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Abstract

Many applications in Artificial Intelligence require the capability of an autonomous
system to accurately and efficiently locate itself in the real world. The task of
Visual Geo-localization (VG) can be formulated as the ability to recognize the ge-
ographical location of a picture, using only its visual information and comparing it
to a database of geotagged images, which represent the previously visited places or
the area under analysis.
In the last two decades, this field has seen rapid growth in interest and technical
development from different communities. Consequently, the research landscape has
become increasingly fragmented and dissociated. The first half of this thesis work
consists of an extensive survey of Deep Learning methods and the development of
a benchmarking framework. This effort aims to create a clear and fair evaluation
protocol for VG methods, provide a complete and flexible training platform, and es-
tablish effective good practices for real-world applications. An exhaustive collection
of experiments accompanies all the techniques under analysis. Their performances
are evaluated on six well-established VG datasets to assess their generalization and
robustness capabilities.
The second half of this work focuses on an extension to the classical VG task, in
which the inputs for the system are short sequences of frames instead of single
images. The aim is to explore the extension of current VG architectures with tem-
poral and multi-view information. This approach is of particular interest for mobile
robotics, autonomous vehicles and augmented virtual reality applications that in-
herently deal with visual data flows. In particular, this work investigates the use of
architectures based on self-attention mechanisms and Vision Transformers. The fo-
cus is on the sequence-based VG problem formulated as matching a query sequence
to a shortlist of database sequences depicting the same location.
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Chapter 1

Introduction

Given an image of a place, can a human, animal, or robot decide whether
or not this image is of a place it has already seen?

– Lowry et al. [1]

Humans and animals possess remarkable localization and navigation capabilities
fundamental for their lives in the physical world. Psychology and neuroscience have
investigated the mechanisms behind these abilities since the ’30s, with the seminal
studies of Edward C. Tolman [2, 3] about latent learning and, in particular, cogni-
tive maps, i.e., the mental description that a person maintains of its environment.
From a purely functional point of view, the cognitive map can be seen as a process
that acquires observations of the subject environment and produces a description
of the current location. Moreover, the information acquired can be further ma-
nipulated to answer route-finding and position-finding questions. This concept has
inspired over the years not only psychologists and neuroscientists but also works
in other fields such as urban planning [4], Artificial Intelligence (AI) and robotics
[5, 6, 7]. In particular, these early works of Benjamin Kuipers aimed at equipping
robots with large-scale spatial knowledge, which is the type of knowledge concerning
a portion of physical space whose structure covers a larger area than the sensory
horizon of the agent. Similar to humans, the robot travels in its environment to
acquire, store, manipulate local information to infer global relationships. Despite
the recent progress in the development of new techniques and more precise sensors,
the task of creating an accurate map of a robot’s environment and maintaining
self-localization within it remains to this day a challenging open problem for the
robotics community. Lowry et al. [1] describes a robot’s visual place recognition
system as the combination of three key components “an image processing module
to interpret the incoming visual data, a map that maintains a representation of
the robot’s knowledge of the world, and a belief generation module, which uses
the incoming sensor data in combination with the map to make a decision about
whether the robot is in a familiar or novel place”.
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1 – Introduction

This formulation bounds the problem to the downstream robotic application,
posing strict requirements for computational efficiency, real-time execution, and
often implies the use of a variety of streams of heterogeneous data. However,
robots are not the only ones that could benefit from this ability, other real-world
applications that require it range from augmented reality to 3D reconstruction sys-
tems, photo-sharing services, and autonomous driving systems. Over the past two
decades, this task emerged and attracted broad interest in different fields such as
Computer Vision and Machine Learning, whose focus is on the image processing
module and consequently on techniques manipulating appearance information. Al-
though the importance of the contamination and exchange of ideas and knowledge
from different areas, this spread across multiple scientific domains has led to a frag-
mented research landscape, making it tough to have a comprehensive and unified
view of the entire field. Moreover, another source of confusion emerges from the
different designations used for this task from paper to paper; the most common
ones are Visual Geo-localization (VG) [8], Visual Place Recognition (VPR) [1, 9],
and Image-Based Geo-Localization (IBL) [10].

In this work, this task is referred to with the name of Visual Geo-localization,
and the main focus is on techniques that employ Deep Learning (DL) and cast
it to an Image Retrieval setting. In this scenario, the input is an image (or a
sequence of images), commonly referred to as query, and the goal is to estimate
its geographic location by matching it to a collection of geotagged images, called
database or gallery. The image retrieval setting is not the only one proposed in the
literature; other approaches will be discussed later in Chapter 2.3.

1.1 Objectives
As evidenced by the number of papers published on this topic [1, 11, 12] and nu-
merous dedicated workshops at prestigious international conferences on Computer
Vision and Robotics, VG is a rapidly growing research field. Unfortunately, the
broad interest coming from different research communities, each one with its own
distinct goals, has generated a vast and complex landscape of works to study and
understand properly. All these reasons contributed to increasing the dissociation
within the entire field in terms of comparison between different methods and lack
of standard definitions of essential concepts. For instance, the notion of place may
change from dataset to dataset, and the same confusion arises when trying to under-
stand the effective contribution of new techniques. In this sense, the differences in
the type of setups used in each work, such as using different training datasets, data
augmentation techniques, or weight initialization, limit the comparison of these
methods significantly and make the state-of-the-art claims ambiguous and hard to
interpret.

Another problem is that the researchers often focus mainly on increase the per-
formance in terms of recall@N, i.e., the proportion of correct gallery images found in
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1 – Introduction

the top-N retrieved results. In this way, they often forget that an evaluation of the
goodness of a VG algorithm must consider the balance of three key characteristics:
memory footprint, computational requirements, and retrieval performance. Many
papers lack completely or put low emphasis on the analysis of hardware and time
requirements fundamental for the scalability of the proposed methods. However,
these factors play a crucial role in developing and deploying real-world applications.

The issues described so far can be summarized into two main points:

1. Lack of a uniform setting: VG lacks a standard framework to evaluate and
analyze methods’ performances;

2. Focus on the optimization of a single metric: ignoring key aspects such
as execution time, hardware requirements and scalability represents a critical-
ity for the current state-of-the-art methods.

The first objective of this work is to address these issues by creating a flexible
and complete framework for benchmarking VG methods. The main aim is to pro-
vide the VG community with a uniform environment to build, train and evaluate a
wide range of commonly used state-of-the-art architectures. This framework could
become a starting point for future research and industry projects because its mod-
ular design allows the modification and tuning of each element of the VG pipeline.
Therefore, it enables the possibility to conduct an in-depth analysis of the actual
influence of each component in the final performance. Moreover, the framework al-
lows to effortlessly obtain information regarding the number of parameters, FLOPs,
descriptor dimensionality, et cetera.

The second objective of this thesis is to build on the findings obtained in the sin-
gle image setup examined in the benchmarking activity to extend these techniques
to a multi-image scenario and explore the use of novel techniques based on the
self-attention mechanism. In fact, although the importance of visual data flows in
several domains that represent a downstream application for VG techniques, such as
mobile robotics, autonomous driving vehicles and augmented reality, the literature
in this area is limited. The current approaches, further detailed in Sec. 2.6, can be
roughly divided into two main categories hand-crafted methods based on stochas-
tic models and similarity matrices, and sequence representation techniques, that
instead extract from the continuous stream of images effective representations used
to capture meaningful information for localization. This thesis explores the possi-
bility of applying for this task the recent models from Computer Vision, based on
Transformer-based architectures and more broadly on the concept of self-attention,
which represent a promising strategy still not studied by the Visual Geo-localization
community. The development of techniques to effectively analyze this type of vi-
sual data flows to perform image-based localization, improving the accuracy and
robustness of the systems, is of uttermost importance in a life-long Visual Geo-
localization scenario. Additionally, the plethora of applications that could benefit
from Sequence-based VG (S-VG) unlocks exciting future scenarios.

3
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1.2 Contributions

Following the objectives set in the previous section, the contributions of this thesis
went in two main directions. To address the flaws and lacks in the current bench-
marking works in the VG literature, this thesis delves into an extensive analysis
of the Deep Learning methods for VG that approach it as an image retrieval task.
Based on the standard VG pipeline identified with this research, this work proposes
a uniform and formal training and evaluation platform. The framework is designed
with a modular structure to provide the users with a system that can replicate
the state-of-the-art methods choosing different configurations. This software will
be released as an open-source resource that could be expanded by introducing new
techniques for each component in the pipeline.
This platform will also serve to analyze and understand the core contributions of
the VG methods, avoiding the limitations of the current benchmarking frameworks.
The analytic toolbox consists of a series of metrics to measure the performance in
terms of recall@N and the complexity of the different configurations (FLOPs, model
size, memory footprint, and others). The software also allows the user to download
a suite of six well-known VG datasets that can be used to train models on differ-
ent scenarios and evaluate their domain generalization capabilities. Moreover, it
provides a helpful tool to pretrain common neural network backbones on datasets
with images from domains close to the VG task. The platform was used to produce
an exhaustive collection of experiments that span many configurations, providing
valuable guidelines for VG applications in industry and research.

The work presented in the first half of this thesis is the outcome of a joint effort
and is currently under submission to a top-tier Computer Vision conference. All
the team members contributed to the development and design of the framework.
In particular, my personal contributions in the development phase regard the im-
plementation of different aggregation methods, part of the mining methods, the
pre-processing module, and the development of pre and post-processing techniques
of the VG pipeline; in the experimental phase, I took care of the experiments re-
garding kNN indexing techniques, data augmentation, pre-processing and part of
the ones on backbones and mining methods.

The second part of the thesis extends the current Deep Learning VG techniques
to a sequence-based approach. Among the architectures considered in this part, the
focus is on models employing the self-attention mechanisms and, in particular, this
work is the first attempt to introduce Transformer-based architectures in the VG
literature. This more research-oriented investigation was conducted together with
Gabriele Trivigno. First, we conducted a literature review of the proposed methods
in this sub-field of VG and constructed the baselines. Then, we started to analyze
several possible architectures to tackle this problem. Concerning the development
and design of the proposed solutions, my contributions regard the implementation
of different networks, i.e., ViT [13], CCT [14], and different versions of Non-Local
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layers [15], and the development of an alternative version of the common NetVLAD
[16] layer, called SeqVLAD. Finally, the experimental phase of this part was equally
subdivided, and then I took care of running half of the experiments described in
this work.
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Chapter 2

Related Works

This chapter aims to provide the reader with a general overview of the approaches
to Visual Geo-localization and an introduction to the self-attention mechanism in
Deep Neural Networks. The first section provides a theoretical introduction to the
VG task and a description of its main drivers. Section 2.2 discusses the relationship
between VG and similar research areas, while Section 2.3 contains a summary of
the different approaches to the problem proposed in the literature. Then, Section
2.4 is focused on the methods and techniques employed when VG is cast to an Im-
age Retrieval setting. Section 2.5 analyzes the previous benchmarking works in the
literature and compares them with our proposed benchmark [8]. Finally, the last
two sections, Sec. 2.6 and 2.7, are devoted to VG methods dealing with sequences
of images, mainly coming from the robotic community, and the use of self-attention
mechanism in vision problems, both in a modular form and the Transformer archi-
tecture.

2.1 Visual Geo-localization
Visual Geo-localization can be defined as the ability to coarsely estimate the ge-
ographical location of the place depicted in an input image given a collection of
images of previously visited places. The problem from an abstract perspective
can be thought of as a comparison of visual data that considers a positive match
between two observations when the locations depicted show a meaningful visual
overlap due to overlapping field-of-view of the underlying sensor. This implies that
the two images need to be taken at the same location and that their viewpoint
coincides (at least partially). The evaluation of the goodness of the visual overlap
should consider the possible presence of appearance shifts in the environment and
the requirements of the final application of the VG system.

The study of Garg et al. [9] identifies the three main drivers in the VG domain:
the environment, the agent and the downstream task. These elements and

6
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Figure 2.1: The abstract architecture of a VG system that approaches the problem
as an Image Retrieval task. In the first stage of the pipeline, the system extracts
from the query and the database images their feature representation (hand-crafted
or deep-learned). The next step consists of a similarity search between query and
database features, which produces a ranked list of potential candidates. The third
(optional) stage employs post-processing methods to refine the final retrieval results.
Figure from [11].

their interplay are fundamental to shaping the problem’s definition, the solution
design, and the evaluation procedure. The range of possible applications of VG
can vary from mobile robots that need to be able to operate outdoor and indoor
to servers of photo-sharing services or autonomous vehicles that operate in dif-
ferent types of streets (urban, suburban, or highways). These different operating
environments influence the requirements, the datasets of choice, and the relevant
metrics to evaluate. Another challenge related to the environment impacting VG
systems’ robustness is how to deal with the different appearance shifts that affect
the physical world. The domain shifts can impact the point of view of the images;
for instance, a realistic scenario may have gallery images collected from a specific
type of source, e.g., sensors mounted in a car with changes mainly in the yaw di-
rection, and queries from another source that alter the viewpoint, like photos from
a smartphone. Moreover, a robust and solid VG system should deal effectively
with changing lighting conditions at different day hours or weather conditions. In
the context of long-term VG, the environment of choice will evolve due to seasonal
changes and dynamic objects like cars and humans. In this sense, there could be
methods that focus more on viewpoint-invariance, such as drones or robots, and
others aiming at appearance-invariance or a trade-off between the two.

7
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The other two drivers also impose significant constraints and require adequate de-
sign decisions. The different types of agents on which the VG method will be de-
ployed have different computational resources and must be suited to the particular
operation modality (real-time, near real-time, or even offline). The different types
of downstream tasks could influence the performance requirements. For instance,
a loop closure detector for SLAM needs high precision to avoid catastrophic results
in the map building process, while some other applications have a larger tolerance
margin.

The variety of approaches and techniques developed in the literature result from
the different needs and the solutions arising from the interplay of these fundamen-
tal drivers. Regardless of the vast number of works in this field, there are still
many open research problems whose solution will enhance the capabilities of cur-
rent VG systems. For example, the researchers are developing new methods to
address domain shifts in the visual data from the environment or take advantage of
entire sequences of frames instead of single images. In the last years, the interest in
VG would not have experienced this tremendous growth without the collection of
numerous datasets covering the most disparate types of environments and applica-
tions [11]. Services like Google Street View or Mapillary, the diffusion of cars with
visual sensors, and the spread of smartphones played a considerable role in making
the collection procedure more straightforward. The datasets used in this work are
described in detail later in Sec. 3.1 and 5.2.

This work deals with methods that approach VG as an Image Retrieval task (see
Fig. 2.1) that employs deep learning models on urban and suburban datasets. The
literature in this field investigated different problem settings and other techniques
that do not use DL. An exhaustive and detailed analysis of the research studies
VG can be found in these surveys [1, 11, 12]. The following sections try to give the
reader a general overview of the research on VG with a strong focus on the themes
related to this work.

2.2 Related Areas

2.2.1 Visual-Based Localization
Visual-Based Localization (VBL) is an image-based localization approach that
shares some similarities with Visual Geo-localization but has different purposes
and objectives. Within the VBL setting, the system aims at retrieving the pose of
a visual query, i.e., both the position and the orientation of the sensor that cap-
tured the visual information. The result of this inference procedure is an accurate
prediction of the 6-degrees-of-freedom pose of the camera with respect to a 3D map
of the scene. The 3D representation of the environment can be a 3D model ob-
tained with a Structure-from-Motion (SfM) algorithm using the local features of the
database of images for the 2D-3D matching or an implicit representation learned
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with a machine learning algorithm. Even if the two tasks have different purposes,
there are evident connections between VG and VBL methods in retrieving images
from the same location. While VBL requires higher accuracy in the retrieval re-
sults, the VG methods are not that strict and, in some applications, could benefit
from viewpoint-invariance (not necessarily a desirable property for VBL). For this
reason, it is not strange to expect that over the years, solutions and ideas from the
two areas have inspired each other.

In this direction, recently Pion et al. [17] propose in their benchmarking analysis
to evaluate the performance of a set of VG methods when applied to three different
VBL downstream tasks:

- Pose approximation, a straightforward extension of VG methods for VBL,
where the estimate of the query pose is obtained as a linear combination of
the top-k retrieved database images with different weighting schemes.

- Pose estimation without a global 3D map, composed of three steps (i) retrieve
a set of images from various viewpoints of the same location represented in
the query, (ii) use the retrieved elements to construct on-the-fly a small local
SfM map of the scene, (iii) solving a perspective-n-point (PNP) problem to
compute the camera pose.

- Pose estimation with a global 3D map, the closest setting to classical VBL,
where a pre-built global SfM model is available and provides a 2D-3D cor-
respondence between database images and the 3D model. The top-ranked
images retrieved by the VG algorithm are used to obtain 2D-2D matches with
the query, later translated into 2D-3D matches with the global map and used
for the pose estimation.

As already mentioned, the task of VBL requires a different degree of precision in
its predictions. A common practice in this area is to evaluate the performance of a
method by considering correct all the pose estimates that fall within a given pair
of error thresholds for position and absolute orientation error, i.e., (X m,Y◦) [18,
19, 17]. The granularity of the thresholds can vary depending on the downstream
task; the authors of [19] propose three different thresholds low (5m, 10◦), medium
(0.5m, 5◦), and high (0.25m, 2◦). For this reason, the datasets employed in VBL
contain images labeled with 6-DOF poses and, optionally, the SfM 3D models.
Some examples of commonly used datasets with these characteristics are Aachen
Day-Night [20, 19], RobotCar Seasons [21, 19] and Baidu Mall [22]. For an in-depth
analysis about this task, the reader is referred to [23, 19, 17].

2.2.2 Content Based Image Retrieval
Content-Based Image Retrieval (CBIR) is a well-known and extensively studied
problem in Computer Vision [24, 25]. The task can be formulated as the process of
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Figure 2.2: Reference CBIR pipelines employing different Deep Learning tech-
niques. Figure from [24]

finding matches between a given query image and a database of images. Depending
on the setting, a match can be considered successful when the retrieved images
have a similar appearance, instance-level retrieval, or contain the same semantical
information, category-level retrieval, e.g., objects not necessarily with the same
appearance but that can be categorized together. From a general perspective, any
image retrieval system follows four main steps:

1. Features extraction: which maps the raw images into a proper feature space
for the task using hand-crafted or deep learning techniques. For efficiency
reasons, the database features are usually computed offline, whereas the query
features can be computed online.

2. Features aggregation: this step aims at rearranging the features extracted pre-
viously into a compact descriptor with better discriminative abilities suitable
for the following step.

3. Similarity search: which is the algorithm that performs the comparisons be-
tween the compact descriptor of the query image and the ones of the database,
retrieving the best ones according to a particular scoring function (e.g., Eu-
clidean or Hamming distance).

4. Candidates Re-Ranking: consists of a set of methods that can be used to refine
the ranking of potential positive matches obtained from the similarity search.

As will be further discussed in Sec. 2.3.1, the problem of VG is commonly framed
as an Image Retrieval task; nevertheless, the underlying objectives of VG bring a
completely different set of challenges and use-cases that drastically drift away from
the ones of CBIR. In the CBIR setting, a single element is the object of interest of
the retrieval process. Meanwhile, for Visual Geo-localization, the algorithm must
deal with the complexity coming from the dynamic nature of the physical world.
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The system should recognize any ordinary place or a region within the environment
by combining a complicated collection of visual elements that characterize a par-
ticular location. Moreover, not all these elements may be informative for the VG
task, like dynamic distractors, such as cars or pedestrians in an urban scenario, or
appearance shifts as pointed out in Sec. 2.1. These additional requirements and
objectives have contributed to shaping the research trends that identify VG as a
research topic distinct from CBIR.

2.2.2.1 Landmark Retrieval

Another research topic that shares similarities with VG is Landmark Retrieval
(LR), a particular case of instance retrieval task concerning only landmarks, i.e.,
relevant buildings, monuments, or other distinguishable objects. The objective of
LR methods is to identify all the images in the database that contain the main
object of interest depicted in the query. LR looks for matches in which the same
landmark appears in both images regardless of whether they represent unrelated
parts of the same landmark or if the pictures were collected in the same place.
Compared to VG, the quality of the results is not affected by the geographical
distance or the different viewpoints from which a particular location or building
can be observed.

Another fundamental distinction between the two topics is that while VG datasets
cover an entire geographical area with a certain degree of continuity, there is usu-
ally a discrete number of distinct landmarks in the datasets collected for LR. This
allows the use of losses that can benefit from this additional supervised informa-
tion, such as ArcFace [26] and CosFace [27] losses. These two classification losses
were initially developed for facial recognition but also successfully used for LR [28].
Unlike contrastive and triplet loss, they do not require training techniques such as
hard negative mining, which plays a significant role in the VG pipeline. On the
other hand, even if some classification approach has been tried in VG, see Sec.
2.3.2, for the majority of the VG datasets, the only available information is the
geographical coordinates of the database images.
The use of ArcFace and CosFace losses is also justified by the number of distinct
landmarks in two of the most famous datasets, Google Landmarks Dataset v1
(GLDv1)[29] and v2 (GLDv2)[30], which have 30k and 200k landmarks, respec-
tively. These large datasets contain landmarks spread all over the world; however,
there exists also city-scale datasets like Paris 500k [31], or the two classic Paris [32]
and Oxford [33], of which exists even a revised version (R-Paris and R-Oxford)[34].
The most common metric used in the LR literature is the mean Average Precision
(mAP).

In the context of the benchmark developed in this thesis, we have investigated
the performance of models pretrained on LR datasets on a Visual Geo-localization
downstream task by using our framework.
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2.3 Approaches to Visual Geo-localization

Although the predominant formulation for the Visual Geo-Localization problem
establishes to approach it within an Image Retrieval setting, this has not stopped
the researchers from considering and exploring different strategies. This section
contains a summary of the different forms of approaches that have been proposed
over these years.

2.3.1 Image Retrieval Approach

Nowadays, the dominant approach for Visual Geo-localization is to cast the problem
as an image retrieval task. As already discussed in Sec. 2.2.2, CBIR aims to search
images from a large database that possesses a similar appearance to a query. From
an abstract point of view, the aim of both CBIR and VG is to extract an appropriate
representation that can be used with a similarity research algorithm to decide if a
couple of images can be or not a successful match. As for CBIR, the VG pipeline
in this setting follows the four steps of extracting and aggregating the features
from the raw images to produce a descriptor of the image. Then, a similarity
search in the descriptor space is performed to retrieve the top-k matches. Finally,
the last step consists of a re-ranking procedure to further refine the predictions,
usually applied to obtain stronger performances at test time. For the VG problem,
the database contains images annotated with their GPS coordinates. After the
retrieval, this information is used to estimate the GPS location of the query image.
The similarity between the two tasks is beneficial for both of them, and several
techniques initially developed for CBIR have been successfully employed for VG
over the years.

Although the procedure is very close to CBIR and LR problems, a VG method
must encode an intrinsic spatial knowledge to overcome specific challenges that dif-
ferentiate it from the other retrieval problems. The left side of Figure 2.3 illustrates
the behavior of a CBIR system that matches the query image (blue border) with
images only based on the visual content without considering distance and viewpoint
information. Instead, on the right, the VG system only decides for a positive match
between two images if taken in the exact location. The images with a red border are
considered negative matches even if the building depicted is the same because they
come from different places with respect to the query image. Because of the dynamic
and evolving nature of the natural world, the datasets used in the VG setting must
be various enough to represent as many environmental conditions as possible con-
cerning illumination, shadows, or weather. Visual Geo-localization should be able
to deal with scenes with common structures or elements that complicate building
distinct image representations. Two common problems that arise for this reason
are visual burstiness [35] and perceptual aliasing [1, 9]. Visual burstiness is when a
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given visual element appears in an image more frequently than expected by a statis-
tically independent model, like a Bag-of-Words method, corrupting the similarity
measure. Instead, perceptual aliasing describes the scenario in which two distinct
places have a more similar appearance compared to the same place under different
environmental conditions. This problem is frequent in indoor scenarios, which may
have corridors or rooms with similar appearances, but can also appear in urban
and natural vegetative environments. Compared to CBIR tasks, the images in VG
datasets do not contain a clearly visible object to match with the database images,
instead it is more likely to face the challenge of scenes cluttered with many non-
informative distractors elements that are an integral part of the dynamic nature of
the environment.

Figure 2.3: The figure portrays some of the differences between the Content-Based
Image Retrieval and the Visual Geo-localization tasks. The orientation and the
black camera’s position in the drawing are indicative of the actual position and
viewpoint of the real camera that took the pictures of the building. The grey
cameras indicate pictures taken in the same position with different viewpoints from
the black one. On the left, in the CBIR scenario, the query image (blue border) is
matched to images that present a higher visual similarity in the database regardless
of the camera’s distance and viewpoint. On the right, in the VG scenario, the
positive images (gree border) must consider the position from which the query was
taken, even if they present drastic changes that reduce the visual similarity. In
contrast, images with similar appearances must be regarded as negative if coming
from different locations. Figure adapted from [12]
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2.3.2 Classification Approach

An alternative formulation to the retrieval approach is to set the problem as a
classification task that directly predicts the location depicted from the input image.
As ambitiously stated in the pioneering work of Weyand et al. [36]: “[the] goal
is to localize any type of photo taken at any location using just its pixels”. The
motivations behind this approach stem from two primary sources: the recent results
of Deep Learning models in large-scale classification tasks and the observation that
humans can roughly estimate the location of a photograph only using visual cues
without the need to compare it with a massive dataset of similar images.

These methods rely on a partitioning scheme that divides the surface of the
area of interest into a discrete number of non-overlapping cells used as classifica-
tion labels for the training images, see Figure 2.4. The granularity used in the
partitioning procedure represents a critical trade-off for the entire approach. The
use of few large cells translates into a lower accuracy in the location estimate,
but on the contrary, using a finer subdivision increases the number of classes and,
consequently, the number of parameters of the model. The work of [37] proposes
to overcome this issue by proposing a combinatorial partitioning technique, which
unfortunately solves only the issues on the number of parameters but does not
increase the performances under higher requirements of accuracy.

The strength of these methods over retrieval ones is that they do not require a
massive reference database of images to produce the predicted location. As already
mentioned, the shortcoming in this approach resides mainly in the partitioning
scheme. Future research in this area, maybe combining classification and retrieval
techniques, could unlock a promising path toward developing powerful global Visual
Geo-localization systems.

Figure 2.4: (Left) The adaptive partitioning scheme used by PlaNet to subdivide
the world surface. The procedure divides the cells recursively until a threshold for
the minimum number of images in the cell is met. (Center) Detail of the Bay Area.
(Right) Detail on the British isles. Figures from [36]
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2.4 Visual Geo-localization as Image Retrieval
Task

The previous section described the variety of approaches proposed in the literature
for the Visual Geo-localization problem. The focus of this thesis is on the Image
Retrieval setting. The research on this area spans more than twenty years, and,
for this reason, it has witnessed the different research trends that characterized the
evolution of the communities interested in this task. From the early 2000s to 2012,
Computer Vision’s state-of-the-art methods relied on hand-crafted features and
classic shallow Machine Learning algorithms. The success of AlexNet [38] in the
ImageNet competition [39] in 2012 originated the rise of Deep Learning techniques.
Following those trends, the VG literature comprises both methods relying on hand-
crafted features and more recent deep learning techniques. This section aims to
give an overview of the most influential methods from the VG literature.

2.4.1 Hand-Crafted Representations for VG
In the Image Retrieval setting, the most critical aspect of a VG system is con-
structing a mathematical representation that possesses discriminative and robust
information to recognize places from the raw visual data. For a long period, hand-
crafted representations were the de-facto standard for VG. The type of representa-
tions captured by the descriptors produced from these methods differentiates them
into local and global features descriptors.

2.4.1.1 Local Descriptors

The methods based on the extraction of local features detect a set of small regions
of interest in the input image, also called keypoints, composed of small groups of
pixels and describe them with a set of vectors. This collection of features is then
used to build a high-dimensional descriptor for the entire image. In more detail,
the steps used to create an effective representation of the database images within
this framework are the following:

1. Local Feature Extraction: that maps an image into a set of local features. It
can be further divided into two intermediate steps:

1.1 Local detection: a local detector, like the Hessian-affine detector [40] or
MSER [41], identify a set of local regions of interest with stable properties
under different imaging conditions;

1.2 Local description: each keypoint is described with a d-dimensional de-
scriptor, i.e. given N detected keypoints, they are mapped to a set of
descriptors D = {di}Ni=1, di ∈ Rn.
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2. Codebook Training: the set of local features extracted from the images of the
entire training dataset are clustered into k clusters to create a codebook of
visual words (or visual vocabulary).

3. Feature Encoding: the features representing each image and the codebook
are used to obtain the final descriptor of the image, i.e., the set D of local
features of an image is mapped to a feature embedding g ∈ Rm throughout
this procedure.

The local features were particularly suited for the VG task because they own a set
of valuable properties. They are repetitive, meaning that the same keypoints can be
detected in different images, making them suitable to recognize distinctive elements
necessary to identify a specific location. The local detectors look for local features
invariant to translation, rotation, scale, and affine transformations. Together with
their local nature, these attributes translate in strong robustness to occlusion and
illumination changes.

Encoding the information detected in the local keypoints into features represents
a crucial component of the pipeline described above. One of the most widely used
algorithms is the Scale-Invariant Feature Transform (SIFT) [42] published and later
patented by David Lowe in 1999, that extract from each region of interest a 128-
dimensional vector. Further extensions to SIFT are PCA-SIFT [43], which reduces
the dimensionality of the local features, and RootSIFT [44], which proposes an
alternative normalization. Other local descriptors used in the literature are SURF
(Speeded Up Robust Features) [45], BRIEF [46] and ORB (Oriented FAST and
Rotated BRIEF) [47].

The idea of utilizing a codebook of visual words was initially proposed in the
pioneering work of Sivic et al. [48]. They borrowed the Bag of Words (BoW) ap-
proach from the NLP community and adapted it to the Image Retrieval setting by
using the local features extracted from images in place of word embeddings. Each
of the local features is assigned to one of the visual words of the codebook. Then,
the BoW representation is computed as a histogram of occurrences of visual words
in the image that generates a k-dimensional vector, with k equals to the codebook
dimension. Different weighting schemes can be used in this step, with the most pop-
ular being the term frequency-inverse document frequency (tf-idf). The resulting
vector representations are L2 normalized. During the retrieval stage, the database
images are ranked based on the cosine similarity between their representation and
the one of the query image.

The BoW vectors are usually high dimensional, k = 20.000 in the original imple-
mentation but in VG applications have been proposed methods using up to 100.000
dimensions [49]. The consequently sparse representation can benefit from inverted
lists to implement an efficient search, but it also leads to several limitations in
search times and memory requirements for large datasets. Other encodings have
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been proposed in the literature employing small-size codebooks, e.g., with dimen-
sion 64 or 128, to overcome these limitations; the most widely used are Fisher
Vectors (FV) [50] and Vector of Locally Aggregated Descriptors (VLAD) [51, 52].
The former employs a Gaussian Mixture Model (GMM) to create a richer prob-
abilistic visual vocabulary trained offline using Maximum Likelihood estimation.
The output representation is the concatenation of the k d-dimensional gradients of
the means of the Gaussian distributions that form the GMM. As for the BoW, the
VLAD encoding learns a visual codebook by using the k-means algorithm. Then,
each local descriptor is associated with its closer visual world. However, VLAD
uses a different approach instead of storing only the number of occurrences. In
fact, the sum of the differences between each visual word and its closer local fea-
tures is accumulated, obtaining k d-dimensional vectors that are concatenated to
obtain the final VLAD representation. It can be shown that VLAD is a simplified
non-probabilistic version of the FV [53].

2.4.1.2 Global Descriptors

The previous section illustrated how the construction of image-level descriptors
from local features requires two main steps: the detection of the image’s local
features and the feature embedding phase. These two stages are usually compu-
tationally expensive and build on the assumption that the image’s content can be
seen as a configuration of multiple elements. Another approach consists of consid-
ering the image as a whole. The descriptors that fall under this category are named
global descriptors and follow the idea that the scene depicted in the input image
can be described encoding the holistic properties of the entire scene without focus-
ing on the individual details. These methods bypass the detection phase entirely
by dividing the image into a grid and processing each cell regardless of its content.
An example of a global descriptor used in several VG methods is GIST [54], which
applies at each image block a set of Gabor filters with various orientations and fre-
quencies. HoG [55] relies, instead, on the computation of histograms of occurrences
of oriented gradients in each patch of the image. Some other works such as [56,
57] propose to interpret the grid subdivision of the images as a set of predefined
keypoints on which apply local descriptors, with those two, in particular, using
SURF and BRIEF, respectively. While being computationally lighter than local
features, the drawbacks of global features arise in their less robust performances
under changes in viewpoint and when the scene presents visual clutter or forms of
occlusions.

2.4.2 Deep Learning Representations for VG
The last decade witnessed the rise of Convolutional Neural Networks (CNNs) [58]
as one of the most popular and powerful tools in the Computer Vision community.
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The convolution operation at the core of their functioning is based on three key
ideas: sparse interactions, parameter sharing, and equivariant representations [59].
Following the success of AlexNet in large-scale image classification, the interest in
this type of architectural design experienced enormous growth, which led to several
studies on its application as an image representation generator on other visual tasks
[60]. However, learning from scratch of CNNs parameters requires large datasets of
annotated images; fortunately, the image representations learned on these datasets
can also be successfully transferred to other tasks with a limited amount of data.
Among the several visual tasks that profited from the introduction of CNNs, there is
also Image Retrieval, with the excellent results obtained through the application of
these Deep Learning techniques undermined the hand-crafted method dominance.
The shift in the standard for CBIR also affected the Visual Geo-localization task.

This section aims to introduce the principal CNN-based methods proposed in
the VG literature and how these methods are trained in the IR setting. The Deep
Learning techniques discussed in this section do not include Transformer-based
architectures, which will be discussed in Section 2.7. At the moment of writing
this thesis, the only work that employs Transformers for Image Retrieval is [61],
and one of the main contributions of this work is the introduction of this type of
architecture for the VG task.

2.4.2.1 Fully Connected Representations

Around 2014 and 2015, several works in the VG literature [62, 63] investigated
the use CNNs pre-trained on ImageNet by adopting as image representations the
vectors of activations from the last Fully-Connected (FC) layer of these networks. In
the following works, the researchers achieved better results by training these models
directly for retrieval and employing metric learning losses, such as the triplet loss
[64, 65, 66].

Unfortunately, the FC representations suffer from the same issues that charac-
terize the hand-crafted global descriptors. They do not possess translation- and
scale-invariant properties and are unstable when dealing with occlusions and dis-
tractors in the scene. At the time, the gap with classical local features based
methods was consistent. Then, to circumvent the limitations above, other works
tried to feed the CNNs with image patches and use patch-based representations for
retrieval [67]. While finally closing the gap in performance with the state-of-the-
art techniques of the time, FC representations cannot be compared to traditional
methods in terms of memory footprint and computational costs.

2.4.2.2 Convolutional Representations

Instead of using the vector produced by the FC layer, the work of Babenko et al. [68]
proposed to utilize directly the feature maps computed by the convolutional layers
as image representation for the retrieval task. The authors proposed to flatten
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the feature maps into a vector and normalize them to produce the final image
representation. This simple approach did not achieve superior results than FC
representations but showed the potential in using the convolutional feature maps.
Further works build on this idea and preserve the feature maps’ tensor structure to
benefit from their local intrinsic information. This line of research led to the current
state-of-the-art methods in VG, which can be divided according to the computation
performed on the feature maps into aggregation and pooling-based methods.

Aggregated Representations From a general perspective, the feature maps
extracted by a convolutional layer are a H ×W × C tensor, where H, W and C
are the height, the width, and the number of channels, respectively. This tensor
can be interpreted as a set of C-dimensional feature vectors spatially located into
an H × W grid. The early works applied traditional aggregation methods, as
VLAD and BoW [69, 70]. Building on the observations on non-learned methods,
it is possible to build a more robust and discriminative image representation by
aggregating them.

Further studies aim to create aggregation techniques that can learn their param-
eters end-to-end from the data. The most popular and influential method in this
family of learned aggregation-based methods is without any doubt NetVLAD[16].
Arandjelović et al. [16] proposed a differentiable generalized version of VLAD. The
main idea resides in replacing the latter’s hard assignment with a more suitable
differentiable soft assignment approach. This design allows NetVLAD to learn the
visual words of its codebook and the set of weights from the soft-assignment block,
enabling greater flexibility than the original VLAD.

Between the further works that tried to enhance the performance of NetVLAD,
there is the Contextual Reweighting Network (CRN)[10]. The authors proposed the
introduction of a context modulation block to the original NetVLAD layer, which
employs different multiscale context filters to produce a reweighting mask aiming
at highlighting relevant structures and penalizing less relevant regions.

The main drawback in VLAD-inspired methods come from the high dimension-
ality of the output image descriptors, which is (kC)-dimensional vector where k is
the number of visual words in the codebook, and C is the dimension of the fea-
tures or in the case of CNN networks the number of channels of the feature maps.
A common approach to obtain more compact and efficient descriptors is to apply
dimensionality reduction techniques such as PCA or learned projection matrices.

Pooled Representations While the aggregation-based methods rely on an in-
terpretation of the convolutional feature maps as dense C-dimensional features ex-
tracted from the input image. The alternative perspective, followed by the methods
described in this section, is to see the output tensor as a stack of C activation maps
of dimensions W × H. Following the notation of [71], each activation maps is
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denoted by Xi ∈ RH×W , with i = 1, . . . , C, Ω represents the set of spatial loca-
tions of this 2D tensors and Xi(p) is the value of the map i at position p ∈ Ω.
The output image descriptor is denoted by the vector f . Compared to the feature
aggregation of the traditional hand-crafted methods, the motivation behind this
different approach comes from the argument that the features extracted by CNNs
possess a higher discriminative capability, which can be manipulated using simpler
schemes relying solely on their statistics. The pooling methods generally provide
a low memory footprint and can outperform more complex hand-crafted represen-
tations. The work of Razavian et al. [72] propose to employ a max-pooling layer,
named Maximum Activation of Convolution (MAC), i.e. computing the descriptor
as f = [f1, . . . , fC ]> with fi = maxp∈ΩXi(p).

SPoC (Sum-Pooled Convolutional features) [73] utilizes instead a sum pooling
layer, namely f = [f1, . . . , fC ]> with fi = ∑

p∈ΩXi(p). This approach achieves better
results than the max-pooling strategy, because it produces descriptors which are
less sensitive to the presence of distractors.

The two previous approaches consider the feature maps in their entirety, R-MAC
(Regional-MAC) [74] propose to apply the max-pooling operation on subregions of
the feature map and then combine the resulting regional descriptors by summing
them.

Finally, GeM (Generalized Mean aggregation) [71] propose a generalized pooling
method that for particular values reduces to maximum and average pooling, i.e.
it generalizes both MAC and SPoC. This method, together with R-MAC, is the
current state of the art in the pooled-representation methods. The GeM descriptor
is the vector f = [f1, . . . , fC ]> obtained as the concatenation of the parametric
mean operation applied to each activation map i, fi =

(
1
|Xi|

∑
p∈ΩXi(p)mi

) 1
mi . The

parameters mi can be learned end-to-end and also shared among the C feature
maps.

2.4.3 Similarity Search
Regardless of the method adopted to extract the images representations, the fol-
lowing step in the Image Retrieval setting is to use these descriptors in order to
match the input query with a shortlist of potential candidates in the database. The
techniques in the VG literature most commonly use the Euclidean distance (or L2
norm) to directly measure the dissimilarity between images in the descriptor space.
Less diffused is instead the use of the cosine similarity.

The most similar elements in the database are retrieved using an exhaustive
search with a k-Nearest Neighbors (kNN) algorithm, the primary technique used
for CBIR and VG in the IR setting. Although the simple nature of this algorithm,
the high dimensionality of the descriptor makes it quite expensive and can also
lead to the disruptive phenomena known as the curse of dimensionality, i.e., the
distances between the query and all the database instances become almost equal.
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The dimensionality of the descriptors is for this reason regarded with uttermost
importance for both memory requirements, especially in the case of large scale
datasets, and to obtain effective discriminative image representations.

When the number of images in the database scales to millions of images or even
more, exhaustive kNN becomes unsustainable and is replaced with Approximate
kNN (ANN) algorithms that trade-off the the accuracy of the results with efficiency
and memory footprint. Among the different strategies presented in the literature,
the ones that have been employed in this work are Inverted File Index [48], Prod-
uct Quantization [75], Inverted Multi-Index [76] and Hierarchical Navigable Small
World graph [77]. Fortunately, efficient and highly optimized implementations of
ANN algorithms are available; the library used for this work is the FAISS library
[78].

2.4.4 Candidates Re-Ranking

The retrieved candidates obtained through the similarity search can be seen as
a shortlist of possible locations of the query image. The quality of the potential
candidates retrieved by a VG system can be worsened by different factors, such as
the different disturbances introduced by the appearance modifications discussed in
Section 2.1 or the use of the approximated similarity search algorithms discussed
in Section 2.4.3. The VG literature has tried to overcome the presence of false
positives in the final predictions by proposing a series of methodologies to post-
process and refine the list of retrieved database images. These methods can be
divided into the following categories:

- Spatial (Geometric) Verification: given a pair of images, the methods falling
under this category first detect the feature-to-feature correspondence between
them and then verify the reliability between the features matches by analyzing
their consistency under different spatial transformations. The score achieved in
this geometric verification is used to re-rank the candidates. The most popular
example of these methods is RANSAC [33]. If the VG pipeline relies on hand-
crafted sparse local features, they can be used to compute the image descriptor
and for the re-ranking procedure. In the case of deep-learned descriptors, there
are different choices:

– the heuristic extraction of local descriptors from the CNN used to generate
the image representation;

– to employ two separate CNNs, one for the image representation and the
other for the sparse local features;

– hybrid CNNs to extract both image representation and local descriptors.
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- Non-Geometric Refinement: all the methods that do not rely on the verifica-
tion of geometric correspondences between local features, making them suit-
able for deep-learned representations, an example in [79] compare the query’s
MAC representation with the sets of R-MAC representations of the database
images.

- Query Expansion: which refines the initial results by combing them with the
query to produce an enriched representation of the depicted location used to
perform a new search over the database. If the initial results are accurate
enough, the second query will retrieve additional relevant candidates that im-
prove the system’s overall performance. The method was proposed for the first
time in the visual domain by [80].

- Diffusion: which considers the manifold structure of the visual data to obtain
a more accurate estimate of the similarity between images. This approach
interprets the data as a graph where each node represents an image, and
every edge represents the pairwise similarity among two database instances.
The ranking score of each image with respect to the query is computed as a
random walk over this graph.

2.5 Benchmarks in Visual Geo-localization
The first half of this work is devoted to developing a benchmarking framework for
Deep Learning methods applied to the Visual Geo-localization task in its image
retrieval formulation. The only benchmark designed explicitly for VG is the VPR-
Bench framework presented in the work of Zaffar et al. [81]. Another work that
evaluates the performances of VG methods is the previously mentioned work of Pion
et al. [17], which has an entirely different focus on Visual Localization downstream
applications.

In contrast to the approach proposed in this work, the authors of [81] compare
the methods proposed in the literature treating them as off-the-shelf architectures.
To clarify, the term "off-the-shelf" in this context indicates that these architectures
are taken already trained from the different works. Since these methods are usually
designed with different scopes and downstream applications (see the discussion of
Sec. 2.1), they are trained on different types of datasets, possibly employing differ-
ent mining techniques, losses, and a rather different combination of design choices
in their training. This diverse set of underlying conditions lead to unstructured
experiments and it is not straightforward to draw conclusions on the final results
in this scenario.

Our work aims to provide a fair and clear evaluation protocol for VG meth-
ods that overcomes all the limitations of previous works. The central idea was
to design a flexible framework that can be used to train and evaluate the various
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techniques from the literature. This framework enables combining and trying dif-
ferent elements in the VG pipeline, providing a powerful analytic tool for research
or industry practitioners. Moreover, another problem addressed with this work is
the necessity of a tool to investigate other practical requirements of these methods.
Even if [81] provides valuable insights on descriptor dimensionalities and extraction
times, our framework considers a broader and more general collection of hardware-
agnostic statistics, such as FLOPS and size of the models, memory footprint, mining
complexity, and parallelization capabilities of several VG techniques.

2.6 Sequence-Based Visual Geo-localization

Most of the methods studied for Visual Geo-localization are designed for single im-
ages. However, many applications of VG in the robotics community deal inherently
with sequences of images. The most notable example is Visual SLAM, which stands
for Visual Simultaneous Localization and Mapping, defined as the task for a robot
to build a map of an unknown environment and perform self-localization using only
visual information simultaneously. This task requires a robust and accurate loop
closure detection module, which can identify areas that are observed again after
a long period of the exploratory phase of the environment. When they are con-
fidently detected, the loop closures provide correct data association for the whole
SLAM system to obtain a consistent map. These methods find application also in
robot relocation after entering in tracking lost state because of sudden motions,
severe occlusions, or motion blur. The entire process of loop closure detection and
construction of the internal representation of the environment entails a continuous
stream of images that must be analyzed by the image processing module of the
robot. As a result, this type of application could benefit from the development of
methods able to extract as much information as possible from sequences of images
in order to better understand the surrounding ambient.

Instead, in the Computer Vision community, only a few works explored the use
of sequence-based techniques to extract temporal and multi-view information for
VG. Nevertheless, a vast literature exists for spatio-temporal representation of video
data with applications in action classification [82], activity recognition [83], person
re-identification [84], dense video captioning [85], 3D semantic labelling [86], 3D
shape completion [87], and dynamic scene recognition [88]. To learn better spatio-
temporal representations, many of these works employ 3D convolutions on the video
volume [89, 90]. However, most of these tasks only deal with a limited number of
classes, while for VG the methods should acquire the ability to extract relevant
features to discriminate ordinary places and regions of the physical world.
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2.6.1 Current Approaches
In the robotics literature, building from the first methods that rely only on single
images, like for FAB-MAP [91], we can identify a consistent line of work dealing
with sequential score aggregation techniques. The methods following this approach
aggregate the information from single images into descriptors of local navigation
sequences, consisting of vectors storing differences of the hand-crafted features vec-
tors of frames acquired in a small time window. Compared to traditional single-
image methods, the works of [92], [93] and [94] showed to benefit from the use of
sequence-based matching under extreme appearance variations. For instance, Se-
qSLAM [93] does not try to find the single descriptor that best matches the current
image descriptor (global best match). Instead, such methods aim at finding all
the descriptors within local neighborhoods of sequential images that best match
the current one (local best match). Then, localization is achieved by recognizing
coherent sequences of these "local best matches" through sequence-based matching.
More in detail, the search for image sequences follows these steps. At first, the
difference vectors between the local frames are computed and joined to form an
image-matching matrix. Then, straight-line trajectories are projected from each
possible template in the matrix to find the lowest-cost sequences. The final step
involves applying a global cost threshold to determine which sequences are accepted
or rejected.
The subsequent research in this area focused on improving these sequence score ag-
gregation methods with the use of odometry [94], camera velocity-robust sequence
searching [95, 96], hashing based match selection [97], handling different routes [98],
using temporal information within a diffusion process [99] and trajectory-based at-
tention learning for SLAM [100].
Another hand-crafted approach is DBoW [101], which uses a Bag of Visual Words
for the BRIEF [102] with FAST keypoints [103] features extracted from the single
images and incorporates a temporal consistency constraint. This constraint con-
sists of grouping together images that depict the same place during the matching
to prevent images collected in the same place from competing among them when
the database is queried.
The aforementioned hand-crafted methods present several drawbacks:

- they cannot address changes in the sequence direction;

- they rely on long-term sequence matching, i.e., both query and database se-
quences must have many consecutive matching frames;

- they assume linear temporal correlation for sequence matching.

Moreover, these techniques are not learned end-to-end and operate on the matching
scores obtained from the descriptors obtained from single images. Regarding this
last point, the VG literature extensively studied the representation extracted from
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individual frames, while the use of temporal or sequential information to create a
single compact representation for an entire sequence has received limited attention.

Few more recent works [104, 105, 106] try to address these issues proposing new
methods that build on the previous research on both single-image VG and hand-
crafted robotics techniques.
In the work of [104], the authors propose and evaluate three different deep net-
work architectures. These architectures are composed of a backbone ResNet-50
[107] pre-trained on Imagenet, a fully connected layer, and three distinct aggrega-
tion methods to exploit multi-view and temporal information from small sequences
of images. In order to include temporal information into the descriptors, the first
approach consists of the concatenation of the descriptors of consecutive frames (De-
scriptor Grouping). However, this naive technique cannot learn to weigh differently
the features extracted from different feature maps. Then, the second method, called
Descriptor Fusion, improves the previous one by adding a fully connected layer that
reduces the concatenated descriptors into a compact global descriptor for the whole
sequence. Both Descriptor Grouping and Fusion do not exploit the sequential na-
ture of the consecutive frames. In the third method, the authors replaced the fully
connected layer of the second method with a Long Short Term Memory network
(LSTM) [108].

The works of [105] and [106] aim to enhance the previous works based on the
sequence similarity matrix. SeqNet [105] builds on SeqSLAM [93] proposing a
hierarchical method that first filters the top-k matching candidate sequences and
then performs sequence score aggregation. The input sequence is fed to an off-
the-shelf descriptor extractor using NetVLAD [16], which is kept fixed during the
training procedure. These descriptors are used from the downstream architecture
to extract two other types of descriptors: sequence-level descriptors, which encode
in a single vector the information of the entire sequence; frame-based descriptors,
used to perform the search in the similarity matrix.
The first branch of the network extracts the sequence-level descriptors using a stack
of three layers, i.e., a Temporal Convolution Network [109], a Sequence Average
Pooling (SAP), and an L2-Normalization layer. The resulting descriptors are used
to select from the gallery the top-k matching candidate sequences.
The other branch learns single image descriptors for each frame, which are a linear
transformation of the input NetVLAD descriptors, and uses them to perform the
sequential aggregation with the single-image descriptors of the top-k sequences
obtained before obtaining the final match. Note that the use of the sequential search
relies on the assumption of a one-to-one correspondence between the reference and
query sequence, which could not always be the case in practice posing a consistent
limitation to this method.

Finally, the work of [106] utilizes the sequential information to create a more ro-
bust descriptor, named Delta Descriptors, to contrast the influence of appearance
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changes due to different seasonal, atmospheric, and day/night conditions. This
method works in an unsupervised setting and transforms the original input deep-
learned image descriptors into a difference-based representation that considers the
temporal differences across descriptors of different places observed throughout the
sequence. The main reasons behind this work reside in how the sequences are man-
aged in many applications of VG for mobile autonomous systems. In this scenario,
the input images arrive as a continuous stream from the visual sensors and then
are translated into high-dimensional descriptors. The resulting stream of descrip-
tors can be seen as a multivariate time series. However, two sequences depicting
the same succession of places under different conditions will present a substantial
offset due to the appearance shift. The off-the-shelf descriptors alone cannot over-
come this limitation. By mapping them into a difference-based representation, the
authors aim at obtaining more robust and stable descriptors that ignore the do-
main shift focusing more on the actual place described. This approach requires
medium or long length sequences, otherwise limiting the number of images leads to
an inconsistent representation because of the high overlap between adjacent frames.

2.7 Self-Attention and Vision Transformers

2.7.1 The Attention Mechanism

The attention mechanism was initially developed in the Natural Language Process-
ing (NLP) community in the context of neural machine translation [110] to help
the models memorize the content of long input sentences. The traditional methods
[111, 112, 113] in this area rely on an encoder-decoder architecture, where both
components are recurrent neural networks (RNNs), usually LSTM [108] or GRU
[114] units. The input sequence of source tokens is fed into the encoder, which
compresses the information into a context vector of fixed length. This sentence
embedding should summarize the meaning of the entire input sequence. The ex-
tracted context vector is used to initialize the hidden state of the decoder, which
then generates the target tokens one after the other. Despite outperforming classi-
cal statistical methods, these methods presented two evident drawbacks. Working
with long sequences, the RNNs forgets the old information after propagating it for
many steps. Second, during the decoding phase, the model lacks an explicit world
alignment between source and generated target sequence, leading to a scattered
focus on the whole sequence.

Rather than building a single context vector, the authors of [110] maintain an
RNN encoder but propose to let the decoder access the information of both encoder
and decoder hidden states plus the alignment between the source and target tokens.
At each decoding step j, an attention score αji is computed for each hidden state
hin

i of each input token and it is used to compute a dynamical context vector cj.
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In formulas:
eji = a(hin

i ,hout
j ) (2.1)

αji = eji∑
i eji

(2.2)

cj =
∑
i

αjihin
i (2.3)

where a(·, ·) is the alignment function (or score function)which measures the simi-
larity between two tokens, eji represent the attention score and αji is its normalized
version. The hidden states generated at each step i by the encoder are combined
together with a weighted average to obtain the current context vector cj. In [110]
the alignment function was parameterized by a feed-forward neural network with
a single hidden layer and trained with the rest of the network. This approach
is commonly referred to as additive attention. Over the years, other score func-
tions have been proposed, the most common ones are content-based attention [115],
location-based attention [116], general attention [116], dot-product attention [116]
and scaled dot-product attention [117]. In short, the attention mechanism allows
the neural network to attend selectively to a subset of the input data to make its
predictions.

2.7.2 Self-Attention
Self-attention is a type of attention mechanism for which the input sequence also
represents the target sequence. The model estimates part of the input data utilizing
other portions of the same input. This mechanism is conceptually similar to non-
local means [118], which is a standard filtering algorithm for image denoising. In
the NLP community, self-attention found applications in machine reading [119],
abstractive summarization [120] and image description generation [121]. With the
work of [117] that introduced the Transformer architecture, the use of self-attention
has become ubiquitous first in NLP and more recently in the computer vision
community.

Before the advent of transformers, the use of attention already fascinated Com-
puter Vision researchers. The term Visual Attention, coined by [122], refers to the
capability of the model to learn how to focus only on relevant regions and to encode
long-range structural dependencies between areas of the input image. The literature
related to the application of visual attention is vast and complex. For an exhaustive
analysis of the topic, the reader is referred to [123, 124, 125]. Here we will restrict
the focus to the methods employed in this work, further explained in detail in Sec.
5.3. In the literature, it is possible to identify two possible directions that aim
at integrating the self-attention to vision tasks: propose self-attentive modules for
CNNs or directly employ Transformer-based architectures. Before delving into the
latter, the focus will be on summarising the most important methods that combine
self-attention and CNNs.
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In the work of [15], the authors take inspiration from the non-local means algo-
rithm [118] and propose a general differentiable non-local operation module:

zi = Wzyi + xi (2.4)

yi = 1
C(x)

∑
∀j
f(xi,xj)g(xj) (2.5)

where x is the input image or its feature representation, y is the contribution
from the non-local module that is combined with a residual connection with x to
obtain the output z. The function f(·, ·) computes a score between elements in
position i and j, while g(·) extracts a representation of the input in position j. The
general nature of the formulation becomes evident when inspecting the index i,
which can identify a spatial, temporal, or spatio-temporal location. This flexibility
allows overcoming the intrinsic spatial locality of CNNs, providing them with a
mechanism to attend interactions between every couple of spatial locations in the
input. Furthermore, it also let them operate in the temporal domain without the
use of recurrent units.

However, the computational cost of the non-local module requires a quadratic
computational complexity in the number of input feature maps. For this reason, the
following work [126] tries to address this issue by proposing a criss-cross attention
module. Instead of considering all the input features when computing y, they
account in the computation only the ones that are on the criss-cross path.

Self-attention was also used in Local Relation Net [127], which proposes a dif-
ferentiable layer able to generate dynamical weights based on the compositional
relationship of the input quantified in terms of similarity between features or pixels
in a local window.

Finally, the work of [128] goes in the direction of fully replacing the convo-
lutional layers with self-attention stand-alone modules that employ a 2D relative
position encoding [129]. Although the competitive results were achieved with the
self-attention-only modules, the authors got the best performances combining them
with convolutional architecture.

2.7.3 Transformers
"Attention is all you need" [117] is the paper that in 2017 proposed the Transformer
architecture. The network is based only on the self-attention mechanism, avoid-
ing recurrent and convolutional elements. Moreover, their design does not imply
the need for a strong inductive bias, typical of convolutional networks, making
them suited for processing multiple modalities. Transformers showed an excellent
capability to long model dependencies between input sequence elements with the
advantage over standard RNNs to be highly parallelizable. This ability has proven
particularly relevant for using this architecture outside the NLP tasks, achieving
outstanding results in processing images, videos, audio, and graphs.
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Compared to the models described in the previous section, Transformers relies
totally on attention, particularly on the scaled dot-product self-attention. Given
a query matrix Q, a key matrix K, and a value matrix V , whose columns are
the learned projections of the original sequence tokens into three different spaces,
the output of the self-attention module is a weighted sum of the value vectors.
The weight for each position is dynamically determined based on the dot-product
between each query and all the key vectors. In matrix form, the formula is the
following:

Attention(Q,K, V ) = Softmax
(
QK>√
dk

)
V (2.6)

where the scaling factor 1/
√
dk is justified by the consideration that for large se-

quences the dot-product push the softmax function into regions with excessively
small gradients.

The other important element in this architecture is the idea of Multi-Head Self-
Attention (MHSA). Instead of relying only on a single attention block, the Trans-
formers exploit the multi-head mechanism to split the input tokens into smaller
vectors and compute the self-attention over each subspace in parallel. This ap-
proach captures multiple complex relationships among different elements in the
sequence. Each head owns its set of learnable weight matrices {W q

i ,W
k
i ,W

v
i }, with

i ∈ {0, . . . , h − 1} and h the number of heads, which is fixed to 8 in [117]. The
output of the heads is concatenated into a single matrix and then fed again into
another linear layer to obtain the final representation. The complete original Trans-
former architecture has an encoder-decoder structure and will be further detailed
in Sec. 5.3.

2.7.4 Vision Transformers
Following [117], an increasingly extensive line of research in the NLP community
focused on enhancing and developing Transformer-like models between them BERT
(Bidirectional Encoder Representations from Transformers) [130], GPT (Genera-
tive Pre-trained Transformer) v1-3 [131, 132, 133], RoBERTa (Robustly Optimized
BERT Pre-training) [134] and T5 (Text-to-Text Transfer Transformer) [135].

As already mentioned, the impact on NLP and the extreme flexibility of this
architecture attracted the interest of the Computer Vision community, which in a
short amount of time has applied them to a large variety of tasks (for a complete
overview, please refer to [136, 125]). After the works on self-attention modules
within CNN architecture, two subsequent works [137, 138] proposed to replace
the convolutional layers with stand-alone single-head self-attention primitives com-
pletely. However, the turning point in the use of pure Transformers applied di-
rectly on image classification tasks arrived with the paper "An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale" [13]. Vision Trans-
formers (ViT) became the first successful application of the pure Transfomer to
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image inputs. As the title of the paper suggests, this approach does not modify the
architecture but proposes to handle 2D images by reshaping them into sequences of
patches of 16x16 pixels that are then flattened as vectors and used as sequences of
input tokens. Unfortunately, the high expressiveness of architectures using multi-
head self-attention comes with a price: they must be trained or pre-trained on large
datasets to achieve good performances. In the case of ViT, the model was initially
pre-trained on JFT dataset [139], a proprietary dataset with 300 million images,
before the fine-tuning on ImageNet. This requirement seems to restrict the applica-
tions of this family of architectures only to a restricted number of research centers
with enough computational power and with the ability to collect these enormous
datasets.

The next obvious step was to address this issue by developing models capable
of generalizing well without using a massive amount of data. In this sense, the
authors of DeiT [140] propose a distillation approach that allows training a vision
Transformer effectively only on ImageNet by using a CNN as a teacher model.
Another type of approach entails the combination of convolutional layers that inject
an inductive bias in the pure-transformers. Some of the most common hybrid ViT
architectures are the Convolutional vision Transformer (CvT) [141], LocalViT [142],
LeViT [143] and Compact Convolutional Transformer (CCT) [14]. The latter is used
in this work and will be further discussed in Sec. 5.3.

The last Transformer-based architecture described in this section is the TimeS-
former [144], a work that proposes to use the ViT architecture in the context of
video understanding. To model the spatio-temporal relationships of the video, the
authors introduce a different self-attention scheme, named “Divided Attention”.
TimeSformer applies the temporal and the spatial attention separately in each en-
coder block, achieving state-of-the-art results on action recognition.
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Chapter 3

Benchmarking Framework

This chapter presents a discussion about the structure and the organization of
the developed benchmarking framework. As already introduced in Section 1.1,
the main motivation behind this work is the current lack in the VG literature of
a standardized setting for training and evaluating models with a focus on both
performances and hardware, and time requirements. Compared to similar works in
the literature, the focus of this work is not only to evaluate the performance of an
exhaustive collection of methods on several datasets considering only the standard
Recall@N. Instead, the metrics considered and the experiments conducted for this
work aim at providing a complete overview of the requirements and the different use
case scenarios that may influence the choice of a particular method over another.
This result was achieved by designing and developing the entire framework following
a strict modular architecture that allows the analysis of each element of a VG
pipeline. The software development, the execution of the experiments, and the
analysis of the results is the outcome of a group effort. The paper produced from
this work is currently under submission to a top-tier Computer Vision conference.
For this reason, all the tables and figures in this and the following chapters cite our
paper [8].

The development of an effective benchmark is based on three design elements:
the datasets, the metrics, and the software implementation. The first section of this
chapter provides a detailed description of the datasets utilized. The following sec-
tions explain the VG pipeline implemented in the framework and the methodology
adopted to conduct the training and the evaluation of the VG models.

3.1 Datasets
An important element in the design of a benchmark is the choice of the datasets
used to evaluate the methods under analysis. When considering a dataset, it is
essential to be aware that it represents a specific problem with its challenges and
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(a) Pitts30k

(b) St Lucia

(c) San Francisco

(d) MSLS

(e) Eynsham

(f) Tokyo 24/7

Figure 3.1: Geographical coverage of the datasets used in the benchamark. Figure
from [8].

limitations. From this perspective, it becomes evident that considering a broad
collection of datasets with various characteristics is essential for the benchmarking
scope. An ideal dataset for VG should have the following properties: dense, large-
scale, with GPS labels, and with temporal variations for training. Among the
VG datasets in the literature, six distinct datasets with heterogeneous properties
have been selected: Pittsburgh 30k (Pitts30k) [16, 145], Mapillary Street Level
Sequence (MSLS) [146], Tokyo 24/7 [147], Revisited San Francisco (R-SF) [148,
149], Eynsham [49] and St. Lucia [150]. This collection of datasets embraces
a wide variety of Visual Geo-localization scenarios. Their choice was meant to
provide a set of datasets with different geographical coverage scales (as depicted
in Figure 3.1) and different image types ranging from panorama views, i.e., 360◦
degrees adequately tiled and projected, also used for pose estimation, to front-view
and phone images. Other factors considered in this choice were the density and the
number of images that compose the datasets. Further details on the characteristics
of these datasets can be found in Tables 3.1 and 3.2.

The methods considered in the benchmark were trained using Pitts30k and
MSLS for their complementary properties. These two datasets establish two very
different training settings for the models. Pitts30k presents a homogenous selection
of images collected in the city of Pittsburgh. The images are obtained from the
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# Train
DB/Q

# Val.
DB/Q

# Test
DB/Q

Dataset
size

Database
type

Database
img. size

Queries
type

Queries
size

Pitts30k 10k / 7.4k 10k / 7.6k 10k / 6.8k 2.0 GB panorama 480×640 panorama 480×640
MSLS 915k / 503k 19k / 11k 39k / 27k 56 GB front-view∗ 480×640∗∗ front-view∗ 480×640∗∗
Tokyo 24/7 - - 75k / 315 4.0 GB panorama 480×640 phone variable
R-SF - - 1.05M / 598 36 GB panorama 480×640 phone variable
Eynsham - - 24k / 24k 1.2 GB panorama 512×384 panorama 512×384
St Lucia - - 1.5k / 1.5k 124 MB front-view 480×640 front-view 480×640

Table 3.1: Overview of the typology and the number of images for each dataset
employed in the benchmark. The images are categorized in: “panorama”, images
tiled and undistorted from 360◦ panoramic views; “front-view”, only forward-facing
view available; “phone”, collected with smartphones. Table from [8].
∗MSLS also provde a limited amount of sideways images.
∗∗ A small group of MSLS images has a different resolution. They are resized to 480 × 640 as
done by [146].

Google Street View API and, for this reason, are pre-processed 360◦ panorama-
views. The locations appear under stable weather conditions and in the daytime.
This dataset serves to mimic the model’s performances on a small-medium urban
dataset, with its 10k database and 7.4k query images for training (see Table 3.1).

On the other hand, Mapillary SLS represents a large-scale global dataset that
includes urban and suburban locations, collected under different weather conditions
and times of the day. With a total of 1.6 million images, it is the largest VG dataset
to this date. For the most part, MSLS’ images are front-view images collected by
frontal cameras in cars and curated from the Mapillary mapping platform. The
images come from 30 cities across the world. Each dataset split is composed of
images from a disjoint set of towns with respect to the other splits. Unfortunately,
the GPS ground truths for the test set are not available to the public because they
use them to hold competitions, such as the Facebook Mapillary Visual Place Recog-
nition Challenge at ECCV2020. Following what is already done in the literature
[151], the results are computed on the validation set. Although the use of the test
set would be preferable, given the geographical diversity between the training and
validation set, in which images come from distinct cities, this approach can still be
accepted as an overall result for evaluating the results obtained on MSLS.

As highlighted in the work of [16], a training dataset for VG applications must
contain images collected over a large period in the order of years. The idea behind
this remark is to provide the learning algorithm precious data that it can use to
discern which features provide valuable information or not and learn to extract
representations invariant to the appearance changes in images depicting the same
location at different times. Both Pitts30k and MSLS provide images collected over
several years. In particular, the Pitts30k employs the Time Machine functionality
of Google Street View, while MSLS uses data collected for seven years by the
Mapillary mapping platform.

The other four datasets, i.e., Tokyo 24/7, R-SF, Eynsham, and St. Lucia, are
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Area
(km2)

Perimeter
(km) Environment Day/night

changes
Long-term
variations

Pitts30k 0.615 3.42 Urban 7 X
MSLS - - Urban + Suburban X X
Tokyo 24/7 2.1 5.8 Urban X X
R-SF 13.6 14.0 Urban 7 X
Eynsham - - Urban + Suburban 7 7
St Lucia 0.69 3.5 Suburban 7 7

Table 3.2: Summary of different qualitative information about the datasets. With
“Long-term variations”, we refer to images within a timespan larger than one year.
Table from [8].

employed in the framework to assess the generalization capability of the meth-
ods trained on Pitts30k and MSLS. As better detailed in the following sections,
this dataset group represents a helpful and variegated evaluation tool to analyze
the strengths and weaknesses of the image representation learned by the different
methods. Figure 3.2 contains a qualitative example of the differences between query
and database images and how they differ across the selected datasets.

Other than the six datasets employed in the training and evaluation protocol of
the benchmark, some experiments in this work also examined the importance of
using different datasets for the pre-train of the backbones in place of the standard
ImageNet [39]. Specifically, these datasets are the two versions of Google Land-
marks Dataset [29, 30], from the Landmark Retrieval literature, and Places365
[152], which is a famous dataset for classification.

3.1.1 Mapillary SLS
Mapillary Street Level Sequence (MSLS)[146] has been introduced to facilitate the
development of life-long VG applications. MSLS spans 30 cities across the globe in
urban and suburban areas. One of its objectives is to reduce the data bias favoring
highly populated cities in developed countries that usually affect the VG dataset;
for this reason, it contains images from places like London and Paris as well as
Goa, Nairobi, and Manila. It provides many variations in geographical diversity,
seasonal changes, time of day, viewpoint, and weather conditions. In this work, it
has been used for both training and evaluation of the models.

3.1.2 Pittsburgh 30k
Pittsburgh 30k (Pitts30k) is a subset of the larger Pitts250k dataset from [145].
Pitts30k was proposed by Arandjelović et al. [16] as the training dataset of choice for
their NetVLAD architecture. The images were collected from Google Street View
by cropping the equirectangular panorama-view images into tiles and then applying
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(a) Pitts30k

(b) Tokyo 24/7

(c) San Francisco

(d) MSLS

(e) Eynsham

(f) St Lucia

Figure 3.2: Examples of query and positive images from the different datasets used
in this work. Figure from [8].
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a projection to alleviate the distortion. The dataset contains images gathered over
a period of 2 years, but they do not contain other substantial domain shifts. In
this work, Pitts30k was used for training and evaluation.

3.1.3 Tokyo 24/7

Tokyo 24/7 dataset was proposed by Torii et al. [147]. The medium-sized database
is obtained from Google Street View. The query set contains a few hundred images
manually collected with a smartphone that contain substantial variations in illumi-
nation and show structural changes in the scene. Some works [16, 153, 154] using
this dataset employ the Tokyo Time Machine dataset (Tokyo TM) as a training
dataset to overcome the limitation in the number of queries. However, in this work,
Tokyo 24/7 is used only in the evaluation phase of the models.

3.1.4 Revised-San Francisco

The Revised-San Francisco (R-SF) is composed of a large-scale database of 1 million
images collected with a mobile mapping vehicle equipped with a panoramic camera
and a set of a few hundred queries collected with a phone camera [149]. Among
the different studies in Visual Localization that provided queries’ labels for this
dataset, our choice for this work was the ones from [148].

3.1.5 Eynsham

The Eynsham dataset [49] is a traditional Visual Geo-localization dataset for robotics
and autonomous vehicles. The grayscale images composing this dataset were col-
lected by panoramic cameras placed on top of a car that ran across a circular loop
passing through the city’s streets and the countryside of Oxford. The whole dataset
comprises images taken from two separate laps of the same path used as database
and query photos in this work.

3.1.6 St. Lucia

St. Lucia [150], similarly to Eynsham, is an old-fashioned dataset collected trav-
eling through the suburbs of Brisbane multiple times. The dataset is composed
of front-view images taken by cameras positioned in the forward direction of the
car. St. Lucia provides a high density per meter, then downsampled to one frame
every 5 meters during our pre-processing step. The database and the query images
are selected among the different laps provided. The images are all collected on a
fine sunny day starting in the late morning and, for this reason, do not present
substantial time or weather changes.
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3.2 Methodology

3.2.1 Visual Geo-localization System
The benchmarking framework proposed in this work aims to create a standard,
flexible and modular platform for evaluating and training Deep Learning methods
for Visual Geo-localization tackled as an Image Retrieval task. To guarantee the
flexibility needed to replicate several methods from the literature, the design of this
system required a trade-off between the need for a straightforward setup and the
possibility of integrating all the best-known practices.

The result of this design stage is the pipeline illustrated in Figure 3.3 that
provides a wide variety of algorithmic and engineering choices. The architecture
follows the abstract pipeline for an Image Retrieval approach, described previously
in Section 2.3.1. The software developed mirrors the diagram. The idea behind the
modular approach is to obtain a pipeline for which one can change each element
without replacing the entire architecture. In this way, it is possible to pinpoint the
impact of every switchable module at training and inference time. This framework
allows to replicate several state-of-the-art methods from the literature [16, 10, 71,
74, 146, 155] and their training procedures [16, 146, 155].

Figure 3.3 highlights the different design choices that should be considered in
the engineering of a VG application. During the training phase, the system selects

Figure 3.3: Visual Geo-localization System. The image represents the abstract
VG pipeline adopted in the benchmarking framework. The diagram distinguishes
between training and test time and describes all the elements involved in the system.
All the light blue blocks are switchable elements that allow constructing different
VG architectures. Figure from [8]
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from the database a set of positive and negative images for each query through
a mining procedure and proceeds with a learning procedure based on a triplet
loss, further detailed in Sec. 3.2.2. For each triplet, composed of (i) the query,
(ii) a set of positive images and (iii) a set of negative ones, the system extract
image representation through a forward pass in a neural network backbone and
a feature aggregation layer. The number of query images can be increased by
using data augmentation techniques, and the entire triplet is subject to a resize
operation.

At inference time, the VG system takes a new query with an unknown location,
extracts its image representation, and then matches it with a shortlist of the most
similar descriptors of the database’s images. For performance reasons, the image
representations of the database are computed offline and used for the similarity
search with the descriptors of the query image for deployment. As for the training
procedure, it is possible to select among different backbones and feature aggregation
methods. Based on the hardware requirements, one can consider different image
resizing strategies and the adoption of different similarity search algorithms.
Most of the experiments presented in the following chapter rely on an exhaustive
kNN, but it is possible to employ Approximate kNN algorithms that trade-off the
accuracy of the results with computational efficiency and memory footprint. At
test time, the proposed framework allows the use of pre-processing and post-
processing methods that act to the query image and aim at improving the quality
of the shortlist produced by the VG pipeline.

3.2.2 Experimental Protocol
The protocol adopted in the benchmark provides that the models are trained on
MSLS and Pitts30k and then tested on all six datasets described in the previous
section. All the architectures and methodologies evaluated in this work are trained
by using a weakly supervised tripled loss [16, 146, 155]. The images in the datasets
are labeled with their GPS location that is utilized as a form of weak supervision for
the training algorithm. The GPS location gives no information on the orientation
and perspective of the camera that took the picture.

The triplet loss aims at obtaining a model capable of extracting for pictures
depicting the same location two descriptors that are close in the descriptor space;
on the other hand, the descriptors of two images depicting different places should
be adequately far away. At the same time, the triplet loss also wants to avoid the
image representations collapsing into small clusters. Therefore, given a couple of
images depicting the same place and the third one from another location, the idea
behind this loss is to obtain a representation for the negative image that is farther
away than a certain margin compared to the distance between the other two images.
The mining procedure of the VG system produces a triplet composed of an anchor
(i.e., the query), a positive, and a set of negative images. This procedure provides
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Figure 3.4: Illustration of the triplet loss.

the right and challenging examples that are fundamental to successfully training
the model.

Based on the geographical distance obtained through the GPS information, the
first step consists of producing for each query (i) a set of potential positives {pqi},
i.e., database images that are at most 10 m away from the query, and (ii) a set
of definite negatives {nqj}, pictures taken further than 25 m. These two threshold
distances represent the standard for the two training datasets adopted in this work
[16, 146]. Let define the Euclidean distance in the descriptor space between two
images as dθ(I1, I2) and the query image as q. Then, the potential positives are
further reduced to a single best matching positive image by selecting

pqi∗ = argmin
pq

i

dθ(q, pqi ), ∀(q, {pqi}, {n
q
j}). (3.1)

The set of definite negatives is composed only of a subset of the hardest nega-
tive images for the query. The "difficulty" is computed as the similarity with the
query image in the descriptor space. The number of negatives is kept to 10 images
throughout the entire work but can be modified as a hyperparameter. The ulti-
mate goal of the triplet loss is to obtain an image representation for the elements
of the triplet (q, pqi∗, {n

q
j}) such that the distance between the positive image and

the training query, dθ(q, pqi∗), is smaller than the distance between the query and
all the hard negatives (see Fig. 3.4):

dθ(q, pqi∗) < dθ(q, nqj),∀j. (3.2)

This idea leads to the definition of the weakly supervised triplet loss Ltriplet for a
training triplet (q, pqi∗, {n

q
j}) as

Ltriplet =
∑
j

max
((

min
i
d2
θ(q, p

q
i ) +m− d2

θ(q, n
q
j)
)
, 0
)

(3.3)
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where m represents the constant margin. Equation 3.3 is the sum of the individual
hinge losses of each negative image nqj . When the query-negative distance is larger
than the query-positive distance plus the margin, its contribution to the loss is
zero; instead, if this condition is violated, it will contribute to the overall loss of
the triplet proportionally.

The mining procedures adopted in this work are three (i) full, (ii) partial, and
(iii) random mining, and they differ on the approach used to select the hard neg-
atives for each query. Even for a small dataset like Pitts30k, considering all the
database images for creating each triplet brings a prohibitive computational cost.
The idea proposed by [16] is to introduce a caching mechanism that keeps in mem-
ory the image representations of the entire dataset for a certain number of itera-
tions and updates the Nneg hard negatives for each query comparing them to 1000
random sampled database images. The value of Nneg is fixed to 10 for all the ex-
periments. Unless otherwise specified, the training on Pitts30k is performed using
the full database mining procedure, while for MSLS, it is used the partial mining
for efficiency reasons. With this approach, instead of computing the descriptors
for all the database images at each cache update, the algorithm samples 1000 ran-
dom database images, computes their descriptors, and then identifies the negative
examples for all the triplets.

Due to the different number of images in the training datasets, an epoch of the
training procedure is defined as the forward pass of 5000 triplets. The number of
epochs is not considered a hyperparameter because, after some preliminary experi-
ments, the best option has been identified in using an early stopping strategy with
a value of patience equal to 3 epochs based on the value of the Recall@5 on the
validation set. The codebase gives the user the possibility to vary this value and
also to choose among two different optimizers, Adam [156] and SGD. However, the
experiments presented in the following chapter were conducted using Adam with
a learning rate of 1 · 10−5 and a batch-size of four triplets, i.e., the query image, a
positive and ten negatives, for a total of 12 images per triplet. During the testing
phase on the different evaluation datasets, the batch size for R-SF and Tokyo 24/7
is set to 1 to cope with the different resolutions of the images coming from phone
cameras.

The metric used to measure the performances of the models under analysis
on a particular dataset is the Recall@N (R@N), which computes the percentage of
queries for which at least one of the top-N retrieved results is an image taken within
a radius of a certain threshold distance, that for this work is set to 25 meters.
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Chapter 4

Experiments and Results

This chapter provides a complete overview of the experiments conducted for the
benchmarking activity. The analysis follows the architecture of the VG systems
described in Sec. 3.2, for which an exhaustive set of configurations has been evalu-
ated combining different choices for its modular elements. The experiments aim to
reproduce most state-of-the-art methods in the Visual Geo-localization literature
and provide the community with insights that highlight the good practices to follow
under different scenarios in the development of VG applications.

The results presented in this chapter are grouped by the aspect of the VG
pipeline under analysis. All the experiments are repeated three times and are
reported with their standard deviation.

4.1 Backbones
All the VG systems relying on Deep Learning techniques adopt a neural network
backbone for the extraction of highly discriminative features from the input images.
In the context of the benchmarking analysis, we considered the approach followed
by state-of-the-art methods which rely upon CNNs backbones. Their impact on
the performance and the requirements of the overall system has been evaluated by
trying different CNNs combined with the two most popular aggregation methods,
i.e., GeM [71], which provides an extremely compact pooled representation, and
NetVLAD [16], which instead produces a heavier aggregated representation with
usually better performances. The works in the VG literature utilize a restricted
number of CNN architectures (see [16, 10, 71, 74, 153, 146]), which can be identified
in VGG-16 [157] and different versions of ResNet [107], i.e. ResNet-18, ResNet-50
and ResNet-101.

These different architectures provide different characteristics in terms of com-
putational complexity that is measured in FLOPs, i.e., Floating-Point Operations.
This metric is used to quantify the number of floating-point operations required to

42



4 – Experiments and Results

run a single instance of a given model. Other important factors to consider are the
dimensionality of the image representations extracted by the combination of the
backbone plus the aggregation layer and the model size. It is important to relate
these factors with the performance in terms of R@1 over the different evaluation
datasets considered to understand the importance of the backbone, but also which
can be some relevant trade-offs that can lead to an efficient and robust VG system.

Table 4.1 contains the results obtained with the various combinations of back-
bones and aggregation layers. Note that all the models with a ResNet backbone
do not utilize the full CNN architecture, but they are truncated to the conv4_x
layer. This choice was motivated by the experimental results reported in Table 4.2,
which demonstrate how this configuration represents the best trade-off in terms of
the discriminative capability of the features extracted and computational complex-
ity. The VGG-16-based models instead utilize all the convolutional layers of the
architecture by removing the final pooling and fully connected layers.

Backbone Aggregation
Method

Features
Dim FLOPs Model

Size
Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

VGG-16 GeM 512 188.01 GF 56.13 MB Pitts30k 78.5 43.4 39.9 40.4 70.2 46.4
ResNet-18 GeM 256 17.29 GF 10.63 MB Pitts30k 77.8 35.3 35.3 34.2 64.3 46.2
ResNet-50 GeM 1024 40.61 GF 32.71 MB Pitts30k 82.0 38.0 41.5 45.4 66.3 59.0
ResNet-101 GeM 1024 86.29 GF 105.36 MB Pitts30k 82.4 39.6 44.0 52.5 69.0 57.6
VGG-16 NetVLAD 32768 188.09 GF 56.38 MB Pitts30k 83.2 50.9 61.4 64.6 74.4 50.1
ResNet-18 NetVLAD 16384 17.27 GF 10.76 MB Pitts30k 86.4 47.4 63.4 61.4 76.8 57.6
ResNet-50 NetVLAD 65536 40.51 GF 33.21 MB Pitts30k 86.0 50.7 69.8 67.1 77.7 60.2
ResNet-101 NetVLAD 65536 86.06 GF 105.86 MB Pitts30k 86.5 51.8 72.2 67.5 74.0 63.6

VGG-16 GeM 512 188.01 GF 56.13 MB MSLS 70.2 66.7 43.6 32.1 80.4 79.9
ResNet-18 GeM 256 17.29 GF 10.63 MB MSLS 71.6 65.3 42.8 30.5 80.3 83.2
ResNet-50 GeM 1024 40.61 GF 32.71 MB MSLS 77.4 72.0 55.4 45.7 83.9 91.2
ResNet-101 GeM 1024 86.29 GF 105.36 MB MSLS 77.2 72.5 51.0 46.9 83.6 91.6

VGG-16 NetVLAD 32768 188.09 GF 56.38 MB MSLS 79.0 74.6 61.9 57.1 84.2 86.7
ResNet-18 NetVLAD 16384 17.27 GF 10.76 MB MSLS 81.6 75.8 62.3 55.1 87.1 92.1
ResNet-50 NetVLAD 65536 40.51 GF 33.21 MB MSLS 80.9 76.9 62.8 51.5 87.2 93.8
ResNet-101 NetVLAD 65536 86.06 GF 105.86 MB MSLS 80.8 77.7 59.0 56.1 86.7 95.1

Table 4.1: Experiments with different backbones: the Table contains the
results and the requirements with different combination of CNN backbones and
two aggregation layers (GeM and NetVLAD). Table from [8].

The outcomes of the experiments reported in Table 4.1 highlight some essential
findings useful to make an informed choice for the backbone to employ in a VG
system. In fact, a choice based only on the performance in terms of R@1 would
suggest using the heavier and more complex ResNet-101. However, a better trade-
off can be obtained by choosing the lighter ResNet-18 or ResNet-50. These two
architectures may not obtain the highest performances in terms of R@1 but repre-
sent a considerably more suitable trade-off of performances and efficiency for a VG
application.

Using a ResNet-18 backbone provides an exceptionally lightweight choice in
terms of computational complexity with the lowest value of FLOPs and, at the
same time, also leads to the most compact descriptor size compared to the other
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backbones. These properties are highly desirable for real-time VG applications. On
the other hand, the ResNet-50 can be considered as a heavier alternative suitable
for offline applications, where these requirements can be relaxed. For these rea-
sons, these two architectures have been adopted as the two main backbones for the
subsequent experiments.

The results of Table 4.1 are divided into two main blocks based on the dataset
used to train the model. Observing the variability of the results among the different
evaluation datasets, it becomes immediately evident how the training dataset plays
a crucial role in the generalization capability of the models. As already pointed
out, the two datasets have different characteristics that influence the retrieval per-
formances over different datasets. The models using GeM are heavily penalized
by the training with Pitts30k. For instance, using Pitts30k to train a ResNet-101
with GeM leads to a drop in the R@1 on St. Lucia of 30% compared to the same
configuration trained on MSLS. These observations strengthen the argument that
the discrepancy between training and evaluation datasets has a crucial role in the
results obtained by the models. For this reason, it is necessary to remark how the
use of different training settings cannot be neglected and leads to an unfair evalu-
ation protocol when comparing directly different VG methods, as proposed in the
work of [81]. Two possible counter-arguments to this statement could be: (i) that
one may not be interested in the generalization capability of the models and (ii)
that this uniform setting could be sub-optimal for certain techniques tailored to a
specific setup. However, the flexibility offered by the proposed framework provides
a level of granularity in the available choices that could be combined to create more
specific setups. Moreover, it could also serve as a starting point for creating future
automatic tuning systems for VG.

Backbone Aggregation
Method

Features
Dim FLOPs Model

Size
Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 conv4_x GeM 256 17.29 GF 10.63 MB Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 conv4_x NetVLAD 16384 17.27 GF 10.76 MB Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 conv5_x GeM 512 22.33 GF 42.67 MB Pitts30k 77.9 ± 0.3 34.4 ± 0.4 34.4 ± 0.6 36.9 ± 0.3 59.1 ± 1.3 51.2 ± 1.3
ResNet-18 conv5_x NetVLAD 32768 22.28 GF 42.92 MB Pitts30k 79.6 ± 0.5 47.1 ± 1.8 48.9 ± 2.5 49.1 ± 3.6 70.5 ± 1.0 54.4 ± 2.7

ResNet-50 conv4_x GeM 1024 40.61 GF 32.71 MB Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 conv4_x NetVLAD 65536 40.51 GF 33.21 MB Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 conv5_x GeM 2048 50.54 GF 89.88 MB Pitts30k 79.8 ± 0.5 41.5 ± 0.7 48.0 ± 2.5 44.3 ± 1.0 65.2 ± 1.4 57.5 ± 1.5
ResNet-50 conv5_x NetVLAD 131072 50.35 GF 90.88 MB Pitts30k 79.6 ± 0.2 46.2 ± 0.5 54.7 ± 2.6 51.2 ± 2.5 69.8 ± 1.0 53.0 ± 4.1

ResNet-18 conv4_x GeM 256 17.29 GF 10.63 MB MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9
ResNet-18 conv4_x NetVLAD 16384 17.27 GF 10.76 MB MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7
ResNet-18 conv5_x GeM 512 22.33 GF 42.67 MB MSLS 73.5 ± 0.5 68.4 ± 0.8 41.0 ± 0.8 38.6 ± 1.8 79.4 ± 0.5 84.7 ± 0.7
ResNet-18 conv5_x NetVLAD 32768 22.28 GF 42.92 MB MSLS 75.7 ± 0.7 75.7 ± 0.6 49.9 ± 1.6 41.3 ± 0.2 84.1 ± 0.4 91.3 ± 0.4

ResNet-50 conv4_x GeM 1024 40.61 GF 32.71 MB MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7
ResNet-50 conv4_x NetVLAD 65536 40.51 GF 33.21 MB MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2
ResNet-50 conv5_x GeM 2048 50.54 GF 89.88 MB MSLS 74.7 ± 0.4 70.6 ± 0.6 46.3 ± 1.3 42.1 ± 0.5 82.5 ± 0.5 89.8 ± 0.4
ResNet-50 conv5_x NetVLAD 131072 50.35 GF 90.88 MB MSLS 74.7 ± 0.2 75.2 ± 0.5 52.4 ± 0.8 44.0 ± 1.1 85.5 ± 0.4 91.3 ± 0.7

Table 4.2: Analysis on ResNet Architectures: the results show the impact on
performances for Visual Geo-localization obtained truncating ResNet backbones up
to conv4_x. Table from [8].
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Throughout this work, all the models using the ResNet backbones refer to a
truncated version of these architectures, up to the conv4_x layer, in place of the
entire network, i.e., all the convolutional layers up to conv5_x (the nomenclature of
the layers follows [107]). This choice is motivated by an experimental comparison
of the two configurations exhaustively reported in Table 4.2. The results show how
truncating the ResNet networks (both -18 and -50 variants), combined with the
NetVLAD aggregation layer, produces the best R@1 performances overall. The
cropping does not heavily affect the results when using the GeM layer, which in-
stead achieves superior or at least comparable outcomes with the conv5_x version.
Moreover, the feature maps produced in the conv4_x layer have half the number
of channels of the entire network, leading to a more compact descriptor size that
translates into a lower memory footprint and a reduced retrieval time for the VG
systems.

4.2 Aggregation Methods
The literature on Deep Learning approaches for VG in the Image Retrieval setting
proposed a large variety of aggregation techniques. These methods elaborate the
feature maps extracted by the CNN backbones to produce an image representation
used for retrieval. Compared to the previous section that employed NetVLAD and
GeM with different CNN backbones, the objectives are (i) to evaluate a broader and
exhaustive set of aggregation methods and (ii) to analyze the impact of descriptor
dimensionality on the performances of the models.

The collection of aggregation techniques includes the Contextual Reweighting
Network (CRN) [10] layer, which is a further development of NetVLAD. This ag-
gregation layer performs a form of attention mechanism, different from the self-
attentive approaches discussed in this work’s later chapters. Using three convolu-
tional layers with different kernel sizes, this method produces a reweighting mask
for the soft-assigned features of a classic NetVLAD layer. Concerning the pooled
representations, GeM is joined by MAC, R-MAC, and SPoC, all well-known tech-
niques already introduced in detail in Section 2.4.2.2. Furthermore, the analysis
also examines the recent Residual Retrieval Module (RRM) [158] layer, small resid-
ual fully connected block with LayerNorm [159] and L2 normalization.

The choice between an aggregated representation and a pooled one impacts
the dimensionality of the final descriptor. However, it is not unusual in the VG
literature to encounter techniques that reduce or augment the descriptor sizes.
Since the dimensionality of NetVLAD descriptors is in a range that spans from
16k-dimensional vector for lighter architectures, as ResNet-18, to 65k-dimensional
for larger ones, even in the original paper [16] the authors propose the use of PCA
learned on the training set. On the other hand, it is also possible to increase the
descriptor size of compact ones by introducing a fully connected layer after the
aggregation step, as done in the GeM’s paper [71].
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Backbone Aggregation
Method

Features
Dim

Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 SPoC [73] 256 Pitts30k 60.6 ± 0.9 16.5 ± 0.5 15.2 ± 1.1 10.4 ± 0.3 41.0 ± 2.0 29.0 ± 1.5
ResNet-18 MAC [72] 256 Pitts30k 57.3 ± 0.5 25.6 ± 0.4 15.2 ± 1.3 15.5 ± 0.3 49.6 ± 0.7 26.6 ± 1.0
ResNet-18 R-MAC [74] 256 Pitts30k 63.2 ± 0.4 28.7 ± 0.6 22.7 ± 2.3 30.5 ± 1.4 64.0 ± 0.7 42.8 ± 1.3
ResNet-18 RRM [158] 256 Pitts30k 68.2 ± 0.5 21.4 ± 0.8 25.4 ± 1.4 21.7 ± 1.8 51.9 ± 0.8 33.7 ± 0.3
ResNet-18 GeM [71] 256 Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM + FC 256 256 Pitts30k 72.4 ± 0.7 26.4 ± 0.5 27.5 ± 1.2 29.0 ± 1.2 59.3 ± 1.0 39.1 ± 0.8
ResNet-18 NetVLAD + PCA 256 256 Pitts30k 80.7 ± 0.7 38.3 ± 1.2 41.7 ± 0.8 35.9 ± 1.8 68.9 ± 1.1 45.4 ± 2.2
ResNet-18 CRN + PCA 256 256 Pitts30k 82.0 ± 0.7 43.6 ± 0.7 47.7 ± 0.9 45.1 ± 0.3 71.3 ± 0.8 51.3 ± 3.4

ResNet-18 GeM + FC 2048 2048 Pitts30k 75.0 ± 0.4 29.9 ± 0.6 34.5 ± 0.4 36.1 ± 0.2 63.7 ± 0.3 45.1 ± 2.1
ResNet-18 NetVLAD + PCA 2048 2048 Pitts30k 85.0 ± 0.4 45.0 ± 1.5 56.6 ± 0.7 53.2 ± 2.4 75.4 ± 1.1 54.6 ± 3.0
ResNet-18 CRN + PCA 2048 2048 Pitts30k 85.7 ± 0.3 50.6 ± 0.6 61.0 ± 1.6 62.8 ± 1.2 77.4 ± 0.5 61.1 ± 2.7

ResNet-18 NetVLAD [16] 16384 Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 CRN [10] 16384 Pitts30k 86.8 ± 0.1 53.2 ± 0.7 68.8 ± 1.0 69.0 ± 0.6 79.1 ± 0.3 64.8 ± 3.2

ResNet-50 SPoC [73] 1024 Pitts30k 60.9 ± 0.5 19.2 ± 0.4 14.0 ± 0.5 9.0 ± 0.7 40.5 ± 2.3 27.1 ± 1.5
ResNet-50 MAC [72] 1024 Pitts30k 77.6 ± 0.2 36.2 ± 0.7 36.2 ± 1.4 34.8 ± 0.7 72.9 ± 0.3 51.3 ± 2.4
ResNet-50 R-MAC [74] 1024 Pitts30k 74.9 ± 1.0 34.8 ± 0.8 41.8 ± 0.6 46.4 ± 1.0 73.1 ± 0.7 68.7 ± 0.5
ResNet-50 RRM [158] 1024 Pitts30k 72.8 ± 0.2 27.9 ± 0.6 28.3 ± 0.8 28.6 ± 1.0 65.9 ± 0.9 45.1 ± 1.7
ResNet-50 GeM [71] 1024 Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 NetVLAD + PCA 1024 1024 Pitts30k 83.9 ± 0.7 46.5 ± 2.0 59.4 ± 1.2 53.2 ± 3.8 72.5 ± 0.3 57.7 ± 2.0
ResNet-50 CRN + PCA 1024 1024 Pitts30k 84.1 ± 0.4 49.9 ± 0.8 64.6 ± 1.2 58.8 ± 0.1 74.3 ± 0.2 63.4 ± 0.4

ResNet-50 GeM + FC 2048 2048 Pitts30k 80.1 ± 0.2 33.7 ± 0.3 43.6 ± 1.6 48.2 ± 1.2 70.0 ± 0.3 56.0 ± 1.7
ResNet-50 NetVLAD + PCA 2048 2048 Pitts30k 84.4 ± 0.4 47.9 ± 2.0 62.6 ± 1.7 56.0 ± 2.9 74.1 ± 0.4 58.9 ± 1.6
ResNet-50 CRN + PCA 2048 2048 Pitts30k 84.7 ± 0.3 51.2 ± 0.8 67.1 ± 0.7 62.3 ± 0.3 75.8 ± 0.2 65.0 ± 0.1

ResNet-50 NetVLAD [16] 65536 Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 CRN [10] 65536 Pitts30k 85.8 ± 0.2 54.0 ± 0.8 73.1 ± 0.3 70.9 ± 0.2 79.7 ± 0.1 65.9 ± 0.4

ResNet-18 SPoC [73] 256 MSLS 44.2 ± 1.0 39.5 ± 0.5 20.3 ± 1.3 9.5 ± 0.9 62.3 ± 0.6 58.8 ± 0.8
ResNet-18 MAC [72] 256 MSLS 60.4 ± 1.1 54.7 ± 1.8 20.4 ± 2.6 18.9 ± 2.0 76.3 ± 1.2 69.2 ± 1.2
ResNet-18 R-MAC [74] 256 MSLS 58.1 ± 1.2 48.9 ± 2.0 29.1 ± 2.0 34.3 ± 1.4 73.3 ± 1.1 63.7 ± 2.7
ResNet-18 RRM [158] 256 MSLS 60.8 ± 1.5 54.9 ± 2.6 44.4 ± 2.1 30.9 ± 2.8 75.7 ± 1.5 68.7 ± 1.4
ResNet-18 GeM [71] 256 MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9
ResNet-18 GeM + FC 256 256 MSLS 68.6 ± 1.1 59.6 ± 2.6 41.9 ± 2.7 31.3 ± 0.5 78.5 ± 2.0 76.1 ± 3.4
ResNet-18 NetVLAD + PCA 256 256 MSLS 74.2 ± 0.2 70.6 ± 0.3 43.6 ± 0.5 34.7 ± 1.7 84.4 ± 0.4 89.8 ± 0.5
ResNet-18 CRN + PCA 256 256 MSLS 74.5 ± 0.8 72.1 ± 0.1 44.1 ± 1.4 35.1 ± 2.4 84.8 ± 0.3 91.6 ± 0.4

ResNet-18 GeM + FC 2048 2048 MSLS 71.9 ± 1.0 64.0 ± 1.2 51.8 ± 0.9 37.6 ± 1.3 81.1 ± 0.9 79.2 ± 0.9
ResNet-18 NetVLAD + PCA 2048 2048 MSLS 80.4 ± 0.4 74.6 ± 0.2 55.6 ± 1.2 47.4 ± 1.1 86.4 ± 0.3 92.2 ± 0.3
ResNet-18 CRN + PCA 2048 2048 MSLS 80.1 ± 0.8 75.8 ± 0.1 57.2 ± 2.3 47.8 ± 2.7 86.8 ± 0.3 93.2 ± 0.4

ResNet-18 NetVLAD [16] 16384 MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7
ResNet-18 CRN [10] 16384 MSLS 81.3 ± 0.7 76.8 ± 0.0 63.8 ± 1.4 53.9 ± 2.0 87.5 ± 0.2 93.7 ± 0.1

ResNet-50 SPoC [73] 1024 MSLS 47.5 ± 1.3 47.9 ± 1.5 20.6 ± 1.6 8.9 ± 1.0 68.3 ± 0.5 68.6 ± 1.4
ResNet-50 MAC [72] 1024 MSLS 76.0 ± 0.2 67.4 ± 1.6 45.3 ± 1.0 44.4 ± 2.6 84.6 ± 0.4 86.0 ± 0.7
ResNet-50 R-MAC [74] 1024 MSLS 70.1 ± 0.8 62.0 ± 0.5 52.1 ± 2.3 54.3 ± 1.8 80.6 ± 0.5 85.9 ± 1.0
ResNet-50 RRM [158] 1024 MSLS 69.3 ± 1.0 67.4 ± 0.4 53.7 ± 0.8 43.7 ± 1.0 84.3 ± 0.5 84.8 ± 1.1
ResNet-50 GeM [71] 1024 MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7
ResNet-50 NetVLAD + PCA 1024 1024 MSLS 77.4 ± 0.2 74.8 ± 0.3 51.3 ± 1.3 39.0 ± 1.3 85.2 ± 0.3 92.9 ± 0.3
ResNet-50 CRN + PCA 1024 1024 MSLS 77.3 ± 0.3 75.6 ± 0.0 51.8 ± 1.1 38.8 ± 1.0 85.7 ± 0.3 94.1 ± 0.2

ResNet-50 GeM + FC 2048 2048 MSLS 79.2 ± 0.6 73.5 ± 0.8 64.0 ± 3.9 55.1 ± 2.4 86.1 ± 0.7 90.3 ± 1.0
ResNet-50 NetVLAD + PCA 2048 2048 MSLS 78.5 ± 0.2 75.4 ± 0.2 52.8 ± 0.4 42.6 ± 1.3 85.8 ± 0.3 93.4 ± 0.4
ResNet-50 CRN + PCA 2048 2048 MSLS 78.3 ± 0.3 76.3 ± 0.1 54.3 ± 0.7 42.8 ± 1.6 86.2 ± 0.4 94.4 ± 0.2

ResNet-50 NetVLAD [16] 65536 MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2
ResNet-50 CRN [10] 65536 MSLS 80.8 ± 0.2 77.8 ± 0.1 63.6 ± 0.5 53.4 ± 1.4 87.5 ± 0.4 94.8 ± 0.3

Table 4.3: Aggregation methods. Full table of aggregation methods, grouped
by backbone and features dimension. Table from [8].
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Table 4.3 reports the exhaustive set of results obtained with all the aggregation
methods mentioned before. The Table is organized into two blocks. The first half
contains the results achieved with models trained on Pitts30k and the other half
the ones trained on MSLS. Each of these parts is further subdivided into smaller
sections based on the dimensionality of the descriptors to ease the comparison be-
tween models with similar requirements. The Table does not contain the FLOPs
and model sizes since the effect of the different aggregation methods is negligible
compared to the backbone. We can observe a recurrent trend in the block with
pooling representation for each backbone-training dataset pair. In fact, among the
pooled representations, the model with GeM performs better on all the evaluation
datasets providing a more robust descriptor for the same dimensionality. Follow-
ing this observation, GeM was used with an additional fully-connected layer to
construct larger descriptors with size 2048.

Based on the backbone, we obtain different descriptor sizes. The pooling-based
methods produce 256 and 1024-dimensional output vectors with ResNet-18 and
ResNet-50, respectively. The same argument also applies to NetVLAD and CRN,
for which, changing the CNN backbone, the descriptor sizes become 16384 and
65536. As already highlighted in the previous section’s discussion, the training
dataset for the models strongly influences their generalization abilities and over-
all retrieval performances. Using an FC layer to increase the GeM output size
provides the best result for this type of configuration, especially when trained on
MSLS since it resembles the large-scale datasets for which this method was ini-
tially proposed. One possible explanation for this behavior is the higher number of
parameters introduced by the FC layer, leading to overfitting on smaller datasets
such as Pitts30k. In this scenario, the models with NetVLAD produce more robust
descriptors with and without PCA reduction. The reweighting mask proposed by
CRN produces a model with a stronger domain generalization ability but requires
an additional training step compared to NetVLAD. However, when training the
models on the much larger MSLS dataset, the advantage of CRN and NetVLAD is
outclassed by GeM on Tokyo and R-SF, probably due to the domain gap across the
images in the training and test databases, which are panorama and phone-taking
type, respectively.

Comparing NetVLAD+PCA and CRN+PCA performances with their vanilla
counterparts, it is evident that the use of PCA, particularly when reducing the
descriptor size considerably, yields a significant drop in retrieval performance. Fur-
thermore, we must note that even if CRN obtains the most robust result across
different evaluation datasets, it has the downside of requiring a two-stage training
procedure, which requires two times the training time of a model with NetVLAD.
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Features Dim. Pitts30k MSLS Tokyo 24/7 R-SF Eynsham St. Lucia

256 0.01 GB 0.04 GB 0.07 GB 1.00 GB 0.02 GB 0.001 GB
1024 0.04 GB 0.15 GB 0.29 GB 4.01 GB 0.09 GB 0.006 GB
2048 0.08 GB 0.30 GB 0.57 GB 8.01 GB 0.18 GB 0.011 GB
16384 0.61 GB 2.38 GB 4.58 GB 64.09 GB 1.46 GB 0.092 GB
65536 2.44 GB 9.52 GB 18.31 GB 256.35 GB 5.86 GB 0.366 GB

Table 4.4: Memory Footprint Analysis. The table shows a lower bound esti-
mation of the memory occupation needed by a similarity search algorithm to store
the test databases of the different datasets used in this work varying the descriptor
sizes. Table from [8].

4.2.1 Memory footprint
An essential factor to consider in the development of a VG application is the di-
mensionality of the image descriptors. In the deployment phase of these systems,
all the database descriptors are computed offline, kept in RAM, and efficiently in-
dexed to perform the retrieval. The scale of the number of images in the database
could then make some approaches prohibitively expensive in terms of memory foot-
print, and then it is critical to choose the right VG model that provides the best
performance-scalability trade-off.

To get an idea, Table 4.4 contains the memory footprints of the test database
of the six datasets varying the descriptor dimensionality. Using methods such as
NetVLAD that with heavy backbones produce descriptors with a size of 65536, for
large scale datasets like R-SF means a requirement of 256 GB of RAM. GeM or
other pooled representations represent a much more suitable option for large-scale
setup.

4.3 Mining Techniques
The training of the models used in this work is based on a weakly supervised triplet
loss, see discussion in Sec. 3.2.2, that needs a triplet composed of an anchor (i.e.,
the query), positive and negative database images. The process required to generate
those triplets is commonly referred to as mining. The quality of the images selected
determines the positive outcome of the training procedure.

The positive images must possess two characteristics (i) their locations are within
a predetermined distance radius from the query, and (ii) the pair of images must
have a meaningful visual overlap. The first criterion can be addressed using GPS
coordinates labels and fixing a distance threshold for the positive images. In this
work, the threshold distance is set to 10 m, which represents the standard value
applied in many works [16, 146]. The visual similarity of the images is considered
by selecting the closer images in the descriptor space. While the lists of potential
positives based on the distance are computed once and then kept in memory, the
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computation of the descriptors process requires the periodical update following the
improvements obtained training the model.

The mining of negative examples presents numerous challenges. Following the
definition of triplet’s positive elements, all the negative images come from outside
the distance threshold radius. The negative examples have a fundamental role in
the learning of discriminative descriptors. If these images are “easy” for the model,
it will be stuck in a “relatively good” representation still far from its true potential.
In this case, most of the negatives will not violate the loss margin, and then it
does not produce an effective training signal. Then, how to choose effectively and
efficiently “hard” negative images? The authors of NetVLAD [16] answered this
question by introducing a caching mechanism that works in this way. First, the
mining starts by sampling 1000 random queries for which it should form the training
triplets (q, pqi∗, {n

q
j}); then computes the descriptors for all the database images and

keep them in the cache. Then, for each one of the sampled queries and using the
cached database image representations, it first computes the best positive (pqi∗) and
updates the hard negatives {nqj} from a pool composed of (i) 1000 randomly selected
database negatives and (ii) the previous ten hardest negatives. Since every 1000
iterations, this procedure computes the descriptors for the entire training database
we refer to it as “full database mining”. This mining method was initially designed
for Pitts30k and, for this reason, it is perfectly suitable for medium/small-scale
datasets. The main limitations are its efficiency and scalability issues.

The memory footprint and computational requirements needed are directly pro-
portional to the database size. The authors of the MSLS dataset [146] address the
mining of hard negatives by computing the descriptors only for a random sample
of database images every 1000 iterations. This method is referred to as “partial
database mining”. The baseline for these two procedures is the “random database
mining”, which selects ten random negative database images for each query.

Table 4.5 presents the results obtained with these different mining methods, also
varying backbone and aggregation methods. For the model trained with Pitts30k,
the best outcomes are obtained with the use of full mining. It is interesting to notice
how random mining produces only a 5% drop in R@1 over all datasets, while the
gap between random and the other two procedures jumps to 12% when training
on MSLS. This different behavior can be related to the substantial domain gaps in
the latter dataset, compared to dense collected and homogeneous Pitts30k. The
results reported on MSLS also highlights the issues in full database mining: (i) it
was not possible to train models with high-dimensional descriptors, see the empty
two rows with NetVLAD; (ii) even the models with GeM did not converge after
five days of training on multi-GPU machines, compared to the other experiments
requiring around 24 hours.

This analysis confirms that negative mining is a crucial element for training
effectively a retrieval system with a metric learning approach. Moreover, the ex-
periments also underline how the use of a full database mining approach is not the
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Backbone Aggregation
Method

Mining
Method

Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 GeM Random Pitts30k 73.7 ± 0.7 30.5 ± 0.5 31.3 ± 0.8 24.0 ± 1.2 58.2 ± 1.4 41.0 ± 1.2
ResNet-18 GeM Full database mining Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Partial database mining Pitts30k 76.5 ± 0.3 34.2 ± 1.3 33.9 ± 1.4 32.9 ± 0.7 64.0 ± 2.4 45.6 ± 0.9

ResNet-18 NetVLAD Random Pitts30k 83.9 ± 0.5 43.6 ± 0.5 55.1 ± 1.3 53.8 ± 1.1 76.3 ± 0.6 53.5 ± 1.4
ResNet-18 NetVLAD Full database mining Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Partial database mining Pitts30k 86.2 ± 0.3 47.3 ± 0.4 61.2 ± 0.5 62.9 ± 0.3 76.6 ± 0.5 57.1 ± 1.6

ResNet-50 GeM Random Pitts30k 77.9 ± 1.0 34.3 ± 1.3 40.1 ± 1.0 35.5 ± 3.0 63.8 ± 0.9 52.3 ± 1.4
ResNet-50 GeM Full database mining Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Partial database mining Pitts30k 82.3 ± 0.0 39.0 ± 0.4 43.5 ± 0.2 45.5 ± 1.7 67.7 ± 1.4 61.0 ± 2.0

ResNet-50 NetVLAD Random Pitts30k 83.4 ± 0.6 45.0 ± 0.3 61.9 ± 2.1 55.8 ± 1.5 75.0 ± 1.8 52.6 ± 1.2
ResNet-50 NetVLAD Full database mining Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Partial database mining Pitts30k 85.5 ± 0.3 48.6 ± 3.1 66.7 ± 4.1 65.0 ± 4.3 77.6 ± 1.3 59.0 ± 4.1

ResNet-18 GeM Random MSLS 62.2 ± 0.3 50.6 ± 0.6 28.8 ± 0.8 17.1 ± 1.0 70.2 ± 0.6 71.4 ± 1.0
ResNet-18 GeM Full database mining MSLS 70.1 ± 1.1 61.8 ± 0.5 42.8 ± 1.4 31.3 ± 1.2 79.3 ± 0.2 81.0 ± 0.9
ResNet-18 GeM Partial database mining MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9

ResNet-18 NetVLAD Random MSLS 73.3 ± 0.7 61.5 ± 1.4 45.0 ± 1.5 34.8 ± 0.2 84.9 ± 0.3 79.7 ± 1.7
ResNet-18 NetVLAD Full database mining MSLS - - - - - -
ResNet-18 NetVLAD Partial database mining MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7

ResNet-50 GeM Random MSLS 69.5 ± 1.2 57.4 ± 1.1 43.5 ± 3.3 31.1 ± 0.9 78.8 ± 0.5 78.3 ± 1.2
ResNet-50 GeM Full database mining MSLS 77.3 ± 0.3 69.7 ± 0.2 52.4 ± 1.7 45.3 ± 0.2 84.2 ± 0.0 91.0 ± 0.2
ResNet-50 GeM Partial database mining MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7

ResNet-50 NetVLAD Random MSLS 74.9 ± 0.4 63.6 ± 1.3 41.9 ± 1.6 34.6 ± 2.3 85.5 ± 0.2 80.9 ± 0.4
ResNet-50 NetVLAD Full database mining MSLS - - - - - -
ResNet-50 NetVLAD Partial database mining MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2

Table 4.5: Mining methods. Table from [8].

most suitable case for all the scenarios. On the other hand, partial mining can
produce similar or even better retrieval performances requiring less computational
time and memory resources.

4.4 Backbone Pre-Training
This section investigates the importance of the training and pre-training datasets
for the VG systems by performing two analyses. The first one consists of using
current pre-trained models for Landmark Retrieval for the VG task. Second, pre-
training the networks for classification on Google Landmarks v2 [30] and Places
365 [152].

The first set of experiments employs the publicly available pre-trained state-of-
art models from the repository 1 of [71]. These models use GeM and an FC layer
to compute a 2048-dimensional descriptor. The datasets on which are pre-trained
are Google Landmark v1 [29] and Sfm120k [160]. These models are compared to
the same architectures trained on our usual training datasets. Note that higher
R@1 values with the same descriptor size can be achieved using NetVLAD + PCA.
The results of the evaluation on the six VG datasets are in Table 4.9, which clearly
shows the benefit obtained by the highest number of images in the LR datasets

1https://github.com/filipradenovic/cnnimageretrieval-pytorch
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Source Loss Training
Dataset Backbone Aggregation

Method
R1
Pitts30k

R1
MSLS

R1
Tokyo 24/7

R1
R-SF

R1
Eynsham

R1
St Lucia

[71] Triplet GLDv1 ResNet-50 GeM + FC 2048 84.1 69.5 77.8 76.4 61.8 77.3
[71] Triplet Sfm120k ResNet-50 GeM + FC 2048 83.4 64.5 75.2 75.6 68.8 73.9
- Triplet Pitts30k ResNet-50 GeM + FC 2048 80.1 33.7 43.6 48.2 70.0 56.0
- Triplet MSLS ResNet-50 GeM + FC 2048 79.2 73.5 64.0 55.1 86.1 90.3

[71] Triplet GLDv1 ResNet-101 GeM + FC 2048 85.1 72.4 77.8 79.8 61.6 83.4
[71] Triplet Sfm120k ResNet-101 GeM + FC 2048 83.9 64.7 77.5 78.3 62.8 76.3
- Triplet Pitts30k ResNet-101 GeM + FC 2048 82.4 40.0 47.2 57.5 75.9 61.7
- Triplet MSLS ResNet-101 GeM + FC 2048 79.1 75.3 61.9 54.9 86.0 92.5

Table 4.6: The role of the training dataset. The table shows results with
models trained on large scale landmark retrieval datasets. Table from [8].

Backbone Aggregation
Method Dataset Training

Dataset
R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 GeM ImageNet Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM GLDv2 Pitts30k 74.2 ± 0.4 30.9 ± 0.6 22.3 ± 1.9 20.4 ± 1.7 55.0 ± 2.0 43.3 ± 0.7
ResNet-18 GeM Places 365 Pitts30k 78.1 ± 1.0 36.2 ± 0.9 31.8 ± 0.7 32.8 ± 1.6 65.0 ± 2.1 48.8 ± 2.1

ResNet-18 NetVLAD ImageNet Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD GLDv2 Pitts30k 83.3 ± 0.5 39.9 ± 0.9 54.2 ± 2.3 41.1 ± 3.6 71.4 ± 2.6 46.8 ± 1.9
ResNet-18 NetVLAD Places 365 Pitts30k 85.9 ± 0.4 47.4 ± 0.6 57.9 ± 1.4 59.9 ± 3.2 78.7 ± 0.7 50.4 ± 1.0

ResNet-50 GeM ImageNet Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM GLDv2 Pitts30k 77.9 ± 0.5 35.2 ± 0.8 27.6 ± 2.1 37.2 ± 1.0 62.7 ± 1.6 48.4 ± 1.7
ResNet-50 GeM Places 365 Pitts30k 82.5 ± 0.4 40.8 ± 0.3 41.3 ± 0.7 45.3 ± 0.6 66.9 ± 1.3 60.8 ± 1.6

ResNet-50 NetVLAD ImageNet Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD GLDv2 Pitts30k 81.7 ± 0.6 43.5 ± 1.0 56.7 ± 0.9 54.1 ± 1.8 71.4 ± 0.6 42.3 ± 2.5
ResNet-50 NetVLAD Places 365 Pitts30k 86.2 ± 0.5 49.9 ± 2.0 66.3 ± 3.3 59.7 ± 3.5 75.4 ± 2.0 57.2 ± 5.5

ResNet-18 GeM ImageNet MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9
ResNet-18 GeM GLDv2 MSLS 60.7 ± 0.5 64.5 ± 0.7 30.9 ± 3.3 21.5 ± 0.8 79.2 ± 0.6 78.1 ± 1.0
ResNet-18 GeM Places 365 MSLS 71.6 ± 0.9 64.8 ± 1.1 36.6 ± 2.2 25.5 ± 0.3 80.1 ± 0.5 82.4 ± 0.6

ResNet-18 NetVLAD ImageNet MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7
ResNet-18 NetVLAD GLDv2 MSLS 73.3 ± 0.6 75.3 ± 0.3 53.4 ± 1.3 40.7 ± 2.9 86.1 ± 0.1 87.6 ± 0.9
ResNet-18 NetVLAD Places 365 MSLS 79.7 ± 0.5 75.6 ± 0.2 61.5 ± 0.7 48.6 ± 1.5 86.5 ± 0.1 90.4 ± 0.4

ResNet-50 GeM ImageNet MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7
ResNet-50 GeM GLDv2 MSLS 71.1 ± 1.7 72.4 ± 0.2 47.6 ± 0.4 35.8 ± 1.6 84.0 ± 0.4 86.1 ± 1.1
ResNet-50 GeM Places 365 MSLS 78.2 ± 1.1 72.7 ± 0.6 51.8 ± 2.7 41.8 ± 2.2 84.4 ± 0.2 89.3 ± 0.8

ResNet-50 NetVLAD ImageNet MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2
ResNet-50 NetVLAD GLDv2 MSLS 74.7 ± 1.0 77.4 ± 0.4 55.0 ± 1.7 45.4 ± 1.5 85.1 ± 0.5 87.7 ± 0.8
ResNet-50 NetVLAD Places 365 MSLS 80.0 ± 1.1 75.6 ± 0.1 51.3 ± 3.3 44.8 ± 2.3 86.9 ± 0.1 91.3 ± 0.2

Table 4.7: Pretraining the backbone on other datasets. Table from [8].

allows the models from [71] to obtain robust image representations. As already
discussed in Sec. 4.2, the use of Pitts30k to train a GeM+FC configuration is
sub-optimal for its limited number of samples. MSLS alleviates this issue with its
rich set of scenarios that provides the model with enough variability to obtain good
generalization performances on Eynsham and St. Lucia. The same is not valid
for Tokyo 24/7 and R-SF because their database images are collections of 360◦
panorama’s pictures, and thus the front-view images from MSLS are not enough.

The objective of the second set of experiments is to analyze the impact of a
different pre-training dataset for the backbones in place of ImageNet. An ad-hoc
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sub-module was developed to train various backbones for classification using GLDv2
and Places365. Given the high number of classes of the former dataset, the cross-
entropy loss is replaced with the ArcFace loss [26]. However, the results of these
experiments, shown in Table 4.7, are quite close to the one achieved with ImageNet,
except for R-SF and Tokyo 24/7, where renouncing to the latter cause a drop in
performance.

4.5 Approximate kNN and Inference Time
The time required by the VG system to retrieve the best matching candidates in the
database starting from the input query image is referred to as inference time (ti).
From a computational perspective, this factor is the actual combination of (i) the
extraction time (te), i.e., how long takes the extraction of the image descriptor, and
(ii) the matching time (tm), that is the time required by the similarity algorithm
to retrieve the best database candidates.

Table 4.8 contains the values for the extraction times obtained varying different
configurations of backbones and aggregation methods. The models that use GeM
or NetVLAD without PCA show similar extraction times, with the second being
slightly slower overall. Depending on the VG application, the downside of a simple
NetVLAD layer lies in its large descriptor size, leading to a high memory footprint
and longer matching times. However, introducing PCA to reduce the descriptors
provides an additional overhead for the extraction compared to the plain version.
One of the reasons behind this result is related to the scikit-learn implementation
of PCA that runs only on CPU.

Aggregation VGG16 ResNet-18
conv4_x

ResNet-18
conv5_x

ResNet-50
conv4_x

ResNet-50
conv5_x

ResNet-101
conv4_x

ResNet-101
conv5_x

GeM 12.3 4.1 3.9 6.7 7.3 9.6 10.2
NetVLAD 13.0 4.4 4.4 8.5 8.3 11.5 11.3

NetVLAD - PCA 256 16.6 6.0 7.7 15.3 22.4 18.3 24.9
NetVLAD - PCA 2048 40.6 17.5 30.8 61.8 117.2 63.6 115.1

Table 4.8: Extraction time per image in milliseconds. The table shows the
time required to extract descriptors for each input image. Results are computed
extracting descriptors from 10000 images and averaging the result. The images
used have resolution of 480× 640. Table from [8].

k-Nearest Neighbors is the principal similarity search algorithm used in the VG
and IR literature. Considering the exhaustive kNN algorithm, the matching time
per query depends on the database size, the descriptor dimensionality, and the
number of queries to process in parallel. Figure 4.1 shows how the matching time
depends on those factors. The image has a red dotted line that marks the extrac-
tion time required by a ResNet-101 with GeM. The matching time for a specific
configuration becomes the bottleneck for the system when it surpasses that line.
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Figure 4.1: Matching time for one query. The plot shows the linear relation-
ship between the number of database images and the matching time, varying the
dimensionality of the descriptor. The red line in the graph indicates the extrac-
tion time required by a ResNet-101 with a GeM, i.e., ten milliseconds. When the
matching time is higher than that value, then tm becomes the system’s bottleneck.
As a rule of thumb, we can see that the exhaustive kNN is the bottleneck when the
number of database images multiplied by the dimension of the descriptor exceeds
200M. Figure from [8].

The three plots obtained show that high dimensional descriptors can not satisfy
many VG applications requirements for large-scale scenarios.

To address this issue, it is possible to adopt different indexing methods for
the kNN, sacrificing some accuracy to obtain lower memory occupation and faster
matchings. Among these various techniques, known as Approximate kNN (ANN),
in this work, the following ones have been considered:

- Inverted File Index (IVF) [48]. This method aims to speed up the matching
time by segmenting the descriptor space into several Voronoi cells. At test
time, instead of comparing the query with all the entries in the database, the
algorithm evaluates the cell with the most similar centroid and few neighbors.
This method requires a training phase to compute the clusters. It also needs
two additional hyperparameters: the number of Voronoi cells (fixed to 1000
here) and the number of neighboring cells to consider (1 and 10 cells in the
experiments).

- Product Quantization (PQ) [75]. This algorithm performs a lossy compression
of the vectors that reduces the memory footprint and approximates their dis-
tances. The product quantize decomposes each vector into smaller subvectors
of dimension d (usually set to 8). Then the subvectors are assigned to the
Voronoi cells of its subspace. The original vector is represented by a code
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composed of the index of the centroids of each subspace.

- Composed Index IVF+PQ (IVFPQ). ANN with PQ requires an exhaustive
search among the database quantized descriptors. An inverted file computes
the centroids for the quantized vectors and stores them in memory to reduce
the number of instances considered during retrieval. This approach combines
the lower memory footprint from PQ and the inexact search from IVF.

- Inverted Multi-Index [76].This approach uses PQ as a coarse quantizer, i.e.,
instead of splitting the database into Voronoi cells using the entire vector
dimension, as done for IVF, it employs the multi-codebook idea from PQ. For
IVF, there is a simple correspondence between each centroid and the list of
database entries in that Voronoi cell. Instead, for Inverted Multi-Index, the
set of centroids correspond to all possible tuples of codewords from the vector
subspaces, leading to a denser subdivision of the search space.

- Hierarchical Navigable Small World graphs (HNSW) [77]. This approach uti-
lizes a multi-layer graph representation of the vectors. The graph is explored
during the matching time to find the nearest neighbors for the query. The
number of neighbors considered in the construction of the graph is a tunable
hyperparameter Nneigh.

All these indexes are available with the FAISS library [78] and can be easily
applied in our VG pipeline. Figure 4.2 shows the results obtained varying the
indexes and their hyperparameters for a model with ResNet-50 and GeM producing
1024-dimensional descriptors.

The most efficient indices in terms of the trade-off between matching time and
accuracy are IVFPQ and Inverted Multi-Index, which provide a reduction in match-
ing time of a factor of 20.
The most evident results come from IVFPQ applied to R-SF. This index reduces
memory occupation of a factor of 64 (from 4GB to 64MB) and matching time by
98.5%. All these at the prices of a moderate drop in accuracy from 45.4% to 41.4%.
The HNSW and IVF indices provide similar achievements as the inverted file index,
with the first having a lightly slower computation but higher recall. Using larger
values of the neighbors Nneigh leads to more accurate results but also uses more
memory. The values used in the Figure for Nneigh are 4, 16, 64 and 256.
The simpler PQ index provides the same memory footprint as IVFPQ but has a
lower accuracy-matching time trade-off.

This analysis provides valuable alternatives to the full kNN search that must
be evaluated based on the downstream application. The experiments clearly show
that using an IVF, possibly with a convenient number of neighbors, provides a good
speedup without sacrificing the R@1 performance. For real-time applications or
embedded applications, time and memory constraints are critical. For this reason,
IVFPQ and the Inverted Multi-Index are preferable choices.
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Figure 4.2: Optimized kNN indexing. The plots show several efficient kNN
variants on different datasets, using 1024-sized descriptors extracted with a ResNet-
50 + GeM trained on Pitts30k. The x-axis is the matching time in seconds for all
test queries in each dataset, while the y-axis is the recall@1. The number near
each dot is the RAM requirement for each method in MB. Besides exhaustive
kNN, we employ Inverted File Indexes (IVF) [48], Product Quantization (with and
without Inverted Indexes, respectively PQ and IVFPQ) [75], the Inverted Multi-
Index (MultiIndex) [76] and Hierarchical Navigable Small-World graphs (HNSW)
[77]. The legend shows the parameters for each method. The last parameter of
IVFPQ, MultiIndex and IVF, which is either 1 or 10, represents the percentage of
Voronoi cells to search, given that the search space has been split into 1000 Voronoi
cells. Figure from [8].

4.6 Data Augmentation

Data augmentation is a simple but effective method widely used in Deep Learning
to increase the number of training samples to train the models and therefore obtain
better performances. Images are high dimensional and include an enormous variety
of factors of variation that can be easily simulated, like alterations in brightness,
contrast, or geometric transformations. In the context of VG, this technique is
rarely taken under significant consideration in research papers. The goal of the
experiments presented in this section is to analyze which could be the most effective
techniques and if their application generalizes well over different datasets. For
obvious reasons, the augmentations are applied in the training phase only to the
queries, except for the random horizontal flipping applied to the entire triplet.

Figure 4.3 reports the results obtained with common data augmentation tech-
niques used to train a model composed by a ResNet-18 with NetVLAD on Pitts30k.
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Figure 4.3: Data Augmentation. This Table contains the results obtained apply-
ing several popular data augmentation techniques during the training procedure.
The methods used rely on PyTorch’s transforms classes. The x values in the plot are
scaled to have that for x = 0 the identity function is applied to the images. Augmen-
tation techniques acting on brightness, contrast, saturation, and hue are performed
with ColorJittering(). For RandomResizedCrop(), we use the value as (1−x, 1)
for the scale parameter and then the crops are resized to the original image reso-
lution. In RandomPerspective() and RandomRotation(), the parameter refers to
the distortion_scale and degrees, respectively. HorizontalFlipping() is ap-
plied with a probability of 0.5. The reader is referred to PyTorch’s documentation
for more information on the different functions. Figure from [8].

All the augmentations are implemented in the PyTorch library. The results on
Pitts30k, which also represents the training dataset for these experiments, are not
significantly influenced by augmentations, probably because of its homogeneous
images. Even if they do not increase the performances for Pitts30k, they also do
not worsen the results either. The difference in the models trained in this fashion
becomes apparent when evaluating the model on unseen datasets. Looking at the
Figure, it is interesting to notice how simple color jittering methods that vary at
training time the contrast, brightness, and saturation of the queries can lead to
more robust descriptors. For instance, random contrast modifications with its pa-
rameter set to 2 improve the R@1 performance of the base model of 3% for MSLS
and 5% for Tokyo 24/7 and St. Lucia, with a slight drop for Pitts30k and Eynsham.

Summarizing, this analysis shows that there is not an augmentation technique
that works better than the other alternatives for all the evaluation datasets. How-
ever, note that the random horizontal flipping (a single point in the graph at for x
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equal to 0.5, i.e., the flipping probability) and the random resized crop of the query
images lead to improvements in the performances of all evaluation datasets. The
color jittering techniques are most beneficial for Tokyo 24/7 and MSLS because
they are the two datasets containing the highest number of domain variations. On
the other hand, these methods are not helpful for Eynsham, which is composed of
grayscale images.

4.7 Pre/Post Processing and Prediction Refine-
ment

This section is devoted to analyzing various pre-/post-processing and prediction
refinement techniques used in a VG pipeline to mitigate the approximation intro-
duced by ANN algorithms or refine the shortlist of location hypotheses to improve
the final performance. Another relevant scenario to address considering these meth-
ods are possible application scenarios where the dimension of the images at test
time differs from the images on which the model was trained. Some works in the
literature [16, 71, 74] when faced with datasets addressing this scenario, like R-
SF [148, 149] or Tokyo 24/7 [147], address the problem by using a batch size of
one image. This solution provides good results but requires a higher extraction
time per query, which could be an issue for some downstream tasks. The experi-
ments presented in this section use different engineering solutions that enable the
computation of multiple queries in parallel and improve retrieval performance.

Based on the stage of the VG pipeline in which the method operates, we can
classify these approaches into pre-processing, post-processing, and predictions re-
finement. The first group is composed of the following techniques that process the
images before they are fed to the model. Hard Resize performs an anisotropic scale
of the query image to resize the query to the same resolution of the database im-
ages. Note that there are datasets, like Pitts30k, Eynsham, and St. Lucia, where
the resolution of database and query images match, for which this method does not
apply any transformation to the images. For Single Query, the picture is resized,
maintaining its aspect ratio such that the shortest side of the input image is equal
to the smaller dimension of the database image resolution. In this way, the images
cannot be fed into the network in batches if their original sizes differ. Central Crop
obtains from the query a central crop of the size equal to the resolution of database
images. If the query is smaller than this size, then it is adequately reshaped before
cropping it. Five Crops extracts from the query five squared patches with side
length equal to the shortest dimension of the database images.

The post-processing methods are the ones applied before the similarity search
on the descriptors. With Mean the output descriptor is computed as the mean of
the representations extracted from multiple patches of the query.

The last two methods covered are prediction refinement techniques. In the
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Backbone Aggregation
Method

Pre/Post-
Processing
Method

Pre-
Proc.

Post-
Proc.

Batch
Parall.

Training
Dataset.

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 GeM Hard Resize 3 7 3 Pitts30k 77.8 ± 0.2 35.3 ± 0.5 31.8 ± 0.9 33.2 ± 2.1 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Single Query 3 7 7 Pitts30k 77.8 ± 0.2 35.6 ± 0.6 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Central Crop 3 7 3 Pitts30k 77.8 ± 0.2 34.8 ± 0.5 36.4 ± 1.1 32.6 ± 1.4 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Five Crops Mean 3 3 3 Pitts30k 75.4 ± 0.3 30.2 ± 0.2 35.9 ± 0.5 34.4 ± 2.0 59.1 ± 0.7 43.3 ± 0.8
ResNet-18 GeM Nearest Crop 3 3 3 Pitts30k 74.8 ± 0.1 28.3 ± 0.3 33.8 ± 1.3 35.7 ± 1.6 55.5 ± 0.8 39.4 ± 0.5
ResNet-18 GeM Majority Voting 3 3 3 Pitts30k 75.1 ± 0.0 29.1 ± 0.4 34.8 ± 1.5 35.3 ± 1.3 51.8 ± 0.2 41.3 ± 0.5

ResNet-18 NetVLAD Hard Resize 3 7 3 Pitts30k 86.4 ± 0.3 47.4 ± 1.2 58.3 ± 1.4 58.9 ± 1.1 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Single Query 3 7 7 Pitts30k 86.4 ± 0.3 47.5 ± 1.3 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Central Crop 3 7 3 Pitts30k 86.4 ± 0.3 48.0 ± 1.3 63.2 ± 0.2 57.8 ± 0.4 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Five Crops Mean 3 3 3 Pitts30k 85.1 ± 0.2 45.3 ± 1.3 63.0 ± 0.7 60.9 ± 1.7 78.9 ± 0.9 54.6 ± 2.8
ResNet-18 NetVLAD Nearest Crop 3 3 3 Pitts30k 84.8 ± 0.2 46.0 ± 1.5 67.0 ± 1.4 64.8 ± 0.7 75.7 ± 1.4 53.0 ± 2.5
ResNet-18 NetVLAD Majority Voting 3 3 3 Pitts30k 84.8 ± 0.3 45.2 ± 1.4 66.9 ± 1.1 64.7 ± 0.7 77.1 ± 1.1 53.4 ± 2.3

ResNet-50 GeM Hard Resize 3 7 3 Pitts30k 82.0 ± 0.3 38.0 ± 0.1 34.6 ± 1.4 40.7 ± 1.8 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Single Query 3 7 7 Pitts30k 82.0 ± 0.3 38.2 ± 0.3 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Central Crop 3 7 3 Pitts30k 82.0 ± 0.3 37.5 ± 0.3 40.4 ± 0.9 41.0 ± 2.6 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Five Crops Mean 3 3 3 Pitts30k 80.4 ± 0.1 33.2 ± 0.1 39.8 ± 2.0 43.8 ± 0.9 65.0 ± 2.4 54.4 ± 1.3
ResNet-50 GeM Nearest Crop 3 3 3 Pitts30k 79.2 ± 0.2 30.8 ± 0.2 43.5 ± 1.4 46.9 ± 1.4 63.5 ± 2.2 52.6 ± 1.4
ResNet-50 GeM Majority Voting 3 3 3 Pitts30k 79.7 ± 0.0 31.5 ± 0.1 43.0 ± 2.0 44.8 ± 1.2 62.9 ± 2.3 52.8 ± 0.9

ResNet-50 NetVLAD Hard Resize 3 7 3 Pitts30k 86.0 ± 0.1 50.7 ± 2.0 64.3 ± 1.9 64.3 ± 1.2 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Single Query 3 7 7 Pitts30k 86.0 ± 0.1 50.6 ± 1.9 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Central Crop 3 7 3 Pitts30k 86.0 ± 0.1 50.9 ± 1.9 68.3 ± 1.4 64.6 ± 2.2 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Five Crops Mean 3 3 3 Pitts30k 84.7 ± 0.1 47.4 ± 1.9 68.0 ± 2.2 66.5 ± 1.5 78.6 ± 0.3 54.3 ± 2.8
ResNet-50 NetVLAD Nearest Crop 3 3 3 Pitts30k 84.2 ± 0.2 47.0 ± 1.7 72.3 ± 1.3 68.4 ± 0.8 76.8 ± 0.5 52.3 ± 2.3
ResNet-50 NetVLAD Majority Voting 3 3 3 Pitts30k 84.3 ± 0.2 47.1 ± 1.7 72.8 ± 0.8 68.1 ± 1.3 77.5 ± 0.4 53.4 ± 2.2

Table 4.9: Query pre/post-processing. Results with different pre/post-
processing methods applied at test time. The batch parallelization column indicates
if images have to be processed one by one or if they can be stacked in a batch for
parallel computation. Table from [8].

framework, they work together with the Five Crops method. The model extracts
from the five patches their descriptors and for each one of them computes a shortlist
of retrieved matching images. From these results, when using Nearest Crop, the
predictions are generated by taking the images with the minimum distance from
at least one patch. With Majority Voting, the final shortlist is obtained through
a majority vote mechanism that depends on the distances of the top-20 retrieved
elements for each input patch.

Table 4.9 contains the results obtained by using different configurations of back-
bones and aggregation methods trained on Pitts and tested with the techniques
described before. As already explained, for Pitts30k, St. Lucia, and Eynsham,
queries and database images have the same resolution. For this reason, the three
pre-processing methods (Hard Resize, Single Query, and Central Crop) are the
same and do not modify the input image. On the other hand, datasets like Tokyo
24/7 and R-SF that have images with different resolutions in their test queries on
average benefit from the use of more complex techniques like Nearest Crop and Ma-
jority Voting. The Table shows how this trend is more evident with more robust
models.
These methods should be evaluated with particular attention to the downstream
application. For instance, the images will likely come from the same camera device
during operation for robotics or autonomous driving scenarios, and then there is
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no need to resize the queries. When instead the resolution of the images can take
very different values, Single Query could be the simplest solution to use or used as
a helpful baseline. A more robust solution could be Nearest Crop, which produces
the highest R@1 performances and can process a batch of queries.
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Sequence-Based Visual
Geo-localization
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Chapter 5

Sequence-Based Visual
Geo-localization

All the methods and techniques discussed in the previous chapters addressed Visual
Geo-localization working with single images. The VG system receives a query and
produces a shortlist of database images that represent the candidate locations. In
this type of setting, the queries and the database entries are single images. Another
common ground among all the configurations analyzed is that they employ CNN
backbones, the current state-of-the-art in VG literature.
This chapter aims to investigate two aspects still not entirely addressed by the VG
research community: (i) the use and exploitation of multi-frame input data and (ii)
to answer the question “can the new Transformer architectures provide interesting
results in VG?”. The use of short sequences of images depicting the same location or
a small area is not new in VG, but the current approaches rely on traditional hand-
crafted techniques or only partially integrate DL techniques. Moreover, last year,
the Computer Vision community debated whether the visual Transformers could
replace CNNs. This research trend originated in the NLP community, and following
the development of different architectures has progressively interested a broader
audience for their capability of model complex relationships among sequences. The
idea behind this second contribution of this thesis is to develop and investigate
new methods for Sequence-based VG (S-VG) and, at the same time, introduce and
study the performances of visual Transformers and other self-attentive models for
this field.

5.1 Sequence-Based VG
Many areas of application for VG, like mobile robotics and autonomous driving,
have access to visual data streams. When moving within an environment, the same
location can look very different, and also it is possible to identify some particular
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building or other landmarks that help in the localization process. As already intro-
duced in Section 2.6, when dealing with video frames, the original VG task evolves
into a continuous one in which the algorithms should be able to model the location
of the single picture as well as the relationships between frames. Following the push
from robotics applications, the community’s efforts developed different families of
hand-crafted approaches that use stochastic models, like FAB-MAP [91, 49], or
similarity matrices, like SeqSLAM [93] and its derivative works. In the latter ap-
proach, the algorithm takes an input sequence of frames, i.e., the query, and builds
a similarity matrix comparing each query frame with the database sequences. The
resulting similarity matrix can be used to match a likely trajectory between the
two sequences. A strong limitation of this family of methods is that they rely on
the assumption that there is a one-to-one correspondence between the frames.

More recently, following the success of Deep Learning models for the single image
task, Fácil et al. [104] propose to extract directly from the multiple frames a global
sequence representation. This approach has been renewed with the introduction of
the MSLS dataset by Warburg et al. [146]. The paper presents their new dataset
and introduces the different settings in which it can be employed. They formalized
three different scenarios that can be targetted with the introduction of sequential
data. The authors define the following three approaches:

- im2seq, the query is a single image that should be matched with database
sequences;

- seq2im, the reverse of the previous scenario, where the query is sequence and
the database is composed of single images;

- seq2seq, both query and database are sequences of images.

Moving from the standard image to image (im2im) setting, used in the previous
chapters, they also defined a positive match between sequences when they share at
least one frame depicting the same location within a distance threshold of 25m at
the test time and 10m during training [16, 146].

For this work, the analysis focuses on the seq2seq setting.The idea is to explore
the potential improvements obtained by extracting sequence representations for
queries and database sequences leveraging the multi-view information from each
frame. However, for this setting, there is an important remark on the length of
the sequences. Unlike other computer vision applications dealing with videos, the
objective of a VG system is to estimate the location where the sequence was cap-
tured and use sequences too large and not densely sampled to cover a very extended
area. For instance, if the sequence has images collected with a distance between
each frame of 3 m, then using a sequence length of 15 frames covers an approx-
imate distance of 50 meters, which is not ideal for the downstream application.
Concerning future developments of the methods proposed in this work, it could
be interesting for different downstream applications to modify this setting and the
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connected mining strategy to address different objectives. One example could be
to predict the location of the last frame(s) of the sequence, i.e., to use a setting
similar to the seq2im proposed by [146] but with a different definition of a positive
match.

Before introducing the experimental setup and the architectures trained and
evaluated for the S-VG task, the final remarks of this section aim to clearly state
the objectives and motivations behind this second part of this thesis. The first
question addressed is whether and how the introduction of sequential information
affects the performance of the VG pipeline. As already mentioned, this approach
to Visual Geo-localization is of interest for several applications that can exploit
continuous sources of visual data and would take advantage of the hopefully more
robust and precise sequence representation.

The second point is to introduce the Transformer architectures in the context of
VG. In the short amount of time of the last year, several new networks welcomed the
concepts and the ideas of this architecture and progressively became state-of-the-art
not only in image recognition [161, 162, 163] but also in video understanding areas
such as Action Recognition [144, 164]. There are no works in the VG literature
that employ full self-attention models both in the traditional and sequence-based
settings. Then, this work aims also to provide a guide and helpful insights for future
works that will try to follow the same or similar approaches.

5.2 Dataset and Experimental Protocol
The topic of Sequence-based Visual Geo-localization as intended in this work is still
not extensively studied in the literature. For this reason, also the datasets available
for this task are limited. The vast majority of these datasets were proposed for
robotics applications and used to train and evaluate the performances of hand-
crafted or shallow methods. Among them, we find the Oxford Robotcar [165] and
the Brisbane City Loop [166] datasets used in [105, 106]. Both datasets cover
a limited geographical area of 10km around the streets of Oxford and 38km in
Brisbane’s area. None of these have geographical diversity, and since they are
collected with the same camera-equipped cars, they do not have variations in the
camera intrinsics. Moreover, the viewpoint, structural and weather changes are
relatively small and do not provide enough variability for many downstream tasks.
Another dataset used for this task by [104, 105] is the Nordland [167] dataset, which
contains the images collected by the Norwegian public television (NRK) from front-
camera places on trains that cross the Norwegian countryside, covering the same
182km journey four times, one for each season. The dataset is mainly composed of
natural scenes and is unsuitable for training VG models on urban scenarios.

As anticipated in the previous section, the work of Warburg et al. [146] proposed
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the Mapillary Street-Level-Sequences (MSLS) dataset to contribute to the advance-
ment of the VG community with a dataset instrumental in producing models that
could achieve lifelong place recognition. In this sense, their dataset came with the
possibility of generating training examples for the tasks described in the previous
section, i.e., im2im, seq2im, and seq2seq. MSLS was extensively applied in Chap-
ter 4 for the single image to image task proving to be fundamental for obtaining
strong generalization capabilities for the models. MSLS was chosen as the dataset
for conducting the experiments for this part of the work on S-VG.

With this dataset, it is possible to generate sequences of arbitrary length from
3 to 300 frames, offering great flexibility to evaluate the performances of the pro-
posed models. Moreover, given the modular organization in different cities, it is
possible to select only a limited number of towns. This allows performing training
or testing of the performances in different scenarios, as done, for instance, by [105].
MSLS provides a large-scale domain variability that includes images collected from
different cities across all the continents and variability in terms of illumination,
weather, and time, all valuable characteristics to train robust and reliable models.
The authors provide an open-source codebase implementing the partial database
mining procedure for generating the triplets to train the models. The availability of
this code should have helped in prototyping the S-VG pipeline; unfortunately, this
work was not the case because the available code hid several issues that, in the end,
required a complete reformatting of the entire dataset and its mining procedures.

Similar to the setting for the benchmarking experiments, the training procedure
of the models used the weakly supervised triplet loss, requiring a single positive
sequence and 10 negatives for each query, unless otherwise specified. A priori, this
approach was justified by the results obtained in the single image architectures. As
the experiments discussed in Section 6.9 will underline, the use of a high number of
negatives is not mandatory for specific architectures, and future works in this task
must exploit this advantage that considerably lowers the GPU memory require-
ments at training time. All the experiments of Chapter 6 were conducted using
Adam [156] with a learning rate of 1 · 10−5 and a batch-size of two triplets, each
composed 12 sequences with F frames. The metric used to measure the models’
performances under analysis is again the Recall@1 (R@1). This metric computes
the percentage of queries for which the retrieved result is a sequence with at least
one frame taken within a radius of 25 m from the frames of the query sequence.

5.3 Architectures
The aim of this section is to introduce and explain the architectures examined
through this research analysis for seq2seq VG. Given the very few references in the
literature and the absence of any previous work with many of these architectures
for VG, this exploratory process resulted in several trials and errors. Not all the
architectures produced the desired results, and some of them proved unsuitable for
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this task. However, after some iterations and following the helpful lessons learned
in developing the benchmark framework, it finally led to satisfactory results and
also highlighted some interesting insights for future developments.

5.3.1 Baseline Architectures
A comprehensive literature review was the initial step in the design process to
produce an efficient and effective solution for the S-VG previously defined. However,
the methods currently proposed in the VG literature are very few and follow two
directions, or they mix DL approaches with hand-crafted techniques [105, 106] or
rely on simple models that produce sequence descriptors [104]. The work of Fácil
et al. [104] consists of straightforward adaptation of single image VG models to
sequential input and is also already examined in the paper of MSLS [146]. As
previously described in Section 2.6, they proposed three approaches to process the
descriptors extracted with a ResNet-50 [107] backbone and a FC layer:

- Descriptor Grouping, which concatenates the descriptors produced from each
image;

- Descriptor Fusion improves the previous method by adding a Fully connected
layer that maps the concatenated descriptors to a more compact one;

- Recurrent Descriptors uses an LSTM [108] module to process the descriptors
sequentially.

Figure 5.1: MultiViewNet Architecture. The two approaches, Descriptor
Grouping and Fusion, employed as baselines for the seq2seq task. Figure from
[104].
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Building on the lessons learned in the development of the benchmark framework,
instead of following the exact implementation proposed by [104], the choice on the
backbone has gone to the ResNet-18, being the most efficient and lightweight ar-
chitecture and, at the same time, able to produce state-of-the-art-results. These
are fundamental characteristics given the high requirements in terms of memory
footprint for processing many frames and the need for discriminative features to
produce an accurate model. Then, the aggregation techniques employed for pro-
ducing the descriptor for each image are NetVLAD and GeM. These configurations
have been adapted to work on sequences.
In the analysis conducted in this work, the first two methods proposed by [104] are
considered as baselines, i.e., Descriptor Grouping and Fusion. We decided not to
include the third approach, which uses a recurrent neural network for multiple rea-
sons. As pointed out by the paper’s authors, this method performs worse than the
other two methods in terms of recall@N. However, they keep this approach for its
higher robustness when dealing with reverse or random order sequences. In these
situations, simply stacking the descriptors of the sequence could be harmful due to
the different order of the frames, then the use of an LSTM is partially beneficial. In
this work, we preferred to focus on the best-performing methods because the aim
is to achieve precise geo-localization accuracy, and therefore this model showing
sub-optimal performances in standard scenarios does not reflect this purpose.

The other two works with a similar goal identified in Section 2.6 are Delta
Descriptors [106] and SeqNet [105]. These two works rely on the use of hand-
crafted methods to process deep-learned image representations; in particular, they
derive from the family of SeqSLAM [93] methods that use a similarity matrix search
to match the sequences. These methods present different critical aspects because
they rely on long-term sequence matching, i.e., two sequences must have many
consecutive matching frames. Furthermore, they also assume a linear temporal
correlation among the frames from the compared sequences.

For Delta Descriptors, the authors propose an interesting unsupervised adapta-
tion method to obtain a more robust descriptor, starting from single frames and
using a difference-based representation that incorporates information from the se-
quential nearest frames. After this process, the method employs the matrix simi-
larity search to identify the positive matches. However, this method requires a high
number of frames to achieve the proposed results, and then, given their different
objectives, it has not been considered an appropriate baseline for this work.

On the other hand, the setting of SeqNet resembles the one adopted in this thesis.
Despite this similarity, the method was not used as a baseline for two main reasons.
First, their approach does not entirely align with the approaches considered in this
thesis, i.e., end-to-end trained extractors of sequence representations. SeqNet can
be seen as a two-stream prediction refinement technique that computes predictions
based on off-the-shelf VG networks’ descriptors. They use a pre-trained VGG-16
with NetVLAD from [16], which is neither trained nor finetuned but only used to
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produce the descriptors for each frame of the sequence. They rely on sequence-level
descriptors, produced with Temporal Convolution [168], only for selecting a short-
list of possible sequence candidates in the first stage of their architecture, later
processed in the usual SeqSLAM-like approach with a similarity matrix search.
Moreover, the authors do not provide the results on the MSLS validation set, but
they only cherry-pick a restricted number of cities from this dataset. After a pre-
liminary analysis, the results were comparable with the architectures described
above, that couple single-frame descriptors with techniques proposed by [104], that
therefore were considered enough representative.

5.3.2 Transformer Encoder
The Transformer architecture was initially proposed in the paper “Attention Is
All You Need” by Vaswani et al. [117] for Neural Machine Translation, a sub-field
of Natural Language Processing that aims at translating text between different
languages. Besides producing significant improvements in translation quality, the
authors provide a new architecture for many other NLP tasks, recently adapted
also for Computer Vision.

The Transformer follows an encoder-decoder structure using stacking layers of

Figure 5.2: Transformer Architecture. The image depicts the complete Trans-
former architecture, with the encoder on the left and the decoder on the right.
On the rightmost part, there are two zoom-in into the Multi-Head Self-Attention
module and the scaled dot-product attention layer. Figure from [169].
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Multi-Head Self-Attention (MHSA) and point-wise fully connected feed-forward
networks (MLP), where point-wise means that the architecture applies the same
linear transformation to each element in the sequence. The model is auto-regressive,
meaning that it generates a new output token at each time step by consuming as
input the previously produced symbols. Previous approaches in NLP use the last
hidden state produced by an encoder composed of multiple stacked LSTM modules.
Instead, the Transformer avoids sequential computations, typical of recurrent neural
networks, and, instead of relying on single context vectors from the last hidden state
of a recurrent encoder, creates shortcuts between the embedding representation and
the entire source input, as shown in Figure 5.2.

The main innovative element introduced in this architecture is the Multi-Head
Self-Attention mechanism. Given a sequence of n tokens X = (x1,x2, . . . ,xn)> ∈
Rn×d, where d is the dimension of each token, the self-attention mechanism models
the interaction between all sequence instances. The idea is to compute a new
embedding for each token that leverages the information of its interaction with the
rest of the sequence, which translates into conveying the global context in the new
sequence embedding. To achieve this objective, the first step consists of feeding the
sequence X into a transformation layer that maps it into three different matrices
Queries (Q ∈ Rn×dq), Keys (K ∈ Rn×dk), and Values (V ∈ Rn×dv), where dq = dk
are the dimension of the queries and keys embeddings and dv is the dimension of the
values. These matrices are obtained by projecting the input sequence onto three
learnable matrices:

Q = XWQ, K = XWK , V = XWV (5.1)

where WQ ∈ Rd×dq ,WK ∈ Rd×dk ,WV ∈ Rd×dv . These embeddings are used in the
attention layer, which performs the scaled dot-product attention. The output of
this operation is a weighted sum of the value vectors, whose weights are computed
on the fly as the dot product between the query and the key matrices, adequately
scaled by 1/

√
dk:

Attention(Q,K, V ) = Softmax
(
QK>√
dk

)
V ∈ Rn×dv . (5.2)

Instead of relying on a single self-attention module, the Transformer architecture
splits the inputs into smaller embedding vectors and computes the scaled dot-
product attention in parallel over each embedding subspace. This approach allows
the network to capture multiple complex relationships between the tokens that
compose the sequence by attending to information that arises from the different
representations subspaces at different positions. Finally, the output of the h self-
attention heads are concatenated into a single matrix and projected onto an output
weight matrix WO ∈ Rh·dv×d. This operation can be formulated in the following
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way :

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (5.3)
where headi = Attention(XWQ

i , XW
K
i , XW

V
i ) (5.4)

where i = 1, . . . , h and the projection matrices are WQ
i ,W

K
i ∈ Rd×dk/h and W V

i ∈
Rd×dv/h.

The self-attention operation is permutation invariant, i.e., it processes the input
sequence as a set without any notion of order. For this reason, Transformers require
the injection of order information in the input sequence by the addition of positional
encoding, i.e., a sequence of vectors with the same dimension of the input sequence
(E ∈ Rn×d). The original Transformer implementation uses two types of positional
encodings: the sinusoidal positional encoding constructed such that each dimension
of E corresponds to a sinusoid of different wavelength; learned positional encoding,
which is learned during training.

As previously mentioned, the overall architecture of the Transformer proposed
by [117] is composed of two elements, i.e. the encoder and the decoder. In the
original implementation, the encoder is a stack of six identical layers with a simple
configuration of an MHSA layer and an MLP network connected with residual
connections and Layer Normalization [159]. To facilitate the residual connections,
the dimensionality of all the embeddings are the same, i.e. dk = dq = dv = dmodel =
512.
Again, the decoder is a stack of six layers, this time composed of two MHSAs and an
MLP network that, like the encoder, are connected with residual connections and
have the same dimension for the various embeddings. The first multi-head attention
is masked such that the sub-layer cannot attend future tokens when predicting the
current instance of the target sequence; the second, instead, takes as keys and values
the tokens from the encoder and the query from the previous decoder sub-layer,
in this way it can access directly in constant time the context of the entire source
sequence. However, the complete Transformer architecture is not needed for this
work, and therefore the decoder part is dropped to maintain only the encoder. The
reason is that the task does not require to produce another different sequence as
in the case of the original paper, but only to create a sequence representation that
can be used in the following steps for retrieval.

The purpose of this section is twofold. First, introducing the Transformer en-
coder architecture is fundamental for understanding the functioning of the archi-
tectures discussed in the following sections. The second reason is that it was used
directly as a component of one of the different architectures proposed for this work.
Since this network can be fed only with sequences of vectors, i.e., the input tokens,
it cannot work directly with images. Then, a vanilla transformer encoder was used
in conjunction with a ResNet-18 and GeM to extract image descriptors from every
single frame. In this way, the encoder receives a series of 256-dimensional vectors
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with the same length as the input sequence for each element of the triplet. The
same type of configuration was not tried with NetVLAD because of the unfeasi-
ble memory requirements entailed by its high-dimensional descriptors. The vanilla
Transformer Encoder tested follows the original configuration with six stacked en-
coder blocks, 16 attention heads per encoder, and produces a final descriptor with
size 256 as the input GeM tokens.

5.3.3 Vision Transformer (ViT)
After gaining much popularity in many NLP tasks, the researchers in the Computer
Vision community started to investigate the possibility of applying the Transformer
architecture in this field. Even before the advent of Transformer-based architec-
tures, the idea of attention and single-head self-attention was already investigated
in some works; for instance, see the Non Local Neural Network [15] described in
Section 5.3.6. Dosovitskiy et al. [13] show that it is possible to completely replace
the convolutional operation in deep neural networks for large-scale image datasets
with their model called Vision Transformers (ViT). The authors faced two main
challenges: handling the input images directly and training this huge model effec-
tively.

The self-attention mechanism requires a quadratic cost in the number of tokens,
which means that it is unfeasible to use a naive approach to compute the self-
attention between each pixel of the image. The solution introduced with ViT
is to reshape the image x ∈ RH×W×C into a sequence of flattened 2D patches
xp ∈ RN×(P 2·C), where (H,W ) is the resolution of the image, C the number of
channels, (P, P ) the size of the image patch and N = HW/P 2 is the number of
patches and, consequently, the length of the input sequence. The dimension of
the tokens D is kept constant across all ViT layers, such that the architecture can
process the images as sequences of D-dimensional tokens.

The second problem regards the training of the model. The MHSA mechanism
of the Transformers has not the inherent inductive bias of the CNNs. The particular
structure of the convolution operations provides these architectures with translation
invariance and locality, which proved to be influential in the success of CNNs. On
the other hand, Transformers-based models lack this type of inductive bias but
can model more complex relationships in the data. Then, these models require
more training data to learn how to deal with visual information to overcome this
potential limitation. To achieve good results, the authors pre-trained the model on
a large-scale image dataset, i.e., ImageNet-21k [170] and the proprietary JFT-300M
[139] (4M and 300M images, respectively), and then fine-tune them on ImageNet-1k
[39]. Unfortunately, the huge computational costs and the “data-hungry” nature of
this architecture for training from scratch ViT are the two of the main issues that
the subsequent works in this topic try to address.

The ViT architecture after mapping the input image into patches is the same as
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Figure 5.3: ViT Architecture. Model overview for the Vision Transformer archi-
tecture; the input image is split into fixed-size patches, later flattened and linearly
embedded to process them as a sequence of tokens. A CLS token is prepended
to this sequence, and then its output embedding is used for classification. The
schematic representation of the layers composing an encoder block from the net-
work is on the right. Figure from [13].

the traditional Transfomer encoder described in the previous section. Its output is
a new sequence of tokens, then to obtain a compact representation, following what
was previously done with the [class] token for BERT [130] in NLP, the authors
prepend to the input sequence with a learnable vector, referred to as CLS token.
The output state for this token is used as the image representation for the following
downstream tasks, being classification in the original paper or retrieval in this work.
The last remark on the ViT architecture concerns the positional embedding that,
for this architecture, is a learnable 1D vector that considers the sequence of input
patches in raster order, i.e., considering them one row after the other.

For the S-VG task, the ViT is employed as a frame-level representation extractor
that uses the output state of the CLS token directly in place of other aggregation
methods. Among the different configurations proposed in [13], the choice has gone
to the Base-ViT, which uses 16 × 16 pixel patches, input images of resolution
224 × 224, and an output descriptor of dimension 768. To process the sequence
of input images as for the traditional CNN backbones, following [104], the output
representations are combined using concatenation or a fully connected layer.

5.3.4 Compact Convolutional Transformer (CCT)
The training from scratch of ViT models represents a significant obstacle in adopt-
ing these models for both research and industry practitioners that do not possess
enough resources. In the paper of ViT, the authors argue that “Transformers lack

71



5 – Sequence-Based Visual Geo-localization

some of the inductive biases inherent to CNNs, such as translation equivariance and
locality, and therefore do not generalize well when trained on insufficient amounts
of data”[13]. For these reasons, after the publication of ViT, many works attempt
to come up with different solutions to address these limitations. For instance,
the authors of DeiT [140] propose the use of distillation techniques that rely on a
CNN teacher network to simplify the training of the Transformer model, but this
approach requires the availability of CNN teacher models for the particular task.

Another line of research instead tries to inject in the architecture some inductive
bias to avoid the model to learn it directly from the data. Among the various models
that follow this path, there is the Compact Convolutional Transformer (CCT)[14],
depicted in Figure 5.4, that aims to democratize the use of Transformer-based
models by lowering the data and computational requirements using a different to-
kenization approach. CCT is a hybrid model that replaces the “image patching”
and “embedding” techniques used by ViT with a Convolutional Tokenization. This
module has a traditional CNN design comprising a convolutional layer, a ReLU ac-
tivation, and a max-pooling operation. One or more of these blocks map the input
image into a latent representation that offers more flexibility and efficiency than
ViT. This approach reduces the number of model parameters and injects the induc-
tive bias of the convolution operation that alleviates the need for a massive quantity
of training data. The latent representation extracted by this module preserves the

Figure 5.4: CCT Architecture. Figure from [14]
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local spatial information and the relationship among close areas in the image. The
convolutional filters share the same weights, then similar semantic elements in the
picture will have a similar representation in the latent space. Furthermore, this
tokenization makes positional encoding optional, allowing the flexibility of using an
arbitrary number of tokens, with a limited impact on the final performances. This
characteristic, paired with the fact that this approach does not require the input
image to have a resolution multiple of the patch size, allows the model to process
images with different resolutions without additional problems. After the Convolu-
tional Tokenization layer, the CCT architecture follows the same architecture of a
Transformer encoder as previously described for both the vanilla Transformer [117]
and ViT [13]. CCT also introduces the use of a SeqPool layer that performs an
attentive pooling over the output sequence of the Transformer, which avoids the
need for the classification token.

In this work, CCT models have been employed as backbone networks to produce
frame-level representations later processed with the SeqVLAD sequence-aggregator
layer, introduced later in Section 5.3.7. Following the nomenclature used in [14],
the configurations employed in this work are two versions of CCT-14/7x2, i.e.,
with a transformer encoder with fourteen layers and two convolutional blocks with
kernel 7 × 7 for the tokenization. These models are pre-trained on ImageNet-1k
[39] using two different image resolutions, i.e. 224×224, as ViT, and 384×384. To
distinguish between them in the following chapter will be referred to as CCT-224
and CCT-384.

5.3.5 TimeSformer
ViT and CCT apply the concept of self-attention only to the spatial dimension
of every single image that composes a sequence. However, as shown by Berta-
sius et al. [144] can be extended from the image space to space-time 3D volume
of videos. Their work proposes a model called TimeSformer that adapts ViT to
videos. This architecture process the video as a sequence of patches extracted from
individual frames that are linearly mapped into an embedding representation and
expanded with the additional positional encoding information. The resulting tokens
sequence is then fed to a Transformer encoder that, compared to the traditional
2D or 3D CNNs, can model both global and local-range dependencies. However,
the self-attention cannot consider the sequence entirely given the quadratic cost
requirements. While for ViT in the Image Recognition scenario, this problem was
addressed using image patches, in this case, the authors empirically evaluated dif-
ferent attention schemes that consider the tokens in both spatial and temporal axes
with different granularities. These approaches are thoroughly described in [144],
here the discussion focuses on the considerations that lead to the Divided Atten-
tion, which is the scheme that achieves the best results and offers a good tradeoff
in terms of requirements.
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(a) (b)

Figure 5.5: TimeSformer Self-Attention Schemes. Figure (a) contains a
schematic representation of the different configurations used for the TimeSform-
ers encoder blocks. Figure (b) depicts which patches are utilized by the different
self-attention schemes using a short sequence of three frames as an example. Figures
from [144].

Given an input video X ∈ RH×W×3×F , with F frames with resolution (H,W ),
each of them is divided into N = HW/P 2 patches of size P × P . Each patch is
identified by its position (p = 1, . . . , N) within a frame and its temporal coordinate
(t = 1, . . . , F ) in the input sequence. The flattened patch at position (p, t) is a
vector x(p,t) ∈ R3P 2 , that is then mapped into an embedding vector z(0)

(p,t) ∈ RD

by projecting it onto a learnable matrix E ∈ RD×3P 2 and summing the learnable
positional encoding epos

(p,t) ∈ RD:

z(0)
(p,t) = Ex(p,t) + epos

(p,t). (5.5)

The CLS token z(0)
(0,0) ∈ RD is prepended to the generated sequence of vectors{

z(0)
(p,t)

}
p=1,...,N
t=1,...,F

to form the Transformer encoder’s input. The encoder is composed

of L stacked encoding blocks, at each block `, for each embedding from the previous
block z(`−1)

(p,t) it computes the query, key and value vectors for the MHSA heads:

q(`,a)
(p,t) = W

(`,a)
Q LN

(
z(`−1)

(p,t)

)
∈ RDh (5.6)

k(`,a)
(p,t) = W

(`,a)
K LN

(
z(`−1)

(p,t)

)
∈ RDh (5.7)

v(`,a)
(p,t) = W

(`,a)
V LN

(
z(`−1)

(p,t)

)
∈ RDh (5.8)
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where LN() denotes the LayerNorm [159], and a = 1, . . . , A is the index over
the multiple attention heads. The latent dimension for each of MSHA is Dh =
D/A. The formula to compute the attention weights, i.e., the result of the α =
Softmax(Q>K/

√
Dh), it is possible to define different attention approaches, that

are schematically represented in Figure 5.5. The weight vector obtained for each
query patch (p, t) at layer ` in the attention head a is a vector α

(`,a)
(p,t) ∈ RNF+1. The

self-attention weights computed considering jointly spatial and temporal patches
can be written as:

α
(`,a)
(p,t) = Softmax

q(`,a)
(p,t)√
Dh

>

·
[
k(`,a)

(0,0)

{
k(`,a)

(p′,t′)

}
p′=1,...,N
t′=1,...,F

] (5.9)

This approach entails high computational costs and memory requirements that
can be alleviated considering the computation of self-attention separately over the
two axes. Following the notation used in this section, considering only the self-
attention over the spatial dimension, which is the one used in ViT, can be expressed
as:

α
(`,a)space
(p,t) = Softmax

q(`,a)
(p,t)√
Dh

>

·
[
k(`,a)

(0,0)

{
k(`,a)

(p′,t)

}
p′=1,...,N

] (5.10)

This configuration does not consider the temporal dependencies among the frame
that compose the sequence and therefore achieves the lowest results compared to
the other attention schemes.
On the other hand, an attention scheme that considers only the temporal axis is:

α
(`,a)time
(p,t) = Softmax

q(`,a)
(p,t)√
Dh

>

·
[
k(`,a)

(0,0)

{
k(`,a)

(p,t′)

}
t′=1,...,F

] (5.11)

The Divided Space-Time Attention scheme proposed with the TimeSformer model
applies temporal attention from Eq. 5.11 and spatial attention from Eq. 5.10 one
after the other. This scheme allows a more efficient approach, with only (N+F+2)
query-key multiplication per patch against the (NF + 1) required by the joint
approach, and it also leads to better performances in the tests conducted by the
authors on several Action Recognition datasets.

Applying the TimeSformer for Sequential Visual Geo-localization provides the
advantage of using an architecture capable of directly dealing with sequences of
frames without needing any sequence-level aggregator as for the previously de-
scribed architectures. Even when using the Divided Space-Time self-attention, this
architecture has the downside of requiring high computational and memory costs.
Among the different configurations tried in this part of this work, the TimeSformer
represents the heaviest model and, for this reason, it was possible only to apply it
with resized 224 × 224 frames to fit in memory, given the high number of images
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required by the triples composing the training batches. However, the model pro-
duces a compact 768-dimensional sequence-level descriptor. Following the original
implementation, the TimeSformer uses as initialization the weights from a Base-
ViT pre-trained on ImageNet-21k, with 12 encoder blocks, and splits the image into
16× 16 patches. In some experiments, the number of encoder blocks is reduced to
8 or 10 to evaluate the performances obtained with different network depths.

5.3.6 Non-Local Neural Networks
The work of Wang et al. [15] proposes a general definition for a differentiable non-
local operation that can be introduced in any Computer Vision architecture to
model long-range dependencies. This approach has many similarities with the self-
attention mechanism proposed by Vaswani et al. [117], published around the same
time, but its inspiration can be identified in the 2005’s non-local means algorithm
[118]. This technique is a classical de-noising filter for images that works with a
mean of all the pixels composing the picture. This approach is in contrast with
other algorithms developed for the same task, which instead consider only a group
of neighbor pixels. Following the original non-local means operation, the authors
of [15] propose a generic version for deep neural networks:

yi = 1
C(x)

∑
∀j
f(xi,xj)g(xj) (5.12)

In contrast to the usual convolutional operation that relies on a local neighborhood
of pixels of the input image or feature map, for the non-local operation, the output
y at a generic position i relies on all the other elements of the input x, note that
input x and output y have the same dimensions. The function f(·, ·) that measures
the relationship between two input elements and in Eq. 5.12 is used to compute
the dependency of xi with all the other elements in the input, i.e., for all other
positions j. On the other hand, the function g(·) computes a representation of the
input at position i.

The scaled dot-product self-attention is a special case of the general formula
of Eq. 5.12. To see better this correspondence let use f(xi,xj) = θ(xi)>φ(xj),
i.e., the embedding version of the dot product similarity, and g(xi) = ψ(xi), where
the functions θ(·), φ(·) and ψ(·) are linear mappings that embed the input into
queries, keys and values. These formulation allows different degrees of freedom,
for instance, it can be modified using different pairwise similarity functions f and
unary mappings g, as well as different normalization factors C(·). The Transformer-
based architectures differ from this approach for the introduction of MHSA and the
use of only a particular form of attention.

This module represents an attractive alternative approach to Transformer-based
models to introduce self-attention in the sequence-based VG pipeline. Its general

76



5 – Sequence-Based Visual Geo-localization

Figure 5.6: Non-local module. Schematic representation of the internal opera-
tions performed by a spatio-temporal Non-Local block. Figure from [15]

definition enables the formulation of several different self-attentive blocks. In par-
ticular, this layer was employed as a pluggable trainable element for capturing and
modeling long-range dependencies with the ResNet-18 and ResNet-50 backbones
and followed by different aggregation methods. In this work, three different non-
local configurations have been tried:

- Spatial Non-Local Layer, this configuration works only with the spatial dimen-
sion, i.e., computing its non-local weights for each frame separately, exploiting
the information from features extracted from different positions in the same
image.

- Temporal Non-Local Layer, as the name suggests, this configuration uses for
its computations for each element the features coming from the same spatial
location across all the frames of the sequence.

- 3D Spatio-Temporal Non-Local Layer, this last configuration relies on a 3D-
convolution to encode in the internal computation for the self-attention mask
together spatial and temporal information from the features extracted from
the sequence.

5.3.7 SeqVLAD
This section introduces the SeqVLAD layer, an original contribution of this work
that extends the capabilities of the widely known NetVLAD aggregator for se-
quences. The layer can also process both feature maps from CNNs and the output
sequence embeddings produced by Transformer encoders. The S-VG task requires
a sequence-level aggregation method tailored for the task. While the techniques
presented in the previous sections rely on simplistic approaches as concatenation
or fully-connected layers, or expensive approaches as the TimeSformer, SeqVLAD
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represents an ad-hoc layer that processes the entire sequence and has low memory
requirements at the same time.

SeqVLAD arose from the necessity of a powerful aggregation technique that
efficiently and effectively processes the information extracted by the different back-
bones. This layer exploits the idea of Vector of Locally Aggregated Descriptors
(VLAD) proposed by Jégou et al. [51] that captures the information about the
hand-crafted local descriptors of an image by computing the residuals of these de-
scriptors with a set of visual words (or centroids or cluster centers). This approach
produces a much richer representation than the previous Bag Of visual Words [48]
methods.

The idea behind VLAD is that given N D-dimensional local descriptors {xi}Di=1
and a codebook with K visual words {ck}Kk=1, the VLAD’s output is a (K · D)-
dimensional vector. Let define the output as a matrix V ∈ RK×D, that is flattened
and normalized to produce the final VLAD descriptor. Then, each element of (j, k)
of V is equal to:

V (j, k) =
N∑
i=1

ak(xi)(xi(j)− ck(j)), (5.13)

where xi(j) and ck(j) are the j-th elements of the i-th descriptor and the k-th
visual word, respectively. The ak(xi) function denotes the hard-assignment of the
local descriptor xi to the k-th visual word. If the the k-th centroid is the closest
one to the descriptor then the function is equal to one and it contributes to the
residual computation, otherwise is equal to zero. As a result, each D-dimensional
k-th column of V is the sum of all the residuals of the descriptors associated to
that centroid. After the computation of all the residuals, the matrix V is intra-
normalized (column-wise), flattened and then L2 normalized again.

The authors of NetVLAD [16] proposed to extend the VLAD method to CNNs.
In order to create an end-to-end trainable layer to process the extracted feature
maps, they faced the challenge of modifying VLAD assignment to a differentiable
operation avoiding the discontinuity of function ak(·). They propose the following
function that performs the soft-assignment with a softmax function:

āk(xi) = e−α||xi−ck||2∑
k′ e−α||xi−c′

k
||2 = ew>

k xi+bk∑
k′ ew>

k′ xi+bk′
, (5.14)

where the first equality assigns the weight of each local descriptor xi to a cluster
center ck based also on its similarities with the other centroids. Computing the
squares and setting wk = 2αck and bk = −α||ck||2, it is posible to separate the
trainable parameters of NetVLAD into three independent sets {wk}Kk=1, {bk}Kk=1,
and {ck}Kk=1. The formulation of NetVLAD can be written as

V (j, k) =
N∑
i=1

āk(xi)(xi(j)− ck(j)). (5.15)
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Figure 5.7: SeqVLAD Layer. The image shows the operations performed by
SeqVLAD to produce its output descriptor. The VLAD core block is the operation
described in Equation 5.15.

In this way, the layer learns not only from the data how to assign each feature vector
to its centroids but also the centroids themselves producing a richer codebook.

When dealing with sequences, the CNN’s feature maps output is a tensor of
dimension F × H × W × D, where F is the number of frames, D the number
of channels, H and W the spatial locations of the D-dimensional features. Then
SeqVLAD reshapes the tensors into (F ·H ·W )×D and processes all the features
from the entire sequence together to produce the final sequence descriptor. Given
the inner functioning of the VLAD core (Eq. 5.15), the dimensionality of the
sequence descriptor is fixed to (K ·D) regardless of the sequence length. Similarly,
SeqVLAD can also be applied to the output embeddings of a Transformer-based
architecture. In this situation, the network produces a tensor with dimensionality
F ×S×D, where S is the number of tokens produced for each frame. Then before
computing the assignments, this sequence-wise tensor is reshaped to (F ·S)×D to
let SeqVLAD consider all the embeddings extracted from all the frames composing
the sequence.

SeqVLAD inherits from NetVLAD the soft-assignment operation and the learn-
able centroids that must be initialized before the training procedure. Another
advantage of SeqVLAD over the other proposals described before is its remark-
able flexibility that allows applying a model trained for a specific sequence length
for other lengths. Moreover, this happens by producing a descriptor with a fixed
dimension without introducing many computational and memory requirements,
comparable to traditional NetVLAD.

This layer has been trained in conjunction with ResNet-18 and ResNet-50, with
and without the use of Non-Local modules. Moreover, given the lower requirements,
for the Transformer-based architectures, it was tested with CCT in order to be able
to run more experiments in comparison with ViT.
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Chapter 6

S-VG Experiments and
Results

This chapter aims at discussing and showing the results obtained in the context
of sequence-based Visual Geo-localization for the seq2seq task with the architec-
tures described in Section 5.1. The analysis considers each technique’s strengths
and weaknesses, pointing out possible improvements that could impact its retrieval
performance and lower the requirements in terms of memory footprint, training
time, inference time, and computational cost. Given the limited number of works
addressing the sequence-based VG, the experiments followed a trial and error ap-
proach to identify a possible architecture that could provide a satisfactory trade-off
between results and requirements.
This chapter begins with a description of the results obtained with the baseline
models that adapt the VG systems described in the first part of this thesis to
the S-VG problem (Section 6.1). In order to introduce self-attention elements in
the system to model the relationship among the semantic elements that emerge in
the frames of the sequence, the first attempt is to apply a Transformer encoder
as a sequence-level aggregator (Section 6.2). The following Sections 6.3 and 6.4
replace the CNN backbones with two Transformer-based architectures, ViT [13]
and TimeSformer [144]. Given the high requirements of the previous networks, two
different paths investigating the use of CNN in conjunction with Non-Local layers
[15] (Sec. 6.5) and the hybrid approach of the Compact Convolutional Transformer
(Sec. 6.6). These choices are the result of the considerations argued in Section 6.7
about the training costs of the models using multiple frames combined with the
weakly supervised triplet loss [16] used for training. The following two Sections
6.8 and 6.9 inspect the performances provided by the use of models trained on the
single-image task and the impact of different choices in the number of negative ex-
amples for the training triplets. Finally, Section 6.10 investigates the performances
of different architectures modifying the order of the database sequences.
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6.1 Baselines
Following the choice of the baseline architectures discussed in detail in Section 5.3.1,
the results described here are produced by different configurations composed of a
ResNet-18 cropped at layer conv4_x combined with GeM or NetVLAD to extract
frame-level descriptors. They are later combined with a concatenation operation
(CAT) or the use of a fully-connected layer, as proposed in the work of [104]. The
experiments use short sequences with lengths 3, 5, and 7, justified by the idea of
maintaining a reasonable geographical range for each place, and keep the images
with their original resolution of 480× 640 pixels.

Backbone Frame
Aggregation

Sequence
Aggregator

Descriptor
Dim.

Train/Test
Seq. Len. R@1

ResNet-18 GeM CAT 768 3 73.6
ResNet-18 GeM FC-512 512 3 71.6
ResNet-18 GeM FC-2048 2048 3 73.9
ResNet-18 NetVLAD CAT 49152 3 81.0
ResNet-18 NetVLAD FC-512 512 3 68.9
ResNet-18 NetVLAD FC-2048 2048 3 68.2
ResNet-18 GeM CAT 1280 5 74.5
ResNet-18 GeM FC-512 512 5 71.8
ResNet-18 GeM FC-2048 2048 5 74.4
ResNet-18 NetVLAD CAT 81920 5 80.8
ResNet-18 NetVLAD FC-512 512 5 70.1
ResNet-18 NetVLAD FC-2048 2048 5 66.9
ResNet-18 GeM CAT 1792 7 75.2
ResNet-18 GeM FC-512 512 7 72.9
ResNet-18 GeM FC-2048 2048 7 74.3
ResNet-18 NetVLAD CAT 114688 7 82.2
ResNet-18 NetVLAD FC-512 512 7 66.8
ResNet-18 NetVLAD FC-2048 2048 7 69.5

Table 6.1: Baseline Results. All the backbones are pre-trained on ImageNet.
The number of negatives per triplet is 10, and the frame resolution is 480× 640.

Table 6.1 contains the values of R@1 obtained with the different configurations.
The main insights extracted from these results concern that GeM and NetVLAD
keep the same performance gap evidenced in the benchmark experiments, with
NetVLAD performing better but with the drawback of producing larger descriptors.
Following this trend, the performances obtained with the larger descriptors using
the concatenation approach also produce better results than the fully-connected
layers. However, the use of fully-connected layers as sequence-level aggregation
technique negatively impacts the retrieval performances of the configurations using
NetVLAD if compared with the CAT approach. The configuration ResNet-18 at
conv4_x and GeM produces a 256-dimensional descriptor for each frame. The
concatenation of the single images’ descriptors, even for the longer sequence with
7 frames, has a dimensionality below 2048, and the use of the fully-connected
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layer does not considerably affect the retrieval performance of the system. Another
element is that the FC layers paired with NetVLAD, particularly for long sequences,
require an increasing number of parameters that make the model heavier and more
difficult to train.

The methods analyzed in this section are a straightforward adaptation of the
single-image approaches that do not consider ad-hoc sequence-level aggregation
techniques. As a result, they are not designed to capture complex relationships
among the different frames and are not optimized to produce lightweight descrip-
tors, which are desirable for real-time applications. These techniques should be
considered a starting point towards more elaborate and tailored solutions that will
be evaluated in the following sections.

6.2 Transformer Encoder
The first experiments considering a more elaborate sequence-level employ a con-
figuration composed of ResNet-18 backbone, a GeM pooling layer, and a vanilla
Transformer encoder to process the descriptors of the entire sequence. The output
descriptor is the 256-dimensional output CLS embedding, obtained by prepending
a learnable token to the input sequence composed of the frame-level descriptors. As
shown in Table 6.2, this configuration represented a not encouraging starting point.
The original idea was to propose a system relying on the lightweight CNN back-
bone with GeM to extract compact descriptors that are further processed with the
Transformer encoder to exploit its self-attention mechanism to model inter-frame
relationships.

Backbone Frame
Aggregation

Sequence
Aggregator

Num. Encoder
blocks

Train/Test
Seq. Len. R@1

ResNet-18 GeM Transf. Encoder 3 3 18.8
ResNet-18 GeM Transf. Encoder 3 5 18.1
ResNet-18 GeM Transf. Encoder 6 5 16.8
ResNet-18 GeM Transf. Encoder 8 5 18.3
ResNet-18 GeM Transf. Encoder 3 7 18.0

Table 6.2: Vanilla Transformer Encoder. The results in this table are obtained
using a vanilla Transformer encoder as a sequence-level aggregator for the 256-
dimensional descriptors obtained with a ResNet-18 + GeM. Backbones are pre-
trained on ImageNet, and the number of negatives per triplet is 10.

However, the experiments highlight that this configuration is not a viable ap-
proach and does not converge to satisfactory results. The first difference that may
emerge comparing the overall system with other Transformer-based architectures
is that the number of tokens used as input for the encoder is extremely low, i.e.,
equal to the number of input frames plus the CLS token. Inspired by the Con-
volutional Tokenization proposed by CCT [14], the idea was to circumvent this
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issue by increasing the number of tokens considering the feature maps produced
by the ResNet-18 backbone. In particular, given the output features of dimension
F×256×H×W , where F is the sequence length, they are unrolled as (F ·H ·W ) to-
kens of dimension 256. Unfortunately, this solution required a lot of GPU memory
for training and turned out with even worse results compared to the ones displayed
in Table 6.2. Other possible motivations that could justify the failure of this config-
uration are that this encoder module requires higher amounts of training data since
it started from a random initialization or that the triplet loss could not provide an
adequate training signal. These results are reported for completeness and highlight
the possible flaws in this attempt that must be considered in future investigations.

6.3 ViT
Taking a step back, the experiments described in this section, instead of addressing
the sequence aggregation, focus on replacing the CNN backbone with the Vision
Transformer (ViT) [13] architecture. Given the hardware constraints and the in-
trinsic memory requirements of the sequence-based VG, the ViT chosen for this
task is the Base-ViT that works with 224 × 224 input images. They are further
split into 16 × 16 pixels patches, later flattened and embedded into a sequence of
196 tokens plus the CLS token. The output descriptor size and the dimensionality
of the internal embeddings are equal to D = 768. The model is pre-trained on
ImageNet-21k [170].

Following the approach employed for the baseline models, the frame-level de-
scriptors are combined using concatenation and an FC layer with an output dimen-
sion of 2048. As before, three different sequence lengths have been considered (3,
5, and 7).

The discussion of the results reported in Table 6.3 must be contextualized con-
sidering the pros and cons provided by this architecture. ViT is by far the most
popular Transformer-based architecture for vision tasks, and then it seemed the
ideal choice to begin an investigation of this family of networks. This architecture
lacks the typical inductive bias of the CNNs and eliminates the need for a feature
aggregation pooling layer. Unfortunately, ViT has a large number of parameters,
i.e., 86 million parameters compared to the modest 11 million from a ResNet-18.
On the one hand, this larger capacity leads the model to greater expressiveness
and hypothetically more representative image descriptors. On the other hand, ViT
has higher computational and memory requirements that hinder the number of
experiments and usability in practical applications.

The results obtained with ViT, presented in Table 6.3, improve the ones pro-
duced by the GeM-CAT approach from the baselines. However, they achieve lower
results than the baseline with NetVLAD plus CAT. For sequence lengths of 3 and
5 frames, the difference is around only 1-2%. The difference increases to 6% when
considering a sequence length of 7 frames. However, in all these scenarios, it is
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Backbone Descriptor
Dim.

Sequence
Aggregator

Train/Test
Seq. Len. R@1

ViT 2304 CAT 3 76.0
ViT 3840 CAT 5 79.2
ViT 5376 CAT 7 76.5
ViT 2048 FC-2048 3 76.4
ViT 2048 FC-2048 5 79.6
ViT 2048 FC-2048 7 74.5

Table 6.3: ViT Results. The results obtained with Base-ViT with 16×16 patches
and reshaping the input images to 224 × 224. All the results use 10 negative
examples per triplet.

important to point out that ViT has a considerably lower dimensionality of the
descriptors than the models with NetVLAD.
As for the baselines methods, these architectures suffer from the lack of a specialized
sequence-level aggregator that could potentially provide an improvement on the re-
trieval performance, an issue that has been further investigated with the lightweight
CCT architecture and the SeqVLAD layer in Section 6.6. As also emerged with
other Transformer-based architectures in the following sections, future experiments
should investigate the possibility of obtaining a gain in performance by cropping
the ViT architecture and then reducing the number of encoder blocks.

6.4 TimeSformer
During the literature overview conducted on the available Transformer-based ar-
chitectures, the TimeSformer [144] network stands out for its convenient design
capable of handling both spatial and temporal information exploiting the Multi-
Head Self-Attention mechanism. As already described in Section 5.3.5, this model
derives from ViT, and, besides the empirical evaluation of the different self-attention
schemes, the authors do not propose any particular design modification to lower
the model requirements. For this reason, this approach is problematic for prac-
titioners that do not have access to a massive quantity of GPU resources, and
the experiments described in this section are limited only to the Divided Space-
Time Attention scheme with an input frame resolution of 224 × 224 pixels. The
TimeSformer model used in this section works with internal token embeddings of
dimension 768, producing a sequence-level descriptor with the same size, and is
composed of 12 encoder blocks with the Space-Time self-attention. The model
uses as weight initialization the Base-ViT pre-trained on ImageNet-21k purposely
adapted to the different attention scheme, which causes the downside effect of mak-
ing the number parameters increase from 86M to 121M, making the models in this

84



6 – S-VG Experiments and Results

section the architectures with the larger capacity employed in this entire work. This
reason, paired with the observation that for CNN models cropping the last layers
of the architecture provides more expressive features, motivates the experiments
investigating the possibility of truncating the architecture up to the 10th and the
8th encoder block.

Architecture Truncated
at block Pretrain Train/Test

Seq. Len. Margin R@1

TimeSformer - ImageNet 3 0.1 78.9
TimeSformer 10 ImageNet 3 0.1 79.7
TimeSformer - ImageNet 5 0.1 81.2
TimeSformer 10 ImageNet 5 0.1 81.0
TimeSformer - ImageNet 7 0.1 82.0
TimeSformer 8 ImageNet 7 0.1 81.5
TimeSformer 10 ImageNet 7 0.1 85.2
TimeSformer - ImageNet 8 0.1 83.7
TimeSformer - ImageNet 8 0.5 82.7
TimeSformer - K400 8 0.1 82.8
TimeSformer - K400 8 0.5 83.8
TimeSformer - K600 8 0.1 80.6
TimeSformer - K600 8 0.5 83.5

Table 6.4: TimeSformer Results. Results obtained with the TimeSformer archi-
tecture with the Divided Space-Time self-attention scheme [144]. The experiments
were conducted with 10 negative examples per triplet and resizing the input frames
to 224× 224. All the models produce 768-dimensional descriptors.

The model is trained and evaluated for different sequence lengths, i.e., the 3,
5, 7, and 8 frames. The latter is employed to compare the results obtained with
the models initialized only with Base-ViT weight for ImageNet-21k with other
TimeSformer from the GitHub repository 1 of [144] trained on standard Action
Recognition datasets, Kinetics-400 (K400) [171] and Kinetics-600 (K600) [172].

Table 6.4 contains the results obtained with the experiments using the TimeS-
former architecture. Comparing the results with the baselines from Section 6.1 it
emerges that TimeSformers have a better retrieval performance for sequence lengths
of 5 and 7 frames compared with the baseline. In particular, for 7 frames, it im-
proves by 3% (R@1 85.2%) over the best baseline method. However, for shorter
sequences of 3 frames, it reaches an R@1 of 79.7%, which is lower than the 81%
obtained with NetVLAD+CAT.

The experiments using the weights of finetuned for Action Recognition task use
sequence with 8 frames and unfortunately does not improve the results obtained
with the Image-Net initialized models. Then, different values of the margin of loss

1https://github.com/facebookresearch/TimeSformer
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have been tried to require the sequence representations of the positive pairs closer
and push them further away from the representations of negative examples. This
attempt led to higher results for the models pre-trained on K400 and K600 but still
lower than the results obtained with the TimeSformer pre-trained on ImageNet.
Regarding the latter, the same adjustment in the margin was tried for these models,
but using a higher margin only worsened the final performances.

To summarize, the pros of using the TimeSformer model reside in the fact that
(i) it does not require any aggregator layer, (ii) using its CLS output embedding
produces a compact 768-dimensional sequence-descriptor, and (iii) it provides good
retrieval performances. However, they come at the cost of a high requirement in
terms of computational costs and memory requirements and cannot be used for
different sequence lengths from the one on which the model is trained. As a result,
this limited the number of experiments with this architecture and motivated the
need for lighter models. Another possible track to follow in future developments
could be to modify the original architecture of the TimeSformer with the introduc-
tion of a Convolutional Tokenization block, as proposed in the CCT architectures,
that will produce a hybrid model. A model with these characteristics could benefit
from the inductive bias of the CNNs and the flexibility of the Transformer architec-
ture. Using the low-level features in place of image patches could also considerably
lower the hardware requirements. In this case, the initial pre-train of the architec-
ture could be addressed following the same approach of TimeSformer that uses a
ViT architecture trained on ImageNet and then modifies its positional encoding to
adapt it for the different self-attention scheme.

6.5 Non-Local Blocks
The results from the previous sections underline two main issues. The models that
rely on simple sequence-level aggregators cannot completely exploit the information
coming from the multi-frame setup. However, the use of a complex architecture,
like the TimeSformer, demands high amounts of resources. Then, the following
steps were motivated by two factors to reduce the overall requirements and de-
sign an adequate sequence-level aggregator that could provide a good trade-off in
performance and versatility.

Given the high requirements of pure-Transformer architectures, two main paths
relying on hybrid convolutional and self-attentive models were assessed, i.e., the
Non-Local [15] modules of this section and the CCT [14] of the following. How-
ever, both alternatives do not solve the other need for an adequate sequence-level
aggregator and then are coupled with the SeqVLAD layer introduced in Section
5.3.7.

The three Non-Local modules evaluated in this section are introduced in the S-
VG pipeline right after the CNN backbone to operate on the extracted feature maps
to capture relationships within the single images or across an entire sequence. Then,
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the output features of the module are fed to the SeqVLAD layer, that for ResNet-
18 conv4_x and using 64 centroids produces a fixed descriptor of dimensionality
16384, similarly to the single-image descriptors produced by NetVLAD for the same
backbone.

The Non-Local modules provide different degrees of flexibility by tuning the
number of channels in the internal computation and the weight to put in the at-
tention mask in the residual connection. This layer allows the introduction of the
expressiveness of a self-attentive layer in a traditional CNN, with a low-cost impact
on the overall system.

Backbone Channel
Bottlenek

Residual
Weight

Non-Local
Block Type

Sequence
Aggregator

Train/Test
Seq. Len. R@1

ResNet-18 - - - SeqVLAD 3 82.6
32 83.2
64 82.7
128 82.6ResNet-18

256

1 2D SeqVLAD 3

82.3
32 82.7ResNet-18 64 1 2D + T SeqVLAD 3 82.0
32 83.5
64 82.9
128 82.6ResNet-18

256

1 3D SeqVLAD 3

81.8
32 81.8
64 81.4
128 80.9ResNet-18

256

2 3D SeqVLAD 3

80.5

ResNet-18 - - - SeqVLAD 5 85.2
32 84.9
64 84.3ResNet-18
128

1 2D SeqVLAD 5
83.6

32 85.7
64 84.6ResNet-18
128

1 3D SeqVLAD 5
83.7

Table 6.5: Non-Local Blocks. Results obtained with ResNet-18 backbone paired
with different versions of the Non-Local layers, i.e., spatial (2D), spatial plus tempo-
ral attention (2D+T), and the 3D spatio-temporal attention (3D). The sequence-
level aggregator is SeqVLAD for all the configurations with a descriptor of size
16384. The backbones are pre-trained on ImageNet. For training, the triplet used
10 negative examples with input frames of resolution 480× 640.

Table 6.5 contains the results obtained for sequences of length 3 and 5 with
the base ResNet-18+SeqVLAD model and then applying the various Non-Local
modules. In the Table, the Spatial Non-Local Module is indicated as 2D attention,
the 3D Spatio-Temporal NL goes under the name 3D, and 2D + T indicates the
TemporaL NL used together with the Spatial one.

The first consideration is that looking at the outcomes, the use of ResNet-18 with
SeqVLAD produces promising results and that the introduction of NL modules did

87



6 – S-VG Experiments and Results

not improve this baseline significantly.
Inspecting the results, we can see that the best results were obtained with the

Spatial and 3D Spatio-Temporal NL modules when reducing the channels feature
from the input value of 256 to 32, with a downscale factor of 8. The combination
of Spatial and Temporal NL modules does not improve the results of the baseline.

The results obtained with 2D and 3D Non-Local layers slightly improve com-
pared to the ResNet-18+SeqVLAD baseline on short sequences of 3 frames. More
importantly, the methods presented in this section improve by 3% in R@1 the
NetVLAD+CAT baseline and the TimeSformer models with sequences composed
of 3 frames. The improvement when considering sequences of 5 frames is even
greater for the 3D NL module, which achieves 5% more with respect to the base-
line of the previous sections.

Unfortunately, the Non-Local modules do not provide the desired performance
boost if compared with ResNet-18+SeqVLAD alone. A possible strategy to improve
the final R@1 could be to insert the NL layer at different points in the CNN
backbone. However, properly tuning this choice requires an exhaustive collection
of experiments, that given the limited availability of computational resources, are
postponed for future investigations.

6.6 CCT
The authors of [14] proposed the Compact Convolutional Transformer (CCT) to
purposely offer a Transformer-based architecture that requires a considerably lower
number of parameters compared to ViT to reduce its computational demands. The
CCT configuration employed in this section has a Convolutional Tokenization block
with two convolutional layers with 7× 7 kernels that produce a feature map more
compact than the flattened image patches obtained from the input frames. These
feature maps have 384 channels, which, as a result, is also the dimensionality of
the tokens and the embeddings manipulated by the network. This model has a
number of parameters around 22M, comparable with the ResNet-18 architecture of
the baselines. The output encodings of the model are processed using SeqVLAD,
which aggregates the output embeddings into a sequence descriptor of dimension-
ality equal to 384 · 64 = 24576. The different configurations tested in this section
investigate the impact of cropping the stack composed of 14 encoder layers and
the effect of freezing the Convolutional Tokenization layer with or without the first
encoder blocks.

Table 6.6 shows the beneficial effect for the results in retrieval performance ob-
tained by reducing the number of encoder blocks to use the output embedding
sequence from lower layers. The same positive outcome also emerges when freez-
ing the Tokenization layer or the first encoder blocks with the weights learned on
ImageNet. The majority of the results from Table 6.6 are obtained with the CCT
architectures that take as input 224 × 224 images, then named CCT-224. A few
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Backbone Sequence
Aggregator

Truncated
at block

Freeze
up to block

Train/Test
Seq. Len. R@1

CCT-224 SeqVLAD 10 _ 3 83.9
CCT-224 SeqVLAD 10 Conv. Tok. 3 83.7
CCT-224 SeqVLAD 10 TE 2 3 82.5
CCT-224 SeqVLAD 8 - 3 83.5
CCT-224 SeqVLAD 8 Conv. Tok. 3 84.7
CCT-224 SeqVLAD 8 TE 2 3 84.6
CCT-224 SeqVLAD 6 - 3 81.4
CCT-384∗ SeqVLAD 10 Conv. Tok. 3 86.4
CCT-384∗ SeqVLAD 8 Conv. Tok. 3 87.9

CCT-224 SeqVLAD 10 - 5 85.1
CCT-224 SeqVLAD 10 Conv. Tok. 5 86.0
CCT-224 SeqVLAD 8 - 5 85.6

CCT-224 SeqVLAD 10 - 15 89.6
CCT-224 SeqVLAD 8 - 15 91.2

Table 6.6: CCT Results. This Table contains the results obtained with CCT
models and SeqVLAD. CCT-224 and CCT-384 identify the two resolutions used
for the input frames. The descriptor dimensionality is 24576 for all the models.
∗ CCT-384 models are trained with 6 negative examples.

results using larger resolutions of 384 × 384 pixels (CCT-384) were obtained by
lowering the number of negative examples from 10 to 6. As already mentioned in
Section 5.3.7, the sequence-aggregator layer can process the output embeddings of
a Transformer-based architecture by using a 1-dimensional convolutional layer in
place of the usual 2-dimensional one. The layer receives as input a tensor of shape
F ×S× 384, where F is the number of frames in the sequence and S is the number
of embeddings produced by the CCT. The next step is reshaping this tensor as
(F · S)× 384 and applying the usual soft-aggregation.

Compared to the results obtained with ResNet-18+SeqVLAD of the previous
section, CCT is able to achieve better results with its CCT-224 versions. In par-
ticular, it improves by 2% R@1 with the sequences of 3 frames and 1% over the
5-frames sequences. However, it requires a larger descriptor than the one obtained
with ResNet-18 because of the bigger embeddings of CCT compared to the 256-
channel features of the CNN model.

The use of CCT-384, on the one hand, improves the R@1 performance consider-
ably, achieving a result of 87.9% with 3-frames sequences, but with the downside of
requiring more GPU memory for training, given the number of tokens embeddings.

6.7 Training and Inference Costs for S-VG
The previous sections deal with several architectures that have different require-
ments. This section summarizes and discusses all these factors to provide a com-
plete picture of the different architectural choices investigated in this part of the
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thesis. Tables 6.7 and 6.8 contain the feature dimensionalities, inference times, and
training GPU-memory requirements for models applied to sequences with lengths
of three and seven frames. As previously explained in Section 4.5, the inference
time is the result of two components, extraction and matching time, that are re-
ported singularly and combined in the Inference Time column. The extraction time
is correlated with the complexity of the model, i.e., a higher extraction time means
a higher number of computations required to extract the sequence descriptor. The
matching time is obtained as the time required by a forward pass of 1000 query
sequences matched against a database of 105 elements divided by 1000 to mimic a
realistic S-VG scenario. Note that, at inference time, the system works directly on
the sequence-descriptors previously computed off-line. All the timings reported in
the Tables were obtained using a machine equipped with an NVIDIA GTX Titan
GPU and an Intel i7-5930K CPU.

Architecture Descriptor
Dim.

Extraction
Time [ms]

Matching
Time [ms]

Inference
Time [ms] R@1 GPU Memory

per triplet

ResNet-18 - GeM - CAT 768 12 2 15 73.6 3.0 GB
ResNet-18 - NetVLAD - CAT 49152 20 145 164 81.0 3.8 GB
ResNet-18 - SeqVLAD 16384 19 48 67 82.1 4.0 GB
ResNet-18 - Attn. 2D - SeqVLAD 16384 23 48 71 83.2 4.3 GB
ResNet-50 - SeqVLAD 65536 72 191 262 83.5 13.2 GB
Base-ViT - CAT 2304 31 7 38 76.0 8.3 GB
Timesformer 768 48 2 50 79.7 11.0 GB
CCT-224 - SeqVLAD 24576 11 72 83 86.8 3.2 GB
CCT-384 - SeqVLAD 24576 35 72 107 85.9 12.0 GB

Table 6.7: Requirements for Sequence Length 3. This Table contains a sum-
mary of the costs and requirements for the different models when dealing with
sequences with 3 frames sequences. All the times are reported in milliseconds and
obtained as the average time required for 1000 images. The matching times con-
sider a database of 105 elements. The GPU memory is the lower bound needed for
the forwarding of a single triplet through the model at training time.

This section does not consider an analysis of different kNN indexes that would
require an ad-hoc tuning procedure for each method and, instead, utilizes an ex-
haustive kNN approach. Given the direct proportionality between the sequence
descriptor size and the matching time required, the architectures with the smaller
descriptors also have the lowest time to retrieve the shortlist of candidates. In the
case of ViT-CAT and TimeSformer models, the former produces relatively short de-
scriptors for both sequence lengths, while the second produces a fixed-size descriptor
regardless of the frames in the sequence. However, the complexity of these models
demands a long extraction time, leading to an overall inference time comparable
with a ResNet-18 paired with SeqVLAD. Comparing the configuration composed
of ResNet-18 and SeqVLAD with the CCT-224 and the same sequence aggregator,
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Architecture Descriptor
Dim.

Extraction
Time [ms]

Matching
Time [ms]

Inference
Time [ms]

GPU Memory
per triplet

ResNet-18 - GeM - CAT 1792 29 5 35 6.0 GB
ResNet-18 - NetVLAD - CAT 114688 46 339 385 8.4 GB
ResNet-18 - SeqVLAD 16384 45 48 93 8.6 GB
ResNet-18 - Attn. 2D - SeqVLAD 16384 54 48 101 10.0 GB
ResNet-50 - SeqVLAD 65536 168 191 359 28.0 GB
Base-ViT - CAT 5376 71 15 86 16.2 GB
Timesformer 768 108 2 110 22.0 GB
CCT224 - SeqVLAD 24576 25 72 98 7.1 GB
CCT384 - SeqVLAD 24576 80 72 153 24.0 GB

Table 6.8: Requirements for Sequence Length 7. This Table contains a sum-
mary of the costs and requirements for the different models when dealing with
sequences with 7 frames sequences. All the times are reported in milliseconds and
obtained as the average time required for 1000 images. The matching times con-
sider a database of 105 elements. The GPU memory is the lower bound needed for
the forwarding of a single triplet through the model at training time.

the latter architecture has a remarkable 40% lower extraction time but counterbal-
ance it producing a larger sequence descriptor that leads to an overall comparable
result in term of inference time but with considerable higher R@1 performances.

Given the available resources to conduct the experiments, the GPU memory re-
quirement is one of the most critical factors. The weakly supervised triplet loss [16]
adopted in this work when using a number of negatives equal to 10 examples and
a single positive, each triplet is composed of 12 sequences of F frames each. This
means that for sequence lengths equal to 3 and 7 frames, the triplet is composed of
36 and 84 images, respectively, and considering only batches with a single triplet,
whereas a larger batch size of at least two would be a better choice for training the
model. These simple considerations have the practical implication of large memory
requirements at training time that make the resources for training architectures
as Timesformer, ViT, and CCT-384 very difficult or impossible to obtain. How-
ever, this problem is not limited to Transformer-based architectures but also affects
deeper and heavier CNNs. For instance, using a ResNet-50 with SeqVLAD, using
images with full resolution 480 × 640, requires a similar GPU memory demand.
This section underlines that the main problem encountered in this scenario is the
overwhelming training needs of the adopted metric learning approach. A possible
future line of research could involve the use of different procedures that require a
lower memory footprint by default. In the following sections, two alternative ap-
proaches are considered to lower the memory requirements with the triplet loss (i)
to use methods trained on the im2im and (ii) to reduce the number of negative
samples in each triplet.
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6.8 Single-Image Models for S-VG
The experiments presented in this section aim to circumvent the issues related to
the high GPUmemory requirements highlighted previously, exploiting the flexibility
of the SeqVLAD layer. The idea is to train the models on an im2im setup that
drastically reduces the memory impact and then evaluate the performances on
various sequence lengths.

This approach cannot be exploited using TimeSformers or configurations with
fully connected layers because these methods can be applied only on sequences
with the same length as the training ones. On the other hand, concatenating the
descriptors requires very large descriptors when using NetVLAD, then only the
results obtained with the light GeM with CAT configuration are reported. The
techniques analyzed in this section focus on ResNet and CCT architectures paired
with SeqVLAD with different sequence lengths up to 15 total frames.

Backbone Decriptor
Dim. Aggregation R@1

Seq. 1
R@1
Seq. 3

R@1
Seq. 5

R@1
Seq. 7

R@1
Seq. 9

R@1
Seq. 15

ResNet-18 F · 256 GeM - CAT 65.7 75.8 77.5 78.9 79.4 83.0
ResNet-18 SeqVLAD 73.9 82.1 83.1 84.0 85.4 90.4
ResNet-18 + Attn. 2D 16384 SeqVLAD 74.9 82.1 83.7 85.0 86.3 91.8
ResNet-50 65536 SeqVLAD 75.9 83.5 85.6 86.5 88.0 92.0
CCT-224 (tr8) 74.6 83.4 85.1 84.9 86.8 91.1
CCT-224 (tr10) 24576 SeqVLAD 74.5 83.8 85.5 86.0 87.7 90.4
CCT-384 (tr8) 77.5 86.4 87.3 87.8 89.6 94.7
CCT-384 (tr8-fz2) 79.8 87.7 88.9 88.8 90.3 94.8
CCT-384 (tr10)

24576 SeqVLAD
79.4 87.7 89.2 89.4 90.5 93.6

Table 6.9: Models trained on the im2im task applied to S-VG. The table
contains the results obtained evaluating models trained on the im2im task em-
ploying the SeqVLAD layer, which provides enough flexibility to adapt to different
sequence lengths, maintaining a fixed-length descriptor. The backbones are pre-
trained on ImageNet. The entire pipeline is finetuned on MSLS, with 10 negatives
per triplet. The parameters indicated for CCT models are the encoder block at
which the architecture is cropped (trN) and the layers frozen during the training
(fzN).

Table 6.9 contains the obtained outcomes and the dimensionalities of the dif-
ferent descriptors. Note that for GeM-CAT, the dimensionality changes with the
number of frames (F ) as 256 · F , while SeqVLAD always produces a fixed-length
descriptor. The outcomes obtained with these experiments give interesting insights
into two aspects. In contrast with the initial intuition, the model trained for im2im
paired with SeqVLAD can produce high retrieval performances. A complex ar-
chitecture as the TimeSformer employs the self-attention mechanism to model the
relationships between the semantic elements in the images both within a single
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frame and across the sequence to capture the scene’s evolution. This property is
desirable for Action Recognition but could not be mandatory for Sequence-based
VG, or at least with the MSLS dataset used in this work. Inspecting the results
obtained with im2im trained models, this hypothesis can be relaxed in favor of
a simpler sequence-level aggregator as SeqVLAD. In fact, this layer relies on the
NetVLAD’s ideas of creating a descriptor by interpreting the output embeddings
from CCTs or the feature maps from CNNs, as dense local features and aggregates
them computing their residuals with a learnable codebook. The training using the
im2im setup leads CCT-224 models to a drop in performance around 1%, consistent
over the different sequence lengths. However, this approach allows experimenting
with CCT for larger image resolutions of 384 × 384 without impacting the GPU
memory requirements. While the requirements for one triplet with 10 negatives
and sequence length 3 required over 12GB, with this approach, the memory needed
for one triplet is lower than 8GB. Combining the higher resolution for the input
images with the representational capability of the Transformer-based architecture
of the CCT provides better results than the CNNs counterpart.

6.9 Variations with Number of Negatives
The second approach proposed for reducing the GPU memory requirements at
training time is to reduce the number of negative samples is set to 10, following
the indications of [16]. However, when considering sequences together within this
metric learning setup, the total number of images for each triplet increases quickly
and, as a consequence, also the required memory. This section proposes a series
of experiments to test lower values for the training triplets’ negatives. Due to the
limited time and computational resources, the experiments are not exhaustive, but
they give precious hints for future works. The configurations tried in this collection
of experiments are ResNet-18, CCT-224, and CCT-384, all paired with SeqVLAD,
trained on single frames or with a sequence length of three frames. Table 6.10
contains the outcomes obtained training these models with 10, 5, and 2 negative
examples per triplet and then evaluating them with different sequence lengths.

The choice of ResNet-18 with SeqVLAD is meant to have a baseline model for
both single image and 3-frames sequences. When using single images, the SeqVLAD
with CNN backbones is equivalent to NetVLAD, and then it is possible to assess
how the use of different negatives affects this ”traditional” pipeline. Inspecting the
outcomes reported in the Table, for this configuration, the retrieval performance
when using 2 negatives is consistently lower than with 10 negatives for all the
different sequence lengths. Instead, reducing the number to 5 negatives does not
impact the results, which are always comparable or even slightly superior. When
training the architecture on sequences of 3 frames, lowering the number of negatives
has a positive impact on the performances. For this scenario, the best results are
obtained using 2 negatives, but with 5 the results are very close, too.
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Backbone Training
Seq. Len. Aggregation Num. Neg. R@1

Seq. 1
R@1
Seq. 3

R@1
Seq. 5

R@1
Seq. 7

R@1
Seq. 9

R@1
Seq. 15

10 73.9 82.1 83.1 84.0 85.4 90.4
5 73.9 82.5 83.7 84.8 86.1 90.9ResNet-18 Seq. 1 SeqVLAD
2 72.7 80.4 81.7 82.7 84.3 89.6
10 74.9 84.3 86.3 86.7 87.9 90.9
5 76.2 85.1 87.4 87.9 89.4 92.0CCT-224

(tr10-fzConv) Seq. 1 SeqVLAD
2 78.4 87.1 88.8 88.8 90.3 93.8
10 79.8 87.7 88.9 88.8 90.3 94.8
5 80.5 88.3 89.5 90.0 91.4 95.7CCT-384

(tr8-fz2) Seq. 1 SeqVLAD
2 81.3 89.2 90.5 90.1 91.5 96.2

10 73.7 83.5 83.9 85.0 86.2 90.3
5 75.0 83.8 85.5 86.1 87.5 91.6ResNet-18 Seq. 3 SeqVLAD
2 75.6 84.0 85.8 86.8 88.1 91.8
10 74.1 84.6 86.4 86.6 88.0 92.7
5 75.2 85.2 87.2 86.8 88.3 93.1CCT224

(tr8-fz2) Seq. 3 SeqVLAD
2 76.9 86.8 88.0 88.1 89.1 92.9
10 77.1 87.1 88.7 89.3 90.7 94.3
5 78.9 87.8 89.8 90.1 91.5 95.0CCT-384

(tr8-fz2) Seq. 3 SeqVLAD
2 80.2 88.8 90.4 90.5 92.1 97.1

Table 6.10: Number of Negatives. Results obtained training the models with
different numbers of negatives. For CCT models, the two parameters indicate the
layer at which the network is cropped (trN) and the frozen blocks during training
(frM). Note that ”Conv” indicates the Convolutional Tokenization block. The best
result for each architecture is underlined, while the best results for each training
sequence length are in bold.

The results obtained with CCT architecture are of particular interest. While, as
expected, the results obtained with CCT-224 and CCT-384 are higher for the -384
version, the use of single images and 3-frames sequences provides similar results,
with the latter being slightly better. In both cases, the best results are obtained
using 2 negative examples, which provide a considerable boost in performance be-
tween 1% and 4% with the various sequence lengths. The results reported in this
section are the highest ones on the S-VG task. A possible motivation behind these
surprising results can be found following these considerations. The setup of [16],
where the authors do not use the partial database mining as done in MSLS [146]
but the full mining procedure. Then, in that scenario, the negatives are selected
considering the entire database, and it is more likely that all the 10 negatives are
more visually similar to the query than the set of 10 negatives obtained from 1000
randomly sampled elements of the partial mining. Using a high number of negatives
leads to a harmful effect on the loss because, for its formulation, when the exam-
ples fall very far in the descriptor space, they produce a null contribution and the
overall effect of shrinking the final value of the loss. As a result, the optimization
steps are shorter, leading to local optima with lower retrieval performances. The
takeaway message obtained from the results discussed in this section is that the
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number of negative examples can be an essential hyperparameter to tune for S-VG.
Besides the increase in R@1 performance, the use of a lower number of negatives
in the S-VG setting is extremely beneficial since it substantially reduces the images
in each triplet. This translates into lower GPU memory requirements and allows
to train previously untractable methods.

6.10 Reverse and Random Sequence Order
This section proposes a series of experiments that modify the order of the database
sequences to analyze how these variations impact the performances of the differ-
ent models. In particular, the database sequences at test time were reversed and
shuffled to assess the robustness of the predictions. In this sense, it is essential to
recall that the MSLS dataset consists of images from long sequences captured from
front-view cameras mounted on cars. Those sequences do not have a 360◦ degree
view and have a defined direction. The utility that generates the training sequences
use the forward direction and selects different portions of the original sequence of
the right length. By reversing or shuffling its order, the model operates on the
backward sequence or entirely at random, providing a challenging situation for the
S-VG system.

Table 6.11 contains the results of this analysis. The models are trained following
the usual approach but are then tested using the right order for the test queries
and different orderings for the database sequences.

As expected, the results show that aggregation methods relying on concatenation
and fully-connected layers are affected by the different ordering. This is the case for
ResNet-18 with NetVLAD-CAT and GeM-CAT, and the ViT-FC2048. Considering
the reverse ordering, the performances decrease for the two CAT-based pipelines in
a range between 5% and 14%, with higher drops for longer sequences; while shuffling
the frame order has a more contained impact, probably because of the short length
of the sequences for which the final sequence can be close to the original one. The
ViT model has a drop of 4.7% for the reverse order and 2.3% for the shuffled
sequences, which is lower than the equivalent CAT models. Unfortunately, the use
of a fully-connected layer prevents the evaluation of this architecture on different
sequence lengths.

The TimeSformer architecture again cannot process sequences with different
lengths, but it proves to be robust to the different order of the frames. Unlike the
previous methods, it builds a sequence descriptor by considering the sequence as a
whole entity, which inhibits the potentially detrimental effects of a different frame
order.

A similar argument can be applied to the SeqVLAD layer, that instead of con-
sidering the frames composing the sequence as separate entities, works on the fea-
tures/embeddings treating them as an unordered set of elements that must be con-
sidered together to describe the whole sequence. From this order-invariant property
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of SeqVLAD, it follows that the results obtained with this sequence-aggregator are
independent of the frame order.

Architecture Training
Seq. Len. Aggregation Frame Order R@1

Seq. 3
R@1
Seq. 5

R@1
Seq. 7

R@1
Seq. 9

R@1
Seq. 15

Normal 72.7 74.5 75.9 77.6 81.1
Reverse 65.9 64.8 65.8 66.6 66.5ResNet-18 Seq. 5 GeM + CAT
Shuffle 69.5 70.7 72.1 73.7 75.9
Normal 81.0 82.3 83.4 83.5 84.7
Reverse 77.7 75.9 75.2 75.0 73.6ResNet-18 Seq. 3 NetVLAD + CAT
Shuffle 79.4 80.4 80.7 81.0 80.6
Normal 83.1 84.5 85.5 86.8 90.1
Reverse 83.1 84.5 85.5 86.8 90.1ResNet-18 + Attn. 2D Seq. 3 SeqVLAD
Shuffle 83.1 84.5 85.5 86.8 90.1
Normal 83.3 85.1 85.7 87.4 91.1
Reverse 83.3 85.1 85.7 87.4 91.1ResNet-18 + Attn. 3D Seq. 3 SeqVLAD
Shuffle 83.3 85.1 85.7 87.4 91.1
Normal - 79.2 - - -
Reverse - 74.5 - - -ViT Seq. 5 FC-2048
Shuffle - 76.9 - - -
Normal - - 83.7 - -
Reverse - - 83.7 - -Timesformer Seq. 7 -
Shuffle - - 83.8 - -
Normal 86.8 88.0 88.1 89.1 92.9
Reverse 86.8 88.0 88.1 89.1 92.9CCT-224 (tr8-fz2) Seq. 3 SeqVLAD
Shuffle 86.8 88.0 88.1 89.1 92.9

Table 6.11: Experiments with different sequence orders. This Table contains
the results obtained by shuffling or reversing the order of the database sequences
and keeping the original order for the queries. A configuration has been evaluated
for each of the architectures proposed in this chapter. All the backbones are pre-
trained on ImageNet, and trained on MSLS with 10 negative examples per triplet.
The parameters indicated for CCT models are the encoder block at which the
architecture is cropped (trN) and the layers frozen during the training (fzN).
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Chapter 7

Conclusion and future works

The path followed to achieve the set objectives of this thesis led to an in-depth
analysis of all the most important and widespread Deep Learning techniques used
for Visual Geo-Localization. The first goal of this work was to produce a fair and
comprehensive benchmark that could allow the researchers and industry practition-
ers to analyze the performances and the requirements of the methods proposed in
the literature. The process of design and development of this framework followed
a series of progressive steps. The first phase was an exhaustive literature survey
to identify the most popular and effective techniques adopted in VG. This study
was pivotal to prototype a modular system that could include these techniques and
allow their training and evaluation. For training and evaluating the models, six
heterogeneous datasets covering various real-world scenarios have been selected to
build the evaluation suite of the framework. After this preliminary phase, the de-
velopment of the VG system proceeded with the implementation of all the selected
techniques composing the different stages of the VG pipeline. Finally, we conducted
extensive experiments using our framework to analyze the contributions and costs
of the different choices in a VG system. The analysis of the results points out
general guidelines to follow in developing and deploying a Visual Geo-localization
application. This massive work resulted from a group effort and is currently under
review for publication.

The contribution of the first half of this thesis is the introduction of a modu-
lar framework to build, train and evaluate several popular Visual Geo-localization
architectures. Compared to similar works, it allows to inspect and analyze the
enhancements provided by every single component because its modular design pro-
vides the flexibility of changing the various elements composing the VG pipeline
and evaluating them in a standardized environment. Moreover, the exhaustive
collection of experiments provides precious guidelines on the different engineering
choices at training and inference time to calibrate the VG system based on the
performances and resources required by its downstream applications.

The experiments show that among the different CNN architectures used in the
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Method Descr. Dim. R@1
Pitts30k

R@1
Pitts250k

R@1
Tokyo 24/7

VGG16 + NetVLAD + PCA [173] 4096 85.2 86.5 68.9
VGG16 + NetVLAD [173] 32768 - 84.1 60.0
SRALNet (ICRA21) [174] 4096 - 87.8 72.1
SRALNet (ICRA21) [174] 32768 85.1 85.8 68.6
APPSVR (ICCV21) [173] 4096 87.4 88.8 77.1
APPSVR (ICCV21) [173] 32768 - 86.6 68.3
ResNet-18 + NetVLAD + PCA (Ours) 4096 86.8 87.9 72.2
ResNet-18 + NetVLAD (Ours) 16384 87.2 88.1 73.7

Table 7.1: Comparison with state-of-the-art models. This table shows the re-
sults obtained comparing a simple architecture composed of ResNet-18 + NetVLAD
following the insights gathered from the benchmarking experiments. The model’s
architecture was selected between the best-performing ones and trained on Pitts30k
using data augmentation and majority voting on the tests for Tokyo 24/7.

VG literature, the ResNet-50 provides a good compromise between requirements
and performance, and ResNet-18 represents the best option when looking for a
lighter alternative. Concerning the aggregation layers, CRN provides the best re-
sults but has the downside of requiring a significant training cost compared to the
other techniques. Then, two alternatives are NetVLAD, which reaches similar per-
formances but requires half of CRN’s training time, and the GeM pooling layer,
which shows a good generalization capability when trained on large-scale heteroge-
neous datasets.

An important aspect when approaching VG as a retrieval task within the metric
learning setup is the choice of an effective and efficient mining procedure, which is
required to identify the negative examples of the training triplets. Full database
mining proved to be an impracticable option for large-scale datasets while using
partial mining achieves a proper trade-off between performances and computational
costs.

One of the primary motivations for this benchmarking framework is the lack
in the literature of a common platform to evaluate the VG methods fairly. Other
works, as [17, 81], compare the performance results of architectures trained on
different datasets; however, the outcomes of the experiments highlighted how the
training sets matter considerably on the generalization performances of the different
techniques. This result points out that a framework that adequately addresses
this harmful habit is fundamental to comprehend the actual contributions of VG
methods.

Furthermore, the analysis also proposes a study of optimized kNN indexing tech-
niques, showing that they can play a crucial role in reducing the memory require-
ments and the inference time in deploying the models. These techniques must be
adequately tuned to the final application needs with a careful trade-off between the
inference time, the memory footprint of the database, and the impact on retrieval
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performance. The choice of the right kNN indexing allows the use of techniques
with larger descriptors that otherwise, with plain kNN, could not be deployed.

To prove the importance of the insight gathered with this work, the results in
Table 7.1 show that using a simple architecture optimized following these guide-
lines can achieve comparable results with more complex and recent state-of-the-art
methods. Once more, these results underline the importance of a standard platform
for training and evaluating VG models.

Currently, the framework presents some limitations that will be addressed in
future releases. For instance, compared to [81] it lacks an in-depth analysis of
viewpoint and invariance analysis of the VG methods, and the focus is only on
outdoor urban environments. Moreover, some current state-of-the-art methods like
[175, 173] and other losses [153] are not yet fully integrated into the framework,
but they will be added in the future. The current plan is to continuously update
the benchmark’s website 1 with new results and to expand the pool of available
methods.

The second goal of the thesis was to extend the Deep Learning methods for
VG analyzed in the first part exploiting the information provided by sequences of
frames. Sequence-based VG has roots in the robotics community and several possi-
ble downstream applications, from autonomous driving to augmented reality. The
development of methods able to capture and model the relationship of the semantic
elements can enhance the retrieval ability of the systems and produce more robust
descriptors. For this task, the focus was shifted from traditional CNN architectures
to explore the possibility of using the emerging Transformer-based architectures.
This investigation represents an original contribution of this thesis aimed at ex-
ploiting their self-attention mechanism capable of modeling complex spatial and
temporal relationships in the sequences. Approaching Sequence-based VG within
a metric learning setup presented several challenges in finding a good trade-off
between the proposed methods’ requirements and their retrieval performances.

S-VG can be formulated in different ways, and this work embraces the seq2seq
formulation, where both the queries and the database instances are sequences of
frames. The objective is to develop models that extract discriminative and robust
sequence-level descriptors to select the potential database sequences captured in the
same location as the query one. The analysis focuses on small sequences between
3 and 15 frames, with the idea of preserving a meaningful and accurate concept of
geographic location.

Throughout the investigation, several forms of self-attentive techniques were em-
ployed. They include different Non-Local modules configurations used as pluggable
attention layers for CNN networks and the use of Transformer-based architectures,

1https://deep-vg-bench.herokuapp.com
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as Vision Transformers (ViT), TimeSformers, and Compact Convolutional Trans-
formers (CCT). The latter presents a hybrid approach that exploits the advantages
of both worlds of convolutions and self-attention operations. ViT and TimeSformer
rely on a patching technique to transform the single frames into sequences of vectors.
This simple approach has the downside of requiring higher computational resources
that limit their applicability for this work. Given the need for a reliable sequence-
level aggregation layer, we introduced SeqVLAD, which adapts NetVLAD, i.e., one
of the best-performing methods identified in the benchmarking analysis, to the S-
VG task. This layer paired with CCT produced the best results, proving the richer
expressiveness of the Transformer-based architectures and the benefit of using an
ad-hoc sequence aggregation layer for this task.

Given the considerable amount of resources required by many of these models,
a section has been dedicated to analyzing training and inference time costs. Fol-
lowing this analysis, we considered two possible alternatives to lower the models’
requirements: (i) reducing the number of negative examples per triplet and (ii)
training models with SeqVLAD on the single image task and then adapting them
with different sequence lengths. Finally, the last section investigates the behavior
of the models when faced with database sequences with shuffled or reversed frame
order.

The results obtained for the S-VG task highlight the potential of exploiting se-
quences to achieve better performances in the Geo-Localization task and to produce
more robust descriptors. This task benefits from using ad-hoc techniques to model
spatio-temporal relationships between the elements in the frames. Moreover, the
experiments show how the introduction of Transformer-based architectures pro-
duces compelling results that could be the basis for future works. Other possible
research directions emerged during this work. One possibility is to use a differ-
ent formulation of the task, that instead of mapping query sequences to database
sequences, produces a prediction for the last frame of the sequence and uses the
previous frames as past information of the path followed to get to that specific
location. The insights generated on the number of negative examples for the train-
ing triplets give space for other experiments with models that otherwise could not
be evaluated. Additionally, new hybrid models combining the CCT’s Tokenization
block and the self-attention scheme from TimeSformer could be tried to gain the
positive aspects coming from these two architectures.
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