Xo, X11]Wout

where W,,; € R3P*¢. Since MSA is performed for all positions in the
sequence, the output sequence will be given by

[[07 X07 X+1]W0ut7 [X07 XLXQ]WOUt, ceey [XN—17 XN; O]Wout]
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whose output is equivalent to a 0-padded 1D convolution with kernel size of
3, number of output channels equal to C' and a stride of 1.

On the other hand, as the factor « of the learned positional embedding v,
decreases for every head in the PSA, the center of attention of each attention
head will be less narrow: this means that each attention head will take into
account a number of neighbour tokens for computing the attention scores,
and the resulting behaviour will be similar to a trucated self-attention, where
SA is computed within a fixed sized window as described in [33]. Finally,
if QKT is non-zero and its magnitude is greater than the positional term
vgosrij, the resulting behaviour will be very close to standard SA.

2.3.8 Gated Positional Self Attention (GPSA)
ConViT

normalize —» A;; |

NG
1 —o6(A) o(4)
‘-;oftmax

Figure 2.5: Scheme of the Gated Positional Self Attention (GPSA) [27]

One of the shortcomings of PSA, as formulated in 2.15, is that, if the
two addenda have different magnitude, the softmax ignores the smallest
of the two. This is not a secondary problem since, if a "convolutional'
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weight initialization is performed, i.e. the locality strength « is set to a
high value in order to focus the centre of attention of each head on a low
number of neighbour tokens, then the attention mechanism tends to ignore
the content information and learns to pay attention to the relative positional
information only. To avoid this problem, [27] introduces the Gated Positional
Self Attention (GPSA), which is represented in figure 2.5 and consists in:

o summing the content information and positional information only after
each one has been normalized with softmax;

e introducing a relative importance parameter, A, which is also called
gating parameters and controls which of the two information terms is
most relevant.

The gated positional self-attention mechanism for head h is therefore defined
as:

h h 1-hT hT
Aij = (1—0o(N)) - softmax(Q); K; )+ o(N)- softmax(vposmj)

GPSA" = normalize(A")V" (2.17)
where normalize(Ah)ij = A;j/ >r Air, and o is the sigmoid function. Note
that, for every attention head, a different A is learned, and if its value is high,
i.e. o(A\) =~ 1, it means that GPSA focuses only on the positional information.
Additionally, similarly to standard multi-head self-attention, the multi-head
GPSA results from the concatenation of all the outputs from the different
heads, which is then linearly embedded with a linear projection Wy, bous:

MGPSA(X) = concat|GPS Ap(X)|Wout + bout (2.18)

Finally, if o()\) =~ 1 holds true for all heads of the MGPSA layer and if
all learned vj,s are in the same form as 2.16, then the layer behaves as a
convolutional layer with a receptive field of h, where h is the number of
heads of the layer.

2.4 Integer quantization

Several methods have been introduced in order to perform quantization,
which is a precision reduction technique aimed at relying on only integer
arithmetic and reducing the bit-width of the involved operands. In fact,
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Figure 2.6: Fixed point quantization scheme [34]

many MCUs in embedded devices lack a floating-point unit (FPU), hence
the computation of floating-point arithmetic must be performed in software
by combining several integer-only arithmetical operations computed with
the arithmetic logic unit (ALU), with a consequently higher computation
burden and a detrimental effect on latency. Furthermore, operations that
involve FPUs are usually more energy intensive than those involving ALUs:
an FPU is usually less efficient than an ALU in terms of energy consumption
and processing speed due to the intrisic higher complexity of the former;
furthermore, an higher bit-width for the involved operands is more energy
demanding also due to a higher energy consumption in memory transfers.
Hence quantization is advisable for extending battery life and reducing
latency also for those MCUs that are equipped with a FPU.

As shown in figure 2.6, floating-point numbers and fixed-point numbers
are a  discretization  of real numbers in  the  form
(—1)%%8" x base®™P"™ x mantissa. In a floating-point notation, both the
mantissa and the exponent of a predefined base are encoded in the number,
along with its sign: this allows the representation of a large interval of
values, and furthermore, it allows a high precision for representing numbers
around the 0, which may also be beneficial for neural networks; on the other
hand, in order to efficiently compute operations involving floating-point
numbers, a floating-point unit is needed. On the other hand, in fixed-point
notation, not only the base but also the exponent are predetermined and
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only the mantissa and sign are encoded in the number: this means that the
same circuitry used for performing integer computations can be used to
perform operations with real numbers at the cost of a lowered precision.
With the uniform symmetric quantization scheme, a real floating-point
number is mapped to an integer value ¢ € [-2°71,2°~! — 1], where b is the
precision of the quantization, which is usually 8. This operation converts
any real floating-point number belonging to a certain interval [—a, o] to a
fixed point notation. In particular, the definition (as stated in [35]), is

clip(z, —a, a)

)

¢ = Round( (2.19)
where A = a/(2°71 — 1)

The reverse, i.e. the dequantization operation, consists in computing the
following

F=q-A (2.20)

This representation is particularly convenient for quantizing the weights
of a DNN since

« the range of values [—«, ] is known a priori;

o the O-value has an exact representation, which represents an important
value in DNN.

However, more often than not, activations are not symmetric around the
origin, so an extra z offset is computed in what is referred to as asymmetric
quantization. Furthermore, the activation ranges depend on the inputs and
are not predetermined: in order to allow static quantization where both A
and z are predetermined, a representative subset of samples from the dataset
are used to compute the activation values and capture their distribution, and
consequently to compute A and z

2.4.1 Quantization-aware training

Quantization is performed to reduce the representation size of each weight
from 32 bits to 8 bits (thus the size of the model is reduced by 4x), and
to allow 8-bit integer arithmetic on a devices that lacks a FPU or if its use
would incur a higher energy consumption.

This operation can be performed after training has completed, by
computing the A for each layer in order to quantize its weights and the A
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and z to quantize its activation as described in section 2.4. This technique is
usually referred to as Post Training Quantization, since quantization is
performed as a discrete step after training. This procedure usually results in
non negligible accuracies drops since the network weights are suboptimally
updated to their quantized versions.

An alternative operation that tries to reduce accuracy drops consists
in taking into account weight and activation quantization already during
training, in a procedure that is often referred to as Quantization-aware
Training (QAT).

Quantization-aware training consists in adding the discretization step-
wise function already during training; however the main issue is that this
function makes gradient flow during back-propagation very difficult. Hence
a Straight-Through Estimator is introduced [36]: it consists in adopting the
quantization function only during the forward pass and replacing it with
the identity function during the backward pass, thus allowing the gradient
to "flow" as-is from output to input. In this way, network training is still
performed in 32 bit floating point precision, but operations in the forward
pass are computed as if quantization was in place, hence weights are somehow
optimized taking into consideration that their final values will be discretized
with a more coarse discretization step, which usually leads to better final
accuracy then plain PTQ.

2.5 Surface electromyography

Surface electromyography (sEMG) is a non-invasive technique that consists
in acquiring bioelectrical signals related to muscle activity: an sEMG sensor
consists of a pair of electrodes that can measure ionic currents on the surface
of the skin caused by the activity of the underlying muscle fibres. The
characterization of movements of arm muscles associated with hand gestures
is of high interest in the field of human-machine interaction, for instance
for the development of myoelectric-controlled prostheses, which are artificial
limbs that mimic human anatomy and are aimed at being controlled by
amputee subjects via the aforementioned bioelectrical signals generated
naturally by their own muscles.

Usually, in this research context, signals are recorded from multiple sensors
that are placed on the forearms of amputee and non-amputee subjects who
are asked to perform a given set of gestures as shown in figure 2.7. Sensors
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Figure 2.7: The illustrated acquisition protocol of SEMG signals in the
context of hand gestures [37]

can employ active or passive electrodes: in active electrodes, the signal
is amplified very close to its source thanks to an appropriate amplifier
placed on the sensor itself, which is therefore self-contained, and it typically
wirelessly transmits the recorded signal to an external digital data acquisition
system; in passive electrodes, bioelectrical signal amplification is instead
performed by an external sSEMG amplifier, which is connected to each sensor
via appropriate wiring, and, as a result, individual sensors are cheaper than
their active counterparts but are more susceptible to noise interferences.
Additionally, the interface between skin and electrodes can be dry or wet:
the moisturization of the skin with the application of gel is a way of reducing
the impedance of the skin-electrode interface, which is advisable especially
when passive electrodes are employed; instead, active electrodes can deal
with higher interface impedance, hence they are more suitable for prolonged
use since skin preparation and periodic gel reapplications are not required.

2.5.1 Non-Invasive Adaptive Hand Prosthetics
Dataset

One of the biggest challenges for hand movement classification via sEMG
signals is the great variability that occurs even when acquisitions are
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performed in carefully controlled environments. Sources of variations
include not only the slight differences in shape and size of body parts of
different subjects, but also several factors of temporal nature, such as the
consistency by which the involved patients repeat the specified movements
across the same and the different days of experimentations, and shifts of the
placement of sensors across different sessions. That is why multi-day
multi-session datasets are currently the most favoured benchmarking tool in
the context of hand movement recognition via SEMG signals.
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Figure 2.8: The list of grasps performed in NinaPro DB6 along with the
corresponding objects [38]

In this work, the NinaPro DB6 dataset [38] is used for evaluating the
different analysis approaches. It consists of 7 possible hand grasps that are
repeated 12 times and are interleaved with the resting position, totalling for
8 possible hand positions. The acquisitions were performed twice a day for 5
days, resulting in a total of 10 sessions, and they involved 10 intact subjects
(3 females, 7 males, average age 27 £ 6 years). A total of 14 active sensors
were arranged on dry skin in two adjacent rows just below the radio-humeral
joint of the forearm of the involved subject, as shown in Figure 2.9, resulting
in a 14-channel digital signal with a sampling frequency of 2 kHz derived
from the amplified and synchronized SEMG signals.
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Figure 2.9: Example of final sensor placement on a subject involved in the
acquisition of NinaPro DB6 [38]
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Chapter 3

Related works

3.1 Surface Electromyography

Hand gesture recognition via sEMG signal analysis has been gaining
traction in the last few years thanks to its promised improvements in
Human-Computer Interaction. Most techniques proposed both in academia
and in commercial applications for performing live gesture recognition are
based on a three step pipeline: i) the multi-channel analog signal is acquired
by a number of electrodes placed on the subject’s arm; ii) the continuous
signal is divided into sliding windows on which further data preprocessing
and feature extraction may be carried out; iii) classification is performed on
the extracted samples.

Initial approaches were based on the application of classical machine
learning techniques and manual feature engineering. For instance, in the
context of movement recognition among 4 possible hand gestures, [39]
demonstrates the application of shallow artificial neural networks in the
classification of time-windows whose raw digital samples were summarised
in 5 time-domain hand-crafted features that leverage domain-specific
knowledge, namely Mean Absolute Value (MAV), Mean Absolute Value
Slope (MAVS), number of Slope Sign Changes (SSC), number of zero
crossings (ZC), and Waveform Length (WL). Regarding the recognition of
up to 50 different gestures that were collected in the Non-Invasive Adaptive
hand Prosthetics Databases 1, 2, and 3 (NinaPro DB1, DB2, and DB3), [37]
compares the promising classification accuracy achieved by different learners,
including K-Nearest Neighbours, Support Vector Machine, Random Forests
and Linear Discriminant Analysis. Furthermore, for each classification
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algorithm, five different data preprocessing techniques are compared against
each other: the 5 time-domain features described above, frequency-domain
features extracted via marginal Discrete Wavelet Transform (mDWT) with
a db7 wavelet and three levels, Root-Mean-Square (RMS), Histogram
(HIST) binning with 20 bins along a 3¢ threshold, and a normalized
combination of all of the above features.

One main drawback of the aforementioned works is the limitation to
single-session acquisitions in the considered datasets: the collection of hand
movements and their repetitions were performed all together in a single
session for any involved subject. As it is argued in [40, 41, 42], this
acquisition setup is a big limitation for real-world applications because
several factors of variability are present in multi-session acquisitions, not
only due to user adaptation and consequently different motion artifacts and
variable arm postures, but also simply due to the re-positioning of each
sensors at every use. This is why these works propose a number of solutions
for increasing the robustness of the previously presented methods. These
improvements include the extension of the training datasets or the
modification of the acquisition setup such as increasing the electrodes count.
However, one of the main and most significant innovations aimed at making
hand-gesture recognition more resilient against temporal variability is
multi-session training, which has been made possible by the release of
several multi-session sEMG datasets, including the Non-Invasive Adaptive
hand Prosthetics Database 6 (NinaPro DB6) proposed in [38] and used in
this thesis as a benchmark. The authors who made this dataset available
also attempted classification with a Random Forests classifier on input
time-windows from which Mean Absolute Value (MAV) and Waveform
Length (WL) were computed, where the underwhelming classification
accuracies highlight the limits posed by the techniques attempted that far.

In fact, all the aforementioned works concerning the application of classical
machine learning techniques show one of their main limitations, which is
the strong reliance on the effectiveness of the employed feature engineering
step that inevitably limits the generalization capability of the proposed
methods. Therefore, more recent works have investigated Deep Learning for
sEMG-based gesture recognition.

The first DL architecture for performing sEMG analysis was proposed in
[44], where a Convolutional Neural Network (CNN) was applied on NinaPro
DB1 and the performances achieved by the proposed CNN outperformed
SVM. Following attempts proved Temporal Convolutional Networks (TCNs)
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Figure 3.1: Structure and functioning of a convolutional block that involves

dilation in TEMPONet [43]

to be more effective than recurrent neural networks that employ long-short
term memory (LSTM) cells. TCNs are based on convolutional layers like
CNNs, however they introduce the dilation technique in order to increase
the otherwise narrow receptive field of a standard convolution without
increasing the number of parameters. The resulting operation is called
d-dilated convolution, where d is a hyper-parameter that controls the
number of steps between each pixel (or time-sample) in the input feature
map. The authors of [43] propose TEMPONet, which is a TCN aimed at
performing real-time classification on embedded devices. To obtain these
results, the authors propose to train on 300ms sliding windows with a 15ms
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overlap in order to keep the input-to-output latency under the human
perception threshold; furthermore, the feature extraction task is completely
left to the neural network itself by stacking multitple convolutional blocks
whose illustration is shown in Figure 3.1, thus eliminating the computation
burden that would be required by the execution of any additional
preprocessing; finally, the proposed network architecture is highly
compressed and approximate computing techniques, such as weight and
activation quantization, are employed, thus making TEMPONet deployable
to constrained devices with low memory availability and lack of floating
point units.

3.2 Transformers

In [8], it is presented a novel network architecture which is entirely based on
self-attention and does not make use of convolutional layers nor LSTM cells:
the Transformer. This model has been proposed in order to improve existing
sequence transduction models that are mainly based on recurrent neural
networks. Given this premise, transformers have been first employed for
automated natural language translation: on the English-to-German
translation task, this architecture not only outperformed all previous models
with respect to all target metrics, including the bilingual evaluation
understudy (BLEU) metric, but it also significantly reduced the training
cost compared to its competitive alternatives. Given the powerful feature
extraction capability of Transformers, their use has been extended also as
feature extractors for performing classification by employing only a portion
of their architecture, the Encoder. In [26], the Vision Transformer is
introduced, which is an architecture that turns an image into a sequence of
patches for performing image classification.

All of these architectures are characterized by a relatively expensive
training and inference cost compared to the methods employed in the context
of SEMG-based movement recognition, mainly due to the high number
of parameters and MAC operations involved. For instance, the original
transformer architecture was trained continuously for 3.5 days on eight GPUs:
the base variant with subpar performances consists of 65M parameters, while
the variant with SoTA performance is characterized by 213M parameters. The
high computing requirements for these first use cases of this architecture are
not only due to the complex nature of the tasks at stake, but also because their
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deployment is supposed to take place on the cloud, where less constrained
hardware is employed, be it dedicated GPUs or specifically designed ASICs
for inference in datacenter premises, such as Tensor Processing Units (TPUs)
[14].

Given the high interest of applying this architecture in several
hardware-constrained contexts, there exist several works in literature
concerning tuning of Transformers computational complexity, both with
respect to network topology, as illustrated in [45], and to the approximate
computing approaches, as illustrated in [35]. The combination of these
approaches allow transformers to be deployed on general purpose
constrained MCUs and hardware aware static or dynamic optimization
methods have been proposed in different works [46, 47] for distinctively
leveraging the high information redundancy of the Transformer architecture.
In particular, in these works one big SuperTransformer is trained and then
SubTransformers with weight sharing are optimally constructed by
combining only the minimum number of blocks of the SuperTransformer,
thus highly reducing the final computation complexity of the best
architectures and allowing them to be deployed on embedded devices for
edge inference.

Starting from the aforementioned works, this thesis focuses on the
application of Transformers on embedded MCUs for tackling hand
movement recognition via sEMG signals.
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Chapter 4

Transformers for
sEM G-based Gesture
Recognition

4.1 Objective

The main objective is to design a Transformer-based network architecture that
can be deployed to an edge device to perform sEMG-based hand movement
recognition. The aim is to perform real-time inference, meaning that, once
the model has been deployed on the target microcontroller, the signal is
acquired, pre-processed and then classified immediately and continuously.
This is done, for instance, to allow the creation of a myoelectric-controlled
hand prostheses that is able to perform the intended gesture by reacting
with a predictable and low response time to the acquired sEMG signal. To
effectively perform this operation, a number of optimizations and design
choices have to be made. First, a proper preprocessing of the input signal
must be applied in order to frame the classification task in a real-time scenario:
for instance, if a classification method takes into account the activity of the
previous 2 seconds, then that technique is not suitable for this scenario since
the latency from input to output would not be acceptable. Furthermore, a
proper architectural design of the involved Deep Neural Network has to be
considered in order to allow its deployment to constrained and low-resource
hardware. These issues are tackled in the following sections of this chapter.
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4.2 Signal preprocessing

The gestures and their repetitions are performed by the subject consecutively
one after the other and they are stored as a continuous 14-channel signal
into a file. Every subject is in front of a screen that shows what movement
should be performed and when. However, since the involved subject may not
react promptly to the indications on the screen, the labelling of each gesture
is manually re-synchronized in the given dataset. The labelling consists of
two extra channels with the same sampling rate of the raw signal in order
to assign a label to every sample, and the first channel represents what is
the involved movement, while the second channel represents the repetition
number.

The raw signal is divided into fixed-length sliding windows: once the DL
model is deployed on the embedded device, classification is performed in an
X amount of time considering the samples collected in the preceding Y-long
time interval. So, while labelling is done on a per-sample basis, the task
consists instead in classifying each overlapping window.

In order to perform a “real-time” or “live” classification of signal windows,
the sliding time of each window must be greater than or equal to the time
required to perform the classification by the embedded device, otherwise the
backlog of windows yet to be processed would grow over time. In this work,
the same parameters of [43] are employed, meaning that the input signal is
divided into windows of 300ms and with a slide of 15ms. The windows size is
a compromise between the amount of input that can be processed in order to
give a precise classification and the desired delay between user input and its
reflection on the output: given that 300ms is the approximate human response
time, this value is chosen because it is the maximum time under which the
user should not appreciate any delay between input and output. On the other
hand, the sliding value is limited, as stated above, by the processing power
of the employed device: in [43], the involved microcontroller can process the
input window in less than 12.8ms, hence 15ms is chosen also in this work in
order to make fair comparisons between different methods.

Training is instead performed “offline”, meaning not only that it is entirely
performed ahead of time, but also that certain windows are discarded. To
be more specific, those windows that overlap the resting position and the
beginning (or the end) of a gesture are discarded; additionally, with the
exception of the rest gesture, the first and the last 1.5s of each gesture are
removed. When inference is performed on a signal that has been pre-processed
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in this way, this process is referred to as “steady movement classification”,
since shaky and unstable bits of each movement have been removed from
the dataset.

In addition to the considerations above, min-max normalization is applied
to the raw signal, which is performed in order to have the same full-scale of
[—1;+1] for every session.

So the overall preprocessing pipeline of the training dataset for each
subject consists in:

o Applying min-max normalization individually to each channel of the
input signal;

» Removing 1.5s transients for every gesture;

o Dividing the resulting signal into sliding windows.

4.3 Target evaluation metric

First and foremost, it has to be noted that, due to the great variability
between one subject and another, according to the state of the art, in this
work we train a different learner to perform hand gesture classification on
each specific subject: hence at least 10 different learners are required to
perform the classification task on the 10 different subjects of the considered
dataset. Note that this does not limit the generality of the approach, since
each algorithm is tuned per patient in a first phase, but it can be then
re-utilized forever for that specific patient.

Given that the NinaPro DB6 dataset is a multisession dataset, the first
consecutive N € [1...5] sessions are used for training with 2-folds cross
validation, while the remaining 10 — N sessions are used for testing.
Specifically, the training data is divided into two folds, where in one fold
only the windows belonging to even-numbered repetitions are included,
while the remaining windows are included in the other fold. Therefore, for
every subject, two classifiers are trained, each one on a different training
fold: in the rest of this work, the average value of the top-1 classification
accuracies on the validation folds is referred to as intra-session validation
accuracy, while the average value of the top-1 classification accuracies on the
test split is referred to as inter-session validation accuracy. Therefore, in
order to fairly compare the effectiveness of different classifiers, these two
metrics are computed for every fold of every subject and then averaged over

39



4 — Transformers for sEMG-based Gesture Recognition

the 10 involved subjects, meaning that 20 different trainings are performed
for each model.

4.4 Network architecture

The network architecture employed to perform sEMG-based gesture
recognition is closely inspired by ViT as proposed in [26] and described in
chapter 2.3.6. The architecture is detailed in table 4.1 and consists of three
main building blocks:

e a patch embedding block for turning the input signal window into a
sequence of embedded tokens;

e a Transformer encoder that further encodes the input sequence;

« a classification head for classifying the input signal window.

Block \ Layers
Patch Embedding 1D Convolution Turn input signal into
N embedded tokens
Class Token Add learnable token to
the input sequence
Positional Embedding Add positional
information to each
token
Transformer Encoder | Attention MSA Layer
Feed Forward FC Layer
GELU
FC Layer
(Classification Head MLP head Layer Normalization
FC Layer

Table 4.1: Description of the proposed architecture

4.4.1 Patch Embedding Block

The input signal can be referred to as z € R**3% since every input example
consists of a 14-channel signal window of 300 time samples. The main novelty
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is the adoption of a 1D convolution with the aim of turning the input signal
into non-overlapping patches and linearly embedding each each patch into
a lower dimensional space. To perform this operation, the input signal is
convolved with a 1D filter w € 14 x P x C with a stride of P and no padding;
P is the patch-size (i.e. the number of time-samples of each patch), and C'
is the number of output channels of the 1D convolution, which can also be
thought as the embedding size of the linear projection that is applied to each
patch. In fact, this operation is equivalent to linearizing the 14 channels
of the input signal, reshaping it into N = 300/ P non-overlapping patches,
ie. 2/ € RNV*P and applying to each patch a linear embedding whose
projection matrix is w’ € R™“P*C¢. The hyper-parameter P regulates the
size of each patch, and consequently the length N of the input sequence: if
P was set to 1, then the input sequence would consist of N = 300 tokens,
where each token would be 1 time sample of the input signal; on the other
hand, if P was set to 300, then the input sequence would degenerate into
a N =1 token sequence. As described in Chapter 6, the aim is to find the
optimal patch size P, keeping in mind that the computing complexity of the
MSA layer in terms of MACs is O(N?).

After encoding the input signal into a sequence of N = 300/ P tokens, a
learnable classification token cls € R is prepended to the input sequence
and a learnable positional embedding wy, € RYT1*¢ as described in section
2.3.3 is summed to each token.

4.4.2 Transformer Encoder

The encoder is divided into repeating blocks of equal structure, each consisting
of a self-attention layer with internal hidden embedding (also referred to as
head dimension) of D < C and a Feed Forward unit with hidden embedding
dimension H being a multiple of C. As described in equation 2.10, Layer
Normalization is applied on the input before applying Attention and before
applying Feed Forward on it, and residual sum is performed at the output of
Attention and Feed Forward.

Self-attention, as described in section 2.3.4, projects the input tokens
into matrices Q,K,V, whose embedding dimension is referred to as D < C
in this work. Since this operation is repeated multiple times in parallel,
i.e. multiple attention heads are applied to the same input sequence, the
embedding dimension of each final token is D - Ny, where Ny is the number
of attention heads: therefore, each token is projected back to its original
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embedding dimension C' with a fully connected layer.

The first Fully Connected layer of the Feed Forward unit projects each
input token into a space of hidden dimension H = m(C, m € N; on the other
hand, the second layer projects each token back to its initial embedding
dimension C'.

4.4.3 Classification head

Classification is performed with a fully connected layer. It is important to
note that both Transformer Encoder and Patch Embedding block deal with
a sequence of tokens for each input example, and a way of combining all
tokens to perform classification of the whole sequence must be identified. As
proposed in [26], classification is performed by feeding a MLP head with the
processed class token.

4.5 Network training

A DNN is deployed to a low-power device when:

e The considered device has been loaded with the proper instructions to
perform all the mathematical operations which the DNN consists of. This
is usually carried out by loading a compiled software that implements
these operations onto the MCU, or alternatively, by transferring a "recipe"
file that describes all the involved operations and that is interpreted by
a software already persisting on the embedded device;

e The optimal parameters of the DNN have been transferred to the
embedded device and are plugged into the proper mathematical
operations.

As it can be guessed, edge inference does not ultimately pose any
restrictions on how the optimal parameters are found: this means that a
DNN training, which is several orders of magnitude more complex than
inference in terms of computational complexity, can be performed on
another hardware. Therefore, in this work training is performed with
dedicated GPUs since their highly parallelized architecture is ideal for
computing the results of many independent mathematical operations, which
is what is done during the forward and backward passes of a training step.
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4.5.1 Weight initialization

Since DNN training is ultimately an optimization heuristic, an initial solution
to be optimized has to be set, which is not a trivial operation. This task is
usually referred to as weight initialization, and it is carried out in order to:

e improve convergence speed since having a bad initial solution may lead
to slow and inefficient training;

« avoid gradient vanishing or gradient explosion due to the increase or
reduction of the variances of the activations as depth grows.

This is why several works in literature, including [48, 49], are focused on
weight initialization.

Specifically, the procedure outlined in [49] has been thought with non-linear
activation functions in mind, which is the case of the employed architecture
since it makes use of several operation of that kind, including Softmax and
GELU. In order to prevent variance of activations from increasing or reducing
as layer depth grows, Kaiming et al. propose to randomly initialize the layer
weights according to some random distribution whose parameters depend
on the input size of the layer. In practise, weights are independently drawn
from a linear distribution:

U(—bound, bound)

3 (4.1)
bound = gain - \/7
n
where n is the input size.

In this work, gain was set to 1/4/3, which is commonly employed in many
DL frameworks as it was empirically found to produce slight performance
increases in terms of goal metrics [50].

Kaiming initialization is performed for all linear projection matrices. In
the projection matrix of the positional embedding, weights are drawn from a
normal distribution N(0,0.02) not only because it is done in the proposing
article [26], but also because this is the approximate distribution that was
reached at convergence for this model architecture trained on DB6 when
weights were initialized using either a normal distribution or a uniform
distribution. Therefore, this particular initialization is performed since
initializing the weights with the same approximate distribution that emerges
at convergence is supposed to increase convergence speed itself. Finally, the
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class token’s weights are initialized to zero since weight updates Aw of class
token are due to the gradient flow of all other tokens in the input sequence,
so weight update is still possible with a Os initialization, and furthermore, a
class token consisting of 0 does not negative influence self-attention at the
start of training.

4.5.2 Warmup of the learning rate

Training a Transformer with the traditional approach of using a fixed learning
rate that is optionally decayed by a certain factor everytime a number of
training steps are performed may result in suboptimal results: using a too
low learning rate may slow the convergence, while a too high learning may
lead to divergence in the first few steps. It is therefore suggested in literature
[28] to vary the learning rate according to a more sophisticated policy, as
in the warmup policy. The warmup of the learning rate consists in setting
the initial learning rate to a very low value close to 0, such as 1077, and
then to vary the learning rate according to a certain policy. The simplest
one consists in linearly increasing the learning rate for a number of epochs
until a target fixed learning rate is reached. A slight variation of it consists
in also decaying the learning rate up to the end of the training: Figure 4.1
graphically shows the trend of the learning rate at each epoch with a linear
warmup of 150 epochs from approximately 0 and 0.001 and a subsequent
linear decay of 50 epochs.

Learning rate trend with linear warmup

00010

00008

00006

0.0004

0.0002

0.0000

0 25 50 75 100 125 150 175 200
Epoch

Figure 4.1: Example of a linear warmup policy with linear decay after
warmup
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The linear warmup of the learning rate seems to provide not only
marginally better accuracies at convergence, but also a more stable training:
10 different training curves regarding intra-session and inter-session accuracy
on a single subject of DB6 are reported in Figure 4.2 and each curve is
resulted from training the same model from scratch on the same subject and
with the same hyper-parameters. In the right panel, the Adam optimizer
adopts a fixed learning rate of 0.001 that is halved every 50 epoch, while
instead a linear warmup for 100 epochs with the same final learning rate of
0.001 is used in the panel on the left. From the different training curves it
can be seen that, with linear warmup of the learning rate, the intra-session
accuracy of 65% is reached after (14 4 3) epochs, while instead the fixed
learning strategy exhibits a larger variance, since the same value of accuracy
is reached only by 9 trainings under 100 epochs and specifically after
(19 £ 8) epochs.

10 Linear warmup of the leaming rate 10 Fixed learning rate
intra-session accuracy intra-session accuracy
09 —— inter-session accuracy 08 4 —— inter-session accuracy
0a
07
06
05
o 20 40 B0 80 100 o 20 40 B0 80 100
Epoch Epoch

Figure 4.2: Comparison of training curves concerning different learning
rate schedule policies

4.5.3 Two-stage training protocol

As discussed above, the standard training procedure for sEMG-based
gesture recognition concerns only a specific subject, meaning that the
considered training samples belong to one subject only; therefore the trained
model is subject specific. This procedure is followed because there is
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significant variance from one subject to another in terms of recorded signals
due to different muscle movements and contractions among different
subjects. However, single-subject data is scarce and training on a wider
dataset may allow the model to extract more meaningful features.
Transformers have already been successfully trained with fine-tuning in
mind: such instances include [51], where a model for natural language
processing is pre-trained on large corpus in order to allow the
straightforward creation of state-of-the-art models for a wide range of tasks,
such as question answering and language inference, without substantial task
specific architecture modifications but with the application of transfer
learning techniques. In this work we try to adopt a similar protocol also in
the context of SEMG-based gesture recognition. In particular, instead of
training from scratch the final subject-specific model on a random weight
initialization, for every subject it is performed fine-tuning of a model that
was pre-trained on all the other subjects of the same benchmark dataset.
This implies a two-stage procedure for training a model for a given subject:
in the first step, the model parameters are randomly initialized and
pre-training is performed considering all the other subjects samples; in the
second step, the samples of the selected subject are normalized with the
same min-max ranges, and the parameters of all the layers of the previously
trained model are fine-tuned. As shown by our results, this protocol is
beneficial for final accuracies since a greater generalization capability of the
trained models is achieved: this is because, despite every recorded signal
being subject-dependant, pre-training on a wider dataset allow the resulting
model to extract more meaningful features, since those sEMG signal
features that are useful for gesture classification are supposed to share many
similarities among the different subjects.

4.5.4 Transformer-specific quantizations

One of the challenges for performing integer-only quantization of
Transformers is their strong reliance on nonlinear operations. The authors
of [35] propose a framework to approximate the nonlinear layers of
Transformers, namely GELU and Softmax, with polynomial functions that
can be computed with integer-only arithmetic. This method is effective
because computing polynomials consists of only additions and
multiplications, which can be performed with integer arithmetic. These
approximations are carried out in order to avoid quantization and
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dequantization steps inside the network architecture graph, where
operations in certain layers are performed in integer arithmetic while in
other layers operations are performed with floating-point arithmetic.

GELU

The integer-only approximation to GELU can be defined as follows:

iGELU(2) = x - ; (1 4L (2)) (4.2)

where L(z) is defined by solving this optimization problem:
1 :
min §||GELU(:[:) —iGELU(z)||3 (43)
s.t.L(z) = sgn(z)(alclip(|z|; mar = —b) + b)* + 1)

Softmax

The softmax operation involves the use of the exponential operation, which

is the nonlinear term of this operation. A polynomial approximation of the

exponential that can be calculated with integer arithmetic can be defined as
follows:

iexp(x) := L(p) >> z

L(p) = 0.3585(p + 1.353)% + 0.344

p=2+ z-log2

z=|—7/log2]

where >> represents the bit shifting operation.

(4.4)

4.5.5 Overall training procedure

Training an instance of the proposed Transformer-based architecture to
perform hand gesture recognition of a certain subject in the benchmark
dataset can be summarized in the following:

1. Perform a pre-training step of a randomly initialized model on the
training data of the remaining 9 subjects of the dataset;

2. Perform a quantization-aware finetuning step of the whole architecture
from the previous checkpoint with the training data of the target subject.
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Chapter 5

Automatically Generated
Hybrid

CNN /Transformer
Architectures

5.1 Objective

In the context of SEMG analysis, or Time Series Analysis in general, after
having successfully applied the self-attention mechanism as described in
the previous chapter, and the convolutional layers as done in previously
introduced TCN architectures, such as TEMPONet [43], the most obvious
next step is to introduce a hybrid architecture that is able to leverage both
the long-range modelling capability of the self-attention mechanism and the
shorter-range summarization capability and lower memory occupation of
convolutional layers. The work of [27] already introduces an innovation in the
MSA mechanism by introducing a relative positional embedding, which can
bias the attention mechanism to be narrower and focused on the neighbour
tokens, thus behaving similarly to a convolutional layer. The objective of
our work is to start from that formulation to realize a sort of NAS where
each layer of a hybrid transformer is either pure attention-based or pure
convolutional based.
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5.2 Application of GPSA to sEMG-based
hand gesture recognition

One of the main advantages of GPSA when applied in the context of SEMG-
based hand gesture recognition is that the resulting transformer encoder
is less prone to overfitting as the size of the network architecture grows.
Hence, a higher number of layers can be stacked without hurting the target
metric performances. This is particularly convenient because it enables the
inspection of the GPSA behaviour at an increasing number of layers. One
way to interpret the behaviour of a GPSA-based layer consists in averaging
the gating parameters o(\,) for every head: if the result is close to 1, then all
the attention heads pay more attention to position information and the whole
layer is closer to a convolutional layer; if instead, the average value is lower or
close to 0, this means that the various attention heads are paying attention
to the content information and the layer is closer to a vanilla multi-head
self-attention layer.

Figures 5.1 and 5.2 show the trend of the gating parameters of each
layer (gray lines) and their average value (black thicker line) in two different
transformers that employ GPSA and that were trained on 5 sessions of all
10 subjects of DB6 for 150 epochs. First of all, it can be seen that the
first layers of each Transformer exhibit a behaviour closer to a convolutional
layer at convergence since the average gating parameter is higher, while
instead deeper layers are closer to classical MSA, which is compatible with
the findings of the proposing paper [27] applied to image classification. It
is important to note also that, for the variant with 2 attention heads, the
gating parameter is higher in the first layers, while instead in the variant of
9 heads, the average value of the gating parameter tends to decay during
training even for the first layers.

These insights suggest that, in order to achieve a closer convolutional
behavior in the GPSA mechanism, a small kernel size for the equivalent
convolution may be appropriate, hence a lower number of attention heads
may be sufficient.

5.3 GPSA binarization via a pretraining step

GPSA binarization consists in identifying a threshold for the average value
of the gating parameters of a certain MGPSA layer above which all values
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of the gating parameters are rounded to 1 and below which all values of the
gating parameters are rounded to 0. This is performed in order to force a
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MGPSA layer to strictly pay attention either to positional information or
to content information. While the former exhibits a behaviour closer to a
convolution, the latter is totally equivalent to vanilla MSA.

To perform this operation, in this setting a training step is performed on
all subjects in order to gather a snapshot of the final values of each gating
parameters. In fact, after the completition of this training step, the values
of the gating parameter of each layer in the trained model are inspected: if
the average gating parameter of a given MGPSA layer is above a certain
threshold, the layer is turned into a pure convolutional layer, otherwise the
layer is turned into a pure MSA layer. Therefore, after having empirically
determined the new configuration of each layer of the architecture for the
given task, the model is re-initialized and then trained in single-subject
trainings, optionally with pre-training as described in the chapter before.

Identifying the correct threshold #; of the average gating parameter can
be difficult. In this work, we set t; to the central value between the
minimum and maximum mean gating parameter over all layers, i.e.
th=2;i0(Nj)/Nu,i€[l,...,Ng],j € [1,..., L], where L is the depth of
the transformer encoder, Ny is the number of heads in each layer, \;; is the
unscaled gating parameter of head 7 in layer j and o is the sigmoid function.

The objective of this search is to find a hybrid network that takes full
advantage of the strong embedding capabilities of the attention mechanism,
and fallbacks to a less memory-intensive convolution operation when the use
of pure self-attention may be redundant or even detrimental for the target
metrics. In fact, considering an embedding dimension D = (' for each head,
then the number of parameters of an attention layer is O(4NyC?) where
Ny is the number of heads, while instead the number of parameters of the
equivalent convolutional layer is NyC?, which leads to a reduction of 4x.

5.4 GPSA binarization via
Straight-Through Estimator

The problem of the previous solution is that a further extra training step
is required, which can be a significant burden. In this section, a dynamic
binarization that is performed during training is described.

This binarization operation is described in the equation below.

. 1 S;0(\)/Nyg >t
7(A) = { 0 Zz’a()\i)/Ng < tZ
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where o();) is the gating parameter of head ¢ and ¢}, is a threshold value.

However, training with error backpropagation cannot be directly performed
since & (;) is not differentiable in ¢, and most importantly its derivative is 0
for all other values. Hence a Straight-Through Estimator is employed, which
consists in evalutating to ();) during the forward pass and in removing the
binarization during the backward pass, thus allowing gradient flow during
the backward pass.

In this way, at convergence time the MGPSA layer will behave either as
pure MSA layer or as an embedding layer of the relative position information
of the input patches, which is not exactly the intended result of having an
alternative between pure MSA and pure convolution. This is because relative
position embedding can result in a layer being equivalent to a convolutional
layer, but only if the learned embedding is in a certain form as mentioned in
section 2.3.8.

To solve this issue, the learnable relative positional embedding is replaced
with a fixed value. Therefore the new altered gated attention A?j that
measures interaction between token ¢ w.r.t to token j in head h is given by

Al = [1 — o(Vsoftmax(QE )] + a(N)[0, ..., 1iy,...,0]  (5.2)

where ip, € [i — (N, — 1)/2,...,i+ (N, — 1)/2] where N}, is the number of
heads of the layer.

This way, if o(\) < tj, then the layer is equivalent to plain MSA in the
forward pass due to GPSA binarization. If o(A) > t5, then multi head
attention for token 7 in a 3 head layer will be equivalent to:

O ... 100 ...0
Azh:l - 1 00 XWUal = Xi—lwval
0 1 00 0
O ...010 ...0
AZh:Q = 010 Xanl = Xinal (53)
0 010 0
O ...001 ...0
A?IS = 0 0 1 Xanl - Xi+1anl
0 0 01 0

Thus, when attentions from all 3 heads get concatenated, the result of
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self-attention is given by:

[ 0 Wya XiWoa  XoWyar |
X1Woa XoWoar  XsWya

: : : Wout + bout (5.4)
XN—Qanl XN—Ianl XNanl

L XN—lwval XNanl 0- anl J

which is equivalent to a 1D convolution with a kernel size of h (in this case 3)
with a stride of 1 and 0 padding. In this case, projections X;W,,; instead of
pure X;s are being multiplicated by the moving kernel W,,,;, but this "double'
linear projection is equivalent to the single linear projection WiqWous.
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Chapter 6

Experimental results

6.1 Setup

Deep Learning has been gaining popularity also thanks to the availability
of many open-source frameworks that allow fast development cycles since
all major hurdles, ranging from low-level programming of GPU hardware to
high-level topic-specific operations, such as convolutions, have already been
implemented. In this work the Pytorch framework [52] has been adopted
and training has been performed on a single NVIDIA Tesla V100 SXM2.

The target deployment MCU is the Green-Waves Technologies GAP8 SoC
[53], which is based on the RISC-V architecture and on the PULP (Parallel
Ultra-Low-Power Processing Platform) open-source platform. This MCU
allows a ultra-low-power operation thanks to an optimized set of 1/O ports
and to a suitable architectural organization that consists of one computing
core for control, communications and security functions, which is called
Fabric Controller, and a cluster of 8 cores that are designed for the execution
of vectorized and parallelized operations. The memory organization consists
of three levels: level 1 consists of a 64KB memory shared by all eight cores
and a 8KB memory for the Fabric Controller; level 2 memory consists of a
512KB memory that is shared by all cores; level 3 memory, or RAM, is given
by an off-chip low-power DRAM, such as an 8MB "HyperRAM" which is
used on the GAPuino development board [54].

Given the target architecture, the energy consumption for performing
inference on a single sample can be estimate as:

c
E_?.p (6.1)
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while the latency in ms can be estimated as:

E="5.1000 (6.2)
f
where P is the power consumption, which is 51mW, f is the clock frequency,
which is 100MHz, and c is the overall number of clock cycles that are required
to perform a single forward-pass.

6.2 Pure transformer architectures

The pre-processing of the benchmark dataset is based on [43] in order to
allow fair comparisons between the transformer-based architectures and
TEMPONet, a state-of-the-art TCN-based technique for handling sSEMG
signals. Consequently, only training and architecture hyper-parameters of
the Transformer architectures are tuned to find the best configuration among
a predetermined search space that leads to the highest performances in terms
of the target metrics.

6.2.1 Number of parameters and MAC operations

The computation of the number of parameters of the involved transformers
results from the sum of the different contributions of the various layers, which
is reported below:

« Patch embedding (input 1D convolutional filter): 14- P-C + C', where P
is the receptive field of the non-overlapping convolution, C' is embedding
dimension of each encoded token, 14 is the number of channels of the
input signal;

e Learnable class token: ('

 Learnable positional embedding: C'- (N + 1), where N = 300/ P is the
number of tokens (note that it is considered N + 1 due to the class
token);

o Transformer encoder:

— Attention Layer:

x Layer Normalization: 2C'
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6.2 — Pure transformer architectures

x QKV projection matrices: C'- D - Np -3, where Ny is the number
of heads and D is the head size (note that no bias term is present
in this projection);

x Projection: D- Ny -C +C

— MLP block:

x Layer Normalization: 2C

« Fully connected layer 1: C - H + H,

x Fully connected layer 2: H - C' + C;

Classification head

— Layer Normalization: 2C

— Output fully connected layer: C' - N. + N., where N, is the number
of classes

Regarding the MAC operations, their computations is summarized below:

MACs(encoder) = L - [MACSs(attention) + M AC's(feedforward)),
where L is the number of layers of the transformer encoder;

M ACs(attention) = Ny - M AC's(attentionhead) + N - (D - Ny) where
Ny is the number of heads, D is the embedding dimension of each head
and N is the sequence length (including the eventual class token);

M AC's(attentionhead) =3-N-C-D+N-D-N+ N-N-D where N
is the sequence length, C' is the embedding dimension of each token and
D is the embedding dimension of the head; the first addendum concerns
the QKV matrix projection, the second terms refers to the similarity
dot product QK7 while the last term concerns the multiplication of the
similarity scores computed by QKT by V;

MACs(feedforward) =2-N-C- H, where H is the hidden embedding
dimension of the MLP head;

MACSs(transformer) = N - (14 x P) - C + M ACs(encoder) + C - N,
where P is the patch size of 14 channel input signal, and N, is the
number of classes
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6.2.2 Training hyper-parameters

For determining the proper configuration of training hyper-parameters, a
number of attempts have been made with different architectures. In
particular, different training policies were tested against different variants of
the Transformer architecture in terms of its size: for each training policy,
the tested depth, i.e. number of layers of the transformer encoder, were
[1,2,4,8], while the number of attention heads in each self-attention layers
were either 2, 4 or 8.

Training has been performed with Adam optimizer with a batch size of 64
and no weight decay on 5 sessions. Table 6.1 shows different hyper-parameter
configurations for the two-stage training: all pre-training stages have been
performed by adopting the warmup of the learning rate with a 5e-6 increase
at each epoch; finetuning has been performed with a fixed learning rate of
le-4 with a reduction of 10x after half of total number of epochs were past.
This table shows that adopting a too short pre-training stage may actually
not be sufficient for achieving optimal performances in terms of accuracy,
since both attempts with 20 pre-training epochs are outperformed by the
configuration with 100 epochs; on the other hand, finetuning for 40 epochs
does not seem to provide an edge over 20 epochs, and may actually lead to a
slight overfit of the involved networks.

Hence, the final configurations consist of the following:

e In case of two-step training, for the pre-training step, linear warmup of
the learning rate from 1le-7 to 5e-4 is employed for 100 epochs; for the
fine-tuning step, a fixed learning rate of le-4 is used, with a reduction
of 10x after 10 epochs;

o In case of single training from scratch (no pre-training), then a linear
warmup of the learning rate from le-7 to le-4 is employed for 100 epochs,
which is then followed by 50 epochs of linear decay up to He-4.

6.2.3 Architecture hyper-parameters
A grid search was performed over a number of hyper-parameters, including:

e patch size, i.e. the size of the receptive field of the 1D convolution at
the input of the transformer architecture;

e projection size, i.e. embedding dimension of each token;
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Pre-tr. epochs Ft. epochs ‘ Intra-sess. acc. Inter-sess. acc.

20 20 | 63.1% 59.2 %
20 40 | 64.3% 59.1 %
100 20 | 68.4% 62.1 %

Table 6.1: Averages of inter-session and intra-session accuracies over all
10 subjects and all 12 architectures for every configuration of the two-stage
training protocol, i.e. a total of 240 instances for every configuration

number of attention heads in the self-attention layers;

size of each attention head, i.e embedding dimension of Q,K,V;

depth L, i.e. number of layers of the transformer encoder;

MLP size H, i.e. the embedding dimension of the MLLP block.

Depth =1 Depth =2

0 Number of
§ 400000 - § attention heads
£ 2 heads
g 300000 A : —— 4 heads
= —— 8 heads
S 200000 + b —— TEMPONet
8
E 100000 1 /// ]
=)
2

0 T T T T T T T T

16 32 48 64 16 32 48 64
Head projection dimension Head projection dimension

Figure 6.1: Number of parameters with respect to head projection
dimension

The overall number of parameters of the architecture are mostly
determined by the attention layers in the transformer encoder, whose
complexity is O(C - D - Ny - L): hence this are the most important
hyper-parameters to constraint in order to design a final architecture whose
final memory footprint is compatible with an edge deployment. Figure 6.1
shows how the total number of parameters varies in the architecture with
increasing depth L of the transformer encoder, embedding dimension size D
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of the self-attention mechanism and number of attention heads Ny, after
having set a projection size C' = 64; patch size P and MLP size H do not
heavily affect the total number of parameters, and in this instance they are
set to 10 and 128 respectively.

Intra-session acc. Inter-session acc
min max mean min max mean

D

16 0.628670 0.689759 0.676824 0.592398 0.637153 0.622521
32 0.631735 0.699998 0.679062 0.593883 0.642666 0.624112
64 0.629874 0.707415 0.680656 0.594235 0.639759 0.625326

Table 6.2: Aggregate values of inter-session and intra-session accuracies in
5-session training with depths L = [1, 2], number of heads Ny = [2,4, 8] and
head size D = [16, 32, 64].

In order to find a good set of hyper-parameters that represent a good
compromise between goal metrics and computing complexity, different
architectures were trained with the aforementioned two-stage training
protocol in 5-session trainings with different depths, number of heads and
head size. Looking at the aggregate values of intra-session and inter-session
accuracies of table 6.2, it seems that setting a projection D = 16 leads to
slight underfit given the lowest maximal intra-session accuracy; on the other
hand, setting a projection D = 64 seems to lead to slight overfit, since the
maximal inter-session accuracy is lower than D = 32, and most importantly,
the accuracy gains seem negligible compared to the increased memory
footprint.

As a result, two architectures are chosen and they share most of their
hyper-parameters: MLP size H is set to 128, projection size C' to 64, head
size D to 32 and patch size P to 10. The two architectures differ in the
number of heads and depth: the first model is characterized by 1 layer with
8 heads, while the second model by 2 layers with 2 heads each. The variant
with 8 heads was chosen since it reaches the maximum performances in terms
of goal metrics, while instead the variant with 2 heads was chosen as a less
computing-intensive alternative to compare with the first one.
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6.2.4 Results without quantization

Training protocol comparison

072

0.70

068

0.66

accuracy

D64
Model
~ f ! ‘ — 8 heads w/ pretraining
062 s ‘ k" = - 8 heads
& e 2 heads w/ pretraining
060 \‘:: 2 heads

= TEMPOMNet w/ pretraining
=== TEMPOMet

SE55i0N

Figure 6.2: Intra-session accuracy (5) and inter-session accuracies (6-10)
of the considered models

Model Pre-tr. ‘ Inter-sess. acc.

Trl No | 62.3%
Trl Yes | 65.7%
Tr2 No | 60.9%
Tr2 Yes | 63.4%
TEMPONet No | 65.0%
TEMPONet Yes | 66.8%

Table 6.3: Mean intra-session and inter-sessions accuracies. Trl corresponds
to Transformer with 1 layer and 8 heads, Tr2 to Transformer with 2 layers
and 2 heads.

The results achieved by transformer applied on 5-sessions trainings are
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compared with TEMPONet, which is trained following the same training
hyper-parameters of [43]. First it is to be noted that, while TEMPONet
employs 460k parameters and 16M MACs, the computation complexity of
the considered transformers is notably lower, characterized by 94k and 78k
parameters and 3.3M and 2.5M MACs respectively for the 1 layer and 2 layers
variants. Applying the pre-training is beneficial both for transformers and
TEMPONet, resulting in appreciable accuracy gains for both architectures.
In particular, in figure 6.2 and in table 6.3 it is showed how the intra-session
(5) and inter-session accuracies (6-10) vary: both for the considered TCN
and transformers, the two-stage training procedure does provide an edge
over training from scratch since both accuracy metrics are higher when
pre-training is applied; it can be observed an average gain of 3.39%, 2.48%,
and 1.80% for Transformer with depth 1, Transformer with depth 2, and
TEMPONet, respectively. This confirms the recent identified trends that see
Transformers being able to achieve higher accuracy gains with respect to
convolutional-based networks when finetuning is employed; in this particular
task however, Transformers do not provide better accuracies than state-of-
the-art when the matching training protocols are employed.

Per-subject accuracy comparison

In figure 6.3, it can be seen the per-subject accuracy variations between
2-stage training protocol and training from scratch when applied to the
1-layer Transformer: while most subjects see a slight to considerable increase
in terms of inter-session accuracy, there are few instances (subject 2 and 6)
where performing a pre-training does not lead to any appreciable increase or
it actually worsens the final accuracy.

Therefore, while the extracted features during the pre-training step prove
to be beneficial for final accuracy in most cases, given the high variability
between different subjects, it is very well possible for a particular subject with
strong differences from the "mean" case to performs worse with a pre-training
step. This insight may suggest that performing pre-training step on a subset
of similar subjects instead of the whole corpus may provide better results for
this particular instances.

Ablation study on the patch-size

In figure 6.4, it is showed how the receptive field of the input 1D convolutional
filter impacts on the achieved inter-session accuracy.

62



6.2 — Pure transformer architectures
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Figure 6.3: 1-stage vs 2-stage training results for each subject
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Figure 6.4: Input 1D convolutional filter dimension

It is to be noted that, since the stride of the convolution is the same as the
its receptive field, the embedded tokens are obtained from non-overlapping
segments of the input. The patch size P strongly influences the computing
complexity of the resulting architecture since the length N of the resulting
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sequences is given by N = L/P, where L = 300 is the length of the input
window. The sweetspot seems to be around a value of 10 for the patch
size: the lower accuracies for the other architectures may be justified by
stating that a higher patch size determines a too short sequence, while a too
long sequence requires a too much small input token. Also note, as shown
in figure 6.5 how the patch size influences the complexity of the resulting
architecture: while the number of parameters does not heavily depends on
the resulting input sequence length (only the positional embedding and the
1D patch embedding are influenced), it is instead evident that the number
of MACs increases with the patch size, mainly due to the higher number of
operations that take place in the self-attention layers.

0.66 066
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A 8 heads w/ pretraining —h— 8 heads w/ pretraining
. 8 heads - 8 heads
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Params MACs

Figure 6.5: Number of parameters and MAC operations of TEMPONet and
the two considered transformer variants with various input 1D convolutional
filter dimensions

6.2.5 Results with quantization

The results of quantizing some of the aforementioned architectures are shown
in Table 6.4. The accuracy of the reported models is the one obtained after
the quantization-aware fine-tuning, which is the second step of the two-stage
training that has been introduced in chapter 4. After quantization, the most
accurate model achieves 64.69% inter-session accuracy. Energy consumption
and latency are computed as shown in section 6.1
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6.3 — GPSA-based architecture

Table 6.4: Performance of the quantized architectures.
Abbreviations: Lat.: latency, Q.Acc.: quantized accuracy.

Network | Memory MMAC Lat.[ms] E.mJ] Q. Acc.
MCU: GAPS, 100 MHz @ 1V, 51 mW

Trl, patch=30 | 110.8 kB 1.2 1.03 0.052  61.09%
Trl, patch=20 | 102.1 kB 1.7 1.37 0.070  63.14%
Trl, patch=10 | 942 kB 3.3 92.72 0.139  64.69%
Tr2, patch=30 922kB 1.0 1.55 0.079  60.19%
Tr2, patch=10 783 kB 25 4.82 0.246  62.43%
TEMPONet [43] | 461 kB 16.0 21.82 1.11 61.00%

6.3 GPSA-based architecture

Training is performed with AdamW optimizer in a two-step training with a
batch size of 64 and a weight decay of 1e-2. For the pre-training step, linear
warmup of the learning rate from le-7 to le-3 is employed for 50 epochs
followed by 25 epochs of linear decay of the learning rate to bHe-4; for the
fine-tuning step, a fixed learning rate of le-4 is used, with a reduction of
10x after 10 epochs. All experimented network architectures consists of
an embedding size of patch-size of 10 with a linear projection dimension of
32, hidden dimension of the MLP block of 128, and 3 heads per layer with
embedding size of 32 each.

First, the network architecture search was performed with the additional
pre-training step as described in section 5.3, which was performed on the
first 5 sessions of all subjects of DB6, and then single-subject trainings
was performed with the two-stage fashion: table 6.5 shows that, as the
number of employed layers increases, also the inter-session accuracy does,
with the exception of the largest model with 8 layers where a small accuracy
drop is registered. The higher generalization capability of the GPSA-based
transformer is probably due to the narrower receptive field of the layer when
it is biased to be a convolution, since it takes into account only the closest
tokens and is not constrained to model farther time-dependencies.

Finally, when GPSA binarization was performed with a Straight-Trough
Estimator, an average inter-session accuracy of 59.3% has been achieved
with single-subject training without pretraining with a linear warmup of the
learning rate from le-7 to le-4 for 50 epochs of a 8 layer architecture.
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Table 6.5: Performance of the GPSA-based transformer architecture where
binarization has been performed via a pre training step.
Abbreviations: Acc.: inter-session accuracy

Depth Conv. Layers Attention Layers | Acc. Params MMAC
2 1: (0) 1: (1) 61.3 % 166k 1.3
3 2: (0, 1) 1: (2) 63.6 % 241k 1.6
4 3: (0, 1, 2) 1: (3) 64.3 % 315k 2.0
8 3: (0,1, 2) 5:(3,4,5,6,7) |63.0% 613k 5.2

By comparing the results achieved by the models that feature binarized
GPSA layers with transformers that are based on pure self-attention, it
can be seen that the pure transformers require an higher amount of MAC
operations: the pure transformer with 2 layers and 2 heads per layer requires
2.5M MACs and achieves an inter-session accuracy of 63.4%, while instead
the hybrid 4-layer transformer with 3 convolutional layers, despite having
2 more layers in total, scores an higher accuracy of 64.3% while requiring
only 2.0M MACs, and the 3-layer hybrid model, which achieves the same
accuracy of the pure transformer, only requires 1.6M MACs. These results
are obtained thanks to the reduction of the number of attention layers to 1

and to the introduction of convolutional layers that are more lightweight in
terms of MACs.
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Chapter 7

Conclusions and future
works

This work showed that Transformers can achieve comparable state-of-the-art
performances even in highly-compressed architectures applied to embedded
tasks such as sEMG-based hand movement recognition.

Despite the many challenges that make it difficult to bring this architecture
to edge inference, several previous works introduced a number of techniques
that allow this operation to be performed without incurring significant
accuracy penalties.

The application of a two-stage training procedure led to better
performances, and is compatible with previous findings that sees
Transformers being able to achieve higher accuracy gains with respect to
convolutional-based networks when finetuning is employed. In this
particular task, however, Transformers do not provide better accuracies than
state-of-the-art when matching training protocols are employed also for
competitive architectures.

One of the issues faced when carrying out this work is the propensity
of the employed models to overfit as the number of layers of the encoder
increases. This issue is not prominent when GPSA-based layers are employed,
but still, the overall accuracy metrics do not surpass previously introduced
convolutional architectures.

Future works include the extension of NAS approaches applied in GPSA-
based networks in order to further experiment with hybrid architectures
consisting of convolutional and self-attention layers.

67



68



Bibliography

1]

Geoffrey Hinton. «Boltzmann Machines». In: Encyclopedia of Machine
Learning. Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA:
Springer US, 2010, pp. 132-136. ISBN: 978-0-387-30164-8. DOI: 10.1007/
978-0-387-30164-8_83. URL: https://doi.org/10.1007/978-0-
387-30164-8_83 (cit. on p. 1).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «ImageNet
(Classification with Deep Convolutional Neural Networks». In: Advances
in Neural Information Processing Systems. Ed. by F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger. Vol. 25. Curran Associates,
Inc., 2012. URL: https://proceedings .neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper. pdf (cit. on p. 1).

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. «Backpropagation Applied to Handwritten
Zip Code Recognitiony. In: Neural Computation 1.4 (1989), pp. 541-551.
DOI: 10.1162/neco.1989.1.4.541 (cit. on p. 1).

Alex Graves and Jirgen Schmidhuber. «Framewise phoneme
classification with bidirectional LSTM and other neural network
architecturesy. In: Neural Networks 18.5 (2005). IJCNN 2005,
pp- 602-610. ISSN: 0893-6080. DOI:
https : //doi . org/ 10 . 1016/ j . neunet . 2005 . 06 . 042. URL:
https : / / www . sciencedirect . com / science / article / pii /
S0893608005001206 (cit. on p. 1).

Ruhi Sarikaya, Geoffrey E. Hinton, and Anoop Deoras. « Application
of Deep Belief Networks for Natural Language Understanding». In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing
22.4 (2014), pp. 778-784. pOI: 10.1109/TASLP.2014.2303296 (cit. on

p. 1).

69


https://doi.org/10.1007/978-0-387-30164-8_83
https://doi.org/10.1007/978-0-387-30164-8_83
https://doi.org/10.1007/978-0-387-30164-8_83
https://doi.org/10.1007/978-0-387-30164-8_83
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://doi.org/10.1109/TASLP.2014.2303296

BIBLIOGRAPHY

(6]

[10]

[11]

[12]

[13]

[14]

Abdel-rahman Mohamed, George E. Dahl, and Geoffrey Hinton.
«Acoustic Modeling Using Deep Belief Networks». In: IEFEE
Transactions on Audio, Speech, and Language Processing 20.1 (2012),
pp. 14-22. poI: 10.1109/TASL.2011.2109382 (cit. on p. 1).

M.D. Levine. «Feature extraction: A survey». In: Proceedings of the
[EEE 57.8 (1969), pp. 1391-1407. DOI: 10.1109/PROC . 1969 . 7277
(cit. on p. 1).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
Is All You Need. 2017. arXiv: 1706.03762 [cs.CL] (cit. on pp. 1, 12-16,
34).

Dave Steinkrau, Patrice Y. Simard, and Tan Buck. «Using GPUs for
Machine Learning Algorithms». In: Proceedings of the FEighth
International Conference on Document Analysis and Recognition.
ICDAR ’05. USA: IEEE Computer Society, 2005, pp. 1115-1119. 1SBN:
0769524206. por: 10 . 1109 / ICDAR . 2005 . 251. URL:
https://doi.org/10.1109/ICDAR.2005.251 (cit. on p. 2).

Rajat Raina, Anand Madhavan, and Andrew Ng. «Large-scale deep
unsupervised learning using graphics processors». In: vol. 382. Jan.
2009, p. 110. por: 10.1145/1553374.1553486 (Cit. on p. 2).

Dan Ciregan, Ueli Meier, and Juergen Schmidhuber. Multi-column Deep
Neural Networks for Image Classification. 2012. arXiv: 1202 . 2745
[cs.CV] (cit. on p. 2).

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. «Edge
Computing: Vision and Challenges». In: IEEE Internet of Things
Journal 3.5 (2016), pp. 637-646. DOI: 10.1109/JI0T.2016.2579198
(cit. on p. 2).

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. «Edge
Computing: Vision and Challenges». In: IEEE Internet of Things
Journal 3.5 (2016), pp. 637-646. DOI: 10.1109/JI0T.2016.2579198
(cit. on p. 2).

Norman P. Jouppi et al. In-Datacenter Performance Analysis of a
Tensor Processing Unit. 2017. arXiv: 1704 . 04760 [cs.AR] (cit. on
pp- 2, 35).

70


https://doi.org/10.1109/TASL.2011.2109382
https://doi.org/10.1109/PROC.1969.7277
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ICDAR.2005.251
https://doi.org/10.1109/ICDAR.2005.251
https://doi.org/10.1145/1553374.1553486
https://arxiv.org/abs/1202.2745
https://arxiv.org/abs/1202.2745
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://arxiv.org/abs/1704.04760

BIBLIOGRAPHY

[15]

[16]

[19]

[20]

[22]

B. Hassibi, D.G. Stork, and G.J. Wolff. «Optimal Brain Surgeon and
general network pruning». In: IEEFE International Conference on Neural
Networks. 1993, 293-299 vol.1. DOI: 10.1109/ICNN.1993.298572 (cit.
on p. 3).

Sheng Xu, Anran Huang, Lei Chen, and Baochang Zhang.
«Convolutional Neural Network Pruning: A Survey». In: 2020 59th
Chinese Control Conference (CCC). 2020, pp. 7458-7463. DOI:
10.23919/CCC50068.2020.9189610 (Cit. on p. 3).

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang.
Pruning and Quantization for Deep Neural Network Acceleration: A
Survey. 2021. arXiv: 2101.09671 [cs.CV] (cit. on p. 3).

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations. 2016. arXiv: 1609.07061
[cs.NE] (cit. on p. 3).

Markus  Nagel, Marios Fournarakis, Rana Ali  Amjad,
Yelysei Bondarenko, Mart van Baalen, and Tijmen Blankevoort. A
White Paper on Neural Network Quantization. 2021. arXiv:
2106.08295 [cs.LG] (cit. on p. 3).

Peter Mglgaard Serensen, Bastian Epp, and Tobias May. «A depthwise
separable convolutional neural network for keyword spotting on an
embedded system». In: 2020.1 (June 2020). DOI: 10.1186/s13636~
020-00176-2. URL: https://doi.org/10.1186/s13636-020-00176-
2 (cit. on p. 3).

Georgios  Zervakis, @ Hassaan  Saadat, Hussam  Amrouch,
Andreas Gerstlauer, Sri Parameswaran, and Jorg Henkel.
«Approximate Computing for ML: State-of-the-Art, Challenges and
Visions». In: Proceedings of the 26th Asia and South Pacific Design
Automation Conference. ASPDAC ’21. Tokyo, Japan: Association for
Computing Machinery, 2021, pp. 189-196. 1SBN: 9781450379991. pOTI:
10 . 1145 / 3394885 . 3431632. URL:
https://doi.org/10.1145/3394885.3431632 (cit. on p. 3).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. «ImageNet: A large-scale hierarchical image database». In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009,
pp. 248-255. DOI: 10.1109/CVPR.2009.5206848 (cit. on p. 5).

71


https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.23919/CCC50068.2020.9189610
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/2106.08295
https://doi.org/10.1186/s13636-020-00176-2
https://doi.org/10.1186/s13636-020-00176-2
https://doi.org/10.1186/s13636-020-00176-2
https://doi.org/10.1186/s13636-020-00176-2
https://doi.org/10.1145/3394885.3431632
https://doi.org/10.1145/3394885.3431632
https://doi.org/10.1109/CVPR.2009.5206848

BIBLIOGRAPHY

[23]

[24]
[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

David Haussler. «Probably Approximately Correct Learning». In:
Proceedings of the Fighth National Conference on Artificial Intelligence.
AAAT Press, 1990, pp. 1101-1108 (cit. on p. 5).

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG] (cit. on p. 12).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 12).

Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV] (cit.
on pp. 14, 16, 20, 34, 40, 42, 43).

Stéphane d’Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio
Biroli, and Levent Sagun. ConViT: Improving Vision Transformers with
Soft Convolutional Inductive Biases. 2021. arXiv: 2103.10697 [cs.CV]
(cit. on pp. 14, 16, 22, 23, 49, 50).

Martin Popel and Ondfej Bojar. «Training Tips for the Transformer
Model». In: The Prague Bulletin of Mathematical Linguistics 110.1 (Apr.
2018), pp. 43-70. 1sSN: 1804-0462. DOI: 10.2478/pralin-2018-0002.
URL: http://dx.doi.org/10.2478/pralin-2018-0002 (cit. on
pp. 14, 44).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
Machine Translation by Jointly Learning to Align and Translate. 2016.
arXiv: 1409.0473 [cs.CL] (cit. on p. 17).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
Machine Translation by Jointly Learning to Align and Translate. 2016.
arXiv: 1409.0473 [cs.CL] (cit. on p. 18).

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello,
Anselm Levskaya, and Jonathon Shlens. Stand-Alone Self-Attention in
Vision Models. 2019. arXiv: 1906.05909 [cs.CV] (cit. on p. 21).

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the
Relationship between Self-Attention and Convolutional Layers. 2020.
arXiv: 1911.03584 [cs.LG] (cit. on p. 21).

72


https://arxiv.org/abs/1412.6980
http://www.deeplearningbook.org
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2103.10697
https://doi.org/10.2478/pralin-2018-0002
http://dx.doi.org/10.2478/pralin-2018-0002
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1906.05909
https://arxiv.org/abs/1911.03584

BIBLIOGRAPHY

[33]

[34]

[38]

[39]

[40]

Daniel Povey, Hossein Hadian, Pegah Ghahremani, Ke Li, and Sanjeev
Khudanpur. «A Time-Restricted Self-Attention Layer for ASR». In:
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2018, pp. 5874-5878. DOI: 10.1109/ICASSP.
2018.8462497 (cit. on p. 22).

https : / / heartbeat . comet . ml1 /8 - bit - quantization - and -
tensorflow-1lite-speeding-up-mobile-inference-with-1low-
precision - a882dfcafbbd. [Online; accessed 5-Nov-2021]. 2021
(cit. on p. 24).

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, and
Kurt Keutzer. I-BERT: Integer-only BERT Quantization. 2021. arXiv:
2101.01321 [cs.CL] (cit. on pp. 25, 35, 46).

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating
or Propagating Gradients Through Stochastic Neurons for Conditional
Computation. 2013. arXiv: 1308.3432 [cs.LG] (cit. on p. 26).

Manfredo Atzori, Arjan Gijsberts, Claudio Castellini, Barbara Caputo,
Anne-Gabrielle Mittaz Hager, Simone Elsig, Giorgio Giatsidis, Franco
Bassetto, and Henning Miiller. « Electromyography data for non-invasive
naturally-controlled robotic hand prostheses». In: 1.1 (Dec. 2014). DOI:
10.1038/sdata.2014.53. URL: https://doi.org/10.1038/sdata.
2014 .53 (cit. on pp. 27, 31).

Francesca  Palermo, Matteo Cognolato, Arjan  Gijsberts,
Henning Miiller, Barbara Caputo, and Manfredo Atzori.
«Repeatability of grasp recognition for robotic hand prosthesis control
based on sEMG data». In: 2017 International Conference on
Rehabilitation Robotics (ICORR). 2017, pp. 1154-1159. DOI:
10.1109/ICORR.2017.8009405 (cit. on pp. 28, 29, 32).

B. Hudgins, P. Parker, and R.N. Scott. «A new strategy for
multifunction myoelectric control». In: IEEE Transactions on
Biomedical ~— Engineering  40.1  (1993), pp. 82-94. DOL:
10.1109/10.204774 (cit. on p. 31).

Bojan Milosevic, Elisabetta Farella, and Simone Benatti. « Exploring
Arm Posture and Temporal Variability in Myoelectric Hand Gesture
Recognition». In: 2018 7th IEEE International Conference on
Biomedical — Robotics and  Biomechatronics  (Biorob). 2018,
pp. 1032-1037. poI: 10.1109/BI0OR0OB.2018.8487838 (cit. on p. 32).

73


https://doi.org/10.1109/ICASSP.2018.8462497
https://doi.org/10.1109/ICASSP.2018.8462497
https://heartbeat.comet.ml/8-bit-quantization-and-tensorflow-lite-speeding-up-mobile-inference-with-low-precision-a882dfcafbbd
https://heartbeat.comet.ml/8-bit-quantization-and-tensorflow-lite-speeding-up-mobile-inference-with-low-precision-a882dfcafbbd
https://heartbeat.comet.ml/8-bit-quantization-and-tensorflow-lite-speeding-up-mobile-inference-with-low-precision-a882dfcafbbd
https://arxiv.org/abs/2101.01321
https://arxiv.org/abs/1308.3432
https://doi.org/10.1038/sdata.2014.53
https://doi.org/10.1038/sdata.2014.53
https://doi.org/10.1038/sdata.2014.53
https://doi.org/10.1109/ICORR.2017.8009405
https://doi.org/10.1109/10.204774
https://doi.org/10.1109/BIOROB.2018.8487838

BIBLIOGRAPHY

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

Simone Benatti, Elisabetta Farella, Emanuele Gruppioni, and
Luca Benini. «Analysis of Robust Implementation of an EMG Pattern
Recognition Based Control». In: Mar. 2014 (cit. on p. 32).

P Kaufmann, K Englehart, and M Platzner. «Fluctuating emg signals:
Investigating long-term effects of pattern matching algorithms». In:
IEEE, Aug. 2010. DOT: 10.1109/iembs.2010.5627288. URL: https:
//doi.org/10.1109/iembs.2010.5627288 (cit. on p. 32).

Marcello Zanghieri, Simone Benatti, Alessio Burrello, Victor Kartsch,
Francesco Conti, and Luca Benini. «Robust Real-Time Embedded EMG
Recognition Framework Using Temporal Convolutional Networks on
a Multicore IoT Processor». In: IEEE Transactions on Biomedical
Circuits and Systems 14.2 (2020), pp. 244-256. DOIL: 10.1109/TBCAS.
2019.2959160 (cit. on pp. 33, 38, 49, 56, 62, 65).

Ki-Hee Park and Seong-Whan Lee. « Movement intention decoding based
on deep learning for multiuser myoelectric interfaces». In: 2016 4th
International Winter Conference on Brain-Computer Interface (BCI).
2016, pp. 1-2. DOI: 10.1109/IWW-BCI.2016.7457459 (cit. on p. 32).

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient
Transformers: A Survey. 2020. arXiv: 2009 . 06732 [cs.LG] (cit. on
p. 35).

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang
Gan, and Song Han. «<HAT: Hardware-Aware Transformers for Efficient
Natural Language Processing». In: (2020). arXiv: 2005.14187 [cs.CL]
(cit. on p. 35).

Hishan Parry, Lei Xun, Amin Sabet, Jia Bi, Jonathon Hare, and Geoff
V. Merrett. «Dynamic Transformer for Efficient Machine Translation on
Embedded Devices». In: (2021). arXiv: 2107.08199 [cs.CL] (cit. on
p. 35).

Xavier Glorot and Yoshua Bengio. «Understanding the difficulty of
training deep feedforward neural networks». In: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and
Statistics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9.
Proceedings of Machine Learning Research. Chia Laguna Resort,
Sardinia, Italy: PMLR, May 2010, pp. 249-256. URL:
https : //proceedings . mlr . press/v9/glorotl0a . html (cit. on
p. 43).

74


https://doi.org/10.1109/iembs.2010.5627288
https://doi.org/10.1109/iembs.2010.5627288
https://doi.org/10.1109/iembs.2010.5627288
https://doi.org/10.1109/TBCAS.2019.2959160
https://doi.org/10.1109/TBCAS.2019.2959160
https://doi.org/10.1109/IWW-BCI.2016.7457459
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2005.14187
https://arxiv.org/abs/2107.08199
https://proceedings.mlr.press/v9/glorot10a.html

BIBLIOGRAPHY

[49]

[50]

[51]

[52]

[53]

[54]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification. 2015. arXiv: 1502.01852 [cs.CV] (cit. on p. 43).

Giustification for gain factor in Kaiming initialization. https :
//github . com/pytorch/pytorch/issues/57109#issuecomment -
828847575. [Online; accessed 10-Nov-2021]. 2021 (cit. on p. 43).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2019. arXiv: 1810.04805 [cs.CL] (cit. on p. 46).

Adam Paszke et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. 2019. arXiv: 1912 .01703 [cs.LG] (cit. on
p. 55).

https://greenwaves-technologies . com/manuals/BUILD/HOME/
html/index.html. [Online; accessed 5-Nov-2021]. 2021 (cit. on p. 55).

https : / / greenwaves - technologies . com / product / gapuino/.
[Online; accessed 5-Nov-2021]. 2021 (cit. on p. 55).

Acknowledgment: Computational resources were provided by
HPCQPOLITO, a project of Academic Computing within the Department
of Control and Computer Engineering at the Politecnico di Torino
(http://www.hpc.polito.it).

75


https://arxiv.org/abs/1502.01852
https://github.com/pytorch/pytorch/issues/57109#issuecomment-828847575
https://github.com/pytorch/pytorch/issues/57109#issuecomment-828847575
https://github.com/pytorch/pytorch/issues/57109#issuecomment-828847575
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1912.01703
https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
https://greenwaves-technologies.com/product/gapuino/
http://www.hpc.polito.it

	Introduction
	Background
	Supervised Learning
	Introduction to DNNs
	Multi Layer perceptron
	Training a DNN

	Transformer
	Encoder
	Decoder
	Positional Embeddings
	Multihead Self Attention (MSA)
	MLP module
	Patch Embedding in ViT
	Positional self-attention
	Gated Positional Self Attention (GPSA) in ConViT

	Integer quantization
	Quantization-aware training

	Surface electromyography
	Non-Invasive Adaptive Hand Prosthetics Dataset


	Related works
	Surface Electromyography
	Transformers

	Transformers for sEMG-based Gesture Recognition
	Objective
	Signal preprocessing
	Target evaluation metric
	Network architecture
	Patch Embedding Block
	Transformer Encoder
	Classification head

	Network training
	Weight initialization
	Warmup of the learning rate
	Two-stage training protocol
	Transformer-specific quantizations
	Overall training procedure


	Automatically Generated Hybrid CNN/Transformer Architectures
	Objective
	Application of GPSA to sEMG-based hand gesture recognition
	GPSA binarization via a pretraining step
	GPSA binarization via Straight-Through Estimator

	Experimental results
	Setup
	Pure transformer architectures
	Number of parameters and MAC operations
	Training hyper-parameters
	Architecture hyper-parameters
	Results without quantization
	Results with quantization

	GPSA-based architecture

	Conclusions and future works

