
POLITECNICO DI TORINO
MASTER’s Degree in MECHATRONIC

ENGINEERING

MASTER’s Degree Thesis

Development of a closed-loop control
system for an airborne gimbal camera

Supervisor

Prof. Sabrina CORPINO

Candidate

Mirco VINCIGUERRA

DECEMBER 2021

Alla mia famiglia

Abstract

The SmartBay platform is an invention of Digiky Srl. The company has developed a
wing pylon capable of hosting various types of sensors to carry out aerial monitoring.
The SmartGimbal is a motorized metal structure designed to hold any type of
video camera, equipped with two actuation systems that allow PAN and TILT
movements. Being airborne, the movement commands must be given in remote.
The topic covered in this thesis consists of the development of the software so that
the system meets the desired requirements. The used approach is the Model-based
one concerning embedded systems, as it allows the generation of the C/C++ code
of a model designed in MATLAB/Simulink and its actual implementation in a
microcontroller, in this case, Arduino Mega2560. One of the project scopes is the
system calibration, which automatically activates a motor until the Hall effect
sensor finds the magnet. The designing of a closed-loop system for speed control of
a DC motor using an Encoder such as a feedback sensor is the main part, moreover,
the serial communication between two Arduino boards has also been performed.
This last argument relates to the fact that the control console, containing the
joystick for managing the movements, sends signals to the actuation part and, vice
versa, this sends the data to be shown on the display.
The parts making up the software have been detailed, with the wiring diagrams
showing the connections made and a list of the components used reporting their
technical specifications.
In conclusion, thanks to the design of an integrated circuit board and the camera
connection, the support for the video cameras has been made operational and
therefore, it can be mounted under the wing of an airplane and controlled via a
console, located inside the cabin.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xiii

1 Introduction 1
1.1 Digisky company . 1
1.2 SmartBay Project . 2
1.3 State of art . 3
1.4 Thesis objective . 4

2 Model-based approach 5
2.1 Basic knowledge . 5
2.2 Preliminary simulations . 7
2.3 Code generation . 8

2.3.1 Arduino and Simulink interface 8

3 SmatGimbal system 11
3.1 General purpose of control system 11

3.1.1 Closed-loop method . 12
3.2 PID control technique . 13

3.2.1 Controller in the discrete-time domain 15
3.3 Closed-loop control for DC Motor 16

3.3.1 Dynamic model . 16
3.3.2 PWM speed control . 17

3.4 Sensors operation . 19
3.4.1 Hall effect . 19
3.4.2 Magnetic encoder . 20

3.5 MATLAB/Simulink implementation 21
3.6 Serial communication protocol . 22

vi

4 Software development 25
4.1 General concepts of software architecture 25
4.2 Motion control model . 26

4.2.1 Input signals . 27
4.2.2 Calibration phase . 28
4.2.3 Motion control . 29
4.2.4 Degree manipulation . 34
4.2.5 Output commands . 36
4.2.6 Serial transmission to Display 39

4.3 Remote control model . 40
4.3.1 Joystick and buttons input signals 41
4.3.2 MATLAB-Arduino Display interface 45

5 Test bench environment 48
5.1 Global hardware configuration . 48
5.2 Gimbal hardware configuration . 50
5.3 Console hardware configuration . 51

6 Development of a PCB 52
6.1 Preliminary concepts . 52
6.2 Project sizing . 53

7 Camera implementation 57
7.1 Video stream management . 57
7.2 Remote control methods . 59

8 Hardware adopted 62
8.1 Arduino Mega 2560 . 62
8.2 Motor Driver . 63
8.3 DC motors . 64
8.4 Encoder . 65
8.5 Hall sensor . 66
8.6 Joystick . 67
8.7 Arduino display LCD . 68
8.8 Video camera . 69
8.9 Video ports converter . 71

9 Conclusions and future works 72

Bibliography 73

vii

List of Tables

3.1 Effects of PID parameters on the system 14

8.1 Arduino specifications . 62
8.2 L298N motor driver specifications 63
8.3 DC motor specifications . 64
8.4 Encoder specifications . 65
8.5 Hall sensor specifications . 66
8.6 Joystick specifications . 67
8.7 Display pin configuration . 68
8.8 Blackmagic specifications . 69
8.9 Blackmagic connection specifications 70
8.10 SDI to HDMI converter specifications 71

viii

List of Figures

1.1 Digisky Logo . 1
1.2 SmartBay pylon . 2
1.3 SmartBay allocation . 2
1.4 SmartGimbal render . 3
1.5 SmartGimbal mounted on the airplane 4

2.1 V-model architecture . 5
2.2 PIL block diagram . 7
2.3 Deploying code on Arduino . 8
2.4 MATLAB Add-Ons . 8
2.5 Simulink model and setting . 9
2.6 Simulink solver panel . 9
2.7 Simulink hardware implementation panel 10
2.8 Simulink external mode . 10
2.9 Deploy on the target hardware . 10

3.1 Open-loop block diagram . 11
3.2 Closed-loop block diagram . 12
3.3 Adding node block diagram . 12
3.4 PID controller in a feedback loop 13
3.5 Equivalent Circuit of a DC motor armature 16
3.6 Closed-loop model of DC motor . 17
3.7 Pulse With Modulation . 17
3.8 H-Bridge structure . 18
3.9 Hall effect sensor . 19
3.10 Magnetic encoder . 20
3.11 Two channel of encoder . 20
3.12 General closed-loop of DC motor 21
3.13 Closed-loop Simulink model . 21
3.14 Serial communication . 22
3.15 Data package . 23

ix

3.16 Duplex communication . 24
3.17 Arduino physical connections . 24

4.1 Simulink Support Package for Arduino Hardware 25
4.2 Motion control global overview . 26
4.3 Input signals . 27
4.4 Serial signal transmitter . 27
4.5 Calibration components . 28
4.6 Closed-loop in calibration part . 28
4.7 Single-motor motion control . 29
4.8 Encoder calibration . 30
4.9 Two-direction control . 30
4.10 Closed-loop of DC motor . 31
4.11 PI controller parameters . 32
4.12 Input-output response . 32
4.13 Encoder adjustments . 33
4.14 Derive Degrees . 33
4.15 Speed conversion . 33
4.16 Degrees adjustment . 34
4.17 Preparing data . 35
4.18 Degree adjustment for the second motor 35
4.19 Adjustment and preparing data . 35
4.20 DC motor output menage . 36
4.21 Output blocks . 37
4.22 Second motor output menage . 37
4.23 Transmitter section . 39
4.24 Serial communication interface with Arduino 39
4.25 Remote control global overview . 40
4.26 Joystick and buttons blocks . 41
4.27 Joystick signals interpretation . 41
4.28 Joystick conditions . 42
4.29 Joystick data adjustment . 42
4.30 Single button model . 43
4.31 Stateflow of debounce . 44
4.32 Serial signal receiver . 45
4.33 Display interface . 45

5.1 Complete connections scheme . 48
5.2 Side view of test bench . 49
5.3 Top view of test bench . 49
5.4 Detailed motors connections . 50

x

5.5 Motors connections scheme . 50
5.6 Remote console . 51
5.7 Console connections scheme . 51

6.1 Workspace model . 53
6.2 Molex header connector . 54
6.3 Electrical connection scheme . 54
6.4 Auto-routing product . 55
6.5 Print preview . 56

7.1 Blackmagic Micro Studio Camera 4K 57
7.2 Camera mounted on the gimbal structure 58
7.3 Blackmagic ATEM 2 M/E Production Studio 4K 59
7.4 Blackmagic 3G-SDI Arduino shield 60
7.5 Blackmagic LANC zoom demand 60
7.6 Futaba S.Bus system . 61

8.1 Arduino Mega 2560 . 62
8.2 H-Bridge motor driver L298N . 63
8.3 Faulhaber DC motor . 64
8.4 Faulhaber encoder . 65
8.5 Hall sensor . 66
8.6 Joystick controller . 67
8.7 Arduino LCD Display 16x2 . 68
8.8 Blackmagic video camera . 69
8.9 Blackmagic Mini Converter . 71

xi

Acronyms

IMU Inertial measurement unit

PTZ Pan Tilt Zoom

MIL Model In The Loop

SIL Software In The Loop

PIL Processor In The Loop

HIL Hardware In The Loop

LTI Linear Time-Invariant

PWM Pulse With Modulation

DAC Digital to Analog Converter

PCB Printed Circuit Board

xiii

Chapter 1

Introduction

1.1 Digisky company

Figure 1.1: Digisky Logo

DigiSky Srl works on aerial ground monitoring technologies for Earth preservation,
emergency management, fire detection, surveillance, and asset-intensive companies.
Technology innovations are applied in Avionics Systems, Special Mission Aircrafts,
and advanced Aerial Monitoring Projects. The aim is thus to transfer innovative
technologies from the ICT and automotive sectors to the General Aviation industry,
offering embarkation solutions that are easy to install, low costs, and can be applied
in several different fields.
They provide customers with turnkey integrated services to qualify in-flight avionic
systems during R&D and design phases, standardized system for the fast boarding
of sensors, low-cost aerial ground monitoring systems to be applied in precision
farming, fire detection, remote medical emergency mission, surveillance, and asset-
intensive companies. To facilitate this process, DigiSky has its fleet of airplanes
equipped with avionic systems to guarantee in-flight tests of different types of
technology [1].

1

Introduction

1.2 SmartBay Project
The flagship product is a platform created and developed in-house, called SmarBay.
This is a carbon fiber pylon located under the wing of an airplane, designed to
have a low aerodynamic coefficient and to support heavy loads up to 40 kg. In
addition, it is equipped with sensors as IMU and GPS.
It has been developed to perform rapid sensors suite configuration on different
flight platforms, standardize and automate the sensors management during the
mission, facilitate post-processing operation of the data collected, optimize the
sensor maintenance operations. Each module is designed to be plug and play and
could contain a stabilized camera, a chemical sensor for air quality monitoring, an
audio sensor for noise control, or any other solution.
Moreover, a feature of this structure is the capability of boarding up three different
modules at the same time [2].

Figure 1.2: SmartBay pylon

The figure below shows the application of this platform, the aircraft in question is
a Tecnam P92, a single-engine light aircraft with high-wing technology.

Figure 1.3: SmartBay allocation

2

Introduction

1.3 State of Art
A particular module compatible with the SmartBay platform just described, is the
SmartGimbal, a project that is also developed and built internally and is positioned
on a carbon fiber trolley equipped with connectors to ensure the possibility of plug
and play installation.
Conceptually it is similar to a PTZ camera, those found in the video surveillance
sector, due to the two axes of movement and the remote control. The substantial
difference, apart from the size, is the separation between motion management and
image capture, due to the interchangeable sensor. This type of support has been
designed to hold professional video cameras weighing up to 3 kg.

Figure 1.4: SmartGimbal render

The structure of the SmartGimbal, shown in the previous figure, has been the
subject of past studies. The obtained results have been to lead the creation of a
mathematical model of the gimbal system governed by the equations of dynamics.
Thanks to simulations in the MATLAB/Simulink environment, were also found the
maximum torque and angular velocity values of DC motors can provide. Finally,
the calculations were performed to obtain a PI controller capable of controlling the
actuation system. The C code related to this component was generated, so that
could be installed on Arduino, allowing to verify the compatibility between the
software and the embedded processor. This last phase is called Processor-in-the-
Loop, according to the Model-based approach, which will be shown in detail in the
following chapter [3].

3

Introduction

1.4 Thesis objective
The main argument of this thesis is the development of control software for Smart-
Gimbal and its implementation to obtain a functioning system.
The structure consists of a metal skeleton equipped with a system of gears and
belts that allows the camera to move on two axes. The continuous rotation around
the Pan angle is guaranteed by the presence of a slip ring while the inclination must
be limited between ±90 degrees to avoid cutting the cables of inserted camera.
Each axis is equipped with a DC motor coupled to an encoder, the first component
generates the movement, the second is a sensor that allows to obtain the position
of the system in degrees and create a local reference frame.
Commands must be managed via a remote control equipped with a joystick, a dis-
play, and buttons. This console must be able to be located inside the cockpit. The
working environment is that of MATLAB/Simulink, as allows excellent interfacing
between the block diagrams logic and Arduino, the chosen microcontroller. For
this project, two Arduino Mega2560 boards were used that communicate with each
other via a serial communication protocol. One manages the motor driver, their
control loop, encoders, and Hall sensors while the secondary, located inside the
console, controls the command components.

Figure 1.5: SmartGimbal mounted on the airplane

4

Chapter 2

Model-based approach

2.1 Basic knowledge

Nowadays, systems design is changing, and the Model-Based approach is spreading.
This method is intended to increase the simplicity of the design process of complex
control systems, signal processing, and communication systems, while also achieving
an increase in productivity. It is widely used in many motions control, industrial,
aerospace, and automotive applications [4].
This methodology is also applied in the design of embedded software. According to
the software development model, called V-model, each phase of software develop-
ment can be related to its test phase. This process differs from the waterfall model
because instead of descending in a straight line, after the programming phase, it
rises in the typical V shape, as shown in the next figure.

Figure 2.1: V-model architecture

5

Model-based approach

The left side invokes the verification phase, in which a static analysis is performed
without executing any type of code. On the other hand, in addition to dynamic
analysis, tests are performed on the code to determine if it meets the customer’s
expectations and needs.
Before the model is deployed to hardware for production, a few verification steps are
performed. MIL, SIL, PIL, and HIL tests are simulations, which can be performed
with the Simulink environment and are part of the Model-Based Design approach.

Model-In-The-Loop: First, a real plant model in a simulation environment is
needed. After that, it is moving on to the controller model development phase and
check this can control the plant according to the requirements. This step is called
Model-in-Loop (MIL) and the controller logic is tested on the simulated model of
the plant. If the controller works as desired, it is needed to register the controller
input and output that will be used in the verification step.

Software-In-The-Loop: Once the model has been verified in the MIL simulation,
the next phase is Software-in-Loop (SIL), only code of the controller model is
generated which replaces the block with the same name. A simulation will be
performed with the Controller block (containing the C code) and with the Plant,
which is still the software model (similar to the first step).
This step is useful to check if the controller model can be converted to code
and if it is implementable on hardware. If there is a difference between input
and output, it is necessary to go back to MIL and make any changes. If, on the
other hand, the performance is acceptable, it is possible to move on to the next step.

Processor-In-The-Loop: The Processor-in-the-Loop (PIL) test consists of de-
ploying some controller code on an embedded processor. By running a closed-loop
simulation with the simulated plant, the controller subsystem can be replaced
with a PIL block, it will be possible to identify if the processor can execute the
developed control logic. If there are any problems, it will be necessary to go back
to the previous steps to correct them.

Hardware-In-The-Loop: In a further step, is possible to have a simulated plant
model in a PC in real-time before interfacing with the real hardware, in which
there will be proper analog communications between the Plant and the Controller.
This step is known as the HIL test, the controller is typically located on a production
board/controller. It serves to identify communication channel problems, such as
attenuation and delay that could be introduced by an analog channel and can
make the controller unstable. This step is typically performed to test safety-critical
applications [5].

6

Model-based approach

2.2 Preliminary simulations
In the work carried out in the past, the so-called representation in the state space
was obtained, this was used to know the dynamics of the system to be controlled.
Unlike describing a system via a transfer function, this method made it possible
to no longer consider the system as a black box, since its internal components are
known exactly.
The state-space model is a mathematical method to represent the dynamics of a
real physical system, through the relationship between input and output, defining
state variables which, if correlated with each other, generate the n differential
equations that led to the definition of the system.
The gimbal system was treated as an LTI system, (i.e., linear invariant-time),
this was just an approximation around an equilibrium point to derive a linearized
model. To motion control, it was decided to operate with a subdivision into two
subsystems: the first dedicated to rotation around the pan angle, the second to
rotation around the tilt angle. This decision was dictated by the fact that the
actuators, which are the two DC motors, work independently of each other and
therefore are controlled by two different controllers [3].
The C code of the control elements was also generated, to be able to perform
the deployment on the Arduino board and test it with simulations in the MAT-
LAB/Simulink environment, these steps are described above as SIL and PIL.

Figure 2.2: PIL block diagram

This was the starting point for the work done in this paper. It was possible to
replace the model of the plant with the original hardware, a structure present in
the laboratory dedicated to the execution of tests. This made it possible to deal
with the interface between the microcontroller and the simulation environment but,
the most important thing was the interface between the block diagram logic (and
the code that is generated by it) and the physical used hardware elements, such as
the various types of sensors or actuators.

7

Model-based approach

2.3 Code generation
The MATLAB/Simulink workspace offers the possibility, thanks to toolboxes
present within the program and external compilers, to generate and execute C and
C++ code from Simulink diagrams, Stateflow graphics, and MATLAB functions
to be implemented on the embedded controller.
The source code that is produced is generally readable, compact, and fast, can
be used for real-time and non-real-time applications, including rapid prototyping
and hardware-in-the-loop testing. Finally, it can be tuned and monitored in the
Simulink environment or outside. Controls deployed on the real-time target can
be used to communicate with Simulink using external mode and can also provide
data exchange of process variables and block parameters to other applications [6].

Figure 2.3: Deploying code on Arduino

2.3.1 Arduino and Simulink interface
First, a preliminary step is needed, include the Add-Ons to the MATLAB/Simulink
environment. The operation is not complex and is shown in the following figure.On
the Home screen, select "Get Add-ons" in the submenu, this will open an external
page where is possible to search the desired toolboxes.

Figure 2.4: MATLAB Add-Ons

The Add-ons that have been included and used are:

• MATLAB Support for MinGW-w64 C/C++ Compiler

• Simulink Support Package per Arduino hardware

8

Model-based approach

At this point, it is possible to pass to the code generation phase in C or C++ lan-
guage from the Simulink environment. It is necessary to modify some configuration
parameters of the model by clicking on the appropriate button, which will open
the relative window.

Figure 2.5: Simulink model and setting

Starting with the Solver setting, to make the task similar to a periodic task, that
is evaluated at the beginning of each fixed time interval, this must be forced to
fixed-step. By doing so, the discrete-time integration interval can be chosen to
evaluate the system model at regular time intervals. The accuracy of the results is
inversely proportional to this value, which means that the smaller it is, the better
the accuracy, the only drawback is the more it is reduced, the longer it will take
the system to deliver the results.

Figure 2.6: Simulink solver panel

The hardware implementation panel allows a wide choice of embedded processors
on which the generated code can be uploaded. Once the microcontroller has been
established, for this project Arduino Mega2560, Simulink will take care of gener-
ating the target file of the system defined as ert.tlc, passing subsequently to the
actual generation of the code. Two Arduino boards were used for this project, an
important detail is to manually specify the COM port for the shield.

9

Model-based approach

The figure below highlights the significant steps of the procedure just described.

Figure 2.7: Simulink hardware implementation panel

Once all the configuration parameters have been set, a new tab called "Hardware"
appears, in which there is a submenu, called" Run on board (External mode) ",
which must be selected to enable the code loading function on the Arduino via the
USB connection cable. The steps to be performed are shown in the figure below.

Figure 2.8: Simulink external mode

Finally, the Monitor & Tune option allows getting an infinite time simulation, in
which some parameters can be changed in real-time, immediately verifying the
system reactions, while the Build Deploy & Start option allowing to load the code
on the embedded processor definitive so that it can be used even without a laptop
connection.

Figure 2.9: Deploy on the target hardware

10

Chapter 3

SmatGimbal system

3.1 General purpose of control system
A control system manages, commands, directs, or regulates the behavior of other
devices, the main purpose is to form a set of control actions, after which the system
will behave as desired automatic, respecting the requirements such as speed reaction,
overshoot, attenuation, generating a quality control. The control of the systems
can range from an approach to a single controller as in the case of domestic heating
to multiple solutions as in large systems defined as dynamic, such as the control of
a robot in industrial applications. There are two different approaches to a control
system: open loop and closed loop. The main difference between an open-loop
system and a closed-loop system is that the second one can self-correct while the
open-loop system does not. Consequently, closed-loop systems are often called
feedback control systems while open-loop systems are also known as non-feedback
controls. Open-loop systems tend to be simple and inexpensive as they do not
provide feedback to the controller. In other words, open-loop systems are based
solely on input and do not use the output feedback for self-correction when running
the test. Therefore, the test procedure inserted in an open-loop controller can vary
due to external disturbances, such as noise, without the operator noticing.
An example would be that of a system at a constant speed, if there is no direct
feedback to monitor this value, the speed of the machine could change during a
test for various reasons and the open-loop system does not have a feedback control
to inform the controller of these changes [7].

Figure 3.1: Open-loop block diagram

11

SmatGimbal system

3.1.1 Closed-loop method
In the closed-loop control system, the output signal has a direct impact on the
control action, this is due to the presence of a fundamental element: feedback. The
error signal produced is the difference between the input and the feedback, it is
sent to the controller to be reduced and bring the system output to the desired
value. This approach is used in control methods because can indicate the changes in
performance necessary to take corrective actions to maintain the activities necessary
to arrive on or before the requested date [8].
It consists of some mandatory elements such as the error detector, the controller, the
feedback elements, and the installation. The correct positioning of these elements
is shown in the block diagram below.

Figure 3.2: Closed-loop block diagram

However, a distinction can be made based on the sign of the feedback, specified
in the summation node, it could be positive or negative. In this project, as in the
theory of automatic control systems, negative feedback was applied.

Figure 3.3: Adding node block diagram

• Positive Feedback: A clear example is the circuit of a non-inverting amplifier,
where a part of the output voltage is connected to the input of the non-inverting
terminal through a feedback circuit using a resistor.

• Negative Feedback: These systems are used to control electronic machines
such as power generators, voltage generators, and also to control the speed of
machines and it is the approach that has been chosen.

12

SmatGimbal system

3.2 PID control technique
The PID controller is a very simple and powerful method to control a variety
of processes, its acronym stands for "Proportional, Integral, and Derivative". It
is composed of a predefined architecture for any type of system and thanks to
its simplicity of use, combined with its effectiveness, it is the most used control
algorithm in industrial applications.
From a mathematical point of view, the PID regulator is a dynamic system that at
each cycle processes an input signal called error, obtained as the difference between
the reference and the measured output, providing the control signal at the output.
This value is obtained as the sum of the following three values:

• Proportional term: it multiplies the constant Kp by the error.

• Integral term: it multiplies the constant Ki by the cumulative total error

• Derivative term: it multiplies the constant Kd by the rate of change in error
The transcription of these concepts can be represented in a mathematical expression,
generally called the PID control law [9].

u(t) = Kpe(t) + Ki

Ú t

0
e(τ) dτ + Kd

d

dt
e(t) (3.1)

Figure 3.4: PID controller in a feedback loop

The synthesis of PID controllers consists in choosing the most suitable configuration
for the application. In most cases, it is done manually through experimental tests
on the system. The tuning part is not trivial, the choice of control variables must
be weighted to minimize the error variable by the controller. The effects of each
action on any closed-loop system are summarized in the table below.

13

SmatGimbal system

Rise Time Settling Time Overshoot Steady-state error
P Decrease Small Increase Decrease

Change
I Decrease Increase Increase Eliminate
D Small Decrease Decrease Small

Change Change

Table 3.1: Effects of PID parameters on the system

Proportional action algebraically links the input e(t) and the output u(t) accord-
ing to a constant Kp, called proportional gain. In these conditions, the regulator
generates an error correction, if the constant increases, the speed of the system will
do the same. Once, a certain limit is exceeded, oscillations will be created which
will lead to a reduction instability.

The main feature of Integral action is eliminating the steady-state error caused
by the proportional block, which occurs when dealing with a reference input step.
The output of this block is proportional to the time integral of the input error e(t),
which means that thanks to the feedback, is returned to the input and mitigates
the influence of the reference signal r(t) on the system. The integral of the error
increases as long as it is positive and decreases when e(t) takes negative values.
For this block, the variable term to be defined is the integration constant Ki. By
increasing the constant, the integral will rise faster towards the error, paying for
this speed with strong fluctuations that take time to settle, vice versa when it
decreases and tends to zero it results in its elimination.

The function of Derivative action consists in deriving the signal found at its
input; therefore, it takes into account the rapid variations of the error and tries, in
some way, to anticipate future corrective action. In practice, since it cannot be used
as a single action to insert a constant reference due to the zero it introduces into
the origin, its function is realized in a reduction of the signal oscillations around the
output value. The properties of the derivative are those of increasing proportionally
to the rate of change of the quantity to which it refers, therefore in the case in
which the signal r(t) assumes a step shape, the derivative action will act in such
a way as to follow the error and correct it quickly. Unfortunately, the derivative
term introduces the drawback of amplifying signals with harmonic content at high
frequencies. Since generally, this type of signal corresponds to electromagnetic
noise superimposed on the useful signal, the use of the derivative term must be
evaluated with caution.

14

SmatGimbal system

In addition to the classic PID configuration, other combinations are also used
industrially, each with its peculiarities and specific to the data processes.
The basic configuration is composed of the P action, which is used in systems in
which deviations between the steady-state value of the controlled quantity and the
desired one are allowed.
The combinations between P and I modules allow for greater accuracy without
worsening the degree of stability of the system, combined with a greater response
speed. They are used when a modest steady-state error is required together with a
good response speed to variations in stress; therefore, they are inserted above all
in systems in which load variations occur slowly. Sudden load changes can lead
the system to instability when the coefficient of the integral action is not chosen
appropriately.
The PD regulators tend to anticipate the error and therefore can be used in systems
in which there are sudden variations in load such as in some control systems for
servomotors, or even in systems that do not have stability problems. but that only
requires a good response speed.
Finally, PID is the controllers are used in slow processes, which do not need im-
mediate responses to the solicitation, where however the presence of oscillations
creates problems [10].

3.2.1 Controller the in discrete-time domain
Although studying the controller in the continuous (or analog) domain makes it
easier to understand what is happening to the system, to generate the C or C++
code to be implemented on an embedded processor, like Arduino, is necessary to
work in a discrete-time environment.
In this way, by defining a time interval, it is possible to sample data regularly. The
control law is changed as follows:

u[k] = Kp

e[k] + T

Ti

kØ
j=0

e[j] + Td

T
(e[k] − e[k − 1])

 (3.2)

Note that, T is the time step or sampling interval, the proportional term is just
the gain multiplied by the discrete error signal, now the integral term becomes a
summation, and the differential term is simply the difference between the error
current and previous error.

15

SmatGimbal system

3.3 Closed-loop control for DC Motor
3.3.1 Dynamic model
Establishing the mathematical model that describes the system to be controlled is
the basis for the analysis and design of control systems. It starts from the physical
equations to obtain mathematical expressions that relate inputs, outputs, and other
internal variables of the system. This approach, then, was used to relate the supply
voltage of a DC motor to its speed [11].

The first parameter represented is the input voltage Va, which supplies the series
between the electrical equivalent of armature coil La and the armature resistance
Ra. The second voltage e is opposite to the source because it referred to the back
emf (electromotive force), the variable J stands for the inertia moment and finally,
f is the friction coefficient.

Figure 3.5: Equivalent Circuit of a DC motor armature

If the torque T increases, the armature current also does the same, exactly by a
constant Kt. Moreover, the increase in motor emf produces an increase of rotational
velocity ω, by a constant Ke.

T = Ktia

e = Keω
(3.3)

By a combination of Newton’s law with Kirchhoff’s law is possible to obtain the
mechanical and electrical behavior of DC motor:La

dia

dt
+ Raia = e − Keω

J d
dt

+ fω = Ktia

(3.4)

In control systems, analysis and design of technologies are applied for development
in real-time. The analysis of DC motor can be done easily by Laplace transform.LasIa(s) + RaIa(s) = E(s) − Kesω(s)

Jsω(s) + fω(s) = KtIa(s)
(3.5)

16

SmatGimbal system

Figure 3.6: Closed-loop model of DC motor

The dynamic model shown in the figure above, relating the supply voltage to the
speed of the motor. The simulation parameters could be set on Simulink, and the
simulation is run to see the step response in presence of a PID controller[12].

3.3.2 PWM speed control
The Arduino microcontroller is unable to produce true analog output signals, thus
the board does not have a driver necessary to create a voltage. To compensate, the
PWM technique is used.

Figure 3.7: Pulse With Modulation

17

SmatGimbal system

Pulse Width Modulation (PWM), where the amplitude is the duration of the pulse,
is a technique of varying the duration of a square wave pulse to control the power
supply of any connected device. Using this technique is possible to simulate an
analog output from a digital one. Generally, a square wave is obtained with a
succession of on (digital high) and off (digital low). So, to replicate the full range
of analog values is needed to rely on the time for which a pulse is HIGH and LOW.
However, there are two important parameters for a PWM signal: the duty cycle
and the frequency.
A duty cycle represents the fraction of a period in an active signal. Specifically, it
is the percentage deriving from the ratio between the amplitude of the pulse signal
and the total period. Frequency, on the other hand, is defined as the number of
oscillations of a wave per unit of time. Once the period is known, the frequency is
calculated using the following formula: Frequency = 1/Period. This value refers to
the speed at which output can be obtained from the device.
Microcontrollers such as Arduino, not being able to produce an analog voltage,
that is a voltage that varies continuously from 0 volts to Vcc, are already equipped
with PWM outputs, thus facilitating the task. At the pins will be passed a value
between 0 and 255 corresponding to a duty cycle varying between 0% and 100% of
a square wave [13].

The direction of rotation can be controlled by reversing the motor current flow, the
most common method of doing this is by using an H-Bridge.

Figure 3.8: H-Bridge structure

This circuit contains four switching elements, transistors or MOSFETs, with the
motor in the center, forming a configuration similar to H. By simultaneously
operating two particular switches the direction of the current flow changes, with it
also the direction of rotation of the motor. Once these two methods, PWM and
H-Bridge are combined, is possible to have complete control over the DC motor
[14].

18

SmatGimbal system

3.4 Sensor operation
3.4.1 Hall effect
Hall Effect Sensors are devices that are activated by an external magnetic field,
this has two important characteristics: the flux density B and polarity (North
and South Poles). The output signal from a Hall effect sensor is the function of
magnetic field density around the device. When the magnetic flux density around
the sensor exceeds a certain pre-set threshold, the sensor detects it and generates
an output voltage called the Hall Voltage, VH .
This output voltage can be quite small, only a few microvolts even when subjected
to strong magnetic fields so most commercially available Hall effect devices are
manufactured with built-in DC amplifiers, logic switching circuits, and voltage
regulators to improve the sensors sensitivity, hysteresis, and output voltage. This
also allows the Hall effect sensor to operate over a wider range of power supplies
and magnetic field conditions [15].

Figure 3.9: Hall effect sensor

The Hall effect sensors, used as limit switches in this project, provide an analog
output also called linear. The output signal is then taken directly from the output
of the operational amplifier with the output voltage directly proportional to the
magnetic field passing through the Hall sensor.
During the calibration phase, the system rotates automatically until the magnet,
placed integrally with an axis of movement of the gimbal and strictly at a fixed
distance, is detected by the sensor. This automatism is made possible by the reading
of the output voltage by the Arduino DAC, subsequently giving the stop command
to the motor when this digital value was below a predetermined threshold.

19

SmatGimbal system

3.4.2 Magnetic encoder
The encoder is a displacement and speed transducer that transforms an angular or
linear mechanical movement into a series of digital electrical pulses. These electrical
impulses can be used to control the mechanical displacements that generated them
and to derive the corresponding speed of displacement.
In magnetic encoders, a signal detection system is used based on the variation of
the magnetic flux generated by a magnet placed in rotation in front of two Hall
sensors generally fixed on a PCB [16].

Figure 3.10: Magnetic encoder

By simultaneously tracing the behavior of the two output channels, it is possible
to determine the direction of rotation, since they are out of phase with each other
by 90 degrees, if the encoder rotates clockwise, output A will precede the output
B, otherwise vice versa.

Figure 3.11: Two channel of encoder

The advantage of the magnetic system is mainly the absence of contact in the
detection, which prevents wear of the device making it excellent from an economic
point of view, as it does not require maintenance. These encoders are thus suitable
for applications in harsh environments that require high strength, speed, and
thermal resistance while ensuring reliability [16].

20

SmatGimbal system

3.5 MATLAB/Simulink implementation
By combining the concepts just described it is possible to create an actuation
system for the gimbal. The closed-loop guarantees optimal control in combination
with the encoder which detects the speed and re-enters it into the system by placing
itself in feedback, while the H-bridge takes care of reversing the direction of rotation.
Everything is controlled remotely via the joystick which sends signals relating to
the speed according to how it is moved.
The block diagram shown below shows how the components interact with each
other in a closed loop.

Figure 3.12: General closed-loop of DC motor

The implementation in MATLAB is the transcription of the previous scheme. The
encoder function is capable of counting the pulses through the use of Arduino
interrupts, this does not allow to lose any impulses. This data is sent to an
adjustment block, which through appropriate transformations returns a speed value
in RPM and a value in degrees. With the PID controller block, it is possible
to choose the discrete-time configuration in advance and thus make it easier to
perform the parameter tuning. The output block is the interface between the
simulation and the real system, it allows the sending of an 8-bit signal to the DC
motor allowing the application of the PWM technique.

Figure 3.13: Closed-loop Simulink model

21

SmatGimbal system

3.6 Serial communication protocol
A topic covered in this project, besides the closed-loop control for the actuation
system, is the issue of serial communication between two Arduino boards. This
concept made it possible to divide the control console module from the rest of the
system, avoiding both the passage of long power cables and the noise that could be
created on the analog lines.
Serial communication is generally based on a stream of bits transferred over a
single cable, in which the bits are transferred one at a time. Often, there is a
second communication channel called CLK (clock) which marks the reading time
of every single bit. Therefore, the serial communication is based only and always
on only two cables. Many types of serial protocols have followed one another to
largely meet the needs. Among these, some, such as USB (Universal Serial Bus)
and Ethernet, have been very successful, while others are better known in the world
of electronics such as SPI and I2C. In general, all serial protocols can be divided
into two groups: synchronous and asynchronous.

Figure 3.14: Serial communication

Synchronous serial communication is always coupled with a CLOCK signal so that
all devices on the serial bus share a common clock. This particular configuration
allows a simpler and often faster data transfer, but also requires an extra channel
to carry out the communication. I2C and SPI are two synchronous serial commu-
nication protocols. Asynchronous serial communication does not use an external
CLOCK signal and therefore requires fewer I/O channels for communication. At
the expense of this, a reliable system for transmitting and receiving data must
therefore be implemented.
The asynchronous serial protocol, like the one used, is based on an intrinsic mecha-
nism of some rules that must be respected to make the data transfer more reliable,
the data must therefore respect a certain sequence called framing.

22

SmatGimbal system

Figure 3.15: Data package

Baud Rate is a rule that specifies how fast data is sent over the serial line. It is
generally expressed in bps (bits per second) and its inverse value will indicate how
much time a single bit takes in data transmission. This avoids the use of CLOCK
since the length and speed of each single data bit are known in advance.

Data to be transmitted is then divided into blocks and incorporated into serial
packets where other particular sequences of bits are also added. The number of
bits inserted in every single packet can vary, generally between 5 and 9 bits, that is
the length of a byte. Therefore, first of all, the two communicating devices must
be configured to accept and interpret the same quantity of bits, subsequently, the
choice of the most significant bit MSB (most significant bit) must also correspond.
That is, they will have to agree whether this will be the first or the last of the bits
transmitted.

Synchronization bits are divided into start bits and stop bits and define the
beginning and the end of each data packet. The start bit is always indicated when
the data line is idle goes from state 1 to state 0, while the stop bits restore the idle
state by returning the line to state 1.

Checksum is a very simple method to check for errors during transmission since
it has only two possible states: even or odd. It consists of adding all the bits of the
message being transmitted and storing the resulting value in the sent frame. To
verify the integrity of the message it will be sufficient to perform the same sum
operation on reception and compare it with the checksum stored in the frame. If
the two values coincide, the data can be considered intact [17]

23

SmatGimbal system

The used approach is a dual asynchronous serial communication to send the control
data on one line and the value of the degrees to be shown on the display on the
other. The following figure shows this principle, an important notion is that the
two boards must have the ground in common.

Figure 3.16: Duplex communication

Below is the realization of the principle described above, the serial port used is
Serial-3 therefore with pins 14 and 15.

Figure 3.17: Arduino physical connections

24

Chapter 4

Software development

4.1 General concepts of software architecture
This project was entirely developed in the MATLAB/Simulink environment, using
the 2021b release. As mentioned previously, additional packages have been used,
the most important in this phase is the Simulink Support Package for Arduino
Hardware since it contains the main blocks for interfacing between the hardware
and the software. The next figure shows the “common” section of this library,
which is the one used.

Figure 4.1: Simulink Support Package for Arduino Hardware

25

Software development

Since two Arduino boards were used that communicate with each other via a serial
protocol, the software structure was mainly divided into two models. Simulink
offers the possibility to bind only one file to each board by specifying, as already
said, the COM port manually. The advantage of this type of approach is that it
makes the composition of the general project more understandable, in this way
the first model is loaded on the Arduino which deals with the management of the
movement while the second is loaded on the board located inside the console.

4.2 Motion control model
The following figure shows the Simulink architecture for the motion system, it
consists of four fundamental parts:

- Input management on the left side (received in serial)

- Calibration phase in the upper central part

- Motors control in the central part

- Outputs management on the right side

Figure 4.2: Motion control global overview

The system is controlled by a general enabling signal from a button placed on the
console, its role is to activate the calibration phase when its status is high and the
movement phase via joystick when the status is low.

26

Software development

4.2.1 Input signals
The left side, containing the system inputs, has two Analog Input blocks to read
the values from the Hall sensors and a Serial Receiver block for the data coming
from the console. The latter is equipped with a status signal that indicates through
a Boolean variable when the transmission is active or not, it is used as an enabling
of the subsystem to allow data flow.

Figure 4.3: Input signals

The Decoder Protocol block is the only thing present inside the subsystem Receiver,
it allows the reception of data, deciphering which symbols are used at the beginning
and the end of the communication, and verifying the checksum. It also has a status
signal called isValid which was used as an enable for further verification. There
can be many problems with the serial transmission, these measures require that
only the correct data strings be evaluated.

Figure 4.4: Serial signal transmitter

27

Software development

4.2.2 Calibration phase
In the calibration phase, the value of the Hall sensor is read and subsequently
filtered through the use of a Median Filter. What is obtained is compared with a
threshold, if it is greater the output will be 1 otherwise it will be 0. In the case of
a unitary value, it will be the leftmost subsystem that will be enabled, containing
a closed-loop system in which the speed and direction, thus causing the system to
rotate at a predetermined speed and direction. Movement is guaranteed until the
digital value of the sensor voltage obtained from the ADC falls below the present
threshold enabling the rightmost subsystem, which contains two zero constants to
stop the motor.

Figure 4.5: Calibration components

The next figure shows the content of the left subsystem, that is the closed control
loop equal to that described in the previous chapter.

Figure 4.6: Closed-loop in calibration part

28

Software development

4.2.3 Motion control
The set of these blocks, in the central part of the model, includes a series of very
important functions to have complete control of the actuation system. A first
subsystem resets the value counted by the encoder once the calibration phase ends,
a second subsystem manages the two closed loops that a single motor has for
direction control, and finally a set of two functions that manipulate the output
data and prepare it for sending to the display. The figure below shows what has
been done for the first motor, as far as the second one is concerned, the process is
identical, the only difference being in the manipulation part of the data sent to the
display.

Figure 4.7: Single-motor motion control

Encoder calibration

The "soEncoder" block implements the interface with the encoder sensor, internally
calls the Arduino functions for managing interrupts, in this way the microcontroller
temporarily interrupts the normal flow of code to execute these instructions. This
is a very useful method to ensure that no impulses are lost. This function is enabled
only on certain Arduino pins, the first sensor is connected to pins 2 and 3, while
the second to pins 18 and 19.
Since this function starts capturing pulses as soon as the program is started, those
during the calibration phase are also counted, this value must therefore be reset
to zero when a falling edge is detected on the enable signal. The process that is
carried out in the “Encoder_Calibration_M1” subsystem consists in subtracting
itself from the value that was detected.

29

Software development

Figure 4.8: Encoder calibration

Two direction control

Inside the Control_M1 block, the two subsystems are containing the two closed
loops for motor control, each of which receives in input both a signal from the
joystick and the encoder value and output the values for the speed control. The
first subsystem also has an output to monitor the grades.
The Joystick input depends on its movement it has been converted into a signal
from -255 to 255 with the zero-value corresponding to the rest position of the
command, in this way it is possible to know which direction to give to the motor,
whether clockwise or counterclockwise. The part with negative numbers is taken
as an absolute value by replicating the check carried out on the positive part.

Figure 4.9: Two-direction control

30

Software development

Closed-loop of DC motor

The motor control present in the PID_CW_M1 subsystem and described below
is replicated twice, once per direction, for each motor, for a total of four closed
loops. The principle on which they are based in the same as described at the
end of the previous chapter. The value coming from the joystick is scaled using a
constant, as a speed value must be supplied to the input system, while the encoder
sensor positioned on the feedback branch reports the actual speed of the system in
the summing node. The difference between these two values is processed by the
controller, which has the task of regulating the system to bring the error to zero
and outputs a command for the motor.

Figure 4.10: Closed-loop of DC motor

The use of the PID block in Simulink facilitates the implementation of the con-
troller’s mathematical function and simplifies general system modifications and
parameter tuning. It is possible to choose in advance whether to operate in the
continuous or discrete-time domain, in addition to the fact that, from a drop-down
menu, it is possible to set the type of combination to be applied (PID, PI, PD,
only P or only I), having only to act on the numerical parameters.
The figure below shows the screen of the properties of the block just mentioned,
through this it is possible to carry out ad-hoc customization for each circuit. In
this project, a controller with the following characteristics was chosen:

- Discrete time domain, with the sampling time unspecified but set to -1, by
default, this means that the block inherits the sampling time from the model
settings.

- Proportional-Integrative type (PI)

- A proportional action with constant Kp equal to 10 and an integrative action
with constant Ki equal to 0.002

31

Software development

Figure 4.11: PI controller parameters

The following image represents an example of how the output can follow the input
when the command is given by the joystick.

Figure 4.12: Input-output response

32

Software development

Encoder adjustment

A focus should be made on the subsystem that deals with the conversion and
adjustment of the encoder data (Figure 4.10) because, to have a speed value in
RPM as feedback, it is necessary to manipulate the data starting from the count
of pulses coming from the sensor.

Figure 4.13: Encoder adjustments

The first subsystem contains a gain that divides the count by a factor of four since
the encoder is in quadrature. The second subsystem transforms the output data
from the first into degrees, multiplying by 360 and dividing by a constant which is
given by the product of the number of pulses per second and the motor reduction
factor. This is useful for the next step but also for sending data to the display.

Figure 4.14: Derive Degrees

Finally, the last step is to transform the obtained degrees into a speed value, this
is done using the speed measurement block, a component present in the default
Simulink library.

Figure 4.15: Speed conversion

33

Software development

4.2.4 Degree manipulation
Pan angles Adjustment

The last two blocks are shown in figure 4.7 respectively Degree_adjustment1_M1
and Degree_adjustment2_M1 are used, as previously mentioned, for data trans-
mission to the display. The first subsystem contains the addition of a constant,
this value considers the position of the system after the calibration phase since at
the end of it the system begins to count the degrees from zero, this is due to the
arbitrary position of the Hall effect (located based on physical limits). A function is
then implemented that allows to resetting the value once a full circle is completed.

Figure 4.16: Degrees adjustment

The code written inside the Matlab Function,mentioned in the previous figure, is
detailed below.

1 f unc t i on y = fcn (u , count)
2

3 i f (u>0)
4 i f (u>360)
5 y=u−count ∗360 ;
6 e l s e
7 y=u ;
8 end
9

10 e l s e
11 i f (u < −360)
12 y=u+360∗count ;
13 e l s e
14 y=u ;
15 end
16 end

34

Software development

The second block performs multiplication by a factor of ten, bringing the data,
which assumes ±360 as its maximum value, in the order of thousands. This passage
is used for the serial transmission, when receiving the data, it will be enough to
divide by the same quantity obtaining a floating-point number, thus avoiding the
transmission of data of the float type.

Figure 4.17: Preparing data

Tilt angles adjustment

For the second motor, there is no need to reset the degree count, as the system
must be limited between ±110 degrees.

Figure 4.18: Degree adjustment for the second motor

Therefore, it only includes the constant to be added due to the positioning of the
Hall sensor and the method of data transmission via serial. The difference between
the previous one consists of two outputs: one for displaying and one for monitoring
the position to limit it.

Figure 4.19: Adjustment and preparing data

35

Software development

4.2.5 Output command
First motor

Finally, on the right side of the Simulink model, all system outputs are implemented.
The command of the motors, concerning both the calibration phase and the gear
movements, consists of a Matlab function that receives these as inputs and provides
the correct output based on the state of the enable signal.

Figure 4.20: DC motor output menage

The code written inside the Matlab Function, shown in the previous figure, is
described below.

1 f unc t i on [motor_cw_sense , motor_ccw_sense] = fcn (en , motor_cw_cal ,
motor_ccw_cal , motor_cw_speed , motor_ccw_speed)

2

3

4 i f (en==0)
5 motor_cw_sense=motor_cw_cal ;
6 motor_ccw_sense=motor_ccw_cal ;
7

8 e l s e
9 motor_cw_sense=motor_cw_speed ;

10 motor_ccw_sense=motor_ccw_speed ;
11

12 end

36

Software development

This solution has been applied to have a single signal be sent in input to the PWM
blocks. Note that only some Arduino pins allow sending this type of signal, the
following figure shows it.

Figure 4.21: Output blocks

Second motor

For the second motor, the configuration is the same, the only difference is that
there is an additional input that brings the numerical value in degrees to allow the
function to stop the motors after a certain threshold, exactly -110 and +96 degrees.

Figure 4.22: Second motor output menage

37

Software development

This function is slightly more complex than the previous one as it manages the
possibility of stopping the motor running after 96 degrees making sure that afterward
it can only be moved clockwise, vice versa, once the -110 degrees have been exceeded,
the system can only rotate in a counterclockwise direction.
The outputs of this function are then connected to two Arduino PWM blocks, as
shown in figure 4.21, specifically to pins 10 and 11.

1 f unc t i on [motor_cw_sense , motor_ccw_sense] = fcn (en , motor_cw_cal ,
motor_ccw_cal , motor_cw_speed , motor_ccw_speed , pos)

2

3

4 i f (en==0)
5 motor_cw_sense=motor_cw_cal ;
6 motor_ccw_sense=motor_ccw_cal ;
7

8 e l s e
9

10 i f (pos > 0)
11 i f (pos < 96)
12 motor_cw_sense=motor_cw_speed ;
13 motor_ccw_sense=motor_ccw_speed ;
14 e l s e
15 motor_cw_sense=motor_cw_speed ;
16 motor_ccw_sense=0;
17 end
18

19 e l s e
20 i f (pos > −110)
21 motor_cw_sense=motor_cw_speed ;
22 motor_ccw_sense=motor_ccw_speed ;
23 e l s e
24 motor_cw_sense=0;
25 motor_ccw_sense=motor_ccw_speed ;
26 end
27 end
28

29 end

38

Software development

4.2.6 Serial transmission to Display
The last part present in this model is the one dedicated to sending data via the
serial protocol. In this phase, three data are sent, two numerical values relating to
the angles of PAN and TILT and one of the Boolean types. The latter is the enable
signal that will allow the lighting of a LED located in the command console.

Figure 4.23: Transmitter section

The subsystem contains the Simulink block called Protocol Encoder, which takes
care of data packaging and sending. In this phase, it is possible to choose both
the start and end communication characters and the presence or absence of a
checksum. These values must agree with those present in the Protocol Decoder,
already mentioned in sub-paragraph 4.2.1.

Figure 4.24: Serial communication interface with Arduino

It is important to note that, both in the serial receiver block and in the serial
transmitter block, the Arduino pins must not be specified but only the serial port,
in this case the third, which corresponds to pins 14 and 15. The wiring must be
done in based on which device is in charge of transmitting or receiving.

39

Software development

4.3 Remote control model
The second file that is part of the architecture of this project is deployed on the
second Arduino, the one located inside the command console. The next figure
highlights the two parts division:

- Input commands on the left (sent in serial)

- Outputs management on the right (received in serial)

Figure 4.25: Remote control global overview

The two analog inputs of the Joystick, which represent the movement on the X and
Y axes, converge on the left side. To these are also added the four buttons, which
have been interfaced through the use of the support package that allows adding
the Pull-up resistor to the Arduino digital pins.

On the other hand, again through serial communication, the data arrives at the
console and is enabled by the transmission status as already mentioned before.
The data in question are the system degree values and the control variable for the
calibration LED.

40

Software development

4.3.1 Joystick and buttons input signals
Once the correct transformations have been made on the signals of the joystick and
buttons, they all converge in a protocol Encoder, this allows serial transmission
and the use of them in the main process.

Figure 4.26: Joystick and buttons blocks

Joystick details

Since the joystick is consists of two potentiometers, the input signal is the voltage
value detected by the Arduino ADC, from this digital signal it is possible, by
making adjustments, obtaining an output between -255 and 255. The process below
describes in detail the development made on one axis, as far as the other axis is
concerned, the procedure is the same.

Figure 4.27: Joystick signals interpretation

41

Software development

The first step is to divide the output by a coefficient of two, this occurs in the first
subsystem. As shown in the next figure, all conditions are included that translate
into code form if the joystick handle is moved in one direction or the other, their
outputs are connected to four different subsystems.

Figure 4.28: Joystick conditions

The two at the bottom left both contain two null constants, while the two on the
right show the transformations used to obtain the desired output. The signal is
not rescaled between -255 and 255 but is interpreted as 255-0 in one direction
and 0-255 in the opposite. For the first condition, the signal is subtracted from a
constant of 255 to obtain the maximum value when the lever is tilted to the left,
for example, and a null value when it is in the center. In the rightmost subsystem,
the exact opposite happens, a constant is subtracted from the signal to have the
opposite behavior. A multiplication factor of four is added to both, this is because
the potentiometers do not use their entire range of values.

Figure 4.29: Joystick data adjustment

42

Software development

Button details

The buttons used cannot maintain their state, they need a logic that makes them
behave like switches. It starts from the output that produces the Digital output
block of a single button, the digital signal can only have two states, High or Low.
However, being connected between ground and a digital pin, the logic of functioning
is inverse, they produce zero if they are pressed.
For simplicity, a "NOT" block is positioned at the beginning to bring everything
back into the classic logic. The operation is quite simple when the signal has a
rising edge the rightmost subsystem forces the output to 1, and since the signal
returns to zero when the button returns to the rest position, a subsystem takes the
output state and through a memory block it brings the actual output to the high
state. The last subsystem at the bottom compares the output with the input signal,
if they are all two 1s for an instant it means that the button has been pressed again
and the output must reset, this simulates the behavior of a switch.

Figure 4.30: Single button model

Buttons often generate spurious open/close transitions when pressed, due to me-
chanical and physical problems: these transitions can be read as multiple presses
in a very short time, detected by the microcontroller, which can test the state of
a button up to a few million times per second. The debounce means checking
the status in a short period to make sure that the button is pressed definitively.
Without debouncing, pressing the button once can cause unpredictable results.
The simplest hardware solution, which works most of the time, is the hardware one.
It is enough to implement a resistor and a capacitor. It is a space-saving solution
that uses low-cost components [18].

43

Software development

A second solution, the one adopted in this project is software development, the
Stateflow below shows how this is done. The Debouncer chart contains an interme-
diate state called Debounce. This state isolates transient inputs by checking if the
signal SW remains positive or negative, or if it fluctuates between zero crossings
over a prescribed period.
If SW has been positive for longer than 0.07 seconds, the switch moves to state
On, but if SW has been negative for longer than 0.07 seconds, the switch moves to
state Off. Moreover, when SW fluctuates between zero crossings for longer than
0.4 seconds, the switch moves to the state off. Fault, isolating SW as a transient
signal and giving it time to recover [19]

Figure 4.31: Stateflow of debounce

44

Software development

4.3.2 MATLAB-Arduino Display interface
The incoming data enters the Protocol Encoder block, which, as already mentioned,
decrypts the packet based on the start and end communication characters. The
isValid signal is again used as an additional check.

Figure 4.32: Serial signal receiver

The first output, referred to as the LED, has been separated as it is simply connected
to an Arduino digital pin, the other two are those that represent the angles of
PAN and TILT. They are first divided each by a factor of ten, following the logic
mentioned before, thus obtaining a floating-point number to be passed to the
interface function with the display.

Figure 4.33: Display interface

45

Software development

The interface between Arduino and Simulink, as regards the display, takes place
through the use of an S-Function Builder that allows writing the C code by creating
an environment similar to that of the Arduino IDE. Here there are two default
functions which are called "void setup" and "void loop", the first contains the
definition of the variables, the second contains the program that will be repeated
in a loop.
Initially, the useful libraries are defined, inside a MATLAB_MEX_FILE, sub-
sequently, in the UPDATE section the starting points of the display cursors are
defined. The numeric input data is transformed into strings in the OUTPUT
section and finally printed. Thanks to this technique it is possible to update the
whole string avoiding the flickering phenomenon.

1 /∗ Includes_BEGIN ∗/
2 #inc lude <math . h>
3 #inc lude <s t r i n g . h>
4 #inc lude <s t d l i b . h>
5 #i f n d e f MATLAB_MEX_FILE
6 #inc lude " L iqu idCrys ta l . h "
7 #inc lude " L iqu idCrys ta l . cpp "
8

9 Liqu idCrys ta l l cd (25 ,27 , 33 ,35 ,37 ,39) ;
10

11 #e n d i f
12 /∗ Includes_END ∗/
13

14 void LCD2_Start_wrapper (real_T ∗xD,
15 SimStruct ∗S)
16 {
17 /∗ Start_BEGIN ∗/
18 /∗ Custom Star t code goes here . ∗/
19 /∗ Start_END ∗/
20 }
21

22 void LCD2_Outputs_wrapper (const real_T ∗ char_val1 ,
23 const real_T ∗ char_val2 ,
24 const real_T ∗xD,
25 SimStruct ∗S)
26 {
27 /∗ Output_BEGIN ∗/
28

29 i f (xD [0] ==1)
30 {
31 #i f n d e f MATLAB_MEX_FILE
32 char s t r 1 [1 0] ;
33 l cd . se tCursor (5 , 0) ;
34 d t o s t r f (char_val1 [0] , 6 , 1 , s t r 1) ;

46

Software development

35 l cd . p r i n t (s t r 1) ;
36

37 char s t r 2 [1 0] ;
38 l cd . se tCursor (5 , 1) ;
39 d t o s t r f (char_val2 [0] , 6 , 1 , s t r 2) ;
40 l cd . p r i n t (s t r 2) ;
41

42 delay (400) ;
43 #e n d i f
44 }
45 /∗ Output_END ∗/
46 }
47

48 void LCD2_Update_wrapper (const real_T ∗ char_val1 ,
49 const real_T ∗ char_val2 ,
50 real_T ∗xD,
51 SimStruct ∗S)
52 {
53 /∗ Update_BEGIN ∗/
54 i f (xD [0] != 1)
55 {
56 #i f n d e f MATLAB_MEX_FILE
57 l cd . begin (16 ,2) ;
58 l cd . se tCursor (0 , 0) ;
59 l cd . p r i n t ("M1: ") ;
60

61 l cd . se tCursor (0 , 1) ;
62 l cd . p r i n t ("M2: ") ;
63 #e n d i f
64 xD [0] =1;
65 }
66 /∗ Update_END ∗/
67 }
68

69 void LCD2_Terminate_wrapper (real_T ∗xD,
70 SimStruct ∗S)
71 {
72 /∗ Terminate_BEGIN ∗/
73 /∗ Custom Terminate code goes here . ∗/
74 /∗ Terminate_END ∗/
75 }

47

Chapter 5

Test bench environment

5.1 Global hardware configuration
Each component used for the realization of this project has been individually tested
on a test bench to study both its functioning and its interface with the MATLAB
software. Once the compatibility with the other components was also verified, it
was possible to wire up the system and perform more complex tests.
The figure below shows the complete wiring diagram with all components and
related wiring.

Figure 5.1: Complete connections scheme

Being composed of two parts connected, for a factor of clarity, the diagrams related
to the implementation of the actuation system and the console are shown separately
in the following sections.

48

Test bench environment

A wooden structure was created as a support for the gimbal shell to study its
behavior in a static environment, also making sure it is in the same position as
when it will be positioned under the wing of the airplane.

Figure 5.2: Side view of test bench

The top view shows the console on the left side and the various connections made
on the right side. The concept is to separate the test circuit and the console just
as it is.

Figure 5.3: Top view of test bench

49

Test bench environment

5.2 Gimbal hardware configuration
The figure below is an overview of the test bench regarding the interim connections
of the actuation system.

Figure 5.4: Detailed motors connections

The circuit below is a representation of the gimbal motion control connections, this
drawing allows to detail clarifying the wiring system.

Figure 5.5: Motors connections scheme

50

Test bench environment

5.3 Console hardware configuration
The console had been assembled previously but did not have the display, this
component was added in this project together with the strengthening of the welds
and the fixing of any moving parts concerning internal connections, in this way the
internal components should be resistant to vibrations.

Figure 5.6: Remote console

Since cable management was done inside the console, the diagram below clearly
shows all the connections between the components.

Figure 5.7: Console connections scheme

51

Chapter 6

Development of a PCB

6.1 Preliminary concepts
To complete the work, it was decided to create a printed circuit, passing from a test
bench solution to a complete solution that would become plug and play and could
be allocated within the SmartBay platform to also carry out in-flight tests. The
request was to design a board in which the Arduino and the motor driver could be
plugged, and which was able to contain adequate connectors to ensure that the
connections between the components resist the vibrations of the aircraft.

For this purpose, it was decided to operate Fusion 360, a program of the Au-
todesk suite. This is a versatile CAD package with all the needed features to
develop products, from concept to design verification to manufacturing with both
traditional and digital tools, such as 3D printing [20].
Autodesk also included Eagle, the graphic editor for schematic and circuit board
design, in Fusion 360. This integration made it possible to combine the functionali-
ties of mechanical CAD and electronics. Eagle is designed software for creating
electrical diagrams and PCBs. Inside, it includes some easy-to-use features, in-
cluding schematic editor, layout editor, auto-router, accessible library content. In
particular, the schematic editor turns ideas into reality with the schematic capture
functionality, while the layout editor brings projects to life with intuitive tools for
creating the printed circuit board (PCB) layout. The software has an intuitive
interface and, in addition, also includes the complete suite of SPICE simulation
methods, which allows validating the performance of the circuits created [21].

52

Development of a PCB

6.2 Project sizing
The calculations for creating the working area, that is the actual PCB size, were
made based on the top view of the gimbal system. With this approach it was
possible to choose the actual shape it had to have, positioning the fixing points
correctly so as not to clutter the parts already present and also making sure to
have the right space for the allocation of the components.
As a further test, a model was also made with the 3D printer before sending the
prototype of the board to be built.

Figure 6.1: Workspace model

53

Development of a PCB

Electric scheme

The wiring diagram highlights all the connections between the various components
chosen and used, in this section two important libraries have been added, the
Arduino footprint and that of the connectors. The connectors were a very delicate
matter because it was necessary to choose correctly sized elements in terms of
amperage, easy to install on the board but resistant above all. Therefore, the most
suitable connectors for this task were searched in the Molex company catalog.
The connectors that have been chosen are the Mini-fit series by Molex, equipped
with a hook closure to ensure that they resist vibrations. The following figure shows
an example of a 12-way 2-row connector, used for the wire to board connection of
the slip-ring.

Figure 6.2: Molex header connector

An important feature is that of being able to choose the width of the tracks from
the wiring diagram, in this way all the connections to the power supply circuit
have wider tracks. The following figure shows the entire wired electrical circuit.

Figure 6.3: Electrical connection scheme

54

Development of a PCB

Wires routing

The auto-routing function can automatically generate the tracks, based on the
connections made in the previous wiring diagram. By making an effective connection
between the two files, the one with the PCB and the one containing the circuit, it
is possible to manually position the components in the designed workspace.
The figure below shows the product of this function with small manual changes to
avoid artifacts, the red traces represent those in the upper part of the board, while
the blue ones are found in the lower part.

Figure 6.4: Auto-routing product

55

Development of a PCB

Realization

Once all the operations described above have been completed, it is possible to
generate the Gerber file from the PCB routing, this file contains all the information
of the board and is what will be given to the company that will take care of the
molding. Finally, the following figure shows the preview of what will return after
printing.

Figure 6.5: Print preview

56

Chapter 7

Camera implementation

7.1 Video stream management
Blackmagic’s Micro Studio Camera 4K is a miniature Super 16mm professional
digital film camera that is perfect in any location, the body of the camera is slightly
larger than the micro 4/3 lens mount, keeping the design compact as possible, but
with maximum professionalism. The basic structure has been made of magnesium
alloys, which make the camera light, strong, and durable for any purpose.
There is no SD memory, so it does not have the possibility to record internally and
has no built-in module to preview what is being filmed. It is a sensor with a lens
mount and a few outputs, but that makes it qualified for this application [22].

Figure 7.1: Blackmagic Micro Studio Camera 4K

57

Camera implementation

The sensor offers 1080 HD resolution and an incredibly dynamic range of up to 13
stops. Unlike DSLRs and sports cameras, whose limited dynamic range tends to
dampen light and shadow, the Blackmagic Micro Studio Camera 4K delivers crisp,
clear images without compromising shadow detail. With a sensitivity of ISO 1600,
quality is always flawless even in poorly lit conditions.
On one side it has a full-size HDMI port and a DB15 connector to which an
extension cable can be connected for remote control functions. On the other side of
the camera, two Micro SDI ports were placed, the small size of the camera allowed
these connections compared to the standard ones [23].

To enable video transmission, the camera output is connected to the slip ring
coaxial cable. In this way, the video stream passes through a single cable with SDI
convention, instead of the classic HDMI standard. To have greater communication
versatility between the system and any type of display device, an important com-
ponent is added to this chain: the SDI-HDMI converter, which allows transforming
the coaxial cable signal into the classic monitor standard.

Figure 7.2: Camera mounted on the gimbal structure

Once the video connection has been tested, the camera is fixed on a cushioned
surface, which allows to further reduce the vibrations to obtain more stable images,
and finally powered at 12V by the expansion port, avoiding the presence of the
battery.

58

Camera implementation

7.2 Remote control methods
The Blackmagic Micro Studio Camera 4K cannot control functions directly from
the camera body. It was designed to be remotely controlled as the name "studio"
suggests. The primary method of controlling camera exposure, zoom, and lens
focus is using the HD-SDI return video feed, which allows a connection between
the ATEM switcher and the camera. The first component sends the program video,
program audio, intercom audio, tally light, and camera control data at the second.
All ATEM products have a Camera Control Unit (CCU) panel in their control
software, to adjust the white balance, color, and exposure of the camera and control
the zoom and focus on supported goals. The switcher also encodes and embeds
camera and lens adjustments in the return video feed sent to the camera.
Therefore, if connected to an ATEM video switcher, there are no problems, as
this device manages the control of all the camera parameters. Unfortunately, for
reasons of space inside the cockpit and the simplicity of the user of the gimbal, the
presence of this device should be avoided [24].

Figure 7.3: Blackmagic ATEM 2 M/E Production Studio 4K

The model shown in the previous figure represents the flagship product presented
at NAB 2015 together with the Micro Studio Camera 4k. Nowadays there are
cheaper and more compact solutions, with an HDMI connection standard suitable
for small multi-camera productions.

59

Camera implementation

Control using HD-SDI return video feed

The first method is realized by Blackmagic and it is a shield that supports sending
a subset of data to the camera. The shield has an HD-SDI video input, an HD-
SDI video output, and a serial communication interface with Arduino. This is a
pluggable solution on a microcontroller board and can be used to send camera and
lens control commands over the I2C protocol. This is an interesting control scheme
that allows users to control everything from an embedded system.

Figure 7.4: Blackmagic 3G-SDI Arduino shield

The LANC Port

The second way to control the exposure and the lens is using the LANC protocol on
the camera’s expansion port. This is a Sony invention, are consists of a connection
between a wired remote controller and the camera by a 2.5mm jack. Most LANC
controllers are designed to mount to a tripod and permit the camera operator to
control the lens without having to reach the front of the camera.

Figure 7.5: Blackmagic LANC zoom demand

60

Camera implementation

The S.BUS Protocol

The last method to control the camera parameters is using the Futaba S.BUS, a
digital protocol used by radio-controlled cars, trucks, and aircraft. The protocol
links radio receivers to one or more servo motors in the model.
The Blackmagic Micro Studio Camera 4K is small enough that one target market
is drone photography and videography. Using the S.BUS protocol, the camera
could connect to the existing radio receiver on the drone and permit an opera-
tor on the ground to adjust the camera and lens using their existing radio equipment.

Figure 7.6: Futaba S.Bus system

The S.BUS protocol is proprietary, but it’s been reverse engineered. It is basically
an inverted TTL-level serial data at 100 kbps with even parity and two stop bits.
16 channels of 11 bits are mapped into 25 data bytes that are sent over the serial
link. The only complicated part is mapping the 16 channels of 11 bits into 25 bytes
of 8 bits correctly [25]. This protocol could be an excellent approach to apply to
this project. By structuring the communication between console and camera in this
way, it will be possible to create a very practical one-wire solution, also avoiding
the allocation of additional components.

61

Chapter 8

Hardware adopted

8.1 Arduino Mega 2560

Figure 8.1: Arduino Mega 2560

Microcontroller ATmega2560
Operating voltage 5V

Input voltage (recommended) 7-12V
Input voltage (limit) 6-20V

Digital I/O pins 54 (15 provide PWM output)
Analog input pins 16

DC current per I/O pin 20 mA
DC current for 3.3V pin 50 mA

Flash memory 256 kB (8 kB used by bootloader)
SRAM 8 kB

EEPROM 4 kB
Clock speed 16 MHz

Table 8.1: Arduino specifications

62

Hardware adopted

8.2 Motor Driver

Figure 8.2: H-Bridge motor driver L298N

H-Bridge motor driver L298N
Power supply 5 - 35 V
Input voltage 3.2 ~40 V
Peak current 2 A

Operating current range 0 36 mA
Control signal input voltage range Low: -0.3V ≤ Vin ≤ 1.5V

High: 2.3V ≤ Vin ≤ Vss
Enable signal input voltage range Low: -0.3 ≤ Vin ≤ 1.5V (invalid)

High: 2.3V ≤ Vin ≤ Vss (active).
Maximum power consumption 20W (@ T = 75 ◦ C).

Storage temperature -25 ~130 ◦C

Table 8.2: L298N motor driver specifications

63

Hardware adopted

8.3 DC motors

Figure 8.3: Faulhaber DC motor

DC motor Faulhaber 2642-012 CXR
Nominal voltage 12V

Terminal resistance 1.46 Ω
Output power 22.1W

Efficiency, max. 76 %
No-load speed 5800 min−1

No load current, typ 0.092A
Stall torque 144.6 mNm

Friction torque 1.7 mNm
Speed constant 514 min−1/V

Back-EMF constant 1.9545 mV/ min−1

Torque constant 18.57 mNm/A
Current constant 0.054 A/mNm

Slope of n-M curve 40.4 min−1/mNm
Rotor inductance 135 µH

Mechanical time constant 5.1 ms
Rotor inertia 12 g cm2

Angular acceleration 121 ×103 rad/ s2

Speed up to 7000 min−1

Shaft diameter 4mm
Mass 114g

Table 8.3: DC motor specifications

64

Hardware adopted

8.4 Encoder

Figure 8.4: Faulhaber encoder

DC motor Faulhaber IE3-256L
Lines per revolution 256

Frequency range, up to 120 kHz
Supply voltage 4.5 - 5.5 V

Current consumption, typ 17 (max 25) mA
Index pulse width 90 ±45

Phase shift, channel A to B 90 ±45
Inertia of code disc 0.08

Operating temperature range -40 ~85 ◦C

Table 8.4: Encoder specifications

65

Hardware adopted

8.5 Hall sensor

Figure 8.5: Hall sensor

Hall sensor Littlefuse 55100-3M02A
Supply voltage Absolute ratings -18 ~18 V

Operate 2.7-24 V
Overvoltage protection 32 V

Output High voltage Sinking output
Output Low voltage 0.4 @20mA

Output current 25 mA (Max)
Current consuption 1.1-2.4 mA

Switching speed 12 kHz
Operating temperature -40 ~100 ◦C

Distance to magnet 13 mm

Table 8.5: Hall sensor specifications

66

Hardware adopted

8.6 Joystick

Figure 8.6: Joystick controller

Joystick CH Products 2-Axis Joystick
Potentiometers resistance 5kΩ ±20 %

Potentiometers power 0.5W
Potentiometers linearity ±5 %

Operating temperature ranges -25 ~85◦C
Number of Axes 2
Joystick Travel ±30◦

Table 8.6: Joystick specifications

67

Hardware adopted

8.7 Arduino display LCD

Figure 8.7: Arduino LCD Display 16x2

Display Pin configuration
PIN Name Function

1 GND-VSS Ground pin connected
2 VDD Powers the LCD with +5V
3 Vo Decides the contrast level of display
4 RS Register Select
5 R/W Read, Write
6 E Enable

7-14 DB0-DB7 Data Bus
15 LED+ Backlight LED +5V
16 LED- Backlight LED ground

Table 8.7: Display pin configuration

68

Hardware adopted

8.8 Video camera

Figure 8.8: Blackmagic video camera

Camera BMMSC 4K
Sensor Size 13.056mm x 7.344mm

Shooting Resolutions 3840 x 2160, 1920 x 1080
Frame Rates HD 1080p23.98, 24, 25, 29.97, 30, 50,

59.97, 60, 1080i50, 59.94, Ultra HD
2160p23.98, 24, 25, 29.97, 30

Focus Remote focus control via expansion connector
or ATEM Switcher CCU protocols via SDI

Iris Control Iris control via Up and Down buttons,
remote control via expansion connector

or ATEM Switcher CCU protocols via SDI
Lens Mount Active MFT mount

Controls 5 control buttons including Set, Up,
Down, Menu, and Power

Microphone Integrated stereo microphone

Table 8.8: Blackmagic specifications

69

Hardware adopted

Camera connections BMMSC 4K ports
SDI Video Output 1 x 6G-SDI 10-bit 4:2:2 via DIN 1.0/2.3
SDI Video Input 1 x 6G-SDI 10-bit 4:2:2 via DIN 1.0/2.3

SDI Audio Output 2 channel embedded audio support in SDI stream
HDMI Video Output 1 x HDMI Type A output

HDMI output always in HD 1080p.
HDMI Audio Output 2 channels 48 kHz and 24-bit

Expansion Port DB-HD15 Power input
LANC input

1 x S.Bus channel input
PTZ output

B4 lens control output
Genlock input

Audio Input 1 x 3.5mm stereo audio mic or line level
Audio Output 1 x 3.5mm stereo connector for headphones

Remote Control Remote control over SDI
via ATEM Switcher CCU protocols

or via expansion port using LANC or S.Bus
Computer Interface USB Mini-B port

(for software updates and configuration)

Table 8.9: Blackmagic connection specifications

70

Hardware adopted

8.9 Video ports converter

Figure 8.9: Blackmagic Mini Converter

Converter SDI to HDMI 6G
Video Input 1 x SD, HD or 6G-SDI.

1 x ALT SDI
Video Output 1 x HDMI type A

1 x 6G-SDI
Analog Audio Outputs 2 channels of balanced analog audio
Digital Audio Outputs 4 channels of AES/EBU digital audio

Multi Rate Support Auto detection of SD, HD or 6G-SDI.
Updates and Configuration USB

Reclocking Yes
Power Supply 12 V

Table 8.10: SDI to HDMI converter specifications

71

Chapter 9

Conclusions and future
works

The development of this project is based on the realization of the software in the
MATLAB/Simulink environment, achieving a system that works according to the
given requirements composed of cheap and easily available hardware components,
thus ensuring simplicity in replacement in case of damage. This system can self-
calibrate, rotate 360 degrees on the PAN angle, and limit the TILT angle movement
to a range of -110 to +96 degrees. The management of these functions has been
entrusted to a console which will be placed in the control cabin and controlled
by an operator. The communication between these elements takes place via a
serial protocol. After having tested the correct functioning of these parts, a PCB
has been designed on which the Arduino, the driver, and the connectors will be
plugged to transform all the connections into tracks. This solution will lead to more
compact hardware that can be quickly installed on the SmartBay platform. This
feature makes it suitable for in-flight tests with real physical conditions. Finally,
the last topic addressed is the interface with the camera, this has been installed
and tests have been carried out on the functioning of the video transmission.
The work described in this document may be complemented by further develop-
ments and extensions, which would allow for the addition of components or the
implementation of additional functions. Since SmartGimbal has been designed not
only for aerial monitoring but also for tracking a target, an image processing system
based on machine learning algorithms can be added to the system, so that the
control process recognizes the target when it appears in the frame and changes the
trajectory by following it. In this way, it would be possible to expand the tracking
to a multitude of targets related to different classes of objects by recognizing them
based on specific details.

72

Bibliography

[1] LinkedIn Digisky Srl. url: https://www.linkedin.com/company/digisky/
mycompany/. (accessed: 06.11.2021) (cit. on p. 1).

[2] Digisky Srl Website. url: https://www.digisky.it/. (accessed: 06.11.2021)
(cit. on p. 2).

[3] Annachiara Greco. Development of the SmartGimbal Control System for the
SmartBay Platform. url: https://webthesis.biblio.polito.it/13135/.
(accessed: 06.11.2021) (cit. on pp. 3, 7).

[4] Salman Abdul Moiz Mohammed Rizwanullah N Md Jubair Basha. Model
Based Software Development: Issues & Challenges. url: https://arxiv.
org/pdf/1203.1314.pdf. (accessed: 07.11.2021) (cit. on p. 5).

[5] MathWorks Support Team. url: https://it.mathworks.com/matlabcen
tral/answers/440277-what-are-mil-sil-pil-and-hil-and-how-do-
they-integrate-with-the-model-based-design-approach. (accessed:
07.11.2021) (cit. on p. 6).

[6] Radim Hýl and Renata Wagnerová. «Fast development of controllers with
Simulink Coder». In: 2017 18th International Carpathian Control Conference
(ICCC). (accessed: 07.11.2021) (cit. on p. 8).

[7] ADMET. url: https://www.admet.com/open-loop-vs-closed-loop-
systems-materials-testing-industry/. (accessed: 15.11.2021) (cit. on
p. 11).

[8] Glen Alleman. Is There an Underlying Theory of Software Project Manage-
ment? (A critique of the transformational and normative views of project man-
agement). url: https://www.researchgate.net/publication/2537163_
Is_There_an_Underlying_Theory_of_Software_Project_Management_
A _ critique _ of _ the _ transformational _ and _ normative _ views _ of _
project_management. (accessed: 08.11.2021) (cit. on p. 12).

[9] Scott Zhuge. PID Control Theory. url: https://www.crystalinstruments.
com/blog/2020/8/23/pid-control-theory. (accessed: 09.11.2021) (cit. on
p. 13).

73

https://www.linkedin.com/company/digisky/mycompany/
https://www.linkedin.com/company/digisky/mycompany/
https://www.digisky.it/
https://webthesis.biblio.polito.it/13135/
https://arxiv.org/pdf/1203.1314.pdf
https://arxiv.org/pdf/1203.1314.pdf
https://it.mathworks.com/matlabcentral/answers/440277-what-are-mil-sil-pil-and-hil-and-how-do-they-integrate-with-the-model-based-design-approach
https://it.mathworks.com/matlabcentral/answers/440277-what-are-mil-sil-pil-and-hil-and-how-do-they-integrate-with-the-model-based-design-approach
https://it.mathworks.com/matlabcentral/answers/440277-what-are-mil-sil-pil-and-hil-and-how-do-they-integrate-with-the-model-based-design-approach
https://www.admet.com/open-loop-vs-closed-loop-systems-materials-testing-industry/
https://www.admet.com/open-loop-vs-closed-loop-systems-materials-testing-industry/
https://www.researchgate.net/publication/2537163_Is_There_an_Underlying_Theory_of_Software_Project_Management_A_critique_of_the_transformational_and_normative_views_of_project_management
https://www.researchgate.net/publication/2537163_Is_There_an_Underlying_Theory_of_Software_Project_Management_A_critique_of_the_transformational_and_normative_views_of_project_management
https://www.researchgate.net/publication/2537163_Is_There_an_Underlying_Theory_of_Software_Project_Management_A_critique_of_the_transformational_and_normative_views_of_project_management
https://www.researchgate.net/publication/2537163_Is_There_an_Underlying_Theory_of_Software_Project_Management_A_critique_of_the_transformational_and_normative_views_of_project_management
https://www.crystalinstruments.com/blog/2020/8/23/pid-control-theory
https://www.crystalinstruments.com/blog/2020/8/23/pid-control-theory

BIBLIOGRAPHY

[10] Giovanni Testolin. Controllori PID e tecniche ”anti wind-up”. url: http:
/ / tesi . cab . unipd . it / 44095 / 1 / Testolin . Giovanni . 1007244 . pdf.
(accessed: 09.11.2021) (cit. on p. 15).

[11] Titus Rotich. Dynamic Model of a DC Motor-Gear-Alternator (MGA) System.
url: https://www.researchgate.net/publication/308319754_Dynami
c _ Model _ of _ a _ DC _ Motor - Gear - Alternator _ MGA _ System. (accessed:
10.11.2021) (cit. on p. 16).

[12] Pratyusha Biswas Deb & Oindrila Saha & Sajan Saha & Shaon Paul. Dynamic
Model Analysis of a DC Motor in MATLAB. url: https://www.ijser.
org/researchpaper/Dynamic- Model- Analysis- of- a- DC- Motor- in-
MATLAB.pdf. (accessed: 10.11.2021) (cit. on p. 17).

[13] Esperimentanda. url: https://www.esperimentanda.com/come-creare-
un-controller-pwm-con-arduino-per-luci-motori-carichi-dc-ac-
controllati- via- software- computer/. (accessed: 10.11.2021) (cit. on
p. 18).

[14] How To Mechatronics. url: https://howtomechatronics.com/tutorials/
arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/.
(accessed: 10.11.2021) (cit. on p. 18).

[15] Electronics Tutorial. url: https://www.electronics-tutorials.ws/elec
tromagnetism/hall-effect.html. (accessed: 12.11.2021) (cit. on p. 19).

[16] Eltran. url: https://www.eltra.it/encoderpedia-glossario-tecnico/
cose-lencoder-magnetico/. (accessed: 11.11.2021) (cit. on p. 20).

[17] Fabio Nelli. La comunicazione seriale. url: https://www.meccanismocom
plesso.org/la-comunicazione-seriale/. (accessed: 16.11.2021) (cit. on
p. 23).

[18] Arduino website. url: https://www.arduino.cc/en/Tutorial/BuiltInEx
amples/Debounce. (accessed: 19.11.2021) (cit. on p. 43).

[19] MathWorks Help Center. url: https://it.mathworks.com/help/statefl
ow/ug/debouncing-signals.html. (accessed: 19.11.2021) (cit. on p. 44).

[20] FormLabs. url: https://formlabs.com/it/blog/tutorial-fusion-360-
nozioni-di-base-e-consigli-per-la-stampa-3d/. (accessed: 15.11.2021)
(cit. on p. 52).

[21] SmeUp. url: https://www.smeup.com/magazine/blog/autodesk-eagle-
editor-grafico/. (accessed: 15.11.2021) (cit. on p. 52).

[22] Blackmagic Website. url: https://www.blackmagicdesign.com/products/
blackmagicmicrocinemacamera. (accessed: 27.11.2021) (cit. on p. 57).

74

http://tesi.cab.unipd.it/44095/1/Testolin.Giovanni.1007244.pdf
http://tesi.cab.unipd.it/44095/1/Testolin.Giovanni.1007244.pdf
https://www.researchgate.net/publication/308319754_Dynamic_Model_of_a_DC_Motor-Gear-Alternator_MGA_System
https://www.researchgate.net/publication/308319754_Dynamic_Model_of_a_DC_Motor-Gear-Alternator_MGA_System
https://www.ijser.org/researchpaper/Dynamic-Model-Analysis-of-a-DC-Motor-in-MATLAB.pdf
https://www.ijser.org/researchpaper/Dynamic-Model-Analysis-of-a-DC-Motor-in-MATLAB.pdf
https://www.ijser.org/researchpaper/Dynamic-Model-Analysis-of-a-DC-Motor-in-MATLAB.pdf
https://www.esperimentanda.com/come-creare-un-controller-pwm-con-arduino-per-luci-motori-carichi-dc-ac-controllati-via-software-computer/
https://www.esperimentanda.com/come-creare-un-controller-pwm-con-arduino-per-luci-motori-carichi-dc-ac-controllati-via-software-computer/
https://www.esperimentanda.com/come-creare-un-controller-pwm-con-arduino-per-luci-motori-carichi-dc-ac-controllati-via-software-computer/
https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/
https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/
https://www.electronics-tutorials.ws/electromagnetism/hall-effect.html
https://www.electronics-tutorials.ws/electromagnetism/hall-effect.html
https://www.eltra.it/encoderpedia-glossario-tecnico/cose-lencoder-magnetico/
https://www.eltra.it/encoderpedia-glossario-tecnico/cose-lencoder-magnetico/
https://www.meccanismocomplesso.org/la-comunicazione-seriale/
https://www.meccanismocomplesso.org/la-comunicazione-seriale/
https://www.arduino.cc/en/Tutorial/BuiltInExamples/Debounce
https://www.arduino.cc/en/Tutorial/BuiltInExamples/Debounce
https://it.mathworks.com/help/stateflow/ug/debouncing-signals.html
https://it.mathworks.com/help/stateflow/ug/debouncing-signals.html
https://formlabs.com/it/blog/tutorial-fusion-360-nozioni-di-base-e-consigli-per-la-stampa-3d/
https://formlabs.com/it/blog/tutorial-fusion-360-nozioni-di-base-e-consigli-per-la-stampa-3d/
https://www.smeup.com/magazine/blog/autodesk-eagle-editor-grafico/
https://www.smeup.com/magazine/blog/autodesk-eagle-editor-grafico/
https://www.blackmagicdesign.com/products/blackmagicmicrocinemacamera
https://www.blackmagicdesign.com/products/blackmagicmicrocinemacamera

BIBLIOGRAPHY

[23] Chris Monlux. Blackmagic Design Micro Studio Camera 4K Review. url:
https://www.videomaker.com/article/r02/18632-blackmagic-design-
micro-studio-camera-4k-review. (accessed: 27.11.2021) (cit. on p. 58).

[24] Blackmagic Camera Control. url: https://documents.blackmagicdes
ign.com/DeveloperManuals/BlackmagicCameraControl.pdf. (accessed:
27.11.2021) (cit. on p. 59).

[25] Glen. USB Knob Box Doubles as a Blackmagic Designs Camera Remote.
url: https://bikerglen.com/blog/usb- knobs- that- double- as- a-
blackmagic-remote/. (accessed: 27.11.2021) (cit. on p. 61).

75

https://www.videomaker.com/article/r02/18632-blackmagic-design-micro-studio-camera-4k-review
https://www.videomaker.com/article/r02/18632-blackmagic-design-micro-studio-camera-4k-review
https://documents.blackmagicdesign.com/DeveloperManuals/BlackmagicCameraControl.pdf
https://documents.blackmagicdesign.com/DeveloperManuals/BlackmagicCameraControl.pdf
https://bikerglen.com/blog/usb-knobs-that-double-as-a-blackmagic-remote/
https://bikerglen.com/blog/usb-knobs-that-double-as-a-blackmagic-remote/

Ringraziamenti

A conclusione di questo elaborato, vorrei dedicare uno spazio a chi, con dedizione e
pazienza, ha sempre creduto in me supportandomi sempre. A loro va un sentito
ringraziamento. Senza queste persone, questo lavoro, frutto del mio percorso uni-
versitario non esisterebbe nemmeno.

Alla mia relatrice Corpino Sabrina, che ha saputo guidarmi, con suggerimenti
pratici nella stesura dell’elaborato, donandomi fiducia e reputandomi pronto per la
conclusione del mio cammino.

Al mio tutor Paolo, che mi ha fatto conoscere ed entrare a far parte di quella realtà
che è Digisky. Sempre disponibile e pronto a darmi le giuste indicazioni in ogni fase
della realizzazione di questo progetto. Insieme a lui, un ringraziamento va anche
ai miei colleghi Fabio, Matteo, Luca e Gianluca, i quali hanno saputo integrarmi
e con cui ho condiviso momenti più o meno felici, e hanno sempre fornito tutto
l’aiuto di cui avessi bisogno.

Ai miei amici e ai colleghi di corso, le persone con cui ho condiviso attimi di gioia
e di tristezza, ma che nonostante tutto sono rimasti accanto a me in questi anni.
Senza di loro, sarebbe stato tutto più cupo: grazie per avermi trasmesso entusiasmo
e coraggio.

Ai miei genitori Antonio e Irene, il pilastro fondamentale nella mia vita e mia
nonna Laura che ha fatto parte delle fondamenta su cui si posa tutto quello che
ho costruito finora. Infinitamente grazie a voi, senza i quali non sarei arrivato
dove sono ora, mi avete sempre dato il giusto sostegno, appoggiando ogni mia deci-
sione e dandomi il supporto morale nei momenti di sconforto. Questa tesi è per voi
e a voi dedico la gioia che ho nel mio cuore nel tagliare questo traguardo importante.

Ad Arianna, che con la sua dolcezza, la sua intelligenza e il suo amore puro, mi
ha sopportato, supportato, calmato, spronato e incoraggiato sempre. Sei sempre
stata accanto a me non lasciandomi mai solo e facendomi sempre sentire quanto tu
credessi in me, giorno dopo giorno. Dal profondo del cuore, grazie oggi e sempre.

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Digisky company
	SmartBay Project
	State of art
	Thesis objective

	Model-based approach
	Basic knowledge
	Preliminary simulations
	Code generation
	Arduino and Simulink interface

	SmatGimbal system
	General purpose of control system
	Closed-loop method

	PID control technique
	Controller in the discrete-time domain

	Closed-loop control for DC Motor
	Dynamic model
	PWM speed control

	Sensors operation
	Hall effect
	Magnetic encoder

	MATLAB/Simulink implementation
	Serial communication protocol

	Software development
	General concepts of software architecture
	Motion control model
	Input signals
	Calibration phase
	Motion control
	Degree manipulation
	Output commands
	Serial transmission to Display

	Remote control model
	Joystick and buttons input signals
	MATLAB-Arduino Display interface

	Test bench environment
	Global hardware configuration
	Gimbal hardware configuration
	Console hardware configuration

	Development of a PCB
	Preliminary concepts
	Project sizing

	Camera implementation
	Video stream management
	Remote control methods

	Hardware adopted
	Arduino Mega 2560
	Motor Driver
	DC motors
	Encoder
	Hall sensor
	Joystick
	Arduino display LCD
	Video camera
	Video ports converter

	Conclusions and future works
	Bibliography

