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Summary

With an increasing number of real world applications of Data Science algorithms,
the concept of data privacy and protection of sensible information has become an
increasingly debated topic. This is especially true when we look at the direction
taken by European legislation when it comes to data protection of EU citizens.
While there are already some software solutions available on the market for al-
gorithms that perform data anonymization, none of them are well suited for Big
Data applications. In this project we propose a distributed computing approach
to data anonymization, leveraging the Apache Spark engine in order to perform
privacy preserving algorithms inside of a large-scale data processing environment.
We will also explore the topic of data classification, with the goal of predicting
the appropriate level of privacy when new data gets uploaded to the system. The
final product will be a software library, capable of querying multiple data sources
and applying the required algorithms to the result. This computations will be
performed with two main goals in mind: protecting sensible data of individuals,
while at the same time preserving as much information as possible for analysts and
data scientists to work with.
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Chapter 1

Introduction

In recent years the protection of sensible information has become a more and more
debated topic, with the importance of data intensive processes increasing by a lot
in different industries and a growing application of Data Science algorithms in
business intelligence pipelines. Society has developed an increasing demand for
information and most daily actions of people are recorded in a database somewhere.
This information is often sold, exchanged or shared, with the risk of exposing
improperly some sensible data while doing so. Data privacy concerns gained a lot
of traction, with governments stepping in to protect the privacy rights of their citi-
zens by introducing new regulations. In European legislation, the most important
regulation on this topic is the General Data Protection Regulation (GDPR), which
has the goal of strengthening the protection of sensible information belonging to
individual citizens, harmonising data privacy laws among all EU countries.

Looking at the direction of European regulations regarding data protection, it is
evident that the preservation of privacy is going to become more and more relevant
when it comes to the creation of business intelligence pipelines that need to leverage
sensitive information in order to gain insights and create value for companies.
One of the most dangerous assumptions in this field of work is the concept that
removing explicit identifiers such as name, surname, phone number, is enough for
the data to be shared freely. Unfortunately, as proved by Latanya Sweeney in a
1997 paper [1], this precaution alone is not a sufficient condition to ensure the
impossibility of re-identification of a particular subject. In many cases, some details
like zip codes, birth date, gender or other similar identifiers can be used in combi-
nation with other publicly available information to track down individuals. This
could, as a consequence, expose the connection between these individuals and some
sensitive attributes that should be protected by privacy according to the regulations.
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Introduction

The idea behind this work is to create a software library capable of perform-
ing anonymization on a data source. The main goal of the final project will be
to protect sensible data belonging to single individuals, while preserving as much
information as possible for analysts and data scientists to work with. There will
be a trade off between the two: the user of the anonymization software will be
responsible for tuning parameters, removing information in exchange for a more
private data set or vice versa.
In addition to this work, we will explore the topic of data classification in relation
to privacy, analyzing how predictions made with machine learning algorithms can
be used to forecast the different sensitivity level for the columns of a table.

1.1 Privacy preserving data mining
We will start by giving a definition of Privacy Preserving Data Mining, that we
will refer to as PPDM from now on.

PPDM is a broad term, that includes a series of techniques and processes ca-
pable of extracting relevant information from data sources, with the final goal of
protecting the privacy of individual subjects while keeping as much useful informa-
tion as possible.
If the goal was simply to hide sensible data, the task would be actually pretty
simple. The challenge comes when we want to maintain some information that
could be still be considered valuable from the business intelligence perspective. In
the next chapters we will expand on these techniques, but first we need to lay down
some definitions for the different types of attributes that we will encounter and
their characteristics.

1.2 Identifiers
Let’s now expand on the concept in a more detailed way: when talking about
preserving the privacy of a database table, we cannot treat every column of a table
in the same way. Some attributes will be considered more sensitive than others,
so there should be a way to assign a different importance to them. For example,
the field social security number will be a personal, non-disclosable information,
while the attribute age could have less of an impact on the direct identification of
a subject.
From now on we will refer to these attributes with the term identifiers. They
will be divided into categories, based on the information that could be extracted
from them by an hypothetical attacker, whose purpose is to trace back an entry in
the data set to the original identity of the subject. We can highlight four different
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Introduction

types of identifiers.

1.2.1 PII personal information identifiers
A personal information identifier is a piece of information related to an identifiable
person, which is defined as a person at risk of being identified, both directly and
indirectly, by using some personal identification code, or to one or more elements
that are particular to that individual’s identity. We will expand on this by analyzing
the definition of natural person given by the GDPR in the next chapters.
Typically, the goal of an anonymization process is to prevent attackers from linking
one or more user’s PIIs to some sensible attributes (like for example linking name
and surname to private medical information) that the user does not want to share.

A more formal definition of PIIs was given in a 2012 paper by Gina Stevens
[2], where personal information identifiers were defined as information related to
an individual, along with all the information that could be used to trace back to
the individual’s identity (for example name, address, telephone number...). Some
other examples of PIIs are social security numbers or other unique identification
codes issued by the government (for example in Italy the government issues the
fiscal code which can be used to uniquely identify an individual).

UID Unique identifiers

A unique identifier is a particular kind of personal information identifier. It is a
piece of information that is guaranteed to be unique among all other identifiers of
the same kind. It is, for example, a serial number or a fiscal code. In the context
of a relational database, a UID can be associated with a primary key, in order to
impose a constraint on the column, thus avoiding repetition by design. It is usually
suppressed completely in most anonymization processes, or at least it is heavily
censored (for example replacing the majority of digits of a social security number
with * symbols). A wrong assumption that was made in the past was to anonymize
a database by suppressing all personal and unique identifiers, leaving the remaining
part of the data in plain text. We will explore why this is a simplistic approach in
the next sections.

1.2.2 QI quasi identifiers
A quasi identifier is a piece of information that, taken by itself, does not contain
any detail capable of directly identifying a single individual: however, when com-
bined with other quasi identifiers, it can lead to the creation of a unique identifier.
Examples of quasi identifiers include information like zip code, age, date of birth...
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So when we are working with a single quasi identifier attribute we don’t have to
worry since the danger of QIs comes when they are used in combination.
In a 1998 paper [3], Samarati and Sweeney define quasi identifiers as a set of table
attributes whose release must be controlled.
One of the main challenges when it comes to privacy preserving data mining is
that, no matter what we do, we can’t predict possible leaks from data sources that
are not under our control. Because of this risk we need to protect the sensitive
attributes against cross-identification attacks.

Quasi identifiers assume an important role in data anonymization techniques.
In fact, the most complex problem in privacy models is to hide the identity of a
natural person from re identification, while at the same time preserving as much
quasi identifier information as possible. We want analysts and data scientists to be
able to use as much information as possible, while still preventing an attacker from
identifying a natural person.
This will be a trade off and, at the end, the responsibility will fall on the final user
of the data anonymization library. In fact the final user will always be the one in
charge of making the choice when performing the queries: providing more privacy
or giving away more information in order to work with a richer data set. We will
not try to answer this question, since the answer changes according to the type of
data and the needs of different users of the platform.

1.2.3 SA sensitive attributes

Sensitive attributes are details that the user does not want to disclose to the public.
It means that, in a well anonymized database, it should not be possible to associate
a single individual to a S.A. Examples of these attributes are: private medical
information, unpaid tax liabilities, criminal record...

The presence of a sensitive attribute in the database creates the need for complete
anonymization of the user. The final goal of a de-identification process would be
to keep most of the sensitive attributes as plain text, in order for data scientists
to create reliable prediction algorithms, while making it impossible to re identify
a single individual. This will be achieved thanks to algorithms called privacy
models, capable of keeping sensitive attributes in plain sight, while hiding the
details that could possibly lead to the connection between those attributes and
single individuals.
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1.2.4 NSA non sensitive attributes
A non sensitive attribute is a piece of data that does not fall in any of the above
mentioned categories. They provide little to none knowledge about the identity of
a single subject.
Usually we can consider them as “harmless” for what concerns the risk of re
identification. They will be kept as plain text for all the purposes of this project,
and we will consider them at zero risk when it comes to the possibility of re
identifying a single subject.

Figure 1.1: A simple dataset with different types of identifiers

1.3 Anonymization techniques
When we use the term anonymization technique, we are talking about a procedure
that consists in the application of a transformation to an input data set, with
the aim of hiding partially or totally some details that are considered to be pri-
vate, making it impossible to perform the re identification of single subjects or
entities. The most basic technique is suppression, that removes completely a data
point (which in general is the most extreme case), while a more sophisticated one
(that is capable of preserving more information while still providing some form of
anonymity) is generalization.
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These procedures are the building bricks on which the actual anonymization
algorithms will be built. These algorithm are called privacy models, and they lever-
age anonymization techniques like generalization, suppression and others, based
on the column of the data set and the level of privacy that was required by the
user at the beginning. We will talk about privacy models in the next section, but
first we will describe the basic anonymization techniques on which they are built,
starting from suppression.

1.3.1 Suppression
The basic idea behind the suppression technique is to remove some part, or even
the whole data entries, by replacing it with characters that do not allow for re-
identification. For example, a ZIP code could be suppressed from 10138 to 101**,
in order to hide some information that could be used to identify a particular city
area. In the most extreme case, the zip code would become completely suppressed:
*****. This would happen when the algorithm of the selected privacy model is not
be able to find a lower level of suppression that is still able to preserve the desired
secrecy required by the user.
Usually, suppression is applied by following a specific rule and sticking to it for the
entire column. In this software project, we decided to provide two separate methods:
one for total suppression, capable of replacing every element of the column with a
string of choice, and another for partial suppression, capable of suppressing a portion
of the data by using a regular expression to select a part of the string (for example
in some tests we used a regex that was able to select the last 2 characters of a string).

While basic suppression can reduce the disclosure risk significantly, it can also
cause a significant loss of relevant information. In a 2019 paper [4], Orooji and
Knapp proposed a novel approach to reduce re-identification while preserving data
utility. They proposed a metric to assess the risk of disclosure for a single data
point. On top of that, a value suppression algorithm was put in place to suppress
only the records with the highest risk. This reduced the number of data points at
risk by 45%, with an information loss of only 0.39%.

1.3.2 Generalization
In generalization, the goal is to define a hierarchy for each column that we want to
apply generalization on. For example, in table 1.1, when dealing with the column
education type, we can apply different levels, creating a so-called generalization
hierarchy, by starting from level 0 (the original value of the column) and generalizing
more and more at each level, until we obtain complete anonymization in the last
level. In contrast to normal suppression, here we can have multiple levels of privacy,
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and we could be able to reduce disclosure risk while preserving at least some details,
that could significantly improve data science pipelines. In the case of numerical

Level 0 Level 1 Level 2 Level 3
Bachelors Undergraduate Higher education *
Some-college Undergraduate Higher education *
11th High School Secondary education *
HS-grad High School Secondary education *
Prof-school Professional Education Higher education *
Assoc-acdm Professional Education Higher education *
Assoc-voc Professional Education Higher education *
9th High School Secondary education *
7th-8th High School Secondary education *
12th High School Secondary education *
Masters Graduate Higher education *
1st-4th Primary School Primary education *
10th High School Secondary education *
Doctorate Graduate Higher education *
5th-6th Primary School Primary education *
Preschool Primary School Primary education *

Table 1.1: An example of categorical generalization hierarchy.

data, we could use a different approach, creating levels based on numerical ranges.
In this way we don’t need to list all the possible numbers, but instead we can just
define a set of ranges that include all possible values for the records in question.
For example, in the case of age we could define a hierarchy similar to the one in
table 1.2. The values at lowest level (left of the table) belong to the ground domain
of the attribute (original values). The highest level on the right corresponds to the
maximum possible level of generalization achievable. Even a small generalization,
like the one showed in level 1, is capable of greatly increasing the difficulty of
re-identification, while still preserving useful details. This technique is explained
thoroughly in a 2014 paper [5].
In this work, generalization (also called recoding), is described as a replacement of
the values of a particular attribute with more generic ones, capable of still offering
information, while hiding some details. In the example we are converting all the
ages between 21 and 25 years old to a single common value [21, 25].
We are able to generalize further by creating new levels, until we reach a point
in which we cannot generalize anymore. This final level is composed of a single
possible value capable of defining every possible age. In our examples we use the *
jolly character to represent all the possible values for that particular column. In
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Level 0 Level 1 Level 2 Level 3
1 [1, 5] [1, 10] *
2 [1, 5] [1, 10] *
3 [1, 5] [1, 10] *
4 [1, 5] [1, 10] *
5 [1, 5] [1, 10] *
6 [6, 10] [1, 10] *
7 [6, 10] [1, 10] *
8 [6, 10] [1, 10] *
9 [6, 10] [1, 10] *
10 [6, 10] [1, 10] *
11 [11, 15] [11, 20] *
12 [11, 15] [11, 20] *
13 [11, 15] [11, 20] *
14 [11, 15] [11, 20] *
15 [11, 15] [11, 20] *
16 [16, 20] [11, 20] *
17 [16, 20] [11, 20] *
18 [16, 20] [11, 20] *
19 [16, 20] [11, 20] *
20 [16, 20] [11, 20] *
... ... ... ...

Table 1.2: An example of numerical generalization hierarchy.

the final version of our software project the user will be able to choose this jolly
character, along with the whole generalization hierarchy, that will be stored in a
Json object.

When we use the term generalization hierarchy, we are talking about a data
structure that contains all the information regarding the different anonymization
levels and their relationships between each other. Generalization can be performed
in a global or local way. Local generalization can assign different rules to the same
type of attribute, so that some instances keep their original value, while others
obtain various levels of generalization. On the other hand, global generalization
consists in the application of the same rule to every record of a particular col-
umn (all the values are generalized at the same level of the value generalization
hierarchy).
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1.4 Privacy models
We already explored some basic anonymization techniques. Now we will see a
class of algorithms that are capable of determining how and when to apply these
procedures in order to achieve a specific goal. We will refer to these algorithms
as privacy models. Privacy models aim at defending a data set from some kind
of attack. We can define different types of privacy models (each one targeted to
protecting against a specific attack), with some metrics associated to them that
can be used to define the desired level of privacy required.

The user will be able to change the value of these metrics in the configuration file.
The decision of the user will be based on the trade-off between anonymization and
query efficiency. Every privacy model will have its own metrics, that are going
to be required as input from the final user of the library. In the final software
application, we will use the concept of rules to apply privacy models. A rule will
be just a combination of privacy model and specific values for metrics associated to
the privacy model. Thanks to this abstraction the user of the library will be able to
define multiple rules for the same privacy model, changing the model’s parameters.

1.4.1 K-anonymity
A data set is said to have the K-anonymity property if the information for each
element in the data is not distinguishable from at least K - 1 elements whose
information also appear in the data.
So the basic concept is the one of safety in groups: it means that I am safe if I
share the same information with at least K - 1 individuals. The concept was firstly
introduced by Latanya Sweeney and Pierangela Samarati in a 1998 paper [3].

In this work, Sweeney and Samarati showed how K-anonimity can be enforced
by generalizing and/or suppressing quasi identifiers. In addition to this, they
introduced the concept of minimal generalization: a generalization is considered
to be minimal if the data is not generalized more than necessary to obtain the
K-anonymity property. In addition to this, the definition of preferred general-
ization was introduced to illustrate how an user could choose between different
possible minimal generalizations, selecting the one that best suites some particular
conditions, like favoring certain attributes with respect to others. As an exam-
ple, in dataset 1.1, one could be more interested in preserving information about
the age of patients, while not caring too much about their marital status or zip
code. Preferred generalization would take this into account when performing the
K-anonymization algorithm. This will prove to be computationally intensive to
achieve, thus generating a series of papers that will describe different algorithms to
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tackle the problem. We will talk about this literature in the next sections.

In figure 1.2 (a) we can see that, for each quasi-identifier (or combination

Figure 1.2: Graphical explanation of the K-anonymity algorithm

of quasi-identifiers), there is a different sensitive attribute. In order to implement
anonymization, we find a new QId capable of representing all of the three original
Qids. This will create a K-anonymous data set with K = 3. In general, for a dataset
to be considered K-anonymous, every possible combination of quasi identifiers has
to be matched to at least K individuals.

But how do we turn a data set into K-anonymous?

As highlighted in paper [6] by LeFevre and DeWitt, the challenge of finding the
optimal partition when dealing with multiple quasi identifiers is considered to
be a NP hard problem. However, some techniques can be adopted to find an
approximate solution of the problem.

Mondrian algorithm

The Mondrian algorithm for the solution of K-anonymity problems was proposed
by by Kristen LeFevre in one of his papers [6], and it uses a greedy, top-down
search algorithm to partition the original data into smaller and smaller groups.
If we plot the resulting partition boundaries in 2D, like shown in figure 1.3, they
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resemble the pictures by Piet Mondrian, hence the name. Each group obtained,
containing at least K records, is then generalized.

To our knowledge, Mondrian is the fastest algorithm for K-anonymity that is
able to preserve data quality at the same time. While LeFevre provided the pseudo
code in the original paper, the actual code is not publicly available. However, an
open source Python implementation of the algorithm was uploaded by Qiyuan
Gong to a dedicated GitHub repository [7]. The basic workflow of Mondrian is
here explained:

1. Partition the data into groups of at least k records by using the kd-tree data
structure.

2. Apply generalization so that each group has the same QI.

Some version of this algorithm is used in most of the widely available libraries and
online tools that promise an implementation of the K-anonymity algorithm. We
will talk about these tools in the next chapters, and we will exploit one of them to
write a library capable of enforcing the minimum level of aggregation.

Figure 1.3: Graphical illustration of the Mondrian algorithm in a 2-dimensional
space
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Optimal K-anonymity

The problem of optimal K-anonymity lies in the search for a separation between
attributes known to be the best possible one. More precisely, when suppression is
allowed, we would like to find an anonymization criteria that produces the optimal
K-transformed data, as determined by some cost metric. Such anonymization is
said to be optimal.

In a 2005 paper [8], Bayardo and Agrawal proposed a new approach to the problem,
exploring alternative strategies to reduce reliance on computationally expensive
algorithms like sorting. They implemented a tree search strategy exploiting tech-
niques such as cost-based pruning, demonstrating successful results with wide
ranges of values for the parameter K. However, this is only a theoretical approach
to the topic and there is not a practical project or a code repository that we could
refer to. We decided to stick with algorithms that were available in a practical and
already tested form for our final project.

Critical issues in the application of K-anonymity

When testing this algorithm with small data sources, one could encounter some
obstacles. The first concern is related to data size. The dataset on which we are
performing the test must not be small in size, or else performing K-anonymity
on a great number of quasi-identifiers will only produce a small amount of rows
with a really low level of information being actually shared (or possibly even one
single row of completely anonymous data). This defeats one of the purposes of the
algorithm, which is to preserve data quality as much as possible.

Another obstacle was encountered when testing the algorithm on actual sensi-
ble data from real world data sources: the problem is that it is difficult to find a
real-life database that fits our needs, since we need private data from people. For
our tests, we used a simulation engine to generate a great number of fake records.

1.4.2 L-diversity
With K-anonymity we saw how each record can be made indistinguishable from at
least K - 1 records with respect to certain identifying attributes (quasi identifiers).
In a 2007 paper [9], some researchers from Cornell’s department of computer
science showed how some specific types of attack can undermine the privacy of
K-anonymized datasets.

L-diversity was proposed as a solution to prevent the problems caused by the
Homogeneity Attack: this attack leverages a situation in which all the values of a
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sensitive value within a set of K records are characterized by a very little diversity
between them. In such cases, the sensitive value for the set of K records could be
predicted exactly by the an attacker. One could think about diversity as computing
entropy. In information theory, entropy is defined as the level of "surprise" for the
possible outcomes of a random variable. If entropy is low it means that there is
less of a surprise factor for the possible outcome of a certain random variable. If
instead the entropy is high, the probability distribution is well spread and we are
not able to guess easily the outcome. In this case, the diversity is high and so we
can worry less about an attacker guessing a sensible attribute. This would not be
the case if the distribution of sensible attributes was skewed towards a certain value.

In the above mentioned paper, the researchers showed how an attacker with
background knowledge on certain target individuals could bypass the K-anonymity
constraint. In table 1.3 we can see an example of a simple data set. We decided
to apply a K-anonymity algorithm, with K = 4 as the only parameter and we let
the algorithm run. We obtain the result shown in table 1.4. While this could seem
like a good anonymization, there are still some problems in this particular example.
An attacker could theoretically possess some background knowledge on a particular
subject. For example, by knowing that the target subject is older than 30 and lives
in a certain city, the attacker could deduce that this person has a certain medical
condition (cancer). While this effect tends to reduce with an increasing size of
the dataset, it is still statistically probable that we will have at least one group
characterized by low diversity. Here is where the l-diversity algorithm comes into
play.

L-diversity ensures that each k-anonymous group contains at least L different
values of the sensitive attribute. The goal is to find new rules for suppressing and
generalizing quasi identifiers such that we maximize the diversity of each group.
While in small tables l-diversity often creates a great loss of information with
respect to pure K-anonymity, it is capable of scaling up well with big datasets.
In table 1.5 we can see the same dataset of table 1.3, but with the application of
the l-diversity algorithm, where L was set to 3. As we can see, even on a small
dataset like this, an attacker would not be able to guess the condition of a patient
by making assumptions based on probability.

1.4.3 T-closeness
The t-closeness model is an enhancement of l-diversity. Like l-diversity, it is used
to prevent the risks that could arise with the Background Knowledge attack, in
which an attacker tries to find an association between quasi identifiers and the
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Quasi identifiers Sensitive
ID Zip Code Age Nationality Condition
1 13053 28 Russian Heart Disease
2 13068 29 American Heart Disease
3 13068 21 Japanese Viral Infection
4 13053 23 American Viral Infection
5 14853 50 Indian Cancer
6 14853 55 Russian Heart Disease
7 14850 47 American Viral Infection
8 14850 49 American Viral Infection
9 13053 31 American Cancer
10 13053 37 Indian Cancer
11 13068 36 Japanese Cancer
12 13068 35 American Cancer

Table 1.3: Simple example of a dataset without anonymization.

Quasi identifiers Sensitive
ID Zip Code Age Nationality Condition
1 130** <30 * Heart Disease
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 1485* >40 * Cancer
6 1485* >40 * Heart Disease
7 1485* >40 * Viral Infection
8 1485* >40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

Table 1.4: Example of a 4-anonymous data set that could still be vulnerable to
some attacks

sensitive attribute, with the goal of reducing the field of possibilities for the SA.
For example, in [9], it was shown how knowing that heart diseases were occurring
at different rates in Japanese patients could help a possible attacker to narrow
down the possible values of the sensible attribute disease. While l-diversity treated
every value of a certain attribute in the same way, disregarding its distribution,
T-closeness demanded the statistical distribution of the sensitive attribute values
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Quasi identifiers Sensitive
ID Zip Code Age Nationality Condition
1 1305* <40 * Heart Disease
2 1305* <40 * Viral Infection
3 1305* <40 * Cancer
4 1305* <40 * Cancer
5 1485* >40 * Cancer
6 1485* >40 * Heart Disease
7 1485* >40 * Viral Infection
8 1485* >40 * Viral Infection
9 1306* <40 * Heart Disease
10 1306* <40 * Viral Infection
11 1306* <40 * Cancer
12 1306* <40 * Cancer

Table 1.5: Example of a 4-anonymous data set after the application of l-diversity
(L = 3)

in each K-anonymous group to be close to the overall distribution of that attribute
over the entire dataset. The value t, given as input to this algorithm, is used to
impose that the distribution of a certain attribute inside of an anonymized group
must not differ by more than a threshold t from the overall distribution in the
whole data. In paper [10] the Earth Mover metric was proposed as a measure for
calculating the distance between the two distributions. This measure is based on
the minimum cost required in order to transform one of the statistical distributions
into another by moving distribution mass between the two.

1.4.4 KM-anonymity

KM anonymity is a version of K-anonymity that is generally considered weaker.
However, it can be considered as better suited to work with data in higher dimen-
sions. Like in the K-anonymity case, the algorithm works by considering a number
n of quasi identifiers, but then it chooses to protect the data only towards attackers
that have knowledge on a subset of m columns, out of the whole set of n quasi
identifiers. The algorithm guarantees that every possible combination of these
subset of m quasi identifiers appears at least K times in the anonymous dataset,
while never taking into account the total number n of quasi identifiers. Usually m
is a much lower value than n, and this algorithm is used when we are working with
an high number of attributes. We will not consider KM anonymity in the practical
section of this work.
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1.4.5 δ-disclosure privacy
In a 2008 paper [11], Brickell and Shmatikov proposed a privacy model capable of
protecting data from sensitive attribute disclosure. Sensitive attribute disclosure
is a measure of how much more information an attacker could gain by observing
sanitized QIs with respect to a maximally private data source, where sensitive
attributes are completely separated from QIs. It works by enforcing a restriction
on the distance between statistical distributions of sensitive attributes. However,
differently from t-closeness, it uses a more strict, multiplicative definition of distance
between distributions.

1.4.6 β-Likeness
β-likeness was firstly introduced by a 2012 paper [12] by Cao and Karras. This
privacy model is related to t-closeness and δ-disclosure models and it can protect
data from attribute disclosure risks. The goal is to overcome restrictions of the
models mentioned above by reducing the maximum relative distance between dis-
tributions of sensitive attributes, also distinguishing between positive and negative
information gains.

1.4.7 δ-presence
This model was defined in [13] as a method capable of protecting from membership
disclosure. A dataset is defined as (delta min, delta max)-present if the probability
for a single individual of a population of being contained in the dataset lies between
delta min and delta max. To define this probabilities, the algorithm requires a
population table, that needs to be given as input the user. This implies that the
user must have a well established prior knowledge about the topic in question, since
it needs to provide a statistically relevant distribution table.

1.5 What will be the focus of our project?
As we saw, there is already some literature regarding privacy preserving algorithms,
as well as some open source projects. One of the main challenges, however, is the
use of these algorithms when it comes to big data applications. When working with
huge quantities of data, the execution times of algorithms can transform what was
considered to be a fast algorithm into a time and resource consuming application.
In the world of Big Data, scalability problems like this one are the norm. Instead
of working locally on a big database and using a single costly machine, a popular
solution is to leverage a cluster of smaller computers, with the goal of splitting the
data and work on tinier, easier to manage chunks. We will refer to this technique
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as distributed computing from now on.

Apache Spark, written in Scala, is a general purpose, distributed engine, capable
of performing computations in a distributed fashion. The focus of our project
will be the creation of a Spark job that is capable of performing anonymization
techniques in a cluster environment. The final users of the software will be able to
submit a query, our library will fetch the database, it will perform anonymization
algorithms on the dataset according to some pre-defined rules and parameters, and
it will return the final anonymized data as an SQL table to the user. The whole
pipeline will make use of the Spark engine, thus leveraging the power of distributed
computing and allowing for a faster execution, even on big quantities of data.

Another topic worth exploring is the classification of data: in this project, we used
a medical dataset for data classification. We already defined what columns of the
dataset contained personal information, what were classified as quasi-identifiers
and so on.

When new data comes in, the idea is to use the information already in our
hands, in order to classify new data coming in. To do this, the proposal is to merge
the work done in the main thesis project with the fingeprinting project. This is a
software project that was developed during my internship in Agile Lab. Since it
was already developed during the internship, it will not be the main focus of the
thesis work. We will mainly focus on the anonymization algorithms, and we will
dedicate only one section of this work to the data classification algorithm.
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Chapter 2

Related works

We can find a lot of work in literature that focuses on anonymization techniques.
There is a good number of papers from various researchers regarding both theoretical
concepts and practical projects. As for the latter, we found several open source
projects and GitHub repositories developed by researchers. We analyzed all of the
most relevant projects with a free license that we were able to find, to understand
how to exploit some of their functionalities in our software project. In fact, we do
not have to re-invent the wheel: our final goal is to create something new, while
still leveraging external libraries where needed, and if some researchers already
implemented privacy models and made them available to the community via an
open source license it makes sense to make good use of them.

2.1 Anonymization software
We will now analyze these practical projects with the goal of understanding their
potential, studying their pros and cons and how well they could suit us during the
development of our privacy preserving data mining software project.

2.1.1 ARX deidentifier
ARX is an open source data anonymization tool, capable of supporting various
statistical disclosure control techniques, as well as some of the most well known
privacy models. It’s the result of a series of papers written starting from 2012 by
Fabian Prasser and Florian Kohlmayer, regarding the use of privacy models and
anonymization methods in biomedical data. The functionalities of a first stable
version of ARX comprehensive of multiple privacy models were described in a 2015
[14] article by Prasser and Kohlmayer. ARX is the most popular open source
library for data anonymization currently available. It supports up to 50 dimensions
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and millions of records. Written in Java, it is composed by a large spectrum of
tools that can be used to enforce anonymity, providing three main functionalities:

1. Syntactic privacy models like K-anonymity, l-diversity, t-closeness and δ
presence.

2. Different models to calculate the re-identification risk after anonymization.

3. Tools for evaluating data utility.

One of the many advantages of the ARX library is the possibility of downloading
a software with a graphical user interface that allows to use all the functions of the
library without writing a single line of code. For example, when trying to perform
K-anonymization on the "adult" dataset, we are able to the define multiple levels of
generalization, creating a hierarchy as shown before in table 1.1. After creating the
hierarchy, it is sufficient to select a privacy model. In our example, we used the
most common: K-anonymity. After defining K-anonymity with K = 5, we obtain
the final result as shown in figure 2.1

Figure 2.1: Example of a K-anonymized dataset in the ARX user interface

As we can see in the image, it is now impossible to find a group of unique records
containing less than 5 elements.

ARX is not only a basket containing different separate tools, but a fully-fledged
software. It means that all the functions have been integrated in order to work well
with each other. Since the user needs to tweak parameters in order to balance a

19



Related works

trade off between anonymization and data utility, ARX provides a great level of
configuration, with a good number of functions dedicated to the exploration of the
solution space and risk calculation.

We can define various parameters before performing the actual anonymization
of the dataset:

1. Suppression limit: the maximal number of records that can be removed
from the input dataset.

2. Approximate: can be enabled to compute an approximate solution with
potentially significantly reduced execution times.

3. Coding model: Some quality models also support specifying whether gener-
alization or suppression should be preferred when transforming data.

Most models support weights that can be assigned to attributes to specify their
importance. In addition to this it is possible to explore in depth the workings
of the algorithm, by plotting the lattice structure used to make decisions. There
are also many useful functions that can be used to verify the risk of data before
and after anonymization, like a graphical tool capable of visualizing the risk for
various types of attacks. In image 2.2 we can see the visual tool provided by the
ARX graphical user interface to assess the risk of re-identification for different
types of attack models. The risk of re-identification can be calculated also for
single quasi-identifiers. Another useful feature of the library is the Classification
performance calculator. This view can be used to configure classification models
and their parameters, comparing the performance of these models trained on input
vs the same model trained on anonymized output data.

When it comes down to the choice between the existing open source libraries
for data anonymization to integrate with our code, ARX seems to be a good
compromise, since we will be writing our code in Scala, which runs on JVM, and so
it can be seamlessly integrated with the Java code of ARX. Another advantage of
ARX is that it is the most complete from the point of view of supported algorithms
and privacy models. On top of that, we are able to use the graphical tool provided
by the ARX developers to perform tests on sample datasets. This allows us to
visualize the workings of the algorithms before actually writing the code.

2.1.2 Amnesia
Amnesia is an anonymization software written in Java and Javascript, that can be
used for performing anonymization of personal data locally. It has a more simple
approach to the application of privacy models, providing an interface capable of
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Figure 2.2: Example of a risk analysis in the ARX user interface

guiding the users trough the process of applying privacy-preserving algorithms.
The goal of this tool was to create a user-friendly, free platform in order to satisfy
GDPR guidelines, providing usability and flexibility to the final user. The problem
with amnesia is that there is a limited number of supported privacy models to work
with. In fact, only K-anonimity and KM-anonimity are supported. For this reason,
we did not elaborate too much on this tool.

2.2 GDPR and anonymization
The importance of setting limitations when it comes to the disclosure of sensible
attributes has grown in recent years, mostly because of the increased number of
regulations. In the context of the European union, the most important regulation
in the field of privacy and personal data protection in recent years has been the
General Data Protection Regulation (GDPR).
The GDPR was adopted for the first time in 2016, with the goal of ensuring
data protection and privacy of individuals inside of the European union and the
European economic area (EEA). In addition to this it regulates the flow of personal

21



Related works

data going outside of the European area.

When we talk about the protection of sensible information in the context of
GDPR it is important to define the concept of natural person. A natural person
is defined in the article 4 of GDPR [15] as following:
“An identifiable natural person is one who can be identified, directly or indirectly,
in particular by reference to an identifier such as a name, identification number,
location data, an online identifier or to one or more factors specific to the physical,
physiological, genetic, mental, economic, cultural or social identity of that natural
person.”

Any information related to a natural person is defined, according to the GDPR, as
personal data. According to the text of the regulation, well anonymized data
should not fall into GDPR rules at all. In fact, as we can read in recital 26:
“The principles of data protection should not apply to anonymous information,
namely information which does not relate to an identified or identifiable natural
person or to personal data rendered anonymous in such a manner that the data
subject is not or no longer identifiable. This Regulation does not therefore concern
the processing of such anonymous information, including for statistical or research
purposes.”

One could argue that one of the main goals of our project should be to make
sure that every output coming out of the software pipeline does not fall into the
scope of GDPR. However, while it could seem a straightforward task, it is not so
simple to achieve a level of anonymization that is compliant with what was stated
in the same recital:
“To determine whether a natural person is identifiable, account should be taken
of all the means reasonably likely to be used, such as singling out, either by the
controller or by another person to identify the natural person directly or indirectly.
To ascertain whether means are reasonably likely to be used to identify the natural
person, account should be taken of all objective factors, such as the costs of and the
amount of time required for identification, taking into consideration the available
technology at the time of the processing and technological developments.”

One of the critical points to consider is that we need to take into account a
lot of factors when making sure that an external individual is not able to identify a
natural person. Some of these factors are not under our control: for example there
could be a leaked database containing data that, paired with our data, it could
lead a potential attacker to discover sensible information about a subject.
It should be noted that data protection algorithms should consider potential attack-
ers, taking into account all of the reasonable possibilities. According to Opinion
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4/2007 on the concept of personal data, published by the working party on the
protection of individuals with regard to the processing of personal data:
“In general terms, a natural person can be considered as “identified” when, within a
group of persons, he or she is "distinguished" from all other members of the group.
Accordingly, the natural person is “identifiable” when, although the person has not
been identified yet, it is possible to do it.”

So this extends the possibility to a more “indirect” identification, which means
using some pieces of information in combination with other sources to identify a
single subject. In addition to this, we should also assume that an adversary could
potentially possess some previous knowledge about a specific subject, chosen as
the victim of the attack.

2.3 Data fingerprinting
When talk about data fingerprinting, we refer to a particular signature, associated
to a data column. The idea is to define a set of parameters that can be used to
describe any column of a table. This list of values will be called the fingerprint
of that column. Some example of parameters used in the fingerprinting project
include: number of distinct elements found in the column, average length of a
string, percentage of numeric characters...
In the fingerprinting project, developed in collaboration with Agile Lab during my
internship, we decided to extract a series of metrics for every column: They are
are divided in five kinds:

1. String-wise metrics : For these features the raw column is considered. The
mapping computed are : Grams, AlphabeticChars, SpecialChars, Numer-
icChars. For each of these mapping three metrics are calculated : Mean,
Variance and Median, ending up with 11 features

2. String-length metrics: Mapping the strings for their length, some numerical
statistics are computed (mean, variance, skewness, etc.), ending up with 16
features

3. Charachter-wise metrics: For each of the printable ASCII characters (96),
9 different statistics are computed. Ending up with 864 features

4. Word embeddings (word2vec): Each cell of the column is mapped to the
space of word embedding. The pre-trained dictionary used map each word in
50 dimensions, then the results for each cell are aggregated with 3 different
statistics : Mean, Variance and Median. Ending up with 150 features.
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5. DataSketch metrics: Metrics that can be computed by using only the
statistics obtained by using the Apache Data Sketch library. This library has
been designed to deal with massive quantities of data, while still providing
high performance. These metrics are actually divided in 2 separated metric
types:

DataSketch metrics: a series of metrics calculated starting from the
original columns

DataSketch lenght metrics: calculated starting from the lengths of the
elements contained in the input column.

In the end, for each column we were extracting almost 1000 metrics. Each one of
them can become a feature in the context of a classification algorithm of choice.
All those features were extracted through the Spark engine in a distributed fashion.
It is possible to select only some of them for the extraction: as a matter of fact,
the word2vec features were disabled by default, because of the high computational
power needed to generate word embedding operations on big quantities of data.
The final output was a list of floating point values for each column of the data.
Each one of these values was used as a feature in a distributed random forest
classification model.

2.3.1 Labelling prediction
In order to assign labels to columns at test time, a knowledge base was used as
training set, a distributed random forest model was built, using the H2O platform.
H2O is an open source, distributed and scalable platform that allows the creation
of machine learning models in a environment oriented to big data technology. It
provides an easy way to deploy the algorithms in a production environment. In
fact, the final classification algorithm obtained can be dowloaded as a Java object
and directly imported in a JVM project.

The distributed Random Forest (DRF) used in this project is a powerful ma-
chine learning tool. Given the training data as input, DRF generates a forest
of classification trees. Each of them is a weak learner built on a subset of the
original dataset. The use of multiple trees aims at reducing the variance of the
final algorithm. The average prediction over all of the trees is then calculated in
order to obtain a final prediction.

The knowledge base for the DRF was extracted from a MIT database built for a
similar purpose. This model was saved and then used to perform the prediction.
Therefore at test time, the feature extractor was used to carry out the 901 features,
then those feature were sent to the H2O model that returned the probabilities of
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the column belonging to each of the classes the model was trained with.

It is possible to create custom models by using the H2O flow framework, changing
the training set and tweaking hyper-parameters. In addition to this, we can also to
change the number of input features. However, this needs to be well documented,
since the user will need to provide the same set features in the prediction process.
The results in terms of probabilities returned from the model are then combined
with the data obtained through the percentage of elements of the column matching
some specific regular expressions. The rationale behind this choice is that some
kinds of data are easier to recognize with regex matching (e. g. email,date, etc.).
For the final fingerprinting project, we decided to use various databases as training
set, containing the following information:

1. Address

2. Age

3. Birth Place

4. City

5. Country

6. Date

7. Day

8. Isbn

9. Measurement

10. Name

11. Nationality

12. Nosql IDs

13. Phone number

14. Religion

15. Sex

16. Sql IDs

17. TimeStamp
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One of the points in favor of the fingerprinting library is that we can train as
much models as we want, we just need the input data to create a new custom
model, which is independent from the other and capable of being used to make
predictions on new unseen data.

2.3.2 Usage of the fingerprinting project in the context of
the PQP library

In the context of our data anonymization library, the final goal would be to use
the fingerprinting tool in order to assign a label to new, unclassified data. The
main idea is to learn from existing data, already present in the data sources, in
order to assign a label to new, never seen before, data. The goal could be to distin-
guish personal information identifiers, quasi identifiers and sensitive attributes. In
the original fingerprinting project we used identifiers such as address, name, sex,
religion... this work should not be thrown away, since we could actually create a
mapping between the value of the columns and the type of identifier. For example,
address and name will be mapped as personal identifiers, sex would be a QI, and
religion would be considered a sensible attribute. The user of the library could de-
fine this mapping based on its needs, and we wouldn’t need to train a new algorithm.

The classification will be realized with a Spark job, programmed to be executed
at regular intervals (once a day or after a new data source addition).The clas-
sification results will not be permanent, and they will always be available for a
review and modifiable by humans, to correct possible errors due to misclassification.

In figure 3.2 we can see the role of the fingerprinting library in the context of
the main project. In the next chapter we will see the complete schema of the
fingerprinting linrary, that is showed in figure 3.7. The block in which we will
insert the classification software will be called batch data classifier. As already
highlighted before, the data classification task will not be the main focus of the
project. The anonymization job will be our main perimeter of focus during the
development of the PQP platform.
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Architecture

The main focus of the project is to build a platform capable of working in a dis-
tributed computing environment, that is able to perform anonymization functions
and automatic classification of new data uploaded to the data sources. This platform
will be called "Privacy Query Protection platform", and we will refer to it as PQP
platform from now on. The goal of this application is to protect medical data at na-
tional level, while still allowing users to perform queries for the sake of data analysis.

While there are already some tools to perform anonymization available in the
market, none of them is built around the concept of big data. When we work
with data sources containing millions of entries, the classic approach of computing
algorithms on a single (even if powerful) machine does not make sense anymore.
Especially when we need to perform tens of millions of simple operations, it makes
more sense to distribute the computations between a lot of smaller computers.
Each computer will be called a node, and we refer to the whole system with the
term cluster. This cluster will be able to schedule the same tasks on all nodes,
controlling them as if it were a single system. This will be achieved thanks to
Apache Spark, a popular open source engine for large-scale data processing and
distributed computing. Spark is built on the idea of distributed data, splitting the
computation between nodes of the cluster.

In order to achieve the final anonymized result, our engine will be inserted
between the actual data source (containing the plain data in clear) and a web
interface, that we will call PQP portal. From this portal the user will be able to
perform SQL queries, obtaining results with some anonymization rules applied
to them. The rules that needs to be applied will be decided according to the
permissions of that particular user.
We will not focus on the creation of this portal. Instead, we will firstly create
the actual Spark job, providing then a REST API to the developers of the user

27



Architecture

Figure 3.1: Spark components

interface. This will allow us to work on the actual core of the PQP anonymization
project, building a stable API that is capable of ensuring anonymization with a
focus on the safety of personal data.

The idea behind the platform is to handle a lot of users, characterized by dif-
ferent sets of permissions. We will call these sets research topics. For example, a
user with a chemistry research topic could be allowed to access in detail information
regarding chemicals in the blood of patients, but some other critical information
like illnesses or medical history will not be made available to them. This will be
completely configurable by the administrators of the platform, with the possibility
of defining new rules for a certain research topic.
Before going into the details of the PQP platform inner workings, it is important
to define who will the final users be, and what will be their roles. For the final
architecture, we provided four different types of users of the platform:

1. System administrator: It is fundamental for handling the users of the
platform and assigning roles. The SA is in charge of assigning all the other
roles and changing their permissions if needed.

2. Data Privacy Administrator: The DPA will have the power of configuring
and assigning research topics to lower-level users

3. Data Provider: The DP will be able to upload new datasets and will be
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able to visualize the data classification, eventually changing it if needed.

4. Data Consumer: The final user of the platform. The DC will have a research
topic assigned to them. Data consumers will provide queries to the interface,
and they will receive the final query result, anonymized according to the
research topic assigned to them.

One of the goals of the platform is to create an easy way for the final user to
interface with the software, in order to allow for an easy integration of the final
spark job in a larger data analysis platform in the future. Because of the same
reason, it is required for the PQP platform to be used both on premise and on
cloud.
The sintax used for the queries will be SQL, and the engine will be the one in
charge of translating the SQL language to the syntax required by the underlying
data source. In fact, we plan on supporting a great number of databases in the
final version of the PQP platform. In the context of this project we considered 3
main data sources:

1. PostgreSQL: One of the most popular object-relational database management
systems. Written in C, it has an history of more than 30 years of active
development and a strong open source community behind. Most of the
features required by the SQL standard are supported, with an history of
reliability and data integrity.

2. MongoDB: It is one of the most popular solutions when it comes to non-
relational database solutions. It relies on a document based structure, with
a JSON-like schema. It is capable, in some types of applications, of outper-
forming traditional RDMS software, with an easier and faster data integration
process.

3. ElasticSearch: A popular distributed search engine developed in Java, with
a focus on scalability and very high search speeds.

The final user will be able to use the same language to perform queries on all these
data source indistinctly. In order to achieve this we will be leveraging an SQL
query engine with a focus on performance when it comes to big data applications.

Unit tests were written to make sure that all the modules contained in the fi-
nal software were working correctly. These are automated tests written to make
sure that a certain section of the code (called "unit") behaves as intended by the
developers, failing when results are not as expected.
A CI/CD (continuous integration / continuous deployment) pipeline was deployed
to perform automatic checks on the project repository, running all the tests at each
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new commit. The use of a similar pipeline is considered to be a good practice in
software development, since every change in the code results in a complete checkup
of all the functionalities of the library. This process of continuous compilation,
testing, and deployment was achieved thanks to the use of the sbt tool for Scala
(abbreviation for "simple build tool").

We want to emphasize that the main requirement of this project was not the
connection of the library to a BI tool. Instead, the efforts were mainly focused on
the creation of a safe and functional data extraction tool, capable of performing
anonymization tasks and protecting sensible information from leaking.
Another important point was the preservation of schema and data types, even after
the anonymization. As an example, if we generalize every age from 20 to 29 years
old to the string "2*", we still want to be able to know that originally the column
age was an integer and not a string.

3.1 High level design
In image 3.2 we can see the final design of the PQP platform. The execution engine
for the main job of the platform will be, as already mentioned, Apache Spark. This
will allow for a great horizontal scalability and a great flexibility when it comes to
the number of nodes in the cluster.

We will be writing the code in Scala language. This will guarantee a great
compatibility with Java libraries, since we are working on a JVM based language,
that can be fully compiled to Java bytecode. In order to create a better interaction
on the user side, Apache Spark will be used in its SparkSQL interface, to facilitate
the process from the user perspective. For a better interaction with the core
job execution engine we will be leveraging Apache Livy, a service that allows to
activate multiple Spark Sessions and to interact with them thanks to a REST API.
Furthermore, from version 0.6.0 Livy provides a JDBC server. We will now analyze
the architecture in its different components, starting from the metadata repository.

3.1.1 Metadata repository
In our implementation, the metadata repository was a PostgreSQL database,
containing all the metadata information needed by the anonymization process.
Each table contained in our datasources has its own ID, name and description, and
all of its columns are declared in this database with its corresponding datatype. In
addition to this, there is a relation with the underlying data source (PostgreSQL,
MongoDB or Elasticsearch) via the IDDataSource field. Basically all the external
information needed by the code (except for the actual data) is stored here.
In the metadata repository we also store the information on what rules needs to
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Figure 3.2: High level design of the PQP platform

be applied for a certain combination of dataset and research topic (that we will
call "scope" in our implementation). Each combination of idDataset and idScope
could potentially have an anonymization rule associated. The goal of the final end
to end job will be to take the query as input, retrieving the rule needed by the
current scope with a query on the metadata repository, applying the required rule
and finally returning the anonymized output to the user.
We have to remember that some rules could be applied only to certain columns of
the dataset. For example we could want to suppress only email addresses, while
keeping less sensitive information as plain text. In order to take this into account,
we will use two separate tables, called column and columnrule. In figure 3.3 we
can see the complete graphical representation of the PostgreSQL schema for the
metadata repository.

We can now expand in detail on the tables contained into the PostgreSQL
metadata repository:

1. DataSource table
idDataSource: unique key, represents the id of the data source (for example

1 = mongo, 2 = postgres...)
name: name of the data source (mongo, postgres...)
URI: Connection URI for acessing the database (for example:

jdbc:postgresql://postgres:5432/postgres)
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Figure 3.3: Metadata repository schema
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ConnectionType: additional information on the connection to simplify the
connection process on new machines( for example PostgreSQL 14.0 (Debian
14.0-1.pgdg110+1), 64-bit)

params: additional parameters for the connection (like username, port...)

2. DataSet table
idDataSet: unique key, represents the ID of the dataset (table) in question
DDL: Data definition language expression, in case we need to perform

query virtualization
tableName: name of the table
idDataSource: foreign key, data source where this table is stored
isVirtual: set to true if we need virtualization on this table
isValid: it can be set to false if we want to block users from accessing this

table completely.

3. AmbitoVsDataset table
idAmbito: unique key representing the scope (ambito)
idDataset: ID of the dataset with this particular scope

4. DatasetRule table
idRule: ID of the rule
idDataset: dataset on which this rule needs to be applied
idAmbito: ambito (scope) for which this rule needs to be applied
ruleType: enum that represents the type of rule to be applied
ruleParameters: a JSON containing all the parameters needed by that

specific rule

5. ColumnRule table
idRule: ID of the rule
idColumn: column on which this rule needs to be applied
idAmbito: ambito (scope) for which this rule needs to be applied
ruleType: enum that represents the type of rule to be applied
ruleParameters: a JSON containing all the parameters needed by that

specific rule
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6. Ambito table
idAmbito: ID of a particular scope
description: description of what this scope is about

7. Column table
idDataset: ID of the dataset to which this column belongs to.
idColumn: ID of the column
columnType: data type of the column
columnName: name of the column

8. Tags table
idColumn: ID of the column to which this tag is referred to
Tag: tag assigned by the prediction of the machine learning model of the

fingerprinting library
idTag: id of the tag

The users of the PQP tool will not be able to see the data contained inside
these tables. Only the users with administrator privileges will be able to perform
read and write operations in this database. When adding a new table to one of
the data sources, an automatic process will insert all the information related to
the new table in the metadata repository. This repository is important not only
because of the details regarding rules and their application, but also since we need
a way to remember the data types of columns in each table. This information is
actually really important, because anonymization processes often cause a loss on
the information regarding data types. In fact as already stated before, suppressing
part of an age, like for example 25 that becomes "2*", causes a change of data
types, from Integer to String. The metadata repository helps us to remember that
we are in fact dealing with an integer.

3.1.2 PQP Portal
This portal will be the main tool that lets the final users of the software interact
with the database and perform queries. In this portal there will be a login section
dedicated to the admin functionalities, accessible by users with administrative
privileges. In the section dedicated to the administrator role, the logged user will
be able to perform actions on the metadata repository. For example, an admin
could assign a new set of anonymization rules to a particular dataset. Another
privilege granted to an user with this role would be to change the permissions of
particular user, by adding or removing them from a certain scope (called ambito in
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our database). All these actions will be performed from a graphical web interface,
where the user will be able to login and interact with all the functions of the
PQP library. This application will be able to communicate with the backend
thanks to the REST interface provided by the integration with Livy. As stated
before, the backend was the focus of the project and we did not provide a practical
implementation for the frontend part of the software tool. Because of that, all the
tests were performed with POST requests using postman, an API platform that
was used to create Livy sessions and submit statements to them.

Figure 3.4: Authentication process for the PQP portal

3.1.3 Livy interface
Apache Livy enables the interaction with the actual Spark job by providing a
REST interface to call functions. It enables the submission of Spark jobs as well
as some code snippets, useful for testing purposes. In addition to this it can
manage the Spark Context and creates generally a simple interaction between
the Spark code and the servers of the application, enabling the use of distributed
applications on web or mobile applications. It provides shared cache between RDDs
and DataFrames across multiple jobs, to allow for faster execution. In figure 3.4
we can see details regarding the connection that Livy enables between the Spark
job and the API gateway.
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In figure 3.5 we can see the Livy interface with a very simple statement exe-
cution. In this example we queried a dataset (with idDataset = 1) of fake users,
by selecting name, surname and age. We specified also a scope (characterized by
idScope = 2). This particular combination of dataset and scope was assigned to
a generalization rule, that was set to be applied only on the age column. As we
can see from figure 3.6, details about the age of users were hidden by applying
generalization.

Figure 3.5: Example of a simple Livy statement

3.1.4 Spark Job
The development of the Spark job can be considered as the focal point of PQP
project development phase. All the other blocks that we described in the schema
were designed with the Spark distributed computing environment in mind, and
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Figure 3.6: Output of a simple Livy statement

from the start we planned all the main architectural choices in function of this
piece of software.
Let’s analyze one of the main peculiarities of the Spark engine, that make it suitable
for handling big data applications: at high level, every software of this kind is
composed by a driver, with the task of executing the main method provided by the
user, performing a series of operations in parallel. Spark provides data structures
that are able to store any collection of elements across the cluster’s nodes in a
partitioned fashion. The most common data structure used in Spark is the RDD
(Resilient Distributed Dataset). In our application we will use the Spark SQL
DataFrame as our data structure of choice, since it combines the benefits of RDDs
with the optimizations of the Spark SQL module, while providing a structure that
is equivalent to a RDMS table. This allows for a great performance on distributed
applications, coupled with a structure similar to a table in a relational database,
which is exactly what we need when working with SQL statements.

It is important to define the two main types of operations that can be used
to work on distributed structures inside of the Spark engine along with their key
differences: transformations and actions.
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Transformations

A transformation applies a change to a distributed data structure, while never
stepping out from the distributed environment. For example, if we are working
with an RDD, a transformation will return a new, transformed RDD, where an
operation was applied to each element of the dataset. The crucial point is that
transformations are evaluated lazily. This means that the data across the nodes is
never actually touched, until an action is executed. It means that theoretically we
could chain multiple transformations without never actually changing the content
of the RDD (until, of course, an action gets executed, at which point all the
transformations are evaluated one after the other). After every transformation I
will get a new lazily modified RDD. Some of the most common transformations
include:

1. Map: Applies a transformations to all the elements, one by one.

2. Filter: Returns only the elements satisfying a particular condition.

3. FlatMap: Applies a transformation to all elements creating a flattened result.

Actions

Actions are methods that actually access the data of an RDD (or another distributed
data structure). Whenever an action is performed, all the transformation declared
before of that action get executed at once, and the data from the different cluster
nodes is extracted and gets moved outside of the distributed environment. Because
of this, it is important to always make sure that the result of a transformation is
capable of fitting in the local memory of the system.
Here are some common actions:

1. Collect: probably the most used. It collects all the elements in a single local
array without any extra operation.

2. Reduce: it is used to aggregate the elements of an RDD according to a
specific rule.

3. ForEach: to perform an action for each element of the RDD. For example I
could use it to print all the elements.

When use the term Spark job, we are talking about a function that gets executed by
leveraging parallel computation, consisting of a series of tasks spawned in response
to a Spark action. Spark transformations alone are not enough to produce a result.
There is always the need for an action at the end of the script.
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Let’s now talk about the Spark job that we implemented in our project. The
final end to end function is capable of performing a query chosen by the user. After
performing that query, the result gets anonymized according to the rules that are
associated to the scope of that user.
Let’s analyze the pipeline step by step, starting with the first thing that is needed
by the job to launch the main function, which is the user’s input:
When starting the job, there are three main inputs that the user should provide to
the main function:

1. Input Query: written in SQL language, it is always the same, independently
from the data source that we are querying. For example, if we wanted to
perform a query on the user table of the mongodb data source, we could write:
select name, surname, age from mongodb.pqp.user.
Notice how we are performing a SQL query on a non relational database like
MongoDB. This is achieved trough the use of the Presto Spark connector.

2. Dataset ID: the ID related to the dataset in question. Example: 1

3. Scope ID: the ID related to the wanted scope. Example: 2

The final output will be a table containing the data required by the user in the
query, anonymized according to the specific rules for that particular combination
of dataset and scope. In order to obtain this result, the pipeline is composed of
two main blocks:

Presto connectors

The first thing to do before any transformation on the data, is to actually execute
the query inside of the correct database. At this point of the pipeline we are not
taking into account anonymization rules logic. The execution of the SQL statement
given by the user will be performed thanks to the Presto Spark connector. Presto
on Spark makes it possible to exploit Spark as an execution framework for SQL
queries. This connector plays a critical role when we want to run the query on
a great number of nodes, a task that would otherwise require an unacceptable
quantity of memory and CPU computational power. Moreover, Spark provides
some additions to the value of the codebase, like resource isolation, fine grained
management of computing resources and almost immediate scalability.

Presto allows users to perform queries on multiple datasources, by using basic SQL
sintax. This simplifies a lot the final usability of the BI tool, since the user will
not need to change language if, for example, some tables are in the MongoDB
database and some others are in PostgreSQL. We tested presto on PostgreSQL and
MongoDB, and we are planning to implement ElasticSearch as a third data source
in the near future.
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Privacy anonymization block

Inside of this block we are performing the actual work of privacy preserving data
mining. Here we leverage the ARX anonymization framework in order to apply
the anonymization rules when needed. We focus our work on the anonymization
functionalities of this library, leveraging the ARX algorithms inside of our big data
application written in Spark. For now we will not exploit other functionalities of
the arx-deidentifier software like risk assessment and other statistical functions.

Because ARX is written in Java, we have a native support, since Scala runs
natively on JVM. The library has been used in a lot of various contexts, including
commercial big data platforms, research projects and clinical analytic platforms. It
is able to work efficiently even on commodity hardware, with a dedicated cross-
platform graphical interface available on the library’s website to download. We
exploited this graphical interface for testing purposes, while we used the last release
of the code available on the ARX GitHub repository [16] for the actual development
of the PQP project.

At a software level, the anonymization block is composed of a general anonymization
service trait that implements an applyRule function. For each anonymization rule
supported by the final PQP application, this function has a different implementa-
tion. We will talk more specifically about the structure of the project in the next
chapter, that will be dedicated to the practical implementation.

3.1.5 Batch Data Classifier
This will be a separated Spark job, based on the automatic classification of data
performed by the fingerprinting library. We already talked about this application
in section 2.3. Its integration inside of the main PQP platform architecture will
be implemented as a Spark job, programmed to run at predefined times during
the day. Another way to trigger this process will be the upload of a new table
into one of the data sources. This will cause the activation of the classification
engine on newly uploaded data. As an output, the job will write new entries in
the Tags table, inside of the metadata repository, with a prediction on the type
of identifier for each column of the new table. As stated before, this decision will
not be permanent, but the PQP portal administrators will be able to review the
result of the classification, changing them if needed. At the time of writing, the
fingerprinting project is completed. However, its integration inside of the main
PQP software is not. We plan on integrating the two projects together in the near
future, but for now we will focus on this classification tool separately.
In figure 3.7 we can see the high level design of the library that will be used
in the batch data classification process: As mentioned before, the result of the
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Figure 3.7: High level design of the fingerprinting data classifier

machine learning model is combined with some regex results. This is useful for some
categories that have a pretty simple formatting that never changes (for example
email addresses). The final output is a list of probabilities and the classification
is performed by taking the category with the highest probability as the final
prediction.

3.1.6 Data sources
We planned to support three data sources by using the Presto Spark connector:
PostgreSQL, MongoDB and Elasticsearch. At the time of writing, only PostgreSQL
and MongoDB have been actually deployed and tested with real data. These
data sources were deployed on a Docker container. This allowed us to package
all the required libraries and dependencies in a system capable of running in any
environment, without having to set up everything from scratch when moving to a
new machine. Containers simplify by a lot the delivery of distributed applications
and they have become more and more popular in software development companies.

A Python script was written to create a PQP backend with the help of the
Flask library. The goal of this application was to create and populate the data
sources automatically, providing GET and POST methods to perform changes
directly from the Linux shell.
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3.2 PQP: Admin functionalities
When building the logic behind the library, an important task was deciding the set
of permissions that the administrators could have. The admin should be allowed
the permission of:

1. Adding new roles.

2. Performing data provider roles, like the upload of new datasets.

3. Creating new datasets by joining existing ones.

4. Reviewing metadata related to already existing datasets.

5. Reviewing the anonymization rules associated to a particular research topic.

6. Change permissions of users in order to assign different research topics to
them.

During the CRUD phases, these functionalities will be enforced by leveraging
the PostgreSQL schema dedicated to the metadata repository, creating methods to
perform SQL statements. All of these methods will be thoroughly tested in our
CI/CD pipeline.

3.3 PQP: integration with the ARX library
One of the main challenges of the PQP application development was the integration
with the ARX library. Usually, in software projects where we need to use a lot
of external software components, it is considered good practice to use a library
repository to download and manage automatically a great number of external
application imports without the risk of occurring in software conflicts.

In the case of the ARX deidentifier project, at each official release of the library the
authors published a complete jar archive of the application on the dedicated GitHub
repository [16], providing a version number and a short description of the new
changes. The problem with this versioning method is that the only way to import
the ARX library is to download the jar as an unmanaged dependency, putting
it into a folder inside of the main Scala project. This means that interactions with
the library are not hidden from the outside world and we need to write a custom
script in order to download the jar from GitHub every single time we want to set
up the project on a new machine.

However, this is nothing compared to another common problem of unmanaged
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dependencies: the so called Maven dependency hell [17]. This occurs in active
Java-based projects when two dependencies are declared in the same project, often
with a different version number. The solution is to search for all the duplicates
inside of the dependency folder, removing the ones causing conflicts. In the case of
the ARX project there were some dependencies causing this exact problem, like for
example Google Guava: a widely used library that is well known for causing these
kinds of problems [18].

The solution to this problem was to write a custom shell script B capable of
downloading only the ARX core without any of its related dependencies. In a
second phase, the script downloaded ARX’s correlated dependencies, excluding the
ones that were causing conflicts. Finally, we simply programmed the CI/CD script
to run this script at deploy time.

At a code level, we made use of ARX hierarchies and privacy models to im-
plement some privacy rules in our project. The K-anonymity was useful for the
implementation of a rule that was imposing a constraint on the minimum level of
aggregation. For example, let’s say a user of the PQP tool wants to find the average
salary for each role inside of a company. The query used would be something like:

SELECT role, AVG(salary)
FROM employees
GROUP BY role

Now, everything works fine until we have a role that is covered by only one
person. For example, in the case of the CEO role, the average salary of the CEO
role will correspond to the real salary, causing a leak of sensitive information. To
solve this problem, we introduce the concept of minimum level of aggregation,
where we impose a constraint on the minimum number of records for each role.
When this minimum level is not reached, the sensible data (in this case salary) gets
suppressed. This goal can be achieved thanks to the K-anonymity algorithm, by
setting the parameter K to the desired value. In our code we created a custom rule
to impose this minimum level of aggregation and we referred to it by using the
term group suppression.
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Implementation

In this chapter the different components of the project’s architecture that we
already talked about will be analyzed in depth, providing specific details regarding
their implementation in the final project and at code level.

4.1 Metadata repository
The creation of the metadata repository was divided mainly in two phases. In the
first phase we were developing the main spark job and we needed a fast way to
simulate the metadata repository without actually deploying the database. This
was important in the earlier stages of development, where the focus was on the
creation of a very simple end to end job, without wasting energies on integration
tasks. Because of this, in the first iterations of the PQP application, we used
a library with the goal of simulating a PostgreSQL schema into our Scala code
without external dependencies.

We chose to leverage the Embedded Postgres library [19], useful for unit test-
ing purposes, since it is able to deploy real Postgres schemes automatically, without
requiring the end user to actually install and setup a database cluster. To instanti-
ate a database with Embedded Postgres we just need a couple of lines of code: first
we have to set the port and then we can use a simple start() method to deploy it.
After this short initialization we can instantiate a Statement object, used for the
execution of static SQL statements and for returning their results.

Thanks to this tool we were able to focus our work on the actual code writ-
ing phase. Even when the code base was completed and we started using a real
PostgreSQL database, we still exploited the Embedded Postgres dependency inside
of our unit tests. This can be considered as a good practice, since it is important
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to decouple the data used for testing purposes from the actual database, that will
be used only in a real production environment. This is widely considered to be a
good choice both from a privacy standpoint (we work with fake data instead of the
real production database) and from the point of view of unit testing best practices
(in unit tests we want to test single software modules, removing external influence
where possible).

In the second phase of the development, after we obtained a working first version
of the end to end PQP Spark job, we finally implemented a real database, with the
goal of storing the actual production data in it. The first task was the creation of a
Docker container, where we installed PostgreSQL. Then, we used a Python script
that was leveraging the Flask library to provide a REST API for manipulating SQL
tables with some simple POST and PUT methods for each table of the metadata
repository schema. After that, we used this REST API to write a shell script
capable of creating and populating tables.

We used the DBeaver software to explore the database, creating and testing
queries. In figure 4.1 we can see the final schema of the metadata repository that
we decided to use in the last version of our application.
Finally, we wrote a series of queries needed by our code. For example, we created
a query that, given as input idDataset, idScope and ruleType, was used to retrieve
the name of the of the columns on which the rule needed to be applied, together
with the Json containing all the rule parameters required by the ARX algorithm:

SELECT column_name, rule_parameters
FROM column c, columnrule r
WHERE r.anonymization_rule_type = ${ruleType}
AND c.id_dataset = ${idDataset}
AND c.id_column IN
(SELECT id_column FROM columnrule r WHERE r.id_ambito = ${idScope});

All of the queries required by the algorithm were integrated in specific meth-
ods inside of a dedicated Scala trait. The role of this functions was not only to
retrieve the information from postgres, but also to transform the raw data coming
from the database into custom data structures written specifically for this use case.
We decided to make use of Scala case classes for this purpose.
For example, in the case of the suppression rule, we created a custom case class
to store all the information required by the schema (like column names, type of
suppression, default string to use when suppressing...), as shown in appendix A.
This data structure was used to obtain a more elegant code base, creating an
application that was easier to maintain and update with new functionalities when
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needed.

Figure 4.1: Final implementation of the metadata repository in the postgreSQL
database.

4.2 Livy interface
As explained in the previous chapters, Livy enables the submission of Spark jobs
from external sources like web interfaces, smartphone apps and so on. Multiple
users are able to perform actions inside of the same Spark cluster in a concurrent
and reliable way. This is obtained trough the use of a REST interface that can be
used to call the jobs with a simple POST request.
As we can see in figure 4.2, we used Livy as a middle man between the web interface
and the Spark cluster. In fact, in a production environment the Spark job will run
on a cluster. To submit Spark jobs in Livy it is required firstly to start a session.
In the online documentation provided on the Apache website [20] we can find a
complete list of the REST API commands provided by Apache Livy. We leveraged
them in order to start a session with a simple POST request, in which we specified
the jar of the project and we configured some Spark options, like for example the
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Figure 4.2: Livy architecture

number of cores dedicated to that particular session. The idea for the final project
would be that each user gets a dedicated session. In this way, the administrator
can choose to assign more computational power to specific users, while limiting it
for others.

After the creation of the session, Livy allows us to create the so called state-
ments. These are the actual commands containing the code used for launching a
specific function. A session can have multiple statements. When the Spark job is
completed, we can use the postman API platform in order to easily submit post
requests. Then, for our local tests, in order to see the results, we only need to access
the address http://localhost:8998 in any browser to visualize all the sessions
and statements submitted in postman, along with the session logs and the actual
output of the job, formatted as an array of strings, as previously shown in 3.6.
We tested various anonymization rules inside of a single Livy session, querying two
data sources that were deployed on Docker containers, obtaining good results. We
will talk about these in more detail in chapter 5, dedicated to the final results and
conclusions.

4.3 Spark Job
The Spark job was the core part of this project, on which we focused most of
our efforts during the development of the PQP library. We built the project in
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intelliJ, using Scala version 2.12 and sbt as a build tool. A custom sbt command
was used to create the pqp deploy package, composed of a jar of the full project,
configuration files, required dependencies and libraries.
Now let’s get to the actual code base. We divided the project in various sub
modules. Each of them has a specific purpose in our application. Let’s analyze
these modules one by one:

Anonymization

In this package we implemented all the methods needed to apply anonymization
rules. Here we are using the ARX framework as a tool to perform privacy preserving
algorithms. The main Scala trait that defines the anonymization functions is called
AnonymizationService. This trait is extended by the ArxAnonymizationService
class, that provides the actual implementation of the functions that were defined
in the trait. Probably the most important method here is the anonymizeDataset
function. It takes three inputs:

1. dataset: a SparkSQL DataFrame object: it contains the plain data without
anonymization. In the context of the main project, this variable represents
the complete result of the query that was given by the user as an input to the
POST call used to submit the Livy statement.

2. metadataRequest: instance of a custom case class containing all the useful
information that was passed by the user when starting the spark job. This
information includes the dataset id, the scope id and the string containing the
sql query that was originally submitted by the user.

3. rule: type of the rule that needs to be applied to the input dataframe before
sending it back as an output.

In the anonymizeDataset function we firstly analyze the rule variable in order to
understand what anonymization technique should be applied to the input dataframe
(if any). After obtaining this information, we apply a custom function, according
to the specific rule required. To do this we created a ApplicationRules trait with
a function called applyRules, that has a specific implementation for each type of
anonymization rule. In these implementation we retrieve the rule parameters from
the metadata repository and we apply the rule itself. Finally, a DataFrame object
is returned, containing the anonymized data as an output.

Configuration

In this module we store all the data structures needed to work with configuration
data. This includes things like connection strings for the various data sources,
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username and password, port number...
These information is organized in custom case classes to provide a more elegant and
easy to use code. We implemented also some get functions to retrieve information
easily from configuration files.

Logging

To print information during code execution we implemented a simple logger with
four levels of logging importance (Debug, Info, Warn, Error).

Metadata

Here we store all the logic needed to deal with the metadata repository, like the
MetadataRequest case class (to store input information like SQL query, dataset id...),
the MetadataResponse (to store all the information needed by the anonymization
algorithm like rule type, schema...), and other custom data structures to store
other details. In addition to this, we implemented a trait containing all the custom
queries to retrieve data from the metadata repository. Unit tests were implemented
to make sure that all the queries were able to perform as intended, by using the
embedded postgres dependency as we explained before.
Finally, since the Presto engine was not exposing the data types after performing
the SQL query, we also implemented a custom function, called
extractResultSetInformation, that was used to extract the schema of the SQL
table resulting from the query, by taking as input the query string and the complete
schema of the original table(obtained from the metadata repository).

Utils

Miscellaneous functions that include conversions for our custom data structures,
query refinement methods, functions to extract data source properties...

Launcher

Here we store the main Spark job function. We could think about this as the main
function of the PQP application. Here we have the complete end to end job written.
Firstly it parses the arguments, extracting a MetadataRequest object with all the
information needed (dataset id, scope id and SQL query). Then, it fetches the data
by executing a custom query in the PostgreSQL metadata repository. The output
is stored in a MetadataResponse object, that contains all the information needed
by the anonymization algorithms (like data source information, rule type, schema
with data types...).
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After this process, we use the details obtained from the metadata repository
to perform the query with the Presto engine. Since the output coming from Presto
is formatted as a list of list of Java objects, we implemented a
createDatasetFromPrestoResult function, capable of creating a Spark SQL
DataFrame containing the data. This brings two main advantages: not only
we are now capable of performing transformations of this DataFrame in the dis-
tributed Spark environment, but we are also able to store data type information
inside of it.

Finally, we can send the DataFrame (that basically represents the output of
the query without anonymization) to a ArxAnonymizationService object, that
will have the goal of applying the anonymization function required by the specific
rule.

4.4 Unit testing
1. Datasource tests: we performed test to ensure that every implemented data

source was working as planned. In addition to this we tested all the metadata
repository queries.

2. Metadata tests: In this part we tested all the queries related to the metadata
repository. In addition to this we tested the extractResultSetInformation (used
as we said before to parse the query and extract the presto result set schema).

3. Anonymization tests: here we tested all the rules, making sure that the
anonymization was performed correctly on some simple dummy DataFrame
objects created for the test.

4.5 Data type mapping
During the development of the PQP application we encountered some problems
caused by datatype mapping. This happened because the set of data types used by
Presto was not standardized in the same way as Spark did. Because of this, there
was not a complete overlap between types. We solved this with an object called
DataTypesHelper inside of our Scala code, that was used to cast incoming data to
the correct type, thus avoiding implicit conversion issues.

4.6 Data sources
We initially planned to support three data sources in the final project: PostgreSQL,
MongoDB and Elasticsearch. In the last iteration of code development, only
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PostgreSQL and MongoDB were deployed and tested thoroughly. Query execution
was efficiently performed for both of them, with similar results in terms of execution
speed. We also tested them with high quantities of data, by providing a table
with a million entries. The horizontal scalability of the Spark engine proved to be
efficient for both of the data data sources that we analyzed.

4.7 Integration with the ARX library
As said before, we encountered some dependency problems when integrating the
ARX library inside of or project. We decided to write a custom script (as shown in
section B) to solve them by performing the following actions:

1. Download the ARX min package, containing only the ARX source code without
any dependency attached.

2. For every element in the list of ARX dependencies, check if that dependency
was already used inside of our main project.

3. If not, download it as an unmanaged dependency.

4.8 The Agile workflow
The thesis work was developed in collaboration with Agile Lab. Since 2014, the
company has been creating value for its Clients by leveraging the power of Big Data
and Analytics, Machine Learning, Edge AI, IoT, Low Latency Data Streaming and
Domain Driven Design.The creation of this project would have not been possible
without the expertise and tools provided by Agile. By working in this environment,
we were able to learn a specific development workflow, that is at the core of the
software development factory in AgileLab.

Gitlab is at the center of this process, allowing us to have a single source re-
garding the status of a project. The main values behind the software development
workflow are the following:

1. Continuous improvement: The plan is not rigid, and it merges the work of
everybody involved in the project implementation phase. The work of everyone
must continuously converge in the development process.

2. Democracy: There is room for changes in the plan, as long as everyone involved
shares the same vision.

3. Recursiveness: The process by which the work is developed and modified is
the process itself.
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4. Visibility: The current status of the project must always be clear, at every
possible level of detail. This includes the use of:

(a) GitLab issues
(b) Merge requests
(c) Code quality

5. Reproducibility: Given an output O, we want to be able to know at what
stage of the project it was produced, and what was the input I that produced
it.

6. Automation: The less manual procedures are needed, the better it is for the
development workflow.

4.8.1 Development model
The software development is divided in phases. At the beginning, the Architect
assigned to the project starts by laying out a document containing the high level
design of the project (HLD). After defining the main goals of the project and the
first design of a schema, the next step is to open a new GitLab repository, that
will serve as a container for all development activities.

The workflow model is based on the concept of sprint. A project is composed of
a series of sprints with the aim of creating fast release cycles by creating a due date
for the end of the sprint. This allows for a faster development process, since we
will focus on what has priority in the near future. The development is organized in
a concentric system, based on 3 levels of granularity:

1. High level design

2. Low level design

3. Work item

This system is implemented by creating GitLab issues with the corresponding
level of granularity. Issue with the same level are organized together in milestones,
so we will have three types:

1. High level design milestone

2. Low level design milestone

3. Sprint milestone

An high level design milestone can contain multiple low level design milestones,
that in turn are capable of containing multiple sprints inside of them
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Figure 4.3: Milestone events workflow

4.8.2 Issues

It is the standard tool used by GitLab to track and manage software development.
Issues should be structured as much as possible according to the INVEST model
(independent, negotiable, valuable, estimable, small, testable). Let’s analyze each
of this 6 characteristics.

Independent

Two issues should always be autonomous between each other. If you find two
correlated issues, a good idea would be to merge them together in a single one.

Negotiable

Issues should always leave room for discussion. In the description of an issue we
always talk about a proposed solution to the problem, leaving space for opinions
and suggestions on the development of a feature.

Valuable

Issues must add value for stakeholders. Making up new issues that focus on small
technicalities that do not bring value are violating one of the principles of agile
methodologies, which consist in providing valuable software products.
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Estimable

The size of the work needed by an issue must always be somehow measurable. If
this does not happen, the issue will never be planned, and it will never become
part of a sprint in the future. If we cannot make an estimate due to the the lack of
available information, we must iterate on the description of the issue in order to
make it more clear.

Small

Issues that are too large often become impossible to work with with the right level
of confidence. We would like to keep the size of an issue to be around a couple of
days, and never more than a week of work. Anything bigger should be divided into
smaller issues, that are easier to manage. Issues that do not fit into this definition
can be defined as Epic, and they will last more than one sprint.

Testable

The description of the issue should provide all the details that are needed to develop
tests around that feature. An issue should be considered completed only if it has
been successfully tested. This is particularly true for teams using TDD (Test Driven
Development). Because of this point, test coverage assumes a great importance
inside of Agile projects.

4.8.3 Branching model
In order to perform version control tasks, it is important to implement a very
specific git branching model, to keep a standard way of doing things when it comes
to the implementation of the tasks explained in the issues.

Master branch

It is the main branch of the project. It is always updated to the latest release. In
this branch we have all the code quality controls mechanisms implemented. The
software obtained after compiling the master branch has still to be considered as a
SNAPSHOT as it does not correspond to any formal release.

Feature branches

Feature branches are related to a particular issue, so they should be used in a short
time frame. They are usually assigned to a single person and they represent an
atomic unit of code review and integration within the master branch. A branch
will always be correlated to a single issue. After the development of that issue
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is completed and tests are working correctly, we are ready to merge the feature
branch into the master. If, in the meantime, someone else already pushed new
updates to the code base, we will need to rebase our branch into the main one
before merging our contribution.

Release branches

When all the features required by a particular software release have been imple-
mented and merged in the master branch, a new release should be made. To allow
for the backport of new features to a version that was already released, it is also
possible to integrate the feature branch with a release branch or to perform the
cherry-picking of the feature branch’s content inside of the release branch. The
final resulting software obtained by compiling the release branch should still be
viewed as a snapshot, since a release branch could be subject to backport of new
features or bug fixes.

Hotfix branches

These branches are created with fast or urgent bug fixes in mind.The hotfix branches
are branched from the release that needs the urgent fix, and they are integrated on
there. If the fix will also be required in future releases the hotfix is cherry picked.

Tags

Tags are used to identify a certain release commit in a precise and straightforward
manner. The artifact that is obtained after compiling a tag can be considered stable,
and its content is well defined and traceable. The artifact version corresponds to
the tag name.
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Figure 4.4: Branching model of the agile development workflow
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Final results

We developed a Spark job capable of querying multiple data sources, applying
different anonymization techniques to the results of the query. We deployed it in a
Docker environment, together with the data sources and performed some tests. We
also analyzed the topic of data classification in relation to data privacy, developing
a machine learning model capable of assigning labels to new data uploaded to the
system. In this section we will analyze the results of the various tests that we
performed on the different parts of the PQP tool.

5.1 Spark job execution results
From the Livy browser interface we are able to see details like session logs and
execution time. In table 5.1 we can see the results of rule application to a sample
database with a table containing data belonging to 1000 fake users. The query was
always the same for all tests (SELECT name, surname, age from users), and
thanks to the Livy web interface we were able to read the execution time for the
different algorithms.
In the result table we summarized the relevant information about expected and
actual result of the tests. We can see for example that, when applying group
suppression with the groupMinCount variable set to 1 for the column age, we get
back the original data. This is correct, since the minimum level of aggregation is
always respected with 1 as the input value. However, if we set the same variable
to 10, the age gets suppressed, since the algorithm is not able to find groups of at
least 10 people with the same age. All the results were documented on table 5.1.

In figures 5.1, 5.2, 5.3 we can see the results on a 1000 row table of fake users
that was generated automatically by using mockaroo, a web tool to create fake
data for testing purposes.
As we can see from the results, all the algorithms performed as expected, with
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Rule type column RuleParameters Result Time
Generalization age HyerarchyLevel=2 26->[0-50] 16s
Generalization age HyerarchyLevel=Max 26->[*] 4s
Generalization age HyerarchyLevel=0 26->26 5s
GroupSuppression age GroupMinCount=1 26->26 8s
GroupSuppression age GroupMinCount=10 26->* 11s
Suppression name Partial(Regex=.2$) name->na** 13s
Suppression name Total(default val=****) name->**** 12s

Table 5.1: Spark job tests results

Figure 5.1: Result of generalization applied on the age column

execution times that can be considered acceptable since we were running the cluster
in our local machines.

5.2 Execution on big data
All the tests described in the last section were performed on a simple data base
composed of just 1000 records. We also tried to execute the queries on a table with
many more entries, with the goal of assessing the performance of our tool on big
quantities of data. We used a Mongo collection of 1 million documents, and we
performed the same query as before, running the job both on local and YARN.
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Figure 5.2: Partial suppression of the name column

Figure 5.3: Total suppression of the name column with a custom string
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Execution times were always between 20 and 30 seconds for all the queries. Spark is
horizontally scalable, and while this times could be seen as a good performance for
a collection of a million documents, we probably could have obtained even better
results by running the pipeline on an real cluster, instead of our local machines. As
a next step, we propose to execute the same job inside of an Amazon ECS cluster
and to observe improvements in execution times when it comes to big quantities of
data. When doing so, we will need to keep in mind intrinsic problems of Spark job
execution on cluster environments, such as network latency, number of available
machines, available memory...

5.3 Fingerprinting results
Some tests were performed also on the fingerprinting library, in order to assess
the correct functioning of the distributed random forest classification model. The
algorithm was created via the H2O Flow tool, that allowed us to perform train-
ing and validation in a simple web interface similar to the one of a Jupyter notebook.

As previously mentioned, the goal of the random forest classification tool was
to make predictions on the type of data contained in the input column (names,
addresses, phone numbers...), with the final goal of assigning a label to each column
of an input table. The label would be directly inferred from the type of data
predicted by the algorithm. For example, a phone number would be labelled as a
personal identifier, a city would be labeled as a quasi identifier... and so on.
After creating the model, the Flow tool allowed us to download a Java MOJO
package, that we were able to import seamlessly inside of the codebase. In figure
5.4 we can see some of the classification results obtained by feeding test columns to
the distributed random forest algorithm. The test columns used were taken from
real world datasets containing addresses, ages, cities, dates, names and nationalities.
The random forest algorithm returns as an output a series of probabilities, one for
each possible label. In this example, we printed the top 3 probabilities for each of
the test columns.
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Figure 5.4: Some results of the random forest trained on data fingerprints
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Conclusions

We studied the available literature regarding data anonymization techniques and
open source projects to perform privacy preserving data mining tasks. We devel-
oped a software application capable of applying state of the art privacy preserving
algorithms inside of a large-scale data processing environment, by using a dis-
tributed programming approach. We were able to deliver a working end to end
product capable of performing queries on multiple data sources, returning an output
sanitized according to some specific predefined anonymization rules.
We introduced a simple metadata repository inside of a PostgreSQL schema in
order to store all the details needed by the system to apply privacy preserving
tasks correctly. We provided a simple way to apply changes to said repository for
users with administrator privileges. We exposed a functioning REST API, allowing
end users and system administrators to interact with the Spark job from a web
application.
We also explored the topic of data classification, with the goal of predicting the
level of sensitivity for newly added tables, thanks to a distributed random forest
algorithm.

For the future development of the project we plan on deploying the entire project
on a cloud environment, with the help of Kubernetes to handle the containers. This
should be mainly an integration problem, since the Spark job was written from the
beginning with the goal of working both on premise and on cloud. We also plan to
integrate ElasticSearch as a third data source inside of a Docker container. Other
future improvements to the project include the addition of new privacy models to
the set of available anonymization rules. For example we could implement some
of the techniques that we analyzed in the previous chapters, such as l-diversity,
t-closeness and so on.

Other future development plans include working on the integration between the

62



Conclusions

fingerprinting job and the PQP library, running the classification algorithm at
fixed intervals during the day or, as an alternative, every time a new table gets
uploaded to the system. The data privacy administrator will then be able to see the
classification and make changes if needed. I plan on continuing the development of
these new features in the next months, as I will keep on working in Agile Lab after
the end of my academic career.
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Scala code snippets

1 case c l a s s Suppress ionData (
2 suppress ionType : SuppressionType , // Total or P a r t i a l
3 columns : Array [ S t r ing ] , // l i s t o f columns to suppres s
4 de fau l tVa lue : Str ing , // s t r i n g to use when

suppre s s ing ( f o r example " ∗ " )
5 part i a lRegex : Option [ S t r ing ] , // In case o f p a r t i a l

suppress ion , to s e l e c t what to suppres s
6 )

1 case c l a s s Genera l i zat ionData (
2 name : Str ing , // name o f the column
3 i n t e rva lBased : Boolean , // t rue i f i t i s a numerica l h i e ra r chy
4 h i e ra r chyLeve l : Int , // l e v e l at which g e n e r a l i z a t i o n i s

eva luated
5 h i e ra r chy : Map[ Str ing , S t r ing ] // g e n e r a l i z a i t o n h i e ra r chy
6 )
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Arx setup

1 #! / usr / bin /env bash
2 s e t −o e r r e x i t
3 s e t −o nounset
4 s e t −o xt race
5

6 TMP="tmp"
7 dependenc ies=( " l i ba rx −3.9.0−min . j a r | https : // github . com/arx−

d e i d e n t i f i e r / arx / r e l e a s e s /download/v3 . 9 . 0 / l i ba rx −3.9.0−min . j a r "
8 " jhp l −0 . 0 . 1 . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /raw/ master /

l i b /ant/ j h p l / jhpl −0 . 0 . 1 . j a r "
9 " newtonraphson −0 . 0 . 1 . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /raw/

master / l i b /ant/newtonraphson/newtonraphson −0 . 0 . 1 . j a r "
10 " o b j e c t s e l e c t o r −0.1− l i b . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /

raw/ master / l i b /ant/ o b j e c t s e l e c t o r / o b j e c t s e l e c t o r −0.1− l i b . j a r "
11 " mahout−core −0.9 . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /raw/

master / l i b /ant/mahout/mahout−core −0.9 . j a r "
12 " mahout−math −0 .11 . 1 . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /raw/

master / l i b /ant/mahout/mahout−math −0 .11 . 1 . j a r "
13 " co l t −1 . 2 . 0 . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /raw/ master /

l i b /ant/ c o l t / co l t −1 . 2 . 0 . j a r "
14 " hppc −0 . 6 . 0 . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /raw/ master /

l i b /ant/hppc/hppc −0 . 6 . 0 . j a r "
15 " commons−math3 −3 . 6 . 1 . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /raw/

master / l i b /ant/commons/commons−math3 −3 . 6 . 1 . j a r "
16 " commons−va l i da to r −1 . 4 . 1 . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /

raw/ master / l i b /ant/commons/commons−va l i da to r −1 . 4 . 1 . j a r "
17 " exp4j −0 . 4 . 8 . j a r | https : // github . com/arx−d e i d e n t i f i e r / arx /raw/ master /

l i b /ant/ exp4j / exp4j −0 . 4 . 8 . j a r "
18 " smi le−core −1 . 4 . 0 . j a r | https : // search . maven . org / remotecontent ? f i l e p a t h

=com/ github / h a i f e n g l / smi le−core / 1 . 4 . 0 / smi le−core −1 . 4 . 0 . j a r " )
19
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20 [ [ −d $TMP ] ] && rm −r $TMP
21 mkdir $TMP
22

23 echo " check environment . . . "
24 i f [ [ $OSTYPE == ’ darwin ’ ∗ ] ] ; then
25 echo "macOS found . . . "
26 #brew i n s t a l l z ip
27 e l s e
28 echo " ∗ nix environment found . . . "
29 #apt i n s t a l l z ip
30 f i
31 echo " check e x i s t i n g o f l i b f o l d e r . . . "
32 i f [ [ ! −d " . / l i b " ] ] ; then
33 echo " l i b f o l d e r does not ex i s t , c r e a t i n g i t . . . "
34 mkdir −p . / l i b
35 f i
36 echo " check dependenc ies . . . . "
37 cd $TMP
38 f o r kv in " ${ dependenc ies [@] } " ; do
39 dependency=${kv%%|∗}
40 u r l=${kv##∗|}
41 i f [ −f " . . / l i b /$dependency " ] ; then
42 echo " $dependency found ! "
43 e l s e
44 echo " Downloading $dependency . . . "
45 c u r l −vLJO −H ’ Accept : a p p l i c a t i o n / octet −stream ’ ${ u r l }
46 mv $dependency . . / l i b ;
47 f i ;
48 done
49 cd . .
50 rm −r f . /$TMP
51 echo " Libarx i n s t a l l e d s u c c e s s f u l l y "
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