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Summary

Nowadays, technological progress has led to significant developments in the field of
automation. This promoted the increase of plant productivity, the improvement
of working conditions and product quality. One of the main factors of this type
of industry is the localization system allowing machines and robots to move
autonomously in a given work environment. The aim of this thesis is to develop
and implement a localization system for a drone performing autonomous indoor
navigation. To achieve this goal it is essential to use a well-known localization
system, the Ultra-WideBand (UWB) technology, which has good accuracy and
gives good stability to the navigation. Firstly, research has been made on the
state of the art of Ultra-WideBand technology with its advantages over other
localization systems. Furthermore, studies have been done on the standard using
UWB technology and its progress over the years. Note that during the localization
process, the positioning outputs are infected with some errors that can be bias
errors or outliers, i.e., errors related to radio connectivity. For this reason, it is
essential to realize a tool that improves the accuracy and stability of the whole
system. Thus, after some analysis, a filter was carried out on Matlab simulation
program and then translated into the Python language in order to optimize the
system. The filtered systems have been simulated to check the characterization
of the technology and possible problems related to it. Once good results were
achieved in the simulation, a suitable configuration was built in a flight cage and
some real-world tests performed to determine the successful implementation of the
design localization system.
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Chapter 1

Introduction

1.1 Objective of the thesis
In the last decade, there were great technological advances in industries, especially
in the field of automation. Industries use many robots to make production faster
and of higher quality. Indeed, these robots can be automatically controlled, repro-
grammable, and serve multiple purposes. Self-driving drones are also part of this
advancement and play an important role in Industry 4.0.

Figure 1.1: Drone flying in the outdoor
environment

Generally, they are used to control what is present in an area, transport small
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Introduction

objects, check harmful or unreachable environments for humans. To navigate in a
certain environment they need a localization system. Usually, drones fly using GPS
in the outdoor environment, but the GPS signal cannot determine the location in
the indoor one.

Many technologies are on the market for indoor location systems. These tech-
nologies have different features and different advantages. Bluetooth and Wi-fi
systems are used, but Ultra-WideBand plays an important role in this field. It is a
radio technology that transmits the signal at a high frequency and has an accuracy
of about 20 centimeters.

Figure 1.2: Drone flying in the indoor
environment

The goal of the thesis is to create a UWB network that allows a self-guided
drone to navigate an indoor environment with good accuracy and stability. To
do this, a series of studies have been done on the various localization systems. In
particular, it has been investigated in the state of the art of UWB technology and
how the localization is calculated.
A fundamental aspect is the position of the anchor nodes because the estimate of
the system accuracy depends on the anchor configuration.

Later, studies have been done to filter, these measurements decrease the distur-
bances and have better results. The Extended Kalman filter is the best tool to
obtain optimal results. Furthermore, there may be also outlier errors that are due
to loss of connectivity between anchor nodes and tag nodes, because of the distance
or presence of obstacles. So, the filter has been further modified to improve outlier
detection.

The code has been first written and simultaneously simulated on Matlab to make
sure that the system is as efficient as possible. The position of the drone during the
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Figure 1.3: Ultra-WideBand system configura-
tion: 4 Anchors, 8 Tags [1]

flight is determined by creating a filter, implemented and tested on Python. Finally,
other simulations have been done on Gazebo, which is a simulation environment of
robots.

The UWB system used to determine the position of the drone has been tested
in simulation environment, where good results have been obtained for trajectories,
and in real file.

1.2 Structure of the thesis
The thesis is structured as follows:

• Chapter 2: The development of this thesis begins with a state of the art
analysis. Different studies on location systems and filters to decrease the error
in the location calculation phase have been compared.

• Chapter 3: It describes some useful simulations on Matlab to analyze the
performance of the filter and correct any errors. Finally, after implementing
the filter code on Python some flight simulations have been done on Gazebo.

• Chapter 4: It describes and analyze some tests done in real life. The position of
a node tag has been computed at some fixed points and following a trajectory
in both closed and open environments.

• Chapter 5: In the last chapter there are conclusion on the thesis work, a descrip-
tion of the most important processes and some possible future improvements
for the system .

3



Chapter 2

State of the art

2.1 Localization systems
The thesis is based on the navigation of a drone and it needs a localization system
to move in a certain environment. There are systems that allow to locate and track
a target device, and they have different features and operations to achieve the same
goal.

2.1.1 GPS
To locate a device it is very common to use GPS which is present in many
smartphones, PCs and mobile devices.
The Global Positioning System (GPS) is a satellite-based navigation system and it
provides geolocation in three dimensions and time information using satellites and
a receiver where there are no obstacles such as mountains and buildings [2].
It is operated by the United States Air Force under the direction of the Department
of Defense (DoD) and is owned by the United States government.
GPS is divided into three segments:

• Control Segment, global monitor stations track the GPS satellites which relay
satellite range and timing measurement data to the Master Control Station to
replace orbit and clock data of each space vehicle every hour.

• Space Segment, GPS constellation is composed of 24 space vehicles orbiting
the earth at altitudes of 20.200 km. They circle in six orbital planes inclined
at an angle of 55 degrees, covering any point on the Earth with at least five
space vehicles.

• User Segment, originally conceived of as a military system, consists of GPS
receivers and transmitters including devices like smartphones, PCs, and mobile
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devices [2].

Figure 2.1: GPS Satellite [3]

Location, velocity and elevation are computed through trilateration: in order to
be read and interpreted by a GPS device capable of reading the signal of at least
four satellites, each satellite in the network circles the Earth twice a day. In this
way, the satellite transmits a unique signal, the orbital parameters and the time.
A single satellite sends a microwave signal which is picked up by a GPS device
and used to calculate the distance from the GPS device to the satellite. The
satellite cannot provide much location information because a GPS device only
gives information about the distance from a satellite. Satellites do not provide
information about angles, so the location of a GPS device could be anywhere on a
sphere’s surface area with a radius equal to the distance measured from the GPS
device to the satellite [4].

With three satellites, the device’s location can be determined, as the device is
at the intersection of all three spheres that produces two points of intersection, so
the point nearest Earth is chosen.
With every movement of the device, the distance to the satellite changes, and
new spheres are produced, giving a new position. It is possible to use that data,
combined with the time from the satellite, to determine velocity, calculate the
distance to the destination [4].
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2.1.2 Wi-Fi
Wi-Fi is a wireless networking technology that allows devices such as computers
and mobile devices the Internet connection, so this makes a network and devices
can exchange information with one another.

Figure 2.2: Wi-fi al-
liance logo [5]

The IEEE 802.11 standard defines the protocols that enable communications
with current Wi-Fi-enabled wireless devices, including wireless routers and wireless
access points that support different IEEE standards.
The standards, ratified over time, operate on variable frequencies, provide different
bandwidths, and support a different number of channels [6]. Wi-Fi technology is
also important for positioning systems, a geolocation system that discovers the
localization of a device from the characteristics of nearby Wi-Fi hotspots and other
wireless access points [7].

Wi-Fi technology is widely deployed in indoor environments and the device
positioning can be computed based on the number of Wi-Fi access points: in
presence of only one Wi-Fi access point, the target’s positioning is located through
a hybrid AoA/ToA system; when there are two or more Wi-Fi access points, AoA
system is used to obtain higher accuracy location [8].

The goal of Wi-Fi-based indoor localization of a device is the position computa-
tion of the device with respect to access points. To reach this goal many techniques
exist and they may be classified into four main types: received signal strength
indication (RSSI), fingerprinting, angle of arrival (AoA), and time of flight (ToF)
based techniques [9].

In most cases the first step to determine a device’s position is to determine the
ranging, that is the distance measured between the target client device and a few
access points. Knowing the ranging and the position of access points, trilateration
algorithms may be used to determine the relative position of the target device [10].
Alternatively, the angle of arriving signals at a target client device can be employed
to determine the device’s location based on triangulation algorithms [9].
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Another solution can be the combination of these techniques to increase the
accuracy of the system [9].

2.1.3 Bluetooth
Bluetooth is a short-range wireless technology for low-cost and low-bandwidth
communication scenarios connecting devices such as mobile phones, headsets,
and portable computers without any cables. Bluetooth devices can also be used
to connect multiple devices into Personal Area Networks (PANs). Bluetooth is
constantly evolving and the total versions of Bluetooth standards developed are:
v1.1, 1.2, 2.0, 2.1, 3.0, 4.0, 4.1, 4.2, 5, 5.1, 5.2, 5.3. Bluetooth is widely used in
everyday life: it is present in most mobile phones, and also in printers, computers,
cameras, smartwatches, etc.

Figure 2.3: Bluetooth indoor positioning [11]

In some scenarios where positioning accuracy and response time are not criti-
cal, but device operation time is more important, Bluetooth positioning is more
preferable technology than Wi-Fi, for example, city and tourism guild programs
for smartphones, daily people, and logistic tracking in hospitals, companies.
However, there is much fewer Bluetooth-based positioning system in comparison to
Wi-Fi because there are several technical hurdles to overcome for Bluetooth-based
positioning systems.

• Bluetooth communication is low-cost and its standard does not provide precise
time synchronization, so it is necessary time-based triangulation methods such
as TOA, TODA.
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• Bluetooth technology is present in low footprint devices but directional or
array antennas are rarely used, so it is difficult to use angle measurement
methods like AOA.

• RSSI approach is not designed for Bluetooth standards and it is unreliable
and device-dependent. Furthermore, two devices are needed to be connected
to measure the RSSI values, but this may take dozens of seconds [12].

2.1.4 UWB
Ultra-Wideband is a radio technology that can use a very low energy level for
short-range, high-bandwidth communications over a large portion of the radio
spectrum.
It is different from Bluetooth and Wi-Fi technology because it works at very high
frequency. We can imagine it as a radar capable of continuously scanning an entire
room and precisely identifying an object to discover its position and to communicate
any data [13].

UWB technology was developed in the early 2000s, with limited use of military
radar and covert communications; and was used briefly as a medical imaging tool,
in systems such as remote cardiac monitoring.

Actually it is used for tracking the animals for biological research, or the
monitoring and control of machinery without any cables in a warehouse, or as in
this experience to localize a drone in an indoor environment.

While both Wi-Fi and Bluetooth have been tweaked to allow for greater accuracy
in locating other devices and connecting to them, UWB is natively more accurate,
uses less power. Furthermore, UWB chip production is increasing and the price
becomes attractive.

It is significant that companies like Samsung, Apple and Huawei are committing
to this technology, in fact they are all involved in UWB projects, including chip
and antenna manufacturing [14].

Position technique

To locate a node in a wireless system, it is necessary to compute the position
measurements of the radio signals traveling between the target node and the
reference. Depending on the positioning technique, the angle of arrival (AOA),
the signal strength (SS), or time delay, information is important to determine the
location of a node. The AOA technique measures the angles between a given node
and the reference nodes to estimate the location, whereas the SS and time-based
approaches estimate the distance between nodes by measuring the energy and the
travel time of the received signal, respectively [14].
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Figure 2.4: Comparison diagram of location systems [13]

• AOA, The AOA is based on measuring angles of the target node seen by the
anchor nodes using antennas. This approach is not suited to UWB positioning
because the use of antenna arrays increases the system cost that is the main
advantage of UWB technology. Furthermore, since the bandwidth of a UWB
signal are large, the number of paths may be very large, so the accurate angle
estimations become very challenging due to scattering from objects in the
environment.

• SS, the distance between two nodes can be calculated by measuring the
voltage of the received signal at one node. This is the received signal strength
approach and there are necessary at least three nodes for the triangulation
of the signal. The very large bandwidth is the UWB characteristic and this
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Figure 2.5: Positioning via the AOA
measurement. The blue nodes are the
reference nodes.[14]

Figure 2.6: Distance-based positioning
technique. The distances can be obtained
via the SS or the TOA estimation. The
blue nodes are the reference nodes.[14]

does not make improvements in LSS approach. A better solution can be a
conjunction of SS positioning algorithms with time delay measurement of
other reference nodes in a hybrid scheme.

• Time-Based Approaches, if two nodes have a common clock the node that
receives the signal can determine the time of arrival (TOA) of the incoming
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signal that is time-stamped by the reference node. In this case, the accuracy
of a time-based approach can be improved by increasing the effective signal
bandwidth, unlike the SS-based technique. Furthermore, it is important the
clock synchronization between a given node and the anchor nodes because the
achievable accuracy under ideal conditions is very high. [14]

For positioning systems employing UWB radios, time-based schemes provide a very
good accuracy due to the large bandwidth of UWB signals.
Moreover, they are cheaper than the AOA approach which has a strong scattering
due to typical UWB signals. Although it is easier to estimate SS than TOA, the
range information obtained from SS measurements is very coarse compared to that
obtained from the TOA measurements. [14]

2.2 Standard IEEE 802.15.4

2.2.1 IEEE 802.15.4a
The original 802.15.4 standard is released in 2003 and adopted a wideband physical
layer using a Direct Sequence Spread Spectrum technique (DSSS). The standard
provided specifications for operating in three different frequency bands divided into
channels. The channelization scheme was the following:

• 1 channel (Channel 0) was defined in the 868 MHz band;

• 10 channels (Channels 1 – 10) were defined in the 915 MHz band, with a
channel spacing of 2 MHz;

• 16 channels (Channels 11 – 26) were defined in the 2.4 GHz band, with a
channel spacing of 5 MHz.

The first channels were intended for very low bit rate operations and with user
rates of 20-40 kb/s; the last ones for bit rates up to 250 kb/s per channel, thanks
to the larger bandwidth allocate to each channel.
Afterward, it was evident that the range of potential applications for a low bit rate
standard could be significantly increased by the capability of measuring distance
between devices in the network with high accuracy. Since this capability was
precluded to 802.15.4 devices due to the limited signal bandwidth, the 802.15.4a
Task Group was created to define a new physical layer, able to provide the desired
ranging capability, and correspondingly adapting the Medium Access Control layer.
The UWB signal adopted in 802.15.4a uses three frequency bands within the range
of frequencies made available by regulation for UWB emissions released in 2002 by
the Federal Communications Commission (FCC): a sub-GHz band, a low band in
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Channel Center frequency (MHz) Bandwidth (MHz)
0 499.2 499.2
1 3494.4 499.2
2 3993.6 499.2
3 4492.8 499.2
4 3993.6 1331.2
5 6489.6 499.2
6 6988.8 499.2
7 6489.6 1081.6
8 7488.0 499.2
9 7987.2 499.2
10 8486.4 499.2
11 7987.2 499.2
12 8985.6 499.2
13 9484.8 499.2
14 9984.0 499.2
15 9484.8 1355

Table 2.1: Channelization scheme in IEEE 802.15.4a[15]

the 3–5 GHz range, and a high band in the 6–10 GHz range. As in the original
physical layer, the bands are divided into channels, as presented in Table 2.1 [15].

The standard channels, characterized by a bandwidth of about 500 MHz, provide
ranging with an accuracy in the order of 1 meter. To have higher ranging accuracy
it may use channels 4, 7 and 15, which offer a larger bandwidth. Furthermore,
it should be noted that up to two 802.15.4.a networks can operate in the same
channel at the same time, thanks to the adoption of preambles, characterized by
low cross-correlation. The preambles are defined within the standard.
The UWB physical layer uses an Impulse Radio approach, in which short pulses
with a bandwidth matching the channel bandwidth are transmitted. Moreover, the
UWB physical layer can achieve bit rates varying approximately between 0.1 Mb/s
and 26 Mb/s[15].

Network Devices and Topologies

The 802.15.4/4a standards define two classes of devices: Full-Function Devices
(FFD), where all network functionalities are implemented, and Reduced-Function
Devices (RFD), that only support a reduced set of functionalities and are thus
typically sensor nodes that measure a physical parameter and can execute simple
commands.
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RFD and FFD devices organize themselves in Personal Area Networks (PANs). A
PAN can adopt either of the two following network topologies:

• star topology, where the devices can only exchange information with the
PAN coordinator; better topology suited for network architectures where a
device is connected to the power network.

• peer-to-peer topology, where FFD devices can communicate directly as
long as they are within physical reach, while RFD devices, due to their
limitations, can only connect with the PAN coordinator.

The peer-to-peer topology has its higher flexibility, so potentially can make
more complex topologies, for example based on multiple clusters; algorithms for
the creation and management of such larger network topologies are however not
part of the standards [15].

Figure 2.7: Example of star
topology (Dark grey circle: PAN
coordinator; Light grey circle:
FFD device; White circle: RFD
device) [15]

Figure 2.8: Example of peer-
to-peer topology (Dark grey cir-
cle: PAN coordinator; Light grey
circle: FFD device; White circle:
RFD device) [15]

Ranging Support

One of the key innovations introduced in the 802.15.4a revision is the support for
ranging. The need for information on the distance between network devices was
indeed one of the main reasons for the definition of the 802.15.4a standard. It
should be noted however that support for ranging in 802.15.4a-compliant devices
will be optional.
To support the broadest possible set of network topologies, the procedure to obtain
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the distance between two devices in the network is based on a two-way ranging
approach, allowing for distance estimation without the need for a common time
reference.

Figure 2.9: Example of two-way rang-
ing [15]

The two-way ranging approach requires the two devices to exchange at least two
packets, following the scheme represented in Figure 2.9. In this scheme, device A
starts a ranging measurement by sending a ranging packet to device B at time tstart

and recording a timestamp. Device B records a timestamp when it receives the
packet from A, and replies with a second ranging packet, transmitted after a delay
∆T when a second timestamp is recorded by B. The packet is received by device
A at time tstop, when a new timestamp is recorded. The knowledge of the time
interval tstop - tstart and the delay ∆T , obtained from the four timestamps recorded
by devices A and B, allows to determine the propagation time tflight, given by the
equation[15]:

tflight = tstop − tstart − ∆T
2 (2.1)

14



State of the art

2.2.2 IEEE 802.15.4z

There are some innovations in the standard 4z that are the enhancements in the
Radio, new ranging features like the simultaneous ranging and a better security in
the physical layer.

Enhancements in the Radio

The new standard tries to increase the limited range of the radio due to very strict
transmission power requirements; the main website of the EIR 4z Task Group
states that the typical range of the radio is up to 100 meters.
Typically, the distance between the Anchors and between the Anchors and Tags
is no more than a few tens of meters due to the extremely low Tx power of the
radio. The improved timestamp formats could help improve the robustness of the
messages and thus improve the overall range that could be achieved.
With the introduction of the new enhancements, it can be a better location accuracy:
the general First Path detection should improve helping with the reliability of the
measurement and the resulting accuracy as well.
Reducing on-air times is also important: the introduction of PRFs of 128 MHz
for 6.81 Mbit/s data rate and a PRF of 256 MHz for the 27 Mbit/s data rate
should help immensely in comparison with the maximum 64 MHz PRF, the actual
maximum value. These revisions and proposals could also increase the distances
significantly.
To sum up, introducing higher PRFs, compressing the radio messages, and increasing
their robustness will dramatically increase the battery lifetime, which is a crucial
factor for the mobile Tags in any UWB based system [16].

New Ranging Features

The introduction of SS - TWR would make the ToF estimates more simple when
compared to the DS - TWR which is actually implemented today. If the new
generation of chips could handle this issue with the help of the MAC changes in
the new standard, this ranging technique could be more easily implemented.
The introduction of the new Simultaneous ranging capability is also interesting
for several use cases for example the wireless car key access: the receiving key-fob
would be able to simultaneously handle incoming responses from several Anchors,
which will dramatically increase battery lifetime. Generally, putting the UWB
radio in a receiving state has a big impact on the battery so any reduction of this
is a big advantage [16].
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Security

Security was not a big topic in the previous UWB standards, but UWB technology
is finding more and more applications and also becoming more present everywhere
at the same time, so the security of the technology has become an important topic.
That is why the new standard implements several ways to increase the security of
wireless transactions. One of them is the introduction of the new ciphered messages
between communicating devices, which require a form of authentication key to
prevent any malicious form of communication. The overall security is also increased
thanks to the reduced on-air time of the radio and shorter messages.
A big emphasis is also on providing the highest security possible for the UWB LRP
PHY, which is newly intended for ranging applications as well enabling secure access
to vehicles for example. The LRP PHY shall also utilize a form of authentication,
either a one-way or a mutual one [16].

2.3 FILTER

The positioning outputs from the UWB devices have good accuracy and stable
behavior but they contain some inaccuracies, so it is needed a tool that reduces
the noises in the measurement.

2.3.1 Linear Least Square

The least-squares approach occurs in regression analysis and is able to approximate
those systems that have more equations than unknowns by minimizing the sum of
squares of the residuals, which are the differences between an observed value and
the fitted value provided by a model, made in the results of each equation.

The least-squares approach is divided into the linear least squares (L-LS) ap-
proach, which has a closed-form solution, and the nonlinear least squares (N-LS)
approach, which is usually solved by iterative filtering, depending on the linearity
of the residuals.

The L-LS approach is a suboptimal placement technique, which can be used
for applications that require a low cost implementation with reasonable placement
accuracy. In addition, for applications that require precise position estimation,
L-LS approaches can be used to obtain an initial position estimate to initialize high-
precision positioning algorithms: good initialization can significantly decrease the
computational complexity and final localization error of a high-precision technique
[17].
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System Model

A wireless network with N reference nodes, with the ith node being located at
li = [xi yi]T for i=1,. . . ,N. The aim is to estimate the position of the target node,
denoted by l = [x y]T , based on N TOA measurements between the target node
and the reference nodes:

zi = fi(x, y) + ni, i = 1, . . . , N (2.2)

where ni is the noise in the ith measurement, and fi(x, y) is the true distance
between the target node and the ith reference node, given by

fi(x, y) =
ñ

(x− xi)2 + (y − yi)2 (2.3)

Typically, the noise is modeled by a zero-mean Gaussian random variable, when
the reference node and the target node have direct line-of-sight (LOS). In contrast,
under non-line-of-sight (NLOS) conditions, the noise distribution can be quite
different from a Gaussian distribution.

In the absence of noise in the system, each TOA measurement specifies a circle
for the possible positions of the target node, and the intersection of those circles
determines the target position. This geometric technique called, trilateration, yields
ambiguous solutions in the presence of noise in the system, since the circles defined
by the TOA measurements may intersect at multiple points due erroneous TOA
estimation, as shown in Fig. 2.10.

Due to the limitations of the geometric technique, statistical approaches are com-
monly employed in wireless positioning systems. A popular statistical positioning
algorithm is the N-LS technique.

An alternative approach to the N-LS estimation is the L-LS approach. In an
L-LS technique, a new measurement set is obtained from the measurements in (2.2)
by certain operations that result in linear relations.

The L-LS approach starts with the following set of equations

z2 = (x− xi)2 + (y − yi)2, fori = 1, ..., N, (2.4)

where each distance measurement is assumed to define a circle of uncertain
region. Then, one of the equations in (2.4), the rth one, is fixed and subtracted
from all of the other equations. After some manipulation, the following linear
relation can be obtained:

Al = p (2.5)
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Figure 2.10: Trilateration yields multi-
ple intersection of circles defined by TOA
measurements in the presence of noise
[17]

where l = [x y]T ,

A = 2



x1 − xr y1 − yr
... ...

xr−1 − xr yr−1 − yr

xr+1 − xr yr+1 − yr
... ...

xN − xr yN − yr


(2.6)

and

p =



z2
r − z2

1 − kr + k1
...

z2
r − z2

r−1 − kr + kr−1
z2

r − z2
r+1 − kr + kr+1

...
z2

r − z2
N − kr + kN


(2.7)

with
ki = x2

i + y2
i (2.8)

for i = 1, 2, . . . , N, and r being the selected reference node index that is used
to obtain linear relations. Note that A is an (N − 1)2 matrix, and p is a vector
of size (N − 1), since the rth measurement is used as a reference for the other
measurements.
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From (2.5), the LS solution can be obtained as

l̂ = (ATA)−1ATp (2.9)

This estimator is called the linear LS (L-LS) estimator. Compared to the N-LS
estimator, it has low computational complexity. However, it is suboptimal in
general, and the amount of its suboptimality can be quantified in terms the CRLB
[17].

2.3.2 Kalman Filter

The Kalman filter plays a good role in this field: it is an algorithm that produces
estimates of unknown variables based on a series of measurements observed over
time, including statistical noise and other inaccuracies, by estimating a joint
probability distribution over the variables for each timeframe. It is more accurate
than estimates that only work on a single measurement. The filter is called for one
of the main developers of this theory, Rudolf E. Kálmán [18].

Kalman filtering has numerous technological applications, for example, guid-
ance, navigation, and control of vehicles and ships positioned dynamically [19].
Furthermore, Kalman filtering is a concept much applied in time series analysis
used for topics such as signal processing and econometrics. Kalman filtering is also
one of the main topics of robotic motion planning and control and plays a good role
in trajectory optimization [20]. Kalman filtering is also present in some systems
for modeling the central nervous system’s control of movement. The presence
of Kalman filters in the control systems provides a realistic model for making
estimates of the current state of a motor system and issuing updated commands
because of the time delay between issuing motor commands and receiving sensory
feedback [21].

The algorithm develops in two phases: the prediction phase, where the Kalman
filter produces estimates of the current state variables, along with their uncertainties,
and the updated phase, in which, once the outcome of the next measurement
corrupted with some error is observed, these estimates are updated using a weighted
average, giving more weight to estimates with greater certainty. The algorithm is
recursive and it can operate in real-time, using only the present input measurements
and the state calculated previously and its uncertainty matrix.

For the nonlinear systems, the Kalman filter has some calculation problems, so
extensions and generalizations of the method are necessary, such as the extended
Kalman filter and the unscented Kalman filter. The fulcrum of the theory is a
hidden Markov model such that the state space of the latent variables is continuous
and all latent and observed variables have Gaussian distributions.
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Kalman Filter Computation

The goal of the Kalman filter is to try to estimate the state x ∈ Rn of a discrete-time
controlled process that is given by the linear stochastic difference equation

xk = Axk−1 +Buk−1 + wk−1, (2.10)

with a measurement z ∈ Rm that is

zk = Hxk + vk (2.11)

The random variables wk and vk are the process and measurement noise and they
are assumed independent, white and with normal probability distributions

p(w) ∼ N(0, Q), (2.12)

p(v) ∼ N(0, R), (2.13)

with Q and R respectively the process noise covariance and measurement noise
covariance.

The n x n matrix A in the equation (2.10) relates the state at the previous time
step k-1 to the state at the current step k. The n x l matrix B relates the optional
control input u ∈ Rl to the state x. The m x n matrix H in the measurement
equation (2.11) relates the states to the measurement zk.

In deriving the equations for Kalman filter, a posteriori state estimate xk is
seen as a linear combination of an a priori estimate x−

k and a weighted difference
between an actual measurement zk and a measurement prediction H âx−

k :

âxk = âx−
k +Kk(zk −H âx−

k ), (2.14)

The difference (zk − H âx−
k ) in (2.14) is called the measurement innovation, or

the residual. The residual is the discrepancy between the predicted measurement
H âx−

k and the actual measurement zk. A residual of zero means that the two are in
complete agreement.

The n x m matrix K in (2.14) is chosen to be the gain or blending factor that
minimizes the a posteriori error covariance. The optimal Kalman gain is:

Kk = P−
k H

T (HP−
k H

T +R)−1 (2.15)

Looking at (2.15) it is possible to see that as the measurement error covariance
R approaches zeros, the gain K weights the residual more heavily. Specifically,

lim
Rk→0

Kk = H−1 (2.16)
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On the other hand, as the a priori estimate error covariance P−
k approaches zero,

the gain K weights the residual less heavily. Specifically,

lim
P−

k
→0
Kk = 0 (2.17)

The Kalman filter estimates a process by using a form of feedback control: the
filter estimates the process state at some time and then obtains feedback in the
form of noisy measurements. As such, the equations for the Kalman filter are
divided into two groups: time update equations and measurement update equations.
The time update equations are responsible for projecting forward the current state
and error covariance estimates to obtain the a priori estimates for the next time
step. The measurement update equations are responsible for incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be seen as predictor equations, while the
measurement update equations can be seen as corrector equations. Indeed the final
estimation algorithm resembles that of a predictor-corrector algorithm for solving
numerical problems.

The specific equations for the time and measurement updates are:

âx−
k = Aâxk−1 +Buk−1 (2.18)

P−
k = APk−1A

T +Q (2.19)

Kk = P−
k H

T (HP−
k H

T +R)−1 (2.20)

âxk = âx−
k +Kk(zk −H âx−

k ), (2.21)

Pk = (I −KkH)P−
K (2.22)

The first task during the measurement update is to compute the Kalman gain,
Kk. The next step is to actually measure the process to obtain zk, and then to
generate an a posteriori state estimate by incorporating the measurement as in
(2.21). The final step is to obtain an a posteriori error covariance estimate through
(2.22).

After each time and measurement update pair, the algorithm is repeated with
the previous a posteriori estimates used to calculate or predict the new a priori
estimates. The Kalman filter recursively conditions the current estimate on all
of the past measurements. Figure 2.11 shows a summary of how the filter works,
combining the time and measurement updates equations.
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Figure 2.11: A complete picture of the operation of the Kalman
filter [22]

In the implementation of the filter, each of the measurement error covariance
matrix Rk and the process noise Qk(given by (2.13) and (2.12) respectively) might
be measured prior to operation of the filter. In the case of the measurement error
covariance Rk this makes sense, as we need to be able to measure the process
we should generally be able to perform some off-line sample measurements to
determine the variance of the measurement error. In the case of Qk, the choice is
often less deterministic. For example, this noise source is often used to represent
uncertainty in the process model. In presence of a very poor model, it can be
used by adding enough uncertainty by selecting Qk. Certainly in this case it is
hoped that the process measurements are reliable. In either case, superior filter
performance can be often obtained by “tuning” the filter parameters Q and R that
can be performed with the help of another Kalman filter.

When Qk and Rk are constant, both the estimation error covariance Pk and the
Kalman gain Kk will stabilize quickly and then remain constant. In this case these
parameters can be pre-computed by either running the filter off-line or for example
by solving (2.19) for the steady-state value of Pk by defining P−

k ≡ Pk and solving
for Pk.

However, it often happens that the measurement error does not remain constant.
Also, the Qk process noise is sometimes dynamically changed during filter operation
to accommodate different dynamics. For example, in the case of tracing a user’s
head of a 3D virtual environment, it could reduce the amount by Qk if the user
appears to be moving slowly and increase the amount of dynamics that begin to
change rapidly. In this case Qk can be used to model not only the uncertainty in
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the model but also the uncertainty of the user’s intent [22].

2.3.3 Extended Kalman Filter
The Extended Kalman filter (EKF) is the nonlinear version of the Kalman filter
which linearizes about an estimate of the current mean and covariance [23]. The EKF
is considered the standard in the theory of nonlinear state estimation, navigation
systems and GPS [24].

The EKF equations are similar to those of the Kalman filter and are summarized:

Predict phase âxk|k−1 = f(âxk−1|k−1) (2.23)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (2.24)

Fk = δf

δx
|âxk−1|k−1

(2.25)

Update phase
ỹk = zk − h(âxk|k−1) (2.26)

Sk = HkPk|k−1H
T
k +Rk (2.27)

âxk|k = âxk|k−1 +Kkỹk (2.28)

Pk|k = (In −KkHk)Pk|k−1 (2.29)

Kk = Pk|k−1H
T
k S

−1
k (2.30)

Below it is possible to see the equations that characterize the EKF and its covari-
ance matrices.

Position - Velocity (PV) model

x =
è
x v

éT
(2.31)
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The state transition function is equal to:

f(xk−1) = Fkxk−1 =
C
In ∆tkIn

0n In

D
xk−1 (2.32)

The covariance matrix of the state is:

Qã,k =
C ∆t2

k

2 In

∆tkIn

D 
σ2

ã1 0
. . .

0 σ2
ã1


C ∆t2

k

2 In

∆tkIn

DT

(2.33)

The EKF observation vector is then defined as:

z =
è
dref1 . . . drefL

éT
, (2.34)

where

drefl
= dist(x, xrefl

) =
öõõô nØ

i=1
(xi − xi,refl

)2 (2.35)

Consequently, the observation function is defined as the distance between the
position component of the state vector and the anchors:

h(xk) =


dist(xk, xref1)

...
dist(xk, xrefL

)

 , (2.36)

Since h(xk) is non-linear, the Jacobian matrix H needs to be computed around the
a priori state xk|k−1:

Hk =


x1,k|k−1−x1,ref1
dist(xk|k−1,xref1

) . . .
xn,k|k−1−xn,ref1
dist(xk|k−1,xref1

)
... . . . ...

x1,k|k−1−x1,refL

dist(xk|k−1,xrefL
) . . .

xn,k|k−1−xn,refL

dist(xk|k−1,xrefL
)

 (2.37)

The observation errors are modeled as uncorrelated white Gausssian noises:

Rd,k = diag(σ2
dref1,k

. . . σ2
drefL,k

), (2.38)

2.3.4 Weighted Outlier-Robust Kalman Filter
Measurements can sometimes contain errors due to the high distance or presence
of obstacles between tag node and anchor nodes. This type of error is called outlier
and the EKF does not react well to the outliers. It is necessary to make some
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change in the EKF: it is possible to add a scalar weight for each coordinate of
position and velocity and modify the covariance matrices. These modifications
are present in the EKF with Outlier Detection. It is worth noticing that in the
Covariance matrix the observation error is divided by wk, in this way the output will
be influenced more by the states with less noise than the other ones in case of outlier.

Propagation:
xk = f(xk−1) (2.39)

Pk|k−1 = Qk (2.40)

Update:
Sk = HkPk|k−1H

T
k + Rk

éwkê
(2.41)

Kk = Pk|k−1H
T
k S

−1
k (2.42)

âxk|k = âxk|k−1 +Kkỹk (2.43)

Pk|k = (In −KkHk)Qk (2.44)

éwkê =
awk,0 + 1

2

bwk,0 +
e
(zk − h(âxk|k−1))TR−1

k (zk − h(âxk|k−1))
f (2.45)

It is worth noticing that the equations (2.41) and (2.40) have some differences
respectively with the equations (2.27) and (2.22); whereas the equation (2.45)
is introduced in this filter calculation to determine the weight wk useful for the
calculation of the equation (2.41).

2.4 ROS and Gazebo
2.4.1 ROS
The Robot Operating System (ROS) is a set of software libraries and tools useful
to build robot applications. Ros is an open-source, meta-operating system for
the robot. It provides the services typical of the operating systems, including
hardware abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management. It
also provides tools and libraries for obtaining, building, writing, and running code
across multiple computers [25].
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Figure 2.12: ROS as a Meta-Operating System [26]

ROS is a Meta-Operating System, that is a system that performs processes such
as scheduling, loading, monitoring, and error handling by utilizing a virtualization
layer between applications and distributed computing resources. Furthermore, ROS
runs on the existing operating such as Ubuntu, which is one of Linux’s distributions.

ROS is a supporting system for controlling a robot and sensor with a hardware
abstraction and developing robot applications based on existing conventional
operating systems. Moreover, ROS data communication is supported not only
by one operating system, but also by multiple operating systems, hardware, and
programs, making it highly suitable for robot development where various hardware
are combined [26].

Objectives of ROS

The goal of ROS is to "build the development environment that allows robotic soft-
ware development to collaborate on a global level". ROS is focused on maximizing
code reuse in the robotics research and development, rather than orienting towards
the so-called robot software platform, middleware, and framework. To support this,
ROS has the following characteristics.

• Distributed process: it is programmed in the form of the minimum units of
executable processes, and each process runs independently and exchanges data
systematically.

• Package management: packages contain multiple similar processes and they
are easy to use and develop.
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• Public repository: each package is made public to the developer’s preferred
public repository such as GitHub.

• API: when developing a program that uses ROS, ROS is designed to simply
call an API and insert it easily into the code being used.

• Supporting various programming languages: the ROS program provides a
client library to support various programming languages. It is possible to
develop a ROS program using a preferred programming language [26].

ROS terminology

Here some common terminology in ROS programs.

Master is the name server for node-to-node connections and message communi-
cation. The command ’roscore’ is used to run the master and the name of each
node can be registered and information is got. The connection between nodes
and message communication such as topics and services is impossible without the
master.

Node is the smallest unit of the processor running in ROS. ROS recommends
creating one single node for each purpose, and it is recommended to develop for
easy reusability. For example, in case of mobile robots, the program to operate the
robot is broken down into specialized functions. Specialized node is used for each
function such as sensor drive, sensor data conversion, obstacle recognition, motor
drive, encoder input, and navigation.

Package is the basic unit of ROS. The ROS application is developed on a
package basis, and the package contains either a configuration file to launch other
packages or nodes. The package also contains all the files necessary for running
the package.

Message, a node sends or receives data between nodes via a message. Messages
are variable such as integer, floating-point, and boolean.

Topic, the publisher node first registers its topic with the master and then
starts publishing messages on a topic subscriber nodes that want to receive the
topic request information of the publisher node corresponding to the name of the
topic registered in the master. Based on this information, the subscriber node
directly connects to the publisher node to exchange messages as a topic.

Publish and publisher, the term ’publish’ stands for the action of transmitting
relative messages corresponding to the topic. The publisher node registers its
information and topic with the master and sends a message to connect subscriber
nodes that are interested in the same topic. The publisher is declared in the node
and can be declared multiple times in one node.
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Subscribe and subscriber, the term ’subscribe’ stands for the action of re-
ceiving relative messages corresponding to the topic. The subscriber node registers
its information and topic with the master, and receives publisher information that
publishes relative topic from the master. Based on received publisher node and
receives messages from the connected publisher node. A subscriber is declared in
the node and can be declared multiple times in one node.

Service is synchronous bidirectional communication between the service client
that requests a service regarding a particular task and the service server that is
responsible for responding to requests.

Catkin refers to the build system of ROS. The build system uses CMake and
the build environment is described in the ’CMakeLists.txt’ file in the package folder.
Cmake was modified in ROS to create a ROS-specific build system.

Roscore is the command that runs the ROS master. If multiple computers are
within the same network, it can be run from another computer in the network.
However, except for special case that supports multiple roscore, only one roscore
should be running in the network.

Rosrun is the basic execution command of ROS. It is used to run a single node
in the package.

Roslaunch executes multiple nodes. It is a ROS command specialized in node
execution with additional functions such as changing package parameters or node
names, configuring namespace of nodes [26].

Message communication

The key concept is the message communication methods among nodes. There are
three different methods of exchanging messages: a topic which provides a unidi-
rectional message transmission/reception, a service which provides a bidirectional
message request/response and an action which provides a bidirectional message
goal/result/feedback.

Communication over topics allows the subscriber node to receive the publisher
node information corresponding to the identical topic name registered in the master.
Since topics are unidirectional and remain connected to send or receive messages
continuously, it is suitable for sensor data that requires messages to be published
periodically. In addition, multiple subscribers can receive messages from a publisher
and vice versa.

Service consists of a service server that responds only when there is a request
and a service client that can send requests as well as receive responses. Unlike
the topic, the service is one-time message communication and does not maintain
the connection. A service is often used to command a robot to perform a specific
action or nodes to perform certain events with specific conditions.
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Communication on action is used when a requested goal takes a long time to
be completed, therefore progress feedback is necessary. This is very similar to the
service and the ’feedback’ is added to report feedbacks to the client periodically
when intermediate values are needed. The message transmission method is the same
as the asynchronous topic. The feedback transmits an asynchronous bidirectional
message between the action client which sets the goal of the action and an action
server that performs the action and sends the feedback to the action client [26].

2.4.2 Gazebo
Gazebo is a 3D simulator that provides robots, sensors, environment models for
3D simulation required for robot development, and offers realistic simulation with
its physics engine. Gazebo is an open-source simulator and is useful to rapidly
test algorithms, design robots, perform regression testing, and train AI systems
using realistic scenarios. It is a very popular simulator in the field of robotics and
offers the ability to accurately and efficiently simulate populations of robots in
complex indoor and outdoor environments. Moreover, Gazebo is developed and
distributed by Open Robotics which is in charge of ROS and its community, so it
is very compatible with ROS [27].

The main characteristics used in Gazebo are the following: Dynamic simluation,
3D graphics, Sensors and noise simulation, Plug-ins, Robot model, Tcp/Ip data
transmission, Cloud simulation, Command line tool [26].
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Simulations

The Extended Kalman filter is the most suitable tool to decrease the error during
the position calculation and improve the stability of the system.
In order to have a good filter it is necessary to set precise values in the covariance
matrices. This has been done as a result of various simulations done on simulation
programs such as Matlab and Gazebo.

3.1 Simulations on Matlab
The Extended Kalman filter obtains the position of the tag node from the mea-
surements of the distances between anchor nodes and tag node.

A Gaussian error with standard deviation of 0.2 m and mean error equal to 0 m
was added to simulate the real world.
A configuration with 5 nodes was created with these coordinates (Table 3.1) taking
into account a radio connectivity of 30 m like the devices used in real life tests.
Two types of simulations have been done to calculate the position of a tag node: in
the first one the tag node positioned on the same point for 50 times in a row and
in the second one the tag node follows a trajectory with straights and curves.

Anchor node Coordinate
Anchor1 (1.00,1.00)
Anchor2 (19.00,1.00)
Anchor3 (10.00,10.00)
Anchor4 (1.00,19.00)
Anchor5 (19.00,19.00)

Table 3.1: Coordinates (in meters) of the anchor nodes in MatLab simulation
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3.1.1 Static simulations
The positions obtained by EKF are very precise, but it is necessary to consider
the presence of outlier errors related to connectivity, for example when there are
obstacles (NLOS), as in reality. The Figure 3.1 shows positions obtained with the
simple EKF (in blue) and those obtained with the EKF with outlier detection (in
red).

To simulate outliers the Gaussian error at some points was multiplied by 10
with a standard deviation of 2 meters. This experience shows how convenient it
is the EKF with outlier detection that manages to have results very close to the
desired point. In blue, there are some points far from the desired point and this
creates some problems in the optimization of the trajectory. Instead in red, the
simulated points are close giving a stable and linear behavior to the drone.

Figure 3.1: Position simulation 50 times in (9.8). In blue EKF calculation; In
red EKF with outlier detection.

Below the mean errors of the filtered simulations.

EKF EKF with outlier detection
avg err 0.4230 0.2446
rms err 0.7279 0.3256

Table 3.2: Mean errors of the position simulation 50 times in (9.8).
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Figure 3.2: Ranging of the EKF with outlier detection in Position simulation 50
times in (9.8).

3.1.2 Dynamic simulations

Other simulations have been made in the dynamic case: The trajectory to be
executed was plotted and the measurements (with disturbances) were filtered, as
can be seen in Figure 3.3.

Also in this case the outlier errors (NLOS) were considered, reproduced with a
standard deviation of 2 meters in two intervals: between sample time 10 and 15
and between sample time 20 and 25, where there are a curve and a straight line.
The filtered trajectory (in blue) follows the desired trajectory except in the areas
where outliers are present. Instead the EKF with the outlier detection (in red),
has a better behavior: the trajectory generated by the output results is closer to
the desired one (Figure 3.3). The Table 3.3) shows the error in both the case.

EKF EKF with outlier detection
avg err 0.3470 0.3545
rms err 0.6107 0.5531

Table 3.3: Mean errors of the filtered position simulation of a trajectory.

32



Simulations

Figure 3.3: Position simulation of a trajectory

Figure 3.4: Ranging of the EKF with outlier detection in position simulation of
a trajectory.
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3.2 Filter implementation in Python
Once verified that the filter has a good performance, the code of the filter has been
rewritten in Python to make other tests on the actual code that will be used in the
real tests.

In this paragraph are commented some simulations made on Python having
a precise number of outlier errors, but unknown position of outlier errors and
unknown disturbances for each anchor node (standard deviation between 0.2 and
2.0 meters).

3.2.1 First simulation on Python
Figure 3.5 shows one of the 200 simulations done with an outlier ratio equal to 0.2,
i.e. outlier errors in 10 points (0.2 x 50 total points).

EKF EKF with outlier detection
avg err 0.2600 0.2804
rms err 0.3580 0.3882

Table 3.4: Mean errors of 200 filtered simulations with 0.2 outlier ratio.

Figure 3.5: Simulation with 0.2 outlier ratio on Python. Desired trajectory in
green, EKF trajectory in blue, EKF with outlier detection trajectory in red.
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3.2.2 Second simulation on Python

Figure 3.6 shows one of the 200 simulations done with an outlier ratio equal to
0.35, i.e. outlier errors in 18 points (0.35 x 50 total points).

EKF EKF with outlier detection
avg err 0.3274 0.4247
rms err 0.4326 0.5893

Table 3.5: Mean errors of 200 filtered dynamic simulations with 0.35 outlier ratio.

Figure 3.6: Simulation with 0.35 outlier ratio on Python. Desired trajectory in
green, EKF trajectory in blue, EKF with outlier detection trajectory in red.

On 200 simulations the average errors show a better accuracy of the EKF instead
of the one with outlier detection. But it is possible to see in the figures that for
both the simulations with 0.2 outlier ratio and with 0.35 outlier ratio the behavior
in red is more stable and does not have points very far from the desired trajectory.

It is worth noting that Gaussian errors with a very high standard deviation (2.0
meters) were considered to simulate the outlier errors and, especially in the second
simulation, there are many of these errors along the trajectory.
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3.3 Simulations on Gazebo
In parallel with the experimental tests, flight simulations have been performed on
the Gazebo simulation program to simulate environments with multiple drones and
obstacles between nodes.

An existing plugin [28] has been used to derive the ranges between anchor nodes
and tag nodes. A tag node has been implemented on the drone model, and four
anchor nodes have been placed in the environment simulating one of the two cells of
the cage used for the experimental tests, as shown in Figure 3.7. The filter code has
been adapted for these simulations on Gazebo. It allows calculating the position of
the drone taking as input the range obtained from the topic /gtec/toa/ranging.

Figure 3.7: Gazebo environment

The values coming out of the /gtec/toa/ranging topic compared with the
distance between nodes are not exact and cannot be compensated with a fixed bias
during flight simulations. For the simulation it is necessary a different filter than
the one tested in real life.
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Experimental tests

4.1 DECAWAVE

In this thesis UWB technology is used to create an indoor localization system.
Decawave is one of the first companies to produce UWB technology in the civil field.
It develops semiconductor solutions, software, modules, and reference designs that
enable real-time, ultra-accurate, ultra reliable local area micro-location services
[29].
Decawave’s technology enables intelligent location functionality. It is employed for
IoT services, smart consumer products, and applications.
Decawave is headquartered in Ireland, with regional headquarters in California and
China, and a presence in South Korea, France, and Japan.

4.1.1 DWM1001

In the real life tests DWM1001 devices are used as tag node and anchor nodes acting
as a network gateway device. They have a single-chip wireless transceiver working
with a large bandwidth of 6.5GHz, and the accuracy is around 20 centimeters.

The DWM1001C module combines the DW1000, a Nordic Semiconductor
nRF52832 MCU, and a 3-axis accelerometer. It builds scalable TWR RTLS
systems up to thousands of tags and the same module is used for anchor, tag, and
gateway design. Embedded DRTLS firmware reduces software development efforts.
Bluetooth for connectivity and motion sensors are integrated. It uses channel 5
with a frequency of 6.5GHz and a data rate of 6.8Mbps.

The DWM1001 Development Board can be used for various applications, in-
cluding asset tracking, navigation, factory automation, security, and consumer
applications [30].
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Figure 4.1: Decawave DWM1001
[31]

4.2 UWB configuration
The objective of this thesis is to create an indoor UWB localization system. To
do this it is necessary to position the anchor nodes most properly, decreasing the
presence of errors and disturbances in the system. Several studies [14] state that it
is best to use: at least three anchor nodes to determine the XY plane location of a
given node, at least four for localization in XYZ space, at least one of which is at a
different height.

A protection cage for flights has been installed to create an indoor network, with
dimensions 6.00 m x 3.00 m x 2.50 m, divided into two equal cells. Five anchors
were placed in the environment, four on the upper floor and one on the lower one.
They compose two cells of 4 anchors, which represents the minimum number for
3D triangulation, as mentioned before.
Setting a vertex of the cage as the origin (in blue), the coordinates of the anchor
nodes (in red) have been measured, as depicted in Figure 4.2 and Table 4.1.
Instead, Figure 4.3 shows how the tag node is displayed in real-time in the Decawave
app.

Anchor node Coordinate
Anchor1 (0.00,2.95,2.04)
Anchor2 (2.99,2.95,2.23)
Anchor3 (2.99,2.95,0.38)
Anchor4 (5.98,2.95,2.18)
Anchor5 (2.99,0.10,2.23)

Table 4.1: Coordinates of the anchor nodes in meters
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Figure 4.2: Anchors Configuration represented on
Matlab Figure 4.3: Decawave

APP look

4.3 First tests
4.3.1 Tests without filter
The same simulations done on Matlab have been implemented in the real world.
In the first tests, the tag node is placed in ten different positions at four different
heights in a given time interval to visualize the positioning obtained by triangulation
from the anchor nodes.

Figure 4.4 shows the positioning of the ten tests done with the tag node at height
0.094 m. These positions are obtained by the UWB system from the Decawave
device, without any filter.
The positions of the tag node that are approximately in the center of the y-axis are
the best-sampled ones. They have all the points close together, a sort of a point
cloud, near the position of the tag node. The others have lower precision: the point
clouds are far from the desired point. In addition, they are very large because of
the poor accuracy of the measurements.

4.3.2 Tests with EKF with outlier detection
Then, it is necessary to insert an EKF with outlier detection that takes the ranging
measurements calculated by the Decawave devices and determines the location of
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Figure 4.4: Plot of the tests at flight altitude of 0.094 m

the tag node.
The data from the previous tests have been filtered. Following figures shows

how results have been obtained and compared to the previous tests.
It is worth noticing that graphically there is a difference between the two outputs:

at each height, almost all ten filtered points do not have outliers errors; the points
close to the transition between the two cells are most hostile to this behavior. This
is because in some cases the triangulation occurs in the left cell and others in
the right one. This makes the position calculation worse, as in the case without
filtering. Another observation has to be made: there are still systematic errors
between the desired point and the filtered point.
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Figure 4.5: Plot of the Decawave tests at flight altitude of 0.094 m

Figure 4.6: Plot of the filtered tests at flight altitude of 0.094 m
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Figure 4.7: Plot of the Decawave tests at flight altitude of 0.97 m

Figure 4.8: Plot of the filtered tests at flight altitude of 0.97 m
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Figure 4.9: Plot of the Decawave tests at flight altitude of 1.53 m

Figure 4.10: Plot of the filtered tests at flight altitude of 1.53 m
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Figure 4.11: Plot of the Decawave tests at flight altitude of 2.02 m

Figure 4.12: Plot of the filtered tests at flight altitude of 2.02 m
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4.3.3 Improved tests with EKF with outlier detection
Systematic error bias can be decreased in the following way:

bias = z − dist (4.1)
where dist is the real distances between the anchor nodes and the tag node, z is

the measured distances between the anchor nodes and the tag node.
Finally, this difference, useful for the calculation of future positions, is subtracted

from the range of the anchor nodes before being filtered.
The same data from the test done previously have been simulated with this

modification. In this way, it is possible to see the better accuracy of the positioning
determined.

Figure 4.13: Plot of the final tests at flight altitude of 0.094 m to compare with
the Figure 4.6

Average error 0.1393 0.1029 0.2157 0.1797 0.5382
0.3396 0.2623 0.2258 0.0604 0.5861

RMS error 0.1408 0.1054 0.2179 0.1811 0.5408
0.3454 0.2646 0.2279 0.0659 0.5905

Table 4.2: Error of 10 tests at flight altitude of 0.094 m
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Figure 4.14: Plot of the final tests at flight altitude of 0.97 m to compare with
the Figure 4.8

Average error 0.2464 0.0372 0.1048 0.0885 0.0734
0.0620 0.0510 0.0287 0.1525 0.0746

RMS error 0.2473 0.0410 0.1065 0.0915 0.0747
0.0649 0.0560 0.0318 0.1538 0.0786

Table 4.3: Error of 10 tests at flight altitude of 0.97 m

Average error 0.0883 0.0853 0.2433 0.0581 0.0450
0.0895 0.0652 0.1365 0.2785 0.0823

RMS error 0.0900 0.0893 0.2483 0.0625 0.0482
0.0911 0.0679 0.1377 0.3143 0.0870

Table 4.4: Error of 10 tests at flight altitude of 1.53 m

Average error 0.1008 0.0552 0.1582 0.0674 0.2502
0.1249 0.0727 0.1230 0.1586 0.1059

RMS error 0.1296 0.0589 0.1598 0.0690 0.2507
0.1255 0.0766 0.1243 0.1595 0.1180

Table 4.5: Error of 10 tests at flight altitude of 2.02 m
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Figure 4.15: Plot of the final tests at flight altitude of 1.53 m to compare with
the Figure 4.10

Figure 4.16: Plot of the final tests at flight altitude of 2.02 m to compare with
the Figure 4.12
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4.4 Indoor tests

Python code has been implemented on the drone and some real-life testings have
been made.

Before testing the localization with a drone in flight, some indoor tests have
been made with the drone placed on a MiR Robot. The sensor system on the drone
determines its position while the robot is following a previously drawn trajectory.
The tests simulate the same trajectory 20 times acquiring at each sample time the
Ultra-WideBand signal.

The anchor nodes are arranged as in the configuration designed for the indoor
flight cage, as in Figure 4.2.

Figure 4.17: Drone positioned
on MiR Robot in indoor environ-
ment.
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4.4.1 First indoor test
A trajectory has been created with curves capable of covering a large part of the
environment: 6 points are assigned to the MiR Robot by creating small segments.
It should be noted that the MiR travels the shortest path between the start and
end points avoiding obstacles.

The assigned points, listed in Table 4.6, have all been reached with the same
height of 1.38 m, and there are no obstacles along the way. Therefore the final
trajectory will be the result of a series of continuous breaks (Figure 4.18).

Point Coordinate
A (0.30, 1.50, 1.38)
B (1.20, 2.00, 1.38)
C (2.40, 1.50, 1.38)
D (3.60, 1.10, 1.38)
E (4.80, 1.40, 1.38)
F (5.50, 2.00, 1.38)

Table 4.6: Coordinates(in meters) of the assigned points.

Figure 4.18: xy - Plane Representation of the trajectory

In the first test, the same path has been run 20 times to make an average estimate
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(StudentÍstdistribution). The results obtained can be considered good, but some
observations must be made. Figure 4.19 shows three graphical representations of
the trials performed in the XY plane.

Figure 4.19: xy - Plane Representation of 3 Real Indoor Tests

The second part is much more precise than the first one: it should be noted
that, during the tests, at point B the MiR Robot has an abrupt movement when
changing direction. Therefore, some modifications have been made in the path
making less evident the curve from A to D, lowering the y coordinates of points B
and C.
During the travel on the Mir Robot, the drone oscillates affecting sensor stability.

As mentioned before, the entire system, composed of the drone and MiR Robot,
travels the same path 20 times with the Decawave device always placed at the
same height. Figure 4.20 shows the tests in the XZ plane. The height exiting by
UWB and filter is not precise, thus leading to low stability and accuracy of the
drone system.

4.4.2 Second indoor test
To solve this problem, a Time of Flight (TOF) sensor is needed to take the values
obtained from this sensor as z coordinates of the system. Thus, the x and y
coordinates from the filter and the z coordinate from the TOF sensor are taken to
calculate location.
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Figure 4.20: xz - Plane Representation of 3 Real Indoor Tests, same tests of
Figure 4.19

After these improvements, tests have been made with these 6 points and this new
trajectory, as shown in Table 4.7 and Figure 4.21):

Point Coordinate
A (0.30, 1.50, 1.38)
B (1.20, 1.80, 1.38)
C (2.40, 1.40, 1.38)
D (3.60, 1.10, 1.38)
E (4.80, 1.40, 1.38)
F (5.50, 2.00, 1.38)

Table 4.7: Coordinates of the assigned points in meters

Also, in this case, 20 tests have been carried out with the tag node always placed
at the same height. Figure 4.22 shows the plots of the 20 tests in the XY plane.

Figure 4.23 shows the representations of the 20 tests in the XZ plane:
The points close to the transition between the two cells are in an area where the

position is a bit difficult to calculate. This is because in some cases the triangulation
occurs in the left cell and in others in the right cell. However, the results are a
good optimization.
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Figure 4.21: xy - Plane Representation of the new trajectory

Figure 4.22: xy - Plane Representation of 20 Real Indoor Tests
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Figure 4.23: xz - Plane Representation of 20 Real Indoor Tests, same tests of
Figure 4.22
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Test avg err rms err
1 0.1821 0.2097
2 0.2086 0.2452
3 0.2051 0.2409
4 0.2029 0.2432
5 0.1971 0.2382
6 0.2646 0.3228
7 0.2174 0.2490
8 0.2187 0.2562
9 0.1844 0.2124
10 0.2043 0.2369
11 0.2151 0.2482
12 0.2352 0.2776
13 0.2398 0.2826
14 0.2033 0.2395
15 0.1683 0.2382
16 0.1883 0.2286
17 0.1983 0.2303
18 0.2268 0.2827
19 0.2116 0.2518
20 0.2057 0.2382

Table 4.8: Error of 20 Real Indoor Tests
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4.5 Outdoor tests
In outdoor environment it is possible to use the GPS signal. So it is interesting
doing a comparison between positioning from GPS and UWB. Two types of tests
have been done: in the first one the same trajectory have been simulated 20 times
acquiring each sample time the GPS signal; in the second one have been done the
same path for 20 times having as localization system the Ultra-WideBand.

In the first test, the drone has been connected to the GPS signal and the
positioning has been automatically calculated by the localization system. Instead,
in the tests with the UWB, the anchor nodes were arranged as in the configuration
designed for the indoor flight cage: the same anchor nodes in the same positions
relative to the considered environment, as can be seen in Figure 4.24.

Figure 4.24: UWB configuration in outdoor environment

The trajectory of the tests done indoors has been used. 6 points (Table 4.7)
are assigned to the MiR Robot, and the final trajectory is the result of a series
of continuous segments since there are no obstacles along the way, as shown in
Figure 4.21).
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Figure 4.25: Drone positioned on MiR
Robot in outdoor environment.
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4.5.1 Outdoor tests with GPS
In the first test, cardboard boxes have been placed to create the boundaries of
the mapping of the MiR Robot. The drone has been placed on the MiR Robot
and the entire system traveled the route 20 times to create an average estimate
(StudentÍs t distribution). Figure 4.26 shows the plots of the 20 outdoor tests in
the XY plane.

Figure 4.26: xy - Plane Representation of 20 GPS Outdoor Tests.

4.5.2 Outdoor tests with UWB
In the second test, the anchor nodes have been placed in tripods at the desired
position and height creating the same configuration designed as in the indoor
environment. The MiR Robot traveled 20 times following the desired trajectory to
obtain an average estimate (StudentÍs t distribution). Figure 4.27 shows the plots
of the 20 outdoor tests in the XY plane.

Figure 4.28 shows the plots of the 20 outdoor tests in the XZ plane.
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Figure 4.27: xy - Plane Representation of 20 UWB Outdoor Tests.

Figure 4.28: xz - Plane Representation of 20 UWB Outdoor Tests, same tests of
Figure 4.27.
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Conclusion

Ultra-wideband is one of the most performing technologies to create an indoor
localization system. It determines the position of the target node knowing the
relative distance to the reference nodes.
The implementation of a Weighted Outlier-Robust Kalman Filter on UWB tech-
nology provides a performant indoor localization system. The filter decreases the
disturbances derived from the calculation of the node position. It can estimate
good results even in presence of obstacles between tag nodes and anchor nodes.

The simulations on Matlab show that the filter depends on the configuration
of the anchor nodes. It is also necessary a correction during the calculation of
the ranging between nodes due to a systematic error in the hardware of Decawave
technology.

Real-life tests demonstrate the good stability and accuracy of the filter imple-
mented on the Decawave technology in indoor environments.
Finally, the localization system obtained has been compared with the GPS, and
it has been possible to see the strengths of the UWB technology also in outdoor
environments.

5.1 Limits and future developments
In Gazebo environments an existing plugin has been used to simulate the position
calculation from the ranging between tag node and anchor nodes in flight. It has
been observed that there are some errors in the computation of the ranging. Conse-
quently, the determination of the drone position is not accurate thus complicating
the stability of the whole system.
The plugin can be modified to allow more articulated simulations, with obstacles
and more drones in the same environment.

Another problem is given due to drone stability issues, which was not the focus
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of this thesis. It has not been possible to test UWB localization with the drone in
motion, but the experimental tests have been done only with the drone with its
engines off.
The UWB technology is not susceptible to interference from the drone. Vibrations
on a drone in flight can lead to a lower signal accuracy. During the tests, the MiR
robot carrying the drone experienced oscillations, so no clear changes in the results
are expected.
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