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ABSTRACT 
 

The excessive growth of greenhouse gases, among the most dangerous to the Earth and 

human health itself, has forced the development of green technologies with the aim to 

solve this issue. Since one of the most negative factors, which has a big impact to the 

increasing of the pollution is the transportation field, both public and private, the 

carmakers have decided to introduce, in their production lines, electric vehicles (EV), 

both hybrid (HEV) and fully electric (BEV). Despite the goal is to reduce the greenhouses 

gases, the introduction of zero emission vehicles is not the solution to the problem, but 

only a starting point. Since the battery is one of the two sources of energy in HEV or the 

unique in BEV, it is necessary to have a good estimation of the state of charge (SOC). This 

is a fundamental parameter used in the battery management system (BMS) of the EV’s 

battery; in fact, it reflects a lot of battery performances, can guarantee battery protection, 

prevents overcharging and overdischarging, improves and extends the battery life, but 

it can be used also to implement control strategies. Moreover, one of the most important 

problems associated to the limited spread of electric vehicles is the range anxiety. Among 

the possible resolutions of this problem, there is the development of a system able to 

compute an estimation, accurate and robust, of the SOC level of consumption of the 

battery system. Nevertheless, finding a good estimation of the SOC is a still open 

challenge, due to the complexity of the problem. The aim of this thesis work, carried out 

in collaboration with Bylogix S.r.l., is to develop two different types of algorithms, both 

written in Python language, that provide an estimation of the SOC that the vehicle will 

be expected to consume. In the design process of the two algorithms and, mainly, in the 

second one, real data acquired by a Tesla Model 3 with a 75 kWh battery pack were used; 

the data were provided by the company. The first algorithm was designed on a model-

based approach; therefore, it is based on the physical knowledge of the problem and on 

the equations that allow to calculate the power consumption delivered by the battery 

pack for the vehicle motion, starting from the longitudinal vehicle dynamics equation. 

Then, the energy and the associated SOC consumption, needed to complete the travel, 

are derived. Velocity, altitude profile, and weather information are the input data used 

by the algorithm. The algorithm is then tested with respect to real drive cycles, extracted 

from the database given by the company. The second algorithm, on the other hand, was 

designed following a data-driven approach, including an artificial neural network 

model. The network, based on a feed-forward architecture, computes an estimation of 

the power consumption delivered by the battery pack, using velocity, acceleration, and 

slope road angle as inputs. After, the power quantity returned by the neural network is 

integrated, obtaining the energy, and thus, the SOC estimation is finally computed. The 

training, validation, and testing processes of this algorithm are performed using the same 

database provided.  Moreover, both the algorithms were designed to work offline, so are 
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able to provide an estimation of the SOC consumption before the trip begin. To achieve 

this purpose, an algorithm that predicts the velocity profile was implemented, starting 

from road information and weather data. These data are obtained from APIs services and 

online databases, such as OpenStreetMap. 
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THESIS OVERVIEW  
 

The thesis work is structured in five chapters. The first chapter contains a general 

introduction to the electric vehicle world, showing the good and bad points. Then, the 

motivations that encouraged to proceed with the analysis of the SOC estimation problem 

are descripted, with a focus on the objectives and contributions given. 

In the second chapter, the main techniques present in literature and employed for solving 

the problem are illustrated. Among these, there are: model-based approaches, direct 

measurements, and data-driven models. 

The chapter three outlines a characterization of the model-based algorithm proposed and 

developed. The chapter starts with a description of its workflow process, where are 

explained the idea that have contributed to its development. Since this model works 

offline, it is able to estimate the SOC associated to the selected route, before the trip 

begins, but it was necessary to understand how to obtain the required input data. For 

this reason, the second paragraph explains all the processes, functions and services used 

to extract these information. After, there are three paragraphs where all the formulations 

that allow to compute the SOC, starting from the longitudinal dynamics equation of the 

vehicle, are illustrated. In the sixth paragraph, the functions used to identify some 

parameters, needed by the algorithm to compute the output are shown. The last three 

parts of the chapter are dedicated: to the description of the obtained results; to the 

algorithm testing process in a simulated real scenario; and to the final considerations.  

The thesis continuous with the fourth chapter. Here, the idea behind the development of 

the second algorithm are expounded. The chapter starts with an introduction to the 

machine learning approach for solving estimation problems. Follow a theoretical 

description about the neural networks and their mathematical formulation. In the third 

paragraph, the workflow designed to select the proper neural network model is showed; 

and to conclude, the analysis of the obtained results is presented in chapter four. The 

chapter ends with the relative conclusions. 

In the fifth and last chapter, the results’ comparison obtained by the two algorithms are 

illustrated: in particular, the description is referred to the achievements related both to a 

single drive cycle and to the set of 22 drive cycles. The chapter ends with the work 

conclusions and an overlooking of future developments associated. 
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Chapter 1 

 
_____________________________________________________________________________ 

 

INTRODUCTION 

_____________________________________________________________________________ 

 

 

 

1.1 A BIT OF HISTORY ABOUT ELECTRIC VEHICLES 
 

Although it cannot be established an exact year in which electric vehicles have been 

created and realized, it is possible to identify their born in the thirties of 1800, or in other 

words, in the first part of the 19th century. The major architects of this innovation were 

mainly Hungarians, as Anyos Jedlik, Scots, as Robert Anderson and Americans, as 

William Morrison, that, however, did not immediately come to the production of a fully 

electric vehicle, but they began to theorize a medium that had a battery through a series 

of breakthroughs. [1], [2] 

The main problem of these first battery was in their inability to be recharged, which only 

came in the second half of the 19th century, thanks to the work of the French physicist, 

Gaston Planté, considered as the father of the lead-acid rechargeable battery. [1], [3] 

Morrison, in particular, worked intensively on an electric vehicle model that is still a 

benchmark for modern electric vehicles today and, around 1890, he made it a widely sold 

product in America, even beating the competition of diesel cars, since, for example, the 

latter had a nauseating smell of fuel, hardly tolerated especially by the high society of the 

time, that is the main buyer. The production of electric cars reached its peak around 1912, 

remaining stable until 1920. In this juncture of time, electric cars were used in many areas, 

primarily as cars, but also as taxis and transport vehicles for goods. [2] 

Subsequently, it suffered a decline caused by the lower price of diesel, thanks to the 

discoveries of new crude oil fields in Texas, with petrol stations that were popping up 

across the country and, moreover, to the concomitant diffusion of Ford's diesel cars, 

which were competitively priced and, above all, could travel greater distances than 

electric vehicle. On the other hand, the only real problem with electric vehicles was the 

short distance they could travel without having to be recharged, a problem that persists 

today. [2] 

So, with the improvement of the roads and the widening of the latter, together with them 

there was the need, because, on the other hand, owning a car was no longer a luxury 
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item, to drive longer-range vehicles and so, already in the second half of 1930, electric 

cars disappeared from both the US and Europe to make way for the increasingly 

widespread diesel cars. However, in doing so, the levels of air pollution began to rise, 

with the consequences that, in the long run, have led to the condition we live in today. 

Around 1970, the increase in the price of fuel, which manifested itself mostly during the 

Arab oil embargo, defined the return to the need for the usage of electric machines, both 

in order not to depend on oil sources, and to escape the harmful effects which, over the 

years, they would arise due to pollution. [2] 

By means of this, for example, General Motors developed, in 1973, a modern prototype 

of electric vehicle which could be more compatible with the urban scenario, Figure 1. [2], 

[4] 

 

 

Figure 1. Electric car produced by GM in 1973. [4] 

However, not only carmakers had produced electric vehicles, but also the NASA had 

contributed to the development of this vehicles; in particular, its electric Lunar rover was 

the first manned vehicle to steer on the moon in 1971, and that was used by the crews of 

Apollo 15, 16, and 17 to move along the surface of the moon. [2]   

Nevertheless, the electric vehicles market didn’t dominate over gasoline vehicles one, 

because of their low speed, usually 40-45 miles per hour, although many attempts were 

made in order to commercialize them as much as possible, for example, the “Citicar” 

launched by manufacturer Sebring-Vanguard became the sixth largest in America from 

the sales. [2] 

It was only in the 90’ that the electric cars had their real success, especially in America, 

probably due to the passage of the 1990 Clean Air Act Amendment and the 1992 Energy 

Policy Act, which were determined in wake up the population towards the importance 
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of a change in the way of life. In fact, both in 1996 and 1997 two cars had a huge 

popularity: the first car was the EV1 vehicle, manufactured by General Motors. This last 

vehicle had a range of about 80 miles and was able to accelerate from 0 to 50 mph in just 

seven seconds; the negative aspect was the high production costs, so the production was 

interrupted in 2001 and this car only remained a cult among the fans. [2] 

The real approach towards electric cars was thus supported in 1997 with the Toyota 

Prius, Figure 2, which was the first hybrid car to be mass produced, owned, and so, 

indirectly sponsored by important celebrity figures, such as Leonardo DiCaprio and 

Harrison Ford. Toyota used a nickel metal hybrid battery, a technology that was 

supported by the Energy Department’s research. [2], [5] 

 

 

Figure 2. Toyota Prius, the first hybrid vehicle. [5] 

The real relaunch of electric cars, between ups and downs, will only take place from the 

second half of the 2000s and, in particular, in 2006, when a relatively small Silicon Valley's 

start-up company echoed the media for its intention to produce electric cars of luxury 

that they could travel more than 200 miles on a single charge: this becomes reality in 2008 

with the Roadster. Thus, in 2010, Tesla Motors received a 465 millions of dollars grant 

from the Department of Energy's Loan Programs Office, in order to establish a 

manufacturing facility in California, where Tesla became the biggest and most popular 

auto industry employer. [2] 

Subsequently, also other automakers started to produce their own electric vehicles to 

launch on the market: in 2010, Nissan Leaf and Chevy Volt were released. The first one 

is an all-electric vehicle, instead the second one is the first commercially available plug-

in hybrid. Therefore, today it is possible to find many affordable cars, proposed by the 

main automakers, both totally electric and hybrid: Tesla, for example, with his 4 models, 

Tesla Model 3, Tesla Model S, Tesla Model Y, Tesla Model X, is the host in the world of 

electricity. This is followed by the manufacturers as Audi, with its e-tron models, or 
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BMW, Volkswagen, up to Fiat, which launched its electric car, the Fiat 500e in the last 

year. [2], [6] 

 

 

Figure 3. Fiat 500e. 

 

Figure 4. Tesla model X. [6] 

 

 

1.2 PROS AND CONS OF ELECTRIC VEHICLES 
 

In the last years, particularly in the last two decades, the growing of the pollution has 

spread and reached high levels rapidly, up to urgently push to find solutions, in order to 

bring and maintain the values for polluting gases below the nominal threshold. This 

important issue is taken under consideration by the vast majority of developed countries 

and international companies, of any type and dimension. Since a big piece of 

contamination derives from the excessive usage of ICE (Internal Combustion Engine) 

cars, just think that only in Italy there are about 60millions on people and 50 millions of 

cars, or by transport vehicles, that are equipped by a heat engine too, it was the 

automotive industry to engage, with firmly, this fight, with the attempts to reduce and 

to limit the greenhouse gas emission. To give a bit of statistical data, the transport sector 
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predominantly depends on fossil fuels and it is responsible for the 16% of greenhouse 

gases. [7] 

In Figure 5, it is possible to have an overview of the main sources of Carbon dioxide and 

this demonstrates that the transport is the second major field for generation of CO2. [8] 

 

 

Figure 5. Diagram with sources of CO2. [8] 

As direct consequence, the major car makers, in the world and not, has decided to 

introduce, in their production lines, cars supplied by batteries, both of hybrid type and 

totally electric, also called Hybrid Electric Vehicle (HEV) and Battery Electric Vehicle 

(BEV), respectively.  From a lot of tests conducted, it was demonstrated that the usage of 

electric vehicles, having no polluting emissions or over the edge, as in HEV case, 

influences with almost no impact in the contribution of the pollution dependent on 

greenhouse gases, mainly referring to Carbon dioxide, but not only. Therefore, it can be 

deduced that this is a valid and really feasible approach as a small, but important solution 

to the problem. However, it is still defined as an approach and not a solution since, 

despite these positive aspects, several negative points are present, one of these is the way 

in which the energy of the vehicle’s batteries are regenerated; this last is a process 

characterized by a series of working mode and operations that leads to an indirect 

increase of the CO2 production level. This one described is not the only negative point 

around the spread of the electric vehicle, nevertheless it is enough to give the idea that 

the conversion process, towards a totally, or also partial, green world is long and tough; 

moreover, it is necessary making more and more studies and research, to reach a solution 

with zero greenhouse emission and completely green. Besides these serious problems, 

the diffusion, and the approval of the electric vehicle in the daily routing is hampered by 

other minor issues, that however have a huge influence on the final user, the consumer. 

Among these minor factors, like the purchase price, the maintenance costs, the reduction 

of the polluting gases and the range anxiety level, the sine qua non is the last term, that 

according to the people ideas, is the essential factor that, today, has a major influence on 

the chosen of purchase or not an electric vehicle. [9] 
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However, it is also necessary to say how, although these drawbacks, the people are 

starting to feel the need for a change. This change of trend is observable going to analyze 

some data. Despite the world has fought versus the pandemic emergency, due to the 

Covid-19, in the last two years, and still today, the automotive market has experienced a 

deceleration in sales with a decreasing of the 27% of the sales, that corresponds to about 

9.7 millions of units, the electric vehicles have been registered positive results, with a 

trend inversion. Figure 6 shows a diagram of the sold of EV per country in Europe in the 

range 2013, 2017. In Italy, in 2020, had been sold 32.358 electric vehicles, with an upgrade 

of the 753% with respect to  the  month of December in the past year, that in practical 

terms are about 60.000 vehicles, including both Battery Electric Vehicles and Hybrid 

Electric Vehicles. [10] 

  

 

Figure 6. Sold of EV per country, in Europe, between 2013 and 2017. [11] 

 

 

1.3 MOTIVATIONS  
 

Everyday utilities, electric vehicle, industrial applications are examples of systems that 

use the batteries as the main source of energy. The battery is a very complex system, 
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characterized by a lot of non-linear behaviors, parametric uncertainties, that make 

challenging its modeling and analysis. One of the problems, still open today, is the 

estimation of the SOC, a fundamental parameter, that cannot be measured directly, and 

that reveals some battery performances. A good estimation can guarantee a battery 

protection, prevent over charge and discharge, but also improve and extend the battery 

life. [12], [13] 

Moreover, it can be used to implement good and efficient control strategies to preserve 

the battery energy. [13] 

For this reason, both the car makers and the battery manufacturers work severely to 

improve this function of the battery management system, that is a fundamental device 

installed, for example, in the electric vehicles. Other reasons that encourage to find an 

algorithm that implements an estimation, robust and accurate, of the SOC function are 

strictly related to the final user, the driver. One of his greatest fear is to be stranded, or in 

other words, to run out of the energy. A consequence of this last problem is the range 

anxiety. The range anxiety is a real mental state, that could hurt the electric vehicle driver, 

getting him a state of anxiety that borns from the fear of do not reach the final destination 

before the autonomy of the battery level is completely exhausted, causing the driver to 

perceive the driving range a lot less than it should be. [14] 

As a direct consequence, the range anxiety is a real limit to the spread of the electric 

vehicles. This state of mind can be justified by the lack of a dense network of charging 

infrastructure, public and not, disseminated in the country. In the last years, several 

solutions are designed and evaluated to break down this phenomenon: for example, 

Tesla, leader company in the development of electric vehicles, has created the so called, 

Supercharger, Figure 7. These are charging stations, that guarantee a charging of the 

vehicle in shorter time. [15] 

In Italy, the Enel X company, is among the main green farms that had decided to invest 

in this field and has introduced its own charging network stations, and moreover an own 

device, remotely controllable too, to be installed at home and called JuiceBox, Figure 8. 

[16] 

 

 

Figure 7. Tesla Supercharger. [14] 
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Figure 8. Enel X JuiceBox. [15] 

The previous one is becoming a true solution to the range anxiety problem, but 

obviously, is not easy to achieve in the short term. Associated with the range anxiety 

there is also the problem of the range estimation, that gives an idea of the driving range 

that a vehicle can cover with a certain charging level. In classical cars, where the heat 

engine is the propulsion unit, the driving range is not a problem, as in electric vehicle 

case, maybe since the people are able to predict the consumptions and know from what 

factors are influenced. For this reason, another possible solution to the range anxiety is 

associated to the improving of the range estimation system but it is not easy to reach. In 

the last years, a lot of research centers and not have invested in the development of 

algorithms able to give an estimation, as better as possible, of parameters that, directly 

or indirectly, give information about the residual level of battery state of charge (SOC).  

In the electric vehicle, the level of consumption can be seen from the dashboard, by 

referring to the state of charge, that is the equivalent indicator of petrol consumption in 

an ICE vehicle. So, having a good estimation of the SOC, the user will be conscious of the 

actual battery level and therefore, if it is necessary to plan a break to charge the vehicle, 

during the trip. However, to have a good, accurate and reliable range estimation system, 

it has been necessary to develop many models: such of those return, with a fine 

approximation and under certain conditions, a true energy consumption value or an 

approximation of the SOC of the electric vehicle, during the trip. Certainly, flesh out 

algorithms and models for the state of charge estimation is not easy, since the battery is 

a very complex system to model, and it is characterized by a lot of non-linear processes 

and influenced by a lot of systems present in the vehicle. So, to design an accurate model, 

must be considered a lot of factors, both external and internal to the vehicle and establish 

some working conditions.  For example, have to be analyzed dynamic mechanical factors, 

electronic components that consume energy provided by the battery system. 

Therefore, it is necessary to consider the vehicle’s construction features, the specification 

about the electric motor and all the subsystems that make an electric vehicle, but also the 

external temperature, the weather conditions, the typology of road, the driving style, and 
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many other external factors. In the next chapter, it will be discussed about what the SOC 

is and how could be measured. 

 

 

1.4 THESIS OBJECTIVE AND CONTRIBUTIONS 
 

As said before, the estimation of the SOC is a still open challenge, due to the complexity 

of the battery system, so this work is intended to give a contribute to this issue. 

The aim of the thesis was to develop two offline algorithms to estimate the state of charge 

consumption, associated to a trip, trying so to improve the range estimation problem and 

provide a valid software to use in real applications. The two models were designed on 

two different estimation methods: the first one is developed on the physical knowledge 

of the BEV, so according to a model-based approach; the second one, on the availability 

of lot of data that ensure the usage of a data-driven technique, the Neural Network one. 

In both cases, however, the data used, to develop the models were the same. The data 

were supplied by the Bylogix S.r.l company, after being acquired from a Tesla Model 3 

with a 75 kWh battery pack, using the CAN bus (Controller Area Network). The Tesla 

model 3, has a lithium-ion battery, with a nominal voltage of 360 V.  

The CAN is the major standard network or bus used by automotive systems to exchange 

information and data, in robust way. The data were extracted with a frequency of 1 Hz, 

so the data was collected every 1 s. The total number of data was 120687, that 

corresponds about to three months of measurements, made between March and May of 

2021, and contains the driving, the reverse, and the charging condition.  

Although, for this thesis goal, it was decided to use only those information associated to 

the driving conditions of the vehicle, that meant to select only the cases associated to 

vehicle velocity greater than 0. A bit of engineering of data was performed in order to: 

parsing the data from the original json format, extrapolate the needed data, and found 

new useful information from the original ones.  

The data, collected from the vehicle, were:  

 

• Accelerator, that represents the percentage of force applied to the accelerator 

pedal. 

• Altitude, that is the elevation values above the level of sea, in meters. 

• Ambient temperature, in Celsius degree. 

• Breaking, a binary values that is 1, when the brake pedal is pressed, 0 otherwise. 

• Current, that is current supplied by the battery, in ampere. 

• Direction, that represents the orientation of the vehicle, in compass reference 

system. 
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• GearSelected, that indicate the gear selected among Drive, Parking, Reverse and 

Neutral. 

• GspAccuracy. 

• Latitude. 

• Longitude.  

• SOC, that is the state of charge level read on the dashboard, in percentage. 

• Timestamp, that indicates the acquiring time of the measurement. 

• Uispeed, that is the velocity of the vehicle, in Km/h. 

• Voltage, that is the voltage at battery level, measured in voltage. 

 

Both the algorithms were written in Python language. The first algorithm, the model-

based one, was designed in a different way with respect to the canonical one, that can be 

found in literature. In fact, instead of using an electrical equivalent circuit model of the 

battery, it was decided to develop a model of the battery electric vehicle. The main reason 

was that the collected data come from vehicle dashboard, and in general are associated 

to vehicle information and are not taken by making experiments of the battery pack, as 

instead it would have been necessary to perform to use the equivalent circuit battery 

model. To be clearer, the model takes into account all the physical equations that allow 

to compute the energy consumption associated to a trip; the starting point is the second 

Newton’s Law, from which is derived the longitudinal vehicle dynamics equation. In 

particular, the equations implemented, starting from the power computation at wheel 

level, end to calculate the power exchanged by the battery. The power transition from 

wheels to the battery, passing through to electric motor, is performed using the efficiency 

conversion term 𝜂. Once the battery power was estimated, the consumed energy was 

derived and, to conclude, the associated state of charge is also computed. The input data 

needed by the algorithm are: the velocity profile, the altitude profile and the weather 

data. These data can be obtained, for a real application scenario of the algorithm, all from 

APIs and databases; for example, the velocity profile can be predicted using road 

information, that are obtained from OpenStreetMap service. However, the validation of 

the implemented equations is performed by using both real measured data, provided 

from Bylogix engineers, and other data obtained by APIs requests. 

After checked that the implemented formulas worked fine and the error committed, in 

energy and state of charge consumption, was quite small, it was decided to test the 

algorithm in a simulated real scenario. Thus, the input data used were only the 

coordinates of the route planned, from which it was possible to obtain all the needed data 

to estimate the SOC, among which the predicted velocity profile. However, a more 

detailed description about the model-based estimation method developed, will be 

provided in chapter 3. 
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The second proposed algorithm was based on a data-driven approach and, in particular, 

it was designed using the artificial neural networks. The use of this algorithm typology 

was possible by the availability to use a dataset, containing about 120 thousands of data, 

real measured, as described above. The network implemented belongs to the Feed-

Forward Neural Network architecture, and its contains: 3 hidden layer with 32 nodes for 

each, the output layer and the input one. Three features were used as inputs of the model: 

the velocity of the vehicle 𝑣 [
m

s
], the acceleration 𝑣̇ [

m

s2], derived from the velocity, and the 

slope angle of the road 𝜃 [rad]. The last term was obtained from the knowledge of the 

elevation and distance profile. The target choice for the network was the battery power 

consumption 𝑃𝐵𝐴𝑇𝑇  [kW]. After, the output of the network was integrated, obtaining so 

the energy; then, the state of charge was derived. As can be seen, the idea behind the 

working principle of this algorithm is simpler than the one of the first: this is due to the 

presence of the neural network, that is able to learn autonomously the relationship 

between the input and the output data. More details about the architecture used for 

design this second and last algorithm, and the results obtained are described in chapter 

4. Obviously, also this algorithm is designed to work offline. So, the needed data 

(velocity, acceleration and road slope angle) are extracted starting from the knowledge 

of the geographic coordinates of the selected route, with the support of web services and 

APIs, using the same exact functions implemented for the model-based algorithm.  
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Chapter 2 

 

_____________________________________________________________________________ 

SOC MEASURMENTS AND ESTIMATIONS 

TECHINIQUES 

_____________________________________________________________________________ 

 

 

 

One of the parameters that could be used to improve the range estimation is the state of 

charge, since this lets the driver be able to check the battery level during the normal usage 

of the vehicle or to schedule a recharge stop.  

The SOC cannot be measured directly, since it cannot be acquired by using sensors and 

so it can be derived indirectly, or better, has to be estimated starting from other variables, 

that instead are measurable. [17] 

A good estimation of the state of charge is one of the most important targets to have a 

good Battery Management System (BMS), but since it depends by a lot of factors, as the 

application where the battery is used, the battery type, the external factors that affect the 

working conditions of the system in which it is applied and so on, it is not easy to obtain 

it. If we think about the automotive field, the grow, and the spread of the battery electric 

vehicles (BEV), of hybrid electric vehicles (HEV) and so, in general, of the Electric vehicle 

(EV), have forced the mayor car makers to invest a lot of resources and moneys on 

development of prototypes of electric vehicles and, in particular, to focus on the growth 

on the battery management system and battery pack, that is, maybe, the principal 

components of an electric vehicle. In fact, the increasing of the driving range, both with 

the develop of new batteries and with the new range estimation algorithm among the 

main aim of car makers. For these reasons, in the last 10 years, hundreds of research and 

development works have been developed to accomplish this problem, and so to obtain 

improving results in terms of accuracy and reliability in the estimation of the SOC. 

Nevertheless, the battery is a very complex physical system with a lot of non-linear 

behaviors, with high dynamic operating conditions that make unpredictable the 

charging and discharging phase, so it is very hard to study its working principles and 

therefore it is not easy to estimate the value of the SOC. [17] 

In literature exist different methods designed to have a quite good approximation of the 

SOC value, some of these are based on measurement techniques, so called direct method, 

some other on model-based approaches and other ones on data-driven methods, but all 

of these are based on particular working conditions. 
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In this chapter, it will be evaluated several estimation techniques, also used in real 

applications by battery manufactures, or car makers company. Starting with the 

definition of the state of charge, there are listed three macro categories for the SOC 

estimation, that are: the direct measures, the model-based, and the data-driven. 

 

 

2.1 SOC DEFINITION 
 

A possible definition of the state of charge (SOC) could be “the percentage of the 

releasable capacity 𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑎𝑏𝑙𝑒  relative to the battery rated capacity  𝐶𝑟𝑎𝑡𝑒𝑑 , given by the 

manufacturer.” [18] 

 

𝑆𝑂𝐶(𝑡) =
𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑎𝑏𝑙𝑒(𝑡)

𝐶𝑟𝑎𝑡𝑒𝑑
∙ 100      [%]   (2.1) 

 

where: 

 

• Creleasable [KWh], is the released capacity when the battery is discharged. 

• Crated [KWh], is the nominal battery capacity, given by the manufacturer, and 

represents the maximum amount of charge that can be stored in the battery. [12] 

 

The state of charge can be expressed in percentage values, as a number between 0 and 

100, or by a value between 0 and 1. 

A value of this quantity equal to 100% indicates a full charge battery, while a value of 0% 

that it is empty, Figure 9. 

 

 

Figure 9. State of charge representation. [9] 
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Not only the state of charge but also the state of health (SOH) or the depth of discharge 

(DOD), could be measured, however this work is focalized on the state of charge 

coefficient. For purely informative purposes the definition of the SOH and DOD are 

given [18]: 

 

𝑆𝑂𝐻(𝑡) =
𝐶𝑚𝑎𝑥(𝑡)

𝐶𝑟𝑎𝑡𝑒𝑑
∙ 100      [%]   (2.2) 

 

𝐷𝑂𝐷(𝑡) =
𝐶𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑(𝑡)

𝐶𝑟𝑎𝑡𝑒𝑑
∙ 100      [%]   (2.3) 

 

where: 

 

• Cmax [KWh], is defined for new batteries and its value declines during the usage. 

• Creleased [KWh], is the capacity discharge by any amount of current. 

 

Exist also relationships between DOD, SOH, and SOC, as it can be possible to observe by 

the next two equations [18]: 

 

𝑆𝑂𝐶(𝑡) = 100% − 𝐷𝑂𝐷(𝑡)     [%]   (2.4) 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐻(𝑡) − 𝐷𝑂𝐷(𝑡)     [%]   (2.5) 

 

To measure, or better, to have a good approximation of the SOC consumption level, 

different techniques have been developed in these years, but obviously all of these have 

pros and counters. Examples of classification for the SOC estimation, created by 

analyzing only certain methods present in literature, are showed in the Table 1. 

 

Direct Measurement Model-based Data driven 
1.1) Coulomb Counting 

method 
1.2) OCV method 

1.1) Equivalent circuit model 
1.2) Estimation filter 

1.1) Machine Learning  

Table 1. Classification of state of charge estimation techniques. 

 

 

2.2 DIRECT MEASURMENT METHODS 
 

The direct measurement methods, as can be understood from the name itself, allow to 

estimate the state of charge directly from battery measurements.  
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These two methods use direct sensor’s measurements and also look-up tables derived 

ad-hoc experiments. In the next two sub-paragraphs, are described the two most used 

techniques, that are the Coulomb counting method and the OCV or open circuit voltage. 

 

2.2.1 COULOMB COUNTING METHOD 
 

The Coulomb Counting method, also called current integration, or Ampere Hour 

Counting method, is an estimation technique based directly on the definition of the SOC, 

Figure 19. It is, maybe, the most simple but general approach to solve the problem and, 

also for this reason, it is a common technique used in real applications.  

It is based on the integration, over the period time, in which the battery is used, of the 

measured discharging current, I [A].  

In formula, it is expressed according to equation 6. [18] 

 

 𝑆𝑂𝐶(𝑡) =  𝑆𝑂𝐶(𝑡0) − (
1

𝐶𝑟𝑎𝑡𝑒𝑑
∙ ∫ 𝐼 𝑑𝜏

𝑡0+ 𝑡

𝑡0
) ∙ 100   [%]   (6) 

 

where: 

 

• SOC(t0), is the initial value of the state of charge with value in [0-100]. 

• Crated [Ah], is the nominal capacity of the battery. 

• I [A], is the current that flows on the battery for the period of time of 

measurement.  

 

Note that the time must be converted from seconds to hours. 

Obviously, the presented method has both advantages and disadvantages. 

The advantages are that it is simple to be implemented and to be used. Basically, a good 

current sensor and an integrator system are enough to make the estimation and then it is 

quite inexpensive, moreover it can be used for online measurements. 

Nevertheless, the disadvantages are many more: the first one is that a good accuracy 

depends on the goodness of the current sensor and also on the accurate estimation of the 

initial value of the SOC. 

The second that, since the value of the nominal capacity of the battery changes over the 

year, with the usage of the vehicle battery, it is needed to know the value of the nominal 

capacity in that moment, and so it is necessary to estimate it. 

The third fact is that the state of charge consumption depends also by intrinsic 

characteristics, and by the different operating conditions of the battery. 

The last drawback is associated to the usage of the integrator, if the current measurement 

is affected by error or by noise, this will be amplified and so the estimation accuracy will 
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decrease. To solve this last error, in general the measurement system has to be 

recalibrated at each load cycle. [18] 

Obviously, the formula presented here needs to be adjusted with more considerations; 

in fact, the estimation, even if it is based on this simple formula, depends on several other 

factors as the losses of the battery pack, the temperature effects, the cycle life of the 

battery and many others. [18] 

 

 

Figure 10. Example of Coulomb Counter sensor. [10] 

 

2.2.2 OPEN CIRCUIT VOLTAGE METHOD 
 

The Open Circuit Voltage method is based on data obtained by directly testing the 

battery system, under certain operating conditions. The idea behind this method is that 

every battery has this common behavior: the voltage at its terminals increases or 

decreased according with it state of charge level. In general, higher voltage corresponds 

to a battery full charged, vice versa lower voltage to battery empty. [19] 

As it is possible to see from Figure 11, the relationship depends by the battery technology 

used in the two examples, the Lead-Acid and the Lithium-Ion. 

 

 

Figure 11. Comparison of discharge curve between a Lead-Acid and lithium-Ion. [10] 



 

 19 

 

Figure 12. State of Charge versus OCV in Lead-Acid battery. [20] 

From the Figure 12, it could be evidenced a linear behavior, in the lead-acid battery, 

between the SOC and the OCV, given by [12]:  

 

𝑉𝑂𝐶(𝑡) = 𝑎1 ∙ 𝑆𝑂𝐶(𝑡) + 𝑎0     [V]   (7) 

 

where: 

 

• SOC(t), is the battery state of charge at time t. 

• VOC(t) [V] , is the open circuit voltage. 

• 𝑎0, is the battery terminal voltage when SOC = 0%. 

• 𝑎1, is obtained when SOC = 100%. 

 

This method so estimates the SOC value by using look-up tables that describe the battery 

discharge curve in terms of Open-Circuit Voltage (OCV) versus SOC. 

A typical behavior of the OCV with respect to the SOC, in Lithium-Ion batteries, is 

showed in Figure 13, where it is evidenced a non-linear function. 

 

 

Figure 13. State of Charge versus OCV in Lead-Acid battery. [20] 
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The here described method can be used only when the battery is disconnected from the 

loads for a period longer than two hours, but, obviously, this is one of the main 

drawbacks of the model and so cannot be used in automotive case. The standard 

methodology to find the relationship between the OCV and SOC is characterized by a 

pulse load application, on the Li-ion battery, and then wait until the battery reaches the 

equilibrium. [12] 

The negative point of the following technique is that it can be performed only offline, 

since the measurements, to create the tables, must be executed with the vehicle that is in 

rest condition and the battery works under specific operative conditions, as said before. 

Note that this relationship is not equal for all the batteries and, moreover, depends also 

by the battery temperature and so it is not sure that the estimation method works 

accurately. [12] 

In automotive industries, the widely used batteries belong to the group of the lead-acid 

one, even if Tesla uses battery packs with many modules, each contains about hundreds 

of small Lithium-Ion cells, which are sourced by the Japanese tech giant, Panasonic.  

 

 

2.3 MODEL-BASED METHODS 
 

In this paragraph are described several methods that guarantee an estimation of the state 

of charge, based on physical knowledge of the problem and so on the so-called, Model-

based approach. Fort this reason, it is necessary to create a battery model, as accurate as 

possible, and to simulate its behavior in a simulation environment, like MATLAB or 

Simulink [MathWorks]. 

Despite these methods are more complex to implement, due to the fact that it is very 

wasteful to replicate in a simulator a battery system, the results obtained are better and 

much closer to the real one. In addition, it is necessary to establish several conditions 

under which the model will work. 

This approach, in general, could improve the level of SOC estimation accuracy, but 

obviously depends a lot on the modelling grade of the battery system. General 

approaches are based on equivalent circuit model of battery systems, as in Figure 14, and 

on Kalman filter applications that let the opportunity to estimates, in real time, or to 

forecasting, output and model parameters that change in time. 

 

2.3.1 EQUIVALENT CIRCUIT MODEL FOR BATTERY 
 

The electrical equivalent circuit model is used when it is necessary to estimate some 

battery parameters, like the state of charge, or in general to know the dynamic response 
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of the battery in real time, but a lot of details and specifications about the system are 

known. 

 

 

Figure 14. State of Charge versus OCV in Lead-Acid battery. [20] 

 

Starting from the Figure 14, where it is displayed an equivalent model for lithium-ion 

battery with a single RC network, it is possible to estimate the SOC and other parameters 

that are influenced by temperature or other ones.  

In the previous equivalent circuit, can be identified the following parameters [18]: 

 

• Ccb, is the bulk capacitance, that represents the battery pack storage capacity. 

• Ccs, is the surface capacitance, that represents the battery diffusion effects. 

• Ri, is the internal resistance. 

• R1, is the polarization resistance. 

• 𝑉𝑐𝑏, is the voltage across the bulk capacitor, or open-circuit voltage. 

• 𝑉𝑐𝑠, is the voltage across the surface capacitor. 

• 𝑉0, is the terminal voltage across the battery pack. 

• I, is the terminal current in the battery pack. 

 

To model better some complex non-linear behavior, other RC networks can be added, 

but the computational time and the complexity of the simulations increase a lot. To use 

a model like this one, it is necessary to conduct some experiments to obtain data to create 

look-up tables, that can be used to identify some network parameters such that R1, Ri, 

Ccs, and Ccb. For example, the tests performed are the OCV ones, where the  battery is 

discharged by injection of current pulses. [18] 

In first analysis, it can be assumed that the parameters of the model depend by the 

voltage and temperature, so are not constant in time. To obtain these values, it can be 
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used different System Identification techniques, but it has to be known also some data 

coming from experiments performed on the battery. 

The model in Figure 14 is governed by the following equations [18]: 

 

𝑉̇𝑐𝑏 =
1

𝐶𝑐𝑏
 𝐼       [V]   (8) 

 

𝑉̇𝑐𝑠 =
1

𝑅1𝐶𝑐𝑠
𝑉𝑐𝑠 +

1

𝐶𝑐𝑠
𝐼       [V]   (9) 

 

𝑉𝑂 = 𝑉𝑐𝑏 + 𝑉𝑐𝑠 + 𝐼𝑅𝑖      [V]   (10) 

 

Introducing the relationship between the OCV and the SOC, that can be approximated a 

linear one, as written in equation 11. 

 

𝑉𝑐𝑏(𝑡) = 𝑎1 ∙ 𝑆𝑂𝐶(𝑡) + 𝑎0     [V]    (11) 

 

Coefficients 𝑎1 and 𝑎0 change with the ambient temperature and the battery SOC. 

Working with the equations 8 and 11, it can be written the variation of the SOC as: 

 

𝑆𝑂𝐶̇ (𝑡) =  
1

𝑎1𝐶𝑐𝑏
𝐼                 (12) 

 

𝑉̇𝑐𝑠 = −
1

𝑅1𝐶𝑐𝑠
𝑉𝑐𝑠 +

1

𝐶𝑐𝑠
𝐼      [V]    (13) 

 

𝑉𝑂 = 𝑎1 ∙ 𝑆𝑂𝐶(𝑡) + 𝑎0 + 𝑉𝑐𝑠 + 𝐼𝑅𝑖    [V]           (14) 

 

At this point, putting all these equation in matrix form, it can be possible to obtain the 

state space form, in continuous time, of the model: 

 

[
𝑆𝑂𝐶̇

𝑉̇𝑐𝑠
] = [

1 0

0 −
1

𝑅1𝐶𝑐𝑠

] ∙ [
𝑆𝑂𝐶
𝑉𝑐𝑠

] + [

1

𝑎1𝐶𝑐𝑏

1

𝐶𝑐𝑠

] ∙ [𝐼]                              (15) 

 

𝑉𝑂 − 𝑎0  = [𝑎1 1] ∙ [
𝑆𝑂𝐶
𝑉𝑐𝑠

] + [𝑅𝑖] ∙ [𝐼]                  (16) 

 

Since the system found is made by linear and non-linear equations, due for example, to 

𝑉𝑐𝑏, that is a function of 𝑆𝑂𝐶, it is possible to conclude that the system is non-linear. By 

the state space form, equations 15 and 16, can be evidenced that the states of the system 

are 𝑥1(𝑡) = 𝑆𝑂𝐶 and 𝑥2(𝑡) = 𝑉𝑐𝑠, the input 𝑢(𝑡) = 𝐼, while the output is 𝑦(𝑡) = 𝑉𝑂. 
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A methodology, widely used, to estimate the SOC, in the lithium-ion battery packs, is the 

Kalman filter.  

Note that the equation to pass from the battery pack to a single cell, and vice versa, are 

the following ones: 

 

𝐼 =  
𝐼𝑝𝑎𝑐𝑘

𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙∙𝑁𝑚𝑜𝑑𝑢𝑙𝑒
                 (17) 

 

𝑉0 =  
𝑉𝑝𝑎𝑐𝑘

𝑁𝑠𝑒𝑟𝑖𝑒𝑠∙𝑁𝑚𝑜𝑑𝑢𝑙𝑢𝑠
                (18) 

 

𝐶𝑐𝑏 =
𝐶𝑛𝑜𝑚

𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
                  (19) 

 

where: 

 

• 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 , is the number of cells in parallel. 

• 𝑁𝑠𝑒𝑟𝑖𝑒𝑠 , is the number of cells in series. 

• 𝑁𝑚𝑜𝑑𝑢𝑙𝑒 , is the number of battery modules present in the battery pack. 

 

These data can be extracted from the battery manufacturer specifications. 

 

 

Figure 15. Stages of battery integration on an electric vehicle. [9] 

 

2.3.2 ESTIMATION FILTER 
 

In this paragraph, it will be described a possible estimation solution, that could be used 

to estimate the SOC of the battery pack, that is the Extended Kalman filter (EKF). Before 

talking about EKF, it is necessary to introduce, briefly, a bit of estimation theory. This is 
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a branch of statistic, focalized on the estimation of parameters that cannot be measured 

directly, using random data acquired and mathematical algorithms. [21]  

In addition, the goal of the parametric estimation problem is to increase the quality 

information, from measured signals, going to reduce the noise and augment the 

robustness of the system in general. [22] 

The estimation of the state is a problem that can be divided into three parts: the physical 

system, the measurement system, and the state estimator, according to Figure 16. Note 

that both the physical system and the measurement system are affected by errors, 

simulating a real situation. 

 

 

Figure 16. Block diagram for state estimation problem, where 𝒖 is the input data vector, 𝑿 is the true 
state vector of the system, 𝒁 is the measurement vector, 𝒗 is the observation vector, 𝑿̂ is the estimated 

state vector. [21] 

The Kalman filter is a state estimation algorithm, introduced by Rudolf Emil Kalman, in 

1960, that published a recursive solution to the discrete-data linear filtering problem. The 

filter produces an estimation of variables that cannot be measured or that are inaccurate 

and uncertain. Moreover, it can be used for four purposes: as one-step prediction 

problem, as multi-step prediction problem, as filtering problem, and regularization 

problem. Its selling point is that it can be easily implemented in a programming software 

and under certain conditions reach the optimal solution, that is, in the filtering case, to 

obtain a state estimated vector X̂ as close as possible to the real one X. 

Starting from a state space model of a dynamical system 𝒮, in discrete-time, linear time-

invariant (LTI) form, it can be written according to the following two equations [23], [24]: 

 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑤(𝑘)               (20) 

 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑣(𝑘)                 (21) 

 

where: 

 

• 𝐴 ∈  ℝ𝑛×𝑛, 𝐵 ∈  ℝ𝑛×𝑝, 𝐶 ∈  ℝ𝑞×𝑛 are, respectively, the system matrix, the input 

matrix, and the output matrix, to be known. 

• 𝑥 ∈  ℝ𝑛, is the system state vector. 

• 𝑢 ∈  ℝ𝑝, is the input state vector, to be known. 
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• 𝑦 ∈  ℝ𝑞, is the output measurement vector, to be known at any time. 

• 𝑤 ∈  ℝ𝑛, is the system noise vector. 

• 𝑣 ∈  ℝ𝑞, is the measurement noise vector. 

• 𝑘, is the sampling time, 𝑘 = 1, 2, … , 𝑁. 

 

The two main assumptions of the KF are that 𝑤 and 𝑣 are white noise with zero mean 

value, known variance and, in addition, are independent with each other, so 

𝑝(𝑤)~𝑊𝑁(0, 𝑄),  𝑝(𝑣)~𝑊𝑁(0, 𝑅), and 𝑉𝑄𝑅 = 0;  where 𝑄 ∈  ℝ𝑛×𝑛, 𝑅 ∈  ℝ𝑞×𝑞  are the 

system noise covariance matrix, the measurement noise covariance matrix, respectively 

and 𝑉𝑄𝑅 ∈  ℝ𝑛×𝑞 ,. [23], [22], [24]. 

Moreover, the initial state vector 𝑥(1) has to be identified as an unknown random vector 

𝑥(1)~(𝑥̅1, 𝑃1), where 𝑥̅1 ∈  ℝ𝑛 and 𝑃1 ∈  ℝ𝑛×𝑛, and the last as to be uncorrelated with 𝑤 

and 𝑣. [23], [24] 

Supposing to analyze the one-step predictor, a particular form commonly used, since 

provides a numerically reliable formulation of the equations used in the original form of 

the KF problem, is the predictor/corrector form, Figure 17, where the transition from 

𝑥̂(𝑁|𝑁 − 1) to 𝑥̂(𝑁 + 1|𝑁) is performed in two steps [15]: 

 

• In the first step, the filtered estimate 𝑥̂(𝑁|𝑁) is derived from 𝑥̂(𝑁|𝑁 − 1), using 

the Kalman filter gain matrix 𝐾0(𝑁). 

• In the second step, instead, the one-step prediction 𝑥̂(𝑁 + 1|𝑁) is derived 

updating 𝑥̂(𝑁|𝑁). 

 

This algorithm, after being implemented, can be used both for one-step prediction and 

for filtering problems. From an equation point of view, it is based on two parts: the 

predictor, that contains time update equations, and the corrector (or filtering), that 

instead contains measurement update equations [24], as described below:  

 

𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐨𝐫: {
𝑥̂(𝑁 + 1|𝑁)  = 𝐴𝑥̂(𝑁|𝑁) + 𝐵𝑢(𝑁)

𝑃(𝑁 + 1)  = 𝐴𝑃0(𝑁)𝐴𝑇 + 𝑄
 

 

𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐨𝐫: {
𝐾0(𝑁) = 𝑃(𝑁)𝐶𝑇[𝐶𝑃(𝑁)𝐶𝑇 + 𝑅]−1

𝑥̂(𝑁|𝑁) = 𝑥̂(𝑁|𝑁 − 1) + 𝐾0(𝑁)[𝑦(𝑁) − 𝐶𝑥̂(𝑁|𝑁 − 1)]

𝑃0(𝑁) = [𝐼𝑛 − 𝐾0(𝑁)𝐶]𝑃(𝑁)

 

 

where:  

 

• 𝐾(𝑁)  ∈  ℝ𝑛×𝑞, is the one-step Kalman predictor gain matrix. 

• 𝐾0(𝑁)  ∈  ℝ𝑛×𝑞, is the Kalman filter gain matrix. 

• [𝑦(𝑁) − 𝐶𝑥̂(𝑁|𝑁 − 1)] = 𝑒(𝑁), is the innovation term. 
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• 𝑃(𝑁) ∈  ℝ𝑛×𝑛, is the prediction error variance matrix of the state. 

 

Note that, the previous equations are true under the hypothesis that the noise terms are 

uncorrelated with each other (𝑉𝑄𝑅 = 0) and 𝑅 > 0, since in this way the Kalman predictor 

gain matrix can be written as: 

 

𝐾(𝑁) = [𝐴𝑃(𝑁)𝐶𝑇 + 𝑉𝑄𝑅][𝐶𝑃(𝑁)𝐶𝑇 + 𝑅]−1 = 𝐴𝐾0(𝑁)             (22) 

 

The matrix 𝑃 is computed by solving recursively the Difference Riccati Equation (DRE), 

which can be written in this form: 

 

𝑃(𝑁 + 1) = 𝐴𝑃(𝑁)𝐴𝑇 + 𝑄 − 𝐾(𝑁)[𝐶𝑃(𝑁)𝐶𝑇 + 𝑅]𝐾(𝑁)𝑇             (23) 

 

Note that high values of 𝑃 indicate high levels of uncertainty, vice versa for low values. 

In addition, the initialization of 𝑃(1) = 𝑃1 and of 𝑥̂(1|0) = 𝑥̅1 must be done to proceed 

with the algorithm. [23], [24] 

For the application of the KF, the assumptions made have to be respected, nevertheless, 

even if it is not simple to satisfy all together, the results are good. 

 

 

Figure 17. Block diagram of the Predictor/Corrector form of the Kalman filter algorithm. [24] 

 

Figure 18. General review on Predictor/Corrector form of the KF. [13] 
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Since to estimate the SOC the battery model found is non-linear, the Kalman filter is not 

suitable to reach the target, and so, it must be used the non-linear version of the KF, or in 

practical terms, the so-called Extended Kalman filter (EKF). From here below, a general 

description about the EKF is done. 

A non-linear, discrete time, time-variant, dynamic system 𝒮, without external input 𝑢, 

can be described by the following two equations [24] : 

 

𝑥(𝑘 + 1) = 𝑓(𝑘, 𝑥(𝑘)) + 𝑤(𝑘)                (24) 

 

𝑦(𝑘) = ℎ(𝑘, 𝑥(𝑘)) + 𝑣(𝑘)                    (25) 

 

where: 

 

• 𝑥 ∈  ℝ𝑛, is the system state vector. 

• 𝑦 ∈  ℝ𝑞, is the output measurement vector, to be known at any time. 

• 𝑤 ∈  ℝ𝑛, is the system noise vector. 

• 𝑣 ∈  ℝ𝑞, is the measurement noise vector. 

• 𝑘, is the sampling time, 𝑘 = 1, 2, … , 𝑁. 

 

Also in this case, the two main assumptions are that 𝑤 and 𝑣 are white noise with zero 

mean value, known variance and, in addition, are independent with each other, so 

𝑝(𝑤)~𝑊𝑁(0, 𝑄) and 𝑝(𝑣)~𝑊𝑁(0, 𝑅), where 𝑄 ∈  ℝ𝑛×𝑛, 𝑅 ∈  ℝ𝑞×𝑞 are the system noise 

covariance matrix, the measurement noise covariance matrix and 𝑉𝑄𝑅 = 0. [23], [24] 

Moreover, the initial state vector 𝑥(1) has to be identified as an unknown random vector 

𝑥(1)~(𝑥̅1, 𝑃1), where 𝑥̅1 ∈  ℝ𝑛 and 𝑃1 ∈  ℝ𝑛×𝑛, and the last as to be uncorrelated with 𝑤 

and 𝑣. [23], [24] 

In addition, in this case, we have also two non-linear functions, 𝑓: ℝ𝑛 → ℝ𝑛 and 𝑔: ℝ𝑛 →

ℝ𝑞. [24] 

The EKF, gives better result with respect the canonical non-linear KF, since the 

linearization of the functions 𝑓(𝑘, 𝑥(𝑘)) and 𝑔(𝑘, 𝑥(𝑘)) happens around the last estimated 

state 𝑥̂(𝑁|𝑁 − 1), instead of the nominal movement 𝑥̅(𝑘).  

This linearization, is translated in the following matrix computation [24], [25]: 

 

𝐴̂(𝑁|𝑁 − 1) =
𝜕𝑓(𝑘,𝑥)

𝜕𝑥
| 𝑘=𝑁

𝑥= 𝑥(𝑁|𝑁−1)

  

 

𝐶̂(𝑁|𝑁 − 1) =
𝜕ℎ(𝑘, 𝑥)

𝜕𝑥
|

𝑘=𝑁
𝑥= 𝑥(𝑁|𝑁−1)
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Let 𝐴̂, 𝐶̂, the EKF algorithm is stated here: 

 

𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐨𝐫: {
𝑥̂(𝑁 + 1|𝑁)  = 𝑓(𝑁, 𝑥̂(𝑁|𝑁)) 

𝑃(𝑁 + 1)  = 𝐴̂(𝑁|𝑁 − 1)𝑃0(𝑁)𝐴̂(𝑁|𝑁 − 1)𝑇 + 𝑄
 

 

𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐨𝐫: {

𝐾0(𝑁) = 𝑃(𝑁)𝐶̂(𝑁|𝑁 − 1)𝑇[𝐶̂(𝑁|𝑁 − 1)𝑃(𝑁)𝐶̂(𝑁|𝑁 − 1)𝑇 + 𝑅]−1

𝑥̂(𝑁|𝑁) = 𝑥̂(𝑁|𝑁 − 1) + 𝐾0(𝑁)[𝑦(𝑁) − ℎ(𝑁, 𝑥̂(𝑁|𝑁 − 1))]

𝑃0(𝑁) = [𝐼𝑛 − 𝐾0(𝑁)𝐶̂(𝑁|𝑁 − 1)]𝑃(𝑁)

 

 

Note that this filter is not optimal, but it is commonly used in real applications, like in 

mobile robot localization, or for GPS and so on. The drawback of the EKF is that, from a 

computational point of view, it is more demanding that the linearized case, since the 

linearization is computed online, going to linearize the system around the state estimate 

provided by the predictor at previous step, and so, the computation of the matrices (𝐴̂, 

𝐶̂, 𝐾, 𝑃0, and 𝑃) is performed in run-time. [24], [25] 

In KF instead, the matrices 𝐾, 𝑃0 and 𝑃 are computed offline. Another difference is that 

the Kalan filter will converge, instead the extended version may diverge, due to the 

wrong linearization. [25] 

 

 

2.4 DATA-DRIVEN METHODS 
 

The last group of analyzed methods are based on the data-driven approach. This is a new 

methodology that began to spread with in concomitance with the Big Data era. As it can 

be realized by the name itself, this technique is founded on the collection of hundreds of 

data, and in general, the achieved results are better as bigger are the number of available 

data. These methods have the goodness that they do not need a physical model to obtain 

good final results. Among the methods, that can be developed with a data-driven 

approach, there is the Machine Learning one, that includes Support Vector Machine, 

Fuzzy Logic, Fuzzy Neural Network, Artificial Neural Network, Recurrent Neural 

Network and many others. [12] 

The usage of these algorithms, in particular the Neural Networks with all its sub-

algorithms, have been a great acceptance from the researchers’ world community, thanks 

to their capacity to be adapted to non-linear systems. Although, this matter is still studied 

today, in order to find demonstrations and explanations for the impressive results 

returned. Talking about the thesis target, in the estimation of the state of charge 

consumption, this approach is widely used, but obviously it is necessary, as said before, 

having by hand a collection of many data, and despite this, the results are not perfects, 

due to the high complexity of the problem. The traditional path followed by the R&D 
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centers, is to try to estimate the state of charge starting from measurable variables of the 

battery system, such as the voltage, the current and the temperature. Due to the presence 

of non-linear behaviors, difficult to reproduce in the equivalent models, many studies 

are directed to use a data-driven methods, that try to learn from the relationship between 

input parameters and the state of charge, these complex relationships. [17] 

Among the different works in the literature, the most use data that are measured directly 

from the battery pack, through precise experiments; in addition, some of these 

measurements are made directly in individual cells when, of course, this is possible. 

It should also be noted that the works are almost never generally applicable, but depend 

on one, or more, specific operating conditions.  

For example, there is a paper where is describes a model for the estimation of the SOC, 

characterized by a Nonlinear Auto Regressive network with eXogenous inputs (NARX), 

that generates as output the voltage and, connected in series with a feed-forward 

network that returns as outcome the SOC; the temperature and the current of the single 

lithium-ion battery were used as inputs. [26] 

Among the various work aimed at developing an artificial intelligence model for 

estimating the SOC, reference is made to the S. Bockrathwork work, where an algorithm 

based on a recurrent neural network (RNN) architecture was developed; in particular an 

LSTM architecture was implemented and trained with actual data taken from a lithium-

ion battery. The algorithm achieves a RMSE error of 5.0%. [27] 

In literature, there are several papers that, using artificial neural networks, point to 

predict the SOC level of consumption of a lithium-ion battery pack. In particular, it is 

possible to find studies that achieved 2.6% of Mean Square Error (MSE) error [6], others 

about 1% [14,15], and some authors that reached e-04 MSE [16].  

Since one of the two algorithms, developed in this work, was designed following a data-

driven approach (in particular, it contains an Artificial Neural Network model), an 

extensive and detailed description about this estimation technique and this model will 

be described, in chapter 4.  

It is possible to anticipate that the artificial intelligence algorithm developed in this paper 

does not follow the classic approach recommended by the other works present in 

literature. In fact, the inputs used are: speed, acceleration and road slope angle, but not 

the standard voltage, current and temperature. This is a direct consequence of the 

approach followed to develop the estimation algorithm for the problem resolution, 

which is different from the one, normally, adopted. 
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Chapter 3 

 

_____________________________________________________________________________ 

A NOVEL MODEL-BASED APPROACH FOR OFFLINE 

SOC ESTIMATION 

_____________________________________________________________________________ 

 

 

 

In this chapter the design part that has supported the development of the first algorithm, 

realized and proposed to solve the range estimation problem is described. The solution 

provided here is found on a model-based approach, that, however, it is different with 

respect the standard methods realized, as the ones described in chapter 2. In fact, the core 

of the resolution is the physical model of the problem, in terms of power and energy 

dissipated by the vehicle during the driving conditions.  

By means of this approach, basic and simple formulas are used to compute an estimation 

of the SOC consumption, in order to evidence the goodness of the problem also using 

underlying formulations without going into the deep in modelling the problem. 

The flowline pursued to develop the algorithm has been the following: starting from real 

measurements data, extracted from a Tesla Model 3 with a 75 kWh battery pack and 

provided by Bylogix S.r.l company, it was possible to compute the electric power 

consumed by the vehicle during the travelling time. This power was obtained by 

multiplying real measurements of voltage (V) and of current (A). 

At this point, the algorithm was designed with the idea of estimate as best as possible the 

consumption of electrical power during the trip, using as input data, instead of real 

voltage and current measurements, only the point coordinates that make the route. By 

these coordinates, a lot of information were extracted, like the weather, distance, altitude, 

and road data, where some of them were used to obtain a prediction of the velocity 

profile, which was a fundamental working point for the model. Combining all these data 

and using physical formulations, it was possible to estimate the consumption power at 

wheels level required to complete the trip. This result was then used to calculate an 

estimation of the electrical power and so of the energy usage as well as of the state of 

charge. A comparison between the real SOC, given by the set of measured data, and the 

estimated one is made to validate the algorithm. Note that, before the testing process, all 

the formulations implemented had to be verified, and for this task were used the data 

provided by the company; for example, instead of using the velocity profile realized by 

the algorithm, it was used the velocity profile extracted by the measurements. 
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In the next paragraphs are described all the functions implemented to guarantee the 

algorithm working conditions; moreover, details about these features are illustrated. A 

short presentation of what the next paragraphs contains is made below here. 

The first paragraph 3.1 contains a short overview of the problem with a focus on the main 

steps characterizing the solution developed. 

In the sub-paragraphs from 3.2.1 to 3.2.7, it will be described in detail all the main data 

needed by the software as input; in addition, will be provided a clearer and more 

complete view on how the data were extracted and of the solutions adopted to achieve 

these, in terms of implemented functions. 

In paragraphs 3.3, 3.4, and 3.5 will be illustrated all the equations and physic concepts 

used to obtain the estimation output data, such as battery power, the energy 

consumption, and the state of charge.  

Then, in paragraph 3.6, a detailed characterization of the techniques used in the 

algorithm to obtain different parameters’ values, needed to be adopted in the problem 

equations, will be shown. 

In paragraph 3.7, an analysis of the algorithm results with respect to a real drive cycle, in 

terms of accuracy in the estimation of the SOC, is provided. Moreover, a statistical 

analysis is performed to check the general algorithm behavior with respect to 22 different 

drive cycles used as test. To conclude, in 3.8 and 3.9, respectively, are described the 

testing of the model in a simulated real scenario and the conclusions. 

 

 

3.1 DESIGN OF THE ALGORITHM 
 

To achieve this goal, estimation of the state of charge level of consumption during a trip, 

an algorithm was written in Python language.  

The algorithm was developed with the idea to work in offline mode, so before the trip 

begins it returns data information about the trip itself, as the duration in time, the 

estimation of the energy consumption to complete it, but also graphs that show the 

estimated consumption energy and the SOC. As said, this is a baseline algorithm, 

designed to give a first general idea on the consumptions that a battery electric vehicle 

could have to complete a trip. A briefly description on how the algorithm operates is 

made below and represented in Figure 19. 

The algorithm takes as input the velocity profile, the weather data and the altitude 

profile; after, several functions are implemented to extract other useful data and 

parameters to use in the algorithm, such as road slope angle, weather data and others. 

At this point, the conversion from the wheel side power consumption to the battery one 
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is realized and, integrating this last quantity, the energy is achieved. To conclude, the 

SOC level of consumption is derived from the knowledge of the energy.  

If the algorithm is used in real life application, the working principles are the same, the 

only difference is that the velocity has to be predicted; this is done by combining road 

information and weather data. All the input data, have to be obtained starting by the 

knowledge of the route coordinates, in latitude and longitude format. [27], [28] 

The main operations performed by the algorithm, in a real scenario, is listed here: 

 

1. Select and extract the coordinates of the selected route, using the routing web-

service OpenSourceRoutingMachine). 

2. Makes a request to Open Street Map (OSM) and extract road information. 

3. Extracts information on the weather. 

4. Combines the extracted data to predict a velocity profile. 

5. Extracts information on the elevation profile. 

6. Computation of the battery power consumption. 

7. Estimation of the energy consumption and of the SOC. 

 

 

Figure 19. Working flow of the model-based algorithm for SOC estimation, in real application scenario. 

 

3.2 INPUT DATA OF THE ALGORITHM 
 

The main data used by the algorithm are the road information data, the elevation data, 

the distance data, and the weather data. 

All these were obtained starting from the waypoints’ coordinates, that are the input of 

the model. The coordinates of the route waypoints, expressed in terms of latitude and 

longitude, are stored in a file, whose extension is .gpx.  

Another important data the algorithm needs to use, is the velocity profile that has to be 

predicted offline. In this chapter the velocity prediction data will be used only when is 
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made the simulation of the algorithm’s working conditions in a real scenario. In all the 

other cases, the velocity used will be the one measured and provided in the dataset. 

In the next sub-paragraphs of this paragraphs, it will be described how these data were 

extracted and how were used in the algorithm. 

 

3.2.1 WAYPOINTS COORDINATES  
 

In this paragraph is described how the waypoints coordinates have been extracted and 

used to allow the extraction of all the data used by the algorithm. 

As said before, the points’ coordinates, that make a route, are stored in the computer as 

a GPX format file. 

‘’A GPX file, also known as a GPS Exchange Format file, is an XML schema designed as 

a common GPS data format for software applications’’ that contains geographic 

information such as waypoints, tracks, and routes saved in it. [29]  

According to the documentation, a GPX file has three data types: 

 

• wptType, that is the single waypoint among a collection of point with no 

sequential relationship. It is identified with the WGS 84 (GPS) coordinates of a 

point. 

• rteType, is a route, so an ordered list of waypoints. 

• trkType, is a track, made at least by a segment containing waypoints, listed in an 

ordered way to describe a path. 

 

The minimum properties of a GPX file are latitude and longitude for every single point. 

The latitude and longitude values are stored according to the WGS datum format and 

are expressed in decimal degree. [30] 

Returning to the working mode description, the file can be downloaded from internet, 

using a web service called OpenSourceRoutingMachine (OSRM). [31] 

In Figure 20, it is possible to observe an example of data contained in the downloaded 

GPX file, using this service. 

From the web, it’s possible reach the site and after having selected two points (start point 

in green, end point in red) a path will be generated automatically, finding, by default 

setting, the shortest path in the road network, Figure 21. 

Note that the user has to select the car profile, otherwise by default, the system will find 

a path according to bike road network; this option can be selected by clicking on the 

button signed with label A, in Figure 21. 

Optionally, it is possible to rearrange the path according to the user preference, creating 

the desired route by hand, clicking on the street desired. 



 

 34 

Finally, when the route is planned, the user can download the file and use it; to do this 

operation the user has to click on the button signed with B, in Figure 21. 

Since a GPX file contains a lot of data, an ad-hoc function was written to extract only the 

waypoints coordinates and to store them into an array. 

An example of the data extracted by the GPX file downloaded from OSRM is the 

following: <trkpt lat="37.10165" lon="13.93752"/>. 

 

 

Figure 20. Example of GPX file containing the waypoint coordinates associated to a route. 

 

Figure 21. Example of the web interface of OSRM route map service. [31] 

Nevertheless, during the develop of the problem, it was noticed a serious issue, known 

as map-matching problem. Map-matching is a well-known problem that arises when the 

user wants to match the coordinates coming from a device with an integrated global 

positioning system (GPS) with the correspondent map points. In this part of the model, 

A 

B 
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a lot of this problem case had arisen, and these had been translated in trouble for the 

extraction of road information, since the algorithm did not return the correct results. 

After having evaluated different ideas, it was decided to use an approach, that will be 

described in sub-paragraph 3.3.3.1. Another reason why the OSRM service was chosen 

for the extraction of the route waypoints was that map is created using the data stored in 

the OSM’s databases. [32] 

 

3.2.2 OPEN STREET MAP  
 

The state of charge consumption of a battery electric vehicle is influenced by several 

elements, among which the road information, such the road typology, the speed limit, 

the traffic lights presence and so on.  

This is the reason why the algorithm needs a lot of road information. 

In order to extract these data, the database provided by OpenStreetMap (OSM) was 

chosen. [32] 

OpenStreetMap is an open-source service used to extract a lot of information from the 

route map. The fundamental characteristic of the geographic data present in OSM is that 

they are distributed with a free license, the Open Database License: so, it is possible to 

use them freely for any purpose, including commercial, with the only constraint of citing 

the source and using the same license for any works derived from OSM data.  

Everyone can contribute by enriching or correcting the data. [31] 

The OSM databases store route information, using three main types of data: 

 

• Nodes. 

• Ways. 

• Relations. 

 

The node is both one of the most important and the key element in OpenStreetMap data 

model. This is characterized by its latitude, longitude, and node id. The node can be used 

both as descriptor of a certain tag or as one of the points of one or more ways, making in 

this last case the so called ‘path’ of the way. In this latter case, the node can assume a 

certain tag. [33]  

In Figure 22, it is possible to see an example of response relatives to a node, containing 

the node id, the coordinates, and the tag. The node symbol is . 
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<node id="25496583" lat="51.5173639" lon="-0.140043" version="1" 

changeset="203496" user="80n" uid="1238" visible="true" timestamp="2007-01-

28T11:40:26Z"> 

    <tag k="highway" v="traffic_signals"/> 

</node> 

Figure 22. Example of node information in XML format. Note the presence of node id, latitude, 
longitude, and tag. [33] 

The way instead represents a linear feature of the ground, e.g., a road, a sidewalk, a river. 

It is composed by an ordered list of nodes and has at least one tag associated. A way can 

be done make by a number of nodes that is in the range of 2-2.000. A way can be open or 

closed, the latter case happens when the last-point and the first-point coincide. [34] 

In Figure 23, it is represented an example of response containing way information’s, like 

the way id, the list of nodes making it and the tag associated. 

 
<way id="5090250" visible="true" timestamp="2009-01-19T19:07:25Z" version="8" 

changeset="816806" user="Blumpsy" uid="64226"> 

    <nd ref="822403"/> 

    <nd ref="21533912"/> 

    <nd ref="821601"/> 

    <nd ref="21533910"/> 

    <nd ref="135791608"/> 

    <nd ref="333725784"/> 

    <nd ref="333725781"/> 

    <nd ref="333725774"/> 

    <nd ref="333725776"/> 

    <nd ref="823771"/> 

    <tag k="highway" v="residential"/> 

    <tag k="name" v="Clipstone Street"/> 

    <tag k="oneway" v="yes"/> 

  </way> 

Figure 23. Example of way information in XML format. Note the presence of way id, list of node ids and 
tags. [34] 

To obtain this type of information about the road, the Overpass API (formerly known as 

OSM Server Side Scripting, or OSM3S before 2011) was used. [35] 

Overpass is an Application Programming Interface used to read only customized part of 

data from the entire OSM database and work over the web. The user sends the request 
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or query to API and it gets back the data required, in terms of nodes, ways and relations. 

[35] 

To do the request, the programming languages used are Overpass QL (Overpass Query 

Language) or Overpass XML, but in this work was adopted the first one. 

To get familiar with this language and to play with it, it is possible to use an interactive 

Web-based frontend, called Overpass-turbo, whose link is: https://overpass-turbo.eu/. The 

complete documentation about Overpass API is reachable to the following link: 

https://dev.overpass-api.de/overpass-doc/en/. 

Examples of requests are showed below: 

 

 
Figure 24. Example of query with node. 

 
Figure 25. Example of query with way. 

 
Figure 26. Example of query with way. 

Since the output data returned by the server request are in json or xml format, it was 

necessary to write a function that performed the data parsing in order to store those in 

Python structures. In this way, the future manipulation of the data was simplified. 

The two dictionary structures created to store the OSM information, are showed in Figure 

27 and Figure 28. 

 

[out:xml]; 

node(node_id);  

(._;>;); 

out;  

 

(out:xml]; 

way[highway](way_id); 

(._;>;); 

out; 

 

(out:xml]; 

way[highway]{{bbox}}; 

(._;>;); 

out; 

 

https://overpass-turbo.eu/
https://dev.overpass-api.de/overpass-doc/en/
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Figure 27. Example of data parsing for extraction of node information on a Python dictionary, named 
node. 

 

Figure 28. Example of data parsing for extraction of way information on a Python dictionary, named 
way. 

The first dictionary, called node, contains three list structures: the ‘Node Id’, the ‘Node 

Lat/Lon’ and the ‘Node Tag’, used to save respectively, the id, the coordinates, and the 

tags of each node. 

Also, the second dictionary, called way, contains three list structures: the ‘Way Id’, the 

‘Way Node’ and the ‘Way Tag’, used to store respectively, the id, the list of nodes making 

the way, and the tags of each way. 

These two dictionaries were stored inside another dictionary structure, called parsed_osm. 

 

3.2.3 ROAD INFORMATION EXTRACTION 
 

One of most hard challenges of this work was to understand how to extract the road 

information and feed them to the algorithm. Basically, these are needed for obtaining a 

prediction of the velocity profile, as will be seen in the next sub-paragraphs. 

As explained in the previous sub-paragraph, it was decided to use the OpenStreetMap 

data [32], but the problem was how to select only those ways that belong to the imported 

route. 

Two different extraction techniques are evaluated in this work, and both are described 

in the next two sub-paragraphs, analyzing the pros and counters for each of them. Briefly, 

it is explained here the selected and used procedure for the extraction, called Technique 

1, Figure 29. 
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Figure 30. Query to download road information, written Overpass QL language. 

Firstly, after collecting all the road data, the nodes that were closer to the waypoints of 

the route were selected; secondly from these nodes it was possible obtain the ways of the 

route; to conclude the extraction of the road information was performed. 

 

 

Figure 29. Operation flow followed to extract the road data from OSM, Technique 1. 

 

3.2.3.1 EXTRACTION TECHNIQUE 1  
 

The first approach thought was based on the following command request: 

 

[out:xml];  

way[highway]{{box_range}}; 

(._;>;); 

out; 

 

 

The request in Figure 30, shows an example of query to Overpass to return the list of 

ways, with highway tag, present inside the area whose bounds coordinates are written 

the section called, box_range.  
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At this point a server request is send, and the output data are returned in Extensible 

Markup Language (XML) format, containing the dataset made by all the nodes and ways 

presented in the selected area. 

In turn each way contains an ordered list of nodes that make it and a series of tags or 

information too. 

An example of complete request made in the algorithm is the following: 

 

[out:xml]; 

way[highway]["highway"!~"footway"]["highway"!~"track"]["highway"!~"path"]["highw

ay"!~"pedestrian"]["highway"!~"raceway"]["highway"!~"bridleway"] 

["highway"!~"steps"]["highway"!~"corridor"]{{box_range}}; 

(._;>;); 

out; 

Figure 31. Example of complete request to download road data, in Overpass QL language, using 
technique 1. 

Observing the previous request example, Figure 31, other restrictions are added to skim 

all the unnecessary output data, so nodes, ways and tags returned by the server, avoiding 

both weighting a lot on the algorithm memory and in term of download useless data too. 

In Figure 31, the user requires all the ways located in the area, whose bounds are defined 

by the box_range parameter, according to the filters imposed; the output data will be 

provided in xml format. 

Once obtained the only nodes and relative ways considered useful to obtain the desired 

road information, an ad-hoc function was designed and written to extract the ways 

belonging to the imported route. 

This algorithm, explained in sub-paragraph 3.2.3.3, will allow to trace the ways making 

the route, starting by the knowledge of the selected OSM’s nodes. 

But first is necessary to select the only nodes that belong to the route imported, and how 

this is done, is explained below. In Figure 32, it is possible to see an example of the OSM 

server response, in terms of nodes returned, relatives to the selected area, according to 

the request exposed in Figure 8. 
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Figure 32. Example of OSM nodes presented in the selected area. 

In order to select among the high number of nodes given by OSM, only those 

corresponding to the waypoints of the selected route, it was thought to select only those 

nodes whose distance with respect the waypoints was the smallest.  

To do this, it was needed to compute the distance between each node and each waypoint, 

using the classical formula to compute the distance between two points in a plane. 

To better understand the following formulations, for this paragraph it was used the 

following nomenclature, the longitude it was indicated with the 𝑥, the latitude with the 

𝑦. So, identifying the coordinates 𝑥 and 𝑦 of the OSM’s node i-th as 𝑋𝑁𝑖 , 𝑌𝑁𝑖 respectively 

and the coordinates 𝑥 and 𝑦 of the waypoint j-th as 𝑋𝑊𝑗 , 𝑌𝑊𝑗, it was possible to obtain the 

distance applying the Pitagora’s theorem, according to the following equations: 

 

𝑑𝑖𝑗 = √𝑑𝑖𝑠𝑡𝑥_𝑖𝑗
2 + 𝑑𝑖𝑠𝑡𝑦_𝑖𝑗

2                 (3.1) 

 

where: 

 

𝑑𝑖𝑠𝑡𝑥_𝑖𝑗 = 𝑋𝑁𝑖 −  𝑋𝑊𝑗                   (3.2) 

 

𝑑𝑖𝑠𝑡𝑦_𝑖𝑗 = 𝑌𝑁𝑖 −  𝑌𝑊𝑗                 (3.3) 

 

Since the considered system is made by 𝑛-nodes and 𝑚-waypoints, combining all the 

distances, it will be obtained a matrix, called 𝐷 matrix, whose dimension is ℝ𝑛×𝑚. 

Each element of this matrix 𝐷, is indicated with 𝑑𝑖𝑗 and it indicates the distance between 

the node 𝑖 and the waypoint 𝑗. 
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𝐷 = [

𝑑11 ⋯ 𝑑1𝑗

⋮ ⋱ ⋮
𝑑𝑖1 ⋯ 𝑑𝑖𝑗

]                         𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 OSM 𝑛𝑜𝑑𝑒,
                     𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡

 

 

The matrix 𝐷 has the property to be symmetric, so 𝑑𝑖𝑗 = 𝑑𝑗𝑖, for 𝑖 ≠ 𝑗. 

To select only the OSM’s nodes closer to the waypoints of the route, it was applied a 

function that returns a vector, called min_dist with dimension ℝ1×𝑚, containing the 

minimum distance value along the axis 0 (in other words, it was selected the minimum 

𝑑 value along the rows for each column of the matrix). In addition, another array, 

indicated with index_min, was computed, whose dimension is ℝ1×𝑚 too, that is made by 

indices. Each index points out the position where the OSM’s node have place inside the 

original array containing all the OSM’s nodes.  

An example about this last point is done to explain better what the indices are; supposed 

to have only 3 nodes from OSM, and 5 waypoints, Figure 33. 

So, 𝑛𝑜𝑑𝑒 = [𝑛1, 𝑛2, 𝑛3] and 𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5]. 

The matrix 𝐷 has a dimension ℝ3×5, instead the arrays min_dist and index_min belongs to 

ℝ1×5. 

The first element of index_min array identifies the position of the node 𝑛𝑖 that is closer to 

the first waypoint 𝑤1; position referred to the index position where the selected node is 

in the 𝑛𝑜𝑑𝑒 array. The same for the other waypoints. 

 

 

Figure 33. Example of application of technique 1, with 5 OSM’s nodes and 3 waypoints. 

At this point, knowing the indices of the nodes closer to the waypoints, it was possible 

to extract only the needed OSM’s node and discard others, and to use these ones to 

understand what ways belong to the imported route. The array containing all the selected 
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Figure 34. Example of complete request to download road data, in Overpass QL language, using 
technique 2. 

OSM’s nodes, was called node_optimized, and as said has the same dimension of the 

waypoints vector. 

This method implemented is very fast, since it does only one request to the server and all 

the other operations, like the selection and extraction of the nodes are made offline. [28] 

The bad point is that it works fine only with the service supplied by OSRM, in the GPX 

format. [31]  

If the file containing the coordinates of the route is exported from a GPS or Google Maps, 

the extraction result is not good as expected but there will be a map-matching problem; 

practically it will happen that the coordinate imported will not correspond to the correct 

OSM’s node. 

 

3.2.3.2 EXTRACTION TECHNIQUE 2 
 

The second technique used to extract road information is designed on the following 

Overpass query, in Figure 34. 

 

[out:xml]; 

way [highway] (around:1,55.8141,26.8400); 

(._;>;); 

out; 

 

 

In the previous query example, are requested the ways with tag highway, that are inside 

the circle centered in the coordinates 55.8141 and 26.8400, with a radius of 1 meter. More 

in general, the function, using this query, checks if some OSM ways are inside the circle 

area, centered in the coordinates and with radius 𝑟. Since the ways, added by the users, 

can be placed not at fixed distance with respect the coordinates, it was decided to create 

a for loop, inside which the dimension of the radius is increased of a constant term at 

each iteration.  

Inside the loop, a condition has to be checked: if the ways are found inside the circle with 

radius 𝑟, then the function ends and the new coordinate is given as input and perfume 

the same operations; instead, if the conditions is not true, the radius value increases until 

a way is found. 

This is the positive, since it is possible to give as input the waypoints coordinates, 

everywhere they are taken, and find the corresponding way from OSM database. 

The drawback of the function is the time spent for the research on the server, in fact it 

makes a request for every pair of coordinates and in addition, it is necessary to consider 

the number of iterations done until a way is found.  
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For these reasons, the technique described here is not used in the algorithm, but it is 

preferred the first one. 

 

3.2.3.3 ROAD STREET IDENTIFICATION 
 

In this sub-paragraph, it is described how the information associated to the ways of the 

selected route are extracted. The method has a reference with the first extraction method, 

previously defined as technique 1. 

Firstly, it was necessary to understand how to select what ways there are in the selected 

route, using as input the node_optimized vector, containing the list of OSM’s node closer 

to the waypoints. 

From OSM’s documentation, it was possible to read that a way is composed by an 

ordered list of nodes and so, using this information, a function was developed to return 

the list of ways that are inside the route. 

The conceived idea consists of evaluating pairs of two elements of the node_optimized 

array at times, and for each way, check two conditions: the first one is to verify if the two 

items belong to the nodes’ list of that way, while the second one if they are consecutive 

in that list. 

If these two conditions are true, then the road information are extracted into appropriate 

Python lists; otherwise, if the two nodes selected are not consecutive in any way, then it 

is chosen the previous selected way. A little part of the algorithm for the road data 

extraction is described below here, in Figure 35. 

1.  for i in range(len(index_min)-1): 
2.  
3.     way_found = 0 
4.     id_node1 = np.array(parsed_osm['node']['id'][0,index_min[i]])      
5.     id_node2 = np.array(parsed_osm['node']['id'][0,index_min[i+1]])      
6.      
7.     tot_way = len(parsed_osm['way']['id'])  # total number of ways 
8.  
9.     for j in range(tot_way):                         
10.          
11.         node_of_way = np.array(parsed_osm['way']['node'][j], 

dtype=int) #          take                            the list of 

nodes correspondent to the selected way 

12.  
13.         if any(np.equal(id_node1, node_of_way)) and 

any(np.equal(id_node2,                node_of_way)):              # 

check if the two selected nodes belongs to the  selected way   

14.  
15.         cond1 = id_node1 == node_of_way                  
16.         cond2 = id_node2 == node_of_way                  
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17.          
18.         ind_cond1 = [] 
19.         ind_cond2 = [] 
20.          
21. for l in range(len(cond1)): 
22.             if cond1[l] == True: 
23.             ind_cond1.append(l)                      
24.                  
25.         for n in range(len(cond2)): 
26.             if cond2[n] == True: 
27.             ind_cond2.append(n) 
28.              
29.         if np.absolute(ind_cond2[0] - ind_cond1[0]) == 1: 
30.            way_found += 1 
31.            tot_way_found += 1 
32.                                  
33.            id_way = parsed_osm['way']['id'][j]  
34.            num_tag_way = len(parsed_osm['way']['tag'][way_index])                   
35.                  
36.         ‘‘‘ ROAD INFORMATION EXTRACTION ’’’ 
37.         ......  
38.         ...... Code not showed for the extraction of the information 
39.         ...... Code not showed for the extraction of the information 
40.         ...... 
41.         ‘‘‘ END EXTRACTION ’’’ 
42.  
43.     if way_found == 0 and i != 0: 
44.        take the information associated to the previous way found  

Figure 35. Algorithm for road data extraction. 

The information extracted from the OSM’s databases, relative to the ways, are the id, the 

name, the asphalt type, the way classification, the speed limit imposed by signs, if 

present, and the speed limits associated to the road typology. All these data were saved 

first into Python lists structure, then were stored into a Python dictionary to be managed 

easily. 

 

 

3.2.4 VELOCITY PROFILE PREDICTION  
 

The algorithm to work needs to know a very important information, that is the velocity 

profile and since the program is launched before the trip begins, it is necessary to know 

it a priori. Having a prediction of the velocity profile is not an easy task to achieve, since 

it depends by a lot of factors, such as the driving style of the driver, the weather 

conditions, the speed limit imposed, the traffic conditions, the surface and road typology. 
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Due to the offline working mode of the algorithm, it was decided to obtain a velocity 

profile based on three information, the speed limits imposed by the road typology, the 

speed limits established by the vertical and horizontal signs, and by the weather 

conditions. In this sub-paragraph is described step-by-step how the velocity profile was 

obtained. Firstly, it was considered a profile based on the speed limit regulated by the 

Italian law, according to the road typology and to the sign’s presence. To obtain the 

needed information it was used OSM. [32]  

The function, designed to obtain the legal speed limit profile, is based on the following 

idea: given an array made by all the ways present in the selected route. For each way, the 

selection criterion operates according to the ensuing conditions: first, it checks if there is 

some speed limit sign (both vertical and horizontal), and, if this condition is true, the 

function imposes that value in the selected stretch of road. Instead, if the condition is 

false, the function sets as velocity value the one associated to the road classification, 

according to Table 2.  

 

Road classification  Good weather conditions Bad weather conditions 
Motorway 130 Km/h 110 Km/h 
Trunk 110 Km/h 90 Km/h 
Primary 90 Km/h 90 Km/h 
Secondary 90 Km/h 90 Km/h 
Tertiary 90 Km/h 90 Km/h 
Residential 50 Km/h 50 Km/h 
Living Street 50 Km/h 50 Km/h 
Track 50 Km/h 50 Km/h 
Unclassified 50 Km/h 50 Km/h 
Service 20 Km/h 20 Km/h 

Table 2. Speed limit according to road classification. [36] 
 

The speed limit, associated to the road classification coincides exactly with that imposed 

by Italian Law on road safety; although in some roads the speed limit can be changed if 

it is expressly stated in signs. [36] 

The final result of this approach is showed in Figure 36, where is represented the legal 

speed limit profile. Nevertheless, the result obtained is not so good: first, it does not 

consider the vehicle acceleration and, second, it can be observed the presence of high 

steps, in correspondence of the speed change, that describes an unrealistic behavior. The 

presence of these steps produces an acceleration not physically achievable; remember 

that the acceleration is the first derivate of the velocity in time, and that the derivate of a 

step signal is the impulse function but the impulse function is not a reproducible signal. 
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Figure 37. Implementation of the backward algorithm. 

 

Figure 36. Legal speed limit profile obtained by the algorithm, according to both road signs and road 
classification. 

To avoid having problems like these and to have a more realistic result, it was considered 

an acceleration-velocity model that the vehicle can follow.  

To take into account it, the acceleration profile was obtained from real velocity 

measurements and then by plotting a velocity-acceleration profile, it was extracted the 

maximum longitudinal acceleration and deceleration trend, Figure 20. [28] 

Obviously, the acceleration was obtained from the speed real data, using the backward 

discrete difference algorithm, as in Figure 37, or the Python function diff, whose belong 

to the NumPy module. [37] 

 

x(i + 1) =
x(i)−x(i−1)

∆t
  

with ∆𝑡 = 1 since the sampling time is 1 second. 
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Figure 38. Velocity-acceleration profile according to real collected data. In red the deceleration trend, in 
black the acceleration one as function of the velocity. 

At this point it was possible to get the velocity profile, with also a regard to the maximum 

acceleration and deceleration values, as function of the velocity, by the numerical 

integration between each of the points of the distance array, according to equations 3.4, 

3.5. [27], [28]  

 

𝑣(𝑠𝑖+1) =  min( 𝑣(𝑠𝑖) + ∫ 𝑎𝑚𝑎𝑥,𝑎𝑐𝑐(𝑣) 𝑑𝑡,  𝑣𝑚𝑎𝑥(𝑠𝑖+1) )
𝑡(𝑠𝑖+1)

𝑡(𝑠𝑖)
 [

m

s
]         (3.4) 

 

𝑣(𝑠𝑖+1) =  𝑚𝑎𝑥(𝑣(𝑠i) + ∫ 𝑎𝑚𝑎𝑥,𝑑𝑒𝑐(𝑣) 𝑑𝑡,  𝑣𝑚𝑎𝑥(𝑠𝑖+1))
𝑡(𝑠𝑖+1)

𝑡(𝑠𝑖)
 [

m

s
]            (3.5) 

 

where: 

 

• 𝑎𝑚𝑎𝑥,𝑎𝑐𝑐, is the maximum longitudinal acceleration. 

• 𝑎𝑚𝑎𝑥,𝑑𝑒𝑐 , is the maximum longitudinal deceleration. 

 

The values of 𝑎𝑚𝑎𝑥,𝑎𝑐𝑐 and 𝑎𝑚𝑎𝑥,𝑑𝑒𝑐 , change with velocity and are chosen according to 

plot displayed in Figure 38. The equations above are computed for 𝑖 = 1, … , 𝑁 − 1, where 

𝑁 is the number of waypoints points the route. 

The first equation, 3.4, is referred to the acceleration case, the second one, 3.5, to the 

deceleration case. Combining the two results, the complete legal speed limit profile is 

obtained. The initial and the final velocity are imposed equal to zero, assuming the 

vehicle starts and ends the trip standstill. 

In Figure 39, it is possible to observe the effect of the acceleration term, visible as red line, 

with a more realistic result in the transition from 0 to 50 Km/h, for example. The opposite 

situation is showed in Figure 40, where is displayed the deceleration case, in blue line. 
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The combination of the two situations, so acceleration and deceleration case, is showed 

in Figure 41, where the green line represents the velocity profile, with respect to the black 

line exemplify the original limit speed profile. 

 

 

Figure 39. Legal speed limit profile. In red the velocity profile considering the acceleration, in black the 
basic case without acceleration. 

 

Figure 40. Legal speed limit profile. In red the velocity profile considering the deceleration, in black the 
basic case without deceleration. 
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Figure 41. Example of velocity profile obtained. 

It is also possible to determine a personal velocity profile, by changing a factor, called 

bias velocity factor or BVF, that changes the amplitude of the velocity profile obtained by 

the algorithm, according to the equation 3.6. 

Changing this factor, also the final result will change, so the energy consumption and the 

state of charge associated. 

 

𝑣 = 𝑣 ∙ 𝐵𝑉𝐹       [
m

s
]          (3.6) 

 

Note that: 

 

• if 0 < 𝐵𝑉𝐹 < 1, the velocity is reduced, 

• else if 𝐵𝑉𝐹 = 1, the velocity remains at legal limit speed, 

• else 𝐵𝑉𝐹 > 1, the velocity is gained. 

 

By default setting the BVF is imposed equal to 0.90, to be far from the speed limit values. 

Moreover, to have a smooth profile, it was applied a digital Butterworth low-pass filter, 

to the velocity profile previously obtained. 

In Figure 42, it is showed the speed profile returned by the function, in three cases: in 

black line the velocity profile without filter and BVF applied; in red, the velocity filtered 

and with the BVF applied; in blue, the case equal to the red one but without filter usage. 

The Figure 43, Figure 44, Figure 45, instead show a zoom of the profile, where it is 

possible to appreciate the smooth effect created by the filter. 
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Figure 42. Example of velocity profile obtained by the algorithm. 

 

Figure 43. Example of velocity profile obtained by the algorithm, with a zoom on the first 3 Km. 
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Figure 44. Example of velocity profile obtained by the algorithm, with a zoom on range 2-16 Km. 

 

Figure 45. Example of velocity profile obtained by the algorithm, with a zoom on the last 7 Km. 

To conclude, starting from the information about the road, it was possible to obtain a 

velocity profile entirely based on the speed limit imposed by the Italian law in the field 

of transport and by Polizia di Stato. [36] 

The flow chart followed to create the velocity profile is presented in Figure 46. Note that 

the prediction of the speed profile will be used both in the real application and in the 

testing part; instead, in the next chapters, in order to verify if the implemented formulas 

work well, it is used a velocity profile extracted from real measurements of the vehicle. 
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Figure 46. Flow chart for the legal speed limit profile generation. 

 

3.2.5 DISTANCE PROFILE 
 

Another important function implemented in this algorithm was the one able to compute 

the length of the route and the distance between two consecutive waypoints.  

Although the computation of the distance between two points, from A to B, may be 

considered as an easy task, it is not. The reason why the algorithm needs this data, among 

the others, is to compute the slope of the route, since it needs elevation and length data. 

The idea was to divide the route in several segments, called ways, where each segment 

is made by two points, or nodes, described by latitude and longitude coordinates, Figure 

47. 

 

 

Figure 47. Example of route made by 5 nodes and 4 ways. The total length is 𝓵𝑻𝑶𝑻 =  𝓵𝟏 + 𝓵𝟐 + 𝓵𝟑 +

𝓵𝟒. 
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To compute the total length of the route, the algorithm first computes the length of each 

segment and then, summing these values, produces the total route length, in meters, as 

in equation 3.7. 

 

ℓ𝑇𝑂𝑇 =  ∑ ℓ𝑖
𝑛
𝑖=0       [m]          (3.7) 

 

where:  

 

• ℓ𝑖 [m], is the length of the single segment. 

• ℓ𝑇𝑂𝑇  [m], is the total length of the route. 

 

The example in Figure 47, shows a route that starts in A and ends in E, that is made by 5 

nodes (A, B, C, D, E) and by 4 ways (first way A-B, second B-C, third C-D, fourth D-E). 

To compute the single segment length, the implemented function needs the coordinates, 

in latitude and longitude, of the two points of which the distance has to be calculated and 

then, according with the haversine’s formula, the distance among the two points is 

returned. 

“The Haversine formula is used to compute the great-circle distance between two 

points”, or, in other words, it is the shortest distance over the earth surface. The distance 

is computed in fly, ignoring so any hills or mountain. [38] 

 

The equations implemented are [38]: 

 

𝑎 =  sin2( 
∆𝜑

2
 ) + cos(𝜑1) ∙ cos(𝜑2) ∙ sin2( 

∆𝜆

2
 )                  (3.8)  

 

𝑐 = 2 ∙ atan2( √𝑎, √(1 − 𝑎) )                (3.9) 

 

       [m]           (3.10) 

 

where: 

 

• 𝑅 = 6,337 ∙ 106 [m], is the earth’s radius (mean value). 

• 𝜑, is the latitude, in radians. 

• 𝜆, is the longitude, in radians. 

• 𝑑, is the distance between two waypoints, in meters. 

 

Note that the coordinates must be converted from degree to radians.  

This formulation assumes that the earth is spherical, ignoring the ellipsoidal effects, but 

it is accurate enough for the thesis purposes, in force of the fact the distance between the 

𝑑 = 𝑅 ∙ 𝑐 
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couples of points is very small. Using the spherical model, the error made is up to 0.3%. 

[38] 

 

3.2.6 ELEVATION PROFILE  
 

Another input of the algorithm is the elevation profile, which is a diagram made by all 

the altitude values of each GPS point, measured taking the water level as reference point.  

The altitude values can be obtained either using the GPS system, installed in the car itself 

or, otherwise, using alternative approaches, like it was done in this circumstance, where 

it was used elevation data provided by the Shuttle Radar Topography Mission (SRTM) 

database. [28], [39]  

The Shuttle Radar Topography Mission is an international research effort, spearheaded 

by the U.S National Geospatial-Intelligence Agency (NGA) and U.S National 

Aeronautics and Space Administration (NASA), whose goal was to obtain digital 

elevation models on a near-global scale from 56 degrees south to 60 degrees north 

latitude, which comprises almost 80% of the earth total landmass. [39] 

The data has been released with a horizontal resolution of 1 arc-second, that correspond 

to 30 m. The project was able to generate the most complete high-resolution digital 

topographic database of Earth prior to the release of the ASTER GDEM in 2009. [39] 

Other ways to obtain this data are to use an API, like Elevation API, provided by Google, 

but unfortunately this service is free only for a limited number of requests and so it has 

been necessary to use other techniques. However, several other APIs are available on 

internet, also with a free usage, but they have not been considered. 

In this algorithm a Python module, called srtm.py, written and released by Tomo Krajina, 

was used. The module reads the SRTM files and extracts the elevation data relative to the 

position recorded in the GPX file. [40] 

In Figure 25 it is possible to see the altitude profile relatives to a generic travel of about 

25 kilometers, obtained using the srtm.py module. 

Analyzing the Figure 48 can be seen that the trip begins with an altitude value of 272 

meter above the level of water and then goes down until reach the 226 meters.  

Nevertheless, even if the results are quite good, the elevation profile is not as is best as it 

could be expected in a real situation, due to the presence of a step behaviors or of spikes 

presence. Figure 49 shows a zoom of the elevation profile, relative to the firsts 2.5 Km of 

the same trip used in Figure 48, where can be shown these problems. 

 



 

 56 

Figure 50. Implementation of the Butterworth digital filter in Python. [42] 

 

Figure 48. Elevation profile obtained from the algorithm. 

 

Figure 49. Elevation profile, focused on the firsts 2.5 Km. 

For having more realistic results, it was chosen to use a digital low-pass Butterworth filter 

and apply it to the elevation profile obtained, in order to smooth the altitude profile. [28] 

“The Butterworth filter is a typical signal processing filter designed to have a frequency 

response as flat as possible in the pass band”. [41] 

The filter was implemented in the Python module called SciPy, that is an open-source 

software for mathematics, engineering and science. [42], [43] 

The Python Butterworth filter implementation is showed in Figure 50. 

 

b is the numerator of the filter & a is the denominator 
b, a = signal.butter(N, Wn, 'low', false, fs) 
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After several trial-and-error procedure, it has been selected the order of the filter and, 

analyzing the frequency response of the data, it has been possible to establish all the 

necessary parameters to implement the filter, as listed in Table 3. 

The result is showed in Figure 51 and Figure 52, where it is possible to observe a 

comparison between the original raw elevation profile and the filtered one. Note that, 

the coefficient 𝑊𝑛, is the normalized coefficient, computed as  𝑊𝑛 =
𝑓𝑐𝑢𝑡

𝑓𝑠
2

. 

 

Parameter Value 
Filter typology Low-Pass  
Filter order, 𝑁 3 
Sampling frequency, 𝑓𝑠 0.2 
Cut-off frequency, 𝑓𝑐𝑢𝑡 0.004 
𝑊𝑛 0.001 

Table 3. Butterworth filter parameters. 
 

 

Figure 51. Elevation profile obtained from the algorithm. In red the filtered profile, in black the original 
one. 

 

Figure 52. Elevation profile, focused on the firsts 2.5 Km. In red the filtered profile, in black the original 
one. 
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3.2.7 WHEATER DATA 
 

To accomplish the algorithm goal, some weather data are necessary, such as the ambient 

temperature 𝑇, the relative humidity level 𝑅𝐻, the atmospheric pressure 𝑃, the wind 

information like direction β and absolute speed 𝑣𝑤 and to conclude general weather 

indications. 

To collect all these basic information it was decided to use a service provided by 

OpenWeatherMap. [44] 

OpenWeatherMap is an online service owned by OpenWeather Ltd, that provides global 

weather data via API. The powerful of this service is that it provides both past and 

present weather information as well as weather forecasts relative to exact locations or 

regions of the earth, simply giving as input the points coordinates, in latitude and 

longitude. 

To use these services an API key is needed, since in this way it is possible to count the 

number of requests done by the user. To have wide experience with the services offered, 

one of the several payment plans must be activated, but obviously this is not free.  

For this work a developer plan was activated, whose characteristics were: 3000 calls per 

minute if current data API is used, and 50000 calls per day for the historical API. [44] 

In this thesis were used both past and actual weather data, to verify if the implemented 

algorithm works well and so, for testing purposes and for normal usage, respectively. 

To extract past data, the Historical Weather API was used, while, for the current data, 

the Current Weather Data API. The API returns the data in json format, so in order to 

parse and extract the needed data, an ad-hoc function was written.  

Example of request for the extraction of current weather data, based on geographic 

coordinates is displayed below here [44]: 

 

http://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={API 

key}.  

 

Since for every pair of coordinates, it can be made a request, to avoid making a lot of 

them, which means overload the server space and increase the data download time, the 

algorithm is configured to send a request every ∆ kilometers, where ∆ is an integer value 

imposed by the user. 

The downloaded data were used to compute several parameters, like the air density and 

the relative wind velocity, as will be explained in paragraph 3.7. 

Note that, where necessary, the downloaded data was converted according to the 

European metric of measure. 

https://home.openweathermap.org/api_keys
https://home.openweathermap.org/api_keys
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3.3 VEHICLE LONGITUDINAL DYNAMICS 
 

Since the algorithm here developed is conceptually created following a model-based 

approach, it was necessary to implement the main formulas to compute the power 

needed by the vehicle to complete the trip, and so for the computation of the energy 

consumption. 

In the algorithm, the fundamental principles of physic relative to the vehicle design, and 

in particular the Newton’s second law of motion, were used. 

In the vehicle, during the motion, several forces act on it and the resultant force governs 

the motion according to the Newton’s law, Figure53. 

The electric motor, that is the propulsion unit, gives to the vehicle the force to go forward 

and overcome the resisting forces due to the air, rolling friction, gravity resistance and 

so on. [45] 

In this paragraph the equation showed is based on the Newton’s second law, relative to 

the vehicle longitudinal dynamic. 

Starting with an overview of the forces acting on the vehicle, in the next sub-paragraph 

will be described each of these ones. 

 

 

Figure 53. Total forces acting on a BEV [46]. 

For the Newton’s second law of motion [45], the acceleration of the vehicle can be 

expressed as  

 
𝑣̇ =  

∑ 𝐹𝑊  − ∑ 𝐹𝑟𝑒𝑠 

𝑀𝑒𝑞 
=  

∑ 𝐹𝑊  − ∑ 𝐹𝑟𝑒𝑠 

𝑀𝑐 ∙ ( 1 + 𝜆 )
    [

m

s2]    (3.11) 

 
where: 

 

• 𝑣 [
𝑚

𝑠
], is the longitudinal vehicle speed. 

• ∑ 𝐹𝑟𝑒𝑠  [𝑁], is the total resistance force. 
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• ∑ 𝐹𝑊  [𝑁], is the total traction force at wheels level. 

• 𝑀𝑒𝑞  [𝐾𝑔], is the equivalent real mass of the vehicle. 

• 𝑀𝑐  [𝐾𝑔], is the vehicle mass. 

• 𝜆, is a factor used to convert the rotational inertias of the rotational components 

in translational masses. 

 

However, it is necessary to be clearer about the term at the denominator of the equation 

3.10. The equivalent real mass of the vehicle, indicated with 𝑀𝑒𝑞 , is given by 𝑀𝑐 +

( 
𝐽𝑊∙4

𝑟2 +
𝐽𝑚∙𝑖2

𝑟2  ), where 𝐽𝑊, 𝐽𝑚 , 𝑟, 𝑖 are respectively, the inertia of the wheels [Kg ∙ m2], the 

inertia of the motor [Kg ∙ m2], the radius of the tires [m], and the gearbox ratio [−]. [27] 

Since several of these data about the vehicle were not available, the rotational part 

components have been substituted with a factor expressed as 𝜆 ∙ 𝑀𝑐 , obtaining so 𝑀𝑒𝑞 =

𝑀𝑐 ∙ ( 1 +  𝜆). [45] 

 

3.3.1 TOTAL TRACTION FORCE  
 

The total traction force, also defined as road load force, at wheels level (𝐹𝑊) is the sum 

of all the forces that act on the vehicle, obtained from longitudinal dynamic equation. 

[45] 

Rearranging the equation 3.11, the total traction force, needed by the driving wheels to 

guarantee the forward motion, can be expressed as  

 

𝐹𝑊 =  𝐹𝐺 +  𝐹𝐴𝐼𝑅 +  𝐹𝑅 +  𝐹𝐼     [N]    (3.12) 

 

Each of the elements of the equation 3.12, is described below: 

 

− 𝐹𝐺 = 𝑀𝑐 ∙ 𝑔 ∙ sin(𝜃) [N], is the gravitational force component.                (3.13) 

 

− 𝐹𝐴𝐼𝑅 = 0.5 ∙ 𝐶𝑑 ∙ 𝐴𝑓 ∙ 𝜌𝑎𝑖𝑟 ∙ 𝑣𝑤𝑐
2  [N], is the aerodynamic force component.                                       

                                      (3.14) 

 

− 𝐹𝑅 = 𝑓𝑑 ∙ 𝑀𝑐 ∙ 𝑔 ∙ cos(𝜃) [N], is the rolling force component.               (3.15) 

 

− 𝐹𝐼 =  𝑀𝑐 ∙ ( 1 +  𝜆 ) ∙ 𝑣̇ = 𝑀𝑒𝑞 ∙ 𝑣̇  [N], is the inertia force component.       (3.16) 

 

where: 

 

• 𝑀𝑐  [Kg], is the mass of the vehicle. 
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• 𝑀𝑒𝑞  [Kg], is the equivalent mass of the vehicle. 
• 𝑔 [

m

s2], is the gravitational term. 

• 𝜃 [rad], is the slope angle of the road. 

• 𝐶𝑑  [−], is the aerodynamic drag coefficient. 

• 𝐴𝑓 [m2], is the frontal area of the vehicle. 

• 𝜌𝑎𝑖𝑟  [
Kg

m3], is the air density coefficient. 

• 𝑣𝑤𝑐  [
m

s
], is the relative wind speed. 

• 𝑓𝑑  [−], is the rolling resistance coefficient. 

• 𝑣  [
m

s
], is the longitudinal vehicle speed. 

• 𝑣̇ [
m

s2], is the longitudinal vehicle acceleration.  

 
The contribution of each term of the equation 3.12 is displayed in Figure 54. 

 

 

Figure 54. Comparison of all the forces acting a vehicle according to the longitudinal dynamic equation. 
From the Figure 54, it is possible to observe how the component of the force that major 

influences the traction force is the inertia (in blue), then there is the aerodynamic term (in 

yellow), that is almost equivalent with the gravitational force (in purple) and to conclude, 

the less influencing term, is the rolling friction term (in black). 

Since the inertia has the biggest influence on the total force spent to move the vehicle, it 

will be necessary to estimate as best as possible the acceleration and so the velocity 

profile. 
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3.3.2 TOTAL TRACTION POWER AT WHEELS LEVEL 
 

To compute the total traction power delivers, at wheels level (𝑃𝑊), both the vehicle speed 

(𝑣) and the total traction force (𝐹𝑊) are needed. The equation used is the 3.17. [41] 

 

𝑃𝑊 =  𝐹𝑊 ∙ 𝑣 = ( 𝐹𝐺 +  𝐹𝐴𝐼𝑅 + 𝐹𝑅 + 𝐹𝐼  ) ∙ 𝑣   [W]    (3.17) 

 

At this point, the algorithm merges all the data previously collected to compute the 

longitudinal dynamic force at wheel stage (𝐹𝑊) and the relative power (𝑃𝑊), according 

to equations 3.12 and 3.17. 

In Figure 55, are showed each component of the total traction power (𝑃𝑊), so the 

gravitational, the rolling friction, the aerodynamic and the inertia power. 

 

 

Figure 55. Comparison of all the power acting a vehicle according to the longitudinal dynamic equation. 
Since a battery electric vehicle is studied, the power can have both positive and negative 

values. This behavior is due to the presence of the electric motor, that can work in two 

operational conditions, as motor and as generator. In Figure 55, is showed the power 

consumption at wheel stage and it is possible to evidence both positive and negative 

values.  

Positive values (𝑃𝑊 > 0) indicate that the vehicle is in acceleration mode and so the 

electric motor sends power from the battery system to the wheels for moving forward 

the vehicle, Diagram 1. 

The opposite situation, (𝑃𝑊 < 0) is when the vehicle is in deceleration mode, that could 

happen in two scenarios: when the brake pedal is pressed or when the throttle is left free. 

In both these situations the motor turns in generator mode and the battery starts to 
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recover power, and so energy, moving the quantity from the wheels to the battery, 

Diagram 2. 

Instead, the case with power equal to zero (𝑃𝑊 = 0) is referred to the vehicle in rest 

position, that happens when the velocity is null. 

Note that, the case of recovering power when the throttle pedal is left free happens not 

in all the battery electric vehicles, but only in those ones that have implemented this 

function, e.g., in Tesla cars there is deployed the Regenerative Braking System (RBS), also 

called regen. 

The name regenerative derives from the fact that the system converts the vehicle’s kinetic 

energy into chemical one to be stored in the battery system, where it can be used again 

by the vehicle. Instead, braking term come from the fact that it serves also to slow the 

vehicle velocity, without pressing the brake pedal. [47] 

 

 

Diagram 1. Power flow in case of power consumption in BEV. The arrow indicates the direction in with 
the power goes. 

 

 

Diagram 2. Power flow in case of power recovery in BEV. The arrow indicates the direction in with the 
power goes. 

 

The power flow described in Diagram 1 (or Diagram 2), is referred to a simple vehicle 

model, in fact in a more realistic cases, the vehicle’s subsystems are more. Figure 56, 57 

show examples of electric vehicle architecture systems with associated efficiency terms.  
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Figure 56. Main components of a total electric vehicle. [44] 

 

Figure 57. Pre-flight briefing of Volkswagen VW ID.3.  

 

3.3.3 POWER CONVERSION FROM WHEELS TO 

BATTERY SIDE 
 

This chapter describes the battery power estimation of a BEV, in terms of both 

formulations needed to obtain this scalar quantity and technical too. 

Since the goal is to find an estimation of the SOC consumption, the energy delivered by 

the battery system has to be obtained but so also the battery power used by the vehicle. 

In a battery electric vehicle, the power is delivered from the wheels to the battery system, 

passing from the differential and the electric motor, according to the Diagram 1. In this 

work, it was decided to avoid investigating in detail all the subsystems composing the 

powertrain, due mainly to the lack of time and resources but are used only some of the 

systems in Figure 56.  

For this reason, an approach based on simple equations, based on efficiency coefficient 

η, was used to describe the exchange of power between two different subsystems. The 

idea comes from the knowledge that when two different systems exchange power, some 

of the power exchanged is loss and the ration between the useful output power of an 

energy conversion machine and the input, in energy terms, is defined as efficiency 

conversion coefficient (η). The previous definition can be applied to every system, where 

the input, as well as the useful output, are chemical, electric power, mechanical 

work, light (radiation), or heat. [48] 

In formula, the efficiency conversion term is expressed according to equation 3.18. 
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𝑃𝑂𝑈𝑇

𝑃𝐼𝑁
=  𝜂        [-]    (3.18) 

 

The energy coefficient term is in range [0 ÷ 1] and can be expressed in percentage. 

Starting from the result achieved in the sub-paragraph 3.4.2, that was the power at wheels 

level (𝑃𝑊), here the goal was to obtain an estimation of the battery power (𝑃𝐵𝐴𝑇𝑇) 

consumption, related to a trip. 

To obtain this result, the conversion formulas, relative to the transmission of power from 

a system to another one, was needed to be considered. 

Starting by the general equations listed from 3.19 to 3.21, and by manipulating them, it 

was possible to achieve the battery power consumption values from the wheels power, 

both in the case of power supplied and absorbed. 

 
𝑃𝑊

𝑃𝐸𝑀
=  𝜂𝐸𝑀 =  0.95      [-]            (3.19) 

 
𝑃𝐸𝑀,𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝐷

𝑃𝐵𝐴𝑇𝑇,𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝐷
=  𝜂𝐵𝐴𝑇𝑇 =  0.93    [-]          (3.20) 

 
𝑃𝐵𝐴𝑇𝑇,𝐴𝐵𝑆𝑂𝑅𝐵𝐸𝐷

𝑃𝐸𝑀,𝐴𝐵𝑆𝑂𝑅𝐵𝐸𝐷
=  𝜂𝐵𝐴𝑇𝑇,𝑅𝐸𝐺 =  0.60    [-]            (3.21) 

 

where: 

 

• 𝑃𝑊 [W], is the power referred to the wheels stage. 

• 𝑃𝐸𝑀  [W], is the power referred to the electric motor.  

• 𝑃𝐵𝐴𝑇𝑇  [W], is the power referred to the battery system. 
• 𝜂𝐸𝑀, is the efficiency conversion coefficient relative to the electric motor. 

• 𝜂𝐵𝐴𝑇𝑇, is the efficiency conversion coefficient relative to the battery, in 

consumption mode. 

• 𝜂𝐵𝐴𝑇𝑇,𝑅𝐸𝐺 , is the efficiency conversion coefficient relative to the battery, in 

regenerative mode. 
 

The previous three equations are obtained considering a vehicle made by only 3 systems, 

the wheels, the electric motor with the transmission part, and the battery with the 

inverter, according to the schema in Diagram3. 

The modern electric motor, have an efficiency around the 95% and 98%, depending on 

the motor typology, that is bigger than the heat motors, whose efficiency is about 40%. 

[49]  

Instead, regard the battery system, typical values of efficiency factors are greater or equal 

to 90% and this depends on the quality of the battery system and on its health state; 
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instead, in the scenario where the battery is in recharging mode, using the power coming 

from the electric motor that works as generator, the efficiency is more than 50%. The flow 

of the conversion process executed is described in Diagram 3. 

 

 

Diagram 3. Power flow exchanged by the subsystems considered in the algorithm. 

The conversion between the power consumption at wheels level (𝑃𝑊) and at electric 

motor level (𝑃𝐸𝑀) was obtained according to the equations 3.22, and 3.23. 

 

𝑃𝐸𝑀,𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝐷 =
𝑃𝑊

𝜂𝐸𝑀 
      [W]           (3.22) 

 

𝑃𝐸𝑀,𝐴𝐵𝑆𝑂𝑅𝐵𝐸𝐷 = 𝑃𝑊  ∙  𝜂𝐸𝑀     [W]           (3.23) 

 

𝑃𝐸𝑀 = 𝑃𝐸𝑀,𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝐷 + 𝑃𝐸𝑀,𝐴𝐵𝑆𝑂𝑅𝐵𝐸𝐷    [W]           (3.24) 

 

Figure 58 shows the effect of the power conversion from the wheels to the electric motor 

level, and vice versa, achieved according to the previous equations. 

The result obtained is correct since focusing on the positive values of the power (𝑃 > 0), 

it is possible to observe that the electric motor generates more power that the quantity 

used by the wheels to move the vehicle, and this is due to the fact the electric motor 

efficiency is about 0.95 and this means that a very little part of the power send will be 

lost. The same is true in the opposite situation, for (𝑃 < 0). 

Once the electric motor power was accomplished, the battery power could be estimated. 

Specifically, it was reached both the battery power supplied (𝑃𝐵𝐴𝑇𝑇,𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝐷), according 

to the equation 3.25, and the battery power absorbed (𝑃𝐵𝐴𝑇𝑇,𝐴𝐵𝑆𝑂𝑅𝐵𝐸𝐷), equation 3.26. 

 

𝑃𝐵𝐴𝑇𝑇,𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝐷 =
𝑃𝐸𝑀,𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝐷

𝜂𝐵𝐴𝑇𝑇
     [W]           (3.25) 

 

𝑃𝐵𝐴𝑇𝑇,𝐴𝐵𝑆𝑂𝑅𝐵𝐸𝐷 = 𝑃𝐸𝑀,𝐴𝐵𝑆𝑂𝑅𝐵𝐸𝐷  ∙  𝜂𝐵𝐴𝑇𝑇,𝑅𝐸𝐺    [W]          (3.26) 

 

𝑃𝐵𝐴𝑇𝑇 =  𝑃𝐵𝐴𝑇𝑇,𝐴𝐵𝑆𝑂𝑅𝐵𝐸𝐷 +  𝑃𝐵𝐴𝑇𝑇,𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝐷   [W]           (3.27) 

 



 

 67 

 

 

Figure 58. Comparison between the power consumption at wheels level (back) and power consumption 
at electric motor level (red), associated to a trip. 

 

Figure 59. Comparison among the power consumption at wheels level (black), power consumption at 
electric motor level (red) and power consumption at battery level (blue), associated to a trip. 

The plot in Figure 59 puts in evidence the goodness of the results obtained, in fact the 

battery power supply, for positive values, (𝑃𝐵𝐴𝑇𝑇 > 0) is higher than the electric motor 

one, as is reasonable to expect.  

Observing the negative power values (𝑃𝐵𝐴𝑇𝑇 < 0), the differences between the electric 

motor and battery power are due to the usage of a 𝜂𝐵𝐴𝑇𝑇,𝑅𝐸𝐺 = 0.60, that means the 

algorithm has supposed that only the 60% of the power absorbed by the electric motor 

as generator is transmitted in the battery; in real cases, there is a more sophisticated 

recovery system, that allows to recover more power. 
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The quantity measured until now is the power associated to the motion of the vehicle, 

but in real scenario it is influenced by the so-called auxiliaries’ systems (𝑃𝐴𝑈𝑋).  

To have a more accurate state of charge estimation, it is necessary also consider the power 

consumption due to several loads typically present in a vehicle, as the lights, the air 

conditioning system, or the windscreen wipers. 

However, evaluating the impact that each of these systems have on the total power term 

is not an easy task, and moreover requires to have a very deep knowledge about them. 

Since is not simple at all make this type of analysis, in this thesis it was assumed that the 

relative 𝑃𝐴𝑈𝑋 value was about 600 [𝑊].  

From now on, the battery power (𝑃𝐵𝐴𝑇𝑇) will be indicated according to equation 3.28. 

 

𝑃𝐵𝐴𝑇𝑇 = 𝑃𝐵𝐴𝑇𝑇 +  𝑃𝐴𝑈𝑋                                [W]           (3.28) 

 

 

3.4 ENERGY CONSUMPTION  
 

In this chapter are described all the equations to calculate the energy associated to a 

power consumption. Starting from the definition of the work, it goes to the enunciation 

of the relationship between power and work and then, to the energy description.  

After the battery power used to complete a trip is obtained, the algorithm needs to 

compute the associated energy consumption.  

From physical knowledge, it is known that the work (𝑊) can be defined as the amount 

of the energy (𝐸) exchanged from two systems by a force (𝐹). The work is a scalar 

quantity with SI unit of Joule (𝐽). 

The work can be defined as the dot product between the force (𝐹) and the displacement 

(∆𝑥), that in formula is 

 

𝑊 = 𝐹 ∘ 𝑥 = |𝐹| ∙ |∆𝑥| ∙ cos(𝛼)    [J]    (3.29) 

 

Note that ‘∘’ means dot product, while ‘∙’ simply product. 

Since in this work are evaluated the longitudinal forces necessary to guarantee the 

motion of the vehicle, it was assumed that vectors 𝐹 and ∆𝑥 have the same direction and 

verse, so are parallel vectors. 

This means that 𝛼 = 0°, and so equation 3.29 can be rewritten as 

 

𝑊 = 𝐹 ∙ 𝑥       [J]                  (3.30) 
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At this point, it is possible define the power as the work done in a unit of time, or, in 

other words, as the derivative of the work in time. The measure unit of the energy in SI 

is the Watt (W).  

In formula, the power is expressed as 

 
𝑃 =

 𝑑𝑊

 𝑑𝑡
         [W]           (3.31) 

 

By substituting the equation 3.30 in 3.31 and remembering that the velocity is the 

derivative of the displacement in time, the power can be also defined as the force times 

the velocity, in accord to equation 3.32. 

 

𝑃 =
 𝑑𝑊

 𝑑𝑡
=  

 𝑑(𝐹∙𝑥)

 𝑑𝑡
=  

 𝐹 ∙𝑑𝑥

 𝑑𝑡
= 𝐹 ∙ 𝑣     [W]           (3.32) 

 
Since the energy is stored in the work, it is possible to write: 

 

𝑃 =
 𝑑𝑊

 𝑑𝑡
=

 𝑑𝐸

 𝑑𝑡
         [W]           (3.33) 

 

Integrating both the side of the previous equation, the energy can be computed as the 

integral of the power in an amount of time. 

 

𝐸(𝑡𝑓) =  𝐸(0) + ∫ 𝑃(𝑡) ∙ 𝑑𝑡
𝑡𝑓

0
     [J]           (3.34) 

 

According to the nomenclature given until now in this thesis, the energy associated to 

the battery power consumption (𝐸𝐵𝐴𝑇𝑇) is determined as  

 

𝐸𝐵𝐴𝑇𝑇(𝑡𝑓) = 𝐸𝐵𝐴𝑇𝑇(0) + ∫ 𝑃𝐵𝐴𝑇𝑇(𝑡)
𝑡𝑓

0
∙ 𝑑𝑡   [J]           (3.35) 

 

where the 𝑡𝑓  is the final driving time, in seconds [s], 𝐸𝐵𝐴𝑇𝑇(0) is the initial energy, 

assumed to be zero, and 𝑃𝐵𝐴𝑇𝑇  is the battery power. Since in automotive, but in general 

in battery systems, the energy is usually referred in Kilowatt hour (or kWh) and not in 

Joule, the conversion is necessary. To pass from J to kWh, the energy values have to be 

divided by 3.6 ∙ 106. So, in short, the algorithm takes the estimated battery power and, 

applying a discrete integration, returns the associated energy consumption. 
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3.5 SOC ESTIMATION  
 

The state of charge is maybe the most important parameter to be estimated in battery a 

management system, of the EV, since among the several target in which it is used, it can 

help, the driver to understand if it can complete the trip or not. As described in the 

chapter 2, there are several ways to compute the SOC using both offline and online 

methods, but in this algorithm an offline approach is used. To obtain the estimation of 

the SOC consumption, it was noted a strong relationship between the state of charge and 

the energy consumption relative to a certain trip. 

Firstly, it is observed that from the state of charge measurement, it was possible to derive 

the energy consumption (𝐸𝑆𝑂𝐶) to complete a trip, according to equation 3.36. 

 

𝐸𝑆𝑂𝐶 = 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ (
SOC(𝑡𝑓)−SOC(𝑡𝑖)

100
)    [kWh]           (3.36) 

 

where: 

 

• SOC(𝑡𝑓) is the final state of charge value. 

• SOC(𝑡𝑖) is the initial state of charge value. 

 

This formula from a dimensional analysis works fine but, to check if the obtained result 

is good or not, it was necessary to compare the energy consumption obtained using the 

equation 3.36 with the real on, equation 3.35. 

In Figure 61 can be seen a comparison between the 𝐸𝑆𝑂𝐶  and 𝐸𝐵𝐴𝑇𝑇,𝑅. numerical values 

are extracted and reported in Table 4. The MAE and RMSE values obtained by 

considering the two quantity are showed in Figure 60. 

 

 𝑬𝑺𝑶𝑪 𝑬𝑩𝑨𝑻𝑻,𝑹 
Energy consumption  19.43 [kWh/100Km] 20.22 [kWh/100Km] 
Final Energy value 4.2 [kWh] 4.37 [kWh] 

Table 4. Energy consumptions values relative to the quantity obtained using the equation 3.36 and the 
3.35. 
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Figure 60. RMSE and MAE values associated to the accuracy computed from data in Figure 61, plot (a). 

 

 

Figure 61. Comparison between the energy computed from measured battery power (eq. 3.35) and 
energy from measured SOC (eq. 3.36) (a). Absolute error between the two quantities (b). 

Since these two values are very close, and the error is very low, this means that the 

formula 3.36 works and can be used.  

The equation to compute the SOC consumption is obtained by rearranging the equation 

3.35, under the hypothesis to know the battery energy consumption 𝐸𝐵𝐴𝑇𝑇, the initial 

value of the state of charge SOC(𝑡0) and the nominal battery capacity (𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙). It is 

expressed by the equation 3.37. 

 

𝑆𝑂𝐶(𝑡) = SOC(𝑡0) −
𝐸𝐵𝐴𝑇𝑇(𝑡)

𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙
∙ 100       [%]           (3.37) 
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3.6 PARAMETERS IDENTIFICATION  
 
Obviously, a model-based approach is founded on the physical knowledge of the 

problem and in this work the starting point is the Newton’s second law of the motion, 

equation 3.11, so several parameters must be identified to be used in the previous 

equations and to obtain better results. Some of these parameters are constant, e.g., the 

gravitational term 𝑔 or the vehicle mass 𝑀𝑐 , other ones are strongly influenced by 

weather data and by other external factors and others are weakly influence by external 

conditions. In the algorithm, several functions are written to compute the following 

parameters: the air density 𝜌𝑎𝑖𝑟, the relative wind speed acting on the vehicle 𝑣𝑤𝑐 ,  the 

road slope angle 𝜃 and the rolling resistance coefficient  𝑓𝑑 . 

The parameters showed in Table 5, are considered always constant in time. 

Some of the vehicle parameters, like the curb weight and the drag coefficient,  come from 

the specifications of the Tesla Model 3 Long-Range Dual-Motor AWD, with a 75 kWh 

battery pack. [50]   

 

Parameters Values 
Vehicle weight + 1 person Mass 1847 + 80  [Kg] 
Vehicle Drag Coefficient 𝐶𝐷 0.23           [-] 
Vehicle Frontal area 𝐴𝑓 2.34           [m2] 
Coefficient 𝜆 0.05           [-] 
Gravitational term 𝑔 9.81           [m

s2] 
Table 5. Constant parameters of the algorithm. [45], [50] 

 

The next four sub-paragraphs are dedicated to the description of the function 

implemented in this model to compute the parameters, with a focusing of the 

formulations used. 

 

3.6.1 AIR DENSITY 
 
In the model, the air density parameter plays an important role, since it appears in the 

calculation of the aerodynamic force (𝐹𝐴𝐼𝑅) and so, it is necessary, for having a better 

result, compute it for estimating as faithful as possible the total power consumed by the 

vehicle during a trip.  

The density of the air, denoted in this work as 𝜌𝑎𝑖𝑟, is defined as the mass per unit of 

volume of Earth’s atmosphere [
Kg

m3]. [51] 

It mainly depends by three factors:  

 

• 𝑃 [hPa], is the atmospheric pressure. 
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• 𝑅𝐻 [%], is the relative humidity. 

• 𝑇 [°C], is the ambient temperature. 

 

For higher temperature, it can be proven, that the humidity has a minor influence on the 

air pressure. According to the equations described below (3.38 – 3.43), the behavior of the 

air density as function of the ambient temperature and relative pressure, fixed the 

humidity at 70%, is showed in Figure 62. 

Moreover, for the Stevino’s law, the air density depends also by the elevation profile, in 

fact going up the value of the pressure increase and so the air density decrease, vice versa 

going down. 

 

 

Figure 62. Air density dependency on ambient temperature and air pressure, fixed the humidity level. 

For the 𝜌𝑎𝑖𝑟  computation, was written a Python function which uses as inputs the 

temperature, the humidity, and the atmospheric pressure. 

The function starts with the computation of the actual water vapor pressure in the air 

(Pv), equation 3.38. [52], [53] 

 
Pv = Es       [hPa]           (3.38) 

 
Then, it can be noticed that the water vapor pressure is equal to the saturation pressure 

of the water vapor (Es), computed at the dew point temperature, see equation 3.39. This 

equation was developed by Herman Wobus. [52], [53] 

In practice, to compute the saturation pressure of the water vapor, the dew temperature 

must be substituted in the equation 3.40. Remember also to convert millibar [mb] to 

hectopascal [hPa]. [52], [53] 
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Es =
es0

p8         [mb]           (3.39) 

 

where:  

 

p = Co + T(c1 + T(c2 + T(c3 + T(c4 + T(c5 + T(c6 + T(c7 + T(c8 + T(c9))))))))) 

 

where T [°C] is the temperature measured at that moment. 

 

es0 = 6.1078 

 

c0 = 0.99999683 

c1 = - 0.90826951 ∙ 10−2 

c2 = 0.78736169 ∙ 10−4 

c3 = -0.61117958 ∙ 10−6 

c4 = 0.43884187 ∙ 10−8 

c5 = 0.29883885 ∙ 10−10 

c6 = 0.21874425 ∙ 10−12 

c7 = -0.17892321 ∙ 10−14 

c8 = 0.11112018 ∙ 10−16 

c9 = -0.30994571 ∙ 10−19 

 

The total measured actual pressure (P) is the sum of the pressure of the dry air (Pd) and 

the vapor pressure (Pv), equation 3.40 [52], [53]: 

 

𝑃 = 𝑃𝑑 −  𝑃𝑉       [hPa]           (3.40) 

 

At this point, rearranging the previous formula, since (P) and (Pv) are known terms, the 

pressure of the dry air (Pd) can be calculated, according to 3.41. [52], [53] 

 

𝑃𝑑 = 𝑃 −  𝑃𝑉       [hPa]           (3.41) 

 

By a simple addition, the density of the air 𝜌𝑎𝑖𝑟 is obtained using equation 3.42. [53] 

 

𝜌𝑎𝑖𝑟 =  
𝑃𝑑

𝑅𝑑  ∙𝑇𝐾
+

𝑃𝑉

𝑅𝑉∙ 𝑇𝐾
       [

Kg

m3]           (3.42) 

 

where:  

 

• Rd = 287.0531 [
J

Kg∙K
], is the specific gas constant relative to the dry air. 
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• RV = 461.4964 [
J

Kg∙K
], is the specific gas constant relative to the water vapor. 

• TK = 𝑇 (°C) + 273.15 [K], is the ambient temperature measured in Kelvin degree. 

 
Since OpenWeatherMap API returns the relative humidity value, it is convenient 

measure the water vapor pressure from the relative humidity, according to the equation 

3.43.  

The formula derives from the definition of relative humidity, according to which it is 

defined as the ratio of the actual water vapor pressure (Pv) to the saturation water vapor 

pressure (Es) at a given temperature, moreover Es is expressed in percentage (%). [52], 

[53] 

 

𝑃𝑣 = 𝑅ℎ ∙  𝐸𝑠         [hPa]           (3.43) 

 

3.6.2 RELATIVE WIND VELOCITY 
 

Another important parameter to compute is the relative wind speed 𝑣𝑤𝑐 , that is the 

relative wind between the absolute wind speed 𝑣𝑤 and the vehicle speed 𝑣.  

This is an important parameter since the aerodynamic force (𝐹𝐴𝐼𝑅) is proportional to the 

square of the relative wind velocity, 𝑣𝑤𝑐 . The chapter starts with a short description of 

what the relative wind is and ends with the presentation of the formulas used to compute 

it. 

To achieve the relative wind speed, four data are needed to be known: 

 

• 𝑣 [
m

s
], longitudinal vehicle speed. 

• 𝛼 [° degree], bearing angle of the vehicle. 

• 𝑣𝑤 [
m

s
], absolute wind speed. 

• 𝛽 [° degree], wind direction. 

 

Note that both the wind direction 𝛽 and the head angle 𝛼 are computed taking as 

reference the compass angles, so are referred with respect to the North or 0°, Figure 63.  
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Figure 63. Example of main wind direction in a compass diagram. [54] 

The main four wind directions are North (N), South (S), West (W) and East (E) and these 

can be combined to create new directions, Figure 63. 

The measure unit of the wind are the directions themselves or the azimuth degrees, from 

0-360°. [55] 

A list of the principal wind direction is: 

 

• 0° = 360° is a North wind 

• 45° is a Northeast wind 

• 90° is East wind 

• 135° is a Southeast wind 

• 180° is a South wind 

• 225° is a Southwest wind 

• 270° is a West wind 

• 315° is a Northwest wind 

 

A particularity of the wind direction comes from the definition itself, in fact, the wind 

direction is defined as that from which the wind blows, and so this means that a North 

wind (0° or 360°) comes from the North and blows toward the South and so, graphically 

it is represented by an arrow whose direction is from North to South. 

The first operation made by the Python function, written to compute the relative wind, 

is to change the angle associated to the wind direction. This is done for the purpose of 

changing the view from which the wind direction is related to where the wind blows and 

not from which it comes, direction computed always with respect to the North. 

An example is presented below to explain better the idea, Figure 64.  

If a wind whose direction 𝛽 = 30° is considered, the function at first time computes the 

new angle 𝛽′ = 180° +  𝛽. Note that since the angle range is in 0-360°, if the angle 𝛽 is 

greater or equal than 180° the new angle 𝛽′ = (180° +  𝛽) − 360°; otherwise 𝛽′ = 180° +

 𝛽. 
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Figure 64. Diagram representing a wind blowing from NE (30°). The black arrow is the vehicle 

longitudinal direction, the blue one is the wind direction, and the purple is the new wind direction. 

From here all the equations used to compute the relative wind are showed. 

 

 

Figure 65. Diagram with the main vectors to be considered in relative wind speed computation. 

By definition, the relative wind speed is the difference between the absolute wind speed 

𝑣𝑤 and the longitudinal vehicle speed 𝑣, that in formula it can be written as 

 

𝑣𝑤𝑐 = 𝑣𝑤 −  𝑣      [
m

s
]          (3.44) 

 

Using a graphical approach, it is possible to obtain the relative wind speed, in terms of 

absolute value (𝑣𝑤𝑐) and application angle (𝛿) of the vector, Figure 65. 
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To obtain the modulus of the relative wind speed, the cosine’s theorem can be used, 

equation 3.45; instead, for the angle, the sine’s theorem has to be used, equation 3.46. 

 

|𝑉𝑤𝑐| = √|𝑣𝑤|2 +  |𝑣|2 −  2 ∙ |𝑣𝑤| ∙ |𝑣| ∙ cos(𝛾) [
m

s
]             (3.45) 

 
|𝑣𝑤|

sin(𝛿)
=

|𝑣𝑤𝑐|

sin(𝛾)
                  (3.46) 

 

The angle 𝛾 = 𝛼 − 𝛽′.    

 

Rearranging the equation 3.46, it is possible to evidence and extract the angle 𝛿. 

 

𝛿 = sin−1((
|𝑣𝑤|

|𝑣𝑤𝑐|
) ∙ sin(𝛾))     [° degree]          (3.47) 

 

At the end, the longitudinal component of the relative wind speed is computed as 

 

|𝑣𝑤𝑐,𝑥| = |𝑣𝑤𝑐| ∙ cos(𝛿)      [
m

s
]           (3.48) 

 

The last term, obtained from equation 3.48, is what the function returns as output and 

that is used in the 𝐹𝐴𝐼𝑅 computation. 

Analyzing the previous formulations, it can be noted as when the vehicle is in rest 

position, the relative wind velocity is equal to the wind velocity (both in module and in 

direction). Instead, when the vehicle is at high velocity, the relative wind velocity is very 

close to the vehicle speed, while the angle 𝛿 tends to decrease and, therefore, the relative 

wind direction tends to be aligned to the vehicle longitudinal direction. 

Another important consideration to make is that, in city environment, the presence of the 

buildings around the vehicles, attenuate the wind effect on the car, and so the wind effect 

could be approximated as null. While in highways or primary road, where the presence 

of constructions is weak, the wind effect on the car has a major impact and so it is 

important to consider it. However, the algorithm computes it always, for every possible 

scenario. 
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3.6.3 ROAD SLOPE  
 

Another import parameter to estimate is the road slope coefficient 𝜃, also called slope or 

grade road. It depends by two factors: the altitude level and the length of the segment 

route considered. The slope refers to the tangent of the angle of the surface, on the 

horizonal line.  

To compute this coefficient value, a function was realized; it takes as input the length ∆𝑑 

and the altitude ∆ℎ of a single road segment and, after a processing of engineering work, 

it returns the slope level, both in degree and in percentage, Figure 66. Obviously, this is 

iterated for each segment that makes the road. 

 

 

Figure 66. Example of road with a slope. ∆d = distance from A to B, ∆h = altitude level from A to B, l = 
total length, θ = slope angle. 

The starting equation is  

 

tan(𝜃) =  
∆ℎ

∆𝑑
          [-]           (3.49) 

 

From 3.49, by using inverse trigonometric formula, it is possible to extract the angle 𝜃, as 

 

𝜃 = arctan(
∆ℎ

∆𝑑
 )         [rad]           (3.50) 

 

Note that the angle could be expressed in percentage terms, simply using the formula 

3.51. 

 

𝜃 =
∆ℎ

∆𝑑
∙ 100                    [%]           (3.51) 

 

As seen in the previous paragraphs, the road slope parameter is necessary for computing 

both the gravitational force 𝐹𝐺 and the rolling force 𝐹𝑅. Figure 67 shows an example of 

slope profile of a selected route. 
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Figure 67. Example of the slope profile, expressed in percentage. 

 

3.6.4 ROLLING RESISTANCE COEFFICIENT  
 

The last parameter that the model developed computes, is the rolling resistance 

coefficient 𝑓𝑑 . This element is not easy to estimate, since it depends by a lot of factors, 

such as the road typology, the surface type, the velocity of the vehicle, the weather 

conditions and many more factors. In Table 5, it is possible to see several 𝑓𝑑  reference 

values, according to different scenarios. [45] 

 

Conditions Values 
Car tire on smooth tarmac road  0.01 [-] 
Car tire on concrete road  0.011 [-] 
Car tire on a rolled gravel road  0.02 [-] 
Unpaved road  0.05 [-] 
Loose sand  0.15-0.3 [-] 

Table 5. Several reference values of rolling resistance coefficient. [45] 

Since it was not possible to make some experimental test on the vehicle, like the cost-

down test, the only way to compute the rolling resistance coefficient was to use empirical 

formulations, according to the given data. [27] 

The one chosen, for this model, was the equation 3.52, that derives the rolling resistance 

coefficient as function of the vehicle speed. 

 

𝑓𝑑 = 𝑓0 ∙ (1 +  
𝑣

160
 )      [-]           (3.52) 

 

where: 

 

• 𝑓𝑑  [−], is the rolling resistance coefficient. 
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• 𝑣 [
𝑘𝑚

ℎ
], is the vehicle velocity. 

• 𝑓0 [−], is the nominal rolling resistance coefficient. 

 

The previous equation can predict the values of 𝑓𝑑  with an acceptable accuracy for speed 

up to 128 km/h. [16] 

Since all the experimental data are obtained by trips made on route whose surface type 

is the asphalt, the 𝑓0 = 0.011. In the algorithm, the rolling resistance coefficient is 

imposed constant, with a value of 0.011. 

 

 

3.7 VALIDATION OF THE ALGORITHM   
 

Goal of this paragraph is to check if the implemented formulations, starting with the 

longitudinal dynamics equation of a vehicle and ending with the state of charge level of 

consumption, have worked. Moreover, to ensure the accuracy of the algorithm in the 

SOC estimation. To perform this verifications, a certain number of drive cycles were 

extracted from the data and used as test samples.  

The hypothesis done for this validation part are: 

 

• 𝐸𝐵𝐴𝑇𝑇  (𝑡0) = 0 [kW]. 

• 𝑆𝑂𝐶̂ (𝑡0) = 𝑆𝑂𝐶 (𝑡0). 

• 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 75 [kWh]. 

 

The first hypothesis holds up since it is supposed that the model works offline, and no 

memory effect of the previous travel is present. So, this means that when a trip ends, all 

the variables are cleaned and imposed to their initial values.  

The second hypothesis is very strong and can be assumed only if there is a system able 

to measure the SOC initial value; in real application scenario, it is assumed a 𝑆𝑂𝐶̂ (𝑡0) = 

90 %. The third one is associated to the nominal capacity value of the battery pack 

installed on the Tesla Model 3; in a real scenario, this parameter changes in the years due 

to the battery consumption. [50] 

Note that in this validation test, the only real measured data used are: the velocity profile, 

the battery power consumption (obtained by multiplying the voltage [V] and the current 

[A]) and the SOC level of consumption. All the other data are extracted from internet, by 

using APIs and web services, according to what it was described in the previous 

paragraphs of the chapter. An example of analysis is done on the first drive cycle, called 

DC1 and described in the next sub-paragraph. 
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3.7.1 DRIVE CYCLE, DC1 
 

DC1 corresponds to a route whose total travel length is about 22 Km. The initial elevation 

is 273 m and the final one 223 m, with a range of -50 m. The measured SOC consumption 

goes from 89.4 % to 83.8 %. A resume of the main route characteristics is showed in Figure 

68. 

 

 

Figure 68. Some data about the drive cycle 1. 

After extracted the other necessary data, such as the weather information, the elevation 

profile, and the road slope, the algorithm computes an estimation of the battery power, 

using equation 3.28. In Figure 69 it is possible to check the real battery power 

consumption with respect the estimated one.  

 

 

Figure 69. Comparison between real and estimated power consumption associate to DC1. 
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Using equations 3.35 and 3.37 the energy and the SOC level of consumption are obtained. 

In Figure 70 it is possible to check a comparison between the real energy and the 

estimated one, and the same is done for the SOC in Figure 71. Also, in the figures, the 

absolute error, computed as: |𝑒| = |𝑦̂ − 𝑦| is showed. The most important values, 

extracted from these two plots, such as the energy consumption and the final SOC value, 

are showed in Table 6. 

 

 

Figure 70. Comparison between real and estimated energy consumption (a) and the associated absolute 
error (b), relative to DC1. 

 

Figure 71. Comparison between real and estimated SOC consumption (a) and the associated absolute 
error (b), relative to DC1. 

 
 Real Measurements Estimated Measurements 
Energy consumption1 4.37 [kWh] 4.65 [kWh] 
Energy consumption2  20.22 [kWh/100Km] 21.52 [kWh/100Km] 
SOC final value 83.8 [%] 83.2 [%] 
Table 6. Numerical information about the energy and consumption associated to DC1. 
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In Figure 72 a resume of the algorithm performances in terms of RMSE and MAE, all 

computed for the estimation of the three quantities: the battery power, the energy, and 

the SOC, is showed. 

 

 

Figure 72. Metrics performances for estimation of battery power, energy and SOC consumption, related 
to DC1. 

In this drive cycle, the performances measured with respect to the SOC are very good, 

instead, for the battery power the results are a bit worse. The goodness of the model can 

be observed checking the comparison between the real energy consumption and the 

estimated one. Obviously, some errors were expected, and these are due, mainly, to two 

problems. The first one is associated to the usage of efficiency conversion factors 𝜂 to 

explain the relationship among the power deliver from wheels level to the battery one, 

and vice-versa. The other source of error is the integration function used to obtain the 

energy consumption from the power. The integrator, in fact, introduces a systematic 

error that increases over the time and cannot be removed. This drawback can be observed 

in the Figure 70 and 71, in subplot b. Nevertheless, the algorithm seems to estimate the 

state of charge in a good way. This type of analysis, to observe more general results, was 

made on several trips, going to compare the estimated results with the real and measured 

ones, as can be seen in the next sub-paragraph. 

 

 

3.7.2 ANALYSIS ON A TEST SET 

 

To see the effects of the algorithm in the SOC estimation problem, it was interesting to 

check its performances on 22 different drive cycles.  The target of this analysis was to 

evaluate only the estimated SOC results, so both power and energy were forgotten. 

Firstly, the MAE and RMSE accuracy values were computed for each single drive cycle 

and the results are showed in Figure 73. Obviously, the data used to obtain these accuracy 

values were: the real state of charge and the estimated one. How it can be seen from this 

figure, all the values (both for RMSE and MAE) are lower than 1, and the main are around 
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0.2; this is an indicator of the good behavior of the algorithm. The only exceptions 

correspond to the drive cycles, where the estimation of the battery power is far from the 

real measured one. 

 

 

Figure 73. Metrics performances for estimation of SOC consumption, related to all the 22 drive cycles, 
used for testing. 

It was interesting also to make a bit of analysis for the absolute error computed between 

the real SOC and the estimated one, |𝑒| =  |𝑆𝑂𝐶̂ − 𝑆𝑂𝐶|.  

In Figure 74, the evolution of the absolute error over the time, for all the test routes, is 

shown. The global trend of the error is to increase over the time, and this phenomena 

was expected, due to the presence of an integration function in the algorithm.  

The integrator introduces a cumulative error, that is intrinsic, in physical sense, in the 

solution found and cannot be removed.  

 

 

Figure 74. Absolute error relatives to the SOC computation over the time, for all the 22 drive cycles used 
for testing. 
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In addition, for each instant of time, the mean and standard deviation values relative to 

the absolute SOC error of all drive cycle tests used, were computed. In this way it was 

possible to obtain a general view of the behavior of the mean error (+/- the standard 

deviation) committed by the algorithm in SOC estimation, over the time. How it can be 

seen from Figure 75, the mean error tends to increase over time, and the same happens 

for the standard deviation. This is an effect of the integration function implemented in 

the algorithm and, as said many time, it cannot be solved in any way, unless of changing 

the resolving approach and so, by changing the model. 

 

 

Figure 75. Plot with mean (blue) and standard deviation (gray) values relative to the absolute SOC error 
over time, computed considering all the 22 routes for testing. 

After obtained these results, it was computed a vector containing the maximum absolute 

error, committed by each route used for testing in the total period of time, and another 

one, for the final absolute error value. From these two arrays, the mean value and the 

standard deviation were obtained, Table 7. The chart with the derived results is showed 

in Figure 76. 

 

 Final absolute error  Maximum absolute error 
Mean [%] 0.369 0.436  
Standard deviation (S.D.) 0.266 0.261 

Table 7. Resume of mean and standard deviation values relative to final and maximum absolute error 
value for SOC, computed considering the 22 routes for testing. 
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Figure 76. Mean value with standard deviation, related to the final and maximum absolute error value, 
associated to the SOC quantity, computed considering the 22 routes for testing. 

 

 

3.8 TEST OF THE MODEL-BASED ALGORITHM IN A 

REAL SCENARIO 
 

This last paragraph is dedicated to the simulation, in a real application scenario, of the 

algorithm designed to compute a range estimation for a battery electric vehicle. 

Thus, all the data used, as inputs of the algorithm, are obtained starting from coordinates’ 

points of route selected waypoints. To obtain these data are used the functions explained 

in the previous paragraphs of these chapter. To conclude, the output results, returned by 

the model, are compared with the real measured data. 

The process starts with the extraction of a route from the databased containing all the 

data coming from the vehicle measurements; then, it is reproduced the same path in the 

OSRM web-service, in order to obtain the waypoints coordinates to feed to the software.  

The journey, extracted and analyzed, is indicated with the name of ‘trip A’, and starts 

from the Bylogix headquarter, placed at Strada Comunale del Portone, Grugliasco 

(indicated with label A) and ends to via Corrado Corradini, Torino (label B), as showed 

in Figure 77. The total route length is about 22 Km, and it is mainly made by tertiary, 

primary and motorway roads, so by national road and highways, while only for a short 

part of the route by city streets, as can be seen in Figure 78. To complete the trip, the 

estimated time, calculated by the algorithm, is approximately 17 minutes, while from 

measured data the duration is about 15 minutes. These differences are due to several 

approximation made by the algorithm, one among all, the predicted velocity profile that 

is different with respect the measured one. The elevation profile evidences that altitude 

range, computed as difference between the maximum and the minimum elevation value, 
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is about 58 m. The general trend shows how the route is characterized, in the first stretch 

of road, by a downhill, so it is expected to not spend a lot of energy there. Figures 70, 80 

show the altitude profile and the slope road profile, as function of the distance. Also, the 

weather data was downloaded using the OpenWeatherMap API service. A recap of the 

information about the trip A is listed below, in Table 8.   

 

TRIP A  Information 
Total distance 22.4 Km 
Total duration time  00:17:15  hh:mm:ss 
Maximum elevation  276 m 
Minimum elevation  218 m 
Max legal velocity 130 Km/h 
Air Temperature 23 °C 
Weather Good weather - Sun 
Wind 1.03 m/s - from NE 
SOC(𝑡0) 90 % 
𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙  75 kWh 

Table 8. Information about the vehicle, the weather, and the selected route, for Trip A. 
 

 

Figure 77. Route selected for testing test, from Bylogix S.r.l HQ, Grugliasco (A) to via Corrado 
Corradini, Torino (B). 

A 
 

B 
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Figure 78. Road classification extracted from OpenStreetMap, relative to Trip A. [4] 

 

 

Figure 79. Elevation profile of the selected route, Trip A. 

 

 

Figure 80. Slope profile of the selected route, in [%], relatives to Trip A. 
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For the computation of the output results, it is necessary to predict the velocity profile, 

and as said in the previous paragraphs, it is necessary to extract several road information. 

Using the data provided by OSM, it is possible to get these.  

Using these information, and, also, by the knowledge of the speed limit signs, the legal 

velocity profile is computed. In Figure 81, it is showed a comparison between the 

predicted speed profile, returned by the algorithm, and the real velocity measurements. 

Obviously, the estimated and the real speed profile do not match perfectly, since the 

prediction of the velocity depends by several factors, such as the driving style of the 

driver, that is not possible to know a priori. Moreover, it can be observed, from the 

general trend of the velocity profile measured, that the maximum velocity reached was 

about 160 Km/h in highway, where the limit was 130 Km/h, but also that the real velocity 

was higher than the speed limits imposed by road classification.  

For these reasons, it is expected an error in the estimation of the SOC consumption, with 

respect to the measured one. Note that, the Bias Velocity Factor (BVF) is imposed equal 

to 0.90, but if this factor is increased also the estimation of the SOC consumption moves 

closer to the measured one. However, to give some other information, also the 

acceleration profile is derived from the velocity one, Figure 82. 

 

 

Figure 81. Velocity profile predicted by the algorithm with BVF=0.90 (red), compared with the real 
velocity profile measured (blue). 

After having obtained the predicted legal velocity profile and all the other data extracted 

from internet, needed by the algorithm to work, it is possible to estimate the total traction 

power computed at different stages: wheels, electric motor, and battery. Figure 83 shows 

a comparison of these three power consumptions estimation, that are computed 

according to the equations 3.17, 3.24, 3.27. 
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Figure 82. Acceleration profile derived from the predicted velocity profile. 

As expected, it can be noticed that the estimated battery power is the highest among the 

other ones, if considered positive power values; instead, it is the lowest if considered 

negative values.  

 

 

Figure 83. Power consumption at different vehicle’s systems. 

After having computed the estimation of total power supplied and recharged by the 

battery system, it was possible to compute an estimation of the energy consumption, 

using the equation 3.35 

From Figure 84, it is possible to make some considerations about the energy consumption 

associated to the trip A.  
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For example, there are some sudden steps around Km 5 or Km 16, that happens in 

correspondence of rapid change of velocity; these could be removed going to improve 

the function designed to predict the velocity profile. 

However, since the prediction of the velocity is not an easy task, this drawback can be 

acceptable due to the complexity of the problem. 

At this point, the state of charge estimation is obtained using the equation 3.37, as 

function of the energy consumption previously estimated, of the SOC(𝑡0) and 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙. 

Given a SOC(𝑡0) = 90% and a 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 75 [kWh], the SOC consumption is computed 

and compared with respect to the measured one, as displayed in Figure 85. [50] 

 

 

Figure 84. Energy consumption measured (red) and energy consumption estimated (blue) from battery 
power, relative to the trip A. BVF = 0.90. 

 

 

Figure 85. Comparison of the measured SOC consumption (red) and of the estimated one (blue), relative 
to the trip A. SOC(𝒕𝟎) = 90, BVF = 0.90. 
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Analyzing the red line and the blue one in Figure 84, and 85, it is possible to observe that 

both follow the same trend, with some obviously errors. Focusing for example in SOC 

consumption plot, it is possible to clarify why the real and the estimated SOC behavior 

are different. The reasons why this happens are several, the first one is the assumption 

on the initial SOC value. In fact, the algorithm settings are set up to have a SOC(𝑡0) = 90, 

but this is not always true: if the real initial value of state of charge could be measured 

and used in the equation 3.37, the general trend of the estimated SOC consumption is 

different, closer to real case at least in the first part, but nevertheless, the general behavior 

does not change a lot, Figure 86. However, changing the initial SOC values nothing 

changes in terms of model accuracy, since the only effect is a translation of the estimated 

curve. 

 

 

Figure 86. Comparison of the measured SOC consumption (red) and of the estimated one (blue), relative 
to the trip A. SOC(𝒕𝟎) = 89.40, BVF = 0.90. 

The second fact is the integrator used to compute the energy from the power 

consumption; it will introduce a systematic error to the problem. 

The third factor, that also have a huge influence, is the velocity profile. 

In general, less is the velocity of the vehicle, lower will be the consumption, and vice 

versa for high speed. From a review of the Figure 81, it can be realized that the speed 

profile predicted tends to be lower than the measured ones, so obviously the 

consumption estimated will be lower than the real one.  

A proof of this fact can be realized going to increase the BVF factor from 0.90 to 1.02, 

obtaining the new velocity profile, Figure 87. Nevertheless, going to increase the BVF, 

the speed limit will not be considered yet, so this example is done only to demonstrate 

that the results are better with respect to the previous case, with BVF equal to 0.90. In real 
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application scenario, the software respects all the limits imposed by the Italian Law on 

road safety. [36] 

Analyzing the data results, it is possible to evidence that the absolute error, both in terms 

of energy consumption and of SOC consumption, is reduced compared to the case with 

BFV=0.90, as can be saw in Table 8. The new energy and state of charge consumption’s 

plots are showed in Figure 88 and Figure 89. 

 

 

Figure 87. Velocity profile predicted by the algorithm with BVF=1.02. 

 

 

Figure 88. Comparison of the measured SOC consumption (red) and of the estimated one (blue), relative 
to the trip A. SOC(𝒕𝟎) = 90, BVF = 1.02. 
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Figure 89. Comparison of the measured SOC consumption (red) and of the estimated one (blue), relative 
to the trip A. SOC(𝒕𝟎) = 89.40, BVF = 1.02. 

 

TRIP A Real Measurements Estimate Measurements 
CASE 1 WITH BVF = 0.90 
Energy consumption  20.23 [kWh/100Km] 12.52 [kWh/100Km] 
Final energy consumption value  4.37 [kWh] 2.80 [kWh] 
SOC final value 83.80 [%] 86.25 [%] 
|∆E | 1.57 [kWh] 
|∆SOC | 2.45 [%] 

CASE 1 WITH BVF = 1.02 
Energy consumption  20.23 [kWh/100Km] 16.32 [kWh/100Km] 
Final energy consumption value  4.37 [kWh] 3.66 [kWh] 
SOC final value 83.80 [%] 84.52 [%] 
|∆E | 0.71 [kWh] 
|∆SOC | 1.28 [%] 

Table 8. Recap of the energy and SOC consumption values associated to the trip A. SOC(𝒕𝟎) = 90. 

The main reasons, causing these differences in values, are due to the difficulty to have a 

perfect prediction of the velocity profile and, moreover, to the unmatching between the 

real speed profile measured and the predicted one. 

This last problem is owing to the hard driving style of the driver, characterized by a lot 

of sudden and high accelerations and by elevated velocity, and so major consumptions. 

To conclude, a comparison between different energy and state of charge consumptions, 

obtained by using different BVF: 0.90 (blue), 1 (black), 1.02 (purple) and 1.10 (yellow), is 

done to evaluate the effect of the growth of the velocity, as displayed in Figure 90, 91, 92. 

From Table 9, it is possible to observe that increasing the BVF, and so the velocity profile, 

the estimated values, and the real ones, both for energy and state of charge consumption, 

are closer. 
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Figure 90. Comparison of different velocity profiles, according to different BVF, with respect the 
measured velocity (red line), relative to trip A. 

 

Figure 91. Comparison of different energy consumption trend, associated to different BVF, with respect 
the measured one (red line), relative to trip A. 

From the analysis on Figure 92, and by the observation of the results in Table 9, it is 

possible to observe a discrepancy between the real energy consumption and the 

estimated ones, at different BVFs; in particular, a huge error there is in the first 5 

kilometers. This is caused by a real velocity profile, characterized by high values, far from 

the ones imposed by legal speed limit of the Italian law, the same used by the algorithm. 
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Figure 92. Comparison of different SOC consumption levels, associated to different BVF, with respect 
the measured one (red line), relative to trip A. 

 

 Energy cons. 
[kWh/100Km] 

FEC [kWh] SOC final [%] |∆𝐄 | 
[kWh] 

|∆𝐒𝐎𝐂 | 
[%] 

CASE 1 WITH BVF = 0.90 
Real 
Measurement  

20.23  4.37 83.80 1.57  2.45  

Estimated 
measurement  

12.62  2.82  86.22 

CASE 2 WITH BVF = 1 
Real 
Measurement 

20.23  4.37  83.80 0.84  1.91 

Estimated 
measurement 

15.75  3.53  85.29 

CASE 3 WITH BVF = 1.02 
Real 
Measurement 

20.23  4.37  83.80 0.71  1.28  

Estimated 
measurement 

16.45  3.69  85.08 

CASE 4 WITH BVF = 1.10 
Real 
Measurement 

20.23  4.37  83.80 0.02  0.39  

Estimated 
measurement 

19.45  4.35  84.19 

Table 9. Table of comparison of the consumption cases, associated to different BVF values, relative to 
trip A. Column named ‘FEC’ means Final Energy consumption value. SOC(t0) = 90. 
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3.9 CONCLUSIONS  
 

The designed model-based algorithm, obtained following an approach based on the 

knowledge of the physical laws that regulate the power and therefore the energy 

consumption of an electric vehicle, returned good results. From the analysis on the RMSE 

computed on the SOC estimated values, from the drive cycles test set, can be seen that 

the general trend is to have value, around 0.1, that is very fine.  

Even the absolute error computed, in terms of different between real and measured SOC, 

returns small values. These two facts are a proof that the algorithm works well.  

A comment on the implementation of the algorithm in a real scenario is necessary to be 

done. How can be observed from the result in paragraph 3.8, the main drawback is 

associated to the function designed for the generation of the predicted velocity profile. 

In fact, the speed is among the inputs that have a majorly influence in the derivation of 

the power battery consumption of an electric vehicle and so, it influences a lot the 

estimation of state of charge consumption. 

Therefore, among the future developments on this algorithm, there could be the design 

of a new function that better predicts the vehicle velocity profile, taking into 

consideration other factors than those considered here, such as: the presence of traffic, 

roundabouts, stop signals and traffic lights.  

Other studies can be done in the analysis of the different electric vehicle systems (electric 

motor, battery and so on) that here were not considered; making this it could be reached 

better results in the offline estimation of the state of charge consumption. 
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Chapter 4 

 
_____________________________________________________________________________ 

 

A MACHINE LEARNING TECNIQUE FOR SOC 

ESTIMATION 

_____________________________________________________________________________ 

 

 

 

In the next paragraphs of this chapter, it will be discussed which algorithms, belonging 

to the category of Machine Learning methods, but in particular to the Artificial Neural 

Network group, could be used for the purpose of this thesis, therefore for the estimation 

of the SOC associated to a fully electric vehicle. Consequently, greater attention will be 

placed on the development of a regressive neural network, leaving out those used for 

classification or for other purposes. For this work’s section, a large number of data were 

used, about 120 thousand, all provided by the company Bylogix S.r.l and acquired 

directly from a Tesla Model 3 with a 75 kWh battery pack.  

The classical approach used by the researchers and engineers, in this particular field, is 

based on the usage as inputs of: voltage, current and temperature; all these are battery 

values normally used to estimate the SOC. Nevertheless, the developed model was 

designed in a totally different way. The variables used as inputs were: the velocity, the 

acceleration, and the road slope angle profile, while the output of the network was the 

battery power. Once the estimation of this quantity was obtained, by integrating it, the 

energy provided by the battery was computed, and so the SOC could be derived.  

All these functions were implemented in the so-called ANN algorithm, whose design 

schema is illustrated in Figure 93. The main reason behind the choice of these input data 

was associated to the fact that the algorithm had to work offline, so the input data had to 

be predicted easily before the trip began and in addition, had to be related to the driving 

condition. 

A brief overview about what the paragraphs describe in the chapter is listed here. 

In the first paragraph there is an overview on how the machine learning world has 

changed the manner of approaching to some regression problems. In paragraph 4.2, a 

description about the neural networks’ theory is done, focusing on the neuron element 

and its function on the network behavior, the main architectures, the learning process, 

the overfitting and underfitting problems and to conclude, a list of the main activation 

functions is provided.  
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Figure 93. Design schema of the ANN algorithm to SOC estimation. 

In the paragraph 4.3 a description on the neural network designed to solve the SOC 

estimation problem is provided, Figure 93.  

Paragraph 4.4 presents an analysis of the results obtained using the developed algorithm. 

The chapter ends with the conclusions.  

 

 

4.1 MACHINE LEARNING, A NEW FRONTIER FOT 

THE ESTIMATION PROBLEM 
 

The digitization of processes has been achievable thanks to the exponential increase of 

the data available to engineers and scientists, to supervise and analyze processes and 

systems. If the amount of such data is very large, then it will talk of Big Data.  

In addition to the growth of available number of data, new powerful Graphic Processing 

Unit (GPU) and enhanced algorithms have led to the development of machine learning 

(ML) methods, which today are among the main used tools to rely on for estimation 

processes, for the forecasting of future values or, in general, for the system identification 

problems. [56] 

When there are problems that try to explain the input-output relationship, it can be 

applied three main methods: the first is a model-based, the second a black-box, the third 

is a combination of these two, said grey-box. The first type is the one analyzed in chapter 

3; to the second method, instead, belong all those models where, to establish the input-

output relationship, are used only the measured input and output data and are not taken 

in consideration the physical knowledges of the system under investigation. Machine 
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learning algorithms, among which it can be found the artificial neural networks, belong 

to this category. In many cases, the deep learning (DL) term is mistaken with the artificial 

neural network one, but to be clear, the first one is a particular architecture’s form, that 

is deeper and more complex than the neural network standard one. 

Talking about machine learning, could be easy to drop in the wrong comparison between 

machine learning and artificial intelligence.  

By definition, Artificial Intelligence usually refers to the context of developing 

computers, hardware or software, able to emulate human thought and perform tasks in 

real-world environment, by using data that give them the possibility to automatically 

trigger actions without the human interface. [57] 

Instead, Machine Learning is a subcategory of the AI, and it uses algorithms that 

automatically learn from data and adapt the reactions to the input data they receive. [57]  

Inside the ML learning algorithm, there are the Artificial Neural Networks (ANN), that 

without going into the details, are models designed with the idea of being able to 

autonomously capture the relationships, especially non-linear, of also complex systems. 

They use only the input 𝑥 and the output 𝑦 data, as entry of the model, and prove, as 

output, an estimation 𝑦̂ of the true output 𝑦, without asking the physical explanation of 

the problem, Figure 94. 

 

 

Figure 94. Black-box model. [58] 

The approach, or better the idea, behind the development of machine learning (ML) 

algorithms has radically changed with respect to the canonical modus operandi of the 

classic software programmer. While the latter is used to developing a software, a 

program, or even a function, looking for some mathematical rules that allow to associate 

the inputs with the outputs, the ML programmer uses only the input and output data to 

train an algorithm, which autonomously learns the relationship sought, and returns, as 

output, the rules, that explain it, Figure 95. [59] 
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Figure 95. Machine learning and classical programming differences. [59] 

Nevertheless, the neural network is not beautiful as it can be appeared, and several 

drawbacks are hidden behind this world. For example, to manage a huge number of data, 

or to create a very complex network, are necessary very powerful computers, equipped 

with expensive and high-performance GPU, in order to reduce the computational time. 

In addition, the science of the deep learning is far from the classical mathematics and 

science, where everything can be explained and demonstrated; here there is not yet a 

mathematical formalism. All the common rules, that can be found on internet, are 

obtained by experiments and so, it much more closer to trial-and-error approach. [56] 

Among the negative aspects of these models, they require a large amount of data, and 

not always it is possible to have these amount of information; in fact, in general, the more 

data you have, the better the learning will be and, therefore, the final output provided by 

the algorithm. In addition, current ANN architectures do not have the possibility to track 

statistical changes of the training data in real time. [56] 

However, in many application, the results found by the neural network algorithms are 

impressive and so, all the negative sides are overcome by these brilliant results.  

Machine learning algorithms can be divided into four categories: 

 

• Supervised Learning: in this case the algorithm developed return a set of rules 

starting from the knowledge of the input data (the training set) and of the true 

output (label data). The rules found will be then tested and used for totally new 

dataset. This category is applied for classification and regression problems. [56] 

• Unsupervised Learning: in this case the labels are not provided to the model in 

the training phase. The model can be used to recognize patterns and in general is 

more complex than the Supervised typology. Typical applications are: detection 

of anomalies in patterns of data, clustering, split of the data into groups based on 

their similarities. [54] 

• Self-Supervised Learning: with respect to the Supervised case, here the output 

data (labels) can be generated directly from the input data, using, for example, a 

heuristic algorithm. [56] 
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• Reinforcement Learning: the train task of this algorithm is to take a series of 

decisions that are dependent with each other to reach a certain goal, into a specific 

and, also, complex environment. To achieve the goal, the algorithm uses a system 

of either reward or penalties for the action it performs. The goal is to maximize 

the total award. [56], [60] 

 

In this work it will be used the Supervised Learning, since the goal is to solve a regression 

problem, that is the estimation of the SOC. 

 

 

4.2 THEORY ABOUT NEURAL NETWORKS 
 

In this paragraph, the theory about the neural networks, starting with the mathematical 

description of what the neuron is, will be illustrated. Then a briefly description on the 

main architectures characterizing the neural networks (with a focus on the feed-forward 

typology), the mathematical description of the learning algorithms, the exposition of the 

main activation functions and the metrics that can be used to analyze the network is 

done.  

 

4.2.1 THE NEURON  
 

The Artificial Neural Network (ANN) is an example of computational model, that 

belongs to the autonomous learning field, characterized by artificial neurons. Its name 

derives by the human brain model, that is made by several biological neurons, that are 

fully connected one with each other, and are able to learn, by exchanging information, 

and adapt their behavior to new input stimuli. The learning and adaptation operations 

are performed by themselves, autonomously. The neural network can be used for solving 

several problems, as classification, prediction, estimation, and categorization. [26] 

The core of the neural network is the node, also called neuron, that represents the 

equivalent mathematical model of the biological neuron, Figure 96. [26] 

Each node is connected to the others using weights. The first model of artificial neuron 

was implemented by McCulloch and Pitts, in 1943. 
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Figure 96. Function implemented in a single artificial neuron. [61] 

Considering a model with only one layer, containing a single node and 𝑛 inputs, as in 

Figure 96, the general functions implemented in that node are showed in equations 4.1 

and 4.2. [26] 

 

𝑧 = ∑ (x𝑖 ∗ 𝑤𝑖) +𝑛
𝑖=1 𝛽                (4.1) 

 

𝑎 = 𝜎(𝑧)                  (4.2) 

 

where: 

 

• x𝑖, is i-th node’s input. 

• 𝑤𝑖, is i-th node’s weight. 

• 𝛽, is the node’s bias, a constant term (in Figure 96 it is 0). 

• 𝑧, is the pre-activation function of the node (that is a number). 

• 𝜎, is the activation function of the node. 

• 𝑎, is the output of the node. 

 

Supposing to have 𝑛 inputs, placed inside a row vector 𝑿 = [x1, … , xn] ∈ ℝ1×𝑛, the 

number of weights associated to the single node are 𝑛 and, can be stored in a row vector 

𝑾 = [w1, … , w𝑛] ∈ ℝ1×𝑛 . [61] 

The equations 4.1 can be written in a vectorized version, as showed by the following 

equation: 

 

𝑧 = ∑ (x𝑖 ∗ 𝑤𝑖) +𝑛
𝑖=1 𝛽 = 𝑿 ∙ 𝑾𝑻 + 𝛽              (4.3) 
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Another important aspect of the neuron is the activation function 𝜎, which represents the 

crucial point of the neuron and that regulates its functional behavior and so the type of 

relationship that will be between the inputs and the output of the node. 

In fact, the powerful of these networks is that the activation functions, being mostly non-

linear, are able to capture any variation of the data simply by changing the nodes’ 

weights and biases values during the learning period, according to the training data flow. 

[26] 

More information about the activation functions will be given in sub-paragraph 4.2.8. 

 

4.2.2 NEURAL NETWORK ARCHITECTURE 
 

In the previous sub-paragraph was described a single neuron and how it works, in 

mathematical sense. In a real neural network model, there is a combination of the nodes 

that, putted together, make the layer. In standard ANN, can be distinguished three 

different main layers:  

 

• Input layer, that contains only the input features of the model; in practical cases, 

it is not considered a layer like the other one (no neurons are present). 

• Hidden layer.  

• Output layer, that gives as output the prediction 𝑦̂. 

 

The number of the hidden layers can be equal or greater than one, and, in this last case, 

the network is defined: Deep Neural Network (DNN). The term Deep is associated to the 

presence of the multiple hidden layers and it is the standard choice for the modern 

networks. 

The standard nomenclature associated to an ANN established that a network with ℓ 

layers has 1 output layer and  ℓ − 1 hidden layers. For example, a network with 2 layers, 

is made by one hidden layer and a single output layer, so the input layer is not considered 

in the count; however, this is not a rule, but only a convention. 

It can be possible to distinguish two main type of neural network architectures, the Feed-

Forward (FFNN) and the Recurrent (RNN), Figure 97. 

The first one, is the classical type of network and the most used too. Here, the layers are 

fully connected and the connections are established from the back to the forward and not 

backwards, or with itself, connections are allowed. [62] 

The recurrent neural networks instead are characterized by feedback connections. Since 

feedback connection are used, they are advice for problems characterized by temporal 

sequence of data (natural language problems, audio/video problems, forecasting of 

stocks’ price and so on.) In fact, the main feature of these networks is that they contain a 
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memory effect, that could be short in time, but also long as in the case of LSTM (Long 

Short Term Memory) networks. Obviously, this second architecture is more complex 

than the feed-forward one and so, it needs more computational power to be solved. [62] 

 

 

Figure 97. Recurrent Neural Network and Feed-Forward Neural Network. 

However, since in the algorithm to implement it was choice to use the FFNN, the working 

principles and the mathematical formulations of these type of network will be described. 

 

4.2.3 TRAINING WORKFLOW 
 

In this sub-paragraph all the main mathematical formulations that characterize the feed-

forward neural network models will be provided and evaluated. 

In Figure 98, it is possible to have an overview of the main steps that regulate the training 

process. This is the classical workflow followed by the network to learn, from the given 

data, and adapt weights and biases values to return an estimated output as close as 

possible to the real one. 

In the sub-paragraph 4.2.4 the forward step, whose goal is to find the output of each node 

of each layer is described. Then, in 4.2.5, the backward step, that includes the calculation 

of the loss function derivative, the backpropagation, and the weights update process, is 

described.  
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Figure 98. Workflow of the main step characterizing the training process in a neural network. 

 

4.2.4 FEED-FORWARD STEP 
 

The main calculus implemented in the neural network model to achieve the estimated 

output 𝑦̂, starting from the input layer, are described here.  

Since the aim of the developed algorithm is the estimation of the SOC, the network will 

be categorized as a regression problem. Being a regression problem, with only one 

output, the number of nodes present in the output layer will be always one. Instead, for 

each of the hidden layers, it can be possible to have 𝑔 nodes.   

In Figure 99, it can be observed a Feed-Forward Neural Network with only 2 layers: one 

hidden layer and one output layer (the input layer is not considered). Considering the 

hidden layer, the generic pre-activation function 𝑧𝑗
[1] and the output 𝑎𝑗

[1] of the generic 

hidden layer node 𝑗, can be obtained according to the following equations [12]: 

 

𝑧𝑗
[1] = ∑ 𝑥𝑖 ∙3

𝑖=1 𝑤𝑗𝑖
[1] + 𝛽𝑗

[1]               (4.4) 

 

𝑎𝑗
[1] = 𝜎𝑗

[1](𝑧𝑗
[1])                (4.5) 

 

where: 

 

• 𝑧𝑗
[1], is the pre-activation function of the hidden layer node 𝑗. 

• 𝑥𝑖, is the input 𝑖 of the hidden layer node. 

• 𝑤𝑗𝑖
[1], is the weight between the input 𝑖 and the hidden layer node 𝑗. 

• 𝛽𝑗
[1], is the bias term of the hidden layer node 𝑗.  
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• 𝑎𝑗
[1], is the output of the hidden layer node 𝑗. 

• 𝜎𝑗
[1], is the activation function of the hidden layer node 𝑗. 

 

 

Figure 99. Example of ANN with 2 layers used to estimate the SOC. [12] 

To follow a more general notation, 𝑥𝑖 indicates the generic input 𝑖 that goes forward in 

the hidden layer node 𝑗; it can be also written as 𝑎𝑖
[0], where: the 𝑖 denotes the i-th input 

and the [0] the input layer. After having computed all the outputs of the hidden layer 

neurons, it is possible to pass to the next layer, that in this case is the output one, and 

calculate the network output, following the equation below: 

 

𝑦̂ = 𝑎1
[2]

= 𝜎1
[2](∑ 𝑎𝑖

[1] ∙
𝑔
𝑖=1 𝑤1𝑖

[2] + 𝛽1
[2]

)              (4.6) 

 

where: 

 

• 𝑎𝑖
[1], is the input 𝑖 of the single output layer node (𝑗 = 1), and so, it is also the 

output of the hidden layer node 𝑖. 

• 𝑤1𝑖
[2], is the weight between the hidden layer node 𝑖 and the output layer node. 

• 𝛽1
[2], is the bias term of the output layer node. 

• 𝑎1
[2], is the output of the output layer node. 

• 𝜎1
[2], is the activation function of the output layer node. 

Layer ℓ = 2 

Layer ℓ = 1 
Layer ℓ = 0 
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The equations 4.4, 4.5 can be written in vectorized version [63]. Supposing to have 𝑛𝑖 

input features and 𝑛ℎ hidden layer nodes, then those can be substituted by these new 

equations: 

 

𝐙[𝟏] = ∑ 𝑥𝑖 ∙
𝑛𝑖
𝑖=1 𝑤𝑗𝑖

[1] + 𝛽𝑗
[1] = 𝑿 ∙ (𝑾[𝟏])𝑻 + 𝜷[𝟏]                     (4.7) 

 

𝐀[𝟏] = 𝝈[𝟏](𝐙[1])                           (4.8) 

 

where: 

 

• 𝑿 = [x1, … , x𝑛𝑖
] ∈ ℝ1×𝑛𝑖, is the input vector of features. 

• 𝑾[𝟏] = [

𝑤11
[1] ⋯ 𝑤𝑛ℎ1

[1]

⋮ ⋱ ⋮
𝑤1𝑛𝑖

[1] ⋯ 𝑤𝑛ℎ𝑛𝑖
[1]

] ∈ ℝ𝑛ℎ×𝑛𝑖, is the weight matrix of the hidden layer. 

• 𝜷[𝟏] = [β1
[1], … , β𝑛ℎ

[1]] ∈ ℝ1×𝑛ℎ, is the bias vector of the hidden layer. 

• 𝐙[𝟏] = [z1
[1], … , z𝑛ℎ

[1]] ∈ ℝ1×𝑛ℎ, is the pre-activation function vector of the hidden 

layer. 

• 𝝈[𝟏] = [σ1
[1], … , σ𝑛ℎ

[1]] ∈ ℝ1×𝑛ℎ, is the activation function vector of the hidden 

layer. 

• 𝐀[𝟏] = [a1
[1], … , a𝑛ℎ

[1]] ∈ ℝ1×𝑛ℎ, is the output vector of the hidden layer. 

 

The same can be done for the output layer, obtaining a similar result but with a weight 

matrix with different dimension and scalar elements, due to the presence of a single 

output layer node. The previous equations describe the mathematical formulation of the 

forward propagation process in the FFNN described in Figure 99. 

From the previous example, more general results can be derived, starting from the 

notation used there. For example, 𝑎𝑗
[ℓ], is referred to the output of the node 𝑗 of the layer 

ℓ; 𝑤𝑗𝑖
[ℓ], is the weight between the node 𝑗 of the layer ℓ, and the node 𝑖 of the layer ℓ − 1.  

The first layer is indicated with ℓ = 0. 

Note that, according to the standard used, the input layer is not considered in the count 

of the total number of layers of the networks ℓ, so: 

 

 ℓ = #ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 + 𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑎𝑦𝑒𝑟             (4.9) 

 

Given a network made by three layers (1 input layer, 1 hidden layer and 1 output layer), 

with 𝑛𝑖 input layer nodes, 𝑛ℎ hidden layer nodes and 𝑛𝑜 output layer node, the total 

number of trainable parameters (weights and bias terms) are:  
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• in the hidden layers: 𝑛ℎ × 𝑛𝑖 + 𝑛ℎ. 

• in the output layer: 𝑛𝑜 × 𝑛ℎ + 𝑛𝑜. 

 

In the example showed in Figure 99, 𝑛𝑖 = 3, 𝑛ℎ = 𝑔, 𝑛𝑜 = 1. 

The implementation of the previous equations, relative to the simple network in Figure 

99, justifies the name attributed to the Feed-Forward Neural Network; in fact, the 

information flow moves in forward direction, from the input layer to the output one.  

 

 

4.2.5 LEARNING PROCESS  
 

Introduced the two main architectures of the neural networks and described the 

equations that regulate the feed-forward propagation for solving a regression problem, 

in this sub-paragraph it will be described the classical procedure used by the FFNN to 

learn from the training data. This important step, belongs to the backward section of the 

general neural network working process, described in Figure 98. 

The training data are made by input data x, and the output data y, where the latter is the 

true target of the problem. After set the typology of the network, so the number of layers 

and the number of nodes for each layer, the input data will go inside the network, 

according to the forward training process, as described in the previous sub-paragraph. 

Suppose to have 𝑁 input-output pairs of data, {(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)}, the target is to obtain 

𝑦̂𝑖 ≈ 𝑦𝑖 . To evaluate the accuracy of the model, in a single training sample, it is used the 

loss function ℒ; instead, for the evaluation of the model over the total number of samples, 

it is defined the cost function 𝐽. In equation,  𝐽 =
1

𝑁
∑ ℒ(𝑦̂𝑖 , 𝑦𝑖)𝑁

𝑖=1 . [63] 

However, in this description it will be used only the cost function  𝐽.  

A classical 𝐽 function, normally employed to introduce to the updating parameter phase, 

is the Mean-Squared Error, defined as the equation 4.10. [64] 

 

𝐽(𝜗) =
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1 .         (4.10) 

 

where: 

 

• 𝑁 is the number of data samples in the training set. 

• 𝜗, is a compact way to define all the trainable parameters of the model, so weights 

𝑤 and biases 𝑏 of the layers. 

• 𝑦𝑖, 𝑦̂𝑖 are, respectively, the real and the estimated output associated to the ith 

training sample. 
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According to the value of the 𝐽, the network will use a certain optimizer criterion, or 

optimization algorithm, to update the nodes’ weights and biases values of the layers with 

the goal of trying to minimize the loss function, and so, to have an estimated output 

closer to the real one, Figure 100. The process described works cyclically for a number of 

iterations equal to the training samples 𝑁. The update of the weights and of the biases 

are also called neural network learning process, and they are performed according to the 

optimizer algorithm chosen. [56] 

 

 

Figure 100. Working principle of the DNN. [54] 

To give a simple idea on how the training process works, it is here described the gradient 

descent learning algorithm. The starting point is the definition of the derivate, and its 

usage in the computation of the minimum of a function. As known from calculus, the 

derivate is a measure on how fast the function is changing taken a very small step in 

positive direction, ∇y = 𝑓′∇x. [65] [66] 

Suppose that the goal is to find the parameter value 𝑥 that minimizes the function. For 

simplicity, the function to minimize is 𝑓(𝑥) = 𝑥2, Figure 101. To reach the minimum, 

placed in 𝑥 = 0, it is necessary to compute the function derivative with respect to the 

variable 𝑥, so 𝑓(𝑥)′ =
𝑑𝑓(𝑥)

𝑑𝑥
= 2𝑥.  

Since the algorithm reaches the solution iteratively, step by step, supposing that the 

starting value assumed by 𝑥 is 3, then, the derivate of 𝑓(3)′ = 6. This means that if it is 

taken a step towards the positive direction, the function will change proportionally to 2, 

that means to go far from the minimum; instead, it is necessary to move in the opposite 
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direction. The same thing happens in the opposite case, for the negative initial choice of 

the variable 𝑥.  

 

 

Figure 101. 𝒇(𝒙) = 𝒙𝟐. 

A general behavior can be observed, and so, it can be concluded that, to reach the 

minimum, the step must be done in the opposite direction than the derivate sign.  

The problem is to understand how big has to be this step, that is called learning rate 𝛼.  

This will be one of the several hyperparameters of the neural network architecture. [66] 

In general, if 𝛼 is chosen too high, the main problem could be that the minimum point 

jumps far from the target and the algorithm will diverge; instead, if it is chosen too small, 

the convergence process could take a lot of time, Figure 102. 

 

 

Figure 102. Example of GD algorithm with different learning rate. 

In the problematic case where the loss function to minimize depends by more than one 

parameter it is better to talk about gradient, instead of derivate. Returning to the neural 

network problem, during the several iterations, the weights values have to be updated 

trying to reach the local or, if lucky, the global minima of the 𝐽 function, Figure 103. 

The update process of a single weight occurs by computing the gradient of the cost 

function with respect to that weight, multiplying it for a certain learning rate 𝛼 and 

adding the negative sign; then this quantity is summed to the initial weight value. This 
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is done for each of all the trainable parameters 𝜗𝑗𝑖
[ℓ] relative to the layer ℓ and thus, for 

all the weights 𝑤𝑗𝑖
[ℓ] and biases 𝑏𝑗

[ℓ] of the networks’ nodes.  

The equation that represents the update for weights and biases, at each iteration of the 

Gradient Descend algorithm, is [67] : 

 

𝜗𝑗𝑖
[ℓ] ∶= 𝜗𝑗𝑖

[ℓ] −  𝛼
𝜕𝐽(𝜗)

𝜕𝜗𝑗𝑖
[ℓ]        (4.11) 

 

To a single update of the weights in a particular iteration, all the training samples have 

to be run in the network since the cost function 𝐽 has to be computed and this is the 

average of the 𝑁 loss functions ℒ. 

 

 

Figure 103. Gradient Descent process. 

Concerning the optimization algorithms for regression problems, it is possible to choose 

among: Gradient Descent (GD), Stochastic Gradient Descend (SGD), SGD with 

momentum, Adam and many more. The simplest algorithm is the first one, but at the 

same time the training process is very time consuming for a huge datasets. However, for 

these cases it exists an alternative version, called SGD. This algorithm has the possibility 

to choose the dimension of the batch size that contains the training samples to run into 

the model before the weights are updated; the SGD has a classical version and a 

Minibatch one. In both cases, the computational cost is reduced, but also the accuracy. 

[66] 

The most common algorithm adopted to solve a huge number of deep learning problems 

is the Adam, that is faster in convergence rather than the SGD, but requires more 

computational power. [56] 

In all the algorithms, however, a common point is the computation of the gradient of the 

cost function with respect to all the several trainable parameters 𝜗𝑗𝑖 . This operation is 

performed using the so called backpropagation algorithm. The backpropagation method 

was initiated in 1970s as a general optimization algorithm for solving differentiation of 

nested functions’ problem. In 1986s, it became important also for machine learning 



 

 115 

problems, with the paper published by Rumelhart, Hilton, and Williams, titled ‘Learning 

Representation by Back-Propagation Errors’. [64] 

For more information about the backpropagation algorithm, it is advised read the ‘Deep 

Learning’ book. [68] 

The training algorithm ends when all the iterations are completed with the goal of 

minimizing the cost function. To be clear, the term iteration is not correct, but it would 

be better to use the term epoch, since iteration is more appropriate to be employed talking 

about the batch size concept. Another important point to observe is that since, in many 

cases, most of the problems are not linear and very complex, the algorithms are not able 

to find the global minimum, but only local minima points. Moreover, the neural network 

training process, by construction, is stochastic and so, if the network is trained many 

times the results achieved will not be the same. 

 

4.2.6 PROBLEMS DURING THE TRAINING PROCESS 
 

During the training it is important to check the model learning process and how it 

changes with respect to the epochs. Its monitoring is made possible evaluating a curve, 

that is called learning curve. It is a plot that shows the progress of the specific metric with 

respect to the number of epochs and gives the idea about the training performances. So, 

the curve is characterized: in the x-axis, by the number of epochs, in the y-axis, by the 

error or metric chosen. A typical learning curve is the one that represents the loss over 

time, where the loss gives an idea about how bad the neural network model is doing. 

Another one, is the curve that represents the accuracy that, in contrast with the loss curve, 

the higher is the better is the model, Figure 104. [69] 

 

 

Figure 104. Example of model with high accuracy. The blue plot represents the accuracy of the training 
set, the orange the one for the validation set. [63] 
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From Figure 104, it can be seen that the accuracy curve comes higher in time, and this 

means that the model is improving its experience and is learning well; then, when it 

reaches a plateau the learning process is concluded. In Figure 104 are plotted two lines, 

one that represents the accuracy trend of the training set (blue line), and the other the 

accuracy trend of the validation set (orange line). In general, the training loss indicates 

how well the model fits to the training data, while the validation loss, how well the model 

fits to the new unseen data, always during the training process. [69] 

Another important curve to check during the training process of a neural network is the 

one obtained by combining the performance metrics (e.g., RMSE or MAE) of training and 

validation sets, with respect to the epochs elapsed.  

The reason to check these curves is to prevent from overfitting or underfitting problems.  

The training set and the validation set have been nominated so, it is better to explain 

what they are. The training set, as it can be understood by the name itself, is a set of 

samples that is used to perform the learning process and to proceed with the training of 

the neural network. The validation set, instead, is a partition of the training set, used to 

test the model during its training. In general, its dimension is about 20-30% of the total 

training set. 

In real cases, it is employed another dataset, called testing set. The testing set is defined 

to test and evaluate the developed model on new data and so, to check if it benefits of 

the generalizability property.  

 

 

OVERFITTING 

 

The overfitting is a scenario that characterizes a model able to fit very well the training 

data, but has a poor fitting behavior in new unseen data during the training phase. So, 

an overfitting model does not enjoy of the generalizations property. [69] 

In other terms, the model has memorized the training data instead of learning the input-

output relationship. In statistical terms, the overfitting corresponds to high variance 

problem. High variance happens if the model is too complex and it is not able to represent 

the simpler patterns present in the data. [69]  

A model affected by overfitting it cannot be used, since cannot be able to represent new 

unseen data. 

 

 

UNDERFITTING 

 

The underfitting problem is the opposite situation than the previous case so, here, the 

neural network found is too simple for describing the complexity of the true model. 
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In this case, the network is not able to model either the training data or the new one and, 

as consequence, the error is very high and does not decrease with the increment of the 

epochs. [69] 

The underfitting situation is identical to the statistical one when model has a high bias. 

High bias happens when the developed model is not able to take into account all the 

relevant information and so, it cannot be able to represent the complexity of the real 

model. [69] 

In Figure 105, an example of function, that is modelized by three different models, can 

be observed. The model on the left is affected by underfitting: it can be noticed from the 

fact that the blue line of the model is totally different with respect to the green one of the 

original function.  

The one on the right, on the opposite, presents overfitting, in fact the blue line is too much 

complex that the green one, particularly in the first part. The optimal choice is the picture 

in the center. 

 

 

Figure 105. Example of function represented by a model with underfitting (left), overfitting (right), and 
optimal model (center).  

The overfitting and underfitting problems can be checked also in a simpler way, by 

monitoring the learning curves that represent together the training and the validation 

losses over the number of epochs spent. A general example is illustrated in Figure 106.  

A small comment on the Figure 106 is necessary to describe case by case. Starting with 

the first one, the underfitting model, it can be observed that the classical shape is to have 

the validation and the training loss, or error, curves closer with each other, but in both 

cases the error values are higher and does not decrease over the number of epochs. 

The second scenario, the overfitting case, is characterized by a training loss curve that 

decreases in time, while the validation one, after starting to decrease, reaches a turning 

point and starts to go up again. [69] 

The optimal choice is a combination of the good points of the two previous cases. The 

results found can been merged together as showed in Table 10. 
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Figure 106. Example of underfitting, overfitting and optimal model in learning curves. 

 

Training Error Validation Error Model 
High High Underfitted 
High Low Unlikely 
Low High Overfitted 
Low Low Optimal  

Table 10. Table to check underfitting and overfitting of the model by the error values. 

 

 

Figure 107. Example of possible learning curves scenario. 

Image to have a situation like the one showed in Figure 107. The optimal choice is to stop 

the learning process of the algorithm in correspondence of the epochs’ range denoted 

with “Good Model” label. In fact, there, both the curves are closer with each other, and 

the error have a low value. This is a practical example that demonstrates why the learning 

curves are fundamental in the training process of a neural network. With this example, 
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it has been possible to put in evidence how the user has the possibility to interfere, during 

the training process, and prevent from underfitting or overfitting situations. 

How it can be solved overfitting and underfitting problems?  

Starting with the overfitting problem, the possible solutions are: adding more data, data 

augmentation, regularization, and removing features from input data. [70] 

Without going into details, it can be explained what the previous solutions mean. If the 

dataset chosen is poor, it contains few sample data, and these do not give to the model 

the possibility to learn the input-output relationships. Adding new data to the algorithm 

could give the chance to improve its performances, but in many cases, the collection of 

the data is not easy or could be very expensive and so, this is not always an actual 

solution. [70] 

For these reasons, if possible, it is recommended to use the data augmentation.  

The regularization is a technique that introduces some penalties to the model, with the 

aim to prompt the model to try to avoid these. The last possibility is to use less features 

as inputs of the model: in fact, if the overfitting is present, this means that the model is 

not able to have a generalized behavior and it is too specific. [70] 

For regression problems, the most common choices among these are: the first one and 

the last two.  

The underfitting situation, on the contrary, can be solved applying one or more of the 

following possible solutions: increasing the complexity of the model, reducing 

regularization, and adding features to the training set. All of these have the opposite 

effect that the ones described before. Note that, the solution that adds more data the 

training set is not considered for the underfitting situation. [70]  

To Find, solve, or correct the overfitting or underfitting problem is not an easy task and, 

in many situations, the listed solutions here could not be sufficient. 

 

4.2.7 EVALUATION METRICS 
 

The choice of the metric is an important step, since it provides an idea about how good 

the model is working. It can be used both for checking the presence of overfitting or 

underfitting, evaluating the training and the validation dataset performances in term of 

loss functions, and to check the accuracy of the model analyzing the testing samples of 

data. 

A lot of metrics exists and, all of these, can be used for any type of problem, but to be 

more precise, each problem has a certain number of metrics that are suitable to be applied 

to it. It is possible distinguish among 5 categories: the regression metrics, the probabilistic 

metrics, the accuracy metrics, the classification metrics, and the one used for image 

segmentation problems. Since the model to be developed in this work is a regression 
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problem, it will be described some of the main important metrics belongs to this category. 

Among these, there are: the Mean Absolute Error, Mean Squared Error, and Root Mean 

Squared Error. 

 

 

MEAN ABSOLUTE ERROR 

 

The Mean Absolute Error, or MAE, is defined as the average of the absolute difference 

between the predicted output and the real one. In practical terms, it gives an idea about 

how far the predictions are with respect to the true outputs. The negative point is that it 

does not give any information if the model is under-predicting or over-predicting the 

data, since it does not consider the direction of the error but only its magnitude. [71]  

The lower the MAE’s values are, the better the model is and so, better the estimation will 

be. The characteristic equation of the MAE is the following one [71] : 

 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦̂𝑖 − 𝑦𝑖|𝑁

𝑖=1         (4.11) 

 

where: 

 

• 𝑦𝑖, is the true value. 

• 𝑦𝑖̂, is the predicted value. 

• 𝑁, is the number of sample data. 

 

 

MEAN SQUARED ERROR 

 

The Mean Squared Error, also called MSE, is a metric like the MAE. The difference is that, 

while the latter one computes the average absolute error, this one calculates the average 

of the square of the difference between the predicted output values and the real ones. 

This formulation puts in evidence larger errors rather that the smaller ones. [71] 

The quantity is always positive with a values that tends to decrease as the error 

approaches zero value. The goal in a regression problem is to minimize this quantity, 

that means having an accurate model. The equation of the MSE is [71] : 

 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1         (4.12) 

 

where: 

 

• 𝑦𝑖, is the true value. 
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• 𝑦̂𝑖, is the predicted value. 

• 𝑁, is the number of sample data. 

 

 

ROOT MEAN SQUARED ERROR 

 

The Root Mean Squared Error, or RMSE, is the standard deviation of the residuals. In 

practical terms, it indicates the spread out of the residuals than the best fit line. The 

residual is the measure of how far the predicted point is with respect to the true one. [72] 

The mathematical formulation is given by the equation 4.13. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1          (4.13) 

 

where: 

 

• 𝑦𝑖, is the true value. 

• 𝑦̂𝑖, is the predicted value. 

• 𝑁, is the number of sample data. 

 

4.2.8 ACTIVATION FUNCTIONS 
 

As described in previous paragraphs, inside the nodes it is implemented an important 

function whose objective is to compute the node output, given a certain input value, and 

it is called activation function. There are several typologies of activation functions, that 

can be used only for regression problems, classification problems or both. The most 

common are listed here: 

 

• Binary Step Function. 

• Linear. 

• Sigmoid. 

• Softmax. 

• Hyperbolic Tangent. 

• ReLU. 

• Leaky ReLU. 

 

Choosing the right activation function is not easy since are necessary a lot of studies and 

in many cases, the right choice is moved without following a guideline, but with a trial-
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and-error approach; so, a rule of thumb does not exist. However, some common and 

practical advances to follow are described here. [73] 

 

1) There are some activation functions that works better for regression problems, 

and others that are more performed in classification problems. For example, in 

the binary classification problem, the activation function recommended for the 

output layer node is the Sigmoid, instead, for the multiclass classification 

problem, the Softmax. 

2) To avoid the vanishing gradient problem, try to not use the Tanh and the Sigmoid 

function.  

3) If there are some dead nodes, then try to use the Leaky ReLU. 

4) A common choice for the activation functions in the hidden layers nodes are the 

ReLU, whose performances are better than the others. 

5) In regression problems, it has to be used, as output layer node, the linear function. 

 

 

BINARY STEP FUNCTION  

 

Also called Threshold, or Heaviside function, this is the simplest activation function, and 

it is commonly used in binary classification problems, where the output could be among 

two different alternatives. As the name itself implies, this function has a binary output (0 

or 1) and consequently, there will be an adjustable threshold that establishes whether the 

output is 0 or 1. In general, if the threshold is overcome, the output will be set to 1, 

otherwise to 0, Figure 108. 

With a threshold set to 0, the equation of this function is: 

 

𝜎(𝑧) = {
1,            𝑧 ≥ 0
0,            𝑧 < 0

         (4.14) 

 

 

Figure 108. Binary Step function. 
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If this function is implemented in a neuron present in the hidden layer, it is able to 

establish if the neuron output will be used as input of the next layer nodes or not; in fact, 

if the output is 1, the neuron is activated and its output will be used as the input of the 

next layer nodes; otherwise, it is turned off and it will never be used again. [73]  

A backwards of this function is that it can cause a hinderance in backpropagation step, 

since the gradient of the Binary Step Function is zero. [73] 

 

 

LINEAR 

 

As it can be seen from Figure 109, the linear activation function is directly proportional 

to the input, unless a multiplication constant factor 𝑘. With this activation function, the 

backpropagation can be realized since the gradient of the linear function is the constant 

term 𝑘. Nevertheless, this function is not so common in machine learning algorithms, 

due to the fact that the gradient does not change during the several epochs and, as 

consequence, the error is not improved. [73] 

Common applications in which it is employed are linear regression problems. It is 

defined as equation 4.15. 

 

𝜎(𝑧) = 𝑘𝑧          (4.15) 

 

 

Figure 109. Linear function. 

 

 

SIGMOID 

 

The Sigmoid is the classical activation function used in neural networks problems, since 

it is a non-linear function. According to equation 4.16, this function maps the input into 
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an output, whose range is [0-1], as showed in Figure 110. Obviously, if the user wants a 

different output range, the function has to be scaled. [73] 

 

𝜎(𝑧) =
1

1 + 𝑒−𝑧          (4.16) 

 

The reason why this function is among the most popular in the NN world is that it is 

differentiable everywhere and so, the backpropagation algorithm works fine. The 

Sigmoid derivative is: 

 

𝜎′(𝑧) = 1 −
1

𝑒−𝑧 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) ∙ (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧))     (4.17) 

 

Studies have demonstrated that Sigmoid function is not suitable for hidden layers, due 

to the gradient function that becomes very little as the inputs become very large or very 

small: the consequence is that the gradient descent algorithm can slow down. 

 

 

Figure 110. Sigmoid function. 

 

 

SOFTMAX 

 

The Softmax function is obtained by the combination of multiple Sigmoid functions. It 

can be used in such cases of probabilities data analysis. While the Sigmoid was used for 

binary classification problems, this function is normally employed for multiclass 

classification problems and so, when the possible outcome varies among several choices. 

[73] 

Obviously, in multiclass classification problems it is used as activation function for the 

output layer node; the number of output layer nodes will be set equal to the number of 

classes of the problem. [73] 

In equation, it is expressed according to the following formula: 
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𝜎(𝑧)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑁
𝑘=1

         𝑓𝑜𝑟 𝑗 = 1, … , 𝑁       (4.18) 

   

 

HYPERBOLIC TANGENT 

 

The Hyperbolic Tangent function, also called Tanh, is closer to the Sigmoid function, but 

it is symmetric with respect to the origin, according to Figure 111. As result of this 

symmetry, the output of the node can have both positive and negative values and so, it 

can assume a value inside the range [-1,1]. As the Sigmoid function, it is continuous and 

differentiable everywhere.  

In general, the Tanh function is preferred to the Sigmoid one, since its derivate is steeper. 

In addition, it is able to move in all the directions (positive and negative) and it is centered 

in zero. [73] 

However, it is not a good practice to use in the hidden layers nodes, for the same Sigmoid 

function’s reasons. In formula, the Tanh is described according to equation 4.19. 

 

𝜎(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧 = (
2

1 + 𝑒−2𝑧) − 1 = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑧) − 1     (4.19) 

 

 

Figure 111. Hyperbolic tangent function. 

 

ReLU & Leaky ReLU 

 

The Rectified Linear Unit, or ReLU is a common non-linear function used in neural 

networks, and particularly, for the hidden layers nodes.  

Figure 112 shows an example of ReLU function, that in formula can be expressed 

according to equation 4.20. 

 

𝜎(𝑧) = max {0, 𝑧}         (4.20) 
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The reason why it is very popular, is related to its mathematical expression; in fact, not 

all the nodes of the layer will be activated at same time. A bad point of this function is 

that often the gradient is zero and so, this implies that the weights and the biases are not 

updated during the backpropagation process. A solution to this problem is given by the 

usage of two different versions of the ReLU function, that are: the Leaky and the 

Parametrized Leaky ReLU. [73] 

 

 

Figure 112. ReLU function. 

The Leaky ReLU, is an activation function that derives from the ReLU but, for negative 

inputs, the function does not assume zero value but very small negative values, as it can 

be shown in the equation 4.21. [73] 

 

𝜎(𝑧) = {
𝑧,                    𝑧 ≥ 0
0.01𝑧,            𝑧 < 0

        (4.21) 

 

In Figure 113, it can be observed the general behavior of the Leaky ReLU. 

 

 

Figure 113. Leaky ReLU function. 

In many cases, neither the Leaky version leads to have good results.  
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A possible solution is to use the Parametrized ReLU function, that is expressed according 

to equation 4.22. [73]  

This version of the function can be showed in Figure 114.  

 

𝜎(𝑧) = {
𝑧,                   𝑧 ≥ 0
𝑘𝑧,                𝑧 < 0

        (4.22) 

 

where: 

• 𝑘 is a parameter chosen by the user. If 𝑘 = 0.01 the Leaky function is obtained. 

 

 

Figure 114. Parametrized Leaky ReLU function, with several parameters’ values. 

 

 

4.3 DESIGN OF A NEURAL NETWORK FOR THE SOC 

ESTIMATION PROBLEM 
 

In this paragraph, the neural network design process to solve the state of charge offline 

estimation problem, in a fully electric vehicle, will be illustrated. In addition, the 

framework used, the data chosen, the selected model and the results achieved will be 

described. 

The algorithm was written totally in Python language using a desktop graphical user 

interface (GUI), called Anaconda-Navigator, belonging to the Anaconda distribution 

group. It was chosen for simplicity in running the application, manage packages and 

work environments, without using the command lines. [74]  

The application used to code and prototype the neural network algorithm was Spyder 

IDE (Python 3.7), a scientific python development environment, free and open-source 

available from Anaconda package manager. [75] 
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Among the several open-source external packages needed to easily work with the deep 

learning framework and used in this work, there were: Keras API [76], TensorFlow 2 [77], 

and Scikit-learn [78]. 

The computer used to train and test the neural network model was a MacBook Pro, with 

the following features:  

 

• Processor, 2.7 GHz Intel Core i5. 

• Memory, 8GB 1867 MHz DDR3. 

• GPU, Intel Iris Graphics 6100 1536 MB. 

 

The selected data used for this problem were taken from the dataset provided by the 

Bylogix S.r.l company. It contains about 120 thousands of data, acquired from a Tesla 

Model 3 with a 75 kWh battery pack, with a frequency of 1 Hz. The dataset features were 

14, as it was well described in the paragraph 1.4 of the chapter 1. Note that, since the 

frequency is not so high, it is expected that several high dynamic behaviors were not 

recorded and so, could not be learned by the network. 

The dataset contains several measurements that correspond to different drive cycles, 

collected in correspondence of different driving scenarios, so different weather 

conditions, different road typologies, different velocity and altitude profiles. 

In Figure 115, it can be seen an example of data associated to a route, extracted from the 

original dataset and used for the estimation problem.  

 

 

Figure 115. Example of data used in the neural network model design. 

The workflow followed to develop the neural network is illustrated in Figure 116. 
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Figure 116. Workflow for neural network model design. 

 

4.3.1 DATA SELECTION  
 

Among all the data features provided in the dataset, it was selected as input set 𝑋(𝑡), the 

one containing these 3 features: the vehicle velocity, the acceleration, and the road slope 

angle. The output variable of the network 𝑌(𝑡) was the battery power consumption. This 

quantity was possible to be computed using real data measurements of current (𝐼) and 

voltage (𝑉), presented inside the dataset.  

 

𝑋(𝑡) = [𝑣(𝑡), 𝑣̇(𝑡), θ(𝑡)] 

𝑌(𝑡) = [𝑃𝐵𝐴𝑇𝑇(𝑡)] 

 

where: 

 

• 𝑣 [
m

s
], is the vehicle velocity. 

• 𝑣̇ [
m

s2], is the vehicle acceleration. 

• 𝜃 [rad], is the slope road angle value. 

• 𝑃𝐵𝐴𝑇𝑇 =
(𝑉∙𝐼)

1000
 [kW], is the battery power consumption. 

• 𝑡 [s], is the time sample. 
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Comparing the input and the output data of the network (𝑋, 𝑌) with respect to the 

standard ones used, in other proposed neural network based solutions, for solving the 

SOC estimation problem, it is possible to observe some differences. In fact, in most of the 

cases, the classical inputs used were data coming from the battery pack’s cells, like 

voltage (𝑉), current (𝐼) and ambient temperature (𝑇), while, the classical output used 

was the SOC.  

In this case, this was not possible to do since the model working scenario was offline and 

this implies to estimate the SOC consumption, associated to a certain route, before that 

the trip begins and, in addition, using data associated to the vehicle motion. Moreover, 

the voltage and current data were associated to the whole battery pack, and not to the 

single cell. So, in design phase, the possible paths to follow were two: the first one was 

to estimate the battery power consumption, using the selected input data (𝑋(𝑡) =

[𝑣(𝑡), 𝑣̇(𝑡), θ(𝑡)]) and then, by integrating this quantity, to obtain the energy consumption 

and so, the SOC. The second approach was to compute the battery power consumption, 

using the methodology of the algorithm 1, as described in chapter 3 and then, to obtain 

the current as 𝐼 =
𝑃𝐵𝐴𝑇𝑇

𝑉
 , where V is the nominal voltage of the battery pack. In this second 

case, the input data and output of the network would be: 𝑋(𝑡) = [𝐼(𝑡), 𝑉(𝑡), 𝑇(𝑡)], 𝑌(𝑡) =

[𝑆𝑂𝐶(𝑡)]. 

Nonetheless, the second possibility had several negative points: the value of the nominal 

voltage of the battery pack is not constant as should be supposed, but changes as function 

of the velocity and other factors related to the motion of the vehicle, that are not easy to 

predict offline. In addition, since these measurements data would be related to the entire 

battery pack, it would be necessary to use conversion equations to scale them for a single 

cell, that have the drawback to introduce some errors. 

However, it was chosen to follow the first idea, that explains, indeed, the attribute ‘new’ 

to the approach developed to solve the problem.  

At this point, the dataset was divided into training, validation and testing set.  

The validation set was extracted directly from the training set, and it was employed to 

check if the problem is suffered of overfitting or underfitting; instead, the testing set was 

used to evaluate the network performances to new and unseen data. Note that the testing 

dataset was made by different drive cycles extracted from the original dataset.  

The training set was the 80% of the total dataset, the testing set was the remaining 20%, 

instead the validation set was extracted from the training set, by setting a portion of the 

20%, Table 11. 

Dataset  Samples 
       Total dataset 120.687 
      Training set 97.581 

         Validation set 19.516 
Test set 23.106 

Table 11. Dataset division. 
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The input data were pre-processed to obtain a more robust and better performance 

networks. A common technique used to obtain this result is the scaling of the input data 

to a standard range, and this can be achieved using the data normalization or 

standardization. In this work it was operated the normalization.  

When the normalization is performed, the data are rescaled from the original range to a 

new one, that stays in [0,1]. [78]  

The formula associated to the data normalization is the following one: 

 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
         (4.23) 

 

where: 

 

• 𝑥, is the input vector. 

• 𝑥𝑛𝑜𝑟𝑚, is the normalized vector. 

• 𝑥𝑚𝑎𝑥, is the maximum value of the input vector. 

• 𝑥𝑚𝑖𝑛, is the minimum value of the input vector. 

 

A good practice used in machine learning when scaling techniques are applied, is to 

follow this procedure: 

 

1. Use the training dataset to estimate the min and max observed values or, in other 

words, to fit the scaler function to the training samples. 

2. Use the normalized data as input for training the model.  

3. Transform all the future input data (e.g. testing data) by scaling these with the 

scaler function obtained in point 1. 

 

The function employed was the MinMaxScaler(), implemented from  scikit-learn library 

[78]. 

 

4.3.2 MODELS EVALUATION 
 

After having divided the dataset, it was necessary to understand the typology of neural 

network to implement for solving the state of charge estimation problem in a fully electric 

vehicle. 

In general, when it deals with machine learning problems and, particularly, with neural 

networks, the choice of a certain network rather than another one is difficult and in many 

case is not easy at all find the optimal one.  
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This is due mainly to the fact that a neural network design process is characterized by 

the choice of different variables, that can be grouped into two main classes. The first one 

has an influence on the final result, since it consists in the chosen of the input and output 

network’s variables.  

The second group, instead, contains the so called, hyperparameters. These are variables 

that influence the training process of the network, and they are: the number of hidden 

layers, the number of layers nodes, the activation functions, the optimization algorithm, 

the loss function to minimize, the choice of the metrics to evaluate the model estimation 

behavior, the batch size, and the number of epochs. 

Each of these variables have multiple choices, thus, the selection of the optimal 

combination is very hard to find and so, one of the best procedure to follow is the trial-

and-error one. 

Some general aspects were selected to check the differences among the several models 

trained, for example: the architecture chosen was the feed-forward one with fully 

connected layers, the optimizer algorithm and the loss function selected were the Adam 

and the MSE, respectively, and the criteria used to select the best model was linked to the 

one with the best compromise in terms of computational cost, complexity, and accuracy. 

The accuracy was measured with the following metrics: MSE, RMSE, MAE.  

Other values maintained fixed during the evaluation of different models were: the 

epochs and batch size value, imposed equal to 250 and 100. In addition, the hidden layers 

have the ReLU as activation function, instead, the output layer the linear one. Different 

networks, designed to have the same number of layers, but different layers’ nodes are 

tested, and the performances are compared, in order to choose the best.  

Three different set of data was used to test the accuracy and the generalized behavior of 

the network. These were extracted from the original dataset and obviously were not used 

for the training session, moreover, they correspond to three different and independent 

drive cycles, that will be called DC1, DC2, DC3. For each route, several data were 

extracted and used, as showed in Figure 117. 
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Figure 117. Example of data contained in a driven cycle, used a test set for the neural network. In all the 
subplot, the x-axis indicates the travel time duration [s]. 

In the following tables it is possible to observe the results, in terms of MAE and RMSE 

(approximative value), obtained by different implemented feed-forward neural 

networks. Note that the metrics’ values are computed on the output of the network, so 

considering only the battery power consumption, estimated and measured. Associated 

to each network description, there are also the learning curves. 

 

NN1  Value MAE RMSE 
Layers (input, hidden output) 1, 2, 1   
Node’s layers (input, hidden, output) 3, 8, 8, 1   
Training set  6.76 9.77 
Validation set  6.67 9.58 
Table 12. NN1, information about layers, nodes and evaluation metrics associated to the neural network 

output (battery power). 
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Figure 118. Learning curves for training and validation set associated to NN1. 

  

 

NN2  Value MAE RMSE 
Layers (input, hidden output) 1, 2, 1   
Node’s layers (input, hidden, output) 3, 32, 32, 1   
Training set  4.21 6.14 
Validation set  4.02 5.86 
Table 13. NN2, information about layers, nodes and evaluation metrics associated to the neural network 

output (battery power). 

 

 

Figure 119. Learning curves for training and validation set associated to NN2. 
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NN3  Value MAE RMSE 
Layers (input, hidden output) 1, 2, 1   
Node’s layers (input, hidden, output) 3, 128, 128, 1   
Training set  3.62 5.36 
Validation set  3.45 5.24 
Table 14. NN3, information about layers, nodes and evaluation metrics associated to the neural network 

output (battery power). 

 

 

Figure 120. Learning curves for training and validation set associated to NN3. 

 

NN4  Value MAE RMSE 
Layers (input, hidden output) 1, 3, 1   
Node’s layers (input, hidden, output) 3, 8, 8, 8, 1   
Training set  3.95 5.79 
Validation set  3.67 5.44 
Table 15. NN4, information about layers, nodes and evaluation metrics associated to the neural network 

output (battery power). 
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Figure 121. Learning curves for training and validation set associated to NN4. 

 

NN5  Value MAE RMSE 
Layers (input, hidden output) 1, 3, 1   
Node’s layers (input, hidden, output) 3, 32, 32, 32, 1   
Training set  3.64 5.32 
Validation set  3.49 5.09 
Table 16. NN5, information about layers, nodes and evaluation metrics associated to the neural network 

output (battery power). 

 

 

Figure 122. Learning curves for training and validation set associated to NN5. 
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Figure 123. MAE and RMSE on the training dataset, for the networks developed.  

How it can be possible to observe from the Figure 123, all the models, expect the first 

implemented, are trained quite well. In particular, the last 3 models have very close MAE 

and RMSE values. Observing the previous learning curves, computed for each network 

developed, the two lines, representing the training and validation error, have the same 

behavior and after a certain number of epochs both converge to a similar value; this 

means that the networks were not affected by overfitting problem. From these figures, in 

addition, it can be observed as the orange line, associated to the validation dataset, 

presents a bit of oscillations, these are due to the small number of samples in the 

validation dataset, however this is not a problem.  

In order to choose the best model, it was decided to analyze the RMSE and MAE values, 

obtained comparing the predicted battery power consumption and the real one. These 

are evaluated for each network analyzed and with respect to three datasets DC1, DC2, 

DC3. The results are resumed in Table 17.  

 

NN Layers 
(I,H,O) 

Nodes DC1 DC2 DC3 

 MAE RMSE MAE RMSE MAE RMSE 
1 1,2,1 3,8,8,1 9.51 13.73 8.95 12.20 6.82 9.81 
2 1,2,1 3,32,32,1 5.07 7.19 5.11 7.02 5.03 6.98 
3 1,2,1 3,128,128,1 4.85 6.63 5.04 7.02 4.64 6.58 
4 1,3,1 3,8,8,8,1 4.80 7.08 4.87 6.96 4.53 6.34 
5 1,3,1 3,32,32,32,1 4.37 6.02 4.41 6.06 3.73 5.22 

Table 17. Sum-up of the RMSE and MAE values, relative to the output of the neural network, computed 
in the 3 test sets. In the column ‘Layers’, the letters I, H, O indicate Input, Hidden, and Output, 

respectively. 
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Figure 124. Evaluation of the MAE error on the battery power consumption, for the developed networks, 
in the three test sets, DC1, DC2, DC3. 

 

Figure 125. Evaluation of the MAE error on the battery power consumption, for the developed networks, 
in the three test sets, DC1, DC2, DC3. 

The RMSE and MAE values, related to the estimation of the battery power consumption, 

that is the output of the neural network, are good; the fact that these numbers are not 

close to zero is related to the fact that the output assumes values that varies from -80 to 

+400 [kW].  

To select the best model, among the ones developed, it was necessary to evaluate the 

performances on the error metrics, as RMSE and MAE, relative the test sets. According 

to Figure 124, 125, the best possible choice, in terms of complexity, time consuming and 

accuracy, is the network denoted as NN5. Even if it was the most complex among the 

five analyzed, this is not a very elaborate network, since it has only 3 hidden layers with 

32 nodes for each. Other more complex networks were evaluated and the obtained results 

were, more or less, closer to the selected one. 
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4.3.3 AN OVERVIEW OF THE DEVELOPED NEURAL 

NETWORK MODEL  
 

Regarding the architecture of the network, the choice was a fully connected neural 

network, also called FFNN, with a single input layer, 3 hidden layers and a single output 

layer. Since the developed network was used for a regression problem, the output layer 

was made by a single node, whose output was the estimated variable. The input layer 

contains 3 nodes, as the number of input variables. Instead, the hidden layers have 32 

nodes per each. Figure 126 shows the architecture developed. 

Concerning the activation functions used: for hidden layers, the ReLU functions while, 

for the output node the linear function. 

The optimizer algorithm chosen was the Adam, that returns better results than the 

standards Stochastic Descend or Gradient Stochastic Descend algorithm; instead, as loss 

function the mean squared error was used.  

The metrics elected for validation process were: the mean absolute error (MAE), the mean 

squared error (MSE) and the root mean squared error (RMSE). 

Once set the neural network architecture and all the training settings, the values relative 

to the number of epochs and to the batch size were imposed. 

The latter one is a parameter used when the dataset dimensions are very high and want 

to reduce the complexity cost required for the training session. The batch size is defined 

as the number of data samples that are propagated into the network at each iteration, 

during the training process. 

For example, if a dataset is made by 1000 samples and the batch size of 100, the algorithm, 

instead of taking a single input sample for each iteration, takes the first 100s input 

samples, engages the training process and, at the end, the first iteration is concluded. 

Then, the second group of 100s samples are taken and the procedure is repeated, ending 

the second iteration. This process is done until the last batch of samples is sent to the 

network; so, in concomitance of the last iteration, that corresponds to the training of the 

last batch of data, the epoch is concluded. Thus, these series of steps are repeated until 

the last epoch is reached, so after 10 iterations.  

The epoch can also be defined as the number of iterations to perform the forward and 

backward processes of all the training data. 

Since the training dataset used is quite huge, it was imposed a batch size of 100. A resume 

of all the parameters imposed for the neural network developed, called NN5, is showed 

in Table 18.  
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Neural Network characteristics Value 
Input data 
Output data 
Layers (input, hidden, output) 

[velocity, acceleration, slope angle] 

[power battery] 

1,3,1 

Nodes’ layers (input, hidden, output) 
Activation function (input, hidden layer) 
Activation function (output layer) 
Optimizer 

3,32,32,32,1 

ReLU 

Linear 

Adam 
Loss function  
Metrics 
Batch size 
Epochs 

MSE 

MAE, RMSE 

100 
250 

Table 18. Resume of the hyperparameters setting in the developed neural network NN5. 

 

 

Figure 126. Architecture of the neural network NN5. In the hidden layer the node's activation functions 
are ReLU, instead, in the output layer is linear. 

 

 

4.4 ANALYSIS OF THE RESULTS USING ANN 

ALGORITHM 
 

In this sub-paragraph, the results obtained by using the developed ANN algorithm, 

Figure 93, choosing the neural network NN5, are showed and commented. In particular, 

the results in terms of energy and state of charge consumption estimated by the algorithm 

will be analyzed and compared with respect to real measured ones. The analysis is done 

for the three drive cycles: DC1, DC2, DC3.  

Before illustrating the obtained results, a briefly description about the equations used to 

obtain the SOC estimation is done. 
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As said in the previous paragraph of this chapter, the neural network takes as input the 

vector of velocity, acceleration and slope road angle and returns as output, the estimation 

of the battery power consumption. By integrating this quantity, it is possible to obtain 

the energy, and thus, the SOC consumption, according to the equation 4.24 and 4.25. 

 

𝐸𝐵𝐴𝑇𝑇(𝑡𝑓) = 𝐸𝐵𝐴𝑇𝑇(0) + ∫ 𝑃𝐵𝐴𝑇𝑇
𝑡𝑓

0
∙ 𝑑𝑡  [kWh]            (4.24) 

 

𝑆𝑂𝐶(𝑡)= SOC(𝑡0) −
𝐸𝐵𝐴𝑇𝑇(𝑡)

𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙
∙ 100      [%]             (4.25) 

 

For the first equation, the initial energy value 𝐸𝐵𝐴𝑇𝑇(0) is set equal to 0, since it is assumed 

that the vehicle starts in stationary conditions. 

The second equation, instead, needs the knowledge of the nominal capacity 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙 and 

of the initial SOC value, SOC(𝑡0). The first was imposed equal to 75 kWh, that is the 

nominal battery capacity value of the Tesla model 3, while the second one was set equal 

to the true initial value of the SOC.  

The reason why the latter term is imposed equal to the initial state of charge value 

measured is purely associated to analysis purposes. In the real practical application, since 

it is not easy measure this quantity, it is assumed a SOC(𝑡0) = 90 %. Note that the energy 

quantity was convert from J to kWh.  

In the next three sub-paragraphs it is possible to check the results, obtained applying the 

ANN algorithm to three test sets (DC1, DC2, DC3), in terms of battery power, energy and 

SOC consumption. However, since for the thesis purposes the most important result is 

the state of charge estimation, a statistical analysis on the error made by the algorithm 

will be evaluated in the sub-paragraph 4.4.4. 

 

4.4.1 DRIVE CYCLE, DC1 

 

This first route extracted has a total length of about 22 Km, characterized by a change in 

the elevation profile of about -50 m, with an initial elevation value of 273 m and a final 

one of 223 m above the sea level. The measured SOC consumption goes from 89.4 % to 

83.8 %. A series of measured data extracted from the dataset, associated to the DC1, are 

showed in Figure 127. Note that in Figure 127, the x-axis indicates the travel time, 

measured in seconds. 
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Figure 127. Drive cycle 1 data. 

Given the velocity, acceleration, and slope road angle as inputs of the neural network, 

the battery power was estimated. A comparison among the real and the estimated 

quantity of battery power consumption is showed in Figure 128. 

How it can be possible to see, the estimated quantity covers well the real measured one, 

excepting in correspondence of certain peaks values where exceed. 

 

 

Figure 128. Comparison between real and estimated power consumption associate to DC1.  

From this estimated quantity, the algorithm computes the energy and then, the SOC 

consumption. In Figure 129, it is showed a first subplot, where the measured energy 

consumption is matched with respect to the estimated one, instead, the second subplot, 

illustrates the associated absolute error computed among the two previous quantity, 
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according to the following equation: |𝑒| = |𝑦̂ − 𝑦|, where 𝑦̂ is the estimated quantity and 

𝑦 is the true one. The same thing is done for the SOC, as it can be seen in Figure 130. 

 A recap of the obtained values is illustrated in Table 19. 

 

 

Figure 129. Comparison between real and estimated energy consumption (a) and the associated absolute 
error (b), relative to DC1. 

 

Figure 130. Comparison between real and estimated SOC consumption (a) and the associated absolute 
error (b), relative to DC1.  

 Real Measurements Estimated Measurements 
Energy consumption1 4.37 [kWh] 4.58 [kWh] 
Energy consumption2  20.22 [kWh/100Km] 21.18 [kWh/100Km] 
SOC final value 83.8 [%] 83.29 [%] 

Table 19. Resume of the real and estimated values obtained in terms of energy consumption and SOC 
final value for DC1. 
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Apart from these plots, also the RMSE and the MAE values were computed to evaluate 

the algorithm performances in the estimation of these three quantities: the battery power, 

the energy and the SOC consumption, as shown the histogram in Figure 131. 

 

 

Figure 131. Metrics performances for estimation of battery power, energy and SOC consumption, related 
to DC1. 

According to the results found and to the fact that the absolute error computed was low, 

it can be concluded that the neural network model chosen worked well on the first 

dataset. 

 

4.4.2 DRIVE CYCLE, DC2 
 

The second route of the test set has a total length of about 10 Km, characterized by an 

elevation profile that grows in time, passing from an elevation of 275 m to 462 m above 

the sea level, so it is an uphill. The expected SOC consumption would be consistent. In 

fact, for only 10 Km, the initial SOC measured level is of 60.5 % and at the end of the trip 

is diminished to 55.7 %. Others measured data extracted from the dataset, associated to 

the DC2, are showed in Figure 132. Note that in Figure 132, the x-axis indicates the travel 

time, measured in seconds.  
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Figure 132. Drive cycle 2 data. 

Figure 133 shown the estimated quantity that was obtained as output of the neural 

network. Instead, the estimated energy and SOC consumption are displayed in Figure 

134 and Figure 135. In numerical terms, instead, the results were resumed in Table 20. In 

Figure 136, it is possible to have a view of the estimation performances obtained by the 

algorithm. 

 

 

Figure 133. Power consumption associate to DC2.  
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Figure 134. Energy consumption (a) and the associated absolute error (b), relative to DC2. 

 

Figure 135. SOC consumption (a) and the associated absolute error (b), relative to DC2.  

 

 Real Measurements Estimated Measurements 
Energy consumption1 3.36 [kWh] 2.68 [kWh] 
Energy consumption2  33.45 [kWh/100Km] 26.73 [kWh/100Km] 
SOC final value 55.7 [%] 56.91 [%] 

Table 20. Resume of the real and estimated values obtained in terms of energy consumption and SOC 
final value for DC2. 

 



 

 147 

 

Figure 136. Metrics performances for estimation of battery power, energy and SOC consumption, related 
to DC2. 

Again, for the second test samples DC2, the results were good. The maximum absolute 

error reached in the estimation of the SOC value was about of the 1%. 

 

4.4.3 DRIVE CYCLE, DC3 
 

The third route used, called DC3, has a total length of 9.92 Km. From the elevation profile 

it can be deduced that the route was a downhill, so it is expected to not have a huge SOC 

consumption. The elevation at the beginning was 462 m and, with an excursion of -187 

m, the route ends at 275 m above the sea level. The measured SOC varies from 56.9 % to 

55.4 %. A series of measured data extracted from the dataset, associated to the DC3, are 

showed in Figure 137. The same analysis done for the two previous test drive cycles was 

made here. 

 

 

Figure 137. Drive cycle 3 data. 
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Figure 138. Power consumption associate to DC3. 

 

Figure 139. Energy consumption (a) and the associated absolute error (b), relative to DC3. 
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Figure 140. SOC consumption (a) and the associated absolute error (b), relative to DC3. 

 

 Real Measurements Estimated Measurements 
Energy consumption1 0.98 [kWh] 1.57 [kWh] 
Energy consumption2  9.86 [kWh/100Km] 15.87 [kWh/100Km] 
SOC final value 55.4 [%] 54.80 [%] 

Table 21. Resume of the real and estimated values obtained in terms of energy consumption and SOC 
final value for DC3. 

 

 

Figure 141. Metrics performances for estimation of battery power, energy and SOC consumption, related 
to DC3. 

For this third test, DC3, the obtained results were aligned with the previous ones 

obtained evaluating the drive cycles DC1 and DC2. The maximum absolute error reached 

in the estimation of the SOC value was lower the 0.7%. 
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4.4.4 STATISTICAL ANALYSIS  
 

After tested the ANN algorithm with only three routes, it was performed a similar 

analysis for 22 different routes that was possible to extract from the testing dataset. 

Focalizing only on the results relative to algorithm output and so, to the SOC, in order to 

check the estimation accuracy of the algorithm, the RMSE and MAE were computed. 

Considering as data the real SOC values and the estimated ones, the obtained results are 

showed in the histogram in Figure 142. 

How it can be seen from this figure, all the values (both for RMSE and MAE) are low than 

0.8, and this is a good indicator of the generalized behavior of the algorithm. 

 

 

Figure 142. Metrics performances for estimation of SOC consumption, related to all the 22 drive cycles, 
used for testing. 

It was also interesting to make a bit of analysis of the absolute error computed between 

the real and the estimated SOC consumption, |𝑒| =  |𝑆𝑂𝐶̂ − 𝑆𝑂𝐶|.  

In Figure 143, it is shown the evolution of the absolute error over the time, for all the 

tested routes. The global trend of the error is to increase over the time, and this 

phenomenon was expected, due to the presence of an integrator function in the 

algorithm. In some cases, the error starts with a plateau and then increases, but this could 

be associated to the goodness of the network in the battery power consumption 

estimation process.  

The integrator introduces a cumulative error, that is intrinsic, in physical sense, in the 

solution found, and cannot be removed, unless of changing the algorithm working 

process. 
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Figure 143. Absolute error relatives to the SOC computation over the time, for all the 22 drive cycles 
used for testing. 

In addition, for each instant of time, the mean and standard deviation values, associated 

to the absolute error "𝑒" of all the drive cycle tests used, were computed. In this way it 

was possible to obtain a general view of the mean error (+/- the standard deviation) 

behavior committed by the algorithm, in the SOC estimation, over the time. How it can 

be seen from Figure 144, both the mean and the standard deviation values associated to 

the error tend to increase over time. This is an effect of the integration function 

implemented in the algorithm and, as said before, it cannot be solved in any way. So, the 

bad point of the integrator presence can be observed from the occurrence of an error that 

increases over the time. This is due to the fact that the developed neural network, instead 

of estimating directly the SOC, estimates the battery power consumption and then, 

integrating this quantity, derives the energy and thus, the associated SOC. 

Another important point to discuss is why the neural network does not directly estimate 

the SOC. By several tests done during the design phase of the algorithm, it was seen that 

the obtained results were bad: the estimated SOC values were deviated a lot from the 

real ones and moreover, were characterized by a lot of noises and oscillations.  

A possible theoretical explanation as to why these poor results were achieved could be 

attributed to the non-observability of the SOC variable, in a problem like this; and also 

in this case, this is a direct consequence of the integrator function presence. For this 

reason, possible future research will be carried out in order to realize a theoretical study 

on the observability of the SOC variable in this system, trying to demonstrate why such 

poor results were obtained.  

 



 

 152 

 

Figure 144. Plot with mean (blue) and standard deviation (gray) values relative to the absolute SOC error 
over time, computed considering all the 22 routes for testing. 

After, it was created a vector containing the maximum absolute error computed by each 

route used for testing, in the total period of time and, another one, for the final absolute 

error value. From these, the mean and the standard deviation values were obtained as 

showed in Table 22. The chart with the results is shown in Figure 145. 

 

 Final absolute error  Maximum absolute error 
Mean [%] 0.631  0.703 
Standard deviation (S.D.) 0.376 0.344 

Table 22. Resume of mean and standard deviation values relative to final and maximum absolute error 
value for SOC, computed considering the 22 routes for testing. 

 

 
Figure 145. Mean value with standard deviation, related to the final and maximum absolute error value, 

associated to the SOC quantity, computed considering the 22 routes for testing. 
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4.5 CONCLUSIONS 
 

The designed ANN algorithm is a novel way to solve the offline estimation of the state 

of charge problem, for a fully electric vehicle, including a neural network model. The 

inputs of the algorithm were: the velocity, the acceleration, and the slope road angle. 

Focalizing to the neural network implemented in the ANN algorithm, it is based on a 

feed-forward and, fully connected, architecture, with 3 hidden layers each containing 32 

neurons. The output estimated by the network is the battery power consumption. This 

quantity is then integrated, to obtain the associated energy and so, the SOC level of 

consumption is derived. After a first evaluation of the results, obtained testing the 

algorithm with different drive cycles, extracted from the dataset, it was possible to 

conclude that the developed ANN model works well.  

The absolute error computed by the model for SOC estimation was 0.703 [%], with a 

standard deviation of 0.34. The expected result could be better, and a possible reason can 

be attributed to the fact that the estimated variable by the neural network was not the 

SOC, but the battery power.  

Obviously, also this second algorithm can be used in real life. The only difference with 

respect to the operations done before is that the input data have to be predicted, by using 

the same exactly functions implemented for algorithm 1, as described in chapter 3. In 

particular the functions that will be employed are: the one to obtain the elevation profile, 

that for velocity prediction profile, and for the travel distance. All these, need as input 

only the geographic coordinates of the route’s points.  

 

  



 

 154 

Chapter 5 

 
_____________________________________________________________________________ 

 

COMPARISON OF THE OBTAINED RESULTS AND 

CONCLUSIONS 

_____________________________________________________________________________ 

 

 

 

In this last chapter of the work the differences between the results achieved by the two 

algorithms, analyzing both a single selected drive cycle and all the drive cycles togheter, 

will be showed. The estimation of the energy consumption and, obviously, of the state of 

charge will be compared, both in plots and in numerical terms. The discussion is divided 

into two paragraphs: the first is dedicated to the single drive cycle analysis, while, the 

second one to the whole set of drive cycles. In the following paragraphs, the model-based 

algorithm was indicated with algorithm 1, or ALG1, instead, the ANN algorithm with 

algorithm 2, or ALG2.  The chapter ends with the work’ s conclusions and recommended 

future developments.  

 

 

5.1 DRIVE CYCLE 1 
 

As just said many times, in the previous two chapters, this drive cycle was used for 

testing processes and to compare the results obtained by the two developed algorithms. 

Velocity profile, acceleration profile and slope angle road profile, relative to the DC1 are 

showed in Figure 146. In addition, consumption values of the battery power and state of 

charge, acquired from the Tesla model 3 with a 75 kWh battery pack, are showed too. In 

addition, only for the model-based algorithm, also the weather data were used as entry. 

These data were obtained as response from an API, called OpenWeatherMap. 

Without going into the details of the formulations and functions used to achieve the final 

estimated values, these are computed and compared. The estimated energy 

consumption, associated to the two algorithms, and compared with respect to the real 

one, is shown in Figure 147. Instead, the state of charge level of consumption is displayed 

in Figure 148. 
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Figure 146. Main information about the DC1. 

 

Figure 147. Battery energy consumption associated to DC1. 

 

Figure 148. SOC consumption associated to DC1. 
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The consumption values, associated to the energy and state of charge are showed, in 

numerical terms, in Table 23. Comparing the results can be seen that both the algorithms 

worked fine and returned an estimated SOC level of consumption very close to the real 

one. The same is true for the energy. The absolute error committed by the two algorithms, 

in SOC estimation, is less that 0.7%. 

 

 Real Measurements Estimated 
Measurements ALG1 

Estimated 
Measurements ALG2 

Energy consumption1  4.37 [kWh] 4.65 [kWh] 4.58 [kWh] 
Energy consumption2   20.22 [kWh/100Km] 21.52 [kWh/100Km] 21.18 [kWh/100Km] 
SOC final value  83.8 [%] 83.2 [%] 83.29 [%] 

Table 23. Comparison of the real and estimated values, obtained by the two algorithms, in terms of 
energy and SOC consumption, for DC1. 

 

 

5.2 COMPARISON ON 22 DRIVE CYCLES SET 
 

In this paragraph, a direct comparison of the results derived from the testing process of 

the two algorithms in the set of 22 different drive cycles will be made. In particular, the 

data here showed are taken from the previous two chapters and put together, to make a 

graphical matching. Precisely, the comparison is made in terms of algorithms’ accuracy 

in the estimation of the SOC quantity, as can be seen from Figure 149. The metric chosen, 

among the MAE and RMSE, was the RMSE. 

 

 

Figure 149. RMSE values associated to the SOC estimation, computed on 22 drive cycles, by the two 
algorithms. ALG1 = model-based algorithm. ALG2 = ANN algorithm. 

Moreover, the absolute error computed by the algorithms in estimation of the SOC 

relative to the 22 drive cycles was calculated, and this was used to derive some interesting 

data for performing a statistical analysis. For example, the final and the maximum 

absolute errors computed by both the algorithms were measured and used to compute 
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the mean and the standard deviation. The values obtained are shown in Table 24 and, 

graphically, are illustrated in Figure 150. 

 

 Final absolute error  Maximum absolute error 
Algorithm 1   
Mean [%] 0.369 0.436  
Standard deviation (S.D.) 0.266 0.261 
Algorithm 2   

Mean [%] 0.631  0.703 

Standard deviation (S.D.) 0.376 0.344 

Table 24. Final and maximum absolute error, in terms of mean and standard deviation, computed for 
SOC estimation by both the algorithms on 22 drive cycles. 

 

 

Figure 150. Comparison of mean absolute errors with S.D. for the SOC estimation on 22 drive cycles, 
relative to the algorithms developed. ALG1 = Model-Based algorithm. ALG2 = ANN algorithm. 

As it can be figured out from the Figure 149 and Figure 150, the model-based algorithm 

estimates the SOC consumption a bit better than the ANN algorithm. Obviously, the 

data-driven model was derived from the availability of a good dataset, also in 

dimensional terms, to use; however, the possibility of having more real measured data 

to use for training, and even testing would help to achieve better results. Nevertheless, 

both the algorithms can be used as starting point for future developments in this 

direction. 
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5.3 THESIS CONCLUSIONS AND FUTURE 

DEVELOPMENTS 
 

This thesis work presents two algorithms for the estimation of the state of charge in a 

fully electric vehicle. The strategies followed were different: one is based on a model-

based approach, the other one, on a data-driven technique. 

The first algorithm was based on the second Newton’s law applied to the longitudinal 

vehicle dynamics equation, that allows to evaluate the energy consumption. Knowing 

the energy consumption, the SOC was derived. 

The second algorithm, indicated as ANN algorithm, instead, follows a data-driven 

method, made possible by the availability of a dataset that contains thousands of data, 

acquired by a Tesla model 3 with a 75 kWh battery pack. 

The algorithms were both tested on a set of 22 drive cycles in order to assess, in terms of 

accuracy, the SOC estimation process. As seen in the previous chapters, the two 

developed algorithms are able to return a good estimation of the discharge profile of the 

SOC. The final absolute errors, achieved by the two algorithms, after being tested with 

22 different drive cycles, were: 0.369% ± 0.266 for the model-based algorithm and 0.631% 

± 0.376 for the ANN algorithm. Then, the accuracy of the two algorithms, in the SOC 

estimation, expressed in RMSE is below than 0.85, and this is an indicator of the goodness 

of the algorithms. Among these two algorithms, the better seems to be the first one. A 

possible reason could be that the neural network does not estimate the SOC directly, but 

the battery power consumption that, once integrated, allows to obtain the SOC. 

Despite these algorithms have achieved good results in the state of charge estimation, 

several future improvements can be realized. In this view, about the first algorithm, 

future studies could be realized to model the several systems presented in the EV’s 

architecture (the electric motor, the inverter, the battery pack and so on). This aspect 

could be important for the estimation purposes, since it gives the possibility to calculate 

the power consumption from the battery side to the wheel side more precisely than was 

made in this work. Here, in fact, the conversion of power was realized using efficiency 

conversion coefficients 𝜂 and obviously, this had involved a loss of accuracy.  

Future developments on the second algorithm could be geared towards improving of the 

neural network ‘s overall performances. These could be achieved, for example, by using 

a larger training dataset. However, a more important result could be reached by realizing 

a theoretical study about the observability of the SOC variable, with the aim to explain 

why, with the inputs used in this work (velocity, acceleration, and road slope angle), it 

was not possible to realize a neural network that directly provides a fine and clear 

estimation of the state of charge consumption. 
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In addition, the first algorithm was also tested in a real scenario, thus simulating what 

the user would do to have an estimate of SOC consumption associated with a selected 

route. The results achieved by the algorithm 1, in its real application scenario, are 

described, in detail, in paragraph 3.8 of chapter 3.  

Once again, it is necessary to repeat how, in a real application scenario, the input data 

used have to be predicted, before the journey begins. Among these data, the most 

arduous to predict is the velocity profile, which, by the way, is also the one that most 

influences the final result. This data, fundamental input in both the algorithms, is 

predicted using only information associated to the type of road and weather data; 

however, better description on how it is predicted is presented in paragraph 3.2.4 of 

chapter 3.  

Among the possible future developments of this work, in this direction, there may be the 

improvement of the function designed to predict the speed profile. In order to have more 

accurately results, it could take into account other factors such as traffic conditions, the 

presence of traffic lights, stop signals, or roundabouts. A more complex point to achieve 

is the prediction of the driving style of the driver, that is maybe the most critical part, but 

also the one that mostly influences the consumption of energy. Bad driving style, 

characterized by sudden and severe accelerations, or decelerations, and by high speeds, 

is associated to major consumption. Vice versa, a smooth driving style, will lead to less 

energy consumption. This result could be achieved by considering more driving paths, 

made by several drivers that drive with different styles; then for the data elaboration 

machine learning techniques could be used.  

Another possible point to develop is the realization of a GUI (Graphical User Interface) 

that gives to the user the possibility to set a route and automatically to provide the SOC 

level of consumption. 

So, the contribution of this work is to provide two different offline algorithms for the 

SOC estimation of a BEV, that can be used both as a baseline for future works, but also 

for the development of a practical real application. 
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